1
|
Liu Y, Chen C, Lin S. Acoustic black hole ultrasonic radiator for high-efficiency radiation. ULTRASONICS 2025; 151:107630. [PMID: 40101470 DOI: 10.1016/j.ultras.2025.107630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 02/18/2025] [Accepted: 03/05/2025] [Indexed: 03/20/2025]
Abstract
The utilization of conventional longitudinal transducers in the field of ultrasonic liquid processing is constrained by limitations in radiation area and directional characteristics. These limitations can be addressed through the implementation of mode conversion techniques. However, an expanded radiation area may also result in reduced acoustic radiation intensity. To mitigate this issue, this study proposes an Acoustic Black Hole Ultrasonic Radiator (ABHUR) designed to enhance ultrasound intensity and thereby achieve high-efficiency radiation. The proposed ABHUR comprises a Bolted Langevin-type Transducer (BLT) and a Curved Acoustic Black Hole (CABH) ring. A theoretical model, based on the transfer matrix method, is developed to analyze the in-plane vibrational behavior of the CABH ring, and its validity is confirmed through Finite Element Method (FEM) simulations. The underwater vibrational and sound field distribution properties of the ABHUR are investigated using FEM and compared with two alternative radiators employing longitudinal-bending (L-B) and longitudinal-radial (L-R) modes. Owing to the unique properties of the Acoustic Black Hole structure (ABHs), which amplify bending wave amplitudes and concentrate energy, the ABHUR operating in L-B mode demonstrates superior ultrasound intensity. Furthermore, a prototype of the ABHUR is fabricated, and a series of three experiments are conducted to validate the operational feasibility of the proposed system.
Collapse
Affiliation(s)
- Yang Liu
- Shaanxi Key Laboratory of Ultrasonics, Institute of Applied Acoustics, Shaanxi Normal University, Xi'an 710119, China
| | - Cheng Chen
- Shaanxi Key Laboratory of Ultrasonics, Institute of Applied Acoustics, Shaanxi Normal University, Xi'an 710119, China
| | - Shuyu Lin
- Shaanxi Key Laboratory of Ultrasonics, Institute of Applied Acoustics, Shaanxi Normal University, Xi'an 710119, China.
| |
Collapse
|
2
|
Gandlevskiy N, Viana AR, Druzian GT, Oliveira DK, Schuch AP, Barge A, Cravotto G, Moraes Flores EM. Ultrasound-assisted green synthesis of silver nanoparticles using Ruta graveolens L. Extract and antitumor evaluation. ULTRASONICS SONOCHEMISTRY 2025:107340. [PMID: 40263047 DOI: 10.1016/j.ultsonch.2025.107340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/17/2025] [Accepted: 03/31/2025] [Indexed: 04/24/2025]
Abstract
This study aims to evaluate the ultrasound-assisted synthesis of silver nanoparticles (AgNPs) based on an aqueous extract of Ruta graveolens L. to reduce Ag+ to Ag0. In addition, the biological activity of the synthesized AgNPs was evaluated against tumor cells. The following parameters were evaluated for the synthesis: proportion between Ag+ solution (0.1 mol L-1 Ag+) and R. graveolens L. extract, pH of R. graveolens L. extract (5, 7, and 9), temperature of solution containing Ag+ and R. graveolens L. extract, ultrasound (US) type (bath and probes), and the parameters for US as frequency (37, and 80 kHz for bath and 20 kHz for probes), amplitude and time of application of US. In order to confirm the US effect, "silent" experiments (without US) were performed. Using the optimized conditions (US bath, proportion between Ag+ solution and R. graveolens L. of 1 + 5, v v-1, 80 kHz, 70 % amplitude, 70 °C, pH 9, and 25 min of sonication time) it was possible to obtain mean size, PI, and zeta potential of AgNPs of 30 nm, 0.129, -34.44 mV, respectively. For comparison of results, AgNPs synthesized in the "silent" condition presented mean size, PI, and zeta potential of 66 nm, 0.412, and -22.12 mV, respectively. The US synthesized AgNPs were lower, more uniform, and stable when compared with magnetic stirring. In addition, the morphology of AgNPs using US was predominantly spherical and monodisperse. The biological activity using cell lines HaCat (keratinocytes), L929 (fibroblasts), and B16-F10 (melanoma) against nanoparticles synthesized using US was evaluated against the different cell lines and the antioxidant activity of the AgNPs was measured by the 2,2-diphenyl-1-picrylhydrazyl (DPPH) method. A higher cytotoxic effect on the melanoma cell line (IC50 = 2.12 µg mL-1) compared to normal cells. A good result was found in the DPPH assay, with an IC50 of 234.3 µg mL-1 for free radical scavenging. Therefore, the US technology presents a promising and sustainable green method avoiding the use of toxic reagents and obtained AgNPs showed potent anticancer activity.
Collapse
Affiliation(s)
- Nikita Gandlevskiy
- Department of Drug Science and Technology, Turin University, 10125, via P. Giulia 9, Turin, Italy
| | - Altevir Rossato Viana
- Department of Chemistry, Federal University of Santa Maria 97105-900 Santa Maria, Brazil
| | - Gabriel Toneto Druzian
- Department of Chemistry, Federal University of Santa Maria 97105-900 Santa Maria, Brazil
| | | | - Andre Passaglia Schuch
- Department of Biochemistry and Molecular Biology, Federal University of Santa Maria 97105-900 Santa Maria, Brazil
| | - Alessandro Barge
- Department of Drug Science and Technology, Turin University, 10125, via P. Giulia 9, Turin, Italy
| | - Giancarlo Cravotto
- Department of Drug Science and Technology, Turin University, 10125, via P. Giulia 9, Turin, Italy
| | | |
Collapse
|
3
|
Jimenez-Lopez L, Morales Ospino R, de Araujo LG, Celzard A, Fierro V. Latest developments in the synthesis of metal-organic frameworks and their hybrids for hydrogen storage. NANOSCALE 2025; 17:6390-6413. [PMID: 39969244 DOI: 10.1039/d4nr03969f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
Metal-organic frameworks (MOFs) are promising materials for hydrogen (H2) storage due to their versatile structures, high surface areas and substantial pore volumes. This paper provides a comprehensive review of MOF synthesis and characterization, as well as their practical applications for H2 storage. We explore various MOF synthesis techniques, highlighting their impact on the nanopore structure and functionality. Special emphasis is placed on strategies for enhancing H2 storage capacities by increasing specific surface areas, optimizing pore size distributions, and facilitating H2 release by improving thermal conductivity. Key advances in MOF-based hybrids, such as MOFs combined with carbonaceous materials, metals or other inorganic materials, are discussed. This review also addresses the effectiveness of linker functionalization and the introduction of unsaturated metal centers to optimize H2 storage under ambient conditions. We conclude that the development of competitive MOF-based hybrids, particularly those that incorporate carbons, offers significant potential for improving H2 storage and recovery, enhancing thermal stability and increasing thermal conductivity. These advancements are in line with the US Department of Energy (DOE) specifications and pave the way for future research into the optimization of MOFs for practical H2 storage applications.
Collapse
Affiliation(s)
| | | | | | - Alain Celzard
- Université de Lorraine, CNRS, IJL, F-88000 Epinal, France.
- Institut Universitaire de France (IUF), F-75231 Paris, France
| | - Vanessa Fierro
- Université de Lorraine, CNRS, IJL, F-88000 Epinal, France.
| |
Collapse
|
4
|
Elkanzi NAA, Ali AM, Abdelaziz MA, Alsirhani AM. Green synthesis, anti-inflammatory evaluation and molecular docking of novel pyridines via one pot multi-component reaction using ultrasonic irradiation. Mol Divers 2024:10.1007/s11030-024-11073-7. [PMID: 39644396 DOI: 10.1007/s11030-024-11073-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 11/26/2024] [Indexed: 12/09/2024]
Abstract
In this paper, we present a green application for the synthesis of novel pyridine derivatives 4a-f via one-pot, multicomponent reaction (MCRs) of some aromatic aldehydes 1a-f with malononitrile (2) and N-(4-acetylphenyl)-4-methylbenzenesulfonamide (3) in the presence of ammonium acetate using ultrasonic irradiation (U.S) in an aqueous solvent H2O:EtOH (2:1). The structures of all synthesized pyridines 4a-f were confirmed via elemental analysis and different spectroscopic techniques. This application has many advantages such as avoiding hazardous solvents, excellent yields, inexpensive, simple application, in addition to obtain pure compounds. The anti-inflammatory activity of the newly compounds was examined with the reference drug Ibuprofen. The obtained results showed that most derivatives are promising anti-inflammatory activates. Moreover, compound 4b exhibits the most anti-inflammatory activity with a percentage of inhibition with 51.67% compared with Ibuprofen 53.96%. Furthermore, the newly compounds were studied in their molecular docking simulations against the enzyme Human Cyclooxygenase-2, with Tolfenamic Acid as a reference ligand (PDB ID: 5IKT). Compound 4b demonstrated a robust binding affinity with the target protein 5ikt, evidenced by its binding affinity score of - 11.16 kcal/mol, which is the highest among the studied compounds.
Collapse
Affiliation(s)
- Nadia A A Elkanzi
- Department of Chemistry, College of Science, Jouf University, 72341, Sakaka, Aljouf, Saudi Arabia.
| | - Ali M Ali
- Department of Chemistry, Faculty of Science, Sohag University, Sohag, 82524, Egypt
| | - Mahmoud A Abdelaziz
- Department of Chemistry, Faculty of Science, University of Tabuk, 71491, Tabuk, Saudi Arabia
| | - Alaa Muqbil Alsirhani
- Department of Chemistry, College of Science, Jouf University, 72341, Sakaka, Aljouf, Saudi Arabia
| |
Collapse
|
5
|
Suganthi S, Ahmad K, Oh TH. Progress in MOFs and MOFs-Integrated MXenes as Electrode Modifiers for Energy Storage and Electrochemical Sensing Applications. Molecules 2024; 29:5373. [PMID: 39598761 PMCID: PMC11597046 DOI: 10.3390/molecules29225373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 11/29/2024] Open
Abstract
The global energy demand and environmental pollution are the two major challenges of the present scenario. Recently, researchers focused on the preparation and investigation of catalysts for their capacitive properties for energy storage devices. Thus, supercapacitors have received extensive interest from researchers due to their promising energy storage features and decent cyclic stability/performance. The performance of the supercapacitors are significantly influenced by the physicochemical properties of the electrocatalyst. In this review article, we have compiled the previous reports on the fabrication of MOFs-based composite materials with MXenes for energy storage and electrochemical sensing applications. The metallic and bimetallic MOFs and MOFs/MXenes materials for supercapacitor applications are reviewed. In addition, MOFs/MXenes-based hybrid composites are also compiled towards the determination of various toxic/hazardous materials, such as metal ions like copper ions, mercury ions, and picric acid. We believe that present review article may benefit the researchers working on the preparation of MOFs-based catalysts for supercapacitor and electrochemical sensing applications.
