1
|
Puga Yung GL, Wakley T, Kouklas A, Seebach JD. Dendritic Cells in Xenotransplantation: Shaping the Cellular Immune Response Toward Tolerance. Xenotransplantation 2025; 32:e70037. [PMID: 40243284 PMCID: PMC12005074 DOI: 10.1111/xen.70037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 02/24/2025] [Accepted: 02/27/2025] [Indexed: 04/18/2025]
Abstract
The molecular barriers that cause acute xenograft rejection have been identified and addressed by generating genetically modified (GM) animals, knocked out for specific xenoantigens (xenoAgs), and expressing regulatory molecules for both complement and coagulation pathways among others. The focus of xenotransplantation research now lies in delayed xenograft rejection. Dendritic cells (DC) are a specific subpopulation of professional antigen-presenting cells (APC) that play a crucial role in the context of organ transplantation. DCs, originating from both the xenograft and the recipient, have the capacity to present xenoAgs to the recipient's immune system via their respective major histocompatibility complex (MHC) molecules leading to rejection. These processes are known as direct and indirect presentation, respectively. However, under certain microenvironmental conditions, DC develops into anti-inflammatory regulatory cells that can induce immunological tolerance. The purpose of this review is to summarize current knowledge on the general characteristics and functions of DC from species relevant to xenotransplantation, specifically humans, non-human primates (NHP), and pigs. It will also cover the process of xenoAg presentation, different methods for generating DC with regulatory properties in vitro, and finally, discuss the current strategies for using regulatory DC to improve xenograft acceptance by inducing tolerance.
Collapse
Affiliation(s)
- Gisella L. Puga Yung
- Division of Immunology and AllergologyDepartment of MedicineUniversity Hospitals GenevaGenevaSwitzerland
- Laboratory of Translational ImmunologyDepartment of MedicineUniversity of GenevaGenevaSwitzerland
| | - Tom Wakley
- Laboratory of Translational ImmunologyDepartment of MedicineUniversity of GenevaGenevaSwitzerland
| | - Athanasios Kouklas
- Laboratory of Translational ImmunologyDepartment of MedicineUniversity of GenevaGenevaSwitzerland
| | - Jörg D. Seebach
- Division of Immunology and AllergologyDepartment of MedicineUniversity Hospitals GenevaGenevaSwitzerland
- Laboratory of Translational ImmunologyDepartment of MedicineUniversity of GenevaGenevaSwitzerland
| |
Collapse
|
2
|
Deng S, Zhang Y, Shen S, Li C, Qin C. Immunometabolism of Liver Xenotransplantation and Prospective Solutions. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2407610. [PMID: 39912334 PMCID: PMC11884532 DOI: 10.1002/advs.202407610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 10/26/2024] [Indexed: 02/07/2025]
Abstract
End-stage liver diseases, such as hepatocellular carcinoma or acute liver failure, critically necessitate liver transplantation. However, the shortage of available organ donors fails to meet the rapidly growing transplantation demand. Due to the high similarity of liver tissue structure and metabolism between miniature pigs and humans, xenotransplantation of pig livers is considered as a potentially viable solution to organ scarcity. In the 2024, teams from China first time have successfully transplanted a genetically modified Bama miniature pig liver into a clinically brain-dead man lasting for 10 days. This milestone in human xenotransplantation research not only confirms the feasibility of clinical application of xenotransplantation, but also underscores the daunting and protracted nature of this pathway. Despite advanced gene-editing technologies theoretically circumventing the occurrence of most transplant rejection reactions, patients still face challenges such as chronic immune rejection, coagulation disorders, and thrombotic microangiopathy after receiving xenografts. Moreover, prolonged use of immunosuppressive drugs may induce irreversible immune dysfunction, leading to opportunistic infections and metabolic disorders. This article compares the similarities and differences in livers between humans and pigs, summarizes the immunometabolism of xenotransplantation based on current findings, and provides research perspectives on pre-transplantation and post-transplantation strategies for prolonging the survival time of xenografts.
Collapse
Affiliation(s)
- Shoulong Deng
- National Center of Technology Innovation for Animal Model, National Human Diseases Animal Model Resource Center, National Health Commission of China (NHC) Key Laboratory of Comparative Medicine, Institute of Laboratory Animal SciencesChinese Academy of Medical Sciences and Comparative Medicine CenterPeking Union Medical CollegeBeijing100021China
| | - Yi Zhang
- Department of MedicinePanzhihua UniversitySichuan61700China
| | - Shasha Shen
- Department of MedicinePanzhihua UniversitySichuan61700China
| | - Chongyang Li
- Institute of Animal SciencesChinese Academy of Agricultural SciencesBeijing100193China
| | - Chuan Qin
- National Center of Technology Innovation for Animal Model, National Human Diseases Animal Model Resource Center, National Health Commission of China (NHC) Key Laboratory of Comparative Medicine, Institute of Laboratory Animal SciencesChinese Academy of Medical Sciences and Comparative Medicine CenterPeking Union Medical CollegeBeijing100021China
| |
Collapse
|
3
|
Pham JA, Coronel MM. Unlocking Transplant Tolerance with Biomaterials. Adv Healthc Mater 2025; 14:e2400965. [PMID: 38843866 PMCID: PMC11834385 DOI: 10.1002/adhm.202400965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/31/2024] [Indexed: 07/04/2024]
Abstract
For patients suffering from organ failure due to injury or autoimmune disease, allogeneic organ transplantation with chronic immunosuppression is considered the god standard in terms of clinical treatment. However, the true "holy grail" of transplant immunology is operational tolerance, in which the recipient exhibits a sustained lack of alloreactivity toward unencountered antigen presented by the donor graft. This outcome is resultant from critical changes to the phenotype and genotype of the immune repertoire predicated by the activation of specific signaling pathways responsive to soluble and mechanosensitive cues. Biomaterials have emerged as a medium for interfacing with and reprogramming these endogenous pathways toward tolerance in precise, minimally invasive, and spatiotemporally defined manners. By viewing seminal and contemporary breakthroughs in transplant tolerance induction through the lens of biomaterials-mediated immunomodulation strategies-which include intrinsic material immunogenicity, the depot effect, graft coatings, induction and delivery of tolerogenic immune cells, biomimicry of tolerogenic immune cells, and in situ reprogramming-this review emphasizes the stunning diversity of approaches in the field and spotlights exciting future directions for research to come.
Collapse
Affiliation(s)
- John‐Paul A. Pham
- Department of Biomedical EngineeringUniversity of MichiganAnn ArborMI48109USA
- Elizabeth Caswell Diabetes InstituteUniversity of MichiganAnn ArborMI48109USA
| | - María M. Coronel
- Department of Biomedical EngineeringUniversity of MichiganAnn ArborMI48109USA
- Elizabeth Caswell Diabetes InstituteUniversity of MichiganAnn ArborMI48109USA
| |
Collapse
|
4
|
Avalos-de Leon CG, Thomson AW. Regulatory Immune Cell-derived Exosomes: Modes of Action and Therapeutic Potential in Transplantation. Transplantation 2025:00007890-990000000-00994. [PMID: 39865513 DOI: 10.1097/tp.0000000000005309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Reduced dependence on antirejection agents, improved long-term allograft survival, and induction of operational tolerance remain major unmet needs in organ transplantation due to the limitations of current immunosuppressive therapies. To address this challenge, investigators are exploring the therapeutic potential of adoptively transferred host- or donor-derived regulatory immune cells. Extracellular vesicles of endosomal origin (exosomes) secreted by these cells seem to be important contributors to their immunoregulatory properties. Twenty years ago, it was first reported that donor-derived exosomes could extend the survival of transplanted organs in rodents. Recent studies have revealed that regulatory immune cells, such as regulatory myeloid cells (dendritic cells, macrophages, or myeloid-derived suppressor cells), regulatory T cells, or mesenchymal stem/stromal cells can suppress graft rejection via exosomes that express a cargo of immunosuppressive molecules. These include cell surface molecules that interact with adaptive immune cell receptors, immunoregulatory enzymes, and micro- and long noncoding RNAs that can regulate inflammatory gene expression via posttranscriptional changes and promote tolerance through promotion of regulatory T cells. This overview analyzes the diverse molecules and mechanisms that enable regulatory immune cell-derived exosomes to modulate alloimmunity and promote experimental transplant tolerance. We also discuss the potential benefits and limitations of their application as therapeutic entities in organ transplantation.
Collapse
Affiliation(s)
- Cindy G Avalos-de Leon
- Department of Surgery, Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh PA
| | - Angus W Thomson
- Department of Surgery, Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh PA
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh PA
| |
Collapse
|
5
|
Liu S, Zahorchak AF, Dobrowolski SF, Metes DM, Thomson AW, Abdelsamed HA. Epigenetic signature of human vitamin D3 and IL-10 conditioned regulatory DCs. Sci Rep 2024; 14:28748. [PMID: 39567586 PMCID: PMC11579388 DOI: 10.1038/s41598-024-79299-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 11/07/2024] [Indexed: 11/22/2024] Open
Abstract
During differentiation of precursor cells into their destination cell type, cell fate decisions are enforced by a broad array of epigenetic modifications, including DNA methylation, which is reflected by the transcriptome. Thus, regulatory dendritic cells (DCregs) acquire specific epigenetic programs and immunomodulatory functions during their differentiation from monocytes. To define the epigenetic signature of human DCregs generated in vitamin D3 (vitD3) and IL-10 compared to immune stimulatory DCs (sDCs), we measured levels of DNA methylation by whole genome bisulfite sequencing (WGBS). Distinct DNA methylation patterns were acquired by DCregs compared to sDCs. These patterns were located mainly in transcriptional regulatory regions. Associated genes were enriched in STAT3-signaling and valine catabolism in DCregs; conversely, pro-inflammatory pathways, e.g. pattern recognition receptor signaling, were enriched in sDCs. Further, DCreg differentially-methylated regions (DMRs) were enriched in binding motifs specific to the immunomodulatory transcription factor Krueppel-like factor 11 (KLF11), while activator protein-1 (AP-1) (Fos:Jun) transcription factor-binding motifs were enriched in sDC DMRs. Using publicly-available data-sets, we defined a common epigenetic signature shared between DCregs generated in vitD3 and IL-10, or dexamethasone or vitD3 alone. These insights may help pave the way for design of epigenetic-based approaches to enhance the production of DCregs as effective therapeutic agents.
Collapse
Affiliation(s)
- Silvia Liu
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, USA
| | - Alan F Zahorchak
- Department of Surgery, University of Pittsburgh, Pittsburgh, USA
- Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, USA
| | | | - Diana M Metes
- Department of Surgery, University of Pittsburgh, Pittsburgh, USA
- Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, USA
- Department of Immunology, School of Medicine, University of Pittsburgh, Pittsburgh, USA
| | - Angus W Thomson
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, USA.
- Department of Surgery, University of Pittsburgh, Pittsburgh, USA.
- Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, USA.
- Department of Immunology, School of Medicine, University of Pittsburgh, Pittsburgh, USA.
| | - Hossam A Abdelsamed
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, USA.
- Department of Surgery, University of Pittsburgh, Pittsburgh, USA.
- Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, USA.
- Immunology Center of Georgia, Augusta University, Augusta, USA.
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, USA.
| |
Collapse
|
6
|
Gheitasi M, Safdel S, Kumar Patra S, Zandvakili R, Nemati M, Saha B, Jafarzadeh A. Generation of immune cells from induced pluripotent stem cells (iPSCs): Their potential for adoptive cell therapy. Hum Immunol 2024; 85:110836. [PMID: 38981248 DOI: 10.1016/j.humimm.2024.110836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 06/03/2024] [Accepted: 06/24/2024] [Indexed: 07/11/2024]
Abstract
Advances in human stem cell technologies enable induced pluripotent stem cells (iPSCs) to be explored as potent candidates for treating various diseases, such as malignancies, autoimmunity, immunodeficiencies, and allergic reactions. iPSCs with infinite self-renewal ability can be derived from different types of somatic cells without the ethical issues associated with embryonic stem cells. To date, numerous cell types, including various immune cell subsets [CD4+ and CD8+ T cells, gamma delta T (γδ T) cells, regulatory T cells, dendritic cells, natural killer cells, macrophages, and neutrophils] have successfully been generated from iPSCs paving the way for effective adoptive cell transfer therapy, drug development, and disease modeling. Herein, we review various iPSC-derived immune cells and their possible application in immunotherapy.
Collapse
Affiliation(s)
- Mahsa Gheitasi
- Department of Immunology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Sepeher Safdel
- Department of Immunology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Raziyeh Zandvakili
- Department of Immunology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Maryam Nemati
- Department of Hematology and Laboratory Sciences, School of Para-Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Bhaskar Saha
- National Centre for Cell Science, Ganeshkhind, Pune 411007, India
| | - Abdollah Jafarzadeh
- Department of Immunology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran; Applied Cellular and Molecular Research Center, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
7
|
Tunbridge MJ, Luo X, Thomson AW. Negative Vaccination Strategies for Promotion of Transplant Tolerance. Transplantation 2024; 108:1715-1729. [PMID: 38361234 PMCID: PMC11265982 DOI: 10.1097/tp.0000000000004911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Organ transplantation requires the use of immunosuppressive medications that lack antigen specificity, have many adverse side effects, and fail to induce immunological tolerance to the graft. The safe induction of tolerance to allogeneic tissue without compromising host responses to infection or enhancing the risk of malignant disease is a major goal in transplantation. One promising approach to achieve this goal is based on the concept of "negative vaccination." Vaccination (or actively acquired immunity) involves the presentation of both a foreign antigen and immunostimulatory adjuvant to the immune system to induce antigen-specific immunity. By contrast, negative vaccination, in the context of transplantation, involves the delivery of donor antigen before or after transplantation, together with a "negative adjuvant" to selectively inhibit the alloimmune response. This review will explore established and emerging negative vaccination strategies for promotion of organ or pancreatic islet transplant tolerance. These include donor regulatory myeloid cell infusion, which has progressed to early-phase clinical trials, apoptotic donor cell infusion that has advanced to nonhuman primate models, and novel nanoparticle antigen-delivery systems.
