1
|
Dillon CF, Dillon GR. Q Fever-Related Community Infections: United States Exposure to Coxiella burnetii. Pathogens 2025; 14:460. [PMID: 40430780 PMCID: PMC12114960 DOI: 10.3390/pathogens14050460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2025] [Revised: 04/08/2025] [Accepted: 04/28/2025] [Indexed: 05/29/2025] Open
Abstract
Coxiella burnetii is a significant infectious pathogen that causes Q fever. Q fever is thought to be uncommon in the US and most human cases are believed to occur in agricultural livestock workers. However, the extent of US community exposure to C. burnetii is not known with certainty. Using nationally representative 2003-2004 US National Health and Nutrition Examination Survey serologic, demographic, and occupational history data, the magnitude of US adult general population exposure to C. burnetii, excluding agricultural-sector workers, was estimated. Exposure was defined as positive serum IgG antibodies in an immunofluorescence assay (e.g., current or past infection). A total of 3.0% (95% CI: 2.0-4.4) of the US population met the criteria for C. burnetii exposure, representing some 6.2 million persons. Overall, 86.9% (95% CI: 75.5-98.4) of the seropositive persons had no lifetime history of work in the agricultural sector (5.5 million persons). This was consistently true across all US demographic groups: aged 20-59 years, 87.3%; aged 60+ years, 85.7%; men, 86.1%; women, 87.6%; non-Hispanic Whites, 82%; non-Hispanic Blacks, 95.8%; Mexican Americans, 89.4%; immigrants from Mexico, 83.5%; and other immigrants, 96.8%. As a proportion of C. burnetii infections result in acute Q fever and chronic Q fever conveys significant mortality, the community-level risks to the general public may be significant. It is recommended that a 6-year sample of the most recent NHANES stored sera be analyzed to determine the current community C. burnetii exposure rates. Also, analyzing an additional 2005-2008 stored sera sample would provide an opportunity to assess the time trends and long-term health impacts.
Collapse
|
2
|
Mahmoud HYAH, Soliman AM, Shahat MS, Hroobi AA, Alghamdi AH, Almotayri AM, Tanaka T, Emeish WFA. Molecular detection of Rickettsia aeschlimannii, Borrelia theileri, and Francisella-like endosymbionts in Camelus dromedarius and dogs in Luxor, Egypt. Sci Rep 2025; 15:12872. [PMID: 40234496 PMCID: PMC12000560 DOI: 10.1038/s41598-025-91530-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Accepted: 02/20/2025] [Indexed: 04/17/2025] Open
Abstract
Vector-borne bacterial pathogens can cause disease in a range of animals, including dromedary camels and dogs, but epidemiological and molecular studies on these pathogens are scarce in southern Egypt. In this study, we screened camels and dogs in southern Egypt (Luxor) for vector-borne bacterial pathogens, with molecular analysis of 200 blood samples collected from camels and dogs in the region. The Rickettsia aeschlimannii gltA gene was detected in 5% (5/100) of camel blood samples and 1% (1/100) of dog blood samples. This study is the first report of Rickettsia aeschlimannii in camel blood in southern Egypt. Additionally, the 16S rRNA gene of a Francisella-like endosymbiont was detected in both camel and dog blood for the first time, with infection rates of 2% (2/100) in camels and 2% (2/100) in dogs. In dog blood, the Borrelia theileri flaB gene was detected for the first time in southern Egypt at a positivity rate of 5% (5/100). Neither Coxiella nor Bartonella species were detected in this study. In southern Egypt, Rickettsia aeschlimannii, Borrelia theileri, and Francisella-like endosymbionts were detected in camels and dogs, providing valuable information about their infection rate and these findings contribute to a better understanding of their transmission dynamics.
Collapse
Affiliation(s)
- Hassan Y A H Mahmoud
- Division of Infectious Diseases, Animal Medicine Department, Faculty of Veterinary Medicine, South Valley University, Qena, 83523, Egypt.
| | - Ahmed M Soliman
- Biotechnology Department, Animal Health Research Institute, Agricultural Research Center, Dokki Giza, 12618, Egypt
- Laboratory of Infectious Diseases, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, 890-0065, Japan
| | - Moshera S Shahat
- Division of Internal Medicine, Animal Medicine Department, Faculty of Veterinary Medicine, South Valley University, Qena, 83523, Egypt
| | - Ali A Hroobi
- Department of Biology, Faculty of Science, Al-Baha University, Al-Baha, Saudi Arabia
| | - Ali H Alghamdi
- Department of Biology, Faculty of Science, Al-Baha University, Al-Baha, Saudi Arabia
| | - Abdullah M Almotayri
- Department of Biology, Faculty of Science, Al-Baha University, Al-Baha, Saudi Arabia
| | - Tetsuya Tanaka
- Laboratory of Infectious Diseases, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, 890-0065, Japan
- Laboratory of Animal Microbiology, Graduate School of Agricultural Science, Tohoku University, Sendai, 980-8572, Japan
| | - Walaa F A Emeish
- Department of Fish Diseases, Faculty of Veterinary Medicine, South Valley University, Qena, 83523, Egypt
| |
Collapse
|
3
|
Han X, Liu Z, Jiang Z, Zhao S, Hornok S, Yang M, Liu G, Wang Y. Detection of spotted fever group rickettsiae and Coxiella burnetii in long-tailed ground squirrels ( Spermophilus undulatus) and their ectoparasites. Front Vet Sci 2025; 12:1553152. [PMID: 40115830 PMCID: PMC11923762 DOI: 10.3389/fvets.2025.1553152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Accepted: 02/25/2025] [Indexed: 03/23/2025] Open
Abstract
Long-tailed ground squirrels (LTGRs, Spermophilus undulatus) are known as reservoirs of multiple arthropod-borne pathogens, such as Yersinia pestis and Bartonella rochalimae. However, data on the prevalence of spotted fever group rickettsiae (SFGR) and Coxiella burnetii in LTGRs and its ectoparasites are limited. In two alpine regions of Xinjiang Uygur Autonomous Region (XUAR, northwestern China), a total of 346 samples were collected from 142 LTGRs, including 142 livers and 204 pooled ectoparasites (Citellophilus tesquorum dzetysuensis: 120 pools of 484 fleas; Frontopsylla elatoides elatoides: 19 pools of 71 fleas; Neopsylla mana: 1 pool of 4 fleas; and Linognathoides urocitelli: 64 pools of 865 lice). From these samples, the DNA was extracted, followed by PCR amplification of different genetic markers. Particularly, genes encoding the outer membrane protein A and B (ompA, ompB), citrate synthase (gltA), and surface cell antigen 1 (sca1) were used to identify the SFGR. Additionly, the capsular outer membrane protein (Com1) gene and insertion sequence (IS1111) genes were used to detect Coxiella. Rickettsia sibirica subsp. sibirica, Rickettsia felis, and C. burnetii were detected in LTGRs, as well as in flea and louse pools. Rickettsia raoultii was found in LTGRs and flea pools. Furthermore, Rickettsia slovaca was also identified in the flea pools. This study provides molecular evidence for the occurrence of SFGR and C. burnetii in LTGRs and their ectoparasites. These findings suggest that R. sibirica, R. slovaca, R. raoultii, R. felis and C. burnetii are transmitted between LTGRs (as potential reservoirs) and their fleas and lice (as potential vectors).
