1
|
El-Alfy ES, Abbas I, Saleh S, Elseadawy R, Fereig RM, Rizk MA, Xuan X. Tick-borne pathogens in camels: A systematic review and meta-analysis of the prevalence in dromedaries. Ticks Tick Borne Dis 2024; 15:102268. [PMID: 37769585 DOI: 10.1016/j.ttbdis.2023.102268] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 09/18/2023] [Accepted: 09/19/2023] [Indexed: 10/03/2023]
Abstract
Published data on tick-borne pathogens (TBPs) in camels worldwide have been collected to provide an overview of the global prevalence and species diversity of camelid TBPs. Several TBPs have been detected in dromedary camels, raising concerns regarding their role as natural or maintenance hosts for tick-borne pathogens. Insubstantial evidence exists regarding the natural infection of camels with Babesia spp., Theileria spp., Anaplasma spp., and Ehrlichia spp., particularly because most of the camels were considered healthy at the time of sampling. Based on polymerase chain reaction (PCR) testing, a pooled prevalence of 35.3% (95% CI: 22.6-48.1%) was estimated for Anaplasma, which was the most frequently tested TBP in dromedaries, and DNA of Anaplasma marginale, Anaplasma centrale, Anaplasma ovis, Anaplasma platys, and A. platys-like were isolated, of which ruminants and dogs are reservoirs. Similarly, the estimated pooled prevalence for the two piroplasmid genera; Babesia and Theileria was approximately equal (10-12%) regardless of the detection method (microscopy or PCR testing). Nevertheless, Babesia caballi, Theileria equi, and Theileria annulata DNA have frequently been detected in camels but they have not yet been proven to be natural hosts. Scarce data detected Babesia microti, Anaplasma phagocytophilum, and Borrelia burgdorferi sensu lato (s.l.) DNA in blood of dromedaries, although ticks of the genus Ixodes are distributed in limited areas where dromedaries are raised. Interestingly, a pooled seroprevalence of 47.7% (26.3-69.2%) was estimated for Crimean-Congo hemorrhagic fever virus, and viral RNA was detected in dromedary blood; however, their contribution to maintain the viral transmission cycles requires further experimental investigation. The substantially low incidence and scarcity of data on Rickettsia and Ehrlichia species could imply that camels were accidentally infected. In contrast, camels may play a role in the spread of Coxiella burnetii, which is primarily transmitted through the inhalation of aerosols emitted by diseased animals and contaminated environments. Bactrian camels showed no symptoms due to the examined TBPs, meanwhile, clinical disease was seen in alpacas infected with A. phagocytophilum. Similar to dromedaries, accidental tick bites may be the cause of TBP DNA found in the blood of Bactrian camels.
Collapse
Affiliation(s)
- El-Sayed El-Alfy
- Parasitology Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Ibrahim Abbas
- Parasitology Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Somaya Saleh
- Parasitology Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Rana Elseadawy
- Parasitology Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Ragab M Fereig
- Department of Animal Medicine, Faculty of Veterinary Medicine, South Valley University, Qena City, Qena 83523, Egypt
| | - Mohamed Abdo Rizk
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-Cho, Obihiro, Hokkaido, Japan; Department of Internal Medicine, Infectious and Fish Diseases, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt.
| | - Xuenan Xuan
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-Cho, Obihiro, Hokkaido, Japan
| |
Collapse
|
2
|
Topp AK, Springer A, Mischke R, Rieder J, Feige K, Ganter M, Nagel-Kohl U, Nordhoff M, Boelke M, Becker S, Pachnicke S, Schunack B, Dobler G, Strube C. Seroprevalence of tick-borne encephalitis virus in wild and domestic animals in northern Germany. Ticks Tick Borne Dis 2023; 14:102220. [PMID: 37356181 DOI: 10.1016/j.ttbdis.2023.102220] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/07/2023] [Accepted: 06/18/2023] [Indexed: 06/27/2023]
Abstract
Tick-borne encephalitis virus (TBEV) is a tick-transmitted flavivirus, which can infect humans and animals, sometimes even with a fatal outcome. Since many decades, TBEV is endemic in southern Germany, while only sporadic occurrence has been noted in northern parts of the country so far. Nevertheless, autochthonous human clinical cases are increasing in the federal state of Lower Saxony in north-western Germany, and several natural foci of TBEV transmission have recently been detected in this federal state. In order to shed more light on the current distribution of TBEV in Lower Saxony, the present study examined blood samples from wild and domestic animals for antibodies against TBEV. Overall, samples from 4,085 animals were tested by ELISA, including wild boar (N = 1,208), roe deer (N = 149), red deer (N = 61), fallow deer (N = 18), red foxes (N = 9), nutria (N = 9), raccoon dogs (N = 3), raccoons (N = 3), badgers (N = 1), European pine martens (N = 1), horses (N = 574), sheep (N = 266), goats (N = 67), dogs (N = 1,317) and cats (N = 399). Samples with an ELISA result of ≥60 Vienna units (VIEU)/ml were subjected to confirmatory serum neutralization tests (SNT). In total, 343 of 4,085 (8.4%) animals tested positive for anti-TBEV-IgG by ELISA, of which 60 samples were confirmed by SNT. Samples of 89 animals showed a cytotoxic effect in the SNT and were excluded from seroprevalence calculation, resulting in an overall seroprevalence of 1.5% (60/3,996). Seroprevalence was higher among wild animals (wild boar: 2.9% [34/1,190], roe deer: 2.7% [4/149], red deer: 1.7% [1/60], fallow deer: 5.6% [1/18]) than among domestic animals (dogs: 1.1% [15/1,317], horses: 0.8% [4/505], sheep: 0.4% [1/266]). No anti-TBEV-antibodies were detected in the other wild animal species as well as goats and cats. A notable clustering of positive samples was observed in districts where TBEV transmission foci have been described. Further clusters in other districts suggest the existence of so far undetected transmission foci, underlining the fact that both wild and domestic animals are useful sentinels for monitoring the spread of TBEV.