Collapse
Affiliation(s)
| | - Khursheed Ahmad
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Republic of Korea
| | - Tae Hwan Oh
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
6
|
Md Radzi MR, Rosli SNA, Yusoff MHM, Abidin SZ. Production of 1,3-propanediol via in situ glycerol hydrogenolysis in aqueous phase reforming using bimetallic W-Ni/CeO 2. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-35262-x. [PMID: 39397235 DOI: 10.1007/s11356-024-35262-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 10/06/2024] [Indexed: 10/15/2024]
Abstract
The production of 1,3-propanediol via in situ glycerol hydrogenolysis and aqueous phase reforming is a promising technique to ensure high product yield with shorter reaction times and lower costs, as demonstrated in this study by investigating the effect of tungsten (W) doping on Ni/CeO2 catalysts. Physicochemical properties of catalyst were determined using XRD, H2-TPR, NH3-TPD, BET, and FESEM-EDX techniques, and the catalytic performance was investigated at 230 °C, 20 bar, and 5 wt.% glycerol in an autoclave batch reactor. W doping ranging from 1-7% improved the catalyst's performance, with 3% W in 10% Ni/CeO₂ (3W10NC) achieving the highest yield (2.4%), selectivity (33.3%), and a good conversion rate (72.18%). The effect of reaction parameter on the 3W10NC catalyst showed that increasing pressure and temperature from the initial parameters had a detrimental effect on 1,3-propanediol attributed to the phenomenon called over-hydrogenolysis. Increasing the glycerol concentration to 20 wt.% also had a positive effect, resulting in the highest 1,3-propanediol yield of 22.27%. The effect of reaction time study revealed that the yield of 1,3-propanediol continued to increase steadily, reaching 38.29% after 4 h of reaction under the optimal conditions of 230 °C, 20 bar, and 20 wt.% glycerol. The kinetic study confirmed that the reaction follows first-order reaction with activation energy of 20.104 kJ mol-1. The catalyst reusability test revealed a decrease in the yield of 1,3-propanediol to 32.55%, likely due to deactivation caused by sintering and leaching, as indicated by the FESEM micrograph, EDX spectra, and NH3-TPD.
Collapse
Affiliation(s)
- Mohamad Razlan Md Radzi
- HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Department of Chemical Engineering, Universiti Teknologi PETRONAS, Seri Iskandar, Perak, 32610, Malaysia
| | - Siti Nor Amira Rosli
- Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuh Persiaran Tun Khalil Yaakob, Kuantan, Pahang, 26300, Malaysia
| | - Mohd Hizami Mohd Yusoff
- HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Department of Chemical Engineering, Universiti Teknologi PETRONAS, Seri Iskandar, Perak, 32610, Malaysia.
| | - Sumaiya Zainal Abidin
- Centre for Research in Advanced Fluid & Processes (FLUID CENTRE), Universiti Malaysia Pahang Al-Sultan Abdullah, Persiaran Tun Khalil Yaakob, Kuantan, Pahang, 26300, Malaysia
- Faculty of Chemical Engineering, Industrial University of Ho Chi Minh City, 12 Nguyen Van Bao St, Go Vap, Ho Chi Minh, 70000, Vietnam
| |
Collapse
|
7
|
Derayatifar M, Habibi M, Bhat R, Packirisamy M. Holographic direct sound printing. Nat Commun 2024; 15:6691. [PMID: 39107289 PMCID: PMC11303524 DOI: 10.1038/s41467-024-50923-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 07/24/2024] [Indexed: 08/10/2024] Open
Abstract
Direct sound printing (DSP), an alternative additive manufacturing process driven by sonochemical polymerization, has traditionally been confined to a single acoustic focal region, resulting in a voxel-by-voxel printing approach. To overcome this limitation, we introduce holographic direct sound printing (HDSP), where acoustic holograms, storing cross-sectional images of the desired parts, pattern acoustic waves to induce regional cavitation bubbles and on-demand regional polymerization. HDSP outperforms DSP in terms of printing speed by one order of magnitude and yields layerless printed structures. In our HDSP implementation, the hologram remains stationary while the printing platform moves along a three-dimensional path using a robotic arm. We present sono-chemiluminescence and high-speed imaging experiments to thoroughly investigate HDSP and demonstrate its versatility in applications such as remote ex-vivo in-body printing and complex robot trajectory planning. We showcase multi-object and multi-material printing and provide a comprehensive process characterization, including the effects of hologram design and manufacturing on the HDSP process, polymerization progression tracking, porosity tuning, and robotic trajectory computation. Our HDSP method establishes the integration of acoustic holography in DSP and related applications.
Collapse
Affiliation(s)
- Mahdi Derayatifar
- Optical Bio Microsystems Laboratory, Micro-Nano-Bio Integration Center, Department of Mechanical, Industrial and Aerospace Engineering, Concordia University, Montreal, QC, Canada
| | - Mohsen Habibi
- Department of Mechanical and Aerospace Engineering, University of California at Davis, Davis, CA, USA
| | - Rama Bhat
- Optical Bio Microsystems Laboratory, Micro-Nano-Bio Integration Center, Department of Mechanical, Industrial and Aerospace Engineering, Concordia University, Montreal, QC, Canada
| | - Muthukumaran Packirisamy
- Optical Bio Microsystems Laboratory, Micro-Nano-Bio Integration Center, Department of Mechanical, Industrial and Aerospace Engineering, Concordia University, Montreal, QC, Canada.
| |
Collapse
|
8
|
Diao X, Wang Y, Jia R, Chen X, Liu G, Liu D, Guan H. Influences of ultrasonic treatment on the physicochemical properties and microstructure of diacylglycerol-loaded emulsion stabilized with soybean protein isolate and sodium alginate. ULTRASONICS SONOCHEMISTRY 2024; 108:106981. [PMID: 38981339 PMCID: PMC11280087 DOI: 10.1016/j.ultsonch.2024.106981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/22/2024] [Accepted: 07/04/2024] [Indexed: 07/11/2024]
Abstract
This study examined the impacts of ultrasonic power (0, 150, 300, 450, 600, and 750 W) and ultrasonic durations (3, 6, 9, 12, and 15 min) on the physicochemical properties and microstructure of diacylglycerol (DAG)-loaded emulsions stabilized with soybean protein isolate (SPI) and sodium alginate (SA). The findings indicated that the smallest particle size, zeta potential, and contact angle for SPI-SA-DAG emulsions were respectively 5.58 μm, -49.85 mV, and 48.65°, achieved at an ultrasonic power of 450 W. The emulsification properties, loss modulus, storage modulus, and apparent viscosity of the emulsions were optimal at this power setting and at a duration of 9 min. Analytical techniques, including confocal laser scanning-, scanning electron-, and atomic force microscopy, revealed that ultrasonication significantly altered emulsion aggregation state, with the surface roughness (Rq) being minimized at 450 W. These results demonstrated that the stability of SPI-SA-DAG emulsions can be effectively enhanced by an appropriate ultrasonic treatment at 450 W for 9 min. This research provides theoretical support for the broad application of sonication techniques in the food industry.
Collapse
Affiliation(s)
- Xiaoqin Diao
- College of Food Science and Technology, Bohai University, Meat Innovation Center of Liaoning Province, Jinzhou, Liaoning 121013, PR China
| | - Ying Wang
- College of Food Science and Technology, Bohai University, Meat Innovation Center of Liaoning Province, Jinzhou, Liaoning 121013, PR China
| | - Ruixin Jia
- College of Food Science and Technology, Bohai University, Meat Innovation Center of Liaoning Province, Jinzhou, Liaoning 121013, PR China
| | - Xiaodong Chen
- College of Food Science and Technology, Bohai University, Meat Innovation Center of Liaoning Province, Jinzhou, Liaoning 121013, PR China
| | - Guanhua Liu
- College of Food Science and Technology, Bohai University, Meat Innovation Center of Liaoning Province, Jinzhou, Liaoning 121013, PR China
| | - Dengyong Liu
- College of Food Science and Technology, Bohai University, Meat Innovation Center of Liaoning Province, Jinzhou, Liaoning 121013, PR China.
| | - Haining Guan
- College of Food Science and Technology, Bohai University, Meat Innovation Center of Liaoning Province, Jinzhou, Liaoning 121013, PR China.
| |
Collapse
|
9
|
Niu B, E S, Song Q, Xu Z, Han B, Qin Y. Physicochemical reactions in e-waste recycling. Nat Rev Chem 2024; 8:569-586. [PMID: 38862738 DOI: 10.1038/s41570-024-00616-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/03/2024] [Indexed: 06/13/2024]
Abstract
Electronic waste (e-waste) recycling is becoming a global concern owing to its immense quantity, hazardous character and the potential loss of valuable metals. The many processes involved in e-waste recycling stem from a mixture of physicochemical reactions, and understanding the principles of these reactions can lead to more efficient recycling methods. In this Review, we discuss the principles behind photochemistry, thermochemistry, mechanochemistry, electrochemistry and sonochemistry for metal recovery, polymer decomposition and pollutant elimination from e-waste. We also discuss how these processes induce or improve reaction rates, selectivity and controllability of e-waste recycling based on thermodynamics and kinetics, free radicals, chemical bond energy, electrical potential regulation and more. Lastly, key factors, limitations and suggestions for improvements of these physicochemical reactions for e-waste recycling are highlighted, wherein we also indicate possible research directions for the future.
Collapse
Affiliation(s)
- Bo Niu
- Key Laboratory of Farmland Ecological Environment of Hebei Province, College of Resources and Environmental Science, Hebei Agricultural University, Baoding, China.
| | - Shanshan E
- College of Mechanical and Electrical Engineering, Hebei Agricultural University, Baoding, China
| | - Qingming Song
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Zhenming Xu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Bing Han
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, Victoria, Australia
- School of Engineering, Deakin University, Geelong, Victoria, Australia
| | - Yufei Qin
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
- Jiangxi Green Recycling Co., Ltd, Fengcheng, China
| |
Collapse
|
10
|
Lu X, Chen Z, Chen G, Liu Z. Metal-organic framework based self-powered devices for human body energy harvesting. Chem Commun (Camb) 2024; 60:7843-7865. [PMID: 38967500 DOI: 10.1039/d4cc02110j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
The shift from traditional bulky electronics to smart wearable devices represents a crucial trend in technological advancement. In recent years, the focus has intensified on harnessing thermal and mechanical energy from human activities to power small wearable electronics. This vision has attracted considerable attention from researchers, with an emphasis on the development of suitable materials that can efficiently convert human body energy into usable electrical form. Metal-organic frameworks (MOFs), with their unique tunable structures, large surface areas, and high porosity, emerge as a promising material category for human body energy harvesting due to their ability to be precisely engineered at the molecular level, which allows for the optimization of their properties to suit specific energy harvesting needs. This article explores the progressive development of MOF materials, highlighting their potential in the realm of self-power devices for wearable applications. It first introduces the typical energy harvesting routes that are particularly suitable for harvesting human body energy, including thermoelectric, triboelectric, and piezoelectric techniques. Then, it delves into various research advances that have demonstrated the efficacy of MOFs in capturing and converting body-generated energy into electrical energy, emphasizing on the conceptual design, device fabrication, and applications in medical health monitoring, human-computer interaction, and motion monitoring. Furthermore, it discusses potential future directions for research in MOF-based self-powered devices and outlines perspectives that could drive breakthroughs in the efficiency and practicality of these devices.
Collapse
Affiliation(s)
- Xin Lu
- Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518055, People's Republic of China.
| | - Zhi Chen
- Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518055, People's Republic of China.
| | - Guangming Chen
- Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518055, People's Republic of China.
| | - Zhuoxin Liu
- Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518055, People's Republic of China.
| |
Collapse
|
11
|
Fioravanti A, Mazzocchi M, Marani P, Pedrielli F, Carotta MC, Sacerdoti M, Valsania MC, Morandi S. Highly Efficient and Reproducible Sonochemical Synthesis of ZnO Nanocrystals. Chempluschem 2024; 89:e202400005. [PMID: 38462788 DOI: 10.1002/cplu.202400005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/05/2024] [Accepted: 03/05/2024] [Indexed: 03/12/2024]
Abstract
Sonochemical synthesis can be a facile, fast, efficient, versatile and economical way to prepare a large variety of conventional or novel nanostructured materials (metallic, magnetic, semiconducting, polymeric, etc.). In this work, zinc oxide nanocrystals were synthesized by irradiating and heating at 90 °C in a commercial ultrasonic bath a water solution of zinc nitrate hexahydrate and ammonia solution or hexamethylenetetramine as base catalysts. The evolution of the powder morphology and its crystalline structure were investigated at different times of ultrasonic irradiation (0-9 hours) and compared with those of samples obtained by only heating the solutions in a muffle furnace in order to enlighten the growth mechanism. It resulted that: i) the crystal morphology depends on the selected base, ii) for samples obtained by using ultrasounds, the homogeneity of the powders depends on the irradiation time, iii) by comparing all samples obtained at 7 hours of heating, the aspect ratio of the crystals is higher for those that also underwent to ultrasounds.
