1
|
Taylor AD, Trzebny A, Łośko M, Michalik JF, Dabert M. A Novel flaB Gene-Based Profiling Approach for the Rapid and Accurate Detection of Borreliella and Borrelia Species in Ticks. Pathogens 2025; 14:506. [PMID: 40430826 PMCID: PMC12114648 DOI: 10.3390/pathogens14050506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2025] [Revised: 05/17/2025] [Accepted: 05/18/2025] [Indexed: 05/29/2025] Open
Abstract
The increasing incidence of tick-borne diseases in Europe necessitates the development of accurate and high-throughput molecular tools for detecting pathogens in tick populations. In this study, we present a novel flaB gene-based profiling method for the detection and identification of Borrelia and Borreliella species in Ixodes ricinus ticks, combining newly designed primers with next-generation sequencing (NGS). The method was evaluated alongside conventional nested PCR targeting the flaB gene, as well as microbial profiling based on the V4 region of the rrs gene, using tick DNA extracted from 1088 specimens pooled into 94 samples. Our results demonstrate that the flaB gene-based profiling approach was the highest-performing out of the three methods, detecting Borreliaceae DNA in 83 DNA pools, compared to 58 and 56 pools using nested PCR and V4 rrs profiling, respectively. A total of 23 distinct flaB sequence variants were identified, corresponding to five Borreliaceae species: Borreliella afzelii, Bl. garinii, Bl. valaisiana, Bl. burgdorferi, and Borrelia miyamotoi. Additionally, the method enabled putative strain-level discrimination within species. Our results highlight the value of flaB gene-based profiling as a robust tool for ecological and epidemiological studies of Borreliaceae diversity in ticks.
Collapse
Affiliation(s)
- Abigail Dorothea Taylor
- Molecular Biology Techniques Laboratory, Faculty of Biology, Adam Mickiewicz University, 61-614 Poznan, Poland; (A.D.T.); (A.T.); (M.Ł.)
| | - Artur Trzebny
- Molecular Biology Techniques Laboratory, Faculty of Biology, Adam Mickiewicz University, 61-614 Poznan, Poland; (A.D.T.); (A.T.); (M.Ł.)
| | - Małgorzata Łośko
- Molecular Biology Techniques Laboratory, Faculty of Biology, Adam Mickiewicz University, 61-614 Poznan, Poland; (A.D.T.); (A.T.); (M.Ł.)
| | - Jerzy Franciszek Michalik
- Department of Animal Morphology, Faculty of Biology, Adam Mickiewicz University, 61-614 Poznan, Poland;
| | - Miroslawa Dabert
- Molecular Biology Techniques Laboratory, Faculty of Biology, Adam Mickiewicz University, 61-614 Poznan, Poland; (A.D.T.); (A.T.); (M.Ł.)
| |
Collapse
|
2
|
Stromdahl EY, Feldman KA, Nadolny RM, Kennedy AC, Bement ZJ, Buoni M, Rutz H, Broyhill JC, Bernick J, Brinkerhoff RJ, Ayuk-Takor L, Crum D, da Silva AJ, Dotseth E, Flammia L, Girone K, Gaines D, Phan A, Pritt BS, Wee SB, Gaff HD, Hynes WL. Emerging babesiosis in the mid-Atlantic: autochthonous human babesiosis cases and Babesia microti (Piroplasmida: Babesiidae) in Ixodes scapularis (Acari: Ixodidae) and Ixodes keiransi (Acari: Ixodidae) ticks from Delaware, Maryland, Virginia, West Virginia, and the District of Columbia, 2009 to 2024. JOURNAL OF MEDICAL ENTOMOLOGY 2025:tjaf054. [PMID: 40261095 DOI: 10.1093/jme/tjaf054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/17/2025] [Accepted: 03/26/2025] [Indexed: 04/24/2025]
Abstract
The range of Babesia microti (Franca, 1910)-infected ticks is expanding, resulting in locally acquired human babesiosis cases occurring in new areas: Maryland (2009), the District of Columbia (2013), Virginia (2016), and West Virginia (2017). We collected host-seeking ticks from old fields, ecotones, forested habitats and animal hosts in Delaware, Maryland, and Virginia, 2010 to 2024. Ixodes scapularis Say, the tick vector of babesiosis, was captured in all 3 states. PCR revealed B. microti in 2.7% (36/1310) of I. scapularis, with site prevalence ranging from <1% to 12.5% infected. The first B. microti-positive I. scapularis was collected in Northampton County, Virginia, 2012. Of the B. microti-infected ticks, 50% (18/36) were coinfected with Borrelia burgdorferi and one was triple-infected with B. microti, B. burgdorferi, and Anaplasma phagocytophilum. We collected Ixodes keiransi Beati, Nava, Venzal, and Guglielmone ticks from Delaware and Virginia. We found B. microti and B. burgdorferi in those from Virginia, and B. burgdorferi in ticks from a shrew in Delaware. To our knowledge, this is the first report of B. microti and B. burgdorferi-positive I. keiransi from Virginia, and the first report of B. burgdorferi-positive I. keiransi from Delaware. Ixodes keiransi ticks rarely bite humans but are involved in the maintenance and spread of pathogens when sympatric with I. scapularis. We tested a subset of both tick species for Babesia duncani; none were positive. Jurisdictions in the southern mid-Atlantic region should expect babesiosis cases, and Lyme disease and anaplasmosis coinfections, and healthcare providers should consider these tick-borne infections as part of the differential diagnosis.
Collapse
Affiliation(s)
- Ellen Y Stromdahl
- Defense Centers for Public Health-Aberdeen, DHA Public Health, Edgewood, MD, USA
| | | | - Robyn M Nadolny
- Defense Centers for Public Health-Aberdeen, DHA Public Health, Edgewood, MD, USA
| | - Ashley C Kennedy
- Delaware Department of Natural Resources and Environmental Control, Mosquito Control Section, Newark, DE, USA
| | - Zachary J Bement
- Department of Biological Sciences, Old Dominion University, Norfolk, VA, USA
| | - Michael Buoni
- Delaware Technical Community College, Georgetown, DE, USA
| | - Heather Rutz
- Maryland Department of Health, Baltimore, MD, USA
| | | | | | - R Jory Brinkerhoff
- University of Richmond, Richmond, VA, USA
- University of KwaZulu-Natal, Pietermaritzburg, South Africa
| | | | - David Crum
- Maryland Department of Health, Baltimore, MD, USA
| | - Alexandre J da Silva
- Centers for Disease Control and Prevention, Atlanta, GA, USA
- US Food & Drug Administration, Laurel, MD, USA
| | - Eric Dotseth
- West Virginia Department of Health, Charleston, WV, USA
| | - Lori Flammia
- Virginia Department of Health, Richmond, VA, USA
| | - Kyle Girone
- Virginia Department of Health, Richmond, VA, USA
| | - David Gaines
- Virginia Department of Health, Richmond, VA, USA
| | - Anna Phan
- Department of Biological Sciences, Old Dominion University, Norfolk, VA, USA
| | | | - Siok-Bi Wee
- Maryland Department of Health, Baltimore, MD, USA
| | - Holly D Gaff
- Department of Biological Sciences, Old Dominion University, Norfolk, VA, USA
- University of KwaZulu-Natal, University Rd., Durban, South Africa
| | - Wayne L Hynes
- Department of Biological Sciences, Old Dominion University, Norfolk, VA, USA
| |
Collapse
|
3
|
Buoni MH, Kennedy AC, Hughes V, Biswas-Fiss E. Statewide surveillance of tick-borne pathogens in ticks collected in Delaware using novel multiplex PCR assays. Int J Parasitol Parasites Wildl 2025; 26:101058. [PMID: 40226154 PMCID: PMC11992402 DOI: 10.1016/j.ijppaw.2025.101058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 03/18/2025] [Accepted: 03/19/2025] [Indexed: 04/15/2025]
Abstract
Tick-borne pathogens are responsible for most vector-borne human diseases in the United States. With the growing recognition of tick-borne diseases and the expanding range of ticks, it is imperative to understand which pathogens, and in what prevalence, are carried by tick species in areas populated by humans. Few studies exist surveying the presence and distribution of tick-borne pathogens in the state of Delaware. The goal of this study was to create multiplex real-time PCR assays to identify Borrelia burgdorferi sensu stricto, Babesia microti, Anaplasma phagocytophilum, Ehrlichia chaffeensis, and Ehrlichia ewingii from their respective tick vectors collected across the state of Delaware. Two multiplex, real-time PCR assays were developed and tested on 1027 ticks comprising Ixodes scapularis and Amblyomma americanum, two species of ticks commonly encountered in Delaware. The results showed that in a sample of 500 Ixodes scapularis ticks, 30.20 % were positive for Borrelia burgdorferi, 2.60 % were positive for Babesia microti, and 1 % were positive for Anaplasma phagocytophilum. Testing of 527 A. americanum ticks showed that 4.74 % were positive for E. chaffeensis and 1.14 % were positive for E. ewingii. These findings suggest that these five tick-borne pathogens are present across the state of Delaware and therefore pose a risk to the public.
Collapse
Affiliation(s)
- Michael H. Buoni
- University of Delaware, USA
- Delaware Technical Community College, USA
| | - Ashley C. Kennedy
- Delaware Department of Natural Resources and Environmental Control, USA
| | | | | |
Collapse
|
4
|
Eleftheriou A, Zeiger B, Jennings J, Pesapane R. Phenology and habitat associations of the invasive Asian longhorned tick from Ohio, USA. MEDICAL AND VETERINARY ENTOMOLOGY 2024; 38:314-324. [PMID: 38567802 DOI: 10.1111/mve.12719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 03/20/2024] [Indexed: 08/07/2024]
Abstract
Geographically expanding and invading ticks are a global concern. The Asian longhorned tick (ALT, Haemaphysalis longicornis) was introduced to the mid-Atlantic US between 2010 and 2017 and recently invaded Ohio, an inland state. To date, ALTs in the US have been associated with livestock exsanguination and transmission of the agent of bovine theileriosis. To inform management, studies describing tick ecology and epidemiology of associated disease agents are critical. In this study, we described phenology, habitat and host associations, and tested for agents of medical and veterinary concern at the site of the first known established ALT population in Ohio, where pesticide treatment was applied in early fall 2021. In spring-fall 2022, we sampled wildlife (small mammals) and collected ticks from forest, edge, and grassland habitats. We also opportunistically sampled harvested white-tailed deer at nearby processing stations and fresh wildlife carcasses found near roads. Field-collected ALTs were tested for five agents using real-time PCR. We found that ALT nymphs emerged in June, followed by adults, and concluded with larvae in the fall. ALTs were detected in all habitats but not in wildlife. We also found a 4.88% (2/41) prevalence of Anaplasma phagocytophilum across ALT adults and nymphs. Host and habitat associations were similar to other studies in the eastern United States, but two potential differences in phenology were identified. Whether ALTs will acquire more endemic disease agents requires further investigations. Our findings provide the first evidence regarding ALT life history from the Midwest region of the United States and can inform exposure risk and guide integrated management.