Collapse
Affiliation(s)
- Matthew J. Tunbridge
- Adelaide Medical School, University of Adelaide, Adelaide, Australia
- Department of Medicine (Nephrology), Duke University Medical Center, Durham, North Carolina, USA
| | - Xunrong Luo
- Department of Medicine (Nephrology), Duke University Medical Center, Durham, North Carolina, USA
| | - Angus W. Thomson
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
8
|
Masaoka H, Yamamoto Y, Uchiyama M, Iguchi K, Nakamura M, Yagita H, Imazuru T, Shimokawa T. Graft Protective and Intercellular Immunomodulatory Effects by Adoptive Transfer of an Agonistic Anti-BTLA mAb (3C10) Induced CD4 +CD25 + Regulatory T Cells in Murine Cardiac Allograft Transplant Model. Transplant Proc 2024; 56:692-700. [PMID: 38360464 DOI: 10.1016/j.transproceed.2024.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/16/2024] [Indexed: 02/17/2024]
Abstract
BACKGROUND We demonstrated that an agonistic anti-B and T lymphocyte attenuator antibody (3C10) prolonged cardiac survival by inducing regulatory T cells (Treg). However, the mechanisms of immune tolerance in the recipients remained unclear. In this study, we investigated the graft-protective and intercellular immunomodulatory effects of adoptive transfer (AT) of 3C10-induced Tregs in a murine cardiac allograft transplant model. METHODS Thirty days after transplantation of a C57BL/6 heart into the primary 3C10-treated CBA recipients, splenic CD4+CD25+ cells from these recipients (3C10/AT group) or naïve CBA mice (no-treatment group) were adoptively transferred into secondary CBA recipients with a C57BL/6 heart. To confirm the requirement for 3C10-induced Tregs, we administered an anti-interleukin-2 receptor alpha antibody (PC-61) to secondary CBA recipients. Additionally, histologic and fluorescent staining, cell proliferation analysis, flow cytometry, and donor-specific antibody (DSA) measurements were performed. RESULTS 3C10/AT-treated CBA recipients resulted in significantly prolonged allograft survival (median survival time [MST], >50 days). Allografts displayed prolonged function with preservation of vessel structure by maintaining high numbers of splenic CD4+CD25+Foxp3+ Treg and intramyocardial CD4+Foxp3+ cells. DSA levels were suppressed in 3C10/AT-treated CBA recipients. Moreover, PC-61 administration resulted in a shorter MSTs of cardiac allograft survivals, a detrimental increase in DSA production, and enhanced expression of programmed cell death (PD)-1. CONCLUSION AT of 3C10-induced Tregs may be a promising graft-protective strategy to prolong allograft survival and suppress DSA production, driven by the promotion of splenic and graft-infiltrating Tregs and collaboration with PD-1+ T cells and Treg.
Collapse
Affiliation(s)
- Hisanori Masaoka
- Department of Cardiovascular Surgery, Teikyo University, Tokyo, Japan
| | - Yasuto Yamamoto
- Department of Cardiovascular Surgery, Teikyo University, Tokyo, Japan
| | - Masateru Uchiyama
- Department of Cardiovascular Surgery, Teikyo University, Tokyo, Japan.
| | - Kazuhito Iguchi
- Department of Cardiovascular Surgery, Teikyo University, Tokyo, Japan
| | - Masahiro Nakamura
- Department of Cardiovascular Surgery, Teikyo University, Tokyo, Japan
| | - Hideo Yagita
- Department of Immunology, Juntendo University, Tokyo, Japan
| | - Tomohiro Imazuru
- Department of Cardiovascular Surgery, Teikyo University, Tokyo, Japan
| | - Tomoki Shimokawa
- Department of Cardiovascular Surgery, Teikyo University, Tokyo, Japan
| |
Collapse
|
9
|
Chen G, Hu X, Huang Y, Xiang X, Pan S, Chen R, Xu X. Role of the immune system in liver transplantation and its implications for therapeutic interventions. MedComm (Beijing) 2023; 4:e444. [PMID: 38098611 PMCID: PMC10719430 DOI: 10.1002/mco2.444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 12/17/2023] Open
Abstract
Liver transplantation (LT) stands as the gold standard for treating end-stage liver disease and hepatocellular carcinoma, yet postoperative complications continue to impact survival rates. The liver's unique immune system, governed by a microenvironment of diverse immune cells, is disrupted during processes like ischemia-reperfusion injury posttransplantation, leading to immune imbalance, inflammation, and subsequent complications. In the posttransplantation period, immune cells within the liver collaboratively foster a tolerant environment, crucial for immune tolerance and liver regeneration. While clinical trials exploring cell therapy for LT complications exist, a comprehensive summary is lacking. This review provides an insight into the intricacies of the liver's immune microenvironment, with a specific focus on macrophages and T cells as primary immune players. Delving into the immunological dynamics at different stages of LT, we explore the disruptions after LT and subsequent immune responses. Focusing on immune cell targeting for treating liver transplant complications, we provide a comprehensive summary of ongoing clinical trials in this domain, especially cell therapies. Furthermore, we offer innovative treatment strategies that leverage the opportunities and prospects identified in the therapeutic landscape. This review seeks to advance our understanding of LT immunology and steer the development of precise therapies for postoperative complications.
Collapse
Affiliation(s)
- Guanrong Chen
- The Fourth School of Clinical MedicineZhejiang Chinese Medical UniversityHangzhouChina
| | - Xin Hu
- Zhejiang University School of MedicineHangzhouChina
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang ProvinceHangzhouChina
| | - Yingchen Huang
- The Fourth School of Clinical MedicineZhejiang Chinese Medical UniversityHangzhouChina
| | - Xiaonan Xiang
- Zhejiang University School of MedicineHangzhouChina
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang ProvinceHangzhouChina
| | - Sheng Pan
- Zhejiang University School of MedicineHangzhouChina
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang ProvinceHangzhouChina
| | - Ronggao Chen
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Xiao Xu
- Zhejiang University School of MedicineHangzhouChina
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang ProvinceHangzhouChina
- Zhejiang Chinese Medical UniversityHangzhouChina
| |
Collapse
|
10
|
Annamalai C, Kute V, Sheridan C, Halawa A. Hematopoietic cell-based and non-hematopoietic cell-based strategies for immune tolerance induction in living-donor renal transplantation: A systematic review. Transplant Rev (Orlando) 2023; 37:100792. [PMID: 37709652 DOI: 10.1016/j.trre.2023.100792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 04/24/2023] [Accepted: 08/17/2023] [Indexed: 09/16/2023]
Abstract
INTRODUCTION Despite its use to prevent acute rejection, lifelong immunosuppression can adversely impact long-term patient and graft outcomes. In theory, immunosuppression withdrawal is the ultimate goal of kidney transplantation, and is made possible by the induction of immunological tolerance. The purpose of this paper is to review the safety and efficacy of immune tolerance induction strategies in living-donor kidney transplantation, both chimerism-based and non-chimerism-based. The impact of these strategies on transplant outcomes, including acute rejection, allograft function and survival, cost, and immune monitoring, will also be discussed. MATERIALS AND METHODS Databases such as PubMed, Scopus, and Web of Science, as well as additional online resources such as EBSCO, were exhaustively searched. Adult living-donor kidney transplant recipients who developed chimerism-based tolerance after concurrent bone marrow or hematopoietic stem cell transplantation or those who received non-chimerism-based, non-hematopoietic cell therapy using mesenchymal stromal cells, dendritic cells, or regulatory T cells were studied between 2000 and 2021. Individual sources of evidence were evaluated critically, and the strength of evidence and risk of bias for each outcome of the transplant tolerance study were assessed. RESULTS From 28,173 citations, 245 studies were retrieved after suitable exclusion and duplicate removal. Of these, 22 studies (2 RCTs, 11 cohort studies, 6 case-control studies, and 3 case reports) explicitly related to both interventions (chimerism- and non-chimerism-based immune tolerance) were used in the final review process and were critically appraised. According to the findings, chimerism-based strategies fostered immunotolerance, allowing for the safe withdrawal of immunosuppressive medications. Cell-based therapy, on the other hand, frequently did not induce tolerance except for minimising immunosuppression. As a result, the rejection rates, renal allograft function, and survival rates could not be directly compared between these two groups. While chimerism-based tolerance protocols posed safety concerns due to myelosuppression, including infections and graft-versus-host disease, cell-based strategies lacked these adverse effects and were largely safe. There was a lack of direct comparisons between HLA-identical and HLA-disparate recipients, and the cost implications were not examined in several of the retrieved studies. Most studies reported successful immunosuppressive weaning lasting at least 3 years (ranging up to 11.4 years in some studies), particularly with chimerism-based therapy, while only a few investigators used immune surveillance techniques. The studies reviewed were often limited by selection, classification, ascertainment, performance, and attrition bias. CONCLUSIONS This review demonstrates that chimerism-based hematopoietic strategies induce immune tolerance, and a substantial number of patients are successfully weaned off immunosuppression. Despite the risk of complications associated with myelosuppression. Non-chimerism-based, non-hematopoietic cell protocols, on the other hand, have been proven to facilitate immunosuppression minimization but seldom elicit immunological tolerance. However, the results of this review must be interpreted with caution because of the non-randomised study design, potential confounding, and small sample size of the included studies. Further validation and refinement of tolerogenic protocols in accordance with local practice preferences is also warranted, with an emphasis on patient selection, cost ramifications, and immunological surveillance based on reliable tolerance assays.
Collapse
Affiliation(s)
- Chandrashekar Annamalai
- Postgraduate School of Medicine, Institute of Teaching and Learning, Faculty of Health and Life Sciences, University of Liverpool, UK.
| | - Vivek Kute
- Nephrology and Transplantation, Institute of Kidney Diseases and Research Center and Dr. H L Trivedi Institute of Transplantation Sciences (IKDRC-ITS), Ahmedabad, India
| | - Carl Sheridan
- Department of Eye and Vision Science, Ocular Cell Transplantation, Faculty of Health and Life Sciences, University of Liverpool, UK
| | - Ahmed Halawa
- Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| |
Collapse
|
11
|
Vafadar A, Vosough P, Jahromi HK, Tajbakhsh A, Savardshtaki A, Butler AE, Sahebkar A. The role of efferocytosis and transplant rejection: Strategies in promoting transplantation tolerance using apoptotic cell therapy and/or synthetic particles. Cell Biochem Funct 2023; 41:959-977. [PMID: 37787641 DOI: 10.1002/cbf.3852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/26/2023] [Accepted: 08/24/2023] [Indexed: 10/04/2023]
Abstract
Recently, efforts have been made to recognize the precise reason(s) for transplant failure and the process of rejection utilizing the molecular signature. Most transplant recipients do not appreciate the unknown length of survival of allogeneic grafts with the existing standard of care. Two noteworthy immunological pathways occur during allogeneic transplant rejection. A nonspecific innate immune response predominates in the early stages of the immune reaction, and allogeneic antigens initiate a donor-specific adaptive reaction. Though the adaptive response is the major cause of allograft rejection, earlier pro-inflammatory responses that are part of the innate immune response are also regarded as significant in graft loss. The onset of the innate and adaptive immune response causes chronic and acute transplant rejection. Currently employed immunosuppressive medications have shown little or no influence on chronic rejection and, as a result, on overall long-term transplant survival. Furthermore, long-term pharmaceutical immunosuppression is associated with side effects, toxicity, and an increased risk of developing diseases, both infectious and metabolic. As a result, there is a need for the development of innovative donor-specific immunosuppressive medications to regulate the allorecognition pathways that induce graft loss and to reduce the side effects of immunosuppression. Efferocytosis is an immunomodulatory mechanism with fast and efficient clearance of apoptotic cells (ACs). As such, AC therapy strategies have been suggested to limit transplant-related sequelae. Efferocytosis-based medicines/treatments can also decrease the use of immunosuppressive drugs and have no detrimental side effects. Thus, this review aims to investigate the impact of efferocytosis on transplant rejection/tolerance and identify approaches using AC clearance to increase transplant viability.
Collapse
Affiliation(s)
- Asma Vafadar
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Parisa Vosough
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hossein Kargar Jahromi
- Research Center for Non-Communicable Disease, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Amir Tajbakhsh
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Savardshtaki
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Infertility Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Alexandra E Butler
- Research Department, Royal College of Surgeons in Ireland - Bahrain, Adliya, Bahrain
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
12
|
Qiao H, Li H. PLP2 Could Be a Prognostic Biomarker and Potential Treatment Target in Glioblastoma Multiforme. Pharmgenomics Pers Med 2023; 16:991-1009. [PMID: 37964785 PMCID: PMC10642424 DOI: 10.2147/pgpm.s425251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 10/16/2023] [Indexed: 11/16/2023] Open
Abstract
Objective This study aimed to discern the association between PLP2 expression, its biological significance, and the extent of immune infiltration in human GBM. Methods Utilizing the GEPIA2 and TCGA databases, we contrasted the expression levels of PLP2 in GBM against normal tissue. We utilized GEPIA2 and LinkedOmics for survival analysis, recognized genes co-expressed with PLP2 via cBioPortal and GEPIA2, and implemented GO and KEGG analyses. The STRING database facilitated the construction of protein-protein interaction networks. We evaluated the relationship of PLP2 with tumor immune infiltrates using ssGSEA and the TIMER 2.0 database. An IHC assay assessed PLP2 and PDL-1 expression in GBM tissue, and the Drugbank database aided in identifying potential PLP2-targeting compounds. Molecular docking was accomplished using Autodock Vina 1.2.2. Results PLP2 expression was markedly higher in GBM tissues in comparison to normal tissues. High PLP2 expression correlated with a decrease in overall survival across two databases. Functional analyses highlighted a focus of PLP2 functions within leukocyte. Discrepancies in PLP2 expression were evident in immune infiltration, impacting CD4+ T cells, neutrophils, myeloid dendritic cells, and macrophages. There was a concomitant increase in PLP2 and PD-L1 expression in GBM tissues, revealing a link between the two. Molecular docking with ethosuximide and praziquantel yielded scores of -7.441 and -4.295 kcal/mol, correspondingly. Conclusion PLP2's upregulation in GBM may adversely influence the lifespan of GBM patients. The involvement of PLP2 in pathways linked to leukocyte function is suggested. The positive correlation between PLP2 and PD-L1 could provide insights into PLP2's role in glioma modulation. Our research hints at PLP2's potential as a therapeutic target for GBM, with ethosuximide and praziquantel emerging as potential treatment candidates, especially emphasizing the potential of these compounds in GBM treatment targeting PLP2.