Collapse
Affiliation(s)
- Anna-Katharina Topp
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Buenteweg 17, Hannover 30559, Germany
| | - Andrea Springer
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Buenteweg 17, Hannover 30559, Germany
| | - Reinhard Mischke
- Clinic for Small Animals, University of Veterinary Medicine Hannover, Hannover 30559, Germany
| | - Johanna Rieder
- Clinic for Small Animals, University of Veterinary Medicine Hannover, Hannover 30559, Germany
| | - Karsten Feige
- Clinic for Horses, University of Veterinary Medicine Hannover, Hannover 30559, Germany
| | - Martin Ganter
- Clinic for Swine and Small Ruminants, University of Veterinary Medicine Hannover, Hannover 30173, Germany
| | - Uschi Nagel-Kohl
- Lower Saxony State Office for Consumer Protection and Food Safety, Veterinary Institute Hannover, Hannover 30173, Germany
| | - Marcel Nordhoff
- Lower Saxony State Office for Consumer Protection and Food Safety, Food and Veterinary Institute Oldenburg, Oldenburg 26133, Germany
| | - Matthias Boelke
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Buenteweg 17, Hannover 30559, Germany
| | - Stefanie Becker
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Buenteweg 17, Hannover 30559, Germany
| | | | - Bettina Schunack
- Elanco Animal Health, Bayer Animal Health GmbH, Monheim 40789, Germany
| | - Gerhard Dobler
- National Reference Laboratory for TBEV, Bundeswehr Institute of Microbiology, Munich 80937, Germany
| | - Christina Strube
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Buenteweg 17, Hannover 30559, Germany.
| |
Collapse
|
3
|
Vanat V, Aeby S, Greub G. Ticks and Chlamydia-Related Bacteria in Swiss Zoological Gardens Compared to in Contiguous and Distant Control Areas. Microorganisms 2023; 11:2468. [PMID: 37894126 PMCID: PMC10609390 DOI: 10.3390/microorganisms11102468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023] Open
Abstract
Ticks are vectors of numerous agents of medical importance and may be infected by various Chlamydia-related bacteria, such as members of Parachlamydiaceae and Rhabdochlamydiaceae families, which are sharing the same biphasic life cycle with the pathogenic Chlamydia. However, the veterinary importance of ticks and of their internalized pathogens remains poorly studied. Thus, we wondered (i) whether the prevalence of ticks was higher in zoological gardens than in control areas with similar altitude, vegetation, humidity and temperature, and (ii) whether the presence of Chlamydia-related bacteria in ticks may vary according to the environment in which the ticks are collected. A total of 212 Ixodes ricinus ticks were collected, and all were tested for the presence of DNA from any member of the Chlamydiae phylum using a pan-Chlamydiae quantitative PCR (qPCR). We observed a higher prevalence of ticks outside animal enclosures in both zoos, compared to in enclosures. Tick prevalence was also higher outside zoos, compared to in enclosures. With 30% (3/10) of infected ticks, the zoological gardens presented a prevalence of infected ticks that was higher than that in contiguous areas (13.15%, 10/76), and higher than the control distant areas (8.65%, 9/104). In conclusion, zoological gardens in Switzerland appear to contain fewer ticks than areas outside zoological gardens. However, ticks from zoos more often contain Chlamydia-like organisms than ticks from contiguous or distant control areas.
Collapse
Affiliation(s)
- Vincent Vanat
- Institute of Microbiology, University of Lausanne and University Hospital Center (CHUV), 1005 Lausanne, Switzerland; (V.V.); (S.A.)
| | - Sébastien Aeby
- Institute of Microbiology, University of Lausanne and University Hospital Center (CHUV), 1005 Lausanne, Switzerland; (V.V.); (S.A.)
| | - Gilbert Greub
- Institute of Microbiology, University of Lausanne and University Hospital Center (CHUV), 1005 Lausanne, Switzerland; (V.V.); (S.A.)
- Service of Infectious Diseases, University Hospital Center (CHUV), 1005 Lausanne, Switzerland
| |
Collapse
|
4
|
Trozzi G, Adjadj NR, Vervaeke M, Matthijs S, Sohier C, De Regge N. Comparison of Serological Methods for Tick-Borne Encephalitis Virus-Specific Antibody Detection in Wild Boar and Sheep: Impact of the Screening Approach on the Estimated Seroprevalence. Viruses 2023; 15:v15020459. [PMID: 36851673 PMCID: PMC9958861 DOI: 10.3390/v15020459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/27/2023] [Accepted: 02/02/2023] [Indexed: 02/10/2023] Open
Abstract
Tick-borne encephalitis virus (TBEV) is a flavivirus transmitted by ticks. Serological screenings in animals are performed to estimate the prevalence and distribution of TBEV. Most screenings consist of a primary screening by ELISA, followed by confirmation of positive samples by plaque reduction neutralization tests (PRNTs). In this study, 406 wild boar sera were tested with 2 regularly used commercial ELISAs for flavivirus screening in animals (Immunozym FSME (TBEV) IgG All Species (Progen) and ID Screen West Nile Competition (Innovative Diagnostics)) and PRNTs for TBEV and USUTU virus. The results showed that the Immunozym and IDScreen ELISAs had low relative sensitivities of 23% and 20%, respectively, compared to the PRNT results. The relative specificities were 88% and 84% due to cross reactions with USUTU virus-specific antibodies. The minimal TBEV prevalence in our sample set was 8.6% when determined by PRNT. When the screening approach of ELISA testing followed by PRNT confirmation was applied, a TBEV seroprevalence of only 2.0% and 1.7% was found. The suboptimal performance of the ELISAs was confirmed by testing sera collected from experimentally TBEV-infected sheep. While the PRNT detected TBEV specific antibodies in 94% of samples collected between 7 and 18 days post-infection, the ELISAs classified only 50% and 31% of the samples as positive. Both routinely used ELISAs for TBEV antibody screening in animal sera were shown to have a low sensitivity, potentially leading to an underestimation of the true prevalence, and furthermore cross-react with other flavivirus antibodies.
