1
|
Li P, Yang X, Liu Q, Zhang H, Luo Z. Bladder cancer biomarker analysis and drugtarget prediction based on pyroptosis-related genes. Discov Oncol 2025; 16:924. [PMID: 40415077 DOI: 10.1007/s12672-025-02754-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Accepted: 05/19/2025] [Indexed: 05/27/2025] Open
Abstract
BACKGROUND Bladder cancer (BC) is a common and lethal condition that presents a considerable risk to public health. Studies have demonstrated that inflammation is pivotal in the onset and advancement of BC. Pyroptosis is a type of programmed cell death distinguished by inflammatory reactions associated with innate immunity. Inhibiting inflammatory cytokine production and modulating pyroptosis-related pathways may provide a potential treatment approach for BC. We predicted and validated the Pyroptosis-related genes and potential biomarkers associated with BC, ultimately predicting therapeutic drugs based on the hub gene targets. METHODS The gene expression profiles for BC were acquired from the Gene Expression Omnibus (GEO) database. Bioinformatics analysis identified gene expression differences associated with pyroptosis in BC. The differently regulated pyroptosis-related genes were validated, and enrichment studies of specific biological processes and associated signaling pathways in BC were performed. Immune infiltration analysis and single-cell analysis were conducted to clarify the immune infiltration characteristics in BC. Therapeutic agents were forecasted based on critical gene targets. RESULTS In BC, 27 differentially expressed pyroptosis-related genes were discovered, with CASP8, NLRP3, CASP3, IL18, TP53, GSDME, IL1A, PYCARD, CYCS, and CASP9 recognized as key genes. Enrichment analysis revealed that the occurrence of pyroptosis was primarily associated with inflammation, activation of immune responses, and apoptosis. Additionally, data validation demonstrated that CASP8, NLRP3, CASP3, IL18, TP53, CYCS, and CASP9 were involved in the regulation of pyroptosis. The results of immune infiltration and single-cell analyses further validated that B-cells-memory, T-cells_CD8, T-cells_follicular-helper, Macrophages-M1, Dendritic_cells_activated, and Mast_cells_resting play significant roles in the immune processes of BC. The drug targeting predictions for pivotal genes identified Triethyl phosphate, Regorafenib, Ponatinib, Lenvatinib, Nintedanib, and Quercetin as potential key drugs or compounds for the treatment of BC. CONCLUSION This study elucidated the relationship between the development of BC and mechanisms of cellular senescence, apoptosis, and immunity. It clarified the roles of 27 genes associated with cellular senescence in BC and predicted that Triethyl phosphate, Regorafenib, Ponatinib, Lenvatinib, Nintedanib, and Quercetin may be key drugs or compounds for the treatment of BC.
Collapse
Affiliation(s)
- Ping Li
- Department of Oncology, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Xuexi Yang
- Department of Oncology, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Qin Liu
- Department of Human Anatomy, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Hanchao Zhang
- Department of Urology, The Affiliated Hospital and Clinical Medical College of Chengdu University, Chengdu, Sichuan, China
| | - Zhumei Luo
- Department of Oncology, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, Sichuan, China.
| |
Collapse
|
2
|
Tuo Z, Gao M, Jiang C, Zhang D, Chen X, Jiang Z, Wang J. Construction of M2 macrophage-related gene signature for predicting prognosis and revealing different immunotherapy response in bladder cancer patients. Clin Transl Oncol 2025; 27:2191-2206. [PMID: 39347941 DOI: 10.1007/s12094-024-03698-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/22/2024] [Indexed: 10/01/2024]
Abstract
BACKGROUND Bladder cancer development is closely associated with the dynamic interaction and communication between M2 macrophages and tumor cells. However, specific biomarkers for targeting M2 macrophages in immunotherapy remain limited and require further investigation. METHODS In this study, we identified key co-expressed genes in M2 macrophages and developed gene signatures to predict prognosis and immunotherapy response in patients. Public database provided the bioinformatics data used in the analysis. We created and verified an M2 macrophage-related gene signature in these datasets using Lasso-Cox analysis. RESULTS The predictive value and immunological functions of our risk model were examined in bladder cancer patients, and 158 genes were found to be significantly positively correlated with M2 macrophages. Moreover, we identified two molecular subgroups of bladder cancer with markedly different immunological profiles and clinical prognoses. The five key risk genes identified in this model were validated, including CALU, ECM1, LRP1, CYTL1, and CCDC102B, demonstrating the model can accurately predict prognosis and identify unique responses to immunotherapy in patients with bladder cancer. CONCLUSIONS In summary, we constructed and validated a five-gene signature related to M2 macrophages, which shows strong potential for forecasting bladder cancer prognosis and immunotherapy response.