Collapse
Affiliation(s)
- Hao Qiao
- The Affiliated Hospital of Qingdao University, Qingdao, Shandong, People’s Republic of China
| | - Huanting Li
- The Affiliated Hospital of Qingdao University, Qingdao, Shandong, People’s Republic of China
| |
Collapse
|
13
|
Du X, Li M, Huan C, Lv G. Dendritic cells in liver transplantation immune response. Front Cell Dev Biol 2023; 11:1277743. [PMID: 37900282 PMCID: PMC10606587 DOI: 10.3389/fcell.2023.1277743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 09/27/2023] [Indexed: 10/31/2023] Open
Abstract
Dendritic cells (DCs) are the most powerful antigen presenting cells (APCs), they are considered one of the key regulatory factors in the liver immune system. There is currently much interest in modulating DC function to improve transplant immune response. In liver transplantation, DCs participate in both the promotion and inhibition of the alloreponse by adopting different phenotypes and function. Thus, in this review, we discussed the origin, maturation, migration and pathological effects of several DC subsets, including the conventional DC (cDC), plasmacytoid DC (pDC) and monocyte-derived DC (Mo-DC) in liver transplantation, and we summarized the roles of these DC subsets in liver transplant rejection and tolerance. In addition, we also outlined the latest progress in DC-based related treatment regimens. Overall, our discussion provides a beneficial resource for better understanding the biology of DCs and their manipulation to improve the immune adaptability of patients in transplant status.
Collapse
Affiliation(s)
- Xiaodong Du
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China
| | - Mingqian Li
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China
| | - Chen Huan
- Center of Infectious Diseases and Pathogen Biology, Institute of Virology and AIDS Research, Key Laboratory of Organ Regeneration and Transplantation of The Ministry of Education, The First Hospital of Jilin University, Changchun, China
| | - Guoyue Lv
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
14
|
Blanco T, Singh RB, Nakagawa H, Taketani Y, Dohlman TH, Chen Y, Chauhan SK, Yin J, Dana R. Conventional type I migratory CD103 + dendritic cells are required for corneal allograft survival. Mucosal Immunol 2023; 16:711-726. [PMID: 36642378 PMCID: PMC10413378 DOI: 10.1016/j.mucimm.2022.12.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 12/14/2022] [Indexed: 01/15/2023]
Abstract
Corneal transplant rejection primarily occurs because of the T helper 1 (Th1) effector cell-mediated immune response of the host towards allogeneic tissue. The evidence suggests that type 1 migratory conventional CD103+ dendritic cells (CD103+DC1) acquire an immunosuppressive phenotype in the tumor environment; however, the involvement of CD103+DC1 in allograft survival continues to be an elusive question of great clinical significance in tissue transplantation. In this study, we assess the role of CD103+DC1 in suppressing Th1 alloreactivity against transplanted corneal allografts. The immunosuppressive function of CD103+DC1 has been extensively studied in non-transplantation settings. We found that host CD103+DC1 infiltrates the corneal graft and migrates to the draining lymph nodes to suppress alloreactive CD4+ Th1 cells via the programmed death-ligand 1 axis. The systemic depletion of CD103+ DC1 in allograft recipients leads to amplified Th1 activation, impaired Treg function, and increased rate of allograft rejection. Although allograft recipient Rag1 null mice reconstituted with naïve CD4+CD25- T cells efficiently generated peripheral Treg cells (pTreg), the CD103+DC1-depleted mice failed to generate pTreg. Furthermore, adoptive transfer of pTreg failed to rescue allografts in CD103+DC1-depleted recipients from rejection. These data demonstrate the critical role of CD103+DC1 in regulating host alloimmune responses.
Collapse
Affiliation(s)
- Tomas Blanco
- Laboratory of Corneal Immunology, Transplantation, and Regeneration, Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, USA
| | - Rohan Bir Singh
- Laboratory of Corneal Immunology, Transplantation, and Regeneration, Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, USA
| | - Hayate Nakagawa
- Laboratory of Corneal Immunology, Transplantation, and Regeneration, Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, USA
| | - Yukako Taketani
- Laboratory of Corneal Immunology, Transplantation, and Regeneration, Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, USA
| | - Thomas H Dohlman
- Laboratory of Corneal Immunology, Transplantation, and Regeneration, Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, USA
| | - Yihe Chen
- Laboratory of Corneal Immunology, Transplantation, and Regeneration, Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, USA
| | - Sunil K Chauhan
- Laboratory of Corneal Immunology, Transplantation, and Regeneration, Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, USA
| | - Jia Yin
- Laboratory of Corneal Immunology, Transplantation, and Regeneration, Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, USA
| | - Reza Dana
- Laboratory of Corneal Immunology, Transplantation, and Regeneration, Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, USA.
| |
Collapse
|
15
|
Li JSY, Robertson H, Trinh K, Raghubar AM, Nguyen Q, Matigian N, Patrick E, Thomson AW, Mallett AJ, Rogers NM. Tolerogenic dendritic cells protect against acute kidney injury. Kidney Int 2023; 104:492-507. [PMID: 37244471 DOI: 10.1016/j.kint.2023.05.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 04/12/2023] [Accepted: 05/11/2023] [Indexed: 05/29/2023]
Abstract
Ischemia reperfusion injury is a common precipitant of acute kidney injury that occurs following disrupted perfusion to the kidney. This includes blood loss and hemodynamic shock, as well as during retrieval for deceased donor kidney transplantation. Acute kidney injury is associated with adverse long-term clinical outcomes and requires effective interventions that can modify the disease process. Immunomodulatory cell therapies such as tolerogenic dendritic cells remain a promising tool, and here we tested the hypothesis that adoptively transferred tolerogenic dendritic cells can limit kidney injury. The phenotypic and genomic signatures of bone marrow-derived syngeneic or allogeneic, Vitamin-D3/IL-10-conditioned tolerogenic dendritic cells were assessed. These cells were characterized by high PD-L1:CD86, elevated IL-10, restricted IL-12p70 secretion and a suppressed transcriptomic inflammatory profile. When infused systemically, these cells successfully abrogated kidney injury without modifying infiltrating inflammatory cell populations. They also provided protection against ischemia reperfusion injury in mice pre-treated with liposomal clodronate, suggesting the process was regulated by live, rather than reprocessed cells. Co-culture experiments and spatial transcriptomic analysis confirmed reduced kidney tubular epithelial cell injury. Thus, our data provide strong evidence that peri-operatively administered tolerogenic dendritic cells have the ability to protect against acute kidney injury and warrants further exploration as a therapeutic option. This technology may provide a clinical advantage for bench-to-bedside translation to affect patient outcomes.
Collapse
Affiliation(s)
- Jennifer S Y Li
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, Westmead, New South Wales, Australia; Sydney Medical School, Faculty of Health and Medicine, University of Sydney, Sydney, New South Wales, Australia; Department of Renal Medicine, Westmead Hospital, Westmead, New South Wales, Australia
| | - Harry Robertson
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, Westmead, New South Wales, Australia; School of Mathematics and Statistics, University of Sydney, Sydney, New South Wales, Australia
| | - Katie Trinh
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, Westmead, New South Wales, Australia
| | - Arti M Raghubar
- Institute for Molecular Bioscience, the University of Queensland, Brisbane, Queensland, Australia
| | - Quan Nguyen
- Institute for Molecular Bioscience, the University of Queensland, Brisbane, Queensland, Australia
| | - Nicholas Matigian
- Institute for Molecular Bioscience, the University of Queensland, Brisbane, Queensland, Australia; Queensland Cyber Infrastructure Foundation Bioinformatics, Brisbane, Queensland, Australia
| | - Ellis Patrick
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, Westmead, New South Wales, Australia; School of Mathematics and Statistics, University of Sydney, Sydney, New South Wales, Australia
| | - Angus W Thomson
- Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Andrew J Mallett
- Institute for Molecular Bioscience, the University of Queensland, Brisbane, Queensland, Australia; Department of Renal Medicine, Townsville University Hospital, Townsville, Queensland, Australia; College of Medicine and Dentistry, James Cook University, Townsville, Queensland, Australia
| | - Natasha M Rogers
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, Westmead, New South Wales, Australia; Sydney Medical School, Faculty of Health and Medicine, University of Sydney, Sydney, New South Wales, Australia; Department of Renal Medicine, Westmead Hospital, Westmead, New South Wales, Australia.
| |
Collapse
|
16
|
Nakamura Y, Inoue T. Tolerogenic dendritic cells: promising cell therapy for acute kidney injury. Kidney Int 2023; 104:420-422. [PMID: 37599014 DOI: 10.1016/j.kint.2023.06.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/03/2023] [Accepted: 06/08/2023] [Indexed: 08/22/2023]
Abstract
There is still no established treatment for acute kidney injury (AKI), and the intervention of AKI remains limited to supportive treatments. Li et al. demonstrated the mechanism by which immune tolerance by dendritic cell ameliorates AKI in a mouse ischemia-reperfusion injury model. The phase I/II clinical trials of tolerogenic dendritic cell therapy have been conducted for kidney transplantation, so it is expected to have potential as a cell therapy for AKI in the future.
Collapse
Affiliation(s)
- Yasuna Nakamura
- Department of Physiology of Visceral Function and Body Fluid, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Tsuyoshi Inoue
- Department of Physiology of Visceral Function and Body Fluid, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.
| |
Collapse
|
17
|
Zahorchak AF, DeRiggi ML, Muzzio JL, Sutherland V, Humar A, Lakkis FG, Hsu YMS, Thomson AW. Manufacturing and validation of Good Manufacturing Practice-compliant regulatory dendritic cells for infusion into organ transplant recipients. Cytotherapy 2023; 25:432-441. [PMID: 36639251 DOI: 10.1016/j.jcyt.2022.11.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/28/2022] [Accepted: 11/18/2022] [Indexed: 01/13/2023]
Abstract
BACKGROUND AIMS Regulatory (or "tolerogenic") dendritic cells (DCregs) are a highly promising, innovative cell therapy for the induction or restoration of antigen-specific tolerance in immune-mediated inflammatory disorders. These conditions include organ allograft rejection, graft-versus-host disease following bone marrow transplantation and various autoimmune disorders. DCregs generated for adoptive transfer have potential to reduce patients' dependence on non-specific immunosuppressive drugs that can induce serious side effects and enhance the risk of infection and certain types of cancer. Here, our aim was to provide a detailed account of our experience manufacturing and validating comparatively large numbers of Good Manufacturing Practice-grade DCregs for systemic (intravenous) infusion into 28 organ (liver) transplant recipients and to discuss factors that influence the satisfaction of release criteria and attainment of target cell numbers. RESULTS DCregs were generated in granulocyte-macrophage colony stimulating factor and interleukin (IL)-4 from elutriated monocyte fractions isolated from non-mobilized leukapheresis products of consenting healthy adult prospective liver transplant donors. Vitamin D3 was added on day 0 and 4 and IL-10 on day 4 during the 7-day culture period. Release and post-release criteria included cell viability, purity, phenotype, sterility and functional assessment. The overall conversion rate of monocytes to DCregs was 28 ± 8.2%, with 94 ± 5.1% product viability. The mean cell surface T-cell co-inhibitory to co-stimulatory molecule (programmed death ligand-1:CD86) mean fluorescence intensity ratio was 3.9 ± 2.2, and the mean ratio of anti-inflammatory:pro-inflammatory cytokine product (IL-10:IL-12p70) secreted upon CD40 ligation was 60 ± 63 (median = 40). The mean total number of DCregs generated from a single leukapheresis product (n = 25 donors) and from two leukapheresis products (n = 3 donors) was 489 ± 223 × 106 (n = 28). The mean total number of DCregs infused was 5.9 ± 2.8 × 106 per kg body weight. DCreg numbers within a target cell range of 2.5-10 × 106/kg were achieved for 25 of 27 (92.6%) of products generated. CONCLUSIONS High-purity DCregs meeting a range of quality criteria were readily generated from circulating blood monocytes under Good Manufacturing Practice conditions to meet target cell numbers for infusion into prospective organ transplant recipients.