Collapse
Affiliation(s)
- Andreas Eleftheriou
- College of Veterinary Medicine, Department of Veterinary Preventive Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Benjamin Zeiger
- College of Food, Agricultural, and Environmental Sciences, School of Environment and Natural Resources, The Ohio State University, Columbus, Ohio, USA
| | - Jazmin Jennings
- College of Arts and Sciences, The Ohio State University, Columbus, Ohio, USA
| | - Risa Pesapane
- College of Veterinary Medicine, Department of Veterinary Preventive Medicine, The Ohio State University, Columbus, Ohio, USA
- College of Food, Agricultural, and Environmental Sciences, School of Environment and Natural Resources, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
5
|
Hojgaard A, Foster E, Maes SE, Osikowicz LM, Parise CM, Villalpando J, Eisen RJ. Geographic variation in the distribution of Anaplasma phagocytophilum variants in host-seeking Ixodes scapularis nymphs and adults in the eastern United States elucidated using next generation sequencing. Ticks Tick Borne Dis 2024; 15:102360. [PMID: 38820870 PMCID: PMC11774202 DOI: 10.1016/j.ttbdis.2024.102360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 05/05/2024] [Accepted: 05/19/2024] [Indexed: 06/02/2024]
Abstract
Human anaplasmosis cases, caused by Anaplasma phagocytophilum, are increasing in the United States. This trend is explained, in part, by expansion in the geographic range of the primary vector, Ixodes scapularis. Multiple variants of A. phagocytophilum have been identified in field collected ticks, but only a single variant (human active, or "Ap-ha," variant) has been shown to be pathogenic in humans. Until recently, laboratory methods used to differentiate variants were cumbersome and seldomly used in large scale assessments of the pathogen's geographic distribution. As a result, many surveys reported A. phagocytophilum without segregating variants. Lack of discrimination among A. phagocytophilum variants could lead to overestimation of anaplasmosis risk to humans. Next Generation Sequencing (NGS) assays were recently developed to efficiently detect multiple Ixodes scapularis-borne human pathogens including Ap-ha. In this study, we utilized NGS to detect and differentiate A. phagocytophilum variants (Ap-ha vs. non ha) in host-seeking I. scapularis nymphs and adults collected across 23 states in the eastern United States from 2012 to 2023 as part of national tick surveillance efforts and research studies. Many of the included ticks were tested previously using a TaqMan PCR assay that could detect A. phagocytophilum but could not differentiate variants. We retested A. phagocytophilum infected ticks with NGS to differentiate variants. Anaplasma phagocytophilum (any variant) was identified in 165 (35 %) of 471 counties from which ticks were tested, whereas Ap-ha was detected in 70 (15 %) of 469 counties where variants were differentiated. Both variants were identified in 32 % (n = 40) of 126 counties with either variant detected. Among states where A. phagocytophilum (any variant) was detected, prevalence ranged from 2 % to 19 % in unfed adults and from 0.2 % to 7.8 % in unfed nymphs; prevalence of Ap-ha variant ranged from 0.0 % to 16 % in adults, and 0.0 % to 4.6 % in nymphs.
Collapse
Affiliation(s)
- Andrias Hojgaard
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, USA.
| | - Erik Foster
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, USA
| | - Sarah E Maes
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, USA
| | - Lynn M Osikowicz
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, USA
| | - Christina M Parise
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, USA
| | - Joel Villalpando
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, USA
| | - Rebecca J Eisen
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, USA
| |
Collapse
|
6
|
Osikowicz LM, Maes SE, Eisen RJ, Hojgaard A. A next generation sequencing assay combining Ixodes species identification with pathogen detection to support tick surveillance efforts in the United States. Ticks Tick Borne Dis 2024; 15:102343. [PMID: 38615554 PMCID: PMC11102312 DOI: 10.1016/j.ttbdis.2024.102343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 03/21/2024] [Accepted: 04/03/2024] [Indexed: 04/16/2024]
Abstract
The burden of tick-borne diseases continues to increase in the United States. Tick surveillance has been implemented to monitor changes in the distribution and prevalence of human disease-causing pathogens in ticks that frequently bite humans. Such efforts require accurate identification of ticks to species and highly sensitive and specific assays that can detect and differentiate pathogens from genetically similar microbes in ticks that have not been demonstrated to be pathogenic in humans. We describe a modification to a next generation sequencing pathogen detection assay that includes a target that accurately identifies Ixodes ticks to species. We show that the replacement of internal control primers used to ensure assay performance with primers that also act as an internal control and can additionally differentiate tick species, retains high sensitivity and specificity, improves efficiency, and reduces costs by eliminating the need to run separate assays to screen for pathogens and for tick identification.
Collapse
Affiliation(s)
- Lynn M Osikowicz
- Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, United States
| | - Sarah E Maes
- Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, United States
| | - Rebecca J Eisen
- Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, United States
| | - Andrias Hojgaard
- Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, United States.
| |
Collapse
|
7
|
Bramlett KE, Witt LE, Meyer MM, Zellars K, Dye-Braumuller KC, Nolan MS. Evidence of Incomplete Feeding Behaviors among South Carolina Tick Populations. INSECTS 2024; 15:385. [PMID: 38921100 PMCID: PMC11203686 DOI: 10.3390/insects15060385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/20/2024] [Accepted: 05/22/2024] [Indexed: 06/27/2024]
Abstract
Dynamic environmental conditions, such as climate change and host availability, have greatly influenced the expansion of medically relevant tick vectors into new regions throughout the southeastern United States of America. As tick populations migrate into new areas, it has been suggested they can exhibit a phenomenon known as incomplete feeding. With this phenomenon, tick vectors feed on more than one host at each life stage, thus increasing the likelihood of pathogen transmission. Although this behavior is not well understood, it presents an important threat to human health. Here we present evidence of incomplete feeding behaviors in multiple tick species in South Carolina. Engorged, blood-fed female ticks were collected from feral dogs at animal shelters across South Carolina in 2022. All ticks were tested for human blood meals using rapid stain identification blood tests. Approximately one third (33.78%) of all ticks tested positive for a human blood meal, with various patterns seen across species, geographic location, and collection month. The results of this pilot study follow the current national trend of increasing rates of tick-borne disease incidence in the southeastern United States of America and warrant further investigation into the relationship between seasonality, geographic distribution, species, and incomplete feeding among tick populations in South Carolina.
Collapse
Affiliation(s)
- Kayla E. Bramlett
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA; (K.E.B.); (L.E.W.); (M.M.M.); (K.Z.); (K.C.D.-B.)
| | - Laura E. Witt
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA; (K.E.B.); (L.E.W.); (M.M.M.); (K.Z.); (K.C.D.-B.)
| | - Madeleine M. Meyer
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA; (K.E.B.); (L.E.W.); (M.M.M.); (K.Z.); (K.C.D.-B.)
- Department of Environmental Health, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA
| | - Kia Zellars
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA; (K.E.B.); (L.E.W.); (M.M.M.); (K.Z.); (K.C.D.-B.)
| | - Kyndall C. Dye-Braumuller
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA; (K.E.B.); (L.E.W.); (M.M.M.); (K.Z.); (K.C.D.-B.)
| | - Melissa S. Nolan
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA; (K.E.B.); (L.E.W.); (M.M.M.); (K.Z.); (K.C.D.-B.)
- Institute for Infectious Disease Translational Research, University of South Carolina, Columbia, SC 29208, USA
| |
Collapse
|
8
|
White AL, Cumbie A, Brinkerhoff RJ, Hynes WL, Gaff HD. Release the hens: a study on the complexities of guinea fowl as tick control. JOURNAL OF MEDICAL ENTOMOLOGY 2024; 61:410-417. [PMID: 38279688 PMCID: PMC11279834 DOI: 10.1093/jme/tjad167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 10/27/2023] [Accepted: 12/08/2023] [Indexed: 01/28/2024]
Abstract
Established tick control strategies often involve methods that can be damaging to existing environmental conditions or natural host ecology. To find more environmentally friendly methods, biological controls, like predators of ticks, have been suggested. There are natural predators of ticks, but most are generalists and not expected to control tick populations. Helmeted guinea fowl (Numida meleagris (L.) (Galliformes: Numididae)) have been suggested to be biological controls of ticks, and therefore, tick-borne pathogens, but their potential role as hosts for ticks complicates the relationship. A study was conducted to assess whether guinea fowl reduces the abundance of lone star ticks, Amblyomma americanum (L.) (Acari: Ixodidae), or whether they are hosts of ticks. Using mark-recapture techniques, painted lone star ticks were placed into 3 different treatments: penned, excluded, and free range. The recapture rates of painted ticks were compared. There was a significant difference between excluded and free-range treatments, but not between excluded and penned or between free range and penned. To investigate the role of guinea fowl as hosts of ticks, coop floors were examined for engorged ticks. Engorged lone star nymphs that had fed on guinea fowl were found. Lastly, ticks collected were tested to identify the potential reduction in risk of tick-borne pathogens. This study found no evidence that guinea fowl are an effective biological control of lone star ticks or tick-borne pathogens, but they are hosts of lone star nymphs. Future studies are needed to assess the complex ecology of a biological control of ticks that is also a host.
Collapse
Affiliation(s)
- Alexis L White
- Department of Biological Sciences, Old Dominion University, Norfolk, VA, USA
- Department of Biological Sciences, University of Rhode Island, Kingston, RI, USA
| | - Alexandra Cumbie
- Department of Biological Sciences, Old Dominion University, Norfolk, VA, USA
- Department of Health Sciences, ECPI University, Newport News, VA, USA
| | | | - Wayne L Hynes
- Department of Biological Sciences, Old Dominion University, Norfolk, VA, USA
| | - Holly D Gaff
- Department of Biological Sciences, Old Dominion University, Norfolk, VA, USA
- School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
9
|
Osikowicz LM, Rizzo MR, Hojgaard A, Maes SE, Eisen RJ. Detection of Borrelia burgdorferi sensu lato species in host-seeking Ixodes species ticks in the United States. Ticks Tick Borne Dis 2024; 15:102270. [PMID: 37813001 PMCID: PMC10877637 DOI: 10.1016/j.ttbdis.2023.102270] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 10/11/2023]
Abstract
Lyme disease is the most commonly reported vector-borne disease in the United States and is transmitted by Ixodes scapularis in the eastern US and I. pacificus in the west. The causative agents, Borrelia burgdorferi sensu stricto (Bbss) and B. mayonii belong to the B. burgdorferi sensu lato (Bbsl) species complex. An additional eight species of Bbsl have been identified in Ixodes species ticks in the US, but their geographic distribution, vector associations, human encounter rates and pathogenicity in humans are poorly defined. To better understand the geographic distribution and vector associations of Bbsl spirochetes in frequent and infrequent human-biting Ixodes species ticks in the US, we previously screened 29,517 host-seeking I. scapularis or I. pacificus ticks and 692 ticks belonging to eight other Ixodes species for Borrelia spirochetes using a previously described tick testing algorithm that utilizes a combination of real-time PCR and Sanger sequencing for Borrelia species identification. The assay was designed to detect known human pathogens spread by Ixodes species ticks, but it was not optimized to detect Bbsl co-infections. To determine if such co-infections were overlooked particularly in ticks infected with Bbss, we retested and analyzed a subsample of 845 Borrelia infected ticks using a next generation sequencing multiplex PCR amplicon sequencing (MPAS) assay that can identify Borrelia species and Bbsl co-infections. The assay also includes targets that can molecularly confirm identifications of Ixodes species ticks to better inform pathogen-vector associations. We show that Bbss is the most prevalent species in I. scapularis and I. pacificus; other Bbsl species were rarely detected in I. scapularis and the only Bbsl co-infections identified in I. scapularis were with Bbss and B. mayonii. We detected B. andersonii in I. dentatus in the Mid-Atlantic and Upper Midwest regions, B. kurtenbachii in I. scapularis in the Upper Midwest, B. bissettiae in I. pacificus and I. spinipalpis in the Northwest, and B. carolinensis in I. affinis in the Mid-Atlantic and Southeast, and B. lanei in I. spinipalpis in the Northwest. Twelve of 62 (19.4%) Borrelia-infected I. affinis from the Mid-Atlantic region were co-infected with Bbss and B. carolinensis. Our data support the notion that Bbsl species are maintained in largely independent enzootic cycles, with occasional spill-over resulting in multiple Bbsl species detected in Ixodes species ticks.