Collapse
Affiliation(s)
- Xiaoshuang Han
- Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the XPCC, School of Medicine, Shihezi University, Shihezi, Xinjiang, China
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, Xinjiang, China
| | - Ziheng Liu
- Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the XPCC, School of Medicine, Shihezi University, Shihezi, Xinjiang, China
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, Xinjiang, China
| | - Zhixian Jiang
- Department of Forest, Agriculture College, Shihezi University, Shihezi, Xinjiang, China
| | - Shanshan Zhao
- Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the XPCC, School of Medicine, Shihezi University, Shihezi, Xinjiang, China
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, Xinjiang, China
| | - Sándor Hornok
- Department of Parasitology and Zoology, University of Veterinary Medicine, Budapest, Hungary
- HUN-REN-UVMB Climate Change: New Blood-Sucking Parasites and Vector-Borne Pathogens Research Group, Budapest, Hungary
| | - Meihua Yang
- Department of Forest, Agriculture College, Shihezi University, Shihezi, Xinjiang, China
| | - Gang Liu
- Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the XPCC, School of Medicine, Shihezi University, Shihezi, Xinjiang, China
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, Xinjiang, China
| | - Yuanzhi Wang
- Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the XPCC, School of Medicine, Shihezi University, Shihezi, Xinjiang, China
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, Xinjiang, China
| |
Collapse
|
4
|
Eremeeva ME, Das S. Tick-, flea- and mite-borne pathogens and associated diseases of public health importance in Bangladesh: a review. INFECTIOUS MEDICINE 2024; 3:100146. [PMID: 39687692 PMCID: PMC11647497 DOI: 10.1016/j.imj.2024.100146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 04/22/2024] [Accepted: 10/13/2024] [Indexed: 12/18/2024]
Abstract
Background This scoping review provides a baseline summary of the current records of the ticks, fleas, and mites of public health importance that are present in Bangladesh. It summarizes their geographic distributions and reports the levels of their infestation of livestock, pets, wildlife, and humans, and the clinical and epidemiological studies pertinent to these vectors and their pathogens. Methods Sixty-one articles were identified in a literature search, including 43 published since 2011. Results Twelve articles contained reliable information on ticks and their associated hosts. However, information on fleas and mites in Bangladesh is very limited. Seventeen species of ixodid ticks that commonly parasitize peridomestic animals and can bite humans are described: Rhipicephalus microplus, R. appendiculatus, R. sanguineus, Haemaphysalis bispinosa, Hyalomma anatolicum, and Amblyomma testudinarium. Thirty-eight veterinary articles describe livestock pathogens, including Babesia, Anaplasma, and Theileria, and the diseases they cause. Few of those studies used modern molecular techniques to identify these pathogens. Eleven articles reported human diseases or surveillance studies, 10 from the last 10 years. Two country-wide serosurveys of 1,209 and 720 patients, using Enzyme Linked Immunosorbent Assay (ELISA) and Indirect Immunofluorescence Assay (IFA), respectively, reported human exposure to Orientia tsutsugamushi (8.8%-23.7%), typhus and spotted-fever group rickettsiae (19.7%-66.6%), and Coxiella burnetii (3%). The seropositivity rates varied regionally. PCR-based studies confirmed that febrile patients in Bangladesh may be infected with O. tsutsugamushi, Rickettsia typhi, Rickettsia felis, or Bartonella elizabethae. Only limited molecular research has been done with dogs and cats. These studies have reported PCR-confirmed canine infections with Babesia gibsoni (30%), Anaplasma bovis (58%), or Rickettsia monacenis (14%, n=50), and feline infections with Rickettsia felis (21%, n=100). Similarly, fleas from cats tested positive for Rickettsia felis (20.6%). Conclusions These findings indicate that diseases borne by non-mosquito vectors in Bangladesh urgently require more attention from public health, medical, and veterinary specialists to establish their true occurrence.
Collapse
Affiliation(s)
- Marina E Eremeeva
- Jiann-Ping Hsu College of Public Health, Georgia Southern University, Statesboro, GA 30458, USA
| | - Shobhan Das
- Jiann-Ping Hsu College of Public Health, Georgia Southern University, Statesboro, GA 30458, USA
| |
Collapse
|
5
|
Xu ZY, Wang FN, Jian R, Xue J, Guo YC, Guo WP. Multiple spacer sequence typing of Coxiella burnetii carried by ticks in Gansu, China. Front Vet Sci 2024; 11:1470242. [PMID: 39664899 PMCID: PMC11632110 DOI: 10.3389/fvets.2024.1470242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 11/01/2024] [Indexed: 12/13/2024] Open
Abstract
Background Coxiella burnetii is a zoonotic pathogen that causes Q fever and is found worldwide. Ticks serve as the primary reservoir, playing an important role in maintaining the natural cycle of C. burnetii. C. burnetii is transmitted to animals when ticks feed on their blood. However, information on C. burnetii infection in ticks remains limited, despite the widespread prevalence of the infection in humans and animals across China. Methods In this study, 192 engorged ticks were collected from Baiyin City of Gansu Province, China. The presence of Coxiella burnetii in ticks was specifically identified by detecting the IS1111 gene using nested polymerase chain reaction (nPCR). In addition, the 16S rRNA gene of C. burnetii was molecularly characterized using nPCR. A total of 10 spacer sequences (Cox 2, 5, 18, 20, 22, 37, 51, 56, 57, and 61) were amplified using PCR against positive specimens for MST analysis. Results All collected ticks were identified as Hyalomma marginatum, and 90 of them tested positive for C. burnetii, with a positive rate of 46.9% (90/192). The 16S rRNA gene analysis showed that the novel C. burnetii variants detected in this study were closely related to other C. burnetii strains in the world. The allele codes found in the present study for loci Cox2-Cox5-Cox18-Cox20-Cox22-Cox37-Cox51-Cox56-Cox57-Cox61 were 8-4-9-5-7-5-2-3-11-6. This represents a novel combination of allele values, similar to MST28, currently designated as MST85 in the Multi Spacers Typing (MST) database. Conclusion Our results revealed the circulation of a novel MST genotype of C. burnetii in Baiyin City, Gansu Province, China. The detection of C. burnetii in ticks suggests a potential public health risk to the local human population.
Collapse
Affiliation(s)
| | | | | | | | - Ya-Chun Guo
- College of Basic Medicine, Chengde Medical University, Chengde, Hebei, China
| | - Wen-Ping Guo
- College of Basic Medicine, Chengde Medical University, Chengde, Hebei, China
| |
Collapse
|
6
|
Contreras-Ferro R, Trueba JM, Sánchez-Mora P, Escudero R, Sánchez-Seco MP, Montero E, Negredo A, González LM, Dashti A, Llorente MT, Gil-Zamorano J, Vázquez A, Jado I, González-Barrio D. Why an Integrated Approach to Tick-Borne Pathogens (Bacterial, Viral, and Parasitic) Is Important in the Diagnosis of Clinical Cases. Trop Med Infect Dis 2024; 9:272. [PMID: 39591278 PMCID: PMC11598257 DOI: 10.3390/tropicalmed9110272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 10/29/2024] [Accepted: 11/04/2024] [Indexed: 11/28/2024] Open
Abstract
Tick-borne diseases have emerged as a major global public health problem in recent decades. The increasing incidence and geographical dissemination of these diseases requires the implementation of robust surveillance systems to monitor their prevalence, distribution, and public health impact. It is therefore not unexpected that tick-borne pathogens coexist in the same vectors, but the interactions of these agents between vectors and vertebrate hosts, including humans, remain poorly understood. The impact of infection in humans extends to the diagnostic challenges that arise when the same symptomatology can be associated with any tick-borne pathogen, and therapeutic recommendations only focus on the major or best-known tick-borne diseases, ignoring other lesser-known or less prevalent infections. Both surveillance systems and the holistic diagnosis of tick-borne pathogens are necessary tools to address the emergence of vector-borne diseases. In this study, we will focus on the main tick-borne viral, bacterial, and parasitic diseases in Spain to reflect the need to establish syndromic diagnostics in samples from patients with a history of tick bites and symptomatology compatible with them. On the other hand, and highlighting this need, innovations in molecular techniques, syndromic surveillance, and surveillance programs for ticks and tick-borne pathogens with public health implications are expected to be developed.
Collapse
Affiliation(s)
- Raúl Contreras-Ferro
- Reference and Research Laboratory on Special Pathogens, National Center for Microbiology (CNM), Carlos III Health Institute (ISCIII), 28220 Madrid, Spain; (R.C.-F.); (J.M.T.); (R.E.); (M.T.L.); (J.G.-Z.); (I.J.)
| | - Jorge Martín Trueba
- Reference and Research Laboratory on Special Pathogens, National Center for Microbiology (CNM), Carlos III Health Institute (ISCIII), 28220 Madrid, Spain; (R.C.-F.); (J.M.T.); (R.E.); (M.T.L.); (J.G.-Z.); (I.J.)
| | - Patricia Sánchez-Mora
- Arboviruses and Imported Viral Diseases Laboratory, National Center for Microbiology (CNM), Carlos III Health Institute (ISCIII), 28220 Madrid, Spain; (P.S.-M.); (M.P.S.-S.); (A.N.); (A.V.)
- CIBER Enfermedades Infecciosas (CIBERINFEC), 28029 Madrid, Spain
| | - Raquel Escudero
- Reference and Research Laboratory on Special Pathogens, National Center for Microbiology (CNM), Carlos III Health Institute (ISCIII), 28220 Madrid, Spain; (R.C.-F.); (J.M.T.); (R.E.); (M.T.L.); (J.G.-Z.); (I.J.)
| | - María Paz Sánchez-Seco
- Arboviruses and Imported Viral Diseases Laboratory, National Center for Microbiology (CNM), Carlos III Health Institute (ISCIII), 28220 Madrid, Spain; (P.S.-M.); (M.P.S.-S.); (A.N.); (A.V.)
- CIBER Enfermedades Infecciosas (CIBERINFEC), 28029 Madrid, Spain
| | - Estrella Montero
- Parasitology Reference and Research Laboratory, National Center for Microbiology (CNM), Carlos III Health Institute (ISCIII), 28220 Madrid, Spain; (E.M.); (L.M.G.); (A.D.)
| | - Anabel Negredo
- Arboviruses and Imported Viral Diseases Laboratory, National Center for Microbiology (CNM), Carlos III Health Institute (ISCIII), 28220 Madrid, Spain; (P.S.-M.); (M.P.S.-S.); (A.N.); (A.V.)