Collapse
Affiliation(s)
- Ambra Fioravanti
- Institute of Sciences and Technologies for Sustainable Energy and Mobility (STEMS), National Research Council (CNR), Via Canal Bianco, 28, 44124, Ferrara, Italy
| | - Mauro Mazzocchi
- Institute of Science, Technology and Sustainability for Ceramics (ISSMC), National Research Council (CNR), Via Granarolo, 64, 48018, Faenza, Italy
| | - Pietro Marani
- Institute of Sciences and Technologies for Sustainable Energy and Mobility (STEMS), National Research Council (CNR), Via Canal Bianco, 28, 44124, Ferrara, Italy
| | - Francesca Pedrielli
- Institute of Sciences and Technologies for Sustainable Energy and Mobility (STEMS), National Research Council (CNR), Via Canal Bianco, 28, 44124, Ferrara, Italy
| | - Maria Cristina Carotta
- Institute of Sciences and Technologies for Sustainable Energy and Mobility (STEMS), National Research Council (CNR), Via Canal Bianco, 28, 44124, Ferrara, Italy
| | - Michele Sacerdoti
- Department of Physics and Earth Science, University of Ferrara, Via G. Saragat, 1, 44122, Ferrara, Italy
| | | | - Sara Morandi
- Department of Chemistry, University of Turin, Via P. Giuria, 7, 10125, Turin, Italy
| |
Collapse
|
12
|
Xia C, Shen X. Analysis of factors influencing on Electro-Fenton and research on combination technology (II): a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:46910-46948. [PMID: 38995339 DOI: 10.1007/s11356-024-34159-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 06/24/2024] [Indexed: 07/13/2024]
Abstract
The principle of Fenton reagent is to produce ·OH by mixing H2O2 and Fe2+ to realize the oxidation of organic pollutants, although Fenton reagent has the advantages of non-toxicity and short reaction time, but there are its related defects. The Fenton-like technology has been widely studied because of its various forms and better results than the traditional Fenton technology in terms of pollutant degradation efficiency. This paper reviews the electro-Fenton technology among the Fenton-like technologies and provides an overview of the homogeneous electro-Fenton. It also focuses on summarizing the effects of factors such as H2O2, reactant concentration, reactor volume and electrode quality, reaction time and voltage (potential) on the efficiency of electro-Fenton process. It is shown that appropriate enhancement of H2O2 concentration, voltage (potential) and reaction volume can help to improve the process efficiency; the process efficiency also can be improved by increasing the reaction time and electrode quality. Feeding modes of H2O2 have different effects on process efficiency. Finally, a considerable number of experimental studies have shown that the combination of electro-Fenton with ultrasound, anodic oxidation and electrocoagulation technologies is superior to the single electro-Fenton process in terms of pollutant degradation.
Collapse
Affiliation(s)
- Chongjie Xia
- School of Environmental and Chemical Engineering, Shenyang University of Technology, 110870, Shenyang, People's Republic of China
| | - Xinjun Shen
- School of Environmental and Chemical Engineering, Shenyang University of Technology, 110870, Shenyang, People's Republic of China.
| |
Collapse
|
13
|
García-López EI, Aoun N, Marcì G. An Overview of the Sustainable Depolymerization/Degradation of Polypropylene Microplastics by Advanced Oxidation Technologies. Molecules 2024; 29:2816. [PMID: 38930879 PMCID: PMC11207091 DOI: 10.3390/molecules29122816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/03/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024] Open
Abstract
Plastics have become indispensable in modern society; however, the proliferation of their waste has become a problem that can no longer be ignored as most plastics are not biodegradable. Depolymerization/degradation through sustainable processes in the context of the circular economy are urgent issues. The presence of multiple types of plastic materials makes it necessary to study the specific characteristics of each material. This mini-review aims to provide an overview of technological approaches and their performance for the depolymerization and/or degradation of one of the most widespread plastic materials, polypropylene (PP). The state of the art is presented, describing the most relevant technologies focusing on advanced oxidation technologies (AOT) and the results obtained so far for some of the approaches, such as ozonation, sonochemistry, or photocatalysis, with the final aim of making more sustainable the PP depolymerization/degradation process.
Collapse
Affiliation(s)
- Elisa I. García-López
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, 90128 Palermo, Italy;
| | - Narimene Aoun
- Department of Engineering (DI), University of Palermo, Viale delle Scienze, 90128 Palermo, Italy;
| | - Giuseppe Marcì
- Department of Engineering (DI), University of Palermo, Viale delle Scienze, 90128 Palermo, Italy;
| |
Collapse
|
14
|
Rosales Pérez A, Esquivel Escalante K. The Evolution of Sonochemistry: From the Beginnings to Novel Applications. Chempluschem 2024; 89:e202300660. [PMID: 38369655 DOI: 10.1002/cplu.202300660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/13/2024] [Accepted: 02/14/2024] [Indexed: 02/20/2024]
Abstract
Sonochemistry is the use of ultrasonic waves in an aqueous medium, to generate acoustic cavitation. In this context, sonochemistry emerged as a focal point over the past few decades, starting as a manageable process such as a cleaning technique. Now, it is found in a wide range of applications across various chemical, physical, and biological processes, creating opportunities for analysis between these processes. Sonochemistry is a powerful and eco-friendly technique often called "green chemistry" for less energy use, toxic reagents, and residues generation. It is increasing the number of applications achieved through the ultrasonic irradiation (USI) method. Sonochemistry has been established as a sustainable and cost-effective alternative compared to traditional industrial methods. It promotes scientific and social well-being, offering non-destructive advantages, including rapid processes, improved process efficiency, enhanced product quality, and, in some cases, the retention of key product characteristics. This versatile technology has significantly contributed to the food industry, materials technology, environmental remediation, and biological research. This review is created with enthusiasm and focus on shedding light on the manifold applications of sonochemistry. It delves into this technique's evolution and current applications in cleaning, environmental remediation, microfluidic, biological, and medical fields. The purpose is to show the physicochemical effects and characteristics of acoustic cavitation in different processes across various fields and to demonstrate the extending application reach of sonochemistry. Also to provide insights into the prospects of this versatile technique and demonstrating that sonochemistry is an adapting system able to generate more efficient products or processes.
Collapse
Affiliation(s)
- Alicia Rosales Pérez
- Centro de Investigación en Química para la Economía Circular, CIQEC, Facultad de Química, Universidad Autónoma de Querétaro Centro Universitario, Santiago de Querétaro, 76010, Mexico
| | - Karen Esquivel Escalante
- Graduate and Research Division, Engineering Faculty, Universidad Autónoma de Querétaro, Cerro de las Campanas, Santiago de Querétaro, 76010, Mexico
| |
Collapse
|
15
|
Shi K, Xu Z, Wang Y, Fu W, Chen B. Study on regeneration characteristics of granular activated carbon using ultrasonic and thermal methods. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:26580-26591. [PMID: 38451460 DOI: 10.1007/s11356-024-32734-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/27/2024] [Indexed: 03/08/2024]
Abstract
Dye wastewater is a type of high-concentration, high chromaticity, and high salinity organic wastewater, which is generally treated with activated carbon adsorbent. The effective regeneration of granular activated carbon (GAC) is the key to reducing the operating cost of GAC in the wastewater treatment process. The regeneration characteristics of saturated GAC adsorbed on 288 orange dye wastewater were studied by using the ultrasonic coupled thermal regeneration method. The results showed that the regeneration efficiency of GAC adsorbed on 288 orange dye wastewater increased with the increase of ultrasound power. The optimal ultrasound frequency and regeneration temperature were determined to be 45 kHz and 60 ℃, and the relationship between regeneration times and carbon loss rate was explored. The combination of ultrasound and high-temperature heating methods has successfully improved the regeneration efficiency of GAC and significantly reduced the high-temperature thermal regeneration time of GAC, thereby reducing the mass loss rate of GAC. The performance changes of fresh activated carbon (FAC), saturated activated carbon (SAC), ultrasonic regeneration of activated carbon (UAC), and thermal regeneration of activated carbon (TAC) during the combined regeneration process were explored by characterizing the regenerated GAC. Infrared characterization showed that the C-O group of GAC was significantly weakened after coupling treatment, indicating that ultrasonic treatment can significantly enhance the desorption effect of thermal regeneration. The microjet, shock wave, and cavitation effects generated by ultrasonic treatment restore the specific surface area of GAC, mainly increasing the micropore volume and pore size of GAC, and enhancing the treatment effect of thermal regeneration.
Collapse
Affiliation(s)
- Kaizheng Shi
- Zhejiang University of Technology College of Mechanical Engineering, Hangzhou, China
| | - Zhang Xu
- Zhejiang University of Technology College of Mechanical Engineering, Hangzhou, China.
| | - Yong Wang
- Zhejiang Dibang Chemical Company Limited, Shaoxing, 312369, China
| | - Weisong Fu
- Zhejiang Dibang Chemical Company Limited, Shaoxing, 312369, China
| | - Bo Chen
- Zhejiang Dibang Chemical Company Limited, Shaoxing, 312369, China
| |
Collapse
|
16
|
Thapa BS, Pandit S, Mishra RK, Joshi S, Idris AM, Tusher TR. Emergence of per- and poly-fluoroalkyl substances (PFAS) and advances in the remediation strategies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 916:170142. [PMID: 38242458 DOI: 10.1016/j.scitotenv.2024.170142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/20/2023] [Accepted: 01/11/2024] [Indexed: 01/21/2024]
Abstract
A group of fluorinated organic molecules known as per- and poly-fluoroalkyl substances (PFAS) have been commonly produced and circulated in the environment. PFAS, owing to multiple strong CF bonds, exhibit exceptional stability and possess a high level of resistance against biological or chemical degradation. Recently, PFAS have been identified to cause numerous hazardous effects on the biotic ecosystem. As a result, extensive efforts have been made in recent years to develop effective methods to remove PFAS. Adsorption, filtration, heat treatment, chemical oxidation/reduction, and soil washing are a few of the physicochemical techniques that have shown their ability to remove PFAS from contaminated matrixes. However these methods also carry significant drawbacks, including the fact that they are expensive, energy-intensive, unsuitable for in-situ treatment, and requirement to be carried under dormant conditions. The metabolic products released upon PFAS degradation are largely unknown, despite the fact that thermal disintegration methods are widely used. In contrast to physical and chemical methods, biological degradation of PFAS has been regarded as efficient method. However, PFAS are difficult to instantly and completely metabolize through biological methods due to the limitations of biocatalytic mechanisms. Nevertheless, cost, easy-to-operate and environmentally safe are some of the advantages over its counterpart. The present review comprehensively discusses the occurrence of PFAS, the state-of-the science of remediation technologies and approaches applied, and the remediation challenges. The article also focuses on the future research directions toward the development of effective methods for PFAS-contaminated site in-situ treatment.