Collapse
Affiliation(s)
- Lynn M Osikowicz
- Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, United States.
| | - Maria R Rizzo
- Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, United States
| | - Andrias Hojgaard
- Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, United States
| | - Sarah E Maes
- Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, United States
| | - Rebecca J Eisen
- Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, United States
| |
Collapse
|
10
|
Foster E, Maes SA, Holcomb KM, Eisen RJ. Prevalence of five human pathogens in host-seeking Ixodes scapularis and Ixodes pacificus by region, state, and county in the contiguous United States generated through national tick surveillance. Ticks Tick Borne Dis 2023; 14:102250. [PMID: 37703795 PMCID: PMC10629455 DOI: 10.1016/j.ttbdis.2023.102250] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/28/2023] [Accepted: 08/30/2023] [Indexed: 09/15/2023]
Abstract
The majority of vector-borne disease cases reported in the United States (U.S.) are caused by pathogens spread by the blacklegged tick, Ixodes scapularis. In recent decades, the geographic ranges of the tick and its associated human pathogens have expanded, putting an increasing number of communities at risk for tick-borne infections. In 2018, the U.S. Centers for Disease Control and Prevention (CDC) initiated a national tick surveillance program to monitor changes in the distribution and abundance of ticks and the presence and prevalence of human pathogens in them. We assessed the geographical representativeness of prevalence data submitted to CDC as part of the national tick surveillance effort. We describe county, state, and regional variation in the prevalence of five human pathogens (Borrelia burgdorferi sensu stricto (s.s.), Borrelia mayonii, Borrelia miyamotoi, Anaplasma phagocytophilum, and Babesia microti) in host-seeking I. scapularis and I. pacificus nymphs and adults. Although I. scapularis and I. pacificus are widely distributed in the eastern and western U.S., respectively, pathogen prevalence was estimated predominantly in ticks collected in the Northeast, Ohio Valley, and Upper Midwest regions, where human Lyme disease cases are most commonly reported. Within these regions, we found that state and regional estimates of pathogen prevalence generally reached predictable and stable levels, but variation in prevalence estimates at the sub-state level was considerable. Borrelia burgdorferi s.s. was the most prevalent and widespread pathogen detected. Borrelia miyamotoi and A. phagocytophilum shared a similarly broad geographic range, but were consistently detected at much lower prevalence compared with B. burgdorferi s.s. Babesia microti was detected at similar prevalence to A. phagocytophilum, where both pathogens co-occurred, but was reported over a much more limited geographic range compared with A. phagocytophilum or B. burgdorferi s.s. Borrelia mayonii was identified at very low prevalence with a focal distribution within the Upper Midwest. National assessments of risk for tick-borne diseases need to be improved through collection and testing of ticks in currently under-represented regions, including the West, South, Southeast, and eastern Plains states.
Collapse
Affiliation(s)
- Erik Foster
- Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, CO 80521, USA.
| | - Sarah A Maes
- Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, CO 80521, USA
| | - Karen M Holcomb
- Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, CO 80521, USA
| | - Rebecca J Eisen
- Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, CO 80521, USA
| |
Collapse
|
11
|
Martin AM, Buttke D, Raphael J, Taylor K, Maes S, Parise CM, Ginsberg HS, Cross PC. Deer management generally reduces densities of nymphal Ixodes scapularis, but not prevalence of infection with Borrelia burgdorferi sensu stricto. Ticks Tick Borne Dis 2023; 14:102202. [PMID: 37244157 PMCID: PMC11265508 DOI: 10.1016/j.ttbdis.2023.102202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 05/05/2023] [Accepted: 05/08/2023] [Indexed: 05/29/2023]
Abstract
Human Lyme disease-primarily caused by the bacterium Borrelia burgdorferi sensu stricto (s.s.) in North America-is the most common vector-borne disease in the United States. Research on risk mitigation strategies during the last three decades has emphasized methods to reduce densities of the primary vector in eastern North America, the blacklegged tick (Ixodes scapularis). Controlling white-tailed deer populations has been considered a potential method for reducing tick densities, as white-tailed deer are important hosts for blacklegged tick reproduction. However, the feasibility and efficacy of white-tailed deer management to impact acarological risk of encountering infected ticks (namely, density of host-seeking infected nymphs; DIN) is unclear. We investigated the effect of white-tailed deer density and management on the density of host-seeking nymphs and B. burgdorferi s.s. infection prevalence using surveillance data from eight national parks and park regions in the eastern United States from 2014-2022. We found that deer density was significantly positively correlated with the density of nymphs (nymph density increased by 49% with a 1 standard deviation increase in deer density) but was not strongly correlated with the prevalence of B. burgdorferi s.s. infection in nymphal ticks. Further, while white-tailed deer reduction efforts were followed by a decrease in the density of I. scapularis nymphs in parks, deer removal had variable effects on B. burgdorferi s.s. infection prevalence, with some parks experiencing slight declines and others slight increases in prevalence. Our findings suggest that managing white-tailed deer densities alone may not be effective in reducing DIN in all situations but may be a useful tool when implemented in integrated management regimes.
Collapse
Affiliation(s)
- Alynn M Martin
- Caesar Kleberg Wildlife Research Institute, Texas A&M University - Kingsville, Kingsville, TX, 78363, USA; US Geological Survey, Northern Rocky Mountain Science Center, 2327 University Way, Suite #2, Bozeman, MT, 59715 USA.
| | | | - Jordan Raphael
- US National Park Service, Fire Island National Seashore, Patchogue, NY, 11772 USA
| | - Kelsey Taylor
- US National Park Service, Fire Island National Seashore, Patchogue, NY, 11772 USA
| | - Sarah Maes
- Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, CO 80521
| | - Christina M Parise
- Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, CO 80521
| | - Howard S Ginsberg
- U.S. Geological Survey, Eastern Ecological Science Center, Woodward Hall-PSE, University of Rhode Island, Kingston, RI, 02881 USA
| | - Paul C Cross
- US Geological Survey, Northern Rocky Mountain Science Center, 2327 University Way, Suite #2, Bozeman, MT, 59715 USA
| |
Collapse
|
12
|
Osikowicz LM, Hojgaard A, Maes S, Eisen RJ, Stenglein MD. A bioinformatics pipeline for a tick pathogen surveillance multiplex amplicon sequencing assay. Ticks Tick Borne Dis 2023; 14:102207. [PMID: 37247570 PMCID: PMC10878300 DOI: 10.1016/j.ttbdis.2023.102207] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 05/31/2023]
Abstract
The Centers for Disease Control and Prevention's national tick and tick-borne pathogen surveillance program collects information to better understand the regional distribution, prevalence, and exposure risk of host-seeking medically important ticks in the United States. A recently developed next generation sequencing (NGS) targeted multiplex PCR amplicon sequencing (MPAS) assay has enhanced the detection capabilities for Ixodes-associated human pathogens found in Ixodes scapularis and Ixodes pacificus ticks compared to the routinely used real-time PCR assay. To operationalize the MPAS assay for the large number of tick surveillance submissions processed each year, a reproducible high throughput bioinformatics pipeline is needed. We describe the development and validation of the MPAS pipeline, a bioinformatics pipeline that identifies and summarizes amplicon sequences produced by the MPAS assay. This pipeline is portable and reproducible across different computing environments, and flexible by allowing modifications to input parameters, assay primer and reference sequences. The automation of the summary report, BLAST report, and phylogenetic analysis reduces the amount of time needed for downstream analysis. To validate this pipeline, we compared the analysis of a MPAS assay dataset consisting of 175 I. scapularis nymphs with the MPAS pipeline and previously published results analyzed with a CLC Genomic Workbench workflow. The MPAS pipeline identified the same number of positive ticks for Anaplasma phagocytophilum and Babesia species as the original analysis, but the MPAS pipeline provided enhanced sequencing resolution of Borrelia burgdorferi sensu lato co-infected samples. The reproducibility, flexibility, analysis automation, and improved sequence resolution of the MPAS pipeline make it well suited for a high throughput tick pathogen surveillance program.
Collapse
Affiliation(s)
- Lynn M Osikowicz
- Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, United States.
| | - Andrias Hojgaard
- Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, United States
| | - Sarah Maes
- Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, United States
| | - Rebecca J Eisen
- Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, United States
| | - Mark D Stenglein
- Center for Vector-Borne Infectious Disease, Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
13
|
Parise CM, Bai Y, Brandt KS, Ford SL, Maes S, Replogle AJ, Kneubehl AR, Lopez JE, Eisen RJ, Hojgaard A. A serological assay to detect and differentiate rodent exposure to soft tick and hard tick relapsing fever infections in the United States. Ticks Tick Borne Dis 2023; 14:102167. [PMID: 36965260 PMCID: PMC10956445 DOI: 10.1016/j.ttbdis.2023.102167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 03/27/2023]
Abstract
Human cases of relapsing fever (RF) in North America are caused primarily by Borrelia hermsii and Borrelia turicatae, which are spread by argasid (soft) ticks, and by Borrelia miyamotoi, which is transmitted by ixodid (hard) ticks. In some regions of the United States, the ranges of the hard and soft tick RF species are known to overlap; in many areas, recorded ranges of RF spirochetes overlap with Lyme disease (LD) group Borrelia spirochetes. Identification of RF clusters or cases detected in unusual geographic localities might prompt public health agencies to investigate environmental exposures, enabling prevention of additional cases through locally targeted mitigation. However, exposure risks and mitigation strategies differ among hard and soft tick RF, prompting a need for additional diagnostic strategies that differentiate hard tick from soft tick RF. We evaluated the ability of new and previously described recombinant antigens in serological assays to differentiate among prior exposures in mice to LD, soft or hard tick RF spirochetes. We extracted whole-cell protein lysates from RF Borrelia cultures and synthesized six recombinant RF antigens (Borrelia immunogenic protein A (BipA) derived from four species of RF Borrelia, glycerophosphodiester phosphodiesterase (GlpQ), and Borrelia miyamotoi membrane antigen A (BmaA)) to detect reactivity in laboratory derived (Peromyscus sp. and Mus sp.) mouse serum infected with RF and LD Borrelia species. Among 44 Borrelia exposed mouse samples tested, all five mice exposed to LD spirochetes were correctly differentiated from the 39 mice exposed to RF Borrelia using the recombinant targets. Of the 39 mice exposed to RF spirochetes, 28 were accurately categorized to species of exposure (71%). Segregation among soft tick RF species (Borrelia hermsii, Borrelia parkeri and Borrelia turicatae) was inadequate (58%) owing to observed cross-reactivity among recombinant BipA protein targets. However, among the 28 samples accurately separated to species, all were accurately assigned to soft tick or hard tick RF type. Although not adequately specific to accurately categorize exposure to soft tick RF species, the recombinant BipA protein targets from soft and hard tick RF species show utility in accurately discriminating mouse exposures to LD or RF Borrelia, and accurately segregate hard tick from soft tick RF Borrelia exposure.
