1
|
Ren Z, Zhong H, Song C, Deng C, Hsieh HT, Liu W, Chen G. Insulin Promotes Mitochondrial Respiration and Survival through PI3K/AKT/GSK3 Pathway in Human Embryonic Stem Cells. Stem Cell Reports 2020; 15:1362-1376. [PMID: 33186539 PMCID: PMC7724469 DOI: 10.1016/j.stemcr.2020.10.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 10/17/2020] [Accepted: 10/18/2020] [Indexed: 02/06/2023] Open
Abstract
Insulin is an essential growth factor for the survival and self-renewal of human embryonic stem cells (hESCs). Although it is best known as the principal hormone promoting glycolysis in somatic cells, insulin's roles in hESC energy metabolism remain unclear. In this report, we demonstrate that insulin is essential to sustain hESC mitochondrial respiration that is rapidly decreased upon insulin removal. Insulin-dependent mitochondrial respiration is stem cell specific, and mainly relies on pyruvate and glutamine, while glucose suppresses excessive oxidative phosphorylation. Pharmacologic and genetic manipulations reveal that continuous insulin signal sustains mitochondrial respiration through PI3K/AKT activation and downstream GSK3 inhibition. We further show that insulin acts through GSK3 inhibition to suppress caspase activation and rescue cell survival. This study uncovers a critical role of the AKT/GSK3 pathway in the regulation of mitochondrial respiration and cell survival, highlighting insulin as an essential factor for accurate assessment of mitochondrial respiration in hESCs. Insulin is continuously required to sustain mitochondrial respiration in hESCs Insulin-dependent mitochondrial respiration is substrate specific GSK3 is a major regulator of insulin-dependent respiration and cell survival Insulin is essential for accurate assessment of mitochondrial respiration in hESCs
Collapse
Affiliation(s)
- Zhili Ren
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China; Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Hui Zhong
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China; Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Chengcheng Song
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China; Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Chunhao Deng
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China; Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Hsun-Ting Hsieh
- Bioimaging and Stem Cell Core Facility, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Weiwei Liu
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China; Bioimaging and Stem Cell Core Facility, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Guokai Chen
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China; Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR, China.
| |
Collapse
|
2
|
Tan HL, Tan BZ, Goh WXT, Cua S, Choo A. In vivo surveillance and elimination of teratoma-forming human embryonic stem cells with monoclonal antibody 2448 targeting annexin A2. Biotechnol Bioeng 2019; 116:2996-3005. [PMID: 31388993 PMCID: PMC6790577 DOI: 10.1002/bit.27135] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/25/2019] [Accepted: 07/29/2019] [Indexed: 12/14/2022]
Abstract
This study describes the use of a previously reported chimerised monoclonal antibody (mAb), ch2448, to kill human embryonic stem cells (hESCs) in vivo and prevent or delay the formation of teratomas. ch2448 was raised against hESCs and was previously shown to effectively kill ovarian and breast cancer cells in vitro and in vivo. The antigen target was subsequently found to be Annexin A2, an oncofetal antigen expressed on both embryonic cells and cancer cells. Against cancer cells, ch2448 binds and kills via antibody‐dependent cell‐mediated cytotoxicity (ADCC) and/or antibody‐drug conjugate (ADC) routes. Here, we investigate if the use of ch2448 can be extended to hESC. ch2448 was found to bind specifically to undifferentiated hESC but not differentiated progenitors. Similar to previous study using cancer cells, ch2448 kills hESC in vivo either indirectly by eliciting ADCC or directly as an ADC. The treatment with ch2448 post‐transplantation eliminated the in vivo circulating undifferentiated cells and prevented or delayed the formation of teratomas. This surveillance role of ch2448 adds an additional layer of safeguard to enhance the safety and efficacious use of pluripotent stem cell‐derived products in regenerative medicine. Thereby, translating the use of ch2448 in the treatment of cancers to a proof of concept study in hESC (or pluripotent stem cell [PSC]), we show that mAbs can also be used to eliminate teratoma forming cells in vivo during PSC‐derived cell therapies. We propose to use this strategy to complement existing methods to eliminate teratoma‐forming cells in vitro. Residual undifferentiated cells may escape in vitro removal methods and be introduced into patients together with the differentiated cells.
Collapse
Affiliation(s)
- Heng Liang Tan
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore
| | - Bao Zhu Tan
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore
| | - Winfred Xi Tai Goh
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore
| | - Simeon Cua
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore
| | - Andre Choo
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore
| |
Collapse
|
3
|
Hu J, Wang J. From embryonic stem cells to induced pluripotent stem cells-Ready for clinical therapy? Clin Transplant 2019; 33:e13573. [PMID: 31013374 DOI: 10.1111/ctr.13573] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 04/18/2019] [Indexed: 01/08/2023]
Abstract
Embryonic stem cells and induced pluripotent stem cells have increasingly important roles in many different fields of research and medicine. Major areas of impact include improved in vitro disease models, drug screening, and the development of cell-based clinical therapies. Here, we review the generation and uses of embryonic stem cells compared to induced pluripotent stem cells and discuss their advantages and limitations. We also evaluate the feasibility of clinical therapies and the future prospects for induced pluripotent cell-based treatments.
Collapse
Affiliation(s)
- Jing Hu
- Department of Neonatology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Jimei Wang
- Department of Neonatology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| |
Collapse
|
4
|
Joulai Veijouyeh S, Mashayekhi F, Yari A, Heidari F, Sajedi N, Moghani Ghoroghi F, Nobakht M. In vitro induction effect of 1,25(OH) 2D 3 on differentiation of hair follicle stem cell into keratinocyte. Biomed J 2017; 40:31-38. [PMID: 28411880 PMCID: PMC6138590 DOI: 10.1016/j.bj.2016.08.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 08/02/2016] [Indexed: 12/13/2022] Open
Abstract
Background Stem cells are characterized by self-renewal and differentiation capabilities. The bulge hair follicle stem cells (HFSCs) are able to convert to epithelial components. The active metabolite of vitamin D, 1,25(OH)2D3, plays important roles in this differentiation process. In the present study has found that 1,25(OH)2D3 induces the HFSCs differentiation into keratinocyte. Methods HFSCs are isolated from rat whiskers and cultivated in DMEM medium. To isolate bulge stem cell population, flow cytometry and immunocytochemistry using K15, CD34 and nestin biomarkers were performed. In order to accelerate the HFSCs differentiation into keratinocyte, HFSCs were treated with 10−12 M, 1,25(OH)2D3 every 48 h for a week. Results Immunocytochemistry results showed that bulge stem cells are nestin and CD34 positive but K15 negative before differentiation. Subsequently flow cytometry results, showed that the expression of nestin, CD34 and K15 were 70.96%, 93.03% and 6.88% respectively. After differentiation, the immunocytochemical and flow cytometry results indicated that differentiated cells have positive reaction to K15 with 68.94% expression level. Conclusion It was concluded that 10−12 M, 1,25(OH)2D3 could induce the HFSCs differentiation into keratinocytes.