Collapse
Affiliation(s)
- Bhim Sen Thapa
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233, USA
| | - Soumya Pandit
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida 201310, UP, India
| | - Rahul Kumar Mishra
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida 201310, UP, India
| | - Sanket Joshi
- Amity Institute of Microbial Technology, Amity University Rajasthan, Kant Kalwar, NH 11C, Jaipur, Rajasthan 303002, India
| | - Abubakr M Idris
- Department of Chemistry, College of Science, King Khalid University, Abha 62529, Saudi Arabia; Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha 62529, Saudi Arabia
| | - Tanmoy Roy Tusher
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233, USA; Department of Environmental Science and Resource Management, Mawlana Bhashani Science and Technology University, Tangail 1902, Bangladesh.
| |
Collapse
|
17
|
Zhang W, Yu J, Wang D, Han X, Wang T, Yu D. Ultrasonic-ethanol pretreatment assisted aqueous enzymatic extraction of hemp seed oil with low Δ 9-THC. ULTRASONICS SONOCHEMISTRY 2024; 103:106766. [PMID: 38271781 PMCID: PMC10818077 DOI: 10.1016/j.ultsonch.2024.106766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/26/2023] [Accepted: 01/09/2024] [Indexed: 01/27/2024]
Abstract
In this study, ultrasonic-ethanol pretreatment combined with AEE was developed for oil extraction from hemp seeds. The oil yield reached a maximum of 23.32 % at 200 W ultrasonic power and 30 min ultrasonic time, at this point, the degradation rate of Δ9-THC was 83.11 %. By determining the composition of hemp seed before and after pretreatment, it was shown that ultrasonic-ethanol pretreatment reduced the protein content of the raw material. An enzyme mixture consisting of pectinase and hemicellulase (1/1/1, w/w/w) was experimentally determined to be used, and the AEE extraction conditions were optimized using the Plackett-Burman design and the Box-Behnken. The optimal conditions were determined to be pH 5, total enzyme activity of 37,800 U/g, liquid-solid ratio of 10.4 mL/g, enzyme digestion temperature of 32 °C, enzymatic time of 189 min, and oil recovery of 88.38 %. The results of confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM) showed that the emulsion formed during ultrasonic ethanol pretreatment was not uniformly distributed, and the droplets appeared to be aggregated; and the irregular pores of hemp seed increased after pretreatment. The contents of Δ9-THC and CBN in the extracted oil samples were 9.58 mg/kg and 52.45 mg/kg, respectively. Compared with the oil extracted by Soxhlet extraction (SE), the oil extracted by this experimental method was of better quality and similar in fatty acid composition.
Collapse
Affiliation(s)
- Wang Zhang
- School of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Jiaye Yu
- School of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Donghua Wang
- The University of Sheffield, Sheffield, S10 2TNc, United Kingdom
| | - Xiaoyu Han
- School of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Tong Wang
- School of Food Science, Northeast Agricultural University, Harbin 150030, China.
| | - Dianyu Yu
- School of Food Science, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
18
|
Song K, Liu Y, Umar A, Ma H, Wang H. Ultrasonic cavitation: Tackling organic pollutants in wastewater. CHEMOSPHERE 2024; 350:141024. [PMID: 38147929 DOI: 10.1016/j.chemosphere.2023.141024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 12/28/2023]
Abstract
Environmental pollution and energy shortages are global issues that significantly impact human progress. Multiple methods have been proposed for treating industrial and dyes containing wastewater. Ultrasonic degradation has emerged as a promising and innovative technology for organic pollutant degradation. This study provides a comprehensive overview of the factors affecting ultrasonic degradation and thoroughly examines the technique of acoustic cavitation. Furthermore, this study summarizes the fundamental theories and mechanisms underlying cavitation, emphasizing its efficacy in the remediation of various water pollutants. Furthermore, potential synergies between ultrasonic cavitation and other commonly used technologies are also explored. Potential challenges are identified and future directions for the development of ultrasonic degradation and ultrasonic cavitation technologies are outlined.
Collapse
Affiliation(s)
- Kai Song
- School of Life Science, Changchun Normal University, Changchun, 130032, China.
| | - Yijun Liu
- School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Ahmad Umar
- Department of Chemistry, Faculty of Science and Arts, And Promising Centre for Sensors and Electronic Devices, Najran University, Najran, 11001, Saudi Arabia; Department of Materials Science and Engineering, The Ohio State University, Columbus, 43210, OH, USA
| | - Hailing Ma
- School of Engineering and Technology, The University of New South Wales, Canberra, ACT, 2600, Australia
| | - Hongxu Wang
- School of Engineering and Technology, The University of New South Wales, Canberra, ACT, 2600, Australia.
| |
Collapse
|
19
|
Gohlke G, Cauduro VH, Frozi E, Rocha LF, Machado GR, Henn AS, Tao Y, Mesko MF, M M Flores E. Low cost sample preparation method using ultrasound for the determination of environmentally critical elements in seaweed. ULTRASONICS SONOCHEMISTRY 2024; 103:106788. [PMID: 38309048 PMCID: PMC10848136 DOI: 10.1016/j.ultsonch.2024.106788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/19/2024] [Accepted: 01/27/2024] [Indexed: 02/05/2024]
Abstract
In this study, ultrasound (US) was evaluated for As, Cd, Pb, Mn, Sr and V extraction from seaweed samples. The following parameters of ultrasound-assisted extraction (UAE) using an US bath were: frequency (25 to 130 kHz), amplitude (30 to 100%), temperature (30 to 80 °C), sample mass (50 to 200 mg), extractant concentration (1 to 3 mol L-1 of HNO3) and treatment time (5 to 30 min). Acoustic density and power density distribution were calculated using the calorimetric method and mapping of the acoustic pressure distribution was also evaluated. The optimized UAE conditions were 200 mg of sample in 10 mL of 2 mol L-1 HNO3 and 30 min of sonication in a 25 kHz US bath (37.2 ± 4.0 W L-1) at 70% of amplitude and 70 °C. Analytes were quantified using inductively coupled plasma mass spectrometry and results were compared with values obtained using "silent" conditions (magnetic or mechanical stirring at 500 rpm, and without stirring), and a reference method based on microwave-assisted wet digestion (MAWD). The UAE method demonstrated the best extraction efficiency (higher than 95%) for all analytes, especially for As, Cd and V, with lower standard deviations (up to 5%) and lower blank values in comparison with the silent conditions. The proposed UAE method was more advantageous than the reference method, being faster, simpler, safer, more environmentally friendly, and with higher detectability (lower limits of quantification, from 0.0033 to 1.34 µg g-1). In addition, negligible blank values were obtained for UAE and no interference were observed in the determination step. Furthermore, the optimized UAE method was applied for Antarctic seaweed samples and comparison with results obtained by MAWD was satisfactory. In this sense, UAE is demonstrated to be a suitable option for sample preparation of seaweed samples and further determination of environmentally critical elements avoiding the use of concentrated reagents as in the MAWD reference method.
Collapse
Affiliation(s)
- Gustavo Gohlke
- Departamento de Química, Universidade Federal de Santa Maria, Santa Maria/RS 97105-900, Brazil
| | - Vitoria H Cauduro
- Departamento de Química, Universidade Federal de Santa Maria, Santa Maria/RS 97105-900, Brazil
| | - Emanuele Frozi
- Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Brazil
| | - Luana F Rocha
- Departamento de Química, Universidade Federal de Santa Maria, Santa Maria/RS 97105-900, Brazil
| | - Giancarlo R Machado
- Departamento de Engenharia Química, Universidade Federal de Santa Maria, Brazil
| | - Alessandra S Henn
- Departamento de Química, Universidade Federal de Santa Maria, Santa Maria/RS 97105-900, Brazil
| | - Yang Tao
- College of Food Science and Technology, Whole Grain Food Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Marcia F Mesko
- Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, 96160-000 Capão do Leão, RS, Brazil
| | - Erico M M Flores
- Departamento de Química, Universidade Federal de Santa Maria, Santa Maria/RS 97105-900, Brazil.
| |
Collapse
|
20
|
Adamou P, Harkou E, Hafeez S, Manos G, Villa A, Al-Salem SM, Constantinou A, Dimitratos N. Recent progress on sonochemical production for the synthesis of efficient photocatalysts and the impact of reactor design. ULTRASONICS SONOCHEMISTRY 2023; 100:106610. [PMID: 37806038 PMCID: PMC10568290 DOI: 10.1016/j.ultsonch.2023.106610] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/18/2023] [Accepted: 09/19/2023] [Indexed: 10/10/2023]
Abstract
Sonochemical-assisted synthesis has flourished recently for the design of photocatalysts. The main power used is ultrasound that allows the nanomaterials shape and size modification and control. This review highlights the effect in formation mechanism by ultrasound application and the most common photocatalysts that were prepared via sonochemical techniques. Moreover, the challenge for the suitable reactor design for the synthesis of materials or for their photocatalytic evaluation is discussed since the most prominent reactor systems, batch, and continuous flow, has both advantages and drawbacks. This work summarises the significance of sonochemical synthesis for photocatalytic materials as a green technology that needs to be further investigated for the preparation of new materials and the scale up of developed reactor systems to meet industrial needs.
Collapse
Affiliation(s)
- Panayiota Adamou
- Department of Chemical Engineering Cyprus University of Technology, 57 Corner of Athinon and Anexartisias, 3036 Limassol, Cyprus
| | - Eleana Harkou
- Department of Chemical Engineering Cyprus University of Technology, 57 Corner of Athinon and Anexartisias, 3036 Limassol, Cyprus
| | - Sanaa Hafeez
- School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, the United Kingdom of Great Britain and Northern Ireland
| | - George Manos
- Department of Chemical Engineering, University College London, London WCIE 7JE, the United Kingdom of Great Britain and Northern Ireland
| | - Alberto Villa
- Dipartimento di Chimica, Universitá degli Studi di Milano, via Golgi, 20133 Milan, Italy
| | - S M Al-Salem
- Environment & Life Sciences Research Centre, Kuwait Institute for Scientific Research, P.O. Box: 24885, Safat 13109, Kuwait
| | - Achilleas Constantinou
- Department of Chemical Engineering Cyprus University of Technology, 57 Corner of Athinon and Anexartisias, 3036 Limassol, Cyprus.
| | - Nikolaos Dimitratos
- Department of Industrial Chemistry "Toso Montanari", University of Bologna, viale Risorgimento 4 40136 Bologna, Italy; Center for Chemical Catalysis - C3, University of Bologna, viale Risorgimento 4 40136 Bologna, Italy.
| |
Collapse
|
21
|
Garcia-Vargas I, Louisnard O, Barthe L. Extensive investigation of geometric effects in sonoreactors: Analysis by luminol mapping and comparison with numerical predictions. ULTRASONICS SONOCHEMISTRY 2023; 99:106542. [PMID: 37572427 PMCID: PMC10448224 DOI: 10.1016/j.ultsonch.2023.106542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/25/2023] [Accepted: 07/28/2023] [Indexed: 08/14/2023]
Abstract
This investigation focuses on the influence of geometric factors on cavitational activity within a 20kHz sonoreactor containing water. Three vessels with different shapes were used, and the transducer immersion depth and liquid height were varied, resulting in a total of 126 experiments conducted under constant driving current. For each one, the dissipated power was quantified using calorimetry, while luminol mapping was employed to identify the shape and location of cavitation zones. The raw images of blueish light emission were transformed into false colors and corrected to compensate for refraction by the water-glass and glass-air interfaces. Additionally, all configurations were simulated using a sonoreactor model that incorporates a nonlinear propagation of acoustic waves in cavitating liquids. A systematic visual comparison between luminol maps and color-plots displaying the computed bubble collapse temperature in bubbly regions was conducted. The calorimetric power exhibited a nearly constant yield of approximately 70% across all experiments, thus validating the transducer command strategy. However, the numerical predictions consistently overestimated the electrical and calorimetric powers by a factor of roughly 2, indicating an overestimation of dissipation in the cavitating liquid model. Geometric variations revealed non-monotonic relationships between transducer immersion depth and dissipated power, emphasizing the importance of geometric effects in sonoreactor. Complex features were revealed by luminol maps, exhibiting appearance, disappearance, and merging of different luminol zones. In certain parametric regions, the luminol bright regions are reminiscent of linear eigenmodes of the water/vessel system. In the complementary parametric space, these structures either combine with, or are obliterated by typical elongated axial structures. The latter were found to coincide with an increased calorimetric power, and are conjectured to result from a strong cavitation field beneath the transducer producing acoustic streaming. Similar methods were applied to an additional set of 57 experiments conducted under constant geometry but with varying current, and suggested that the transition to elongated structures occurs above some amplitude threshold. While the model partially reproduced some experimental observations, further refinement is required to accurately account for the intricate acoustic phenomena involved.