- CIBER Enfermedades Infecciosas (CIBERINFEC), 28029 Madrid, Spain
| | - Luis Miguel González
- Parasitology Reference and Research Laboratory, National Center for Microbiology (CNM), Carlos III Health Institute (ISCIII), 28220 Madrid, Spain; (E.M.); (L.M.G.); (A.D.)
| | - Alejandro Dashti
- Parasitology Reference and Research Laboratory, National Center for Microbiology (CNM), Carlos III Health Institute (ISCIII), 28220 Madrid, Spain; (E.M.); (L.M.G.); (A.D.)
| | - María Teresa Llorente
- Reference and Research Laboratory on Special Pathogens, National Center for Microbiology (CNM), Carlos III Health Institute (ISCIII), 28220 Madrid, Spain; (R.C.-F.); (J.M.T.); (R.E.); (M.T.L.); (J.G.-Z.); (I.J.)
| | - Judit Gil-Zamorano
- Reference and Research Laboratory on Special Pathogens, National Center for Microbiology (CNM), Carlos III Health Institute (ISCIII), 28220 Madrid, Spain; (R.C.-F.); (J.M.T.); (R.E.); (M.T.L.); (J.G.-Z.); (I.J.)
| | - Ana Vázquez
- Arboviruses and Imported Viral Diseases Laboratory, National Center for Microbiology (CNM), Carlos III Health Institute (ISCIII), 28220 Madrid, Spain; (P.S.-M.); (M.P.S.-S.); (A.N.); (A.V.)
- CIBER Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain
| | - Isabel Jado
- Reference and Research Laboratory on Special Pathogens, National Center for Microbiology (CNM), Carlos III Health Institute (ISCIII), 28220 Madrid, Spain; (R.C.-F.); (J.M.T.); (R.E.); (M.T.L.); (J.G.-Z.); (I.J.)
| | - David González-Barrio
- Reference and Research Laboratory on Special Pathogens, National Center for Microbiology (CNM), Carlos III Health Institute (ISCIII), 28220 Madrid, Spain; (R.C.-F.); (J.M.T.); (R.E.); (M.T.L.); (J.G.-Z.); (I.J.)
| |
Collapse
|
7
|
Kadhim HM, Al-Hassani MKA, Al-Galebi AAS, Essa IM. Serological and molecular prevalences and phylogenetic analysis of Coxiella burnetii in dogs in Al-Qadisiyah and Baghdad Provinces, Iraq. Vet World 2024; 17:2603-2611. [PMID: 39829647 PMCID: PMC11736363 DOI: 10.14202/vetworld.2024.2603-2611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 10/15/2024] [Indexed: 01/22/2025] Open
Abstract
Background and Aim Coxiella burnetii is a highly contagious zoonotic bacterial micro-organism. This study aimed to estimate the prevalence of C. burnetii in dogs using serological and molecular methods. Furthermore, a sequencing analysis of C. burnetii dog isolates was conducted. Materials and Methods A total of 172 dogs, including 93 pet dogs, 21 police dogs, 38 guardian dogs, and 20 stray dogs, were selected. Venous blood was drained from the dogs and examined serologically by indirect enzyme-linked immunosorbent assay (ELISA) and molecularly by polymerase chain reaction (PCR) for C. burnetii. A sequencing analysis of C. burnetii dog isolates was conducted. Results The overall prevalence of C. burnetii was 16.86%, accounting for 55% in stray dogs, 9.68% in pet dogs, 19.05% in police dogs, and 13.16% in guardian dogs. Strong positive sera were observed in stray dogs (4.84 ± 0.29), whereas weak sera were observed in pet dogs (3.22 ± 0.18). PCR analysis revealed 6.4% positive dogs, accounting for 1.08%, 4.76%, 2.63%, and 40% in pet, police, guardian, and stray dogs, respectively. Phylogenetic tree analysis of local C. burnetii isolates revealed a total rate of similarity and mutations/changes between 95.47% and 100% and 0.059%, respectively. Subsequently, the local isolates were significantly similar to Chinese hedgehog, Iraqi camel, and Colombian human C. burnetii National Center for Biotechnology Information-GenBank isolates. Conclusion This is the first study on prevalence of C. burnetii in dogs in Iraq. To prevent transmission of C. burnetii to humans, the role of dogs or other domestic and wild animals as sources of infection must be investigated extensively. In addition, the prevalence of C. burnetii in other Iraqi regions should be surveyed using the most sensitive and specific diagnostic assays, such as ELISA and PCR.
Collapse
Affiliation(s)
- Hadaf Mahdi Kadhim
- Department of Biology, College of Education, University of Al-Qadisiyah, Al-Diwaniyah, Iraq
| | | | | | - Israa M. Essa
- Department of Public Health, College of Veterinary Medicine, University of Basrah, Basra, Iraq
| |
Collapse
|
8
|
Genova-Kalou P, Hodzhev Y, Tsachev I, Pepovich R, Panaiotov S, Dobrinov V, Krumova S, Boneva-Marutsova B, Chakarova B, Todorova K, Simeonov K, Baymakova M, Fournier PE. First Insight into the Prevalence of Coxiella burnetii Infection among Veterinary Medicine Students in Bulgaria. Infect Dis Rep 2024; 16:794-805. [PMID: 39311202 PMCID: PMC11417759 DOI: 10.3390/idr16050061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/12/2024] [Accepted: 08/21/2024] [Indexed: 09/26/2024] Open
Abstract
The aim of this study was to assess the prevalence of Coxiella burnetii infection among veterinary medicine students from two Bulgarian Universities, located in Sofia and Stara Zagora. Blood samples were collected from a total of 185 veterinary students for the detection of C. burnetii phase II antibodies and presence of DNA using an enzyme-linked immunosorbent assay (ELISA) and end-point PCR test. Out of all samples, 29.7% were positive for at least one C. burnetii phase II antibody marker or by the result of the PCR test. Veterinary students from Stara Zagora showed a significantly high seropositivity for Q fever (33.6%), as compared to the students in Sofia (23%; p < 0.05). Evidence of recent exposure with detection of anti-C. burnetii phase II IgM (+) antibodies was observed in 14.6% of the students under study. Seroprevalence among students in Stara Zagora was higher (15.3%). Anti-C. burnetii phase II IgG antibodies were detected in 21.6% of examined samples. Our study revealed a higher seropositivity among the male students (32.8%) as compared to females (16.0%; p < 0.05). The end-point PCR assay detected 5.9% blood samples as positive. The relative risk (RR) of Q fever exposure for male students was 40.7%, whereas it was 24.6% in females (p < 0.05). The findings from this study indicate that the C. burnetii infection is widely distributed amongst veterinary students in Bulgaria. This study emphasizes the need for improved safety protocols and infection control measures in veterinary training programs.
Collapse
Affiliation(s)
- Petia Genova-Kalou
- Department of Virology, National Center of Infectious and Parasitic Diseases, 1233 Sofia, Bulgaria
| | - Yordan Hodzhev
- Department of Microbiology, National Center of Infectious and Parasitic Diseases, 1504 Sofia, Bulgaria
| | - Ilia Tsachev
- Department of Microbiology, Infectious and Parasitic Diseases, Faculty of Veterinary Medicine, Trakia University, 6000 Stara Zagora, Bulgaria
| | - Roman Pepovich
- Department of Infectious Pathology, Hygiene, Technology and Control of Foods from Animal Origin, Faculty of Veterinary Medicine, University of Forestry, 1797 Sofia, Bulgaria
| | - Stefan Panaiotov
- Department of Microbiology, National Center of Infectious and Parasitic Diseases, 1504 Sofia, Bulgaria
| | - Veselin Dobrinov
- Department of Virology, National Center of Infectious and Parasitic Diseases, 1233 Sofia, Bulgaria
| | - Stefka Krumova
- Department of Virology, National Center of Infectious and Parasitic Diseases, 1233 Sofia, Bulgaria
| | - Betina Boneva-Marutsova
- Department of Microbiology, Infectious and Parasitic Diseases, Faculty of Veterinary Medicine, Trakia University, 6000 Stara Zagora, Bulgaria
| | - Borislava Chakarova
- Department of Hygiene, Epidemiology, Microbiology, Parasitology and Infectious Diseases, Faculty of Medicine, Trakia University, 6000 Stara Zagora, Bulgaria
| | - Keytlin Todorova
- National Diagnostic and Research Veterinary Medical Institute “Prof. Dr. G. Pavlov”, Bulgarian Food Safety Agency, 1606 Sofia, Bulgaria
| | - Konstantin Simeonov
- National Diagnostic and Research Veterinary Medical Institute “Prof. Dr. G. Pavlov”, Bulgarian Food Safety Agency, 1606 Sofia, Bulgaria
| | - Magdalena Baymakova
- Department of Infectious Diseases, Military Medical Academy, 1606 Sofia, Bulgaria
| | - Pierre-Edouard Fournier
- French Reference Center for Rickettsioses, Q Fever and Bartonelloses, IHU-Méditerranée Infection, 13005 Marseille, France
| |
Collapse
|
9
|
Cifo D, Estévez-Reboredo RM, González-Barrio D, Jado I, Gómez-Barroso D. Epidemiology of Q fever in humans in four selected regions, Spain, 2016 to 2022. Euro Surveill 2024; 29:2300688. [PMID: 38967015 PMCID: PMC11225260 DOI: 10.2807/1560-7917.es.2024.29.27.2300688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 04/15/2024] [Indexed: 07/06/2024] Open
Abstract
BackgroundQ fever is a bacterial zoonosis caused by Coxiella burnetii. Spain has the highest number of notified human cases in Europe. Small ruminants are a key reservoir for the pathogen, transmission from animals to humans is usually airborne.AimWe aimed at exploring temporal and spatial epidemiological patterns of sporadic and outbreak cases of Q fever in four Spanish regions with the highest number of notified cases.MethodsWe extracted data on Q fever cases in the Canary Islands, Basque Country, La Rioja and Navarre between 2016 and 2022 from the Spanish National Epidemiological Surveillance Network. We calculated standardised incidence ratios (SIR), spatial relative risks (sRR) and posterior probabilities (PP) utilising Besag-York-Mollié models.ResultsThere were 1,059 notifications, with a predominance of males aged 30-60 years. In Basque Country, La Rioja and Navarre area, 11 outbreaks were reported, while no in the Canary Islands. A seasonal increase in incidence rates was observed between March and June. In the Canary Islands, elevated sRR was seen in La Palma, Gran Canaria, Lanzarote and Fuerteventura. In Basque Country, La Rioja and Navarre area, the highest sRR was identified in the south of Biscay province.ConclusionGoats were the main source for humans in outbreaks reported in the literature. Seasonal increase may be related to the parturition season of small ruminants and specific environmental conditions. Local variations in sRR within these regions likely result from diverse environmental factors. Future One Health-oriented studies are essential to deepen our understanding of Q fever epidemiology.