Collapse
Affiliation(s)
- Gabrielle Trozzi
- Unit of Exotic and Vector-Borne Diseases, Sciensano, Groeselenberg 99, 1180 Brussels, Belgium
- Correspondence:
| | - Nadjah Radia Adjadj
- Unit of Exotic and Vector-Borne Diseases, Sciensano, Groeselenberg 99, 1180 Brussels, Belgium
| | | | - Severine Matthijs
- Viral Reemerging, Enzootic and Bee Diseases, Sciensano, Groeselenberg 99, 1180 Brussels, Belgium
| | - Charlotte Sohier
- Unit of Exotic and Vector-Borne Diseases, Sciensano, Groeselenberg 99, 1180 Brussels, Belgium
| | - Nick De Regge
- Unit of Exotic and Vector-Borne Diseases, Sciensano, Groeselenberg 99, 1180 Brussels, Belgium
| |
Collapse
|
5
|
Hrnková J, Golovchenko M, Musa AS, Needham T, Italiya J, Ceacero F, Kotrba R, Grubhoffer L, Rudenko N, Cerný J. Borrelia spirochetes in European exotic farm animals. Front Vet Sci 2022; 9:996015. [PMID: 36246336 PMCID: PMC9554260 DOI: 10.3389/fvets.2022.996015] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 09/09/2022] [Indexed: 12/01/2022] Open
Abstract
Ticks transmit a broad spectrum of pathogens, threatening both animal and human health. Tick survival and proliferation are strongly dependent on host selection and suitability. The hard tick Ixodes ricinus, which is widespread throughout most of Europe, is a host generalist capable of feeding on many different vertebrate species. Pasture-kept exotic farm animals may be at a high risk for tick and tick-borne pathogens infestations but research characterizing this is currently lacking. This study focused on the detection of Borrelia spirochetes (including Borrelia miyamotoi) in exotic farm animals. Using nested-PCR with Borrelia-specific primers, 121 serum samples from 54 exotic farm animals of several species bred in four different farms in Bohemia and Moravia (Czechia) were tested. Positive samples were sequenced for the identification of Borrelia species. The prevalence of Borrelia DNA in the samples ranged from 13 to 67%, depending on the sampling site. The sequencing results confirmed the DNA presence of multiple spirochete species from the Borrelia burgdorferi sensu lato complex. Only one sample from an ostrich (Struthio camelus) was found to be positive for Borrelia myiamotoi. The results show that exotic farm animals can serve as hosts for hard ticks and can be infected by Borrelia spirochetes, transmitted by hard ticks. Therefore, these animals could play a relevant role in maintaining Borrelia spirochetes in nature.
Collapse
Affiliation(s)
- Johana Hrnková
- Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Prague, Czechia
- *Correspondence: Johana Hrnková
| | - Marina Golovchenko
- Institute of Parasitology, Biology Center, Czech Academy of Sciences, Ceské Budějovice, Czechia
| | - Abubakar Sadiq Musa
- Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Prague, Czechia
| | - Tersia Needham
- Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Prague, Czechia
| | - Jignesh Italiya
- Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Prague, Czechia
| | - Francisco Ceacero
- Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Prague, Czechia
| | - Radim Kotrba
- Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Prague, Czechia
- Department of Ethology, Institute of Animal Science, Prague, Czechia
| | - Libor Grubhoffer
- Institute of Parasitology, Biology Center, Czech Academy of Sciences, Ceské Budějovice, Czechia
- Faculty of Sciences, University of South Bohemia, Ceské Budějovice, Czechia
| | - Natalie Rudenko
- Institute of Parasitology, Biology Center, Czech Academy of Sciences, Ceské Budějovice, Czechia
| | - Jirí Cerný
- Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Prague, Czechia
| |
Collapse
|
6
|
Qiu Y, Squarre D, Nakamura Y, Lau ACC, Moonga LC, Kawai N, Ohnuma A, Hayashida K, Nakao R, Yamagishi J, Sawa H, Namangala B, Kawabata H. Evidence of Borrelia theileri in Wild and Domestic Animals in the Kafue Ecosystem of Zambia. Microorganisms 2021; 9:2405. [PMID: 34835531 PMCID: PMC8624021 DOI: 10.3390/microorganisms9112405] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 11/16/2022] Open
Abstract
Members of the genus Borrelia are arthropod-borne spirochetes that are human and animal pathogens. Vertebrate hosts, including wild animals, are pivotal to the circulation and maintenance of Borrelia spirochetes. However, information on Borrelia spirochetes in vertebrate hosts in Zambia is limited. Thus, we aimed to investigate the presence of Borrelia spirochetes in wild animals and cattle in Zambia. A total of 140 wild animals of four species and 488 cattle DNA samples from /near the Kafue National Park were collected for real-time PCR screening, followed by characterization using three different genes with positive samples. Five impalas and 20 cattle tested positive using real-time PCR, and sequence analysis revealed that the detected Borrelia were identified to be Borrelia theileri, a causative agent of bovine borreliosis. This is the first evidence of Borrelia theileri in African wildlife and cattle in Zambia. Our results suggest that clinical differentiation between bovine borreliosis and other bovine diseases endemic in Zambia is required for better treatment and control measures. As this study only included wild and domestic animals in the Kafue ecosystem, further investigations in other areas and with more wildlife and livestock species are needed to clarify a comprehensive epidemiological status of Borrelia theileri in Zambia.