Collapse
Affiliation(s)
- Christina M Parise
- Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 3156 Rampart Road, Fort Collins, CO 80521, USA
| | - Ying Bai
- Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 3156 Rampart Road, Fort Collins, CO 80521, USA
| | - Kevin S Brandt
- Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 3156 Rampart Road, Fort Collins, CO 80521, USA
| | - Shelby L Ford
- Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 3156 Rampart Road, Fort Collins, CO 80521, USA
| | - Sarah Maes
- Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 3156 Rampart Road, Fort Collins, CO 80521, USA
| | - Adam J Replogle
- Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 3156 Rampart Road, Fort Collins, CO 80521, USA
| | - Alexander R Kneubehl
- Department of Pediatrics, National School of Tropical Medicine at Baylor College of Medicine One Baylor Plaza, BCM113, Houston, TX 77030, USA
| | - Job E Lopez
- Department of Pediatrics and Molecular Virology and Microbiology, National School of Tropical Medicine at Baylor College of Medicine One Baylor Plaza, BCM113, Houston, TX 77030, USA
| | - Rebecca J Eisen
- Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 3156 Rampart Road, Fort Collins, CO 80521, USA
| | - Andrias Hojgaard
- Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 3156 Rampart Road, Fort Collins, CO 80521, USA.
| |
Collapse
|
14
|
Hamik J, Bourret TJ, Smith H, Herman M, Birn R, Dawdy T, Zuffante MJ, Donahue MA. Detection of Borrelia burgdorferi infected Ixodes scapularis (Acari: Ixodidae) associated with local Lyme disease transmission in Nebraska, USA, 2021. Zoonoses Public Health 2023; 70:361-364. [PMID: 36785942 DOI: 10.1111/zph.13031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/09/2023] [Accepted: 01/30/2023] [Indexed: 02/15/2023]
Abstract
In August 2021, the Nebraska Department of Health and Human Services was notified by a local public health department of a cluster of two Lyme disease cases in patients with local exposure to wooded areas in a county located in their jurisdiction. Epidemiological investigations revealed that the two patients had similar symptom onset dates and had likely exposure to ticks at wooded sites located directly adjacent to one another. Two environmental investigations were completed in October 2021 and consisted of tick surveys at the patients' reported sites of tick exposure. 12 ticks were collected across the two surveys and identified the black-legged tick (Ixodes scapularis). During subsequent testing of the collected ticks, spirochete bacteria were isolated, cultured and confirmed as Borrelia burgdorferi sensu stricto by PCR. In total, 7 of 12 (58.3%) I. scapularis ticks tested positive for B. burgdorferi s.s. The results of this study document the fourth known established population of I. scapularis in Nebraska and confirms the first detection of B. burgdorferi s.s. in field collected ticks from Nebraska. The epidemiological and environmental investigation data provide the first evidence for local Lyme disease transmission occurring within Nebraska. These findings highlight the need for continued surveillance of I. scapularis and its associated pathogens in Nebraska to further characterize human risk and monitor emergence into other areas of the state.
Collapse
Affiliation(s)
- Jeff Hamik
- Nebraska Department of Health and Human Services, Lincoln, Nebraska, USA.,University of Nebraska, Lincoln, Nebraska, USA
| | | | - Halie Smith
- Nebraska Department of Health and Human Services, Lincoln, Nebraska, USA
| | - Molly Herman
- Northeast Nebraska Public Health Department, Wayne, Nebraska, USA
| | - Rachael Birn
- Nebraska Department of Health and Human Services, Lincoln, Nebraska, USA
| | - Tammy Dawdy
- Nebraska Department of Health and Human Services, Lincoln, Nebraska, USA
| | - Mona J Zuffante
- Winnebago Public Health Department, Winnebago, Nebraska, USA
| | - Matthew A Donahue
- Nebraska Department of Health and Human Services, Lincoln, Nebraska, USA
| |
Collapse
|
15
|
Ostfeld RS, Adish S, Mowry S, Bremer W, Duerr S, Evans AS, Fischhoff IR, Keating F, Pendleton J, Pfister A, Teator M, Keesing F. Effects of Neighborhood-Scale Acaricidal Treatments on Infection Prevalence of Blacklegged Ticks ( Ixodes scapularis) with Three Zoonotic Pathogens. Pathogens 2023; 12:pathogens12020172. [PMID: 36839444 PMCID: PMC9960617 DOI: 10.3390/pathogens12020172] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/12/2023] [Accepted: 01/18/2023] [Indexed: 01/24/2023] Open
Abstract
Acaricides are hypothesized to reduce human risk of exposure to tick-borne pathogens by decreasing the abundance and/or infection prevalence of the ticks that serve as vectors for the pathogens. Acaricides targeted at reservoir hosts such as small mammals are expected to reduce infection prevalence in ticks by preventing their acquisition of zoonotic pathogens. By reducing tick abundance, reservoir-targeted or broadcast acaricides could reduce tick infection prevalence by interrupting transmission cycles between ticks and their hosts. Using an acaricide targeted at small-mammal hosts (TCS bait boxes) and one sprayed on low vegetation (Met52 fungal biocide), we tested the hypotheses that infection prevalence of blacklegged ticks with zoonotic pathogens would be more strongly diminished by TCS bait boxes, and that any effects of both acaricidal treatments would increase during the four years of deployment. We used a masked, placebo-controlled design in 24 residential neighborhoods in Dutchess County, New York. Analyzing prevalence of infection with Borrelia burgdorferi, Anaplasma phagocytophilum, and Babesia microti in 5380 nymphal Ixodes scapularis ticks, we found little support for either hypothesis. TCS bait boxes did not reduce infection prevalence with any of the three pathogens compared to placebo controls. Met52 was associated with lower infection prevalence with B. burgdorferi compared to placebo controls but had no effect on prevalence of infection with the other two pathogens. Although significant effects of year on infection prevalence of all three pathogens were detected, hypothesized cumulative reductions in prevalence were observed only for B. burgdorferi. We conclude that reservoir-targeted and broadcast acaricides might not generally disrupt pathogen transmission between reservoir hosts and tick vectors or reduce human risk of exposure to tick-borne pathogens.
Collapse
Affiliation(s)
- Richard S. Ostfeld
- Cary Institute of Ecosystem Studies, Millbrook, NY 12545, USA
- Correspondence: ; Tel.: +1-845-677-7600 (ext. 136)
| | - Sahar Adish
- Cary Institute of Ecosystem Studies, Millbrook, NY 12545, USA
| | - Stacy Mowry
- Cary Institute of Ecosystem Studies, Millbrook, NY 12545, USA
| | - William Bremer
- Cary Institute of Ecosystem Studies, Millbrook, NY 12545, USA
| | - Shannon Duerr
- Cary Institute of Ecosystem Studies, Millbrook, NY 12545, USA
| | - Andrew S. Evans
- Department of Behavioral and Community Health, Dutchess County, Poughkeepsie, NY 12601, USA
| | | | - Fiona Keating
- Cary Institute of Ecosystem Studies, Millbrook, NY 12545, USA
| | | | - Ashley Pfister
- Cary Institute of Ecosystem Studies, Millbrook, NY 12545, USA
| | - Marissa Teator
- Cary Institute of Ecosystem Studies, Millbrook, NY 12545, USA
| | - Felicia Keesing
- Department of Biology, Bard College, Annandale, NY 12504, USA
| |
Collapse
|
16
|
Hojgaard A, Osikowicz LM, Rizzo MF, Ayres BN, Nicholson WL, Eisen RJ. Using next generation sequencing for molecular detection and differentiation of Anaplasma phagocytophilum variants from host seeking Ixodes scapularis ticks in the United States. Ticks Tick Borne Dis 2022; 13:102041. [PMID: 36257186 DOI: 10.1016/j.ttbdis.2022.102041] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 10/31/2022]
Abstract
Anaplasmosis is increasingly common in the United States, with cases being reported over an expanding geographic area. To monitor for changes in risk of human infection, the U.S. Centers for Disease Control and Prevention monitors the distribution and abundance of host-seeking vector ticks (Ixodes scapularis and Ixodes pacificus) and their infection with Anaplasma phagocytophilum. While several variants of A. phagocytophilum circulate in I. scapularis, only the human-active variant (Ap-ha) appears to be pathogenic in humans. Failure to differentiate between human and non-human variants may artificially inflate estimates of the risk of human infection. Efforts to differentiate the Ap-ha variant from the deer variant (Ap-V1) in ticks typically rely on traditional PCR assays coupled with sequencing of PCR products. However, laboratories are increasingly turning to Next Generation Sequencing (NGS) to increase testing efficiency, retain high sensitivity, and increase specificity compared with traditional PCR assays. We describe a new NGS assay with novel targets that accurately segregate the Ap-ha variant from other non-human variants and further identify unique clades within the human and non-human variants. Recognizing that not all investigators have access to NGS technology, we also developed a PCR assay based on one of the novel targets so that variants can be visualized using agarose gel electrophoresis without the need for subsequent sequencing. Such an assay may be used to improve estimates of human risk of developing anaplasmosis in North America.
Collapse
Affiliation(s)
- Andrias Hojgaard
- Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 3156 Rampart Road, Fort Collins, CO, United States.
| | - Lynn M Osikowicz
- Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 3156 Rampart Road, Fort Collins, CO, United States
| | - Maria F Rizzo
- Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 3156 Rampart Road, Fort Collins, CO, United States
| | - Bryan N Ayres
- Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - William L Nicholson
- Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Rebecca J Eisen
- Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 3156 Rampart Road, Fort Collins, CO, United States
| |
Collapse
|
17
|
Leber M, Moncrief ND, Gatens LJ, Michel M, Brinkerhoff RJ. Use of mammalian museum specimens to test hypotheses about the geographic expansion of Lyme disease in the southeastern United States. Ticks Tick Borne Dis 2022; 13:102018. [PMID: 35964455 DOI: 10.1016/j.ttbdis.2022.102018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/06/2022] [Accepted: 08/03/2022] [Indexed: 10/31/2022]
Abstract
Lyme disease, caused primarily in North America by the bacterium Borrelia burgdorferi sensu stricto, is the most frequently reported vector-borne disease in North America and its geographic extent is increasing in all directions from foci in the northeastern and north central United States. Several southeastern states, including Virginia and North Carolina, have experienced large increases in Lyme disease incidence in the past two decades, with the biggest changes in incidence occurring in the western portion of each state. We tested the hypothesis that B. burgdorferi s.s. was present in western Virginia and North Carolina Peromyscus leucopus populations prior to the recent emergence of Lyme disease. Specifically, we examined archived P. leucopus museum specimens, sampled between 1900 and 2000, for B. burgdorferi s.s. DNA. After confirming viability of DNA extracted from ear punch biopsies from P. leucopus study skins collected between 1945 and 2000 in 19 Virginia counties and 17 North Carolina counties, we used qPCR of two species-specific loci to test for the presence of B. burgdorferi s.s. DNA. Ten mice, all collected from the Eastern Shore of Virginia in 1989, tested positive for presence of B. burgdorferi; all of the remaining 344 specimens were B. burgdorferi-negative. Our results suggest that B. burgdorferi s.s was not common in western Virginia or North Carolina prior to the emergence of Lyme disease cases in the past two decades. Rather, the emergence of Lyme disease in this region has likely been driven by the relatively recent expansion of B. burgdorferi s.s. in southward-moving ticks and reservoir hosts in the mountainous counties of these two states.