Collapse
Affiliation(s)
- Daniel Cifo
- UNED - ENS Mixed Research Institute (IMIENS), Spain
- Carlos III Health Institute - National School of Public Health (ISCIII - ENS), Madrid, Spain
| | | | - David González-Barrio
- Carlos III Health Institute - National Microbiology Centre (ISCIII - CNM). Department of Bacteriology. Majadahonda, Madrid, Spain
| | - Isabel Jado
- Carlos III Health Institute - National Microbiology Centre (ISCIII - CNM). Department of Bacteriology. Majadahonda, Madrid, Spain
| | - Diana Gómez-Barroso
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Carlos III Health Institute - National Centre of Epidemiology (ISCIII - CNE), Madrid, Spain
| |
Collapse
|
10
|
Ahaduzzaman M, Reza MMB. Global and regional seroprevalence of coxiellosis in small ruminants: A systematic review and meta-analysis. Vet Med Sci 2024; 10:e1441. [PMID: 38613179 PMCID: PMC11015088 DOI: 10.1002/vms3.1441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/11/2024] [Accepted: 03/24/2024] [Indexed: 04/14/2024] Open
Abstract
BACKGROUND Coxiellosis is a neglected zoonosis for occupationally exposed people in many parts of the world. Sheep and goats are two important small ruminants that act as reservoirs for human contamination; however, there is a lack of comprehensive data on the epidemiological aspects of coxiellosis in sheep and goats at regional and global levels. The aim of this study was to systematically review the available articles on seroprevalence of coxiellosis in sheep and goats and estimate the overall seroprevalence in different regions. METHODS A systematic search strategy was performed in five electronic repositories for articles published until December 2021. Relevant data were extracted from the selected articles based on the inclusion criteria. A random effect meta-analysis model was used to analyse the data. Results are presented as the prevalence of seropositivity as a percentage and 95% confidence intervals. RESULTS The global pooled seroprevalence of coxiellosis in sheep was 17.38% (95% confidence interval [CI]: 15.59%-19.17%). Overall, the regional level pooled prevalence estimates in sheep ranged from 15.04% (95% CI: 7.68%-22.40%) to 19.14% (95% CI: 15.51%-22.77%), depending on region. The global pooled seroprevalence of coxiellosis in goats was 22.60% (95% CI: 19.54%-25.66%). Overall, the regional level pooled prevalence estimates in goats ranged from 6.33% (95% CI: 2.96%-9.71%) to 55.13% (95% CI: 49.61%-60.65%), depending on the region. The prevalence estimates also varied significantly in both sheep and goats depending on age, sex, and rearing systems of the animals (p < 0.001). CONCLUSION Seroprevalence of coxiellosis in both sheep and goats is considerable. Routine monitoring of the sheep and goat populations is needed to prevent spillover infection in other livestock and humans.
Collapse
Affiliation(s)
- Md Ahaduzzaman
- Department of Medicine & SurgeryChattogram Veterinary & Animal Sciences University (CVASU)ChattogramBangladesh
| | - Md Moktadir Billah Reza
- Department of Medicine & SurgeryChattogram Veterinary & Animal Sciences University (CVASU)ChattogramBangladesh
| |
Collapse
|
11
|
Enferadi A, Sarani S, Mohammadipour S, Hasani SJ, Ajdari A, Asl MN, Khademi P. Molecular detection of Coxiella burnetii in ticks collected from Iran. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2024; 118:105562. [PMID: 38307395 DOI: 10.1016/j.meegid.2024.105562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/24/2024] [Accepted: 01/26/2024] [Indexed: 02/04/2024]
Abstract
The present study was conducted with the aim of investigating the prevalence and genetic structure of Coxiella burnetii in tick samples collected from domestic animals in Hormozgan province146 tick samples were randomly collected from cattle, sheep, goat, camel and dog herds in seven cities of Hormozgan. After the DNA was extracted from each tick sample; Nested-PCR method was used to identify the presence of C. burnetii using IS1111 transposon gene and isocitrate dehydrogenase icd gene. In addition, phylogenetic analysis and tree diagram were constructed based on IS1111 and icd genes. The results showed that out of 146 pool tick samples, 40 pool samples based on IS1111 gene and 32 pool samples based on icd gene were infected with C. burnetii. When results were stratified by livestock type, infection rates were highest in sheep ticks (37.5%, 95% CI: 21.2% - 57.29%), followed by cattle ticks (32.14%, 95% CI: 17.90% - 50.66%) and dog tick (15%, 95% CI: 70.6% - 29%). In camel and goat ticks, the infection rate was 15.90 and 23.07%, respectively. In conclusion, this study emphasizes the role of ticks as potential carriers of C. burneti. The results indicate the importance of cattle, sheep, goats, camels and dogs in Hormozgan region as effective factors in the epidemiology of Q fever and its impact on public health. In addition, a high degree of similarity (from 99% to 100%) was observed between IS1111 and icd genes in this study and recorded sequences from different regions of the world.
Collapse
Affiliation(s)
- Ahmad Enferadi
- Department of Microbiology, Faculty of Veterinary Medicine, Urmia University, Iran
| | - Saeedeh Sarani
- Department of Pathobiology, Faculty of Veterinary Medicine, Zabol University, Iran
| | - Shirin Mohammadipour
- Department of Pathobiology, Faculty of Veterinary Medicine, Kerman University, Iran
| | | | - Afshin Ajdari
- Department of Microbiology, Faculty of Veterinary Medicine, Urmia University, Iran
| | - Maryam Najafi Asl
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Iran.
| | - Peyman Khademi
- Department of Microbiology and Food Hygiene, Faculty of Veterinary Medicine, Lorestan University, Iran.
| |
Collapse
|
12
|
Ponnusamy L, Travanty NV, Watson DW, Seagle SW, Boyce RM, Reiskind MH. Microbiome of Invasive Tick Species Haemaphysalis longicornis in North Carolina, USA. INSECTS 2024; 15:153. [PMID: 38535349 PMCID: PMC10970973 DOI: 10.3390/insects15030153] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 02/15/2024] [Accepted: 02/21/2024] [Indexed: 11/28/2024]
Abstract
Ticks are one of the most important vectors of human and animal disease worldwide. In addition to pathogens, ticks carry a diverse microbiota of symbiotic and commensal microorganisms. In this study, we used next-generation sequencing (NGS) to survey the microbiomes of Haemaphysalis longicornis (Acari: Ixodidae) at different life stages collected from field populations in North Carolina (NC), USA. Sequence analyses were performed using QIIME2 with the DADA2 plugin and taxonomic assignments using the Greengenes database. Following quality filtering and rarefaction, the bacterial DNA sequences were assigned to 4795 amplicon sequence variants (ASVs) in 105 ticks. A core microbiome of H. longicornis was conserved across all ticks analyzed, and included bacterial taxa: Coxiella, Sphingomonas, Staphylococcus, Acinetobacter, Pseudomonas, Sphingomonadaceae, Actinomycetales, and Sphingobium. Less abundant bacterial taxa, including Rickettsia and Aeromonas, were also identified in some ticks. We discovered some ASVs that are associated with human and animal infections among the identified bacteria. Alpha diversity metrics revealed significant differences in bacterial diversity between life stages. Beta diversity metrics also revealed that bacterial communities across the three life stages were significantly different, suggesting dramatic changes in the microbiome as ticks mature. Based on these results, additional investigation is necessary to determine the significance of the Haemaphysalis longicornis microbiome for animal and human health.