Collapse
Affiliation(s)
- Alan F Zahorchak
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Misty L DeRiggi
- Immunologic Monitoring & Cellular Products Laboratory, University of Pittsburgh Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | - Jennifer L Muzzio
- Immunologic Monitoring & Cellular Products Laboratory, University of Pittsburgh Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | - Veronica Sutherland
- Immunologic Monitoring & Cellular Products Laboratory, University of Pittsburgh Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | - Abhinav Humar
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Fadi G Lakkis
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Department of Medicine, Division of Hematology and Oncology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Yen-Michael S Hsu
- Immunologic Monitoring & Cellular Products Laboratory, University of Pittsburgh Hillman Cancer Center, Pittsburgh, Pennsylvania, USA; Department of Medicine, Division of Hematology and Oncology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.
| | - Angus W Thomson
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Clinical and Translational Science Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
18
|
Dong M, Wang X, Li T, Jing Y, Liu Y, Zhao H. miR-27a-3p alleviates lung transplantation-induced bronchiolitis obliterans syndrome (BOS) via suppressing Smad-mediated myofibroblast differentiation and TLR4-induced dendritic cells maturation. Transpl Immunol 2023; 78:101806. [PMID: 36925075 DOI: 10.1016/j.trim.2023.101806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 02/03/2023] [Accepted: 02/21/2023] [Indexed: 03/17/2023]
Abstract
BACKGROUND Bronchiolitis obliterans syndrome (BOS), induced by a chronic rejection, remains a significant obstacle for end-stage lung diseases after lung transplantation. We have previously determined that the small non-coding mRNA (miRNA) miR-27a-3p maintained the immature state of dendritic cells (DCs) via the interleukin 10 (IL-10)-dependent regulatory pathway. Such status helped in preventing rejection and alleviating BOS. The present study explored mechanisms how miR-27a-3p may suppress the fibrosis as well as the maturation of DCs, ultimately attenuating BOS in vitro and in vivo. METHODS/RESULTS In our tracheal transplantation mouse model, the expression of Smad2, Smad4, and αSMA were significantly decreased in the miR-27a-3p-transfected DCs (p < 0.0001, p = 0.0006, and p = 0.0002 respectively). Moreover, the expression of fibrosis markers (α-SMA, collagen I, and Fn) were potently inhibited in the miR-27a-3p-transfected NIH-3 T3 cells (p < 0.0001, p = 0.00148, and p < 0.0001 respectively). At the same time, reversed results were observed in the inhibitor group (p = 0.0002, p < 0.0001, and p < 0.0001 respectively), indicating that miR-27a-3p could directly inhibit myofibroblast differentiation. Furthermore, in the tracheal transplanted mice, the population of Treg cells was significantly decreased (p < 0.0001). In contrast, Th17 cells were down-regulated in the miR-27a-3p-transfected DCs group (p < 0.0001), accompanied by the decreased IL-17 levels (p = 0.0007) and the induction of TGF-β1 and IL-10 (p < 0.0001 and p = 0.0016 respectively). Further mechanistic studies indicated that miR-27a-3p altered the maturation of DCs by targeting TLR4 and IRAK (p < 0.0001 and p = 0.0002 respectively). CONCLUSIONS Our study suggests that miR-27a-3p selectively blocked the TGF-β1/Smad pathways to suppress the myofibroblast differentiation and targeted the TRL4/IRAK4 pathway to restrain DCs maturation, thus attenuating BOS. Our findings suggest that miR-27a-3p is a potential active molecule on BOS management after lung transplantation.
Collapse
Affiliation(s)
- Ming Dong
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital; Anshan Road No.154, Heping District, Tianjin 300052, China.
| | - Xin Wang
- Department of Pediatric Surgery, Tianjin Children's Hospital, No.238 LongYan Road, Tianjin 300134, China
| | - Tong Li
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital; Anshan Road No.154, Heping District, Tianjin 300052, China
| | - Yaqing Jing
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Qixiangtai Road, No.22, Heping District, Tianjin 300070, China
| | - Yi Liu
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Qixiangtai Road, No.22, Heping District, Tianjin 300070, China
| | - Honglin Zhao
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital; Anshan Road No.154, Heping District, Tianjin 300052, China
| |
Collapse
|
19
|
Liu P, Kang C, Zhang J, Liu Y, Liu J, Hu T, Zeng X, Qiu S. The role of dendritic cells in allergic diseases. Int Immunopharmacol 2022; 113:109449. [DOI: 10.1016/j.intimp.2022.109449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/06/2022] [Accepted: 11/09/2022] [Indexed: 11/18/2022]
|
20
|
Muacevic A, Adler JR. Classic and Current Opinions in Human Organ and Tissue Transplantation. Cureus 2022; 14:e30982. [PMID: 36337306 PMCID: PMC9624478 DOI: 10.7759/cureus.30982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/01/2022] [Indexed: 11/30/2022] Open
Abstract
Graft tolerance is a pathophysiological condition heavily reliant on the dynamic interaction of the innate and adaptive immune systems. Genetic polymorphism determines immune responses to tissue/organ transplantation, and intricate humoral and cell-mediated mechanisms control these responses. In transplantation, the clinician's goal is to achieve a delicate equilibrium between the allogeneic immune response, undesired effects of the immunosuppressive drugs, and the existing morbidities that are potentially life-threatening. Transplant immunopathology involves sensitization, effector, and apoptosis phases which recruit and engages immunological cells like natural killer cells, lymphocytes, neutrophils, and monocytes. Similarly, these cells are involved in the transfer of normal or genetically engineered T cells. Advances in tissue transplantation would involve a profound knowledge of the molecular mechanisms that underpin the respective immunopathology involved and the design of precision medicines that are safe and effective.
Collapse
|
21
|
The Role of Innate Immune Cells in the Prediction of Early Renal Allograft Injury Following Kidney Transplantation. J Clin Med 2022; 11:jcm11206148. [PMID: 36294469 PMCID: PMC9605224 DOI: 10.3390/jcm11206148] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/24/2022] [Accepted: 10/14/2022] [Indexed: 11/24/2022] Open
Abstract
Background: Despite recent advances and refinements in perioperative management of kidney transplantation (KT), early renal graft injury (eRGI) remains a critical problem with serious impairment of graft function as well as short- and long-term outcome. Serial monitoring of peripheral blood innate immune cells might be a useful tool in predicting post-transplant eRGI and graft outcome after KT. Methods: In this prospective study, medical data of 50 consecutive patients undergoing KT at the University Hospital of Leipzig were analyzed starting at the day of KT until day 10 after the transplantation. The main outcome parameter was the occurrence of eRGI and other outcome parameters associated with graft function/outcome. eRGI was defined as graft-related complications and clinical signs of renal IRI (ischemia reperfusion injury), such as acute tubular necrosis (ATN), delayed graft function (DGF), initial nonfunction (INF) and graft rejection within 3 months following KT. Typical innate immune cells including neutrophils, natural killer (NK) cells, monocytes, basophils and dendritic cells (myeloid, plasmacytoid) were measured in all patients in peripheral blood at day 0, 1, 3, 7 and 10 after the transplantation. Receiver operating characteristics (ROC) curves were performed to assess their predictive value for eRGI. Cutoff levels were calculated with the Youden index. Significant diagnostic immunological cutoffs and other prognostic clinical factors were tested in a multivariate logistic regression model. Results: Of the 50 included patients, 23 patients developed eRGI. Mean levels of neutrophils and monocytes were significantly higher on most days in the eRGI group compared to the non-eRGI group after transplantation, whereas a significant decrease in NK cell count, basophil levels and DC counts could be found between baseline and postoperative course. ROC analysis indicated that monocytes levels on POD 7 (AUC: 0.91) and NK cell levels on POD 7 (AUC: 0.92) were highly predictive for eRGI after KT. Multivariable analysis identified recipient age (OR 1.53 (95% CI: 1.003−2.350), p = 0.040), recipient body mass index > 25 kg/m2 (OR 5.6 (95% CI: 1.36−23.9), p = 0.015), recipient cardiovascular disease (OR 8.17 (95% CI: 1.28−52.16), p = 0.026), donor age (OR 1.068 (95% CI: 1.011−1.128), p = 0.027), <0.010), deceased-donor transplantation (OR 2.18 (95% CI: 1.091−4.112), p = 0.027) and cold ischemia time (CIT) of the renal graft (OR 1.005 (95% CI: 1.001−1.01), p = 0.019) as clinically relevant prognostic factors associated with increased eRGI following KT. Further, neutrophils > 9.4 × 103/μL on POD 7 (OR 16.1 (95% CI: 1.31−195.6), p = 0.031), monocytes > 1150 cells/ul on POD 7 (OR 7.81 (95% CI: 1.97−63.18), p = 0.048), NK cells < 125 cells/μL on POD 3 (OR 6.97 (95% CI: 3.81−12.7), p < 0.01), basophils < 18.1 cells/μL on POD 10 (OR 3.45 (95% CI: 1.37−12.3), p = 0.02) and mDC < 4.7 cells/μL on POD 7 (OR 11.68 (95% CI: 1.85−73.4), p < 0.01) were revealed as independent biochemical predictive variables for eRGI after KT. Conclusions: We show that the combined measurement of immunological innate variables (NK cells and monocytes on POD 7) and specific clinical factors such as prolonged CIT, increased donor and recipient age and morbidity together with deceased-donor transplantation were significant and specific predictors of eRGI following KT. We suggest that intensified monitoring of these parameters might be a helpful clinical tool in identifying patients at a higher risk of postoperative complication after KT and may therefore help to detect and—by diligent clinical management—even prevent deteriorated outcome due to IRI and eRGI after KT.
Collapse
|
22
|
Kudo-Saito C, Boku N, Hirano H, Shoji H. Targeting myeloid villains in the treatment with immune checkpoint inhibitors in gastrointestinal cancer. Front Immunol 2022; 13:1009701. [PMID: 36211375 PMCID: PMC9539086 DOI: 10.3389/fimmu.2022.1009701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/13/2022] [Indexed: 12/03/2022] Open
Abstract
Despite the clinical outcomes being extremely limited, blocking immune inhibitory checkpoint pathways has been in the spotlight as a promising strategy for treating gastrointestinal cancer. However, a distinct strategy for the successful treatment is obviously needed in the clinical settings. Myeloid cells, such as neutrophils, macrophages, dendritic cells, and mast cells, are the majority of cellular components in the human immune system, but have received relatively less attention for the practical implementation than T cells and NK cells in cancer therapy because of concentration of the interest in development of the immune checkpoint blocking antibody inhibitors (ICIs). Abnormality of myeloid cells must impact on the entire host, including immune responses, stromagenesis, and cancer cells, leading to refractory cancer. This implies that elimination and reprogramming of the tumor-supportive myeloid villains may be a breakthrough to efficiently induce potent anti-tumor immunity in cancer patients. In this review, we provide an overview of current situation of the IC-blocking therapy of gastrointestinal cancer, including gastric, colorectal, and esophageal cancers. Also, we highlight the possible oncoimmunological components involved in the mechanisms underlying the resistance to the ICI therapy, particularly focusing on myeloid cells, including unique subsets expressing IC molecules. A deeper understanding of the molecular and cellular determinants may facilitate its practical implementation of targeting myeloid villains, and improve the clinical outcomes in the ICI therapy of gastrointestinal cancer.
Collapse
Affiliation(s)
- Chie Kudo-Saito
- Department of Immune Medicine, National Cancer Center Research Institute, Tokyo, Japan
- *Correspondence: Chie Kudo-Saito,
| | - Narikazu Boku
- Department of Oncology and General Medicine, Institute of Medical Science Hospital, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Hidekazu Hirano
- Department of Gastrointestinal Medical Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Hirokazu Shoji
- Department of Gastrointestinal Medical Oncology, National Cancer Center Hospital, Tokyo, Japan
| |
Collapse
|
23
|
The Combination of Rhodosin and MMF Prolongs Cardiac Allograft Survival by Inhibiting DC Maturation by Promoting Mitochondrial Fusion. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7260305. [PMID: 35855862 PMCID: PMC9288296 DOI: 10.1155/2022/7260305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/17/2022] [Accepted: 06/20/2022] [Indexed: 11/17/2022]
Abstract
Despite being the gold-standard treatment for end-stage heart disease, heart transplantation is associated with acute cardiac rejection within 1 year of transplantation. The continuous application of immunosuppressants may cause side effects such as hepatic and renal toxicity, infection, and malignancy. Developing new pharmaceutical strategies to alleviate acute rejection after heart transplantation effectively and safely is of critical importance. In this study, we performed a murine model of MHC-full mismatch cardiac transplantation and showed that the combination of Rhodosin (Rho) and mycophenolate mofetil (MMF) could prevent acute rejection and oxidative stress injury and prolong the survival time of murine heart transplants. The use of Rho plus MMF in allografts improved the balance of Tregs/Teff cells, which had a protective effect on allotransplantation. We also isolated bone marrow-derived dendritic cells (BMDCs) and determined that Rho inhibited DC maturation by promoting mitochondrial fusion mainly through the mitochondrial fusion-related protein MFN1. Herein, we demonstrated that Rho, an active ingredient isolated from the plant Rhodiola rosea with antioxidant and anti-inflammatory activities, could efficiently alleviate acute rejection and significantly prolong murine heart allograft survival when used with a low dose of MMF. More importantly, we found that Rho restrained DC maturation by promoting mitochondrial fusion and decreasing reactive oxygen species (ROS) levels, which then alleviated acute rejection in murine cardiac transplantation. Interestingly, as a novel immunosuppressant, Rho has almost no side effects compared with other traditional immunosuppressants. Taken together, these results suggest that Rho has good clinical auxiliary applications as an effective immunosuppressant and antioxidant, and this study provides an efficient strategy to overcome the side effects of immunosuppressive agents that are currently used in organ transplantation.
Collapse
|
24
|
Cao P, Sun Z, Zhang F, Zhang J, Zheng X, Yu B, Zhao Y, Wang W, Wang W. TGF-β Enhances Immunosuppression of Myeloid-Derived Suppressor Cells to Induce Transplant Immune Tolerance Through Affecting Arg-1 Expression. Front Immunol 2022; 13:919674. [PMID: 35874674 PMCID: PMC9300822 DOI: 10.3389/fimmu.2022.919674] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 06/07/2022] [Indexed: 11/13/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are a class of heterogeneous myeloid cells, which play an important role in immunosuppression. We intended to find an effective method that can produce MDSCs with significantly better efficiency and promote immune tolerance for transplant rejection through cell therapy. It has been reported that granulocyte and macrophage colony-stimulating factor (GM-CSF) could induce MDSCs in vitro to cause immunosuppression. In the present study, transforming growth factor β (TGF-β) was added to the induction system, and flow cytometry analysis was used to detect the phenotypes of induced MDSCs. Their potential immunosuppressive function and mechanisms were determined by co-culturing MDSCs with stimulated T cells in vitro and transferring MDSCs to the skin grafted C57BL/6J mouse models in vivo. It was found that the addition of TGF-β could effectively cause bone marrow cells to differentiate into a group of cells with stronger immunosuppressive functions, thereby inhibiting the proliferation of stimulated T cells. The population of CD11b+Gr-1+ MDSCs also increased significantly as compared with GM-CSF alone treatment. While detecting for immunosuppressive effectors, we found that expression of arginase 1 (Arg-1) was significantly upregulated in these MDSCs, and inhibitor of Arg-1 significantly suppressed their immunosuppressive capabilities. Moreover, an adoptive transfer of these cells significantly prolonged survival of allo-skin and improved immune tolerance in vivo. These findings indicated that TGF-β + GM-CSF could serve as an effective and feasible method to induce powerful immunosuppressive MDSCs in vitro. Thus, TGF-β + GM-CSF–induced MDSCs may have a promising role in prevention of the graft rejection.