Collapse
Affiliation(s)
- Igor Garcia-Vargas
- Centre RAPSODEE, IMT Mines-Albi, UMR CNRS 5302, Université de Toulouse, 81013 Albi CT, France; Laboratoire de Genie Chimique, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France; SinapTec, 7, Avenue Pierre et Marie Curie, 59260, Lezennes, France
| | - Olivier Louisnard
- Centre RAPSODEE, IMT Mines-Albi, UMR CNRS 5302, Université de Toulouse, 81013 Albi CT, France.
| | - Laurie Barthe
- Laboratoire de Genie Chimique, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| |
Collapse
|
22
|
Li C, Wang X, Wu J, Gao J, Zhao R, Xia S, Yang H, Chen Z, Li L, Wang W. Harnessing ultrasound in photocatalysis: Synthesis and piezo-enhanced effect: A review. ULTRASONICS SONOCHEMISTRY 2023; 99:106584. [PMID: 37678068 PMCID: PMC10495625 DOI: 10.1016/j.ultsonch.2023.106584] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/28/2023] [Accepted: 09/01/2023] [Indexed: 09/09/2023]
Abstract
The photocatalytic technique has drawn far-ranging interests in addressing the current issues; however, its property suffers from the limited visible light response and rapid recombination of carriers. To address these issues, two specific approaches have been proposed to enhance the photocatalytic activity: (1) ultrasound-assisted synthesis has been utilized to prepare photocatalysts, resulting in refined grain size, increased specific surface area, and reduced photogenerated carrier recombination; (2) sonophotocatalysis and piezoelectric enhanced photocatalysis have been developed to accelerate the reaction, which utilizes the synergism between ultrasound and light. On one side, sonophotocatalysis generates cavitation bubbles which induce more reactive radicals for redox reactions. On the other side, ultrasound induces deformation of the piezoelectric material structure, which changes the internal piezoelectric potential and improves the photocatalytic performance. Currently, intensive efforts have been devoted to related research and great progress has been reached with applications in pollutant degradation, new energy production, and other fields. This work starts by elucidating the fundamental concept of ultrasound-assisted photocatalyst synthesis and photocatalysis. Then, the synergistic behavior between ultrasonic and light in ultrasonic-assisted photocatalysis has been thoroughly discussed, including pollutant degradation, water splitting, and bacterial sterilization. Finally, the challenge and outlook are investigated and proposed.
Collapse
Affiliation(s)
- Chunyan Li
- College of Materials and Chemistry, China Jiliang University, 258 Xueyuan Street, Xiasha Higher Education Zone, Hangzhou 310018, China
| | - Xiaozhuo Wang
- College of Materials and Chemistry, China Jiliang University, 258 Xueyuan Street, Xiasha Higher Education Zone, Hangzhou 310018, China
| | - Jianhao Wu
- College of Materials and Chemistry, China Jiliang University, 258 Xueyuan Street, Xiasha Higher Education Zone, Hangzhou 310018, China
| | - Jingyang Gao
- College of Materials and Chemistry, China Jiliang University, 258 Xueyuan Street, Xiasha Higher Education Zone, Hangzhou 310018, China
| | - Rixu Zhao
- China Construction Ready Mixed Concrete Co., Ltd., Wuhan 430070, China
| | - Sasa Xia
- College of Materials and Chemistry, China Jiliang University, 258 Xueyuan Street, Xiasha Higher Education Zone, Hangzhou 310018, China
| | - Hua Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, MOA Laboratory of Quality & Safety Risk Assessment for Agro-products (Hangzhou), Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Zhi Chen
- College of Materials and Chemistry, China Jiliang University, 258 Xueyuan Street, Xiasha Higher Education Zone, Hangzhou 310018, China.
| | - Lan Li
- College of Materials and Chemistry, China Jiliang University, 258 Xueyuan Street, Xiasha Higher Education Zone, Hangzhou 310018, China.
| | - Wen Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, MOA Laboratory of Quality & Safety Risk Assessment for Agro-products (Hangzhou), Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| |
Collapse
|
23
|
Ahmed Tawfik M, Eltaweel MM, Farag MM, Shamsel-Din HA, Ibrahim AB. Sonophoresis-assisted transdermal delivery of antimigraine-loaded nanolipomers: Radio-tracking, histopathological assessment and in-vivo biodistribution study. Int J Pharm 2023; 644:123338. [PMID: 37607646 DOI: 10.1016/j.ijpharm.2023.123338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/16/2023] [Accepted: 08/18/2023] [Indexed: 08/24/2023]
Abstract
Migraine is a disabling neurovascular polygenic disorder affecting life quality with escorted socioeconomic encumbrances. Herein, we investigated the consolidated amalgamation of passive lipomer approach alongside active sonophoresis assisted transdermal delivery of zolmitriptan (ZT) using high frequency ultrasound pre-treatment protocol to mitigate migraine attacks. A modified nanoprecipitation technique was utilized to prepare zolmitriptan loaded lipomers (ZTL) adopting 23 factorial design. Three factors were scrutinized namely lipid type, ZT: lipid ratio and ZT: Gantrez® ratio. The prepared systems were characterized regarding particle size, zeta potential, polydispersity index, entrapment efficiency and in-vitro release studies. The best achieved ZTL system was evaluated for ZT- Gantrez® intermolecular interactions, drug crystallinity, morphology, ex-vivo permeation and histopathological examination. Finally, a comparative in-vivo biodistribution study through radiotracking technique using Technetium-99 m was adopted. L2 was the best-achieved ZTL system with respect to spherical particle size (390.7 nm), zeta-potential (-30.8 mV), PDI (0.2), entrapment efficiency (86.2%), controlled release profile, flux (147.13 μg/cm2/hr) and enhancement ratio (5.67). Histopathological studies proved the safety of L2 system upon application on skin. L2 revealed higher brain Cmax (12.21 %ID/g), prolonged brain MRT (8.67 hr), prolonged brain 0.23 hr), significantly high relative bioavailability (2929.36%) and similar brain Tmax (0.5 hr) compared to I.V. route with higher brain/blood ratio. Thus, sonophoresis assisted transdermal delivery of ZTL offers a propitious alterative to alleviate migraine symptoms.
Collapse
Affiliation(s)
- Mai Ahmed Tawfik
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Egypt
| | - Mai M Eltaweel
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Egypt
| | - Michael M Farag
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Egypt.
| | - Hesham A Shamsel-Din
- Labeled Compounds Department, Hot Labs Center, Egyptian Atomic Energy Authority, 13759 Cairo, Egypt
| | - Ahmed B Ibrahim
- Labeled Compounds Department, Hot Labs Center, Egyptian Atomic Energy Authority, 13759 Cairo, Egypt
| |
Collapse
|
24
|
Kumar VB. Design and development of molten metal nanomaterials using sonochemistry for multiple applications. Adv Colloid Interface Sci 2023; 318:102934. [PMID: 37301065 DOI: 10.1016/j.cis.2023.102934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/26/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023]
Abstract
Molten metals have prospective applications as soft fluids with unique physical and chemical properties, yet materials based on them are still in their infancy and have great potential. Ultrasonic irradiation of molten metals in liquid media induces acoustic cavitation and dispersion of the liquid metal into micrometric and nanometric spheres. This review focuses on the synthesis of mmetallic materials via sonochemistry from molten metals with low melting point (< 420 ᴼC): Ga, Hg, In, Sn, Bi, Pb, and Zn, which can be melted in organic or inorganic media or water and of aqueous solutions of metallic ions to form two immiscible liquid phases. Organic molecule entrapment, polymer solubilization, chiral imprinting, and catalyst incorporation within metals or metallic particles were recently developed to provide novel hybrid nanomaterials for several applications including catalysis, fuel cells, and biomass-to-biofuel conversion. In all cases where molten metal was sonicated in an organic solvent, in addition to a solid precipitant, an interesting supernatant was obtained that contained metal-doped carbon dots (M@C-dots). Some of these M@C-dots were found to exhibit highly effective antimicrobial activity, promote neuronal tissue growth, or have utility in lithium-ion rechargeable batteries. The economic feasibility and commercial scalability of molten metal sonochemistry attract fundamental interest in the reaction mechanisms, as the versatility and controllability of the structure and material properties invite exploration of various applications.
Collapse
Affiliation(s)
- Vijay Bhooshan Kumar
- Department of Chemistry, Bar-Ilan Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan 52900, Israel.
| |
Collapse
|
25
|
Wang X, Zhang L, Chen L, Wang Y, Okonkwo CE, Yagoub AEGA, Wahia H, Zhou C. Application of ultrasound and its real-time monitoring of the acoustic field during processing of tofu: Parameter optimization, protein modification, and potential mechanism. Compr Rev Food Sci Food Saf 2023; 22:2747-2772. [PMID: 37161497 DOI: 10.1111/1541-4337.13161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/07/2023] [Accepted: 04/04/2023] [Indexed: 05/11/2023]
Abstract
Tofu is nutritious, easy to make, and popular among consumers. At present, traditional tofu production has gradually become perfect, but there are still shortcomings, such as long soaking time, serious waste of water resources, and the inability to realize orders for production at any time. Moreover, tofu production standards have not yet been clearly defined, with large differences in quality between them, which is not conducive to industrialized and large-scale production. Ultrasound has become a promising green processing technology with advantages, such as high extraction rate, short processing time, and ease of operation. This review focused on the challenges associated with traditional tofu production during soaking, grinding, and boiling soybeans. Moreover, the advantages of ultrasonic processing over traditional processing like increasing nutrient content, improving gel properties, and inhibiting the activity of microorganisms were explained. Furthermore, the quantification of acoustic fields by real-time monitoring technology was introduced to construct the theoretical correlation between ultrasonic treatments and tofu processing. It was concluded that ultrasonic treatment improved the functional properties of soybean protein, such as solubility, emulsifying properties, foamability, rheological properties, gel strength, and thermal stability. Therefore, the application of ultrasonic technology to traditional tofu processing to optimize industrial parameters is promising.
Collapse
Affiliation(s)
- Xue Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Lei Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Li Chen
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Yang Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Clinton Emeka Okonkwo
- Department of Food Science, College of Food and Agriculture, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Abu El-Gasim A Yagoub
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Hafida Wahia
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Cunshan Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
26
|
Parr IV D, Duda CG, Leddy J. Why Sonochemistry in a Thin Layer? Constructive Interference. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2023; 127:12184-12193. [PMID: 37415972 PMCID: PMC10320778 DOI: 10.1021/acs.jpcc.3c00804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 05/23/2023] [Indexed: 07/08/2023]
Abstract
Sonochemistry in a thin fluid layer has advantages of no visible cavitation, no turbulence, negligible temperature changes (≲1 °C), low power transducers, and transmissibility (sound pressure amplification) of ≳106. Unlike sonochemistry in semi-infinite fluids, resonance and so constructive interference of sound pressure can be established in thin layers. Constructive interference enables substantial amplification of sound pressure at solid fluid interfaces. Fluid properties of sound velocity and attenuation, oscillator input frequency, and thin fluid layer thickness couple to established resonance in underdamped conditions. In thin layer sonochemistry (TLS), thin layers are established where ultrasonic wavelength and oscillator-interface separation are comparable, about a centimeter in water. Solution of a one dimensional wave equation identifies explicit relationships between the system parameters required to establish resonance and constructive interference in a thin layer.
Collapse
|
27
|
Hong M, Yao J, Rao F, Chen Z, Gao N, Zhang Z, Jiang W. Insight into the synergistic mechanism of sonolysis and sono-induced BiFeO 3 nanorods piezocatalysis in atenolol degradation: Ultrasonic parameters, ROS and degradation pathways. CHEMOSPHERE 2023:139084. [PMID: 37263504 DOI: 10.1016/j.chemosphere.2023.139084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 05/17/2023] [Accepted: 05/29/2023] [Indexed: 06/03/2023]
Abstract
Herein, BiFeO3 nanorods (BFO NRs) was synthesized as the piezoelectric catalyst. The synergistic mechanism of sonolysis and sono-induced BFO-piezocatalysis in atenolol degradation was revealed and the effect of ultrasonic parameters on it was investigated for the first time. The results indicated that 100 kHz was the optimal frequency for the sonolytic and sono-piezocatalytic degradation of atenolol in ultrasound/BFO nanorods (US/BFO NRs) system, with the highest synergistic coefficient of 3.43. The piezoelectric potential differences of BFO NRs by COMSOL Multiphysics simulations further distinguishing that the impact of cavitation shock wave and ultrasonic vibration from sonochemistry reaction (i.e., 2.48, -2.48 and 6.60 V versus 0.008, -0.008 and 0.02 V under tensile, compressive and shear stress at 100 kHz). The latter piezoelectric potentials were insufficient for reactive-oxygen-species (ROS) generation, while the former contributed to 53.93% •OH yield in US/BFO NRs system. Sono-piezocatalysis was found more sensitive to ultrasonic power density than sonolysis. The quenching experiments and ESR tests indicated that the ROS contribution in atenolol degradation followed the order of •OH > 1O2 > h+ > O2•- in US/BFO NRs system and 1O2 generation is exclusively dissolved-oxygen dependent. Four degradation pathways for atenolol in US/BFO NRs system were proposed via products identification and DFT calculation. Toxicity assessment by ECOSAR suggested the toxicity of the degradation products could be controlled.