Collapse
Affiliation(s)
- Loganathan Ponnusamy
- Department of Entomology and Plath Pathology, North Carolina State University, Raleigh, NC 27695, USA; (N.V.T.); (D.W.W.); (M.H.R.)
| | - Nicholas V. Travanty
- Department of Entomology and Plath Pathology, North Carolina State University, Raleigh, NC 27695, USA; (N.V.T.); (D.W.W.); (M.H.R.)
| | - D. Wes Watson
- Department of Entomology and Plath Pathology, North Carolina State University, Raleigh, NC 27695, USA; (N.V.T.); (D.W.W.); (M.H.R.)
| | - Steven W. Seagle
- Department of Biology and Southern Appalachian Environmental Research and Education Center, Appalachian State University, Boone, NC 28608, USA;
| | - Ross M. Boyce
- 111 Mason Farm Road, MBRB 2336, Chapel Hill, NC 27599, USA;
| | - Michael H. Reiskind
- Department of Entomology and Plath Pathology, North Carolina State University, Raleigh, NC 27695, USA; (N.V.T.); (D.W.W.); (M.H.R.)
| |
Collapse
|
13
|
El-Alfy ES, Abbas I, Saleh S, Elseadawy R, Fereig RM, Rizk MA, Xuan X. Tick-borne pathogens in camels: A systematic review and meta-analysis of the prevalence in dromedaries. Ticks Tick Borne Dis 2024; 15:102268. [PMID: 37769585 DOI: 10.1016/j.ttbdis.2023.102268] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 09/18/2023] [Accepted: 09/19/2023] [Indexed: 10/03/2023]
Abstract
Published data on tick-borne pathogens (TBPs) in camels worldwide have been collected to provide an overview of the global prevalence and species diversity of camelid TBPs. Several TBPs have been detected in dromedary camels, raising concerns regarding their role as natural or maintenance hosts for tick-borne pathogens. Insubstantial evidence exists regarding the natural infection of camels with Babesia spp., Theileria spp., Anaplasma spp., and Ehrlichia spp., particularly because most of the camels were considered healthy at the time of sampling. Based on polymerase chain reaction (PCR) testing, a pooled prevalence of 35.3% (95% CI: 22.6-48.1%) was estimated for Anaplasma, which was the most frequently tested TBP in dromedaries, and DNA of Anaplasma marginale, Anaplasma centrale, Anaplasma ovis, Anaplasma platys, and A. platys-like were isolated, of which ruminants and dogs are reservoirs. Similarly, the estimated pooled prevalence for the two piroplasmid genera; Babesia and Theileria was approximately equal (10-12%) regardless of the detection method (microscopy or PCR testing). Nevertheless, Babesia caballi, Theileria equi, and Theileria annulata DNA have frequently been detected in camels but they have not yet been proven to be natural hosts. Scarce data detected Babesia microti, Anaplasma phagocytophilum, and Borrelia burgdorferi sensu lato (s.l.) DNA in blood of dromedaries, although ticks of the genus Ixodes are distributed in limited areas where dromedaries are raised. Interestingly, a pooled seroprevalence of 47.7% (26.3-69.2%) was estimated for Crimean-Congo hemorrhagic fever virus, and viral RNA was detected in dromedary blood; however, their contribution to maintain the viral transmission cycles requires further experimental investigation. The substantially low incidence and scarcity of data on Rickettsia and Ehrlichia species could imply that camels were accidentally infected. In contrast, camels may play a role in the spread of Coxiella burnetii, which is primarily transmitted through the inhalation of aerosols emitted by diseased animals and contaminated environments. Bactrian camels showed no symptoms due to the examined TBPs, meanwhile, clinical disease was seen in alpacas infected with A. phagocytophilum. Similar to dromedaries, accidental tick bites may be the cause of TBP DNA found in the blood of Bactrian camels.
Collapse
Affiliation(s)
- El-Sayed El-Alfy
- Parasitology Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Ibrahim Abbas
- Parasitology Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Somaya Saleh
- Parasitology Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Rana Elseadawy
- Parasitology Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Ragab M Fereig
- Department of Animal Medicine, Faculty of Veterinary Medicine, South Valley University, Qena City, Qena 83523, Egypt
| | - Mohamed Abdo Rizk
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-Cho, Obihiro, Hokkaido, Japan; Department of Internal Medicine, Infectious and Fish Diseases, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt.
| | - Xuenan Xuan
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-Cho, Obihiro, Hokkaido, Japan
| |
Collapse
|
14
|
Moraga-Fernández A, Muñoz-Hernández C, Sánchez-Sánchez M, Fernández de Mera IG, de la Fuente J. Exploring the diversity of tick-borne pathogens: The case of bacteria (Anaplasma, Rickettsia, Coxiella and Borrelia) protozoa (Babesia and Theileria) and viruses (Orthonairovirus, tick-borne encephalitis virus and louping ill virus) in the European continent. Vet Microbiol 2023; 286:109892. [PMID: 37866329 DOI: 10.1016/j.vetmic.2023.109892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 10/04/2023] [Accepted: 10/13/2023] [Indexed: 10/24/2023]
Abstract
Ticks are the main vectors for the transmission of bacterial, protist and viral pathogens in Europe affecting wildlife and domestic animals. However, some of them are zoonotic and can cause serious, sometimes fatal, problems in human health. A systematic review in PubMed/MEDLINE database was conducted to determine the spatial distribution and host and tick species ranges of a selection of tick-borne bacteria (Anaplasma spp., Borrelia spp., Coxiella spp., and Rickettsia spp.), protists (Babesia spp. and Theileria spp.), and viruses (Orthonairovirus, and flaviviruses tick-borne encephalitis virus and louping ill virus) on the European continent in a five-year period (November 2017 - November 2022). Only studies using PCR methods were selected, retrieving a total of 429 articles. Overall, up to 85 species of the selected tick-borne pathogens were reported from 36 European countries, and Anaplasma spp. was described in 37% (159/429) of the articles, followed by Babesia spp. (34%, 148/429), Borrelia spp. (34%, 147/429), Rickettsia spp. (33%, 142/429), Theileria spp. (11%, 47/429), tick-borne flaviviruses (9%, 37/429), Orthonairovirus (7%, 28/429) and Coxiella spp. (5%, 20/429). Host and tick ranges included 97 and 50 species, respectively. The highest tick-borne pathogen diversity was detected in domestic animals, and 12 species were shared between humans, wildlife, and domestic hosts, highlighting the following zoonotic species: Anaplasma phagocytophilum, Babesia divergens, Babesia microti, Borrelia afzelii, Borrelia burgdorferi s.s., Borrelia garinii, Borrelia miyamotoi, Crimean-Congo hemorrhagic fever virus, Coxiella burnetii, Rickettsia monacensis and tick-borne encephalitis virus. These results contribute to the implementation of effective interventions for the surveillance and control of tick-borne diseases.
Collapse
Affiliation(s)
- Alberto Moraga-Fernández
- Health and Biotechnology Research Group (SaBio). Institute for Game and Wildlife Research, IREC (CSIC-UCLM-JCCM), Ciudad Real, Spain
| | - Clara Muñoz-Hernández
- Health and Biotechnology Research Group (SaBio). Institute for Game and Wildlife Research, IREC (CSIC-UCLM-JCCM), Ciudad Real, Spain; Department of Animal Health, Faculty of Veterinary Sciences, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, 30100 Murcia, Spain.