Collapse
Affiliation(s)
- Zhouting Tuo
- Department of Urology, Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Mingzhu Gao
- Department of Oncology, Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Chao Jiang
- Department of Urology, Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Duobing Zhang
- Department of Urology, Suzhou Hospital of Anhui Medical University, Suzhou, 234000, China
- Department of Urology, Suzhou Municipal Hospital of Anhui Province, Suzhou, 234000, China
| | - Xin Chen
- Department of Urology, Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Zhiwei Jiang
- Department of Urology, Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China.
| | - Jinyou Wang
- Department of Urology, Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China.
| |
Collapse
|
3
|
Kalemoglu E, Jani Y, Canaslan K, Bilen MA. The role of immunotherapy in targeting tumor microenvironment in genitourinary cancers. Front Immunol 2025; 16:1506278. [PMID: 40260236 PMCID: PMC12009843 DOI: 10.3389/fimmu.2025.1506278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 03/19/2025] [Indexed: 04/23/2025] Open
Abstract
Genitourinary (GU) cancers, including renal cell carcinoma, prostate cancer, bladder cancer, and testicular cancer, represent a significant health burden and are among the leading causes of cancer-related mortality worldwide. Despite advancements in traditional treatment modalities such as chemotherapy, radiotherapy, and surgery, the complex interplay within the tumor microenvironment (TME) poses substantial hurdles to achieving durable remission and cure. The TME, characterized by its dynamic and multifaceted nature, comprises various cell types, signaling molecules, and the extracellular matrix, all of which are instrumental in cancer progression, metastasis, and therapy resistance. Recent breakthroughs in immunotherapy (IO) have opened a new era in the management of GU cancers, offering renewed hope by leveraging the body's immune system to combat cancer more selectively and effectively. This approach, distinct from conventional therapies, aims to disrupt cancer's ability to evade immune detection through mechanisms such as checkpoint inhibition, therapeutic vaccines, and adoptive cell transfer therapies. These strategies highlight the shift towards personalized medicine, emphasizing the importance of understanding the intricate dynamics within the TME for the development of targeted treatments. This article provides an in-depth overview of the current landscape of treatment strategies for GU cancers, with a focus on IO targeting the specific cell types of TME. By exploring the roles of various cell types within the TME and their impact on cancer progression, this review aims to underscore the transformative potential of IO strategies in TME targeting, offering more effective and personalized treatment options for patients with GU cancers, thereby improving outcomes and quality of life.
Collapse
Affiliation(s)
- Ecem Kalemoglu
- Department of Internal Medicine, Rutgers-Jersey City Medical Center, Jersey City, NJ, United States
- Department of Basic Oncology, Health Institute of Ege University, Izmir, Türkiye
| | - Yash Jani
- Medical College of Georgia, Augusta, GA, United States
| | - Kubra Canaslan
- Department of Medical Oncology, Dokuz Eylul University, Izmir, Türkiye
| | - Mehmet Asim Bilen
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA, United States
- Department of Urology, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
4
|
Xia QD, Sun JX, Yao ZP, Lu JL, Liu CQ, Xu JZ, An Y, Xu MY, Zhang SH, Zhong XY, Zeng N, Ma SY, He HD, Hu HL, Hu J, Lu Y, Li B, Chen YB, Liu Z, Wang SG. The role of TERT C228T and KDM6A alterations and TME in NMIBC treated with BCG. NPJ Precis Oncol 2024; 8:216. [PMID: 39353991 PMCID: PMC11445404 DOI: 10.1038/s41698-024-00725-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 09/24/2024] [Indexed: 10/03/2024] Open
Abstract
We aimed to investigate the genomic and tumor microenvironmental (TME) profiles in non-muscle invasive bladder cancer (NMIBC) and explore potential predictive markers for Bacillus Calmette-Guérin (BCG) treatment response in high-risk NMIBC patients (according to European Association of Urology (EAU) risk stratification). 40 patients with high-risk NMIBC (cTis-T1N0M0) who underwent en bloc resection followed by BCG instillation were retrospectively enrolled. Surgical samples were subjected to Next Generation Sequencing (NGS) and multiplex immunofluorescence (mIF) assay. Genomic profiling revealed high prevalences of alterations in TERT (55%), KDM6A (32.5%), FGFR3(30%), PIK3CA (30%), TP53(27.5%) and ARID1A (20%). TME analysis showed different proportions of macrophages, NK cells, T cells subsets in tumoral and stromal compartment. Multivariate analysis identified TERT C228T and alteration in KDM6A as two independent factors associated with inferior RFS. The study comprehensively depicted the genomic and TME profiles in NMIBC and identified potential predictive biomarkers for BCG treatment.