Collapse
Affiliation(s)
- Yongjin Qiu
- Division of International Research Promotion, International Institute for Zoonosis Control, Hokkaido University, N 20 W 10, Kita-ku, Sapporo 001-0020, Japan;
| | - David Squarre
- Wildlife Diseases Unit, Department of Veterinary Services, Ministry of Fisheries and Livestock, Lusaka P.O. Box 50060, Zambia;
- Division of Collaboration and Education, International Institute for Zoonosis Control, Hokkaido University, N 20 W 10, Kita-ku, Sapporo 001-0020, Japan; (Y.N.); (L.C.M.); (N.K.); (K.H.); (J.Y.)
| | - Yukiko Nakamura
- Division of Collaboration and Education, International Institute for Zoonosis Control, Hokkaido University, N 20 W 10, Kita-ku, Sapporo 001-0020, Japan; (Y.N.); (L.C.M.); (N.K.); (K.H.); (J.Y.)
| | - Alice C. C. Lau
- Laboratory of Wildlife Biology and Medicine, Department of Environmental Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, N 18 W 9, Kita-ku, Sapporo 060-0818, Japan;
| | - Lavel Chinyama Moonga
- Division of Collaboration and Education, International Institute for Zoonosis Control, Hokkaido University, N 20 W 10, Kita-ku, Sapporo 001-0020, Japan; (Y.N.); (L.C.M.); (N.K.); (K.H.); (J.Y.)
| | - Naoko Kawai
- Division of Collaboration and Education, International Institute for Zoonosis Control, Hokkaido University, N 20 W 10, Kita-ku, Sapporo 001-0020, Japan; (Y.N.); (L.C.M.); (N.K.); (K.H.); (J.Y.)
| | - Aiko Ohnuma
- Technical Office, International Institute for Zoonosis Control, Hokkaido University, N 20 W 10, Kita-ku, Sapporo 001-0020, Japan;
| | - Kyoko Hayashida
- Division of Collaboration and Education, International Institute for Zoonosis Control, Hokkaido University, N 20 W 10, Kita-ku, Sapporo 001-0020, Japan; (Y.N.); (L.C.M.); (N.K.); (K.H.); (J.Y.)
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan
| | - Ryo Nakao
- Laboratory of Parasitology, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, N 18 W 9, Kita-ku, Sapporo 060-0818, Japan;
| | - Junya Yamagishi
- Division of Collaboration and Education, International Institute for Zoonosis Control, Hokkaido University, N 20 W 10, Kita-ku, Sapporo 001-0020, Japan; (Y.N.); (L.C.M.); (N.K.); (K.H.); (J.Y.)
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan
| | - Hirofumi Sawa
- Division of International Research Promotion, International Institute for Zoonosis Control, Hokkaido University, N 20 W 10, Kita-ku, Sapporo 001-0020, Japan;
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, N 20 W 10, Kita-ku, Sapporo 001-0020, Japan
- One Health Research Center, Hokkaido University, N 20 W 10, Kita-ku, Sapporo 001-0020, Japan
| | - Boniface Namangala
- Department of Paraclinical Studies, School of Veterinary Medicine, The University of Zambia, Lusaka 10101, Zambia;
| | - Hiroki Kawabata
- Laboratory of Systemic Infection, Department of Bacteriology I, National Institute of Infectious Diseases, Toyama 1-23-1, Shinjuku, Tokyo 162-8640, Japan;
| |
Collapse
|
7
|
Behnke-Borowczyk J, Gwiazdowicz DJ. Do ectoparasites of the slow loris Nycticebus pygmaeus, pose a danger to humans? Biologia (Bratisl) 2021. [DOI: 10.1007/s11756-021-00791-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AbstractStaff working with nocturnal mammals at Poznań Zoo, noticed erythematous bite marks on their hands and parts of their necks. No perpetrators were immediately obvious, but the bite marks were experienced mainly by persons caring for the slow loris Nycticebus pygmaeus. The purpose of this study was to collect ectoparasites from four N. pygmaeus, to identify the species involved and to ascertain whether they carry any pathogenic organisms that might pose a health risk to people who have been bitten. A total of 51 Ornithonyssus bacoti (Mesostigmata: Macronyssidae) mites were collected from the coats of four slow loris, 37 of which were used for molecular analysis to determine if the mites were carrying any disease-causing organisms. DNA was extracted and screened for candidate pathogens including Babesia spp. and Rickettsia spp., but none were identified. The authors suspect that because the zoo differs in its sanitary and veterinary conditions from those found in nature, the results obtained here may differ markedly from those existing in the natural environment. Although we cannot be certain at this stage that the mites did not carry other pathogens in addition to those that were detectable by the primers that were used, the erythematous reaction to bite marks likely reflects a response to secretions of the mites rather than to transmitted pathogens.