Collapse
Affiliation(s)
- Meghan Leber
- Department of Biology, University of Richmond, Richmond, VA 23173, United States
| | - Nancy D Moncrief
- Virginia Museum of Natural History, Martinsville, VA, 24112, United States
| | - Lisa J Gatens
- North Carolina Museum of Natural Sciences, Raleigh, NC, 27601, United States
| | - Maggie Michel
- Department of Biology, University of Richmond, Richmond, VA 23173, United States
| | - R Jory Brinkerhoff
- Department of Biology, University of Richmond, Richmond, VA 23173, United States; School of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg, South Africa.
| |
Collapse
|
18
|
Burtis JC, Foster E, Schwartz AM, Kugeler KJ, Maes SE, Fleshman AC, Eisen RJ. Predicting distributions of blacklegged ticks (Ixodes scapularis), Lyme disease spirochetes (Borrelia burgdorferi sensu stricto) and human Lyme disease cases in the eastern United States. Ticks Tick Borne Dis 2022; 13:102000. [PMID: 35785605 PMCID: PMC10591441 DOI: 10.1016/j.ttbdis.2022.102000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 06/22/2022] [Accepted: 06/25/2022] [Indexed: 11/27/2022]
Abstract
Lyme disease is the most commonly reported vector-borne disease in the United States (US), with approximately 300,000 -to- 40,000 cases reported annually. The blacklegged tick, Ixodes scapularis, is the primary vector of the Lyme disease-causing spirochete, Borrelia burgdorferi sensu stricto, in high incidence regions in the upper midwestern and northeastern US. Using county-level records of the presence of I. scapularis or presence of B. burgdorferi s.s. infected host-seeking I. scapularis, we generated habitat suitability consensus maps based on an ensemble of statistical models for both acarological risk metrics. Overall accuracy of these suitability models was high (AUC = 0.76 for I. scapularis and 0.86 for B. burgdorferi s.s. infected-I. scapularis). We sought to compare which acarological risk metric best described the distribution of counties reporting high Lyme disease incidence (≥10 confirmed cases/100,000 population) by setting the models to a fixed omission rate (10%). We compared the percent of high incidence counties correctly classified by the two models. The I. scapularis consensus map correctly classified 53% of high and low incidence counties, while the B. burgdorferi s.s. infected-I. scapularis consensus map classified 83% correctly. Counties classified as suitable by the B. burgdorferi s.s. map showed a 91% overlap with high Lyme disease incidence counties with over a 38-fold difference in Lyme disease incidence between high- and low-suitability counties. A total of 288 counties were classified as highly suitable for B. burgdorferi s.s., but lacked records of infected-I. scapularis and were not classified as high incidence. These counties were considered to represent a leading edge for B. burgdorferi s.s. infection in ticks and humans. They clustered in Illinois, Indiana, Michigan, and Ohio. This information can aid in targeting tick surveillance and prevention education efforts in counties where Lyme disease risk may increase in the future.
Collapse
Affiliation(s)
- James C Burtis
- Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, CO 80521, United States.
| | - Erik Foster
- Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, CO 80521, United States
| | - Amy M Schwartz
- Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, CO 80521, United States
| | - Kiersten J Kugeler
- Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, CO 80521, United States
| | - Sarah E Maes
- Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, CO 80521, United States
| | - Amy C Fleshman
- Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, CO 80521, United States
| | - Rebecca J Eisen
- Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, CO 80521, United States
| |
Collapse
|
19
|
Fleshman AC, Foster E, Maes SE, Eisen RJ. Reported County-Level Distribution of Seven Human Pathogens Detected in Host-Seeking Ixodes scapularis and Ixodes pacificus (Acari: Ixodidae) in the Contiguous United States. JOURNAL OF MEDICAL ENTOMOLOGY 2022; 59:1328-1335. [PMID: 35583265 DOI: 10.1093/jme/tjac049] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Indexed: 06/15/2023]
Abstract
Tickborne disease cases account for over 75% of reported vector-borne disease cases in the United States each year. In addition to transmitting the agents of Lyme disease (Borrelia burgdorferi sensu strict [Spirochaetales: Spirochaetaceae] and Borrelia mayonii [Spirochaetales: Spirochaetaceae]), the blacklegged tick, Ixodes scapularis, and the western blacklegged tick, Ixodes pacificus collectively transmit five additional human pathogens. By mapping the distributions of tickborne pathogens in host-seeking ticks, we can understand where humans are at risk of contracting tickborne diseases and devise targeted strategies to prevent them. Using publicly available tickborne pathogen surveillance databases, internal CDC pathogen testing databases, and SCOPUS search records published since 2000, we mapped the county-level distribution of Borrelia miyamotoi (Spirochaetales: Spirochaetaceae), Anaplasma phagocytophilum (Rickettsiales: Anaplasmataceae), Ehrlichia muris eauclairensis (Rickettsiales: Ehrlichiaceae), Babesia microti (Piroplasmida: Babesiidae), and Powassan virus (Flaviviridae) reported in host-seeking I. scapularis or I. pacificus in the contiguous United States. We also updated recently published maps of the distributions of Borrelia burgdorferi sensu stricto and Borrelia mayonii. All seven pathogen distributions were more limited than the distributions of vector ticks, with at least one of the seven pathogens detected in 30 states out of 41 total states (73.2% of states) where vector ticks are considered to be established. Prevention and diagnosis of tickborne diseases rely on an accurate understanding by the public and health care providers of where people are at risk for exposure to infected ticks. Our county-level pathogen distribution maps expand on previous efforts showing the distribution of Lyme disease spirochetes and highlight counties where further investigation may be warranted.
Collapse
Affiliation(s)
- Amy C Fleshman
- Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, 80521, USA
| | - Erik Foster
- Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, 80521, USA
| | - Sarah E Maes
- Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, 80521, USA
| | - Rebecca J Eisen
- Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, 80521, USA
| |
Collapse
|
20
|
Elias SP, Witham JW, Schneider EF, Rand PW, Hunter ML, Lubelczyk C, Smith RP. Emergence of Ixodes scapularis (Acari: Ixodidae) in a Small Mammal Population in a Coastal Oak-Pine Forest, Maine, USA. JOURNAL OF MEDICAL ENTOMOLOGY 2022; 59:725-740. [PMID: 34958101 DOI: 10.1093/jme/tjab209] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Indexed: 06/14/2023]
Abstract
In the United States, surveillance has been key to tracking spatiotemporal emergence of blacklegged ticks [Ixodes scapularis Say (Ixodida:Ixodidae)] and their pathogens such as Borrelia burgdorferi Johnson, Schmid, Hyde, Steigerwalt & Brenner (Spirochaetales: Spirochaetaceae), the agent of Lyme disease. On the Holt Research Forest in midcoastal Maine, collection of feeding ticks from live-trapped small mammal hosts allowed us to track the emergence and establishment of I. scapularis, 1989-2019. From 1989-1995, we collected only I. angustus Neumann (Ixodida: Ixodidae)(vole tick), Dermacentor variabilis Say (Ixodida: Ixodidae) (American dog tick), and I. marxi Banks (Ixodida: Ixodidae) (squirrel tick) from seven species of small mammals. The most abundant tick host was the white-footed mouse [Peromyscus leucopus Rafinesque (Rodentia:Cricetidae)] followed by the red-backed vole (Myodes gapperi Vigors (Rodentia: Cricetidae)). Emergence of I. scapularis was signaled via the appearance of subadult I. scapularis in 1996. Emergence of B. burgdorferi was signaled through its appearance in I. scapularis feeding on mice in 2005. There was a substantial increase in I. scapularis prevalence (proportion of hosts parasitized) and burdens (ticks/host) on white-footed mice and red-backed voles in 2007. The ~11-yr time-to-establishment for I. scapularis was consistent with that seen in other studies. White-footed mice comprised 65.9% of all captures and hosted 94.1% of the total I. scapularis burden. The white-footed mouse population fluctuated interannually, but did not trend up as did I. scapularis prevalence and burdens. There were concurrent declines in I. angustus and D. variabilis. We discuss these results in the broader context of regional I. scapularis range expansion.
Collapse
Affiliation(s)
- Susan P Elias
- Maine Medical Center Research Institute, Lyme & Vector-Borne Disease Laboratory, 81 Research Drive, Scarborough, ME 04074, USA
| | - Jack W Witham
- Center for Research on Sustainable Forests, University of Maine, 5755 Nutting Hall, Orono, ME 04469, USA
| | - Elizabeth F Schneider
- Maine Medical Center Research Institute, Lyme & Vector-Borne Disease Laboratory, 81 Research Drive, Scarborough, ME 04074, USA
| | - Peter W Rand
- Maine Medical Center Research Institute, Lyme & Vector-Borne Disease Laboratory, 81 Research Drive, Scarborough, ME 04074, USA
| | - Malcolm L Hunter
- Department of Wildlife, Fisheries, and Conservation Biology, University of Maine, 5755 Nutting Hall, Orono, ME 04469, USA
| | - Charles Lubelczyk
- Maine Medical Center Research Institute, Lyme & Vector-Borne Disease Laboratory, 81 Research Drive, Scarborough, ME 04074, USA
| | - Robert P Smith
- Maine Medical Center Research Institute, Lyme & Vector-Borne Disease Laboratory, 81 Research Drive, Scarborough, ME 04074, USA
| |
Collapse
|
21
|
Price KJ, Ayres BN, Maes SE, Witmier BJ, Chapman HA, Coder BL, Boyer CN, Eisen RJ, Nicholson WL. First detection of human pathogenic variant of Anaplasma phagocytophilum in field-collected Haemaphysalis longicornis, Pennsylvania, USA. Zoonoses Public Health 2021; 69:143-148. [PMID: 34958171 DOI: 10.1111/zph.12901] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 11/22/2021] [Accepted: 12/08/2021] [Indexed: 12/12/2022]
Abstract
The Asian longhorned tick, Haemaphysalis longicornis, an invasive species associated with human pathogens, has spread rapidly across the eastern USA. Questing H. longicornis ticks recovered from active surveillance conducted from 1 May to 6 September, 2019 throughout Pennsylvania were tested for rickettsial pathogens. Of 265 ticks tested by PCR for pathogens, 4 (1.5%) were positive for Anaplasma phagocytophilum. Sequence analysis of the 16S rRNA gene confirmed two positives as A. phagocytophilum-human agent variant. This is the first reported detection of A. phagocytophilum-human pathogenic strain DNA in exotic H. longicornis collected in the USA.