| | - Marta Sánchez-Sánchez
- Health and Biotechnology Research Group (SaBio). Institute for Game and Wildlife Research, IREC (CSIC-UCLM-JCCM), Ciudad Real, Spain
| | - Isabel G Fernández de Mera
- Health and Biotechnology Research Group (SaBio). Institute for Game and Wildlife Research, IREC (CSIC-UCLM-JCCM), Ciudad Real, Spain
| | - José de la Fuente
- Health and Biotechnology Research Group (SaBio). Institute for Game and Wildlife Research, IREC (CSIC-UCLM-JCCM), Ciudad Real, Spain; Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| |
Collapse
|
15
|
Muhammad KA, Gadzama UN, Onyiche TE. Distribution and Prevalence of Coxiella burnetii in Animals, Humans, and Ticks in Nigeria: A Systematic Review. Infect Dis Rep 2023; 15:576-588. [PMID: 37888137 PMCID: PMC10606657 DOI: 10.3390/idr15050056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/24/2023] [Accepted: 09/26/2023] [Indexed: 10/28/2023] Open
Abstract
'Query' (Q) fever is a neglected but emerging or re-emerging zoonotic disease caused by the bacterium Coxiella (C.) burnetii. Several host species are considered or speculated to be the primary reservoir hosts for human infection. In the past, several research groups in Nigeria have evaluated the prevalence of C. burnetii in various vertebrate and invertebrate hosts. Currently, there is a paucity of knowledge regarding the epidemiology of the pathogen in Nigeria with limited or no attention to control and prevention programs. Therefore, this review was undertaken to comprehend the current situation of C. burnetii infection in human, domestic and peri-domestic animals, and some tick species in Nigeria since 1960 with the aim to help identify future research priorities for the country. A comprehensive literature search was performed using the PRISMA guidelines on five scientific databases including Google Scholar, PubMed, AJOL, Science Direct, and Scopus for articles published from Nigeria dealing with the screening of blood, milk, or tick DNA for evidence of C. burnetii using any standard diagnostic approach. Of the 33 published articles subjected to full-text evaluation, more than 48% of the articles met the inclusion criteria and were thus included in this review. We observed different ranges of prevalence for C. burnetii antibodies from four vertebrate hosts including cattle (2.5-23.5%), sheep (3.8-12.0%), goats (3.1-10.9%), and humans (12.0-61.3%). Additionally, the use of molecular diagnostics revealed that the DNA of C. burnetii has been amplified in eight tick species including Hyalomma (Hy) dromedarii, Hy. truncatum, Hy. impeltatum, Hy. rufipes, Hy. impressum, Amblyomma (Am.) variegatum, Rhipicephalus (Rh.) evertsi evertsi, and Rh. annulatus. Two rodent's species (Rattus rattus and Rattus norvegicus) in Nigeria were documented to show evidence of the bacterium with the detection of the DNA of C. burnetii in these two mammals. In conclusion, this review has provided more insight on the prevalence of C. burnetii and its associated host/vector in Nigeria. Domestic animals, peri-domestic animals, and ticks species harbor C. burnetii and could be a source of human infections. Due to the paucity of studies from southern Nigeria, we recommend that research groups with interest on vector-borne diseases need to consider more epidemiological studies in the future on C. burnetii prevalence in diverse hosts to help unravel their distribution and vector potentials in Nigeria as a whole.
Collapse
Affiliation(s)
- Kaka A. Muhammad
- Department of Biological Sciences, University of Maiduguri, P. M. B. 1069, Maiduguri 600230, Nigeria; (K.A.M.); (U.N.G.)
| | - Usman N. Gadzama
- Department of Biological Sciences, University of Maiduguri, P. M. B. 1069, Maiduguri 600230, Nigeria; (K.A.M.); (U.N.G.)
| | - ThankGod E. Onyiche
- Department of Veterinary Parasitology and Entomology, University of Maiduguri, P. M. B. 1069, Maiduguri 600230, Nigeria
- Department of Biological and Environmental Sciences, Faculty of Natural Sciences, Walter Sisulu University, PBX1, Mthatha 5117, South Africa
| |
Collapse
|
16
|
Grassi L, Drigo M, Zelená H, Pasotto D, Cassini R, Mondin A, Franzo G, Tucciarone CM, Ossola M, Vidorin E, Menandro ML. Wild ungulates as sentinels of flaviviruses and tick-borne zoonotic pathogen circulation: an Italian perspective. BMC Vet Res 2023; 19:155. [PMID: 37710273 PMCID: PMC10500747 DOI: 10.1186/s12917-023-03717-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 09/01/2023] [Indexed: 09/16/2023] Open
Abstract
BACKGROUND Vector-borne zoonotic diseases are a concerning issue in Europe. Lyme disease and tick-borne encephalitis virus (TBEV) have been reported in several countries with a large impact on public health; other emerging pathogens, such as Rickettsiales, and mosquito-borne flaviviruses have been increasingly reported. All these pathogens are linked to wild ungulates playing roles as tick feeders, spreaders, and sentinels for pathogen circulation. This study evaluated the prevalence of TBEV, Borrelia burgdorferi sensu lato, Rickettsia spp., Ehrlichia spp., and Coxiella spp. by biomolecular screening of blood samples and ticks collected from wild ungulates. Ungulates were also screened by ELISA and virus neutralization tests for flaviviral antibody detection. RESULTS A total of 274 blood samples were collected from several wild ungulate species, as well as 406 Ixodes ricinus, which were feeding on them. Blood samples tested positive for B. burgdorferi s.l. (1.1%; 0-2.3%) and Rickettsia spp. (1.1%; 0-2.3%) and showed an overall flaviviral seroprevalence of 30.6% (22.1-39.2%): 26.1% (17.9-34.3%) for TBEV, 3.6% (0.1-7.1%) for Usutu virus and 0.9% (0-2.7%) for West Nile virus. Ticks were pooled when possible and yielded 331 tick samples that tested positive for B. burgdorferi s.l. (8.8%; 5.8-11.8%), Rickettsia spp. (26.6%; 21.8-31.2%) and Neoehrlichia mikurensis (1.2%; 0-2.4%). TBEV and Coxiella spp. were not detected in either blood or tick samples. CONCLUSIONS This research highlighted a high prevalence of several tick-borne zoonotic pathogens and high seroprevalence for flaviviruses in both hilly and alpine areas. For the first time, an alpine chamois tested positive for anti-TBEV antibodies. Ungulate species are of particular interest due to their sentinel role in flavivirus circulation and their indirect role in tick-borne diseases and maintenance as Ixodes feeders and spreaders.
Collapse
Affiliation(s)
- Laura Grassi
- Department of Animal Medicine, Production and Health (MAPS), University of Padua, Viale dell’Università, 16, Legnaro, PD 35020 Italy
| | - Michele Drigo
- Department of Animal Medicine, Production and Health (MAPS), University of Padua, Viale dell’Università, 16, Legnaro, PD 35020 Italy
| | - Hana Zelená
- Department of Virology, Institute of Public Health, Ostrava, Czech Republic
| | - Daniela Pasotto
- Department of Animal Medicine, Production and Health (MAPS), University of Padua, Viale dell’Università, 16, Legnaro, PD 35020 Italy
| | - Rudi Cassini
- Department of Animal Medicine, Production and Health (MAPS), University of Padua, Viale dell’Università, 16, Legnaro, PD 35020 Italy
| | - Alessandra Mondin
- Department of Animal Medicine, Production and Health (MAPS), University of Padua, Viale dell’Università, 16, Legnaro, PD 35020 Italy
| | - Giovanni Franzo
- Department of Animal Medicine, Production and Health (MAPS), University of Padua, Viale dell’Università, 16, Legnaro, PD 35020 Italy
| | - Claudia Maria Tucciarone
- Department of Animal Medicine, Production and Health (MAPS), University of Padua, Viale dell’Università, 16, Legnaro, PD 35020 Italy
| | - Martina Ossola
- Department of Animal Medicine, Production and Health (MAPS), University of Padua, Viale dell’Università, 16, Legnaro, PD 35020 Italy
| | - Elena Vidorin
- Department of Animal Medicine, Production and Health (MAPS), University of Padua, Viale dell’Università, 16, Legnaro, PD 35020 Italy
| | - Maria Luisa Menandro
- Department of Animal Medicine, Production and Health (MAPS), University of Padua, Viale dell’Università, 16, Legnaro, PD 35020 Italy
| |
Collapse
|
17
|
Esmaeili S, Latifian M, Mahmoudi A, Ghasemi A, Mohammadi A, Mordadi A, Ziapour SP, Naddaf SR, Mostafavi E. Molecular investigation of Coxiella burnetii and Francisella tularensis infection in ticks in northern, western, and northwestern Iran. PLoS One 2023; 18:e0289567. [PMID: 37590254 PMCID: PMC10434890 DOI: 10.1371/journal.pone.0289567] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 07/20/2023] [Indexed: 08/19/2023] Open
Abstract
Tularemia and Q fever are endemic diseases in Iran; however, little information is available on the prevalence of the causative agents, Coxiella burnetii and Francisella tularensis, in Iranian ticks. This study investigated C. burnetii and F. tularensis among hard ticks in this country. We collected ticks from livestock and other mammals in Guilan, Mazandaran, Golestan (northern Iran), Kurdistan (western Iran), and West Azerbaijan (northwestern Iran) provinces. Genomic DNA from collected ticks was extracted and screened for C. burnetii and F. tularensis using Real-time PCR. A total of 4,197 ticks (belonging to 12 different species) were collected, and Ixodes ricinus (46.4%), Rhipicephalus turanicus (25%), and Rhipicephalus sanguineus sensu lato (19.1%) were the most collected species. Of 708 pooled tick samples, 11.3% and 7.20% were positive for C. burnetii and F. tularensis, respectively. The genus of Rhipicephalus had the highest (18.3%) C. burnetii infection among the collected tick pools (P<0.001). Furthermore, the most positive pools for F. tularensis belonged to Haemaphysalis spp. (44.4%). Kurdistan had the most significant percentage of C. burnetii-infected ticks (92.5%), and there was a meaningful relationship between the provinces and the infection (P< 0.001). The ticks from Golestan exhibited the highest F. tularensis infection rate (10. 9%), and the infection showed no significant relationship with the provinces (P = 0.19). Ticks collected from grasslands had a higher Coxiella burnetii infection rate than those collected from animals (39.4% vs. 7.9%; p<0.01). However, ticks collected from animal surfaces had a slightly higher rate of Francisella tularensis infection than those collected from grasslands (7.6% vs. 3.9%; p = 0.24). Here, we demonstrated the presence of both pathogens in the north (Guilan, Mazandaran, and Golestan provinces), the west (Kurdistan province), and the northwest (West Azerbaijan province) of Iran. The public health system should pay particular attention to tick bites in veterinary medicine and humans.