Collapse
|
8
|
de Heus P, Kolodziejek J, Hubálek Z, Dimmel K, Racher V, Nowotny N, Cavalleri JMV. West Nile Virus and Tick-Borne Encephalitis Virus Are Endemic in Equids in Eastern Austria. Viruses 2021; 13:v13091873. [PMID: 34578454 PMCID: PMC8473302 DOI: 10.3390/v13091873] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/11/2021] [Accepted: 09/15/2021] [Indexed: 12/13/2022] Open
Abstract
The emergence of West Nile virus (WNV) and Usutu virus (USUV) in addition to the autochthonous tick-borne encephalitis virus (TBEV) in Europe causes rising concern for public and animal health. The first equine case of West Nile neuroinvasive disease in Austria was diagnosed in 2016. As a consequence, a cross-sectional seroprevalence study was conducted in 2017, including 348 equids from eastern Austria. Serum samples reactive by ELISA for either flavivirus immunoglobulin G or M were further analyzed with the plaque reduction neutralization test (PRNT-80) to identify the specific etiologic agent. Neutralizing antibody prevalences excluding vaccinated equids were found to be 5.3% for WNV, 15.5% for TBEV, 0% for USUV, and 1.2% for WNV from autochthonous origin. Additionally, reverse transcription quantitative polymerase chain reaction (RT-qPCR) was performed to detect WNV nucleic acid in horse sera and was found to be negative in all cases. Risk factor analysis did not identify any factors significantly associated with seropositivity.
Collapse
Affiliation(s)
- Phebe de Heus
- Clinical Unit of Equine Internal Medicine, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria; (P.d.H.); (J.-M.V.C.)
| | - Jolanta Kolodziejek
- Viral Zoonoses, Emerging and Vector-Borne Infections Group, Institute of Virology, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria; (J.K.); (K.D.)
| | - Zdenĕk Hubálek
- Institute for Vertebrate Biology, Czech Academy of Sciences, Kvĕtná 8, 60365 Brno, Czech Republic;
| | - Katharina Dimmel
- Viral Zoonoses, Emerging and Vector-Borne Infections Group, Institute of Virology, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria; (J.K.); (K.D.)
| | - Victoria Racher
- Department of Mathematics, University of Salzburg, Hellbrunner Straße 34, 5020 Salzburg, Austria;
| | - Norbert Nowotny
- Viral Zoonoses, Emerging and Vector-Borne Infections Group, Institute of Virology, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria; (J.K.); (K.D.)
- Department of Basic Medical Sciences, College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Healthcare City, Building 14, Dubai P.O. Box 505055, United Arab Emirates
- Correspondence: ; Tel.: +43-1-25077-2704
| | - Jessika-M. V. Cavalleri
- Clinical Unit of Equine Internal Medicine, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria; (P.d.H.); (J.-M.V.C.)
| |
Collapse
|
9
|
Kvapil P, Račnik J, Kastelic M, Pittermannová P, Avšič-Zupanc T, Bártová E, Sedlák K. Detection of Antibodies Against Tick-Borne Encephalitis Virus and Other Flaviviruses in a Zoological Collection in Slovenia. Front Vet Sci 2021; 8:688904. [PMID: 34250069 PMCID: PMC8264250 DOI: 10.3389/fvets.2021.688904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/25/2021] [Indexed: 11/13/2022] Open
Abstract
Monitoring infectious diseases is one of the most important pillars of preventative veterinary medicine in zoological collections. The zoo environment offers a great variety of different animal species living in proximity and in contact with small wild animals and vectors (e.g., ticks and mosquitos). In this context, tick-borne encephalitis virus (TBEV), Usutu virus (USUV), and West Nile virus (WNV) causing vector-borne diseases are emerging pathogens that raise concern. The aim of the study was to detect antibodies to selected flaviviruses in various animal species in the Ljubljana Zoo, Slovenia. In total, 874 sera from 96 animal species were tested for antibodies to TBEV by enzyme-linked immunosorbent assays (ELISA); positive samples were confirmed by a virus neutralization test (VNT) using TBEV, WNV, and USUV antigens. Antibodies to TBEV were detected by ELISA in 3.9% (34/874) of zoo animals, with 4% (30/753) in mammals and 5% (4/86) in birds; the sera of reptiles (n = 34) and amphibians (n = 1) were negative. Antibodies to TBEV were confirmed by VNT in 11 mammals; one bird was positive for both WNV and USUV. The mixture of exotic animal species and their contact with wild animals and vectors such as ticks and mosquitos suggest that screening of infectious diseases in zoo animals might provide good insight into the epizootological situation of the area. This is the first survey of TBEV, WNV, and USUV in a zoological collection in Slovenia.