Collapse
Affiliation(s)
- Sanaz Joulai Veijouyeh
- Department of Anatomy, School of Medicine, Iran University of Medical Science, Tehran, Iran; Department of Biology, University Campus 2, University of Guilan, Rasht, Iran
| | - Farhad Mashayekhi
- Department of Biology, Faculty of Sciences, University of Guilan, Rasht, Iran
| | - Abazar Yari
- Department of Anatomy, School of Medicine, Alborz University of Medical Science, Karaj, Iran
| | - Fatemeh Heidari
- Department of Anatomy, School of Medicine, Qom University of Medical Science, Qom, Iran
| | - Nayereh Sajedi
- Department of Anatomy, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| | | | - Maliheh Nobakht
- Department of Anatomy, School of Medicine, Iran University of Medical Science, Tehran, Iran; Anti-Microbial Resistance Research Center, Iran University of Medical Science, Tehran, Iran; Physiology Research Center, Iran University of Medical Science, Tehran, Iran.
| |
Collapse
|
5
|
Experimental Characterisation of Fluid Mechanics in a Spinner Flask Bioreactor. Processes (Basel) 2014. [DOI: 10.3390/pr2040753] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
6
|
Ismadi MZ, Gupta P, Fouras A, Verma P, Jadhav S, Bellare J, Hourigan K. Flow characterization of a spinner flask for induced pluripotent stem cell culture application. PLoS One 2014; 9:e106493. [PMID: 25279733 PMCID: PMC4184809 DOI: 10.1371/journal.pone.0106493] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 08/01/2014] [Indexed: 11/26/2022] Open
Abstract
We present detailed quantitative measurement analyses for flow in a spinner flask with spinning rates between 20 to 45 RPM, utilizing the optical velocimetry measurement technique of Particle Image Velocimetry (PIV). A partial section of the impeller was immersed in the working fluid to reduce the shear forces induced on the cells cultured on microcarriers. Higher rotational speeds improved the mixing effect in the medium at the expense of a higher shear environment. It was found that the mouse induced pluripotent stem (iPS) cells achieved the optimum number of cells over 7 days in 25 RPM suspension culture. This condition translates to 0.0984 Pa of maximum shear stress caused by the interaction of the fluid flow with the bottom surface. However, inverse cell growth was obtained at 28 RPM culture condition. Such a narrow margin demonstrated that mouse iPS cells cultured on microcarriers are very sensitive to mechanical forces. This study provides insight to biomechanical parameters, specifically the shear stress distribution, for a commercially available spinner flask over a wide range of Reynolds number.
Collapse
Affiliation(s)
- Mohd-Zulhilmi Ismadi
- Division of Biological Engineering, Monash University, Melbourne, Victoria, Australia
- Department of Mechanical and Aerospace Engineering, Monash University, Melbourne, Victoria, Australia
- * E-mail:
| | - Priyanka Gupta
- Division of Biological Engineering, Monash University, Melbourne, Victoria, Australia
- Department of Chemical Engineering, Monash University, Melbourne, Victoria, Australia
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Andreas Fouras
- Division of Biological Engineering, Monash University, Melbourne, Victoria, Australia
- Department of Mechanical and Aerospace Engineering, Monash University, Melbourne, Victoria, Australia
| | - Paul Verma
- Division of Biological Engineering, Monash University, Melbourne, Victoria, Australia
- South Australian Research and Development Institute, Rosedale, South Australia, Australia
| | - Sameer Jadhav
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Jayesh Bellare
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Kerry Hourigan
- Division of Biological Engineering, Monash University, Melbourne, Victoria, Australia
- Department of Mechanical and Aerospace Engineering, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
7
|
Zaninovic N, Zhan Q, Rosenwaks Z. Derivation of human embryonic stem cells (hESC). Methods Mol Biol 2014; 1154:121-44. [PMID: 24782008 DOI: 10.1007/978-1-4939-0659-8_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Abstract
Stem cells are characterized by their absolute or relative lack of specialization their ability for self-renewal, as well as their ability to generate differentiated progeny through cellular lineages with one or more branches. The increased availability of embryonic tissue and greatly improved derivation methods have led to a large increase in the number of hESC lines.
Collapse
Affiliation(s)
- Nikica Zaninovic
- Center for Reproductive Medicine, Weill Cornell Medical College, 1305 York Avenue, New York, NY, 10021, USA,
| | | | | |
Collapse
|
8
|
Ess KC. Patient heal thyself: modeling and treating neurological disorders using patient-derived stem cells. Exp Biol Med (Maywood) 2013; 238:308-14. [PMID: 23598977 DOI: 10.1177/1535370213480713] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Disorders of the brain and spinal cord are common worldwide problems but have remained very difficult to treat. As a group they have diverse etiologies and can be due to trauma, infection, tumors, genetic mutations and environmental insults. Though distinct in etiology, neurological disorders share an overall intractability as current therapies are largely limited to treatment of symptoms. Improved outcomes are further constrained by the minimal endogenous capacity of the brain and spinal cord for repair. Spectacular recent scientific advances, however, suggest that new stem cell-based approaches may change this undesirable situation. In this review, I will broadly outline the challenges of studying and treating disorders of the brain and spinal cord. I will review ongoing attempts to use stem cell-based therapies to both model and treat neurological disorders. While this field is in its infancy, expected advances and needed breakthroughs point to a future where patient-derived stem cells will be the basis for the emerging discipline of regenerative neurology.
Collapse
Affiliation(s)
- Kevin C Ess
- Department of Neurology, Vanderbilt Kennedy Center, Vanderbilt Center for Stem Cell Biology, Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| |
Collapse
|
9
|
Vatansever HS, Uluer ET, Aydede H, Ozbilgin MK. Analysis of transferred keratinocyte-like cells derived from mouse embryonic stem cells on experimental surgical skin wounds of mouse. Acta Histochem 2013; 115:32-41. [PMID: 22494612 DOI: 10.1016/j.acthis.2012.03.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Revised: 03/14/2012] [Accepted: 03/15/2012] [Indexed: 10/28/2022]
Abstract
Autologous/allogenic skin grafts constituted from differentiated adult or embryonic stem cells can be used in treatment of skin disorders. In our study we aimed to differentiate keratinocytes from mouse embryonic stem cells and the transfer of viable keratinocyte-like cells to a model of surgical skin wound of mouse. Embryoid bodies, derived from mouse embryonic stem cells, were cultured on basement membrane matrix with added BMP-4 for 10 days. The identification of differentiated keratinocyte-like cells was done by detection of cytokeratin-8 and cytokeratin-14 localization using an indirect immunoperoxidase technique and transmission electron microscopy evaluation. Distribution of BrdU, cytokeratin-8 and cytokeratin-14 were evaluated using an indirect immunoperoxidase technique from the experimental (dressing including BrdU labelled cells applied after the surgical wound was created on mouse), control (only the surgical wound was created on mouse) and sham (only the dressing applied after the surgical wound was created on mouse) in groups after 3, 5 and 7 days. Immunohistochemically and ultrastructurally, cells derived from mouse embryonic stem cells were similar to differentiated keratinocyte-like cells. Differentiated keratinocyte-like cells were demonstrated by positive BrdU, cytokeratin-8 and cytokeratin-14 staining after transfer to the wound area. In the experimental group wound healing was better after transferring differentiated keratinocytes when compared to the sham and control groups. In vivo continuity and usability of derived cells are very important issues. In wound repair mechanisms, keratinocyte-like cells could provide positive effects during the wound healing and could be used in clinical treatments of wound repair process.