Collapse
Affiliation(s)
- Saber Esmaeili
- National Reference Laboratory for Plague, Tularemia and Q Fever, Research Centre for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Akanlu, KabudarAhang, Hamadan, Iran
- Department of Epidemiology and Biostatics, Research Centre for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Tehran, Iran
| | - Mina Latifian
- National Reference Laboratory for Plague, Tularemia and Q Fever, Research Centre for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Akanlu, KabudarAhang, Hamadan, Iran
- Department of Epidemiology and Biostatics, Research Centre for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Tehran, Iran
| | - Ahmad Mahmoudi
- Department of Biology, Faculty of Science, Urmia University, Urmia, Iran
| | - Ahmad Ghasemi
- National Reference Laboratory for Plague, Tularemia and Q Fever, Research Centre for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Akanlu, KabudarAhang, Hamadan, Iran
- Department of Microbiology, Research Center of Reference Health Laboratories, Ministry of Health and Medical Education, Tehran, Iran
| | - Ali Mohammadi
- Department of Epidemiology and Biostatics, Research Centre for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Tehran, Iran
- Department of Medical Entomology and Vector Control, School of Public Health and National Institute of Health Research, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Mordadi
- Department of Epidemiology and Biostatics, Research Centre for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Tehran, Iran
| | - Seyyed Payman Ziapour
- Department of Parasitology, Zoonoses, Research Center, Pasteur Institute of Iran, Amol, Mazandaran, Iran
| | | | - Ehsan Mostafavi
- National Reference Laboratory for Plague, Tularemia and Q Fever, Research Centre for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Akanlu, KabudarAhang, Hamadan, Iran
- Department of Epidemiology and Biostatics, Research Centre for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
18
|
Ali A, Obaid MK, Almutairi MM, Alouffi A, Numan M, Ullah S, Rehman G, Islam ZU, Khan SB, Tanaka T. Molecular detection of Coxiella spp. in ticks (Ixodidae and Argasidae) infesting domestic and wild animals: with notes on the epidemiology of tick-borne Coxiella burnetii in Asia. Front Microbiol 2023; 14:1229950. [PMID: 37577446 PMCID: PMC10415105 DOI: 10.3389/fmicb.2023.1229950] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 07/03/2023] [Indexed: 08/15/2023] Open
Abstract
Tick-borne Coxiella spp. are emerging in novel regions infecting different hosts, but information regarding their occurrence is limited. The purpose of this study was the molecular screening of Coxiella spp. in various ticks infesting goats, sheep, camels, cattle, wild mice, and domestic fowls (Gallus gallus domesticus) in various districts of Khyber Pakhtunkhwa, Pakistan. Morphologically identified tick species were confirmed by obtaining their cox1 sequences and were molecularly screened for Coxiella spp. by sequencing GroEL fragments. Almost 345 out of 678 (50.9%) hosts were infested by nine tick species. Regarding the age groups, the hosts having an age >3 years were highly infested (192/345, 55.6%), while gender-wise infestation was higher in female hosts (237/345, 68.7%). In collected ticks, the nymphs were outnumbered (613/1,119, 54.8%), followed by adult females (293/1,119, 26.2%) and males (213/1,119, 19.7%). A total of 227 ticks were processed for molecular identification and detection of Coxiella spp. The obtained cox1 sequences of nine tick species such as Hyalomma dromedarii, Hyalomma anatolicum, Haemaphysalis cornupunctata, Haemaphysalis bispinosa, Haemaphysalis danieli, Haemaphysalis montgomeryi, Rhipicephalus haemaphysaloides, Rhipicephalus microplus, and Argas persicus showed maximum identities between 99.6% and 100% with the same species and in the phylogenetic tree, clustered to the corresponding species. All the tick species except Ha. danieli and R. microplus were found positive for Coxiella spp. (40/227, 17.6%), including Coxiella burnetii (15/40, 6.7%), Coxiella endosymbionts (14/40, 6.3%), and different Coxiella spp. (11/40, 4.9%). By the BLAST results, the GroEL fragments of Coxiella spp. showed maximum identity to C. burnetii, Coxiella endosymbionts, and Coxiella sp., and phylogenetically clustered to the corresponding species. This is the first comprehensive report regarding the genetic characterization of Coxiella spp. in Pakistan's ticks infesting domestic and wild hosts. Proper surveillance and management measures should be undertaken to avoid health risks.
Collapse
Affiliation(s)
- Abid Ali
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Kashif Obaid
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Mashal M. Almutairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Abdulaziz Alouffi
- King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Muhammad Numan
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Shafi Ullah
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Gauhar Rehman
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Zia Ul Islam
- Department of Biotechnology, Abdul Wali Khan University Mardan, Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Sher Bahadar Khan
- College of Animal Husbandry and Veterinary Sciences, Abdul Wali Khan University Mardan, Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Tetsuya Tanaka
- Laboratory of Infectious Diseases, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| |
Collapse
|
19
|
Ohlopkova OV, Yakovlev SA, Emmanuel K, Kabanov AA, Odnoshevsky DA, Kartashov MY, Moshkin AD, Tuchkov IV, Nosov NY, Kritsky AA, Agalakova MA, Davidyuk YN, Khaiboullina SF, Morzunov SP, N'Fally M, Bumbali S, Camara MF, Boiro MY, Agafonov AP, Gavrilova EV, Maksyutov RA. Epidemiology of Zoonotic Coxiella burnetii in The Republic of Guinea. Microorganisms 2023; 11:1433. [PMID: 37374935 DOI: 10.3390/microorganisms11061433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND Q fever is a zoonotic infectious disease characterized by fever, malaise, chills, significant weakness, and muscle pain. In some cases, the disease can become chronic and affect the inner membranes of the heart, such as the valves, leading to endocarditis and a high risk of death. Coxiella burnetii (C. burnetii) is the primary causative agent of Q fever in humans. This study aims to monitor the presence of C. burnetii in ticks collected from small mammals and cattle in the Republic of Guinea (RG). METHODS Rodents were trapped in the Kindia region of RG during 2019-2020, and ticks were collected from cattle in six regions of RG. Total DNA was extracted using a commercial kit (RIBO-prep, InterLabService, Russia) following the manufacturer's instructions. Real-time PCR amplification was conducted using the kit (AmpliSens Coxiella burnetii-FL, InterLabService, Russia) to detect C. burnetii DNA. RESULTS AND CONCLUSIONS Bacterial DNA was detected in 11 out of 750 (1.4%) small mammals and 695 out of 9620 (7.2%) tick samples. The high number of infected ticks (7.2%) suggests that they are the main transmitters of C. burnetii in RG. The DNA was detected in the liver and spleen of a Guinea multimammate mouse, Mastomys erythroleucus. These findings demonstrate that C. burnetii is zoonotic in RG, and measures should be taken to monitor the bacteria's dynamics and tick prevalence in the rodent population.