Collapse
Affiliation(s)
- Qi-Dong Xia
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jian-Xuan Sun
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhi-Peng Yao
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun-Lin Lu
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Chen-Qian Liu
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jin-Zhou Xu
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ye An
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Meng-Yao Xu
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Si-Han Zhang
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xing-Yu Zhong
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Na Zeng
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Si-Yang Ma
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hao-Dong He
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Heng-Long Hu
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jia Hu
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Lu
- Burning Rock Biotech, Guangzhou, China
| | - Bing Li
- Burning Rock Biotech, Guangzhou, China
| | - Yao-Bing Chen
- Department of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Zheng Liu
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Shao-Gang Wang
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
5
|
Yang M, Wang B, Hou W, Zeng H, He W, Zhang XK, Yan D, Yu H, Huang L, Pei L, Li K, Qin H, Lin T, Huang J. NAD + metabolism enzyme NNMT in cancer-associated fibroblasts drives tumor progression and resistance to immunotherapy by modulating macrophages in urothelial bladder cancer. J Immunother Cancer 2024; 12:e009281. [PMID: 39067875 DOI: 10.1136/jitc-2024-009281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2024] [Indexed: 07/30/2024] Open
Abstract
BACKGROUND This study comprehensively investigates the association between the expression of nicotinamide N-methyltransferase (NNMT) and clinical outcomes of urothelial bladder cancer (UBC), as well as the molecular mechanisms by which NNMT in cancer-associated fibroblast (CAF) modulates tumor progression and immunotherapy resistance in UBC. METHODS Single-cell transcriptomic analyses, immunohistochemical and immunofluorescence assays were performed on bladder cancer samples to validate the relationship between NNMT expression and clinical outcomes. A series of experiments, including chromatin immunoprecipitation assay, liquid chromatography tandem mass spectrometry assay, and CRISPR‒Cas9 (Clustered Regularly Interspaced Short Palindromic Repeats and CRISPR-associated protein 9) knockout, together with in vivo models, have been established to determine the molecular functions of NNMT in CAFs in UBC. RESULTS We demonstrated that elevated expression of the nicotinamide adenine dinucleotide (NAD+) metabolism enzyme NNMT in CAFs (NNMT+ CAFs) was significantly associated with non-response to programmed death-ligand 1 (PD-L1) blockade immunotherapy in patients with UBC and predicted the unfavorable prognosis of UBC in two independent large cohorts. Targeting NNMT using the inhibitor 5-Amino-1-methylquinolinium iodide significantly reduced tumor growth and enhanced the apoptotic effects of the anti-PD-L1 antibody in UBC mouse models. Mechanistically, NNMT+ CAFs recruit tumor-associated macrophages via epigenetic reprogramming of serum amyloid A (SAA) to drive tumor cell proliferation and confer resistance to programmed death-1/PD-L1 blockade immunotherapy. CONCLUSIONS NNMT+ CAFs were significantly associated with non-response to PD-L1 blockade immunotherapy in patients with UBC. Elevated NNMT, specifically in CAFs, upregulates SAA expression and enhances the recruitment and differentiation of macrophages in the tumor microenvironment, thereby directly or indirectly promoting tumor progression and conferring resistance to immunotherapies in bladder cancer.