Collapse
|
10
|
Ho PJ, Yen ML, Yet SF, Yen BL. Current Applications of Human Pluripotent Stem Cells: Possibilities and Challenges. Cell Transplant 2012; 21:801-14. [DOI: 10.3727/096368911x627507] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Stem cells are self-renewable cells with the differentiation capacity to develop into somatic cells with biological functions. This ability to sustain a renewable source of multi- and/or pluripotential differentiation has brought new hope to the field of regenerative medicine in terms of cell therapy and tissue engineering. Moreover, stem cells are invaluable tools as in vitro models for studying diverse fields, from basic scientific questions such as developmental processes and lineage commitment, to practical application including drug screening and testing. The stem cells with widest differentiation potential are pluripotent stem cells (PSCs), which are rare cells with the ability to generate somatic cells from all three germ layers. PSCs are considered the most optimal choice for therapeutic potential of stem cells, bringing new impetus to the field of regenerative medicine. In this article, we discuss the therapeutic potential of human PSCs (hPSCs) including human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs), reviewing the current preclinical and clinical data using these stem cells. We describe the classification of different sources of hPSCs, ongoing research, and currently encountered clinical obstacles of these novel and versatile human stem cells.
Collapse
Affiliation(s)
- Pai-Jiun Ho
- Regenerative Medicine Research Group, Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan
| | - Men-Luh Yen
- Departmant of Primary Medicine and Department of Obstetrics/Gynecology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shaw-Fang Yet
- Cardiovascular Research Group, Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan
| | - B. Linju Yen
- Regenerative Medicine Research Group, Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan
| |
Collapse
|
11
|
Rafi MA. Gene and stem cell therapy: alone or in combination? BIOIMPACTS : BI 2011; 1:213-8. [PMID: 23678430 DOI: 10.5681/bi.2011.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/20/2011] [Revised: 12/03/2011] [Accepted: 12/07/2011] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Both gene and stem cell therapies hold great promise in the treatment of many genetic diseases and are currently focus of interest for many investigators. While both approaches are offering great and valuable treatment options for devastating and life-threatening diseases, they hold much greater promise in combination. METHODS As there are multiple options in selecting gene transfer vehicles among the non-viral and viral vectors, there are also many options among the different transplantable cell types ranging from lineage-restricted progenitor cells to multipotent and pluripotent stem cells. Here, combination of the gene therapy and stem cell therapy is discussed. RESULTS Several suc-cessful gene and stem cell therapies have been reported both in animal and human trials. Combination of the gene therapy and stem cell therapy can be carried out sequentially where the cell transplantation and the in vivo gene therapy are accomplished one after the other; or, as it is more commonly practiced, they can be carried out as ex vivo gene therapy where the transplantable cells are genetically modified outside the body before being transplanted into the body. CONCLUSION The combination of the stem-cell technology with gene therapy has the potential of providing both regenerative tissue and therapeutic material simultaneously; therefore, having the benefits of both technologies.
Collapse
Affiliation(s)
- Mohammad A Rafi
- Department of Neurology, Jefferson Medical College, Philadelphia, Pennsylvanian 19107, USA
| |
Collapse
|
12
|
Beier AFJ, Schulz JC, Dörr D, Katsen-Globa A, Sachinidis A, Hescheler J, Zimmermann H. Effective surface-based cryopreservation of human embryonic stem cells by vitrification. Cryobiology 2011; 63:175-85. [PMID: 21910982 DOI: 10.1016/j.cryobiol.2011.06.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Revised: 05/25/2011] [Accepted: 06/02/2011] [Indexed: 01/09/2023]
Abstract
Human embryonic stem cells (hESCs) are candidates for many applications in the areas of regenerative medicine, tissue engineering, basic scientific research as well as pharmacology and toxicology. However, use of hESCs is limited by their sensitivity to freezing and thawing procedures. Hence, this emerging science needs new, reliable preservation methods for the long-term storage of large quantities of functional hESCs remaining pluripotent after post-thawing and culturing. Here, we present a highly efficient, surface based vitrification method for the cryopreservation of large numbers of adherent hESC colonies, using modified cell culture substrates. This technique results in much better post-thaw survival rate compared to cryopreservation in suspension and allows a quick and precise handling and storage of the cells, indicating low differentiation rates.
Collapse
Affiliation(s)
- A F J Beier
- Fraunhofer Institute of Biomedical Engineering, St. Ingbert, Germany
| | | | | | | | | | | | | |
Collapse
|
13
|
Chillar A, So SP, Ruan CH, Shelat H, Geng YJ, Ruan KH. A profile of NSAID-targeted arachidonic acid metabolisms in human embryonic stem cells (hESCs): Implication of the negative effects of NSAIDs on heart tissue regeneration. Int J Cardiol 2011; 150:253-9. [DOI: 10.1016/j.ijcard.2010.04.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Revised: 12/22/2009] [Accepted: 04/03/2010] [Indexed: 11/26/2022]
|
14
|
Abstract
Cardiac rhythm disorders reflect failures of impulse generation and/or conduction. With the exception of ablation methods that yield selective endocardial destruction, present therapies are nonspecific and/or palliative. Progress in understanding the underlying biology opens up prospects for new alternatives. This article reviews the present state of the art in gene- and cell-based therapies to correct cardiac rhythm disturbances. We begin with the rationale for such approaches, briefly discuss efforts to address aspects of tachyarrhythmia, and review advances in creating a biological pacemaker to cure bradyarrhythmia. Insights gained bring the field closer to a paradigm shift away from devices and drugs, and toward biologics, in the treatment of rhythm disorders.
Collapse
Affiliation(s)
- Hee Cheol Cho
- Cedars-Sinai Heart Institute, 8700 Beverly Blvd., Los Angeles, CA 90048, USA.
| | | |
Collapse
|
15
|
Tan HL, Fong WJ, Lee EH, Yap M, Choo A. mAb 84, a cytotoxic antibody that kills undifferentiated human embryonic stem cells via oncosis. Stem Cells 2010; 27:1792-801. [PMID: 19544435 DOI: 10.1002/stem.109] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The monoclonal antibody mAb 84, which binds to podocalyxin-like protein-1 (PODXL) on human embryonic stem cells (hESCs), was previously reported to bind and kill undifferentiated cells in in vitro and in vivo assays. In this study, we investigate the mechanism responsible for mAb 84-induced hESCs cytotoxicity. Apoptosis was likely not the cause of mAb 84-mediated cell death because no elevation of caspase activities or increased DNA fragmentation was observed in hESCs following incubation with mAb 84. Instead, it was preceded by cell aggregation and damage to cell membranes, resulting in the uptake of propidium iodide, and the leakage of intracellular sodium ions. Furthermore, examination of the cell surface by scanning electron microscopy revealed the presence of pores on the cell surface of mAb 84-treated cells, which was absent from the isotype control. This mechanism of cell death resembles that described for oncosis, a form of cell death resulting from membrane damage. Additional data suggest that the binding of mAb 84 to hESCs initiates a sequence of events prior to membrane damage, consistent with oncosis. Degradation of actin-associated proteins, namely, alpha-actinin, paxillin, and talin, was observed. The perturbation of these actin-associated proteins consequently permits the aggregation of PODXL, thus leading to the formation of pores. To our knowledge, this is the first report of oncotic cell death with hESCs as a model.