Collapse
Affiliation(s)
- Peng Cao
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Zejia Sun
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Feilong Zhang
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Jiandong Zhang
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Xiang Zheng
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Baozhong Yu
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Yong Zhao
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- *Correspondence: Wei Wang, ; Wei Wang, ; Yong Zhao,
| | - Wei Wang
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
- *Correspondence: Wei Wang, ; Wei Wang, ; Yong Zhao,
| | - Wei Wang
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
- *Correspondence: Wei Wang, ; Wei Wang, ; Yong Zhao,
| |
Collapse
|
25
|
Bourque J, Hawiger D. Variegated Outcomes of T Cell Activation by Dendritic Cells in the Steady State. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:539-547. [PMID: 35042789 DOI: 10.4049/jimmunol.2100932] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/15/2021] [Indexed: 12/13/2022]
Abstract
Conventional dendritic cells (cDC) control adaptive immunity by sensing damage- and pathogen-associated molecular patterns and then inducing defined differentiation programs in T cells. Nevertheless, in the absence of specific proimmunogenic innate signals, generally referred to as the steady state, cDC also activate T cells to induce specific functional fates. Consistent with the maintenance of homeostasis, such specific outcomes of T cell activation in the steady state include T cell clonal anergy, deletion, and conversion of peripheral regulatory T cells (pTregs). However, the robust induction of protolerogenic mechanisms must be reconciled with the initiation of autoimmune responses and cancer immunosurveillance that are also observed under homeostatic conditions. Here we review the diversity of fates and functions of T cells involved in the opposing immunogenic and tolerogenic processes induced in the steady state by the relevant mechanisms of systemic cDC present in murine peripheral lymphoid organs.
Collapse
Affiliation(s)
- Jessica Bourque
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO
| | - Daniel Hawiger
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO
| |
Collapse
|
26
|
Bottomley MJ, Brook MO, Shankar S, Hester J, Issa F. Towards regulatory cellular therapies in solid organ transplantation. Trends Immunol 2022; 43:8-21. [PMID: 34844848 DOI: 10.1016/j.it.2021.11.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/10/2021] [Accepted: 11/01/2021] [Indexed: 01/03/2023]
Abstract
Organ transplantation is a modern medical success story. However, since its inception it has been limited by the need for pharmacological immunosuppression. Regulatory cellular therapies offer an attractive solution to these challenges by controlling transplant alloresponses through multiple parallel suppressive mechanisms. A number of cell types have seen an accelerated development into human trials and are now on the threshold of a long-awaited breakthrough in personalized transplant therapeutics. Here we assess recent developments with a focus on the most likely candidates, some of which have already facilitated successful immunosuppression withdrawal in early clinical trials. We propose that this may constitute a promising approach in clinical transplantation but also evaluate outstanding issues in the field, providing cause for cautious optimism.
Collapse
Affiliation(s)
- Matthew J Bottomley
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK; Oxford Transplant Centre, Churchill Hospital, Oxford, UK
| | - Matthew O Brook
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK; Oxford Transplant Centre, Churchill Hospital, Oxford, UK
| | - Sushma Shankar
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK; Oxford Transplant Centre, Churchill Hospital, Oxford, UK
| | - Joanna Hester
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Fadi Issa
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK.
| |
Collapse
|
27
|
Robertson H, Li J, Kim HJ, Rhodes JW, Harman AN, Patrick E, Rogers NM. Transcriptomic Analysis Identifies A Tolerogenic Dendritic Cell Signature. Front Immunol 2021; 12:733231. [PMID: 34745103 PMCID: PMC8564488 DOI: 10.3389/fimmu.2021.733231] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/30/2021] [Indexed: 12/23/2022] Open
Abstract
Dendritic cells (DC) are central to regulating innate and adaptive immune responses. Strategies that modify DC function provide new therapeutic opportunities in autoimmune diseases and transplantation. Current pharmacological approaches can alter DC phenotype to induce tolerogenic DC (tolDC), a maturation-resistant DC subset capable of directing a regulatory immune response that are being explored in current clinical trials. The classical phenotypic characterization of tolDC is limited to cell-surface marker expression and anti-inflammatory cytokine production, although these are not specific. TolDC may be better defined using gene signatures, but there is no consensus definition regarding genotypic markers. We address this shortcoming by analyzing available transcriptomic data to yield an independent set of differentially expressed genes that characterize human tolDC. We validate this transcriptomic signature and also explore gene differences according to the method of tolDC generation. As well as establishing a novel characterization of tolDC, we interrogated its translational utility in vivo, demonstrating this geneset was enriched in the liver, a known tolerogenic organ. Our gene signature will potentially provide greater understanding regarding transcriptional regulators of tolerance and allow researchers to standardize identification of tolDC used for cellular therapy in clinical trials.
Collapse
Affiliation(s)
- Harry Robertson
- Kidney Injury Group, Centre for Transplant and Renal Research, Westmead Institute for Medical Research, Westmead, NSW, Australia
| | - Jennifer Li
- Kidney Injury Group, Centre for Transplant and Renal Research, Westmead Institute for Medical Research, Westmead, NSW, Australia
| | - Hani Jieun Kim
- Computational Systems Biology Group, Children's Medical Research Institute, Westmead, NSW, Australia.,School of Mathematics and Statistics, University of Sydney, Camperdown, NSW, Australia
| | - Jake W Rhodes
- Centre for Virus Research, Westmead Institute for Medical Research, Westmead, NSW, Australia
| | - Andrew N Harman
- Centre for Virus Research, Westmead Institute for Medical Research, Westmead, NSW, Australia.,The University of Sydney, School of Medical Sciences, Faculty of Medicine and Health Sydney, Sydney, NSW, Australia
| | - Ellis Patrick
- Kidney Injury Group, Centre for Transplant and Renal Research, Westmead Institute for Medical Research, Westmead, NSW, Australia.,School of Mathematics and Statistics, University of Sydney, Camperdown, NSW, Australia.,Centre for Virus Research, Westmead Institute for Medical Research, Westmead, NSW, Australia
| | - Natasha M Rogers
- Kidney Injury Group, Centre for Transplant and Renal Research, Westmead Institute for Medical Research, Westmead, NSW, Australia.,Renal and Transplantation Medicine, Westmead Hospital, Westmead, NSW, Australia.,Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| |
Collapse
|
28
|
Machcińska M, Kotur M, Jankowska A, Maruszewska-Cheruiyot M, Łaski A, Kotkowska Z, Bocian K, Korczak-Kowalska G. Cyclosporine A, in Contrast to Rapamycin, Affects the Ability of Dendritic Cells to Induce Immune Tolerance Mechanisms. Arch Immunol Ther Exp (Warsz) 2021; 69:27. [PMID: 34632525 PMCID: PMC8502748 DOI: 10.1007/s00005-021-00632-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 07/16/2021] [Indexed: 12/25/2022]
Abstract
Following organ transplantation, it is essential that immune tolerance is induced in the graft recipient to reduce the risk of rejection and avoid complications associated with the long-term use of immunosuppressive drugs. Immature dendritic cells (DCs) are considered to promote transplant tolerance and may minimize the risk of graft rejection. The aim of the study was to evaluate the effects of immunosuppressive agents: rapamycin (Rapa) and cyclosporine A (CsA) on generation of human tolerogenic DCs (tolDCs) and also to evaluate the ability of these cells to induce mechanisms of immune tolerance. tolDCs were generated in the environment of Rapa or CsA. Next, we evaluated the effects of these agents on surface phenotypes (CD11c, MHC II, CD40, CD80, CD83, CD86, CCR7, TLR2, TLR4), cytokine production (IL-4, IL-6, IL-10, IL-12p70, TGF-β), phagocytic capacity and resistant to lipopolysaccharide activation of these DCs. Moreover, we assessed ability of such tolDCs to induce T cell activation and apoptosis, Treg differentiation and production of Th1- and Th2-characteristic cytokine profile. Data obtained in this study demonstrate that rapamycin is effective at generating maturation-resistant tolDCs, however, does not change the ability of these cells to induce mechanisms of immune tolerance. In contrast, CsA affects the ability of these cells to induce mechanisms of immune tolerance, but is not efficient at generating maturation-resistant tolDCs.
Collapse
Affiliation(s)
- Maja Machcińska
- Department of Immunology, Institute of Functional Biology and Ecology, Faculty of Biology, University of Warsaw, Warsaw, Poland. .,Present address: Laboratory of Parasitology, General Karol Kaczkowski Military Institute of Hygiene and Epidemiology, Warsaw, Poland.
| | - Monika Kotur
- Department of Immunology, Institute of Functional Biology and Ecology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Aleksandra Jankowska
- Department of Immunology, Institute of Functional Biology and Ecology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Marta Maruszewska-Cheruiyot
- Laboratory of Parasitology, General Karol Kaczkowski Military Institute of Hygiene and Epidemiology, Warsaw, Poland
| | - Artur Łaski
- Department of Immunology, Institute of Functional Biology and Ecology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Zuzanna Kotkowska
- Department of Immunology, Institute of Functional Biology and Ecology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Katarzyna Bocian
- Department of Immunology, Institute of Functional Biology and Ecology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Grażyna Korczak-Kowalska
- Department of Immunology, Institute of Functional Biology and Ecology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| |
Collapse
|
29
|
Affiliation(s)
- Sundaram Hariharan
- From the University of Pittsburgh Medical Center, Pittsburgh (S.H.); Hennepin Healthcare, the University of Minnesota, and the Scientific Registry of Transplant Recipients - all in Minneapolis (A.K.I.); and the University of California, Los Angeles, Los Angeles (G.D.)
| | - Ajay K Israni
- From the University of Pittsburgh Medical Center, Pittsburgh (S.H.); Hennepin Healthcare, the University of Minnesota, and the Scientific Registry of Transplant Recipients - all in Minneapolis (A.K.I.); and the University of California, Los Angeles, Los Angeles (G.D.)
| | - Gabriel Danovitch
- From the University of Pittsburgh Medical Center, Pittsburgh (S.H.); Hennepin Healthcare, the University of Minnesota, and the Scientific Registry of Transplant Recipients - all in Minneapolis (A.K.I.); and the University of California, Los Angeles, Los Angeles (G.D.)
| |
Collapse
|
30
|
Iglesias M, Khalifian S, Oh BC, Zhang Y, Miller D, Beck S, Brandacher G, Raimondi G. A short course of tofacitinib sustains the immunoregulatory effect of CTLA4-Ig in the presence of inflammatory cytokines and promotes long-term survival of murine cardiac allografts. Am J Transplant 2021; 21:2675-2687. [PMID: 33331121 DOI: 10.1111/ajt.16456] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 12/07/2020] [Accepted: 12/11/2020] [Indexed: 01/25/2023]
Abstract
Costimulation blockade-based regimens are a promising strategy for management of transplant recipients. However, maintenance immunosuppression via CTLA4-Ig monotherapy is characterized by high frequency of rejection episodes. Recent evidence suggests that inflammatory cytokines contribute to alloreactive T cell activation in a CD28-independent manner, a reasonable contributor to the limited efficacy of CTLA4-Ig. In this study, we investigated the possible synergism of a combined short-term inhibition of cytokine signaling and CD28 engagement on the modulation of rejection. Our results demonstrate that the JAK/STAT inhibitor tofacitinib restored the immunomodulatory effect of CTLA4-Ig on mouse alloreactive T cells in the presence of inflammatory cytokines. Tofacitinib exposure conferred dendritic cells with a tolerogenic phenotype reducing their cytokine secretion and costimulatory molecules expression. JAK inhibition also directly affected T cell activation. In vivo, the combination of CTLA4-Ig and tofacitinib induced long-term survival of heart allografts and, importantly, it was equally effective when using grafts subjected to prolonged ischemia. Transplant survival correlated with a reduction in effector T cells and intragraft accumulation of regulatory T cells. Collectively, our studies demonstrate a powerful synergism between CTLA4-Ig and tofacitinib and suggest their combined use is a promising strategy for improved management of transplanted patients.