Collapse
Affiliation(s)
- Mingjian Hong
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China
| | - Juanjuan Yao
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China.
| | - Fanhui Rao
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China
| | - Zihan Chen
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China
| | - Naiyun Gao
- State Key Laboratory of Pollution Control and Resources Reuse, Tongji University, Shanghai, 200092, China
| | - Zhi Zhang
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China
| | - Wenchao Jiang
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China.
| |
Collapse
|
28
|
Karbalaei Akbari M, Siraj Lopa N, Park J, Zhuiykov S. Plasmonic Nanodomains Decorated on Two-Dimensional Oxide Semiconductors for Photonic-Assisted CO 2 Conversion. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16103675. [PMID: 37241301 DOI: 10.3390/ma16103675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/26/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023]
Abstract
Plasmonic nanostructures ensure the reception and harvesting of visible lights for novel photonic applications. In this area, plasmonic crystalline nanodomains decorated on the surface of two-dimensional (2D) semiconductor materials represent a new class of hybrid nanostructures. These plasmonic nanodomains activate supplementary mechanisms at material heterointerfaces, enabling the transfer of photogenerated charge carriers from plasmonic antennae into adjacent 2D semiconductors and therefore activate a wide range of visible-light assisted applications. Here, the controlled growth of crystalline plasmonic nanodomains on 2D Ga2O3 nanosheets was achieved by sonochemical-assisted synthesis. In this technique, Ag and Se nanodomains grew on 2D surface oxide films of gallium-based alloy. The multiple contribution of plasmonic nanodomains enabled the visible-light-assisted hot-electron generation at 2D plasmonic hybrid interfaces, and therefore considerably altered the photonic properties of the 2D Ga2O3 nanosheets. Specifically, the multiple contribution of semiconductor-plasmonic hybrid 2D heterointerfaces enabled efficient CO2 conversion through combined photocatalysis and triboelectric-activated catalysis. The solar-powered acoustic-activated conversion approach of the present study enabled us to achieve the CO2 conversion efficiency of more than 94% in the reaction chambers containing 2D Ga2O3-Ag nanosheets.
Collapse
Affiliation(s)
- Mohammad Karbalaei Akbari
- Department of Solid-State Sciences, Faculty of Science, Ghent University, Krijgslaan 281/S1, 9000 Ghent, Belgium
- Center for Environmental and Energy Research, Ghent University Global Campus, 119-5 Songdomunhwa-ro, Yeonsu-gu, Incheon 21985, Republic of Korea
| | - Nasrin Siraj Lopa
- Department of Solid-State Sciences, Faculty of Science, Ghent University, Krijgslaan 281/S1, 9000 Ghent, Belgium
- Center for Environmental and Energy Research, Ghent University Global Campus, 119-5 Songdomunhwa-ro, Yeonsu-gu, Incheon 21985, Republic of Korea
| | - Jihae Park
- Center for Environmental and Energy Research, Ghent University Global Campus, 119-5 Songdomunhwa-ro, Yeonsu-gu, Incheon 21985, Republic of Korea
- Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Wetenschapspark 1, Bluebridge, 8400 Oostende, Belgium
| | - Serge Zhuiykov
- Department of Solid-State Sciences, Faculty of Science, Ghent University, Krijgslaan 281/S1, 9000 Ghent, Belgium
- Center for Environmental and Energy Research, Ghent University Global Campus, 119-5 Songdomunhwa-ro, Yeonsu-gu, Incheon 21985, Republic of Korea
| |
Collapse
|
29
|
Kumar VB, Gedanken A, Porat Z. Sonochemistry of molten metals. NANOSCALE 2023; 15:7625-7639. [PMID: 37060125 DOI: 10.1039/d3nr00143a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Ultrasonic irradiation of molten metals in liquid media causes dispersion of the metals into suspensions of micro- and nanoparticles that can be separated. This is applicable mainly to low-mp elemental metals or alloys, but higher mp elemental metals or alloys were also reported. Among metals, mercury and gallium exhibit especially-low melting points and are thus considered as liquid metals (LMs). Sonication of mercury in aqueous solutions of certain metal ions can cause simultaneous reduction of the ions and reactions between the metals. Gallium can be melted and sonicated in warm water, as well as in aqueous solutions of various solutes such as metal ions and organic compounds, which opened a wide window of interactions between the gallium particles and the solutes. Sonication of molten metals in organic liquids, such as polyethylene glycol (PEG) 400, forms carbon dots (C-dots) doped with nanoparticles of these metals. This review article summarizes the various interactions and reactions that occur upon sonication of metals in liquid media.
Collapse
Affiliation(s)
- Vijay Bhooshan Kumar
- Bar-Ilan Institute for Nanotechnology and Advanced Materials, Department of Chemistry, Bar-Ilan University, Ramat-Gan 5290002, Israel
- Faculty of life Sciences, Tel Aviv University, Tel Aviv-Yafo, 6997801, Tel Aviv, Israel
| | - Aharon Gedanken
- Faculty of life Sciences, Tel Aviv University, Tel Aviv-Yafo, 6997801, Tel Aviv, Israel
| | - Ze'ev Porat
- Department of Chemistry, Nuclear Research Center-Negev, Beer-Sheva 84190, Israel
- Department of Civil and Environmental Engineering, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel.
| |
Collapse
|
30
|
Głowniak S, Szczęśniak B, Choma J, Jaroniec M. Recent Developments in Sonochemical Synthesis of Nanoporous Materials. Molecules 2023; 28:molecules28062639. [PMID: 36985612 PMCID: PMC10051140 DOI: 10.3390/molecules28062639] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/09/2023] [Accepted: 03/12/2023] [Indexed: 03/17/2023] Open
Abstract
Ultrasounds are commonly used in medical imaging, solution homogenization, navigation, and ranging, but they are also a great energy source for chemical reactions. Sonochemistry uses ultrasounds and thus realizes one of the basic concepts of green chemistry, i.e., energy savings. Moreover, reduced reaction time, mostly using water as a solvent, and better product yields are among the many factors that make ultrasound-induced reactions greener than those performed under conventional conditions. Sonochemistry has been successfully implemented for the preparation of various materials; this review covers sonochemically synthesized nanoporous materials. For instance, sonochemical-assisted methods afforded ordered mesoporous silicas, spherical mesoporous silicas, periodic mesoporous organosilicas, various metal oxides, biomass-derived activated carbons, carbon nanotubes, diverse metal-organic frameworks, and covalent organic frameworks. Among these materials, highly porous samples have also been prepared, such as garlic peel-derived activated carbon with an apparent specific surface area of 3887 m2/g and MOF-177 with an SSA of 4898 m2/g. Additionally, many of them have been examined for practical usage in gas adsorption, water treatment, catalysis, and energy storage-related applications, yielding satisfactory results.
Collapse
Affiliation(s)
- Sylwia Głowniak
- Institute of Chemistry, Military University of Technology, Kaliskiego 2, 00-908 Warsaw, Poland; (S.G.); (B.S.); (J.C.)
| | - Barbara Szczęśniak
- Institute of Chemistry, Military University of Technology, Kaliskiego 2, 00-908 Warsaw, Poland; (S.G.); (B.S.); (J.C.)
| | - Jerzy Choma
- Institute of Chemistry, Military University of Technology, Kaliskiego 2, 00-908 Warsaw, Poland; (S.G.); (B.S.); (J.C.)
| | - Mietek Jaroniec
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44242, USA
- Correspondence:
| |
Collapse
|
31
|
Du H, Gu X, Johs A, Yin X, Spano T, Wang D, Pierce EM, Gu B. Sonochemical oxidation and stabilization of liquid elemental mercury in water and soil. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130589. [PMID: 37055993 DOI: 10.1016/j.jhazmat.2022.130589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/23/2022] [Accepted: 12/08/2022] [Indexed: 06/19/2023]
Abstract
Over 3000 mercury (Hg)-contaminated sites worldwide contain liquid metallic Hg [Hg(0)l] representing a continuous source of elemental Hg(0) in the environment through volatilization and solubilization in water. Currently, there are few effective treatment technologies available to remove or sequester Hg(0)l in situ. We investigated sonochemical treatments coupled with complexing agents, polysulfide and sulfide, in oxidizing Hg(0)l and stabilizing Hg in water, soil and quartz sand. Results indicate that sonication is highly effective in breaking up and oxidizing liquid Hg(0)l beads via acoustic cavitation, particularly in the presence of polysulfide. Without complexing agents, sonication caused only minor oxidation of Hg(0)l but increased headspace gaseous Hg(0)g and dissolved Hg(0)aq in water. However, the presence of polysulfide essentially stopped Hg(0) volatilization and solubilization. As a charged polymer, polysulfide was more effective than sulfide in oxidizing Hg(0)l and subsequently stabilizing the precipitated metacinnabar (β-HgS) nanocrystals. Sonochemical treatments with sulfide yielded incomplete oxidation of Hg(0)l, likely resulting from the formation of HgS coatings on the dispersed µm-size Hg(0)l bead surfaces. Sonication with polysulfide also resulted in rapid oxidation of Hg(0)l and precipitation of HgS in quartz sand and in the Hg(0)l-contaminated soil. This research indicates that sonochemical treatment with polysulfide could be an effective means in rapidly converting Hg(0)l to insoluble HgS precipitates in water and sediments, thereby preventing its further emission and release to the environment. We suggest that future studies are performed to confirm its technical feasibility and treatment efficacy for remediation applications.
Collapse
Affiliation(s)
- Hongxia Du
- College of Resources and Environment, Southwest University, Chongqing 400715, PR China; Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States
| | - Xin Gu
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States
| | - Alexander Johs
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States
| | - Xiangping Yin
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States
| | - Tyler Spano
- Nuclear Nonproliferation Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States
| | - Dingyong Wang
- College of Resources and Environment, Southwest University, Chongqing 400715, PR China
| | - Eric M Pierce
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States
| | - Baohua Gu
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States; Department of Biosystems Engineering and Soil Science, University of Tennessee, Knoxville, TN 37996, United States.
| |
Collapse
|
32
|
Application of hydrodynamic cavitation in the field of water treatment. CHEMICAL PAPERS 2023. [DOI: 10.1007/s11696-023-02754-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
33
|
Qayyum A, Giannakoudakis DA, Łomot D, Colmenares-Quintero RF, LaGrow AP, Nikiforow K, Lisovytskiy D, Colmenares JC. Tuning the physicochemical features of titanium oxide nanomaterials by ultrasound: Elevating photocatalytic selective partial oxidation of lignin-inspired aromatic alcohols. ULTRASONICS SONOCHEMISTRY 2023; 94:106306. [PMID: 36709727 PMCID: PMC9894921 DOI: 10.1016/j.ultsonch.2023.106306] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
The research for "green" and economically feasible approaches such as (photo)catalysis especially for biomass valorization such as selective oxidation of biomass derived compounds like aromatic alcohols to corresponding aldehyde by avoiding the harsh reaction conditions and the addition of reagents concentrate the focus of attention the last years. Hence, design and development of novel photocatalyst for the partial selective oxidation is highly desirable. In this research work, ultrasonication of different frequencies (22, 40, 80 kHz) and different amplitudes was utilized as synthesis tool in order to obtain novel materials by precipitation method. The synthesized samples were characterized by using different techniques such as N2 sorption, TEM, XPS, XRD, thermal analysis, and diffuse reflectance spectroscopy. The synthesized sample by using low ultrasound frequency (22 kHz) and amplitude showed a mixed morphological and structural nature consisting of asymmetric 1-dimensional (nanorods-like), layered nano-structures and not well-defined areas, leading to elevate for metal oxide specific surface areas up to 155 m2/g. The observed 1-D nanostructures have diamentions in the range of 20-60 nm. This sample revealed the highest photo-oxidation efficiency for the selective conversion of two biomass-derived, and more specifically lignin-inspired model compounds, benzyl alcohol and cinnamyl alcohol to benzaldehyde and cinnamyl aldehyde, respectively, and hence the highest yield towards the desired aldehydes. The selective photo-oxidation activity was retained even after 5 photocatalytic cycles, while no leaching of Ti was recorded.