Collapse
|
16
|
Nie Y, Bergendahl V, Hei DJ, Jones JM, Palecek SP. Scalable culture and cryopreservation of human embryonic stem cells on microcarriers. Biotechnol Prog 2009; 25:20-31. [PMID: 19197994 PMCID: PMC2763605 DOI: 10.1002/btpr.110] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
As a result of their pluripotency and potential for unlimited self-renewal, human embryonic stem cells (hESCs) hold tremendous promise in regenerative medicine. An essential prerequisite for the widespread application of hESCs is the establishment of effective and efficient protocols for large-scale cell culture, storage, and distribution. At laboratory scales hESCs are cultured adherent to tissue culture plates; these culture techniques are labor-intensive and do not scale to high cell numbers. In an effort to facilitate larger scale hESC cultivation, we investigated the feasibility of culturing hESCs adherent to microcarriers. We modified the surface of Cytodex 3 microcarriers with either Matrigel or mouse embryonic fibroblasts (MEFs). hESC colonies were effectively expanded in a pluripotent, undifferentiated state on both Matrigel-coated microcarriers and microcarriers seeded with a MEF monolayer. While the hESC expansion rate on MEF-microcarriers was less than that on MEF-plates, the doubling time of hESCs on Matrigel-microcarriers was indistinguishable from that of hESCs expanded on Matrigel-coated tissue culture plates. Standard hESC cryopreservation methodologies are plagued by poor viability and high differentiation rates upon thawing. Here, we demonstrate that cryopreservation of hESCs adherent to microcarriers in cryovials provides a higher recovery of undifferentiated cells than cryopreservation of cells in suspension. Together, these results suggest that microcarrier-based stabilization and culture may facilitate hESC expansion and storage for research and therapeutic applications.
Collapse
Affiliation(s)
- Ying Nie
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, Wisconsin 53706
- WiCell Research Institute, P.O. Box 7365, Madison, WI 53707-7365
| | - Veit Bergendahl
- Genome Center of Wisconsin, University of Wisconsin-Madison, 425 Henry Mall, Madison, WI 53706
| | - Derek J. Hei
- Waisman Center, University of Wisconsin-Madison, 1500 Highland Ave., Madison, WI 53705-2280
| | - Jeffrey M. Jones
- WiCell Research Institute, P.O. Box 7365, Madison, WI 53707-7365
| | - Sean P. Palecek
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, Wisconsin 53706
- WiCell Research Institute, P.O. Box 7365, Madison, WI 53707-7365
| |
Collapse
|
17
|
Uchugonova A, Isemann A, Gorjup E, Tempea G, Bückle R, Watanabe W, König K. Optical knock out of stem cells with extremely ultrashort femtosecond laser pulses. JOURNAL OF BIOPHOTONICS 2008; 1:463-469. [PMID: 19343672 DOI: 10.1002/jbio.200810047] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Novel ultracompact multiphoton sub-20 femtosecond near infrared 85 MHz laser scanning microscopes and conventional 250 fs laser microscopes have been used to perform high spatial resolution two-photon imaging of stem cell clusters as well as selective intracellular nanoprocessing and knock out of living single stem cells within an 3D microenvironment without any collateral damage. Also lethal cell exposure of large parts of cell clusters was successfully probed while maintaining single cells of interest alive. The mean power could be kept in the milliwatt range for 3D nanoprocessing and even in the microwatt range for two-photon imaging. Ultracompact low power sub-20 fs laser systems may become interesting tools for optical nanobiotechnology such as optical cleaning of stem cell clusters as well as optical transfection.
Collapse
Affiliation(s)
- Aisada Uchugonova
- Fraunhofer Institute for Biomedical Technology IBMT, Ensheimer Strasse 48, 66386 St. Ingbert, Germany
| | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
PURPOSE OF REVIEW Cardiac rhythm disorders are caused by malfunctions of impulse generation or conduction. Malfunctions of impulse generation, that is, defects in pacemaking, are often life-threatening. Present therapies span a wide array of approaches, but remain largely palliative. Recent progress in understanding of the underlying biology of pacemaking opens up new prospects for better alternatives to the present routine. Specifically, development and use of biological pacemakers could prove to be advantageous to the conventional approaches. RECENT FINDINGS We review the current state of the art in gene and cell-based approaches to correct cardiac rhythm disturbances. These include genetic suppression of an ionic current, embryonic as well as adult stem cell therapies, novel synthetic pacemaker channels, and adult somatic cell-fusion approach. SUMMARY Biological pacemaking can be achieved by modulating ionic currents by gene transfer or by delivering engineered pacemaker cells into normally quiescent myocardium. The present state of development is proof-of-concept; we are now working on reducing to practice a stable, reliable biological product as an alternative to electronic pacemakers.
Collapse
|
19
|
Deb KD, Sarda K. Human embryonic stem cells: preclinical perspectives. J Transl Med 2008; 6:7. [PMID: 18230169 PMCID: PMC2268665 DOI: 10.1186/1479-5876-6-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2007] [Accepted: 01/29/2008] [Indexed: 12/22/2022] Open
Abstract
Human embryonic stem cells (hESCs) have been extensively discussed in public and scientific communities for their potential in treating diseases and injuries. However, not much has been achieved in turning them into safe therapeutic agents. The hurdles in transforming hESCs to therapies start right with the way these cells are derived and maintained in the laboratory, and goes up-to clinical complications related to need for patient specific cell lines, gender specific aspects, age of the cells, and several post transplantation uncertainties. The different types of cells derived through directed differentiation of hESC and used successfully in animal disease and injury models are described briefly. This review gives a brief outlook on the present and the future of hESC based therapies, and talks about the technological advances required for a safe transition from laboratory to clinic.
Collapse
Affiliation(s)
- Kaushik Dilip Deb
- Embryonic Stem Cell Program, Manipal Institute of Regenerative Medicine, #10 Service Road, Domlur, Bangalore 560071, India.
| | | |
Collapse
|
20
|
Christou YA, Moore HD, Shaw PJ, Monk PN. Embryonic stem cells and prospects for their use in regenerative medicine approaches to motor neurone disease. Neuropathol Appl Neurobiol 2007; 33:485-98. [PMID: 17854436 DOI: 10.1111/j.1365-2990.2007.00883.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Human embryonic stem cells are pluripotent cells with the potential to differentiate into any cell type in the presence of appropriate stimulatory factors and environmental cues. Their broad developmental potential has led to valuable insights into the principles of developmental and cell biology and to the proposed use of human embryonic stem cells or their differentiated progeny in regenerative medicine. This review focuses on the prospects for the use of embryonic stem cells in cell-based therapy for motor neurone disease or amyotrophic lateral sclerosis, a progressive neurodegenerative disease that specifically affects upper and lower motor neurones and leads ultimately to death from respiratory failure. Stem cell-derived motor neurones could conceivably be used to replace the degenerated cells, to provide authentic substrates for drug development and screening and for furthering our understanding of disease mechanisms. However, to reliably and accurately culture motor neurones, the complex pathways by which differentiation occurs in vivo must be understood and reiterated in vitro by embryonic stem cells. Here we discuss the need for new therapeutic strategies in the treatment of motor neurone disease, the developmental processes that result in motor neurone formation in vivo, a number of experimental approaches to motor neurone production in vitro and recent progress in the application of stem cells to the treatment and understanding of motor neurone disease.