Collapse
Affiliation(s)
- Marcos Iglesias
- Department of Plastic and Reconstructive Surgery, Vascularized Composite Allotransplantation (VCA) Laboratory, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Saami Khalifian
- Department of Plastic and Reconstructive Surgery, Vascularized Composite Allotransplantation (VCA) Laboratory, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Byoung C Oh
- Department of Plastic and Reconstructive Surgery, Vascularized Composite Allotransplantation (VCA) Laboratory, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Yichuan Zhang
- Department of Plastic and Reconstructive Surgery, Vascularized Composite Allotransplantation (VCA) Laboratory, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Devin Miller
- Department of Plastic and Reconstructive Surgery, Vascularized Composite Allotransplantation (VCA) Laboratory, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Sarah Beck
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Gerald Brandacher
- Department of Plastic and Reconstructive Surgery, Vascularized Composite Allotransplantation (VCA) Laboratory, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Giorgio Raimondi
- Department of Plastic and Reconstructive Surgery, Vascularized Composite Allotransplantation (VCA) Laboratory, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
31
|
Macedo C, Tran LM, Zahorchak AF, Dai H, Gu X, Ravichandran R, Mohanakumar T, Elinoff B, Zeevi A, Styn MA, Humar A, Lakkis FG, Metes DM, Thomson AW. Donor-derived regulatory dendritic cell infusion results in host cell cross-dressing and T cell subset changes in prospective living donor liver transplant recipients. Am J Transplant 2021; 21:2372-2386. [PMID: 33171019 PMCID: PMC8215622 DOI: 10.1111/ajt.16393] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/13/2020] [Accepted: 11/01/2020] [Indexed: 01/25/2023]
Abstract
Regulatory dendritic cells (DCreg) promote transplant tolerance following their adoptive transfer in experimental animals. We investigated the feasibility, safety, fate, and impact on host T cells of donor monocyte-derived DCreg infused into prospective, living donor liver transplant patients, 7 days before transplantation. The DCreg expressed a tolerogenic gene transcriptional profile, high cell surface programed death ligand-1 (PD-L1):CD86 ratios, high IL-10/no IL-12 productivity and poor ability to stimulate allogeneic T cell proliferation. Target DCreg doses (range 2.5-10 × 106 cells/kg) were achieved in all but 1 of 15 recipients, with no infusion reactions. Following DCreg infusion, transiently elevated levels of donor HLA and immunoregulatory PD-L1, CD39, and CD73 were detected in circulating small extracellular vesicles. At the same time, flow and advanced image stream analysis revealed intact DCreg and "cross-dressing" of host DCs in blood and lymph nodes. PD-L1 co-localization with donor HLA was observed at higher levels than with recipient HLA. Between DCreg infusion and transplantation, T-bethi Eomeshi memory CD8+ T cells decreased, whereas regulatory (CD25hi CD127- Foxp3+ ): T-bethi Eomeshi CD8+ T cell ratios increased. Thus, donor-derived DCreg infusion may induce systemic changes in host antigen-presenting cells and T cells potentially conducive to modulated anti-donor immune reactivity at the time of transplant.
Collapse
Affiliation(s)
- Camila Macedo
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Lillian M. Tran
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Alan F. Zahorchak
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Helong Dai
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Xinyan Gu
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | | | | | - Beth Elinoff
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Adriana Zeevi
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania,Department of Pathology, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania,Department of Immunology, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania
| | - Mindi A. Styn
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Abhinav Humar
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Fadi G. Lakkis
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania,Department of Immunology, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania
| | - Diana M. Metes
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania,Department of Immunology, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania
| | - Angus W. Thomson
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania,Department of Immunology, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
32
|
Zhou L, Li H, Zhang XX, Zhao Y, Wang J, Pan LC, Du GS, He Q, Li XL. Rapamycin treated tol-dendritic cells derived from BM-MSCs reversed graft rejection in a rat liver transplantation model by inducing CD8 +CD45RC -Treg. Mol Immunol 2021; 137:11-19. [PMID: 34182227 DOI: 10.1016/j.molimm.2021.03.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 11/25/2022]
Abstract
OBJECTIVE To investigate the influence of tolerance dendritic cells (tolDCs), generated from Bone marrow mesenchymal stem cells (BM-MSCs) treated with rapamycin (Rapa) on liver allograft survival in a rat acute liver transplantation model. METHODS Different GM-CSF induction project was used to obtain immature DCs (imDCs), mature DCs (matDCs) or tolDCs from BM-MSCs. First, MLR was performed to analyze the activity of tolDCs on polyclonaly stimulated total T cells. Then, co-cultured imDCs, matDCs and tolDCs with CD8+T cells isolated by magnetic activated cell sorting to analyze the influence on its regulatory characteristic. Last, the established rat acute liver transplantation model were adoptive transfused with imDCs, matDCs or tolDCs isolated by anti-CD11c immunomagnetic beads. The phenotype of DC cells and level of CD8+Treg in the culture system and in vivo, the expression of CD8 and CD45RC in the tissues were analyzed by flow cytometry and immunohistochemistry, respectively. RESULTS The loGM-CSF plus IL-4 decreased the costimulatory molecules of CD80/86 and MHC class II of DCs comparison with hiGM-CSF from BM-MSCs no matter whether stimulation by LPS (P<0.05). Rapa treated not only reduced the expression of CD80/86 and MHC class II but also down-regulated the expression of CD11c after LPS stimulation which was more obviously in tolDCs by loGM-CSF project (P<0.05). Moreover, tolDCs displayed a rather higher level of IL-10 and low level of IL-12p70 than others (P<0.01), which shown a rather lower stimulative effect on the proliferation of T cells comparison with matDCs and imDCs. Co-cultured with CD8+Treg showed an improvement on induction of CD8+TCR+CD45RC-T cells (CD8+Treg) in ex vivo. The rats transfused with tolDCs has a delayed survival benefits with high level of CD8+Tregs (P<0.01) and high expression of CD45RC in liver tissue (P<0.01) and spleen when comparison with other groups. The infused tolDCs improved a mean survival time (MST) of 32 days comparison with a MTS of 9.5 days and 15.75 days displayed by rat that per-infused with matDCs and imDCs, respectively. CONCLUSION Rapa modified tolDCs derived from BM-MSCs reversed graft rejection by improve tolerance characteristics of CD8+CD45RC-Treg in acute liver rat transplantation.
Collapse
Affiliation(s)
- Lin Zhou
- Department of Hepatobiliary and Pancreaticosplenic Surgery, Beijing ChaoYang Hospital, Capital Medical University, Beijing, 100020, China
| | - Han Li
- Department of Hepatobiliary and Pancreaticosplenic Surgery, Beijing ChaoYang Hospital, Capital Medical University, Beijing, 100020, China
| | - Xin-Xue Zhang
- Department of Hepatobiliary and Pancreaticosplenic Surgery, Beijing ChaoYang Hospital, Capital Medical University, Beijing, 100020, China
| | - Yang Zhao
- Department of Hepatobiliary and Pancreaticosplenic Surgery, Beijing ChaoYang Hospital, Capital Medical University, Beijing, 100020, China
| | - Jing Wang
- Department of Hepatobiliary and Pancreaticosplenic Surgery, Beijing ChaoYang Hospital, Capital Medical University, Beijing, 100020, China
| | - Li-Chao Pan
- Faculty of Hepato-Pancreato-Biliary Surgery, Chinese PLA General Hospital, Beijing, 100853, China
| | - Guo-Sheng Du
- Faculty of Hepato-Pancreato-Biliary Surgery, Chinese PLA General Hospital, Beijing, 100853, China
| | - Qiang He
- Department of Hepatobiliary and Pancreaticosplenic Surgery, Beijing ChaoYang Hospital, Capital Medical University, Beijing, 100020, China.
| | - Xian-Liang Li
- Department of Hepatobiliary and Pancreaticosplenic Surgery, Beijing ChaoYang Hospital, Capital Medical University, Beijing, 100020, China.
| |
Collapse
|
33
|
Ex Vivo Mesenchymal Stem Cell Therapy to Regenerate Machine Perfused Organs. Int J Mol Sci 2021; 22:ijms22105233. [PMID: 34063399 PMCID: PMC8156338 DOI: 10.3390/ijms22105233] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/09/2021] [Accepted: 05/12/2021] [Indexed: 01/06/2023] Open
Abstract
Transplantation represents the treatment of choice for many end-stage diseases but is limited by the shortage of healthy donor organs. Ex situ normothermic machine perfusion (NMP) has the potential to extend the donor pool by facilitating the use of marginal quality organs such as those from donors after cardiac death (DCD) and extended criteria donors (ECD). NMP provides a platform for organ quality assessment but also offers the opportunity to treat and eventually regenerate organs during the perfusion process prior to transplantation. Due to their anti-inflammatory, immunomodulatory and regenerative capacity, mesenchymal stem cells (MSCs) are considered as an interesting tool in this model system. Only a limited number of studies have reported on the use of MSCs during ex situ machine perfusion so far with a focus on feasibility and safety aspects. At this point, no clinical benefits have been conclusively demonstrated, and studies with controlled transplantation set-ups are urgently warranted to elucidate favorable effects of MSCs in order to improve organs during ex situ machine perfusion.
Collapse
|
34
|
Fujimoto K, Uchida K, Yin E, Zhu J, Kojima Y, Uchiyama M, Yamamoto Y, Bashuda H, Matsumoto R, Tokushige K, Harada M, Inomata T, Kitaura J, Murakami A, Okumura K, Takeda K. Analysis of therapeutic potential of monocytic myeloid-derived suppressor cells in cardiac allotransplantation. Transpl Immunol 2021; 67:101405. [PMID: 33975012 DOI: 10.1016/j.trim.2021.101405] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 04/12/2021] [Accepted: 05/06/2021] [Indexed: 11/16/2022]
Abstract
BACKGROUND Myeloid-derived suppressor cells (MDSCs) and regulatory T cells (Tregs) are attractive immune cells to induce immune tolerance. To explore a strategy for improving the efficacy of MDSC therapies, we examined the impact of adoptive transfer of several types of MDSCs on graft rejection in a murine heart transplantation model. METHODS We analyzed the effects of induced syngeneic and allogeneic bone marrow-derived MDSCs (BM-MDSCs) on graft survival and suppressive capacity. We also compared the ability of syngeneic monocytic MDSCs (Mo-MDSCs) and polymorphonuclear MDSCs (PMN-MDSCs) to inhibit graft rejection and investigated the suppression mechanisms. RESULTS Both syngeneic and allogeneic donor- or allogeneic third-party-derived BM-MDSCs prolonged graft survival, although syngeneic BM-MDSCs inhibited anti-donor immune responses most effectively in vitro. Syngeneic Mo-MDSCs, rather than PMN-MDSCs, were responsible for immune suppression through downregulating inducible nitric oxide synthase (iNOS) and expanded naturally occurring thymic originated Treg (nTreg) in vitro. Adoptive transfer of Mo-MDSCs, but not PMN-MDSCs, prolonged graft survival and increased Treg infiltration into the graft heart. CONCLUSION Recipient-derived Mo-MDSCs are most effective in prolonging graft survival via inhibiting T cell response and nTreg infiltration.
Collapse
Affiliation(s)
- Keiichi Fujimoto
- Atopy Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan; Department of Ophthalmology, Juntendo University School of Medicine, Tokyo, Japan.
| | - Koichiro Uchida
- Atopy Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan; Advanced Research Institute for Health Science, Juntendo University, Tokyo, Japan.
| | - Enzhi Yin
- Department of Surgery, Teikyo University, Tokyo, Japan
| | - Jun Zhu
- Department of Ophthalmology, Juntendo University School of Medicine, Tokyo, Japan.
| | - Yuko Kojima
- Laboratory of Morphology and Image Analysis, Research Support Center, Juntendo University Graduate School of Medicine, Tokyo, Japan.
| | | | | | - Hisashi Bashuda
- Atopy Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan.
| | - Ryu Matsumoto
- Atopy Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan.
| | - Koji Tokushige
- Atopy Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan.
| | - Masaki Harada
- Atopy Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan.
| | - Takenori Inomata
- Department of Ophthalmology, Juntendo University School of Medicine, Tokyo, Japan.
| | - Jiro Kitaura
- Atopy Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan.
| | - Akira Murakami
- Department of Ophthalmology, Juntendo University School of Medicine, Tokyo, Japan.
| | - Ko Okumura
- Atopy Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan; Department of Biofunctional Microbiota, Juntendo University Graduate School of Medicine, Tokyo, Japan.
| | - Kazuyoshi Takeda
- Department of Biofunctional Microbiota, Juntendo University Graduate School of Medicine, Tokyo, Japan; Division of Cell Biology, Biomedical Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan.
| |
Collapse
|
35
|
Lee YS, Saxena V, Bromberg JS, Scalea JR. G-CSF promotes alloregulatory function of MDSCs through a c-Kit dependent mechanism. Cell Immunol 2021; 364:104346. [PMID: 33848847 DOI: 10.1016/j.cellimm.2021.104346] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 03/04/2021] [Accepted: 03/21/2021] [Indexed: 12/30/2022]
Abstract
Myeloid-derived suppressor cells (MDSC) are a heterogeneous population of immature myeloid cells that expand in inflammatory conditions including transplantation. MDSCs may be capable of controlling rejection. The critical mechanisms underlying MDSC mediated alloregulation remain unexplored. G-CSF potently stimulates MDSC expansion. We hypothesized that G-CSF-induced MDSCs use a novel mechanism to suppress T cell responses. G-CSF promoted expansion of MDSCs and enhanced their suppressive function against T cell proliferation. Gene expression analysis revealed MDSCs expanded with G-CSF upregulated immune-related genes, but downregulated proliferation-related genes when compared to naïve control MDSCs. The KIT oncogene, encoding the c-Kit (CD117) transmembrane tyrosine kinase receptor, was the most significantly increased in MDSCs expanded with G-CSF. c-Kit inhibition with both imatinib and monoclonal blocking antibody reduced expression of ARG-1, iNOS, PD-L1, and SAA3. Further, imatinib also reduced MDSC-mediated T cell suppression in vitro. Modulation of c-Kit activity may represent a therapeutic target for alloregulatory MDSCs.
Collapse
Affiliation(s)
- Young S Lee
- Department of Surgery, University of Maryland School of Medicine, Baltimore, United States; Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, United States
| | - Vikas Saxena
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, United States
| | - Jonathan S Bromberg
- Department of Surgery, University of Maryland School of Medicine, Baltimore, United States; Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, United States; Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, United States
| | - Joseph R Scalea
- Department of Surgery, University of Maryland School of Medicine, Baltimore, United States; Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, United States; Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, United States.
| |
Collapse
|
36
|
Regulatory T Cells for the Induction of Transplantation Tolerance. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021. [PMID: 33523454 DOI: 10.1007/978-981-15-6407-9_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/10/2023]
Abstract
Organ transplantation is the optimal treatment for terminal and irreversible organ failure. Achieving transplantation tolerance has long been the ultimate goal in the field of transplantation. Regulatory T cell (Treg)-based therapy is a promising novel approach for inducing donor organ-specific tolerance. Tregs play critical roles in the maintenance of immune homeostasis and self-tolerance, by promoting transplantation tolerance through a variety of mechanisms on different target cells, including anti-inflammatory cytokine production, induction of apoptosis, disruption of metabolic pathways, and mutual interaction with dendritic cells. The continued success of Treg-based therapy in the clinical setting is critically dependent on preclinical studies that support its translational potential. However, although some initial clinical trials of adoptive Treg therapy have successively demonstrated safety and efficacy for immunosuppressant minimization and transplantation tolerance induction, most Treg-based hematopoietic stem cell and solid organ clinical trials are still in their infancy. These clinical trials have not only focused on safety and efficacy but also included optimization and standardization protocols of good manufacturing practice regarding cell isolation, expansion, dosing, timing, specificity, quality control, concomitant immunosuppressants, and post-administration monitoring. We herein report a brief introduction of Tregs, including their phenotypic and functional characterization, and focus on the clinical translation of Treg-based therapeutic applications in the setting of transplantation.