Collapse
Affiliation(s)
- Keith J Price
- Division of Vector Management, Pennsylvania Department of Environmental Protection, Harrisburg, Pennsylvania, USA
| | - Bryan N Ayres
- Division of Vector-Borne Diseases, Rickettsial Zoonoses Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Sarah E Maes
- Division of Vector-Borne Diseases, Bacterial Diseases Branch, Centers for Disease Control and Prevention, Fort Collins, Colorado, USA
| | - Bryn J Witmier
- Division of Vector Management, Pennsylvania Department of Environmental Protection, Harrisburg, Pennsylvania, USA
| | - Holly A Chapman
- Division of Vector Management, Pennsylvania Department of Environmental Protection, Harrisburg, Pennsylvania, USA
| | - Brooke L Coder
- Division of Vector Management, Pennsylvania Department of Environmental Protection, Harrisburg, Pennsylvania, USA
| | - Christian N Boyer
- Division of Vector Management, Pennsylvania Department of Environmental Protection, Harrisburg, Pennsylvania, USA
| | - Rebecca J Eisen
- Division of Vector-Borne Diseases, Bacterial Diseases Branch, Centers for Disease Control and Prevention, Fort Collins, Colorado, USA
| | - William L Nicholson
- Division of Vector-Borne Diseases, Rickettsial Zoonoses Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
22
|
Hojgaard A, Osikowicz LM, Maes S, Eisen L, Eisen RJ. Detection of Genetic Variability in Borrelia miyamotoi (Spirochaetales: Spirochaetaceae) Between and Within the Eastern and Western United States. JOURNAL OF MEDICAL ENTOMOLOGY 2021; 58:2154-2160. [PMID: 33956124 DOI: 10.1093/jme/tjab075] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Indexed: 06/12/2023]
Abstract
Borrelia miyamotoi is a hard tick-associated relapsing fever spirochete that is geographically widespread in Ixodes spp. (Acari: Ixodidae) ticks, but typically occurs at low prevalence. Genetic variability has been described among strains derived from Asia, Europe, and North America, and among tick species that carry the infection, but little variability has been described within foci or tick species. Capitalizing on access to B. miyamotoi nucleic acid extracted from host-seeking Ixodes scapularis Say or Ixodes pacificus Cooley & Kohls from 16 states, we explored genetic variability based on sequence analysis of four amplicons described herein. Consistent with previous studies, we detected significant genetic differences between strains derived from I. scapularis (eastern United States) and I. pacificus (western United States) and identified two distinct sequences in the western United States (Am-West-1 and Am-West-2). Unique to this study, we identified two distinct sequences in the eastern United States (Am-East-1 and Am-East-2). Based on the 161 samples we analyzed, Am-East-1 was the only type represented in 50 B. miyamotoi-infected ticks collected from the Northeast (Vermont, Maine, New York, Connecticut, and Rhode Island), whereas ticks collected from the North-Central and Mid-Atlantic states harbored B. miyamotoi comprised of both Am-East-1 and Am-East-2. Further studies are needed to better characterize the phylogeography of B. miyamotoi and to discern if there are biologically meaningful differences among sequence types. To facilitate further exploration, we developed a polymerase chain reaction (PCR) assay designed to differentiate Am-East-1, Am-East-2, and Am-West sequence types without having to sequence the amplicon.
Collapse
Affiliation(s)
- Andrias Hojgaard
- Bacterial Diseases Branch, Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, USA
| | - Lynn M Osikowicz
- Bacterial Diseases Branch, Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, USA
| | - Sarah Maes
- Bacterial Diseases Branch, Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, USA
| | - Lars Eisen
- Bacterial Diseases Branch, Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, USA
| | - Rebecca J Eisen
- Bacterial Diseases Branch, Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, USA
| |
Collapse
|
23
|
Machtinger ET, Nadolny RM, Vinyard BT, Eisen L, Hojgaard A, Haynes SA, Bowman L, Casal C, Li AY. Spatial Heterogeneity of Sympatric Tick Species and Tick-Borne Pathogens Emphasizes the Need for Surveillance for Effective Tick Control. Vector Borne Zoonotic Dis 2021; 21:843-853. [PMID: 34463140 DOI: 10.1089/vbz.2021.0027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Three tick species that can transmit pathogen causing disease are commonly found parasitizing people and animals in the mid-Atlantic United States: the blacklegged tick (Ixodes scapularis Say), the American dog tick (Dermacentor variabilis [Say]), and the lone star tick (Amblyomma americanum [L.]) (Acari: Ixodidae). The potential risk of pathogen transmission from tick bites acquired at schools in tick-endemic areas is a concern, as school-aged children are a high-risk group for tick-borne disease. Integrated pest management (IPM) is often required in school districts, and continued tick range expansion and population growth will likely necessitate IPM strategies to manage ticks on school grounds. However, an often-overlooked step of tick management is monitoring and assessment of local tick species assemblages to inform the selection of control methodologies. The purpose of this study was to evaluate tick species presence, abundance, and distribution and the prevalence of tick-borne pathogens in both questing ticks and those removed from rodent hosts on six school properties in Maryland. Overall, there was extensive heterogeneity in tick species dominance, abundance, and evenness across the field sites. A. americanum and I. scapularis were found on all sites in all years. Overall, A. americanum was the dominant tick species. D. variabilis was collected in limited numbers. Several pathogens were found in both questing ticks and those removed from rodent hosts, although prevalence of infection was not consistent between years. Borrelia burgdorferi, Ehrlichia chaffeensis, Ehrlichia ewingii, and Ehrlichia "Panola Mountain" were identified in questing ticks, and B. burgdorferi and Borrelia miyamotoi were detected in trapped Peromyscus spp. mice. B. burgdorferi was the dominant pathogen detected. The impact of tick diversity on IPM of ticks is discussed.
Collapse
Affiliation(s)
- Erika T Machtinger
- USDA, ARS, Invasive Insect Biocontrol and Behavior Laboratory, Beltsville, Maryland, USA
| | - Robyn M Nadolny
- Army Public Health Center, Tick-Borne Disease Laboratory, Aberdeen Proving Ground, Maryland, USA
| | | | - Lars Eisen
- Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado, USA
| | - Andrias Hojgaard
- Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado, USA
| | - Scott A Haynes
- Army Public Health Center, Tick-Borne Disease Laboratory, Aberdeen Proving Ground, Maryland, USA
| | - Loretta Bowman
- Army Public Health Center, Tick-Borne Disease Laboratory, Aberdeen Proving Ground, Maryland, USA
| | - Cory Casal
- Army Public Health Center, Tick-Borne Disease Laboratory, Aberdeen Proving Ground, Maryland, USA
| | - Andrew Y Li
- USDA, ARS, Invasive Insect Biocontrol and Behavior Laboratory, Beltsville, Maryland, USA
| |
Collapse
|
24
|
Price KJ, Graham CB, Witmier BJ, Chapman HA, Coder BL, Boyer CN, Foster E, Maes SE, Bai Y, Eisen RJ, Kyle AD. Borrelia burgdorferi Sensu Stricto DNA in Field-Collected Haemaphysalis longicornis Ticks, Pennsylvania, United States. Emerg Infect Dis 2021; 27:608-611. [PMID: 33496234 PMCID: PMC7853548 DOI: 10.3201/eid2702.201552] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
We collected questing Haemaphysalis longicornis ticks from southeastern counties of Pennsylvania, USA. Of 263 ticks tested by PCR for pathogens, 1 adult female was positive for Borrelia burgdorferi sensu stricto, yielding a 0.4% infection rate. Continued monitoring of this invasive tick is essential to determine its public health role.
Collapse
|
25
|
Dykstra EA, Oltean HN, Kangiser D, Marsden-Haug N, Rich SM, Xu G, Lee MK, Morshed MG, Graham CB, Eisen RJ. Ecology and Epidemiology of Tickborne Pathogens, Washington, USA, 2011-2016. Emerg Infect Dis 2021; 26:648-657. [PMID: 32187009 PMCID: PMC7101130 DOI: 10.3201/eid2604.191382] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Tickborne diseases are rare in Washington, USA, and the ecology of these pathogens is poorly understood. We integrated surveillance data from humans and ticks to better describe their epidemiology and ecology. During 2011-2016, a total of 202 tickborne disease cases were reported in Washington residents. Of these, 68 (34%) were autochthonous, including cases of Lyme disease, Rocky Mountain spotted fever, tickborne relapsing fever, and tularemia. During May 2011-December 2016, we collected 977 host-seeking ticks, including Ixodes pacificus, I. angustus, I. spinipalpis, I. auritulus, Dermacentor andersoni, and D. variabilis ticks. The prevalence of Borrelia burgdorferi sensu stricto in I. pacificus ticks was 4.0%; of B. burgdorferi sensu lato, 3.8%; of B. miyamotoi, 4.4%; and of Anaplasma phagocytophilum, 1.9%. We did not detect Rickettsia rickettsii in either Dermacentor species. Case-patient histories and detection of pathogens in field-collected ticks indicate that several tickborne pathogens are endemic to Washington.
Collapse
|
26
|
Fleshman AC, Graham CB, Maes SE, Foster E, Eisen RJ. Reported County-Level Distribution of Lyme Disease Spirochetes, Borrelia burgdorferi sensu stricto and Borrelia mayonii (Spirochaetales: Spirochaetaceae), in Host-Seeking Ixodes scapularis and Ixodes pacificus Ticks (Acari: Ixodidae) in the Contiguous United States. JOURNAL OF MEDICAL ENTOMOLOGY 2021; 58:1219-1233. [PMID: 33600574 PMCID: PMC8355468 DOI: 10.1093/jme/tjaa283] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Indexed: 05/12/2023]
Abstract
Lyme disease is the most common vector-borne disease in the United States. While Lyme disease vectors are widespread, high incidence states are concentrated in the Northeast, North Central and Mid-Atlantic regions. Mapping the distribution of Lyme disease spirochetes in ticks may aid in providing data-driven explanations of epidemiological trends and recommendations for targeting prevention strategies to communities at risk. We compiled data from the literature, publicly available tickborne pathogen surveillance databases, and internal CDC pathogen testing databases to map the county-level distribution of Lyme disease spirochetes reported in host-seeking Ixodes pacificus and Ixodes scapularis across the contiguous United States. We report B. burgdorferi s.s.-infected I. scapularis from 384 counties spanning 26 eastern states located primarily in the North Central, Northeastern, and Mid-Atlantic regions, and in I. pacificus from 20 counties spanning 2 western states, with most records reported from northern and north-coastal California. Borrelia mayonii was reported in I. scapularis in 10 counties in Minnesota and Wisconsin in the North Central United States, where records of B. burgdorferi s.s. were also reported. In comparison to a broad distribution of vector ticks, the resulting map shows a more limited distribution of Lyme disease spirochetes.
Collapse
Affiliation(s)
- Amy C Fleshman
- Bacterial Diseases Branch, Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, CO
| | - Christine B Graham
- Bacterial Diseases Branch, Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, CO
| | - Sarah E Maes
- Bacterial Diseases Branch, Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, CO
| | - Erik Foster
- Bacterial Diseases Branch, Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, CO
| | - Rebecca J Eisen
- Bacterial Diseases Branch, Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, CO
- Corresponding author, e-mail:
| |
Collapse
|
27
|
Milholland MT, Eisen L, Nadolny RM, Hojgaard A, Machtinger ET, Mullinax JM, Li AY. Surveillance of Ticks and Tick-Borne Pathogens in Suburban Natural Habitats of Central Maryland. JOURNAL OF MEDICAL ENTOMOLOGY 2021; 58:1352-1362. [PMID: 33511396 PMCID: PMC10947375 DOI: 10.1093/jme/tjaa291] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Indexed: 06/12/2023]
Abstract
Lyme and other tick-borne diseases are increasing in the eastern United States and there is a lack of research on integrated strategies to control tick vectors. Here we present results of a study on tick-borne pathogens detected from tick vectors and rodent reservoirs from an ongoing 5-yr tick suppression study in the Lyme disease-endemic state of Maryland, where human-biting tick species, including Ixodes scapularis Say (Acari: Ixodidae) (the primary vector of Lyme disease spirochetes), are abundant. During the 2017 tick season, we collected 207 questing ticks and 602 ticks recovered from 327 mice (Peromyscus spp. (Rodentia: Cricetidae)), together with blood and ear tissue from the mice, at seven suburban parks in Howard County. Ticks were selectively tested for the presence of the causative agents of Lyme disease (Borrelia burgdorferi sensu lato [s.l.]), anaplasmosis (Anaplasma phagocytophilum), babesiosis (Babesia microti), ehrlichiosis (Ehrlichia ewingii, Ehrlichia chaffeensis, and 'Panola Mountain' Ehrlichia) and spotted fever group rickettsiosis (Rickettsia spp.). Peromyscus ear tissue and blood samples were tested for Bo. burgdorferi sensu stricto (s.s), A. phagocytophilum, Ba. microti, and Borrelia miyamotoi. We found 13.6% (15/110) of questing I. scapularis nymphs to be Bo. burgdorferi s.l. positive and 1.8% (2/110) were A. phagocytophilum positive among all sites. Borrelia burgdorferi s.s. was found in 71.1% (54/76) of I. scapularis nymphs removed from mice and 58.8% (194/330) of captured mice. Results from study on tick abundance and pathogen infection status in questing ticks, rodent reservoirs, and ticks feeding on Peromyscus spp. will aid efficacy evaluation of the integrated tick management measures being implemented.