Collapse
Affiliation(s)
- Y A Christou
- Academic Unit of Neurology, Section of Neuroscience, University of Sheffield, UK
| | | | | | | |
Collapse
|
21
|
Heng BC, Clement MV, Cao T. Caspase inhibitor Z-VAD-FMK enhances the freeze-thaw survival rate of human embryonic stem cells. Biosci Rep 2007; 27:257-64. [PMID: 17594512 DOI: 10.1007/s10540-007-9051-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Previous study demonstrated that the low survival of human embryonic stem cells (hESC) under conventional slow-cooling cryopreservation protocols is predominantly due to apoptosis rather than cellular necrosis. Hence, this study investigated whether a synthetic broad-spectrum irreversible inhibitor of caspase enzymes, Z-VAD-FMK can be used to enhance the post-thaw survival rate of hESC. About 100 mM Z-VAD-FMK was supplemented into either the freezing solution, the post-thaw culture media or both. Intact and adherent hESC colonies were cryopreserved so as to enable subsequent quantitation of the post-thaw cell survival rate through the MTT assay, which can only be performed with adherent cells. Exposure to 100 mM Z-VAD-FMK in the freezing solution alone did not significantly enhance the post-thaw survival rate (10.2% vs. 9.9%, p > 0.05). However, when 100 mM Z-VAD-FMK was added to the post-thaw culture media, there was a significant enhancement in the survival rate from 9.9% to 14.4% (p < 0.05), which was further increased to 18.7% when Z-VAD-FMK was also added to the freezing solution as well (p < 0.01). Spontaneous differentiation of hESC after cryopreservation was assessed by morphological observations under bright-field microscopy, and by immunocytochemical staining for the pluripotency markers SSEA-3 and TRA-1-81. The results demonstrated that exposure to Z-VAD-FMK did not significantly enhance the spontaneous differentiation of hESC within post-thaw culture.
Collapse
Affiliation(s)
- Boon Chin Heng
- Stem Cell Laboratory, Faculty of Dentistry, National University of Singapore, Singapore, Singapore
| | | | | |
Collapse
|
22
|
Heng BC, Ye CP, Liu H, Toh WS, Rufaihah AJ, Cao T. Kinetics of cell death of frozen-thawed human embryonic stem cell colonies is reversibly slowed down by exposure to low temperature. ZYGOTE 2007; 14:341-8. [PMID: 17266792 DOI: 10.1017/s0967199406003893] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2005] [Accepted: 01/13/2006] [Indexed: 11/07/2022]
Abstract
A major challenge in the widespread application of hES (human embryonic stem) cells in clinical therapy and basic scientific research is the development of efficient cryopreservation protocols. Conventional slow-cooling protocols utilizing standard cryoprotectant concentrations i.e. 10% (v/v) DMSO, yield extremely low survival rates of less than 5% as reported by previous studies. This study characterized cell death in frozen-thawed hES colonies that were cryopreserved under standard conditions. Surprisingly, our results showed that immediately after post-thaw washing, the overwhelming majority of hES cells were viable (approximately 98%), as assessed by the trypan blue exclusion test. However, when the freshly thawed hES colonies were placed in a 37 degrees C incubator, there was a gradual reduction in cell viability over time. The kinetics of cell death was drastically slowed down by keeping the freshly thawed hES colonies at 4 degrees C, with more than 90% of cells remaining viable after 90 min of incubation at 4 degrees C. This effect was reversible upon re-exposing the cells to physiological temperatures. The vast majority of low temperature-exposed hES colonies gradually underwent cell death upon incubation for a further 90 min at 37 degrees C. Hence, our observations would strongly suggest involvement of a self-induced apoptotic mechanism, as opposed to cellular necrosis arising from cryoinjury.
Collapse
Affiliation(s)
- B C Heng
- National University of Singapore, Singapore
| | | | | | | | | | | |
Collapse
|
23
|
Marbán E, Cho HC. Creation of a biological pacemaker by gene- or cell-based approaches. Med Biol Eng Comput 2007; 45:133-44. [PMID: 17262203 DOI: 10.1007/s11517-007-0165-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2006] [Accepted: 01/06/2007] [Indexed: 02/06/2023]
Abstract
Cardiac rhythm-associated disorders are caused by mal-functions of impulse generation and conduction. Present therapies for the impulse generation span a wide array of approaches but remain largely palliative. The progress in the understanding of the biology of the diseases with related biological tools beckons for new approaches to provide better alternatives to the present routine. Here, we review the current state of the art in gene- and cell-based approaches to correct cardiac rhythm disturbances. These include genetic suppression of an ionic current, stem cell therapies, adult somatic cell-fusion approach, novel synthetic pacemaker channel, and creating a self-contained pacemaker activity in non-excitable cells. We then conclude by discussing advantages and disadvantages of the new possibilities.
Collapse
Affiliation(s)
- Eduardo Marbán
- Institute of Molecular Cardiobiology, Division of Cardiology, Johns Hopkins University School of Medicine, 858 Ross Bldg, Baltimore, MD 21205, USA.
| | | |
Collapse
|
24
|
Heng BC, Cao T. Milieu-based versus gene-modulatory strategies for directing stem cell differentiation--A major issue of contention in transplantation medicine. In Vitro Cell Dev Biol Anim 2006; 42:51-3. [PMID: 16759147 DOI: 10.1290/0504025.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
25
|
Matsuoka H, Shimoda S, Ozaki M, Mizukami H, Shibusawa M, Yamada Y, Saito M. Semi-quantitative expression and knockdown of a target gene in single-cell mouse embryonic stem cells by high performance microinjection. Biotechnol Lett 2006; 29:341-50. [PMID: 17171427 DOI: 10.1007/s10529-006-9247-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2006] [Accepted: 10/19/2006] [Indexed: 11/28/2022]
Abstract
Interactions of multiple genes and associated factors are involved in the differentiation and de-differentiation of embryonic stem (ES) cells. Quantitative analysis of these genes and factors is essential for the elucidation of their mechanism. To meet this requirement, we have investigated various experimental conditions for high performance microinjection into mouse ES cells. A speedy and rhythmic operation was found to be important and was accomplished robotically by using a single-cell manipulation technique and XY-address registrable culture dishes. Among many experimental parameters, the tip size of an injection capillary, the pressure condition, and the DNA concentration in the injection capillary were of critical significance. Their optimum values were 0.5-0.8 microm, 0.7 kgf/cm(2) for 30 ms, and 1-100 ng/microl, respectively. Under these conditions, semi-quantitative control of the EGFP gene expression in mouse ES cells and its knockdown was successfully demonstrated.