Collapse
|
37
|
Que W, Guo WZ, Li XK. Manipulation of Regulatory Dendritic Cells for Induction Transplantation Tolerance. Front Immunol 2020; 11:582658. [PMID: 33162996 PMCID: PMC7591396 DOI: 10.3389/fimmu.2020.582658] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 08/31/2020] [Indexed: 12/13/2022] Open
Abstract
Current organ transplantation therapy is life-saving but accompanied by well-recognized side effects due to post-transplantation systematic immunosuppressive treatment. Dendritic cells (DCs) are central instigators and regulators of transplantation immunity and are responsible for balancing allograft rejection and tolerance. They are derived from monocyte-macrophage DC progenitors originating in the bone marrow and are classified into different subsets based on their developmental, phenotypical, and functional criteria. Functionally, DCs instigate allograft immunity by presenting donor antigens to alloreactive T cells via direct, indirect, and semidirect recognition pathways and provide essential signaling for alloreactive T cell activation via costimulatory molecules and pro-inflammatory cytokines. Regulatory DCs (DCregs) are characterized by a relatively low expression of major histocompatibility complex, costimulatory molecules, and altered cytokine production and exert their regulatory function through T cell anergy, T cell deletion, and regulatory T cell induction. In rodent transplantation studies, DCreg-based therapy, by in situ targeting or infusion of ex vivo generated DCregs, exhibits promising potential as a natural, well-tolerated, organ-specific therapeutic strategy for promoting lasting organ-specific transplantation tolerance. Recent early-phase studies of DCregs have begun to examine the safety and efficacy of DCreg-induced allograft tolerance in living-donor renal or liver transplantations. The present review summarizes the basic characteristics, function, and translation of DCregs in transplantation tolerance induction.
Collapse
Affiliation(s)
- Weitao Que
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Division of Transplantation Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Wen-Zhi Guo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiao-Kang Li
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Division of Transplantation Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| |
Collapse
|
38
|
Iberg CA, Hawiger D. Natural and Induced Tolerogenic Dendritic Cells. THE JOURNAL OF IMMUNOLOGY 2020; 204:733-744. [PMID: 32015076 DOI: 10.4049/jimmunol.1901121] [Citation(s) in RCA: 169] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 10/04/2019] [Indexed: 11/19/2022]
Abstract
Dendritic cells (DCs) are highly susceptible to extrinsic signals that modify the functions of these crucial APCs. Maturation of DCs induced by diverse proinflammatory conditions promotes immune responses, but certain signals also induce tolerogenic functions in DCs. These "induced tolerogenic DCs" help to moderate immune responses such as those to commensals present at specific anatomical locations. However, also under steady-state conditions, some DCs are characterized by inherent tolerogenic properties. The immunomodulatory mechanisms constitutively present in such "natural tolerogenic DCs" help to promote tolerance to peripheral Ags. By extending tolerance initially established in the thymus, these functions of DCs help to regulate autoimmune and other immune responses. In this review we will discuss the mechanisms and functions of natural and induced tolerogenic DCs and offer further insight into how their possible manipulations may ultimately lead to more precise treatments for various immune-mediated conditions and diseases.
Collapse
Affiliation(s)
- Courtney A Iberg
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO 63104
| | - Daniel Hawiger
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO 63104
| |
Collapse
|
39
|
Donor myeloid derived suppressor cells (MDSCs) prolong allogeneic cardiac graft survival through programming of recipient myeloid cells in vivo. Sci Rep 2020; 10:14249. [PMID: 32859934 PMCID: PMC7455707 DOI: 10.1038/s41598-020-71289-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 08/04/2020] [Indexed: 01/16/2023] Open
Abstract
Solid organ transplantation is a lifesaving therapy for patients with end-organ disease. Current immunosuppression protocols are not designed to target antigen-specific alloimmunity and are uncapable of preventing chronic allograft injury. As myeloid-derived suppressor cells (MDSCs) are potent immunoregulatory cells, we tested whether donor-derived MDSCs can protect heart transplant allografts in an antigen-specific manner. C57BL/6 (H2Kb, I-Ab) recipients pre-treated with BALB/c MDSCs were transplanted with either donor-type (BALB/c, H2Kd, I-Ad) or third-party (C3H, H2Kk, I-Ak) cardiac grafts. Spleens and allografts from C57BL/6 recipients were harvested for immune phenotyping, transcriptomic profiling and functional assays. Single injection of donor-derived MDSCs significantly prolonged the fully MHC mismatched allogeneic cardiac graft survival in a donor-specific fashion. Transcriptomic analysis of allografts harvested from donor-derived MDSCs treated recipients showed down-regulated proinflammatory cytokines. Immune phenotyping showed that the donor MDSCs administration suppressed effector T cells in recipients. Interestingly, significant increase in recipient endogenous CD11b+Gr1+ MDSC population was observed in the group treated with donor-derived MDSCs compared to the control groups. Depletion of this endogenous MDSCs with anti-Gr1 antibody reversed donor MDSCs-mediated allograft protection. Furthermore, we observed that the allogeneic mixed lymphocytes reaction was suppressed in the presence of CD11b+Gr1+ MDSCs in a donor-specific manner. Donor-derived MDSCs prolong cardiac allograft survival in a donor-specific manner via induction of recipient's endogenous MDSCs.
Collapse
|
40
|
Comi M, Amodio G, Passeri L, Fortunato M, Santoni de Sio FR, Andolfi G, Kajaste-Rudnitski A, Russo F, Cesana L, Gregori S. Generation of Powerful Human Tolerogenic Dendritic Cells by Lentiviral-Mediated IL-10 Gene Transfer. Front Immunol 2020; 11:1260. [PMID: 32695103 PMCID: PMC7338371 DOI: 10.3389/fimmu.2020.01260] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 05/18/2020] [Indexed: 12/18/2022] Open
Abstract
The prominent role of dendritic cells (DC) in promoting tolerance and the development of methods to generate clinical grade products allowed the clinical application of tolerogenic DC (tolDC)-based therapies for controlling unwanted immune responses. We established an efficient method to generate tolerogenic human DC, producing supra-physiological levels of IL-10, by genetically engineering monocyte-derived DC with a bidirectional Lentiviral Vector (bdLV) encoding for IL-10 and a marker gene. DCIL−10 are mature DC, modulate T cell responses, promote T regulatory cells, and are phenotypically and functionally stable upon stimulation. Adoptive transfer of human DCIL−10 in a humanized mouse model dampens allogeneic T cell recall responses, while murine DCIL−10 delays acute graft-vs.-host disease in mice. Our report outlines an efficient method to transduce human myeloid cells with large-size LV and shows that stable over-expression of IL-10 generates an effective cell product for future clinical applications in the contest of allogeneic transplantation.
Collapse
Affiliation(s)
- Michela Comi
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), San Raffaele Scientific Institute (IRCCS), Milan, Italy
| | - Giada Amodio
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), San Raffaele Scientific Institute (IRCCS), Milan, Italy
| | - Laura Passeri
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), San Raffaele Scientific Institute (IRCCS), Milan, Italy
| | - Marta Fortunato
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), San Raffaele Scientific Institute (IRCCS), Milan, Italy
| | | | - Grazia Andolfi
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), San Raffaele Scientific Institute (IRCCS), Milan, Italy
| | - Anna Kajaste-Rudnitski
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), San Raffaele Scientific Institute (IRCCS), Milan, Italy
| | - Fabio Russo
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), San Raffaele Scientific Institute (IRCCS), Milan, Italy
| | - Luca Cesana
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), San Raffaele Scientific Institute (IRCCS), Milan, Italy
| | - Silvia Gregori
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), San Raffaele Scientific Institute (IRCCS), Milan, Italy
| |
Collapse
|
41
|
Karanu F, Ott L, Webster DA, Stehno-Bittel L. Improved harmonization of critical characterization assays across cell therapies. Regen Med 2020; 15:1661-1678. [PMID: 32589107 DOI: 10.2217/rme-2020-0003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The field of cell therapy has blossomed, providing exciting new options for treating a variety of diseases. While few cell therapy products have US FDA approval, there are thousands of cell treatments at various stages of development, pointing to a potential revolutionary shift in patient care. The expanding number and nature of cellular therapies necessitate greater standardization. Several international organizations are collaborating to pursue some level of global standardization, especially concerning cell banking. However, less harmonization surrounds assays used for critical quality characterization including: identity, purity, safety and potency. Frequently, there is divergence regarding the terms describing the characterization assays across regulatory authorities and guidances. This review summarizes the critical quality assays currently used for different categories of cell therapies. Areas of harmonization and an absence of standardization are highlighted. We propose potential solutions to facilitate harmonization of critical quality characterization assays and the language used to describe them.
Collapse
Affiliation(s)
- Francis Karanu
- Likarda, LLC, 10330 Hickman Mills Drive, Kansas City, MO, USA
| | - Lindsey Ott
- Likarda, LLC, 10330 Hickman Mills Drive, Kansas City, MO, USA
| | - Debra Aub Webster
- Cardinal Health Regulatory Sciences, 7400 West 100th Street, Overland Park, KS 66210, USA
| | - Lisa Stehno-Bittel
- Likarda, LLC, 10330 Hickman Mills Drive, Kansas City, MO, USA.,Department of Rehabilitation Science, University of Kansas Medical Center, MS 2002, 3901 Rainbow Blvd, Kansas City, KC, USA
| |
Collapse
|
42
|
Du X, Chang S, Guo W, Zhang S, Chen ZK. Progress in Liver Transplant Tolerance and Tolerance-Inducing Cellular Therapies. Front Immunol 2020; 11:1326. [PMID: 32670292 PMCID: PMC7326808 DOI: 10.3389/fimmu.2020.01326] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 05/26/2020] [Indexed: 12/12/2022] Open
Abstract
Liver transplantation is currently the most effective method for treating end-stage liver disease. However, recipients still need long-term immunosuppressive drug treatment to control allogeneic immune rejection, which may cause various complications and affect the long-term survival of the recipient. Many liver transplant researchers constantly pursue the induction of immune tolerance in liver transplant recipients, immunosuppression withdrawal, and the maintenance of good and stable graft function. Although allogeneic liver transplantation is more tolerated than transplantation of other solid organs, and it shows a certain incidence of spontaneous tolerance, there is still great risk for general recipients. With the gradual progress in our understanding of immune regulatory mechanisms, a variety of immune regulatory cells have been discovered, and good results have been obtained in rodent and non-human primate transplant models. As immune cell therapies can induce long-term stable tolerance, they provide a good prospect for the induction of tolerance in clinical liver transplantation. At present, many transplant centers have carried out tolerance-inducing clinical trials in liver transplant recipients, and some have achieved gratifying results. This article will review the current status of liver transplant tolerance and the research progress of different cellular immunotherapies to induce this tolerance, which can provide more support for future clinical applications.
Collapse
Affiliation(s)
- Xiaoxiao Du
- Henan Key Laboratory of Digestive Organ Transplantation, Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, ZhengZhou Key Laboratory of Hepatobiliary & Pancreatic Diseases and Organ Transplantation, Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Sheng Chang
- Key Laboratory of Organ Transplantation, Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Wenzhi Guo
- Henan Key Laboratory of Digestive Organ Transplantation, Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, ZhengZhou Key Laboratory of Hepatobiliary & Pancreatic Diseases and Organ Transplantation, Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shuijun Zhang
- Henan Key Laboratory of Digestive Organ Transplantation, Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, ZhengZhou Key Laboratory of Hepatobiliary & Pancreatic Diseases and Organ Transplantation, Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhonghua Klaus Chen
- Key Laboratory of Organ Transplantation, Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| |
Collapse
|
43
|
Targeting Dendritic Cells with Antigen-Delivering Antibodies for Amelioration of Autoimmunity in Animal Models of Multiple Sclerosis and Other Autoimmune Diseases. Antibodies (Basel) 2020; 9:antib9020023. [PMID: 32549343 PMCID: PMC7345927 DOI: 10.3390/antib9020023] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/22/2020] [Accepted: 04/30/2020] [Indexed: 02/07/2023] Open
Abstract
The specific targeting of dendritic cells (DCs) using antigen-delivering antibodies has been established to be a highly efficient protocol for the induction of tolerance and protection from autoimmune processes in experimental autoimmune encephalomyelitis (EAE), a model of multiple sclerosis (MS), as well as in some other animal disease models. As the specific mechanisms of such induced tolerance are being investigated, the newly gained insights may also possibly help to design effective treatments for patients. Here we review approaches applied for the amelioration of autoimmunity in animal models based on antibody-mediated targeting of self-antigens to DCs. Further, we discuss relevant mechanisms of immunological tolerance that underlie such approaches, and we also offer some future perspectives for the application of similar methods in certain related disease settings such as transplantation.