Collapse
Affiliation(s)
- Olesia V Ohlopkova
- State Research Center of Virology and Biotechnology «Vector» of Rospotrebnadzor, Koltsovo 630559, Russia
| | - Sergey A Yakovlev
- Russian Research Anti-Plague Institute «Microbe» of Rospotrebnadzor, Saratov 410005, Russia
| | - Kabwe Emmanuel
- OpenLab "Gene and Cell Technologies", Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan 420008, Russia
| | - Alexey A Kabanov
- State Research Center of Virology and Biotechnology «Vector» of Rospotrebnadzor, Koltsovo 630559, Russia
| | - Dmitry A Odnoshevsky
- State Research Center of Virology and Biotechnology «Vector» of Rospotrebnadzor, Koltsovo 630559, Russia
| | - Mikhail Yu Kartashov
- State Research Center of Virology and Biotechnology «Vector» of Rospotrebnadzor, Koltsovo 630559, Russia
| | - Alexey D Moshkin
- State Research Center of Virology and Biotechnology «Vector» of Rospotrebnadzor, Koltsovo 630559, Russia
| | - Igor V Tuchkov
- Russian Research Anti-Plague Institute «Microbe» of Rospotrebnadzor, Saratov 410005, Russia
| | - Nikita Yu Nosov
- Russian Research Anti-Plague Institute «Microbe» of Rospotrebnadzor, Saratov 410005, Russia
- State Research Center of Dermatovenerology and Cosmetology of Russian Ministry of Health, Moscow 107076, Russia
| | - Andrey A Kritsky
- Russian Research Anti-Plague Institute «Microbe» of Rospotrebnadzor, Saratov 410005, Russia
- Limited Liability Company, «Biotech Campus», Moscow 117437, Russia
| | - Milana A Agalakova
- Faculty of Preventive Medicine, Ural State Medical University, Yekaterinburg 620014, Russia
- Limited Liability Company, «Quality Med», Yekaterinburg 105318, Russia
| | - Yuriy N Davidyuk
- OpenLab "Gene and Cell Technologies", Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan 420008, Russia
| | - Svetlana F Khaiboullina
- OpenLab "Gene and Cell Technologies", Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan 420008, Russia
| | | | - Magasuba N'Fally
- Faculty of Medicine, Pharmacy and Dentistry, University Gamal Abdel Nasser, Conakry 001, Guinea
| | - Sanaba Bumbali
- Research Institute of Applied Biology of Guinea, Kindia 100, Guinea
| | | | | | - Alexander P Agafonov
- State Research Center of Virology and Biotechnology «Vector» of Rospotrebnadzor, Koltsovo 630559, Russia
| | - Elena V Gavrilova
- State Research Center of Virology and Biotechnology «Vector» of Rospotrebnadzor, Koltsovo 630559, Russia
| | - Rinat A Maksyutov
- State Research Center of Virology and Biotechnology «Vector» of Rospotrebnadzor, Koltsovo 630559, Russia
| |
Collapse
|
20
|
El-Alfy ES, Abbas I, Elseadawy R, Saleh S, Elmishmishy B, El-Sayed SAES, Rizk MA. Global prevalence and species diversity of tick-borne pathogens in buffaloes worldwide: a systematic review and meta-analysis. Parasit Vectors 2023; 16:115. [PMID: 36998029 PMCID: PMC10061416 DOI: 10.1186/s13071-023-05727-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 03/03/2023] [Indexed: 04/01/2023] Open
Abstract
BACKGROUND Buffaloes are important contributors to the livestock economy in many countries, particularly in Asia, and tick-borne pathogens (TBPs) commonly infect buffaloes, giving rise to serious pathologies other than their zoonotic potential. METHODS The present investigation focuses on the prevalence of TBPs infecting buffaloes worldwide. All published global data on TBPs in buffaloes were collected from different databases (e.g., PubMed, Scopus, ScienceDirect, and Google Scholar) and subjected to various meta-analyses using OpenMeta[Analyst] software, and all analyses were conducted based on a 95% confidence interval. RESULTS Over 100 articles discussing the prevalence and species diversity of TBPs in buffaloes were retrieved. Most of these reports focused on water buffaloes (Bubalus bubalis), whereas a few reports on TBPs in African buffaloes (Syncerus caffer) had been published. The pooled global prevalence of the apicomplexan parasites Babesia and Theileria, as well as the bacterial pathogens Anaplasma, Coxiella burnetii, Borrelia, Bartonella, and Ehrlichia in addition to Crimean-Congo hemorrhagic fever virus, were all evaluated based on the detection methods and 95% confidence intervals. Interestingly, no Rickettsia spp. were detected in buffaloes with scarce data. TBPs of buffaloes displayed a fairly high species diversity, which underlines the high infection risk to other animals, especially cattle. Babesia bovis, B. bigemina, B. orientalis, B. occultans and B. naoakii, Theileria annulata, T. orientalis complex (orientalis/sergenti/buffeli), T. parva, T. mutans, T. sinensis, T. velifera, T. lestoquardi-like, T. taurotragi, T. sp. (buffalo) and T. ovis, and Anaplasma marginale, A. centrale, A. platys, A. platys-like and "Candidatus Anaplasma boleense" were all were identified from naturally infected buffaloes. CONCLUSIONS Several important aspects were highlighted for the status of TBPs, which have serious economic implications for the buffalo as well as cattle industries, particularly in Asian and African countries, which should aid in the development and implementation of prevention and control methods for veterinary care practitioners, and animal owners.
Collapse
Affiliation(s)
- El-Sayed El-Alfy
- grid.10251.370000000103426662Parasitology Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516 Egypt
| | - Ibrahim Abbas
- grid.10251.370000000103426662Parasitology Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516 Egypt
| | - Rana Elseadawy
- grid.10251.370000000103426662Parasitology Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516 Egypt
| | - Somaya Saleh
- grid.10251.370000000103426662Parasitology Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516 Egypt
| | - Bassem Elmishmishy
- grid.10251.370000000103426662Parasitology Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516 Egypt
| | - Shimaa Abd El-Salam El-Sayed
- grid.10251.370000000103426662Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516 Egypt
| | - Mohamed Abdo Rizk
- grid.10251.370000000103426662Department of Internal Medicine, Infectious and Fish Diseases, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516 Egypt
| |
Collapse
|
21
|
Coxiella burnetii in Dogs and Cats from Portugal: Serological and Molecular Analysis. Pathogens 2022; 11:pathogens11121525. [PMID: 36558859 PMCID: PMC9787635 DOI: 10.3390/pathogens11121525] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/30/2022] [Accepted: 12/05/2022] [Indexed: 12/15/2022] Open
Abstract
Dogs and cats are potential sources of infection for some zoonotic diseases such as Q fever, caused by Coxiella burnetii, a multiple host pathogen. Q fever outbreaks in dogs and cats have been related with parturition and abortion events, and ticks have a potential role in the transmission of this pathogen. This study aimed to screen for C. burnetii in dogs and cats, and in ticks collected from infested animals. An observational descriptive study was conducted in Portugal at two time points nine years apart, 2012 and 2021. Sera obtained from dogs and cats (total n = 294) were tested for C. burnetii antibodies using a commercial ELISA adapted for multi-species detection. C. burnetii DNA was screened by qPCR assay targeting IS1111 in uterine samples and in ticks. A decrease in the exposure to C. burnetii was observed in cats from 17.2% (95% CI: 5.8−35.8%) in 2012 to 0.0% in 2021, and in dogs from 12.6% (95% CI: 7.7−19.0%) in 2012 to 1.7% (95% CI: 0.3−9.1%) in 2021 (p < 0.05). Overall, and despite differences in the samples, rural habitat seems to favour the exposure to C. burnetii. The DNA of C. burnetii was not detected in ticks. The low seropositivity observed in 2021 and the absence of C. burnetii DNA in the tested samples, suggest that dogs and cats from Portugal are not often exposed to the pathogen. Nevertheless, the monitoring of C. burnetii infection in companion animals is an important tool to prevent human outbreaks, considering the zoonotic potential for owners and veterinarians contacting infected animals, mainly dogs and cats from rural areas which often come into contact with livestock.
Collapse
|
22
|
El-Alfy ES, Abbas I, Baghdadi HB, El-Sayed SAES, Ji S, Rizk MA. Molecular Epidemiology and Species Diversity of Tick-Borne Pathogens of Animals in Egypt: A Systematic Review and Meta-Analysis. Pathogens 2022; 11:pathogens11080912. [PMID: 36015033 PMCID: PMC9416077 DOI: 10.3390/pathogens11080912] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/07/2022] [Accepted: 08/09/2022] [Indexed: 11/20/2022] Open
Abstract
Ticks and tick-borne pathogens (TTBPs) are listed among the most serious concerns harming Egyptian livestock’s productivity. Several reports on tick-borne pathogens (TBPs) from various geographical regions in the country were published. However, data on the molecular characterization of TBPs are the most beneficial for understanding the epidemiology of this important group of pathogens. In this study, we present the first meta-analysis on the molecular epidemiology and species diversity of TBPs infecting animals in Egypt. All published studies on TBPs were systematically collected from various databases (PubMed, Scopus, ScienceDirect, the Egyptian Knowledge Bank, and Google Scholar). Data from eligible papers were extracted and subjected to various analyses. Seventy-eight studies were found to be eligible for inclusion. Furthermore, ticks infesting animals that were molecularly screened for their associated pathogens were also included in this study to display high species diversity and underline the high infection risk to animals. Theileria annulata was used as parasite model of TBPs to study the genetic diversity and transmission dynamics across different governorates of Egypt. This study extends cross-comparisons between all published molecular data on TBPs in Egypt and provides resources from Egyptian data in order to better understand parasite epidemiology, species diversity, and disease outcome as well as the development and implementation of prevention and control methods for public health, veterinary care practitioners, and animal owners all over the country.
Collapse
Affiliation(s)
- El-Sayed El-Alfy
- Parasitology Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Ibrahim Abbas
- Parasitology Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Hanadi B. Baghdadi
- Biology Department, College of Science, Imam Abdulrahman Bin Faisal University, Dammam 31113, Saudi Arabia
- Basic and Applied Scientific Research Center (BASRC), Imam Abdulrahman Bin Faisal University, Dammam 31113, Saudi Arabia
| | - Shimaa Abd El-Salam El-Sayed
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-Cho, Obihiro 080-8555, Hokkaido, Japan
- Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Shengwei Ji
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-Cho, Obihiro 080-8555, Hokkaido, Japan
| | - Mohamed Abdo Rizk
- Department of Internal Medicine, Infectious and Fish Diseases, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
- Correspondence:
| |
Collapse
|