Collapse
Affiliation(s)
- Hideaki Matsuoka
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei, Tokyo, Japan.
| | | | | | | | | | | | | |
Collapse
|
26
|
Lee DS, Yu K, Rho JY, Lee E, Han JS, Koo DB, Cho YS, Kim J, Lee KK, Han YM. Cyclopamine treatment of human embryonic stem cells followed by culture in human astrocyte medium promotes differentiation into nestin- and GFAP-expressing astrocytic lineage. Life Sci 2006; 80:154-9. [PMID: 17028036 DOI: 10.1016/j.lfs.2006.08.039] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2006] [Revised: 08/09/2006] [Accepted: 08/28/2006] [Indexed: 10/24/2022]
Abstract
Human embryonic stem cells (hESCs) are able to differentiate into various cell types, including neuronal cells and glial cells. However, little information is available regarding astrocyte differentiation. This report describes the differentiation of hESCs into nestin- and GFAP-expressing astrocytes following treatment with cyclopamine, which is an inhibitor of Hedgehog (Hh) signaling, and culturing in human astrocyte medium (HAM). In hESCs, cyclopamine treatment suppressed the expression of Hh signaling molecules, the Hh signaling target gene, and ESC-specific markers. Clyclopamine also induced the differentiation of the cells at the edges of the hESC colonies, and these cells stained positively for the early neural marker nestin. Subsequent culturing in HAM promoted the expression of the astrocyte-specific marker GFAP, and these cells were also nestin-positive. These findings indicate that treatment with cyclopamine followed by culturing in HAM leads to the differentiation of hESCs into nestin- and GFAP-expressing astrocytic lineage.
Collapse
Affiliation(s)
- Dong-Seok Lee
- Laboratory of Human Genomics, Korea Research Institute of Bioscience and Biotechnology, Daejeon 300-303, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Hentze H, Graichen R, Colman A. Cell therapy and the safety of embryonic stem cell-derived grafts. Trends Biotechnol 2006; 25:24-32. [PMID: 17084475 DOI: 10.1016/j.tibtech.2006.10.010] [Citation(s) in RCA: 137] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2006] [Revised: 10/06/2006] [Accepted: 10/26/2006] [Indexed: 10/23/2022]
Abstract
Recent developments in the identification, in vitro culture and differentiation of stem cells point to the unprecedented potential of these cells, or their derivatives, to cure degenerative disorders. Human embryonic stem cells (hESC) offer the particular advantage of prolonged proliferative capacity and great versatility in the lineages that can be formed in culture. Translating these advantages into clinical benefits faces many challenges, including efficient differentiation into the desired cell type(s), maintaining genetic stability during long-term culture and, finally, ensuring the absence of potentially tumorigenic hESC from the final product. It is this final safety issue that will form the focus of this review.
Collapse
Affiliation(s)
- Hannes Hentze
- ES Cell International, 11 Biopolis Way, #05-06 Helios Building, 138667 Singapore, Republic of Singapore
| | | | | |
Collapse
|
28
|
Priddle H, Jones DRE, Burridge PW, Patient R. Hematopoiesis from human embryonic stem cells: overcoming the immune barrier in stem cell therapies. Stem Cells 2006; 24:815-24. [PMID: 16306149 DOI: 10.1634/stemcells.2005-0356] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The multipotency and proliferative capacity of human embryonic stem cells (hESCs) make them a promising source of stem cells for transplant therapies and of vital importance given the shortage in organ donation. Recent studies suggest some immune privilege associated with hESC-derived tissues. However, the adaptability of the immune system makes it unlikely that fully differentiated tissues will permanently evade immune rejection. One promising solution is to induce a state of immune tolerance to a hESC line using tolerogenic hematopoietic cells derived from it. This could provide acceptance of other differentiated tissues from the same line. However, this approach will require efficient multilineage hematopoiesis from hESCs. This review proposes that more efficient differentiation of hESCs to the tolerogenic cell types required is most likely to occur through applying knowledge gained of the ontogeny of complex regulatory signals used by the embryo for definitive hematopoietic development in vivo. Stepwise formation of mesoderm, induction of definitive hematopoietic stem cells, and the application of factors key to their self-renewal may improve in vitro production both quantitatively and qualitatively.
Collapse
Affiliation(s)
- Helen Priddle
- Department of Obstetrics and Gynaecology, School of Human Development, University of Nottingham, Queens Medical Centre, Nottingham NG7 2UH, United Kingdom.
| | | | | | | |
Collapse
|
29
|
Heng BC, Liu H, Rufaihah AJ, Cao T. HUMAN EMBRYONIC STEM CELL (hES) COLONIES DISPLAY A HIGHER DEGREE OF SPONTANEOUS DIFFERENTIATION WHEN PASSAGED AT LOWER DENSITIES. ACTA ACUST UNITED AC 2006; 42:54-7. [PMID: 16759148 DOI: 10.1290/0510071.1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Human embryonic stem (hES) cells require cooperative interactions with each other for their survival. Previously, the size of hES cell clumps has been reported to be an important factor in determining their viability during routine serial passage. However, the effects of seeding density of the hES cell clumps per se have not yet been investigated. Therefore, this study attempted to compare the level of spontaneous differentiation of hES colonies passaged at two different split ratios (1:3 and 1:8) of a single confluent well of a six-well dish. After 7 d of in vitro culture following serial passage, hES colonies were assigned into three grades according to their degree of spontaneous differentiation: (1) Grade A, which was completely or mostly undifferentiated; (2) grade B, which was partially differentiated; and (3) grade C, which was mostly differentiated. Assessment of the degree of spontaneous differentiation was based on morphological observations under bright-field and phase-contrast microscopy, as well as on immunocytochemical staining for the pluripotency markers SSEA-3 and TRA-1-81. We observed that, at a split ratio of 1:3, the percentages of grade A, B, and C colonies were 89.5, 8.8, and 1.7%, respectively. This was significantly different from the corresponding values of 52.7, 31.3, and 16.0%, respectively, obtained at a split ratio of 1:8. Hence, our results indicated that a lower passage density led to a higher degree of spontaneous differentiation of hES colonies.