Collapse
Affiliation(s)
- Matthew T. Milholland
- Invasive Insect Biocontrol and Behavior Laboratory, USDA, ARS, Bldg. 007, Rm. 301, BARC-West, 10300 Baltimore Avenue, Beltsville, MD 20705
- AGNR-Environmental Science and Technology, University of Maryland, College Park, MD
| | - Lars Eisen
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO
| | - Robyn M. Nadolny
- Tick-Borne Disease Laboratory, Army Public Health Center, Aberdeen Proving Ground, MD
| | - Andrias Hojgaard
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO
| | - Erika T. Machtinger
- Department of Entomology, Pennsylvania State University, University Park, PA
| | - Jennifer M. Mullinax
- AGNR-Environmental Science and Technology, University of Maryland, College Park, MD
| | - Andrew Y. Li
- Invasive Insect Biocontrol and Behavior Laboratory, USDA, ARS, Bldg. 007, Rm. 301, BARC-West, 10300 Baltimore Avenue, Beltsville, MD 20705
| |
Collapse
|
28
|
Lehane A, Maes SE, Graham CB, Jones E, Delorey M, Eisen RJ. Prevalence of single and coinfections of human pathogens in Ixodes ticks from five geographical regions in the United States, 2013-2019. Ticks Tick Borne Dis 2021; 12:101637. [PMID: 33360805 PMCID: PMC11351056 DOI: 10.1016/j.ttbdis.2020.101637] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/20/2020] [Accepted: 12/04/2020] [Indexed: 11/17/2022]
Abstract
As the geographic distributions of medically important ticks and tick-borne pathogens continue to expand in the United States, the burden of tick-borne diseases continues to increase along with a growing risk of coinfections. Coinfection with multiple tick-borne pathogens may amplify severity of disease and complicate diagnosis and treatment. By testing 13,400 Ixodes ticks from 17 US states spanning five geographical regions for etiological agents of Lyme disease (Borrelia burgdorferi sensu stricto [s.s.] and Borrelia mayonii), Borrelia miyamotoi disease (Borrelia miyamotoi), anaplasmosis (Anaplasma phagocytophilum), and babesiosis (Babesia microti) we show that B. burgdorferi s.s. was the most prevalent and widespread pathogen. Borrelia miyamotoi, A. phagocytophilum, and B. microti were widespread but less prevalent than B. burgdorferi s.s. Coinfections with B. burgdorferi s.s. and A. phagocytophilum or B. microti were most common in the Northeast and occurred at rates higher than expected based on rates of single infections in that region.
Collapse
Affiliation(s)
- Aine Lehane
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, USA
| | - Sarah E Maes
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, USA
| | - Christine B Graham
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, USA
| | - Emma Jones
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, USA
| | - Mark Delorey
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, USA
| | - Rebecca J Eisen
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, USA.
| |
Collapse
|
29
|
Passerine birds as hosts for Ixodes ticks infected with Borrelia burgdorferi sensu stricto in southeastern Virginia. Ticks Tick Borne Dis 2021; 12:101650. [PMID: 33486431 DOI: 10.1016/j.ttbdis.2021.101650] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 01/04/2021] [Accepted: 01/04/2021] [Indexed: 12/27/2022]
Abstract
The ecology of vector-borne diseases in a region can be attributed to vector-host interactions. In the United States, tick-borne pathogens are the cause of the highest number of reported vector-borne diseases. In the mid-Atlantic region of the eastern United States, tick-borne diseases such as Lyme disease, have increased in incidence, with tick-host-pathogen interactions considered a contributing factor to this increase. Ticks become infected with pathogens after taking a blood meal from a systemically infected host or through a localized infection while co-feeding on a host with other infected ticks. The host not only plays a role in pathogen acquisition by the tick, but can also facilitate dispersal of the tick locally within a region or over greater distances into new geographical ranges outside of their historical distributional range. In this study conducted in southeastern Virginia (USA), we examined the interaction between both resident and migratory bird species and Ixodes ticks, the primary vectors of Borrelia burgdorferi sensu stricto (s.s.) the main causative agent of Lyme disease on the East coast of the United States. Over a two-year period (2012-2014), 1879 passerine birds were surveyed, with 255 Ixodes ticks tested for the presence of Borrelia spp. Eighty passerine birds (4.3 %) representing 17 bird species were parasitized by at least one Ixodes tick, but only three bird species were parasitized by Ixodes ticks that tested positive for B. burgdorferi s.s. Twenty Ixodes ticks (7.8 %) tested positive for B. burgdorferi s.s. with nearly all collected from resident bird species including the Carolina wren (Thryothorus ludovicianus) and brown thrasher (Toxostoma rufum). Given that millions of birds pass through southeastern Virginia during migration, even with the low number of Ixodes ticks parasitizing passerine birds and the low prevalence of B. burgdorferi s.s. found within Ixodes ticks collected, the sheer volume of passerine birds suggests they may play a role in the maintenance and dispersal of B. burgdorferi s.s. in southeastern Virginia.
Collapse
|
30
|
Hojgaard A, Osikowicz LM, Eisen L, Eisen RJ. Evaluation of a novel multiplex PCR amplicon sequencing assay for detection of human pathogens in Ixodes ticks. Ticks Tick Borne Dis 2020; 11:101504. [PMID: 32993925 PMCID: PMC11351054 DOI: 10.1016/j.ttbdis.2020.101504] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/18/2020] [Accepted: 07/01/2020] [Indexed: 11/28/2022]
Abstract
Tickborne diseases are an increasing public health concern in the United States, where the majority of notifiable cases are caused by pathogens vectored by Ixodes ticks. To better monitor changes in acarological risk of human encounters with these ticks and their associated pathogens, the Centers for Disease Control and Prevention (CDC) recently established a national tick and tickborne pathogen surveillance program. Here, we describe and evaluate a new Multiplex PCR Amplicon Sequencing (MPAS) assay for potential use in surveillance programs targeting two common human-biting vector ticks, Ixodes scapularis and Ixodes pacificus. The ability of the MPAS assay to detect five Ixodes-associated human pathogens (Borrelia burgdorferi sensu stricto, Borrelia mayonii, Borrelia miyamotoi, Anaplasma phagocytophilum and Babesia microti) was compared to that of a previously published and routinely used probe-based (TaqMan) PCR testing algorithm for pathogen detection in Ixodes ticks. Assay performance comparisons included a set of 175 host-seeking Ixodes nymphs collected in Connecticut as well as DNA from our pathogen reference collection. The MPAS assay and the CDC standard TaqMan PCR pathogen testing algorithm were found to have equivalent detection sensitivity for Ixodes-associated human pathogens. However, the MPAS assay was able to detect a broader range of tick-associated microorganisms, more effectively detected co-infections of multiple pathogens in a single tick (including different species within the Borrelia burgdorferi sensu lato complex), and required a smaller volume of test sample (thus preserving more sample for future testing).
Collapse
Affiliation(s)
- Andrias Hojgaard
- Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 3156 Rampart Road, Fort Collins, CO 80521, United States
| | - Lynn M Osikowicz
- Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 3156 Rampart Road, Fort Collins, CO 80521, United States
| | - Lars Eisen
- Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 3156 Rampart Road, Fort Collins, CO 80521, United States
| | - Rebecca J Eisen
- Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 3156 Rampart Road, Fort Collins, CO 80521, United States.
| |
Collapse
|
31
|
Fedele K, Poh KC, Brown JE, Jones A, Durden LA, Tiffin HS, Pagac A, Li AY, Machtinger ET. Host distribution and pathogen infection of fleas (Siphonaptera) recovered from small mammals in Pennsylvania. JOURNAL OF VECTOR ECOLOGY : JOURNAL OF THE SOCIETY FOR VECTOR ECOLOGY 2020; 45:32-44. [PMID: 32492279 DOI: 10.1111/jvec.12371] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 12/23/2019] [Indexed: 06/11/2023]
Abstract
The number of recognized flea-borne pathogens has increased over the past decade. However, the true number of infections related to all flea-borne pathogens remains unknown. To better understand the enzootic cycle of flea-borne pathogens, fleas were sampled from small mammals trapped in central Pennsylvania. A total of 541 small mammals were trapped, with white-footed mice (Peromyscus leucopus) and southern red-backed voles (Myodes gapperi) accounting for over 94% of the captures. Only P. leucopus were positive for examined blood-borne pathogens, with 47 (18.1%) and ten (4.8%) positive for Anaplasma phagocytophilum and Babesia microti, respectively. In addition, 61 fleas were collected from small mammals and tested for pathogens. Orchopeas leucopus was the most common flea and Bartonella vinsonii subspecies arupensis, B. microti, and a Rickettsia felis-like bacterium were detected in various flea samples. To the best of our knowledge, this is the first report of B. microti DNA detected from a flea and the first report of a R. felis-like bacterium from rodent fleas in eastern North America. This study provides evidence of emerging pathogens found in fleas, but further investigation is required to resolve the ecology of flea-borne disease transmission cycles.