Collapse
|
44
|
Jiang Y, Que W, Zhu P, Li XK. The Role of Diverse Liver Cells in Liver Transplantation Tolerance. Front Immunol 2020; 11:1203. [PMID: 32595648 PMCID: PMC7304488 DOI: 10.3389/fimmu.2020.01203] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 05/14/2020] [Indexed: 12/11/2022] Open
Abstract
Liver transplantation is the ideal treatment approach for a variety of end-stage liver diseases. However, life-long, systemic immunosuppressive treatment after transplantation is required to prevent rejection and graft loss, which is associated with severe side effects, although liver allograft is considered more tolerogenic. Therefore, understanding the mechanism underlying the unique immunologically privileged liver organ is valuable for transplantation management and autoimmune disease treatment. The unique hepatic acinus anatomy and a complex cellular network constitute the immunosuppressive hepatic microenvironment, which are responsible for the tolerogenic properties of the liver. The hepatic microenvironment contains a variety of hepatic-resident immobile non-professional antigen-presenting cells, including hepatocytes, liver sinusoidal endothelial cells, Kupffer cells, and hepatic stellate cells, that are insufficient to optimally prime T cells locally and lead to the removal of alloreactive T cells due to the low expression of major histocompatibility complex (MHC) molecules, costimulatory molecules and proinflammatory cytokines but a rather high expression of coinhibitory molecules and anti-inflammatory cytokines. Hepatic dendritic cells (DCs) are generally immature and less immunogenic than splenic DCs and are also ineffective in priming naïve allogeneic T cells via the direct recognition pathway in recipient secondary lymphoid organs. Although natural killer cells and natural killer T cells are reportedly associated with liver tolerance, their roles in liver transplantation are multifaceted and need to be further clarified. Under these circumstances, T cells are prone to clonal deletion, clonal anergy and exhaustion, eventually leading to tolerance. Other proposed liver tolerance mechanisms, such as soluble donor MHC class I molecules, passenger leukocytes theory and a high-load antigen effect, have also been addressed. We herein comprehensively review the current evidence implicating the tolerogenic properties of diverse liver cells in liver transplantation tolerance.
Collapse
Affiliation(s)
- Yanzhi Jiang
- Division of Transplantation Immunology, National Research Institute for Child Health and Development, Tokyo, Japan.,Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Weitao Que
- Division of Transplantation Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Ping Zhu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xiao-Kang Li
- Division of Transplantation Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| |
Collapse
|
45
|
Thomson AW, Ezzelarab MB. Generation and functional assessment of nonhuman primate regulatory dendritic cells and their therapeutic efficacy in renal transplantation. Cell Immunol 2020; 351:104087. [PMID: 32197811 DOI: 10.1016/j.cellimm.2020.104087] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 03/06/2020] [Accepted: 03/06/2020] [Indexed: 12/29/2022]
Abstract
Nonhuman primates (NHP) are important pre-clinical models for evaluation of the safety and efficacy of the most promising potential therapeutic advances in organ transplantation based on rodent studies. Although rare, dendritic cells (DC) play important roles in preservation of self tolerance and DC with immunoregulatory properties (regulatory DC; DCreg) can promote transplant tolerance in rodents when adoptively transferred to allograft recipients. NHP DCreg can be generated ex vivo from bone marrow precursors or blood monocytes of cynomolgus or rhesus macaques or baboons. NHP DCreg generated in the presence of anti-inflammatory factors that confer stability and resistance to maturation, subvert alloreactive T cell responses. When infused into rhesus renal allograft recipients before transplant, they safely prolong MHC mis-matched graft survival, associated with attenuation of anti-donor immune reactivity. In this concise review we describe the properties of NHP DCreg and discuss their influence on T cell responses, alloimmunity and organ transplant survival.
Collapse
Affiliation(s)
- Angus W Thomson
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.
| | - Mohamed B Ezzelarab
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.
| |
Collapse
|
46
|
Madelon N, Montanari E, Gruaz L, Pimenta J, Muller YD, Bühler LH, Puga Yung GL, Seebach JD. Prolongation of rat-to-mouse islets xenograft survival by co-transplantation of autologous IL-10 differentiated murine tolerogenic dendritic cells. Xenotransplantation 2020; 27:e12584. [PMID: 31984564 DOI: 10.1111/xen.12584] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 12/06/2019] [Accepted: 01/05/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Tolerogenic dendritic cells (DCs) represent a promising approach to promote transplantation tolerance. In this study, the potential of autologous bone marrow (BM)-derived murine DC to protect rat-to-mouse islets xenografts was analyzed. METHODS Tolerogenic DCs were generated by differentiating BM cells in the presence of granulocyte-macrophage colony-stimulating factor and interleukin 10 (IL-10, IL-10 DC). The phenotype of IL-10 DC was characterized in vitro by expression of costimulatory/inhibitory molecules (flow cytometry) and cytokines (Luminex and ELISA), their function by phagocytosis and T-cell stimulation assays. To study transplant tolerance in vivo, rat islets were transplanted alone or in combination with autologous murine IL-10 DC under the kidney capsule of streptozotocin-induced diabetic C57BL/6 mice. Xenograft survival was evaluated by monitoring glycemia, cellular infiltration of xenografts by microscopy and flow cytometry 10 days post-transplantation. RESULTS Compared with control DC, IL-10 DC exhibited lower levels of major histocompatibility complex class II, costimulatory molecules (CD40, CD86, CD205), lower production of pro-inflammatory cytokines (IL-12p70, TNF, IL-6), and higher production of IL-10. Phagocytosis of xenogeneic rat splenocytes was not impaired in IL-10 DC, whereas stimulation of T-cell proliferation was reduced in the presence of IL-10 DC. Xenograft survival of rat islets in diabetic mice co-transplanted with autologous murine IL-10 DC was significantly prolonged from 12 to 21 days, without additional immunosuppressive treatment. Overall, infiltration of xenografts by T cells and myeloid cells was not different in IL-10 DC recipient mice, but enriched for CD8+ T cells and myeloid cells with suppressor-associated phenotype. CONCLUSIONS Autologous IL-10-differentiated DC with tolerogenic properties prolong rat-to-mouse islets xenograft survival, potentially by locally inducing immune regulatory cells, indicating their potential for regulatory immune cell therapy in xenotransplantation.
Collapse
Affiliation(s)
- Natacha Madelon
- Laboratory of Translational Immunology, Division of Immunology and Allergology, Department of Medical Specialties, Medical Faculty, Geneva University Hospitals, Geneva, Switzerland
| | - Elisa Montanari
- Department of Surgery, Medical Faculty, Cell Isolation and Transplantation Center, Geneva University Hospitals, Geneva, Switzerland
| | - Lyssia Gruaz
- Laboratory of Translational Immunology, Division of Immunology and Allergology, Department of Medical Specialties, Medical Faculty, Geneva University Hospitals, Geneva, Switzerland
| | - Joel Pimenta
- Department of Surgery, Medical Faculty, Cell Isolation and Transplantation Center, Geneva University Hospitals, Geneva, Switzerland
| | - Yannick D Muller
- Laboratory of Translational Immunology, Division of Immunology and Allergology, Department of Medical Specialties, Medical Faculty, Geneva University Hospitals, Geneva, Switzerland
| | - Leo H Bühler
- Department of Surgery, Medical Faculty, Cell Isolation and Transplantation Center, Geneva University Hospitals, Geneva, Switzerland
| | - Gisella L Puga Yung
- Laboratory of Translational Immunology, Division of Immunology and Allergology, Department of Medical Specialties, Medical Faculty, Geneva University Hospitals, Geneva, Switzerland
| | - Jörg D Seebach
- Laboratory of Translational Immunology, Division of Immunology and Allergology, Department of Medical Specialties, Medical Faculty, Geneva University Hospitals, Geneva, Switzerland
| |
Collapse
|
47
|
Su YR, Chen MT, Xiong K, Bai L. Endogenous Toll-like Receptor 2 Modulates Th1/Treg-Promoting Dendritic Cells in Mice Corneal Transplantation Model. Curr Eye Res 2019; 45:774-781. [PMID: 31842628 DOI: 10.1080/02713683.2019.1705491] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
PURPOSE Endogenous toll-like receptor (TLR) 2 is linked to allograft rejection in corneal transplantation. TLR2 also could modulate dendritic cell (DC) phenotype, resulting in T cell polarization. Thus, we investigated the role of endogenous TLR2 on DC development and T cell polarization during corneal rejection. MATERIALS AND METHODS Corneas of BALB/c mice were transplanted into the eyes of C57BL/6 wild-type (WT) recipients and TLR2-/- (KO) recipients. Graft survival and TLR2 mRNA expression were assessed. At day 14 after transplantation, to study endogenous TLR2 effects on DC development and function, surface expression of MHC classⅡ (MHCⅡ), CD86, CD80 and CD40 in ipsilateral cervical draining lymph nodes (DLNs) is measured by flow cytometry, and DC phenotype in corneas is detected by immunofluorescence. The levels of IL-12, IL-10 and IL-4 in corneas were measured by real time-qPCR (RT-qPCR). The ability of DCs to stimulate T cell polarization was assessed by IFN-γ expressions via RT-qPCR and immunohistochemistry. RESULTS TLR2 mRNA expression in corneas was peaked at day 14 post-transplantation in WT group. KO group improved corneal allograft survival compared to the WT group. In addition, the KO group decreased expression of CD86, CD80 and CD40 on DCs compared to the WT group. There was no difference in MHCⅡ expression in two groups. The CD11c+MHCⅡ+CD40high DCs could not be detected in corneas of the KO group. Moreover, the KO group decreased IL-12 (Th1-promoting cytokines) mRNA expression and increasing IL-10 (Treg-promoting cytokines) mRNA expression compared to the WT group. IL-4 (Th2-promoting cytokines) mRNA expression gained no difference between the two groups. The IFN-γ (Th1 cytokines) expression was significantly decreased in the KO group compared to the WT group. CONCLUSIONS Endogenous TLR2 may contribute to allogeneic corneal rejection via Th1 immunity by activating Th1-promoting DCs and suppressing Treg-promoting DCs.
Collapse
Affiliation(s)
- Ya-Ru Su
- Department of ophthalmology, Nanfang Hospital, Southern Medical University , Guangzhou, China.,State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University , Guangzhou, China
| | - Min-Ting Chen
- Department of ophthalmology, Nanfang Hospital, Southern Medical University , Guangzhou, China
| | - Ke Xiong
- Department of ophthalmology, Nanfang Hospital, Southern Medical University , Guangzhou, China
| | - Lang Bai
- Department of ophthalmology, Nanfang Hospital, Southern Medical University , Guangzhou, China
| |
Collapse
|
48
|
Ochando J, Ordikhani F, Jordan S, Boros P, Thomson AW. Tolerogenic dendritic cells in organ transplantation. Transpl Int 2019; 33:113-127. [PMID: 31472079 DOI: 10.1111/tri.13504] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 07/24/2019] [Accepted: 08/25/2019] [Indexed: 12/18/2022]
Abstract
Dendritic cells (DCs) are specialized cells of the innate immune system that are characterized by their ability to take up, process and present antigens (Ag) to effector T cells. They are derived from DC precursors produced in the bone marrow. Different DC subsets have been described according to lineage-specific transcription factors required for their development and function. Functionally, DCs are responsible for inducing Ag-specific immune responses that mediate organ transplant rejection. Consequently, to prevent anti-donor immune responses, therapeutic strategies have been directed toward the inhibition of DC activation. In addition however, an extensive body of preclinical research, using transplant models in rodents and nonhuman primates, has established a central role of DCs in the negative regulation of alloimmune responses. As a result, DCs have been employed as cell-based immunotherapy in early phase I/II clinical trials in organ transplantation. Together with in vivo targeting through use of myeloid cell-specific nanobiologics, DC manipulation represents a promising approach for the induction of transplantation tolerance. In this review, we summarize fundamental characteristics of DCs and their roles in promotion of central and peripheral tolerance. We also discuss their clinical application to promote improved long-term outcomes in organ transplantation.
Collapse
Affiliation(s)
- Jordi Ochando
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Immunología de Trasplantes, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Farideh Ordikhani
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Stefan Jordan
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Peter Boros
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Angus W Thomson
- Department of Surgery and Department of Immunology, Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
49
|
Dai H, Thomson AW, Rogers NM. Dendritic Cells as Sensors, Mediators, and Regulators of Ischemic Injury. Front Immunol 2019; 10:2418. [PMID: 31681306 PMCID: PMC6803430 DOI: 10.3389/fimmu.2019.02418] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 09/27/2019] [Indexed: 12/18/2022] Open
Abstract
Dendritic cells (DCs) are highly specialized, bone marrow (BM)-derived antigen-processing and -presenting cells crucial to the induction, integration and regulation of innate, and adaptive immunity. They are stimulated by damage-associated molecular patterns (DAMPS) via pattern recognition receptors to promote inflammation and initiate immune responses. In addition to residing within the parenchyma of all organs as part of the heterogeneous mononuclear phagocyte system, DCs are an abundant component of the inflammatory cell infiltrate that appears in response to ischemia reperfusion injury (IRI). They can play disparate roles in the pathogenesis of IRI since their selective depletion has been found to be protective, deleterious, or of no benefit in mouse models of IRI. In addition, administration of DC generated and manipulated ex vivo can protect organs from IRI by suppressing inflammatory cytokine production, limiting the capacity of DCs to activate NKT cells, or enhancing regulatory T cell function. Few studies however have investigated specific signal transduction mechanisms underlying DC function and how these affect IRI. Here, we address current knowledge of the role of DCs in regulation of IRI, current gaps in understanding and prospects for innovative therapeutic intervention at the biological and pharmacological levels.
Collapse
Affiliation(s)
- Helong Dai
- Department of Urological Organ Transplantation, The Second Xiangya Hospital of Central South University, Changsha, China
- Clinical Research Center for Organ Transplantation of Hunan Province, Changsha, China
| | - Angus W. Thomson
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Natasha M. Rogers
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Center for Transplant and Renal Research, Westmead Institute for Medical Research, Westmead, NSW, Australia
- Renal Division, Westmead Hospital, Westmead, NSW, Australia
- Westmead Clinical School, University of Sydney, Camperdown, NSW, Australia
| |
Collapse
|