Collapse
Affiliation(s)
- Boon Chin Heng
- Stem Cell Laboratory, Faculty of Dentistry, National University of Singapore, 5 Lower Kent Ridge Road, 119074 Singapore
| | | | | | | |
Collapse
|
30
|
Heng BC, Ye CP, Liu H, Toh WS, Rufaihah AJ, Yang Z, Bay BH, Ge Z, Ouyang HW, Lee EH, Cao T. Loss of viability during freeze-thaw of intact and adherent human embryonic stem cells with conventional slow-cooling protocols is predominantly due to apoptosis rather than cellular necrosis. J Biomed Sci 2005; 13:433-45. [PMID: 16374523 DOI: 10.1007/s11373-005-9051-9] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2005] [Accepted: 12/01/2005] [Indexed: 11/25/2022] Open
Abstract
A major challenge in the widespread application of human embryonic stem (hES) cells in clinical therapy and basic scientific research is the development of efficient cryopreservation protocols. Conventional slow-cooling protocols utilizing standard cryoprotectant concentrations i.e. 10% (v/v) DMSO, yield extremely low survival rates of <5% as reported by previous studies. This study characterized cell death within frozen-thawed hES colonies that were cryopreserved under standard conditions. Surprisingly, our results showed that immediately after post-thaw washing, the overwhelming majority of hES cells were viable (approximately 98%), as assessed by the trypan blue exclusion test. However, when the freshly-thawed hES colonies were incubated within a 37 degrees C incubator, there was observed to be a gradual reduction in cell viability over time. The kinetics of cell death was drastically slowed-down by keeping the freshly-thawed hES colonies at 4 degrees C, with >90% of cells remaining viable after 90 min of incubation at 4 degrees C. This effect was reversible upon re-exposing the cells to physiological temperature. The vast majority of low temperature-exposed hES colonies gradually underwent cell death upon incubation for a further 90 min at 37 degrees C. Terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick-end-labeling (TUNEL) assay confirmed apoptosis-induced nuclear DNA fragmentation in frozen-thawed hES cells after incubation at 37 degrees C for 90 min. Expression of active caspase-3 enzyme, which is another prominent marker of apoptosis, was confirmed by immunocytochemical staining, while transmission electron microscopy showed typical ultrastructural features of apoptosis such as chromatin condensation and margination to the nuclear membrane. Hence, our results demonstrated that apoptosis instead of cellular necrosis, is the major mechanism of the loss of viability of cryopreserved hES cells during freeze-thawing with conventional slow-cooling protocols.
Collapse
Affiliation(s)
- Boon Chin Heng
- Stem Cell Laboratory, Faculty of Dentistry, National University of Singapore, Singapore
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Heng BC, Liu H, Cao T. Feeder cell density--a key parameter in human embryonic stem cell culture. In Vitro Cell Dev Biol Anim 2005; 40:255-7. [PMID: 15723559 DOI: 10.1290/0407052.1] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A key issue in human embryonic stem (ES) cell culture that has largely been ignored is the high degree of variability in the murine embryonic fibroblast (MEF) feeder cell density, which has been reported by different studies and protocols. Presumably, too low a feeder cell density would result in insufficient levels of secreted factors, extracellular matrix, and cellular contacts provided by the feeder cells for the maintenance of human ES cells in the undifferentiated state. Too high a feeder cell density, on the other hand, may result in a more rapid depletion of nutrients and oxygen within the in vitro culture milieu, as well as physically hinder the attachment and growth of ES colonies during serial passaging. Preliminary investigations by our group revealed that an elevated MEF cell density of 32,000 cells/cm2, above the recommended value of 20,000 cells/cm2, appeared to be highly detrimental to the attachment and growth of serially passaged ES colonies of the H9 line (WiCell Research Institute Inc., Wilmington, MA, USA). At the edge of ES colonies that have attached to the higher density feeder layer (32,000 cells/cm2), the ES cells appear to stack up to form a "bulge." This was not observed under the recommended feeder cell density of 20,000 cells/cm2. By contrast, other established ES cell lines are routinely propagated at much higher feeder densities of 60,000 to 70,000 cells/cm2. This report briefly discusses the issue of MEF feeder cell density in relation to our preliminary observations, and the results of other studies.
Collapse
Affiliation(s)
- Boon Chin Heng
- Stem Cell Laboratory, Faculty of Dentistry, National University of Singapore, 5 Lower Kent Ridge Road, 119074 Singapore
| | | | | |
Collapse
|
32
|
Heng BC, Cao T, Liu H, Rufaihah AJ. Reduced mitotic activity at the periphery of human embryonic stem cell colonies cultured in vitro with mitotically-inactivated murine embryonic fibroblast feeder cells. Cell Biochem Funct 2005; 23:141-6. [PMID: 15630682 DOI: 10.1002/cbf.1221] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
This study attempted to investigate whether different levels of mitotic activity exist within different physical regions of a human embryonic stem (hES) cell colony. Incorporation of 5-bromo-2-deoxyuridine (BrdU) within newly-synthesized DNA, followed by immunocytochemical staining was used as a means of detecting mitotically-active cells within hES colonies. The results showed rather surprisingly that the highest levels of mitotic activity are primarily concentrated within the central regions of hES colonies, whereas the peripheral regions exhibited reduced levels of cellular proliferation. Two hypothetical mechanisms are therefore proposed for hES colony growth and expansion. Firstly, it is envisaged that the less mitotically-active hES cells at the periphery of the colony are continually migrating outwards, thereby providing space for newly-divided daughter cells within the more mitotically-active central region of the hES colony. Secondly, it is proposed that the newly-divided hES cells within the central region of the colony somehow migrate to the outer periphery. This could possibly explain why the periphery of hES colonies are less mitotically-active, since there would obviously be an extended time-lag before newly-divided daughter cells are ready again for the next cell division. Further investigations need to be carried out to characterize the atypical mechanisms by which hES colonies grow and expand in size.
Collapse
Affiliation(s)
- Boon Chin Heng
- Stem Cell Laboratory, Faculty of Dentistry, National University of Singapore, Singapore
| | | | | | | |
Collapse
|
33
|
Cazillis M, Lelièvre V, Gressens P. Différenciation neurale des cellules souches embryonnaires. Med Sci (Paris) 2005; 21:484-90. [PMID: 15885197 DOI: 10.1051/medsci/2005215484] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Pluripotent murine embryonic stem (ES) cells can differentiate into all cell types both in vivo and in vitro. Based on their capability to proliferate and differentiate, these ES cells appear as a very promising tool for cell therapy. The understanding of the molecular mechanisms underlying the neural differentiation of the ES cells is a pre-requisite for selecting adequately the cells and conditions which will be able to correctly repair damaged brain and restore altered cognitive functions. Different methods allow obtaining neural cells from ES cells. Most of the techniques differentiate ES cells by treating embryoid bodies in order to keep an embryonic organization. More recent techniques, based on conditioned media, induce a direct differentiation of ES cells into neural cells, without going through the step of embryonic bodies. Beyond the fact that these techniques allow obtaining large numbers of neural precursors and more differentiated neural cells, these approaches also provide valuable information on the process of differentiation of ES cells into neural cells. Indeed, sequential studies of this process of differentiation have revealed that globally ES cells differentiating into neural cells in vitro recapitulate the molecular events governing the in vivo differentiation of neural cells. Altogether these data suggest that murine ES cells remain a highly valuable tool to obtain large amounts of precursor and differentiated neural cells as well as to get a better understanding of the mechanisms of neural differentiation, prior to a potential move towards the use of human ES cells in therapy.