Collapse
Affiliation(s)
- Kaila Fedele
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA, 16802, U.S.A
| | - Karen C Poh
- Department of Entomology, Pennsylvania State University, University Park, PA, 16802, U.S.A
| | - Jessica E Brown
- Department of Ecosystem Science and Management, Pennsylvania State University, University Park, PA, 16802, U.S.A
| | - Amanda Jones
- Walter Reed Army Institute of Research, Silver Spring, MD, 20902, U.S.A
| | - Lance A Durden
- Department of Biology, Georgia Southern University, Statesboro, GA, 30458, U.S.A
| | - Hannah S Tiffin
- Department of Entomology, Pennsylvania State University, University Park, PA, 16802, U.S.A
| | - Alexandra Pagac
- Department of Entomology, Pennsylvania State University, University Park, PA, 16802, U.S.A
| | - Andrew Y Li
- USDA, ARS, Invasive Insect Biocontrol and Behavior Laboratory, 10300 Baltimore Avenue, Beltsville, MD, 20705, U.S.A
| | - Erika T Machtinger
- Department of Entomology, Pennsylvania State University, University Park, PA, 16802, U.S.A
| |
Collapse
|
32
|
Parise CM, Breuner NE, Hojgaard A, Osikowicz LM, Replogle AJ, Eisen RJ, Eisen L. Experimental Demonstration of Reservoir Competence of the White-Footed Mouse, Peromyscus leucopus (Rodentia: Cricetidae), for the Lyme Disease Spirochete, Borrelia mayonii (Spirochaetales: Spirochaetaceae). JOURNAL OF MEDICAL ENTOMOLOGY 2020; 57:927-932. [PMID: 31819966 PMCID: PMC8056285 DOI: 10.1093/jme/tjz242] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Indexed: 05/03/2023]
Abstract
The white-footed mouse, Peromyscus leucopus (Rafinesque), is a reservoir for the Lyme disease spirochete Borrelia burgdorferi sensu stricto in the eastern half of the United States, where the blacklegged tick, Ixodes scapularis Say (Acari: Ixodidae), is the primary vector. In the Midwest, an additional Lyme disease spirochete, Borrelia mayonii, was recorded from naturally infected I. scapularis and P. leucopus. However, an experimental demonstration of reservoir competence was lacking for a natural tick host. We therefore experimentally infected P. leucopus with B. mayonii via I. scapularis nymphal bites and then fed uninfected larvae on the mice to demonstrate spirochete acquisition and passage to resulting nymphs. Of 23 mice fed on by B. mayonii-infected nymphs, 21 (91%) developed active infections. The infection prevalence for nymphs fed as larvae on these infected mice 4 wk post-infection ranged from 56 to 98%, and the overall infection prevalence for 842 nymphs across all 21 P. leucopus was 75% (95% confidence interval, 72-77%). To assess duration of infectivity, 10 of the P. leucopus were reinfested with uninfected larval ticks 12 wk after the mice were infected. The overall infection prevalence for 480 nymphs across all 10 P. leucopus at the 12-wk time point was 26% (95% confidence interval, 23-31%), when compared with 76% (95% confidence interval, 71-79%) for 474 nymphs from the same subset of 10 mice at the 4-wk time point. We conclude that P. leucopus is susceptible to infection with B. mayonii via bite by I. scapularis nymphs and an efficient reservoir for this Lyme disease spirochete.
Collapse
|
33
|
Breuner NE, Ford SL, Hojgaard A, Osikowicz LM, Parise CM, Rosales Rizzo MF, Bai Y, Levin ML, Eisen RJ, Eisen L. Failure of the Asian longhorned tick, Haemaphysalis longicornis, to serve as an experimental vector of the Lyme disease spirochete, Borrelia burgdorferi sensu stricto. Ticks Tick Borne Dis 2019; 11:101311. [PMID: 31640938 PMCID: PMC7054938 DOI: 10.1016/j.ttbdis.2019.101311] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 09/26/2019] [Accepted: 10/09/2019] [Indexed: 10/27/2022]
Abstract
The invasive, human-biting Asian longhorned tick, Haemaphysalis longicornis, was detected in New Jersey in the eastern United States in August of 2017 and by November of 2018 this tick had been recorded from 45 counties across 9 states, primarily along the Eastern Seaboard. The establishment of H. longicornis in the United States has raised the questions of how commonly it will bite humans and which native pathogens may naturally infect this tick. There also is a need for experimental vector competence studies with native pathogens to determine if H. longicornis can acquire a given pathogen while feeding, pass it transstadially, and then transmit the pathogen in the next life stage. In this experimental study, we evaluated the vector competence of a population of H. longicornis originating from the United States (New York) for a native isolate (B31) of the Lyme disease spirochete, Borrelia burgdorferi sensu stricto (s.s.). In agreement with a previous experimental study on the vector competence of H. longicornis for Borrelia garinii, we found that uninfected H. longicornis larvae could acquire B. burgdorferi s.s. while feeding on infected Mus musculus mice (infection prevalence >50% in freshly fed larvae) but that the infection was lost during the molt to the nymphal stage. None of 520 tested molted nymphs were found to be infected, indicating that transstadial passage of B. burgdorferi s.s. is absent or rare in H. longicornis; and based on the potential error associated with the number of nymphs testing negative in this study, we estimate that the upper 95% limit for infection prevalence was 0.73%. An Ixodes scapularis process control showed both effective acquisition of B. burgdorferi s.s. from infected mice by uninfected larvae and transstadial passage to the nymphal stage (infection prevalence of 80-82% for both freshly fed larvae and molted nymphs). We also observed that although H. longicornis larvae could be compelled to feed on mice by placing the ticks within feeding capsules, attachment and feeding success was minimal (<0.5%) when larvae were placed freely on the fur of the mice. We conclude that H. longicornis is unlikely to contribute more than minimally, if at all, to transmission of Lyme disease spirochetes in the United States.
Collapse
Affiliation(s)
- Nicole E Breuner
- Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 3156 Rampart Road, Fort Collins, CO 80521, United States
| | - Shelby L Ford
- Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road NE, MS G-13, Atlanta, GA 30329-4018, United States
| | - Andrias Hojgaard
- Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 3156 Rampart Road, Fort Collins, CO 80521, United States
| | - Lynn M Osikowicz
- Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 3156 Rampart Road, Fort Collins, CO 80521, United States
| | - Christina M Parise
- Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 3156 Rampart Road, Fort Collins, CO 80521, United States
| | - Maria F Rosales Rizzo
- Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 3156 Rampart Road, Fort Collins, CO 80521, United States
| | - Ying Bai
- Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 3156 Rampart Road, Fort Collins, CO 80521, United States
| | - Michael L Levin
- Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road NE, MS G-13, Atlanta, GA 30329-4018, United States
| | - Rebecca J Eisen
- Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 3156 Rampart Road, Fort Collins, CO 80521, United States
| | - Lars Eisen
- Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 3156 Rampart Road, Fort Collins, CO 80521, United States.
| |
Collapse
|
34
|
Johnson TL, Graham CB, Maes SE, Hojgaard A, Fleshman A, Boegler KA, Delory MJ, Slater KS, Karpathy SE, Bjork JK, Neitzel DF, Schiffman EK, Eisen RJ. Prevalence and distribution of seven human pathogens in host-seeking Ixodes scapularis (Acari: Ixodidae) nymphs in Minnesota, USA. Ticks Tick Borne Dis 2018; 9:1499-1507. [PMID: 30055987 DOI: 10.1016/j.ttbdis.2018.07.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Revised: 07/11/2018] [Accepted: 07/17/2018] [Indexed: 11/19/2022]
Abstract
In the north-central United States, the blacklegged tick (Ixodes scapularis) is currently known to vector seven human pathogens. These include five bacteria (Borrelia burgdorferi sensu stricto, Borrelia mayonii, Borrelia miyamotoi, Anaplasma phagocytophilum, Ehrlichia muris eauclairensis), one protozoan (Babesia microti) and one virus (Powassan). We sought to assess the prevalence and distribution of these pathogens in host-seeking nymphs collected throughout Minnesota, a state on the northwestern edge of the tick's expanding range, where reported cases of I. scapularis-borne diseases have increased in incidence and geographic range over the past decade. Among the 1240 host-seeking I. scapularis nymphs that we screened from 64 sites, we detected all seven pathogens at varying frequencies. Borrelia burgdorferi s.s. was the most prevalent and geographically widespread, found in 25.24% of all nymphs tested. Anaplasma phagocytophilum and Babesia microti were also geographically widespread, but they were less prevalent than Bo. burgdorferi s.s. (detected in 6.29% and 4.68% of ticks, respectively). Spatial clusters of sites with high prevalence for these three pathogens were identified in the north-central region of the state. Prevalence was less than 1.29% for each of the remaining pathogens. Two or more pathogens were detected in 90 nymphs (7.26%); coinfections with Bo. burgdorferi s.s. and either A. phagocytophilum (51 nymphs, 4.11%) or Ba. microti (43 nymphs, 3.47%) were the most common combinations. The distribution and density of infected ticks mirrors the distribution of notifiable tick-borne diseases in Minnesota and provides information on the distribution and prevalence of recently described human pathogens.
Collapse
Affiliation(s)
- Tammi L Johnson
- Bacterial Diseases Branch, Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 3156 Rampart Rd., Fort Collins, CO 80521, United States
| | - Christine B Graham
- Bacterial Diseases Branch, Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 3156 Rampart Rd., Fort Collins, CO 80521, United States
| | - Sarah E Maes
- Bacterial Diseases Branch, Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 3156 Rampart Rd., Fort Collins, CO 80521, United States
| | - Andrias Hojgaard
- Bacterial Diseases Branch, Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 3156 Rampart Rd., Fort Collins, CO 80521, United States
| | - Amy Fleshman
- Bacterial Diseases Branch, Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 3156 Rampart Rd., Fort Collins, CO 80521, United States
| | - Karen A Boegler
- Bacterial Diseases Branch, Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 3156 Rampart Rd., Fort Collins, CO 80521, United States
| | - Mark J Delory
- Bacterial Diseases Branch, Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 3156 Rampart Rd., Fort Collins, CO 80521, United States
| | - Kimetha S Slater
- Rickettsial Zoonoses Branch, Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 1600 Clifton Rd., Atlanta, GA 30329-4027, United States
| | - Sandor E Karpathy
- Rickettsial Zoonoses Branch, Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 1600 Clifton Rd., Atlanta, GA 30329-4027, United States
| | - Jenna K Bjork
- Minnesota Department of Health, 625 Robert St N, St. Paul, MN 55164, United States
| | - David F Neitzel
- Minnesota Department of Health, 625 Robert St N, St. Paul, MN 55164, United States
| | | | - Rebecca J Eisen
- Bacterial Diseases Branch, Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 3156 Rampart Rd., Fort Collins, CO 80521, United States.
| |
Collapse
|
35
|
Transmission of the relapsing fever spirochete, Borrelia miyamotoi, by single transovarially-infected larval Ixodes scapularis ticks. Ticks Tick Borne Dis 2018; 9:1464-1467. [PMID: 30007502 PMCID: PMC6135663 DOI: 10.1016/j.ttbdis.2018.07.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 07/03/2018] [Accepted: 07/09/2018] [Indexed: 12/04/2022]
Abstract
The relapsing fever spirochete, Borrelia miyamotoi, is increasingly recognized as a cause of human illness (hard tick-borne relapsing fever) in the United States. We previously demonstrated that single nymphs of the blacklegged tick, Ixodes scapularis, can transmit B. miyamotoi to experimental hosts. However, two recent epidemiological studies from the Northeastern United States indicate that human cases of hard tick-borne relapsing fever peak during late summer, after the spring peak for nymphal tick activity but coincident with the peak seasonal activity period of larval ticks in the Northeast. These epidemiological findings, together with evidence that B. miyamotoi can be passed from infected I. scapularis females to their offspring, suggest that bites by transovarially-infected larval ticks can be an important source of human infection. To demonstrate experimentally that transovarially-infected larval I. scapularis ticks can transmit B. miyamotoi, outbred Mus musculus CD1 mice were exposed to 1 or 2 potentially infected larvae. Individual fed larvae and mouse blood taken 10 d after larvae attached were tested for presence of B. miyamotoi DNA, and mice also were examined for seroreactivity to B. miyamotoi 8 wk after tick feeding. We documented B. miyamotoi DNA in blood from 13 (57%) of 23 mice exposed to a single transovarially-infected larva and in 5 (83%) of 6 mice exposed to two infected larvae feeding simultaneously. All 18 positive mice also demonstrated seroreactivity to B. miyamotoi. Of the 11 remaining mice without detectable B. miyamotoi DNA in their blood 10 d after infected larvae attached, 7 (64%) had evidence of spirochete exposure by serology 8 wk later. Because public health messaging for risk of exposure to Lyme disease spirochetes focuses on nymphal and female I. scapularis ticks, our finding that transovarially-infected larvae effectively transmit B. miyamotoi should lead to refined tick-bite prevention messages.
Collapse
|