Collapse
Affiliation(s)
- Abdul Qayyum
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| | | | - Dariusz Łomot
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | | | - Alec P LaGrow
- Scientific Imaging Section, Okinawa Institute of Science and Technology Graduate University, Kunigami-gun, Okinawa 904-0412, Japan
| | - Kostiantyn Nikiforow
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Dmytro Lisovytskiy
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Juan Carlos Colmenares
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| |
Collapse
|
34
|
Xuan X, Wang M, You W, Manickam S, Tao Y, Yoon JY, Sun X. Hydrodynamic cavitation-assisted preparation of porous carbon from garlic peels for supercapacitors. ULTRASONICS SONOCHEMISTRY 2023; 94:106333. [PMID: 36821934 PMCID: PMC9975689 DOI: 10.1016/j.ultsonch.2023.106333] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/08/2023] [Accepted: 02/12/2023] [Indexed: 05/08/2023]
Abstract
Hydrodynamic cavitation (HC), which can effectively induce sonochemical effects, is widely considered a promising process intensification technology. In the present study, HC was successfully utilized to intensify the alkali activation of GPs for SCs, for the first time. Five BDCMs were synthesized following the method reported in the literature. For comparison, four more BDCMs with HC-treated, among which a sample was further doped with nitrogen during the HC treatment, were prepared. Then all the samples were compared from microscopical characteristics to electrochemical performance as SCs materials. The morphology study demonstrated that the HC treatment had created many defects and amorphous carbon structures on the GP-based BDCMs, with the highest SSA reaching 3272 m2/g (1:6-HCGP), which 32 folded that of the Raw carbon sample's. The HC treatment also intensified the N-doping process. XRD and XPS results manifested that the N content had been increased and consequently changed the electronic structure of the carbon atoms, leading to the increase of specific capacitance (1:6-HCGP+N-based SC, 227 F/g at 10 A/g). The cycle performance proved that the GP-based BDCMs have long-term stability, indicating that the HC-treated BDCMs were good choices for energy storage technologies. Compared with the ultrasound-assisted method, which may have a high energy density, the HC-assisted method enables high production and energy efficiency. This work is a first time attempt towards the industrial application of HC method in energy-related materials synthesis and encourages more in-depth studies in the future.
Collapse
Affiliation(s)
- Xiaoxu Xuan
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture, Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, China; National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, China; Suzhou Research Institute of Shandong University, Suzhou 215123, China
| | - Mengjie Wang
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture, Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, China; National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, China
| | - Weibin You
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture, Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, China; National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, China
| | - Sivakumar Manickam
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan BE1410, Brunei Darussalam
| | - Yang Tao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Joon Yong Yoon
- Department of Mechanical Engineering, BK21 FOUR ERICA-ACE Center, Hanyang University, Ansan 15588, Republic of Korea
| | - Xun Sun
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture, Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, China; National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, China.
| |
Collapse
|
35
|
Influences of Ultrasonic Treatments on the Structure and Antioxidant Properties of Sugar Beet Pectin. Foods 2023; 12:foods12051020. [PMID: 36900538 PMCID: PMC10001074 DOI: 10.3390/foods12051020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/22/2023] [Accepted: 02/24/2023] [Indexed: 03/08/2023] Open
Abstract
The objective of this study was to explore the structural changes and oxidation resistance of ultrasonic degradation products of sugar beet pectin (SBP). The changes in the structures and antioxidant activity between SBP and its degradation products were compared. As the ultrasonic treatment time increased, the content of α-D-1,4-galacturonic acid (GalA) also increased, to 68.28%. In addition, the neutral sugar (NS) content, esterification degree (DE), particle size, intrinsic viscosity and viscosity-average molecular weight (MV) of the modified SBP decreased. Fourier transform infrared (FT-IR) spectroscopy and scanning electron microscopy (SEM) were used to study the degradation of the SBP structure after ultrasonication. After ultrasonic treatment, the DPPH and ABTS free radical scavenging activities of the modified SBP reached 67.84% and 54.67% at the concentration of 4 mg/mL, respectively, and the thermal stability of modified SBP was also improved. All of the results indicate that the ultrasonic technology is an environmentally friendly, simple, and effective strategy to improve the antioxidant capacity of SBP.
Collapse
|
36
|
Lu Z, Wang Y, Li G. Covalent Organic Frameworks-Based Electrochemical Sensors for Food Safety Analysis. BIOSENSORS 2023; 13:291. [PMID: 36832057 PMCID: PMC9954712 DOI: 10.3390/bios13020291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
Food safety is a key issue in promoting human health and sustaining life. Food analysis is essential to prevent food components or contaminants causing foodborne-related illnesses to consumers. Electrochemical sensors have become a desirable method for food safety analysis due to their simple, accurate and rapid response. The low sensitivity and poor selectivity of electrochemical sensors working in complex food sample matrices can be overcome by coupling them with covalent organic frameworks (COFs). COFs are a kind of novel porous organic polymer formed by light elements, such as C, H, N and B, via covalent bonds. This review focuses on the recent progress in COF-based electrochemical sensors for food safety analysis. Firstly, the synthesis methods of COFs are summarized. Then, a discussion of the strategies is given to improve the electrochemistry performance of COFs. There follows a summary of the recently developed COF-based electrochemical sensors for the determination of food contaminants, including bisphenols, antibiotics, pesticides, heavy metal ions, fungal toxin and bacterium. Finally, the challenges and the future directions in this field are discussed.
Collapse
Affiliation(s)
- Zhenyu Lu
- College of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang 453000, China
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Yingying Wang
- College of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang 453000, China
| | - Gongke Li
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
37
|
Shokrollahi F, Lau KK, Partoon B, Lai LS. Elucidation of Operating Parameters Influencing the Ultrasonic-Assisted Absorption of Bulk CO 2 Using Unpromoted and Promoted Methyldiethanolamine. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.2c03398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Fatemeh Shokrollahi
- CO2 Research Center (CO2RES), Department of Chemical Engineering, Universiti Teknologi PETRONAS, 32610Seri Iskandar, Perak, Malaysia
| | - Kok Keong Lau
- CO2 Research Center (CO2RES), Department of Chemical Engineering, Universiti Teknologi PETRONAS, 32610Seri Iskandar, Perak, Malaysia
| | - Behzad Partoon
- Biological and Chemical Engineering Department, Faculty of Technical Science, Aarhus University, Nørreborgade 44, 8000Aarhus, Denmark
| | - Li Sze Lai
- Department of Chemical & Petroleum Engineering, Faculty of Engineering, Technology and Built Environment, UCSI University, 56000Kuala Lumpur, Malaysia
| |
Collapse
|
38
|
Li Z, Wang J, Chang J, Fu B, Wang H. Insight into advanced oxidation processes for the degradation of fluoroquinolone antibiotics: Removal, mechanism, and influencing factors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159172. [PMID: 36208734 DOI: 10.1016/j.scitotenv.2022.159172] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/26/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
The enrichment and transport of antibiotics in the environments pose many potential hazards to aquatic animals and humans, which has become one of the public health challenges worldwide. As a widely used class of antibiotics, fluoroquinolones (FQs) generally accumulated in the environments as traditional sewage treatment plants cannot completely remove them. Advanced oxidation processes (AOPs) have been shown to be a promising method for the abatement of antibiotic contamination. In this review, influencing factors and relevant mechanisms of FQs removal by various AOPs were summarized. Compared with other AOPs, photocatalytic ozone may be considered as a cost-effective method for degrading FQs. Finally, the benefits and application restrictions of AOPs were discussed, along with proposed research directions to provide new insights into the control of FQs pollutant via AOPs in practical applications.
Collapse
Affiliation(s)
- Zonglin Li
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Siping Rd 1239, Shanghai 200092, China
| | - Junsen Wang
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Siping Rd 1239, Shanghai 200092, China
| | - Jiajun Chang
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Siping Rd 1239, Shanghai 200092, China
| | - Bomin Fu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Siping Rd 1239, Shanghai 200092, China; Macao Environmental Research Institute, Macau University of Science and Technology, Macao 999078, China
| | - Hongtao Wang
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Siping Rd 1239, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, UNEP-TONGJI Institute of Environment for Sustainable Development, Shanghai 200092, China.
| |
Collapse
|
39
|
Tan C, Zhu Y, Ahari H, Jafari SM, Sun B, Wang J. Sonochemistry: An emerging approach to fabricate biopolymer cross-linked emulsions for the delivery of bioactive compounds. Adv Colloid Interface Sci 2023; 311:102825. [PMID: 36525841 DOI: 10.1016/j.cis.2022.102825] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022]
Abstract
Sonochemistry shows remarkable potential in the synthesis or modification of new micro/nanomaterials, particularly the cross-linked emulsions for drug delivery. However, the trend of utilizing sonochemical emulsions for delivery of food-derived bioactive compounds has been just started. The extension of sonochemistry as a tool for engineering bioactive delivery systems will make the approach more universal and greatly increase its applications in the food industry. This review summarizes different types of biopolymeric cross-linked emulsions (CLEs) synthesized via sonochemical approach, including CLEs, surface-modified CLEs, cross-linked high internal phase emulsions, and some novel systems templated on CLEs. Special emphasis is directed toward the cross-linking mechanisms of biopolymers at the oil-water interfaces under acoustic cavitation and the physicochemical principles underlying sonochemical fabrication. We also highlight the advantages and challenges associated with the delivery performance of each system for bioactive compounds. The potential in delivering bioactives using sonochemical emulsions has not been fully reached. There are still a number of issues that need to be overcome, including low cross-linking degree of biopolymers, degradation of bioactives in sonochemical process, and unclear biological fate of encapsulated bioactive compounds. This review may guide future trends in exploring efficient sonochemical strategies and multifunctional delivery systems for food applications.
Collapse
Affiliation(s)
- Chen Tan
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), School of Food and Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Yuqian Zhu
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), School of Food and Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Hamed Ahari
- Department of Food Science and Technology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran; Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, E-32004 Ourense, Spain; College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China
| | - Baoguo Sun
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), School of Food and Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Jing Wang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), School of Food and Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing 100048, China.
| |
Collapse
|
40
|
Geng Z, Zhou L, Zhang L, Hu J. Controllable emulsification by dissolved gas in water: Formation and stability of surfactant-free oil nanodroplets. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2022.130288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
41
|
Tan WX, Tan KW, Tan KL. Developing high intensity ultrasonic cleaning (HIUC) for post-processing additively manufactured metal components. ULTRASONICS 2022; 126:106829. [PMID: 35998399 DOI: 10.1016/j.ultras.2022.106829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 06/05/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
The high energy phenomenon of cavitation bubble collapses has enabled numerous applications, including cleaning. In ultrasonic cleaning, cavitation intensity is typically lower than in other applications, such as sonochemistry and material processing. However, there has been an emerging application in intense cleaning of metal additively manufactured (AM) components. The presence of partially melted powders on AM surfaces is undesirable, contributing to high surface roughness and posing contamination risks during usage. We designed a high-intensity cavitation cleaning process that has significantly higher inertial cavitation intensity - i.e., erosion potential - than a conventional ultrasonic cleaning tank. Through acoustic signal characterisation, we showed that placing transducer sets on four sides of the tank could effectively focus and generate high-amplitude pressure waves directed towards the central region. Strong subharmonic signals indicate intensely inertial cavitation throughout the tank. Cavitation intensities were measured at various locations to understand the wave transmission characteristics and distribution patterns. Our results show that the cavitation intensity distribution is highly dependent on the height position. Finally, we demonstrated that the high intensity ultrasonic cleaning (HIUC) process could remove partially melted powders from an AM surface - which was not possible through conventional ultrasonic cleaning. HIUC could lead to higher cleaning efficiency and enhanced AM specimen cleanliness.