Collapse
Affiliation(s)
- Michèle Cazillis
- Inserm U.676, Physiopathologie et neuroprotection des atteintes du cerveau en développement, Hôpital Robert-Debré, 48, boulevard Sérurier, 75935 Paris Cedex 19, France.
| | | | | |
Collapse
|
34
|
Abstract
The prevalence of both type 1 and type 2 diabetes mellitus is increasing throughout the world along with the ensuant morbidity and early mortality because of premature microvascular and macrovascular disease. Current insulin and drug therapies control diabetes, but do not cure it. Cell-based therapies offer the possibilities of a permanent cure for diabetes. Recently, success in the transplantation of pancreatic islets in the livers of type 1 diabetics has afforded the opportunity for a potential cure. However, the severe shortage of donor islets for transplantation limits the usefulness of this therapy. One approach is to exploit the use of stem cells, either embryo-derived or adult tissue-derived, as substrates to create islet tissue suitable for transplantation. Cells isolated from embryo blastocysts and from adult pancreas, liver, and bone marrow can be expanded extensively in vitro and differentiated into islet-like clusters that produce insulin, and, in some instances, can achieve glycemic control when transplanted into streptozotocin-induced diabetic mice. It is, now, also possible to envision the direct systemic administration of stem cells that would home in on and regenerate injured islets, or to administer stem cell stimulators that would enhance endogenous pancreatic stem cells to expand and differentiate into functional, insulin-producing beta-cells. This perspective discusses the potential applications of cellular medicines, in the new discipline of regenerative medicine, to achieve a cure for diabetes.
Collapse
Affiliation(s)
- Joel F Habener
- Laboratory of Molecular Endocrinology, Massachusetts General Hospital, 55 Fruit Street - WEL 320, Boston, MA 02114, USA.
| |
Collapse
|
35
|
Heng BC, Bested SM, Chan SH, Cao T. A PROPOSED DESIGN FOR THE CRYOPRESERVATION OF INTACT AND ADHERENT HUMAN EMBRYONIC STEM CELL COLONIES. ACTA ACUST UNITED AC 2005; 41:77-9. [PMID: 16029076 DOI: 10.1290/04090651.1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Recently, it was demonstrated that the application of slow-cooling cryopreservation protocols to adherent human embryonic stem (hES) cell colonies, cultured on matrigel or murine embryonic fibroblast feeder layers, resulted in marked improvement in postthaw viability and reduction in cell differentiation. However, the use of commercially available culture plates for this purpose presents several limitations. Most obviously, these plates are not designed for cryopreservation or to withstand the low temperatures encountered during liquid nitrogen cryopreservation, or both. The physical storage of cryopreserved plates is another consideration, in addition to difficulty in maintaining sterile conditions in liquid nitrogen storage and during the thaw phase in a water bath. Hence, a redesign of the cell culture plate for the cryopreservation of adherent hES cell colonies is proposed. In this model, a culture plate made of synthetic materials resistant to storage at -196 degrees C of liquid nitrogen is designed, with readily attachable screw-cap culture wells that function as a replacement for cryovial storage. The detachable wells facilitate storage and after thawing can easily be reattached to a specially designed holding plate. Currently, there are no commercially available cell culture plates using this design concept. The proposed design is envisioned to facilitate the cryopreservation of intact adherent hES cell colonies that could assist the development of automated systems for handling bulk quantities of cells.
Collapse
Affiliation(s)
- Boon C Heng
- Faculty of Dentistry, National University of Singapore, 5 Lower Kent Ridge Road, 119074 Singapore
| | | | | | | |
Collapse
|
36
|
Heng BC, Liu H, Cao T. Transplanted human embryonic stem cells as biological ‘catalysts’ for tissue repair and regeneration. Med Hypotheses 2005; 64:1085-8. [PMID: 15823689 DOI: 10.1016/j.mehy.2004.11.036] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2004] [Accepted: 11/30/2004] [Indexed: 01/01/2023]
Abstract
Human embryonic stem cells have tremendous potential in the newly emerging field of regenerative medicine. Recently, it was demonstrated that the rescue of lethal cardiac defects in Id knockout mutant mouse embryos was not due to the transplanted cells giving rise to functional new tissues within the defective embryonic heart. Instead, there is indirect evidence that the observed therapeutic effect was due to various secreted factors emanating from the transplanted cells. This therefore, introduces the exciting prospect of utilizing human embryonic stem cells as biological 'catalysts' to promote tissue repair and regeneration in transplantation therapy. However, the immunological barrier against allogenic transplantation, as well as the teratogenic potential of human embryonic stem cells poses major technical challenges. A possible strategy to overcome the immunological barrier may be to impose a temporary regimen of immunosuppressive drugs followed by their gradual withdrawal, once adequate tissue regeneration has been achieved. Other more novel alternatives include the use of microencapsulation to block interaction with the transplant recipient's immune system, and co-transplantation with bone marrow-derived mesenchymal stem cells, which have been demonstrated to possess immuno-suppressive properties. The teratogenic potential of human embryonic stem cells could possibly be alleviated by directing the differentiation of these cells to specific lineages prior to transplantation, or through mitotic inactivation (gamma irradiation or mitomycin C exposure). Co-transplantation with autologous adult stem cells may represent a novel strategy to further enhance the 'catalytic' effects of human embryonic stem cells. The various factors secreted by human embryonic stem cells could then have a concentrated localized effect on relatively large numbers of co-transplanted autologous adult stem cells, which may in turn lead to enhanced repair and regeneration of the damaged tissue or organ. Moreover, there is also a possibility that synergistic interactions between the co-transplanted human embryonic stem cells and autologous adult stem cells, may somehow produce signals for the recruitment and migration of additional endogenous adult stem cells within the recipient (i.e. peripheral blood circulation, bone marrow), which could further enhance organ/tissue regeneration. Hence, the potential use of human embryonic stem cells as biological 'catalysts' to stimulate tissue repair and regeneration, appears to hold tremendous promise in the field of regenerative medicine. This new therapeutic strategy needs to thoroughly investigated, in view of its potentially important clinical applications.
Collapse
Affiliation(s)
- Boon Chin Heng
- Faculty of Dentistry, Stem Cell Laboratory, National University of Singapore, 5 Lower Kent Ridge Road, Singapore 119074, Singapore
| | | | | |
Collapse
|
37
|
Abstract
A major area of research in regenerative medicine is the potential application of stem cells in skin grafting and tissue engineering. This would require well defined and efficient protocols for directing the commitment and differentiation of stem cells into the keratinocyte lineage, together with their selective purification and proliferation in vitro. The development of such protocols would reduce the likelihood of spontaneous differentiation of stem cells into divergent lineages upon transplantation, as well as reduce the risk of teratoma formation in the case of embryonic stem cells. Additionally, such protocols could provide useful in vitro models for studying skin tissue biology, as well as facilitate the genetic manipulation of stem cells for therapeutic applications. The development of pharmacokinetic and cytotoxicity/genotoxicity screening tests for skin-related biomaterials and drugs could also utilize protocols developed for the commitment and differentiation of stem cells into the keratinocyte lineage. Hence, this review critically examines the various strategies that could be employed to direct the commitment and differentiation of stem cells into the keratinocyte lineage in vitro.
Collapse
Affiliation(s)
- Boon Chin Heng
- Stem Cell Laboratory, Faculty of Dentistry, National University of Singapore, Singapore
| | | | | | | |
Collapse
|