Collapse
Affiliation(s)
- Pavel Kvapil
- Ljubljana Zoo, Ljubljana, Slovenia.,Department of Biology and Wildlife Diseases, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Brno, Czechia
| | - Joško Račnik
- Institute of Poultry, Birds, Small Mammals and Reptiles, Faculty of Veterinary Medicine, University of Ljubljana, Ljubljana, Slovenia
| | | | - Pavlína Pittermannová
- Department of Biology and Wildlife Diseases, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Brno, Czechia
| | - Tatjana Avšič-Zupanc
- Faculty of Medicine, Institute of Microbiology and Immunology, University of Ljubljana, Ljubljana, Slovenia
| | - Eva Bártová
- Department of Biology and Wildlife Diseases, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Brno, Czechia
| | - Kamil Sedlák
- Department of Virology and Serology, State Veterinary Institute Prague, Prague, Czechia
| |
Collapse
|
10
|
Wild Small Mammals and Ticks in Zoos-Reservoir of Agents with Zoonotic Potential? Pathogens 2021; 10:pathogens10060777. [PMID: 34205547 PMCID: PMC8235793 DOI: 10.3390/pathogens10060777] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/13/2021] [Accepted: 06/15/2021] [Indexed: 11/16/2022] Open
Abstract
Wild small mammals and ticks play an important role in maintaining and spreading zoonoses in nature, as well as in captive animals. The aim of this study was to monitor selected agents with zoonotic potential in their reservoirs and vectors in a zoo, and to draw attention to the risk of possible contact with these pathogens. In total, 117 wild small mammals (rodents) and 166 ticks were collected in the area of Brno Zoo. Antibodies to the bacteria Coxiella burnetii, Francisella tularensis, and Borrelia burgdorferi s.l. were detected by a modified enzyme-linked immunosorbent assay in 19% (19/99), 4% (4/99), and 15% (15/99) of rodents, respectively. Antibodies to Leptospira spp. bacteria were detected by the microscopic agglutination test in 6% (4/63) of rodents. Coinfection (antibodies to more than two agents) were proved in 14.5% (15/97) of animals. The prevalence of C. burnetii statistically differed according to the years of trapping (p = 0.0241). The DNAs of B. burgdorferi s.l., Rickettsia sp., and Anaplasma phagocytophilum were detected by PCR in 16%, 6%, and 1% of ticks, respectively, without coinfection and without effect of life stage and sex of ticks on positivity. Sequencing showed homology with R. helvetica and A. phagocytophilum in four and one positive samples, respectively. The results of our study show that wild small mammals and ticks in a zoo could serve as reservoirs and vectors of infectious agents with zoonotic potential and thus present a risk of infection to zoo animals and also to keepers and visitors to a zoo.
Collapse
|
11
|
Agudelo M, Palus M, Keeffe JR, Bianchini F, Svoboda P, Salát J, Peace A, Gazumyan A, Cipolla M, Kapoor T, Guidetti F, Yao KH, Elsterová J, Teislerová D, Chrdle A, Hönig V, Oliveira T, West AP, Lee YE, Rice CM, MacDonald MR, Bjorkman PJ, Růžek D, Robbiani DF, Nussenzweig MC. Broad and potent neutralizing human antibodies to tick-borne flaviviruses protect mice from disease. J Exp Med 2021; 218:e20210236. [PMID: 33831141 PMCID: PMC8040517 DOI: 10.1084/jem.20210236] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/17/2021] [Accepted: 02/19/2021] [Indexed: 12/30/2022] Open
Abstract
Tick-borne encephalitis virus (TBEV) is an emerging human pathogen that causes potentially fatal disease with no specific treatment. Mouse monoclonal antibodies are protective against TBEV, but little is known about the human antibody response to infection. Here, we report on the human neutralizing antibody response to TBEV in a cohort of infected and vaccinated individuals. Expanded clones of memory B cells expressed closely related anti-envelope domain III (EDIII) antibodies in both groups of volunteers. However, the most potent neutralizing antibodies, with IC50s below 1 ng/ml, were found only in individuals who recovered from natural infection. These antibodies also neutralized other tick-borne flaviviruses, including Langat, louping ill, Omsk hemorrhagic fever, Kyasanur forest disease, and Powassan viruses. Structural analysis revealed a conserved epitope near the lateral ridge of EDIII adjoining the EDI-EDIII hinge region. Prophylactic or early therapeutic antibody administration was effective at low doses in mice that were lethally infected with TBEV.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antibodies, Monoclonal/administration & dosage
- Antibodies, Monoclonal/genetics
- Antibodies, Monoclonal/immunology
- Antibodies, Neutralizing/administration & dosage
- Antibodies, Neutralizing/genetics
- Antibodies, Neutralizing/immunology
- Antibodies, Viral/administration & dosage
- Antibodies, Viral/genetics
- Antibodies, Viral/immunology
- Cells, Cultured
- Cohort Studies
- Cross Reactions/immunology
- Encephalitis Viruses, Tick-Borne/drug effects
- Encephalitis Viruses, Tick-Borne/immunology
- Encephalitis Viruses, Tick-Borne/physiology
- Encephalitis, Tick-Borne/immunology
- Encephalitis, Tick-Borne/prevention & control
- Encephalitis, Tick-Borne/virology
- Epitopes/immunology
- Female
- Humans
- Immunoglobulin G/administration & dosage
- Immunoglobulin G/immunology
- Mice, Inbred BALB C
- Sequence Homology, Amino Acid
- Survival Analysis
- Viral Envelope Proteins/genetics
- Viral Envelope Proteins/immunology
- Mice
Collapse
Affiliation(s)
- Marianna Agudelo
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY
| | - Martin Palus
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
- Veterinary Research Institute, Brno, Czech Republic
| | - Jennifer R. Keeffe
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA
| | - Filippo Bianchini
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Pavel Svoboda
- Veterinary Research Institute, Brno, Czech Republic
- Department of Pharmacology and Pharmacy, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| | - Jiří Salát
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
- Veterinary Research Institute, Brno, Czech Republic
| | - Avery Peace
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY
| | - Anna Gazumyan
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY
| | - Melissa Cipolla
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY
| | - Tania Kapoor
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY
| | - Francesca Guidetti
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY
| | - Kai-Hui Yao
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY
| | - Jana Elsterová
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
- Veterinary Research Institute, Brno, Czech Republic
| | | | - Aleš Chrdle
- Hospital České Budějovice, České Budějovice, Czech Republic
- Faculty of Social and Health Sciences, University of South Bohemia, České Budějovice, Czech Republic
- Royal Liverpool University Hospital, Liverpool, UK
| | - Václav Hönig
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
- Veterinary Research Institute, Brno, Czech Republic
| | - Thiago Oliveira
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY
| | - Anthony P. West
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA
| | - Yu E. Lee
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA
| | - Charles M. Rice
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY
| | - Margaret R. MacDonald
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY
| | - Pamela J. Bjorkman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA
| | - Daniel Růžek
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
- Veterinary Research Institute, Brno, Czech Republic
| | - Davide F. Robbiani
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Michel C. Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY
| |
Collapse
|
12
|
Hrnková J, Schneiderová I, Golovchenko M, Grubhoffer L, Rudenko N, Černý J. Role of Zoo-Housed Animals in the Ecology of Ticks and Tick-Borne Pathogens-A Review. Pathogens 2021; 10:210. [PMID: 33669161 PMCID: PMC7919684 DOI: 10.3390/pathogens10020210] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/11/2021] [Accepted: 02/13/2021] [Indexed: 12/11/2022] Open
Abstract
Ticks are ubiquitous ectoparasites, feeding on representatives of all classes of terrestrial vertebrates and transmitting numerous pathogens of high human and veterinary medical importance. Exotic animals kept in zoological gardens, ranches, wildlife parks or farms may play an important role in the ecology of ticks and tick-borne pathogens (TBPs), as they may serve as hosts for local tick species. Moreover, they can develop diseases of varying severity after being infected by TBPs, and theoretically, can thus serve as reservoirs, thereby further propagating TBPs in local ecosystems. The definite role of these animals in the tick-host-pathogen network remains poorly investigated. This review provides a summary of the information currently available regarding ticks and TBPs in connection to captive local and exotic wildlife, with an emphasis on zoo-housed species.
Collapse
Affiliation(s)
- Johana Hrnková
- Centre for Infectious Animal Diseases and Zoonoses, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Kamýcká 129, Prague 6, 165 00 Suchdol, Czech Republic;
- Department of Animal Science and Food Processing, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Kamýcká 129, Prague 6, 165 00 Suchdol, Czech Republic;
| | - Irena Schneiderová
- Department of Animal Science and Food Processing, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Kamýcká 129, Prague 6, 165 00 Suchdol, Czech Republic;
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, 2 128 00 Prague, Czech Republic
| | - Marina Golovchenko
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 1160/31, 370 05 České Budějovice, Czech Republic; (M.G.); (L.G.); (N.R.)
| | - Libor Grubhoffer
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 1160/31, 370 05 České Budějovice, Czech Republic; (M.G.); (L.G.); (N.R.)
- Faculty of Sciences, University of South Bohemia, Branišovská 1160/31, 370 05 České Budějovice, Czech Republic
| | - Natalie Rudenko
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 1160/31, 370 05 České Budějovice, Czech Republic; (M.G.); (L.G.); (N.R.)
| | - Jiří Černý
- Centre for Infectious Animal Diseases and Zoonoses, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Kamýcká 129, Prague 6, 165 00 Suchdol, Czech Republic;
- Department of Animal Science and Food Processing, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Kamýcká 129, Prague 6, 165 00 Suchdol, Czech Republic;
| |
Collapse
|
13
|
Caballero-Gómez J, Cano-Terriza D, Lecollinet S, Carbonell MD, Martínez-Valverde R, Martínez-Nevado E, García-Párraga D, Lowenski S, García-Bocanegra I. Evidence of exposure to zoonotic flaviviruses in zoo mammals in Spain and their potential role as sentinel species. Vet Microbiol 2020; 247:108763. [PMID: 32768215 DOI: 10.1016/j.vetmic.2020.108763] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 06/13/2020] [Accepted: 06/16/2020] [Indexed: 10/24/2022]
Abstract
A serosurvey was carried out to assess emerging flavivirus exposure in zoo mammals in Spain and to determine the dynamics of seropositivity in species that were longitudinally sampled during the study period. Sera from 570 zoo animals belonging to 120 mammal species were collected at ten zoos (A-J) in Spain between 2002 and 2019. Twenty-one of these animals, belonging to ten different species, were sampled longitudinally at four of the zoos during the study period. Antigenically-related flavivirus antibodies were detected in 19 (3.3 %; 95 %CI: 2.0-5.2) of the 570 animals analyzed using bELISA. Seropositivity was observed in ten (8.3 %) of the 120 species tested. Five (23.8 %) of the 21 animals sampled more than once presented seropositivity in all samplings whereas seroconversion was only observed in one white rhinoceros (Ceratotherium simum). Flavivirus antibodies were found at six of the ten sampled zoos and in consecutive years between 2008 and 2018. Virus neutralization tests confirmed West Nile virus (WNV), Usutu virus (USUV) and tick-borne encephalitis virus (TBEV) infection in ten (1.8 %; 95 %CI: 0.7-2.8), five (0.9 %; 95 %CI: 0.1-1.6) and one (0.2 %; 95 %CI: 0.0-0.5) animal, respectively. Antibodies against Meaban virus (0 %; 95 %CI: 0.0-0.7 %) were not found in the tested sera. The results demonstrate WNV, USUV and TBEV exposure in zoo mammals, which may be of public health and conservation concern. Seropositivity to WNV and USUV was detected in regions where these viruses have not been reported previously. Anti-WNV antibodies found in zoo animals sampled in 2009 point to WNV circulation at least one year before the first outbreaks were reported in horses and humans in Spain. Our results indicate that zoo mammals could be useful sentinel species for monitoring emerging flavivirus activity in urban areas.