Collapse
Affiliation(s)
- W X Tan
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - K W Tan
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore.
| | - K L Tan
- Advanced Remanufacturing and Technology Centre, 3 Cleantech Loop, #01/01 CleanTech Two, Singapore 637143, Singapore.
| |
Collapse
|
42
|
Pirsaheb M, Moradi N, Hossini H. Sonochemical processes for antibiotics removal from water and wastewater: A systematic review. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.11.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
43
|
Zahir Iqbal M, Aziz U, Waqas Khan M, Siddique S, Alzaid M. Strategies to enhance the electrochemical performance of strontium-based electrode materials for battery-supercapacitor applications. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116868] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
44
|
Agalya P, Cholan S, Prabu K, Suresh Kumar G, Karunakaran G, Shkir M, Kolesnikov E, Ramalingam S. Ultrasonic assisted in situ mineralization of hydroxyapatite nanoparticles in the presence of drug molecule: An insight on biowaste derived materials for the local drug delivery. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
45
|
Hayashi Y, Ebato Y, Onishi R, Takizawa H. Sonochemical decomposition of noble metal oxides and sonochemical alloying of gold-silver systems. ULTRASONICS SONOCHEMISTRY 2022; 89:106115. [PMID: 35988292 PMCID: PMC9418546 DOI: 10.1016/j.ultsonch.2022.106115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/01/2022] [Accepted: 08/04/2022] [Indexed: 06/02/2023]
Abstract
Recently, environmental problems, such as global warming, have become more severe; thus, there is a requirement to implement sustainable development goals in materials processing. In this study, we investigated a low-cost and environmentally-friendly sonochemical process for the synthesis of metal nanoparticles with large specific surface areas and catalysis effects. Au2O3 hydrate and Ag2O were reduced to Au and Ag, respectively, at room temperature in a short time when irradiated with ultrasound in ethanol. Furthermore, when a mixed powder of Au2O3 hydrate and Ag2O was irradiated in ethanol, Au-Ag alloys were obtained in only 10 min. This fast and environmentally friendly alloying technique, known as sonochemical alloying, is promising for alloy syntheses.
Collapse
Affiliation(s)
- Yamato Hayashi
- Department of Applied Chemistry, Chemical Engineering and Biomolecular Engineering, Tohoku University, 6-6 Aoba, Aramaki, Aobaku, Sendai 980-8579, Japan.
| | - Yusuke Ebato
- Department of Applied Chemistry, Chemical Engineering and Biomolecular Engineering, Tohoku University, 6-6 Aoba, Aramaki, Aobaku, Sendai 980-8579, Japan
| | - Ryoma Onishi
- Graduate School of Engineering Department of Applied Chemistry, Tohoku University, 6-6 Aoba, Aramaki, Aobaku, Sendai 980-8579, Japan
| | - Hirotsugu Takizawa
- Department of Applied Chemistry, Chemical Engineering and Biomolecular Engineering, Tohoku University, 6-6 Aoba, Aramaki, Aobaku, Sendai 980-8579, Japan
| |
Collapse
|
46
|
Yao C, Zhao S, Liu L, Liu Z, Chen G. Ultrasonic emulsification: basic characteristics, cavitation, mechanism, devices and application. Front Chem Sci Eng 2022. [DOI: 10.1007/s11705-022-2160-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
47
|
Dong J, Wang Z, Yang F, Wang H, Cui X, Li Z. Update of ultrasound-assembling fabrication and biomedical applications for heterogeneous polymer composites. Adv Colloid Interface Sci 2022; 305:102683. [PMID: 35523099 DOI: 10.1016/j.cis.2022.102683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 03/24/2022] [Accepted: 04/23/2022] [Indexed: 01/24/2023]
Abstract
As a power-driving approach, ultrasound irradiation is very appealing to the preparation or modification of new materials. In the review, we overviewed the latest development of ultrasound-mediated effects or reactions in polymer composites, and demonstrated its unique and powerful aspects on the polymerization or aggregation. The review generalized the different categories of heterogeneous polymer composites by defining the constituents, and described the shapes, sizes and basic properties of various purpose-specific or site-specific products. Importantly, the review paid more attention to the main biomedicine applications of heterogeneous polymer composites, such as drug or bioactive substance entrapment, delivery, release, imaging, and therapy, and emphasized many advantages of ultrasound-assembling approaches and heterogeneous polymer composites in biology and medicine fields. In addition, the review also indicated the prospective challenges of heterogeneous polymer composites both in ultrasound-assembling designs and in biomedical applications.
Collapse
|
48
|
Dadashi J, Khaleghian M, Hanifehpour Y, Mirtamizdoust B, Joo SW. Lead(II)-Azido Metal-Organic Coordination Polymers: Synthesis, Structure and Application in PbO Nanomaterials Preparation. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2257. [PMID: 35808091 PMCID: PMC9268566 DOI: 10.3390/nano12132257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/18/2022] [Accepted: 06/24/2022] [Indexed: 02/04/2023]
Abstract
The current study aims to explain recent developments in the synthesis of Pb(II)-azido metal-organic coordination polymers. Coordination polymers are defined as hybrid materials encompassing metal-ion-based, organic linkers, vertices, and ligands, serving to link the vertices to 1D, 2D, or 3D periodic configurations. The coordination polymers have many applications and potential properties in many research fields, primarily dependent on particular host-guest interactions. Metal coordination polymers (CPs) and complexes have fascinating structural topologies. Therefore, they have found numerous applications in different areas over the past two decades. Azido-bridged complexes are inorganic coordination ligands with higher fascination that have been the subject of intense research because of their coordination adaptability and magnetic diversity. Several sonochemical methods have been developed to synthesize nanostructures. Researchers have recently been interested in using ultrasound in organic chemistry synthetics, since ultrasonic waves in liquids accelerate chemical reactions in heterogeneous and homogeneous systems. The sonochemical synthesis of lead-azide coordination compounds resulted from very fantastic morphologies, and some of these compounds are used as precursors for preparing nano lead oxide. The ultrasonic sonochemistry approach has been extensively applied in different research fields, such as medical imaging, biological cell disruption, thermoplastic welding, food processing, and waste treatment. CPs serve as appropriate precursors for preparing favorable materials at the nanoscale. Using these polymers as precursors is beneficial for preparing inorganic nanomaterials such as metal oxides.
Collapse
Affiliation(s)
- Jaber Dadashi
- Department of Chemistry, Faculty of Science, University of Qom, Qom P.O. Box 37185-359, Iran; (J.D.); (M.K.); (B.M.)
| | - Mohammad Khaleghian
- Department of Chemistry, Faculty of Science, University of Qom, Qom P.O. Box 37185-359, Iran; (J.D.); (M.K.); (B.M.)
| | - Younes Hanifehpour
- Department of Chemistry, Sayyed Jamaleddin Asadabadi University, Asadabad 6541861841, Iran
| | - Babak Mirtamizdoust
- Department of Chemistry, Faculty of Science, University of Qom, Qom P.O. Box 37185-359, Iran; (J.D.); (M.K.); (B.M.)
| | - Sang Woo Joo
- School of Mechanical engineering, Yeungnam University, Gyeongsan 712-749, Korea
| |
Collapse
|
49
|
Serna-Gallén P, Beltrán-Mir H, Cordoncillo E. The pH-dependent reactions in the sonochemical synthesis of luminescent fluorides: The quest for the formation of KY 3F 10 crystal phases. ULTRASONICS SONOCHEMISTRY 2022; 87:106059. [PMID: 35691111 PMCID: PMC9190047 DOI: 10.1016/j.ultsonch.2022.106059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 05/24/2022] [Accepted: 06/04/2022] [Indexed: 06/15/2023]
Abstract
In this study Eu3+-doped yttrium fluorides were designed by ultrasound-assisted processes at different pH values (4.0-9.0). This novel strategy has enabled to obtain materials with intriguing morphologies and modulated crystal structures: α-KY3F10, δ-KY3F10·xH2O, and Y(OH)3-xFx. To date, the literature has primarily focused only on the α-phase of KY3F10. Yet, explaining the formation of the mostly uncharted δ-phase of KY3F10 remains a challenge. Thus, this paper offers the key to synthesizing both the α and the δ-phases of KY3F10 and also reports the first ultrasound-assisted process for the preparation of yttrium hydroxyfluorides. It is also unraveled the connection between the different pH-dependent reactions and the formation mechanisms of the compounds. In addition to this, the unique features of the Eu3+ ion have allowed to conduct a thorough study of the different materials and have endowed the compounds with photoluminescent properties. The results underscore a highly tunable optical response, with a wide gamut of color emissions (from orangish to red hues), lifetimes (from 7.9 ms to 1.1 ms) and quantum efficiencies (98-28%). The study unveils the importance of sonochemistry in obtaining luminescent fluorides with controlled crystal structures that can open up new avenues in the synthesis and design of inorganic materials.
Collapse
Affiliation(s)
- Pablo Serna-Gallén
- Departamento de Química Inorgánica y Orgánica, Universitat Jaume I, Av. Sos Baynat s/n 12071, Castelló de la Plana, Spain.
| | - Héctor Beltrán-Mir
- Departamento de Química Inorgánica y Orgánica, Universitat Jaume I, Av. Sos Baynat s/n 12071, Castelló de la Plana, Spain.
| | - Eloísa Cordoncillo
- Departamento de Química Inorgánica y Orgánica, Universitat Jaume I, Av. Sos Baynat s/n 12071, Castelló de la Plana, Spain.
| |
Collapse
|
50
|
Haese M, Winterhalter K, Jung J, Schmidt MS. Like Visiting an Old Friend: Fischer Glycosylation in the Twenty-First Century: Modern Methods and Techniques. Top Curr Chem (Cham) 2022; 380:26. [PMID: 35595946 PMCID: PMC9123081 DOI: 10.1007/s41061-022-00383-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 05/05/2022] [Indexed: 11/26/2022]
Abstract
Fischer glycosylation is typically the chemical reaction of a monosaccharide and an alcohol in presence of an acidic catalyst to afford glycosides in pyranosidic and furanosidic forms. This reaction is still applied today for the synthesis of specialized glycosides, and optimization and modification of the method have continued since its discovery by Emil Fischer in the 1890s. This review presents advancements in Fischer glycosylation described in literature of the past 15 years and its implementation in modern chemical methods.
Collapse
Affiliation(s)
- Matteo Haese
- Institute of Precision Medicine, Organic and Bioorganic Chemistry Labs, Medical and Life Sciences Faculty, Furtwangen University, Jakob-Kienzle-Str. 17, 78054 VS-Schwenningen, Germany
| | - Kai Winterhalter
- Institute of Precision Medicine, Organic and Bioorganic Chemistry Labs, Medical and Life Sciences Faculty, Furtwangen University, Jakob-Kienzle-Str. 17, 78054 VS-Schwenningen, Germany
| | - Jessica Jung
- Institute of Precision Medicine, Organic and Bioorganic Chemistry Labs, Medical and Life Sciences Faculty, Furtwangen University, Jakob-Kienzle-Str. 17, 78054 VS-Schwenningen, Germany
| | - Magnus S. Schmidt
- Institute of Precision Medicine, Organic and Bioorganic Chemistry Labs, Medical and Life Sciences Faculty, Furtwangen University, Jakob-Kienzle-Str. 17, 78054 VS-Schwenningen, Germany
| |
Collapse
|