Collapse
Affiliation(s)
- J Caballero-Gómez
- Department of Animal Health, University of Cordoba, 14014, Cordoba, Spain; Infectious Diseases Unit, Clinical Virology and Zoonoses Research Group, Hospital Universitario Reina Sofía de Córdoba, Instituto Maimonides de Investigación Biomédica de Córdoba (IMIBIC), University of Cordoba, 14006, Cordoba, Spain
| | - D Cano-Terriza
- Department of Animal Health, University of Cordoba, 14014, Cordoba, Spain.
| | - S Lecollinet
- ANSES Laboratoire de Santé Animale de Maisons-Alfort, UMR 1161 Virologie, INRAE, ANSES, ENVA, 94700, Maisons-Alfort, France
| | | | - R Martínez-Valverde
- Veterinary and Conservation Department, Bioparc Fuengirola, 29640, Malaga, Spain
| | | | - D García-Párraga
- Research Department, Fundación Oceanogràfic de la Comunidad Valenciana, 46005, Valencia, Spain
| | - S Lowenski
- ANSES Laboratoire de Santé Animale de Maisons-Alfort, UMR 1161 Virologie, INRAE, ANSES, ENVA, 94700, Maisons-Alfort, France
| | - I García-Bocanegra
- Department of Animal Health, University of Cordoba, 14014, Cordoba, Spain
| |
Collapse
|
14
|
Abstract
Little is known about the occurrence of tick-borne encephalitis in Romania. Sheep are an infection source for humans and are useful sentinels for risk analysis. We demonstrate high antibody prevalence (15.02%) among sheep used as sentinels for this disease in 80% of the tested localities in 5 counties of northwestern Romania.
Collapse
|
15
|
Are reindeer a significant carrier of disease-causing ticks? Wien Klin Wochenschr 2018; 130:293-294. [DOI: 10.1007/s00508-018-1329-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 02/17/2018] [Indexed: 10/17/2022]
|
16
|
Ticha L, Golovchenko M, Oliver JH, Grubhoffer L, Rudenko N. Sensitivity of Lyme Borreliosis Spirochetes to Serum Complement of Regular Zoo Animals: Potential Reservoir Competence of Some Exotic Vertebrates. Vector Borne Zoonotic Dis 2016; 16:13-9. [PMID: 26783940 DOI: 10.1089/vbz.2015.1847] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Reaction of vertebrate serum complement with different Borrelia burgdorferi sensu lato species is used as a basis in determining reservoir hosts among domesticated and wild animals. Borrelia burgdorferi sensu stricto, Borrelia garinii, and Borrelia afzelii were tested for their sensitivity to sera of exotic vertebrate species housed in five zoos located in the Czech Republic. We confirmed that different Borrelia species have different sensitivity to host serum. We found that tolerance to Borrelia infection possessed by hosts might differ among individuals of the same genera or species and is not affected by host age or sex. Of all zoo animals included in our study, carnivores demonstrated the highest apparent reservoir competency for Lyme borreliosis spirochetes. We showed that selected exotic ungulate species are tolerant to Borrelia infection. For the first time we showed the high tolerance of Siamese crocodile to Borrelia as compared to the other studied reptile species. While exotic vertebrates present a limited risk to the European human population as reservoirs for the causative agents of Lyme borreliosis, cases of incidental spillover infection could lead to successful replication of the pathogens in a new host, changing the status of selected exotic species and their role in pathogen emergence or maintenance. The question if being tolerant to pathogen means to be a competent reservoir host still needs an answer, simply because the majority of exotic animals might never be exposed to spirochetes in their natural environment.
Collapse
Affiliation(s)
- Lucie Ticha
- 1 Faculty of Science, University of South Bohemia , České Budějovice, Czech Republic
| | - Maryna Golovchenko
- 2 Biology Centre of the Czech Academy of Sciences, Institute of Parasitology , České Budějovice, Czech Republic
| | - James H Oliver
- 3 Georgia Southern University, James H. Oliver, Jr., Institute for Coastal Plain Sciences , Statesboro, Georgia
| | - Libor Grubhoffer
- 1 Faculty of Science, University of South Bohemia , České Budějovice, Czech Republic .,2 Biology Centre of the Czech Academy of Sciences, Institute of Parasitology , České Budějovice, Czech Republic
| | - Nataliia Rudenko
- 2 Biology Centre of the Czech Academy of Sciences, Institute of Parasitology , České Budějovice, Czech Republic
| |
Collapse
|
17
|
Ergunay K, Tkachev S, Kozlova I, Růžek D. A Review of Methods for Detecting Tick-Borne Encephalitis Virus Infection in Tick, Animal, and Human Specimens. Vector Borne Zoonotic Dis 2016; 16:4-12. [DOI: 10.1089/vbz.2015.1896] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
- Koray Ergunay
- Hacettepe University, Faculty of Medicine, Department of Medical Microbiology, Virology Unit, Sihhiye Ankara, Turkey
| | - Sergey Tkachev
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Irina Kozlova
- FSSFE Scientific Centre of Family Health and Human Reproduction Problems, Siberian Branch of the Russian Academy of Medical Sciences, Irkutsk, Russia
| | - Daniel Růžek
- Veterinary Research Institute, Brno, Czech Republic
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, and Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| |
Collapse
|