Collapse
Affiliation(s)
- Meihua Yang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangdong Provincial Clinical Research Center for Urological Diseases, Guangzhou, Guangdong, P.R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P.R. China
- First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, P.R.China
| | - Bo Wang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangdong Provincial Clinical Research Center for Urological Diseases, Guangzhou, Guangdong, P.R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P.R. China
| | - Weibin Hou
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangdong Provincial Clinical Research Center for Urological Diseases, Guangzhou, Guangdong, P.R. China
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Honghui Zeng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P.R. China
- First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, P.R.China
| | - Wang He
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangdong Provincial Clinical Research Center for Urological Diseases, Guangzhou, Guangdong, P.R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P.R. China
| | - Xin-Ke Zhang
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, P.R. China
| | - Dong Yan
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangdong Provincial Clinical Research Center for Urological Diseases, Guangzhou, Guangdong, P.R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P.R. China
| | - Hao Yu
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangdong Provincial Clinical Research Center for Urological Diseases, Guangzhou, Guangdong, P.R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P.R. China
| | - Long Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P.R. China
| | - Lu Pei
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, P. R. China
| | - Kaiwen Li
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangdong Provincial Clinical Research Center for Urological Diseases, Guangzhou, Guangdong, P.R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P.R. China
| | - Haide Qin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P.R. China
| | - Tianxin Lin
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangdong Provincial Clinical Research Center for Urological Diseases, Guangzhou, Guangdong, P.R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P.R. China
| | - Jian Huang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangdong Provincial Clinical Research Center for Urological Diseases, Guangzhou, Guangdong, P.R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P.R. China
| |
Collapse
|
6
|
Hu CY, Hung CF, Chen PC, Hsu JY, Wang CT, Lai MD, Tsai YS, Shiau AL, Shieh GS, Wu CL. Oct4 and Hypoxia Dual-Regulated Oncolytic Adenovirus Armed with shRNA-Targeting Dendritic Cell Immunoreceptor Exerts Potent Antitumor Activity against Bladder Cancer. Biomedicines 2023; 11:2598. [PMID: 37892972 PMCID: PMC10604824 DOI: 10.3390/biomedicines11102598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/12/2023] [Accepted: 09/20/2023] [Indexed: 10/29/2023] Open
Abstract
Immunotherapy has emerged as a promising modality for cancer treatment. Dendritic cell immunoreceptor (DCIR), a C-type lectin receptor, is expressed mainly by dendritic cells (DCs) and mediates inhibitory intracellular signaling. Inhibition of DCIR activation may enhance antitumor activity. DCIR is encoded by CLEC4A in humans and by Clec4a2 in mice. Gene gun-mediated delivery of short hairpin RNA (shRNA) targeting Clec4a2 into mice bearing bladder tumors reduces DCIR expression in DCs, inhibiting tumor growth and inducing CD8+ T cell immune responses. Various oncolytic adenoviruses have been developed in clinical trials. Previously, we have developed Ad.LCY, an oncolytic adenovirus regulated by Oct4 and hypoxia, and demonstrated its antitumor efficacy. Here, we generated a Clec4a2 shRNA-expressing oncolytic adenovirus derived from Ad.LCY, designated Ad.shDCIR, aimed at inducing more robust antitumor immune responses. Our results show that treatment with Ad.shDCIR reduced Clec4a expression in DCs in cell culture. Furthermore, Ad.shDCIR exerted cytolytic effects solely on MBT-2 bladder cancer cells but not on normal NIH 3T3 mouse fibroblasts, confirming the tumor selectivity of Ad.shDCIR. Compared to Ad.LCY, Ad.shDCIR induced higher cytotoxic T lymphocyte (CTL) activity in MBT-2 tumor-bearing immunocompetent mice. In addition, Ad.shDCIR and Ad.LCY exhibited similar antitumor effects on inhibiting tumor growth. Notably, Ad.shDCIR was superior to Ad.LCY in prolonging the survival of tumor-bearing mice. In conclusion, Ad.shDCIR may be further explored as a combination therapy of virotherapy and immunotherapy for bladder cancer and likely other types of cancer.
Collapse
Affiliation(s)
- Che-Yuan Hu
- Department of Urology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan (Y.-S.T.)
| | - Chi-Feng Hung
- Department of Urology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi City 60002, Taiwan
| | - Pi-Che Chen
- Department of Urology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi City 60002, Taiwan
| | - Jia-Yu Hsu
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan (M.-D.L.)
| | - Chung-Teng Wang
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan (A.-L.S.)
| | - Ming-Derg Lai
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan (M.-D.L.)
| | - Yuh-Shyan Tsai
- Department of Urology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan (Y.-S.T.)
| | - Ai-Li Shiau
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan (A.-L.S.)
- Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi City 60002, Taiwan
| | - Gia-Shing Shieh
- Department of Urology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan (Y.-S.T.)
- Department of Urology, Tainan Hospital, Ministry of Health and Welfare, Executive Yuan, Tainan 70043, Taiwan
| | - Chao-Liang Wu
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan (M.-D.L.)
- Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi City 60002, Taiwan
| |
Collapse
|
7
|
Semeniuk-Wojtaś A, Poddębniak-Strama K, Modzelewska M, Baryła M, Dziąg-Dudek E, Syryło T, Górnicka B, Jakieła A, Stec R. Tumour microenvironment as a predictive factor for immunotherapy in non-muscle-invasive bladder cancer. Cancer Immunol Immunother 2023; 72:1971-1989. [PMID: 36928373 PMCID: PMC10264486 DOI: 10.1007/s00262-023-03376-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 01/09/2023] [Indexed: 03/18/2023]
Abstract
Bladder cancer (BC) can be divided into two subgroups depending on invasion of the muscular layer: non-muscle-invasive bladder cancer (NMIBC) and muscle-invasive bladder cancer (MIBC). Its aggressiveness is associated, inter alia, with genetic aberrations like losses of 1p, 6q, 9p, 9q and 13q; gain of 5p; or alterations in the p53 and p16 pathways. Moreover, there are reported metabolic disturbances connected with poor diagnosis-for example, enhanced aerobic glycolysis, gluconeogenesis or haem catabolism.Currently, the primary way of treatment method is transurethral resection of the bladder tumour (TURBT) with adjuvant Bacillus Calmette-Guérin (BCG) therapy for NMIBC or radical cystectomy for MIBC combined with chemotherapy or immunotherapy. However, intravesical BCG immunotherapy and immune checkpoint inhibitors are not efficient in every case, so appropriate biomarkers are needed in order to select the proper treatment options. It seems that the success of immunotherapy depends mainly on the tumour microenvironment (TME), which reflects the molecular disturbances in the tumour. TME consists of specific conditions like hypoxia or local acidosis and different populations of immune cells including tumour-infiltrating lymphocytes, natural killer cells, neutrophils and B lymphocytes, which are responsible for shaping the response against tumour neoantigens and crucial pathways like the PD-L1/PD-1 axis.In this review, we summarise holistically the impact of the immune system, genetic alterations and metabolic changes that are key factors in immunotherapy success. These findings should enable better understanding of the TME complexity in case of NMIBC and causes of failures of current therapies.
Collapse
Affiliation(s)
| | | | | | | | | | - Tomasz Syryło
- Department of General, Active and Oncological Urology, Military Institute of Medicine, Warsaw, Poland
| | - Barbara Górnicka
- Pathomorphology Department, Medical University of Warsaw, Warsaw, Poland
| | - Anna Jakieła
- Oncology Department, 4 Military Clinical Hospital with a Polyclinic, Wroclaw, Poland
| | - Rafał Stec
- Oncology Department, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
8
|
Kerzeli IK, Kostakis A, Türker P, Malmström PU, Hemdan T, Mezheyeuski A, Ward DG, Bryan RT, Segersten U, Lord M, Mangsbo SM. Elevated levels of MMP12 sourced from macrophages are associated with poor prognosis in urothelial bladder cancer. BMC Cancer 2023; 23:605. [PMID: 37391708 PMCID: PMC10311740 DOI: 10.1186/s12885-023-11100-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 06/21/2023] [Indexed: 07/02/2023] Open
Abstract
BACKGROUND Urothelial bladder cancer is most frequently diagnosed at the non-muscle-invasive stage (NMIBC). However, recurrences and interventions for intermediate and high-risk NMIBC patients impact the quality of life. Biomarkers for patient stratification could help to avoid unnecessary interventions whilst indicating aggressive measures when required. METHODS In this study, immuno-oncology focused, multiplexed proximity extension assays were utilised to analyse plasma (n = 90) and urine (n = 40) samples from 90 newly-diagnosed and treatment-naïve bladder cancer patients. Public single-cell RNA-sequencing and microarray data from patient tumour tissues and murine OH-BBN-induced urothelial carcinomas were also explored to further corroborate the proteomic findings. RESULTS Plasma from muscle-invasive, urothelial bladder cancer patients displayed higher levels of MMP7 (p = 0.028) and CCL23 (p = 0.03) compared to NMIBC patients, whereas urine displayed higher levels of CD27 (p = 0.044) and CD40 (p = 0.04) in the NMIBC group by two-sided Wilcoxon rank-sum tests. Random forest survival and multivariable regression analyses identified increased MMP12 plasma levels as an independent marker (p < 0.001) associated with shorter overall survival (HR = 1.8, p < 0.001, 95% CI:1.3-2.5); this finding was validated in an independent patient OLINK cohort, but could not be established using a transcriptomic microarray dataset. Single-cell transcriptomics analyses indicated tumour-infiltrating macrophages as a putative source of MMP12. CONCLUSIONS The measurable levels of tumour-localised, immune-cell-derived MMP12 in blood suggest MMP12 as an important biomarker that could complement histopathology-based risk stratification. As MMP12 stems from infiltrating immune cells rather than the tumor cells themselves, analyses performed on tissue biopsy material risk a biased selection of biomarkers produced by the tumour, while ignoring the surrounding microenvironment.
Collapse
Affiliation(s)
- Iliana K Kerzeli
- Department of Pharmacy, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Alexandros Kostakis
- Department of Pharmacy, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Polat Türker
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Per-Uno Malmström
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Tammer Hemdan
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Artur Mezheyeuski
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
- Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Douglas G Ward
- Bladder Cancer Research Centre, Institute of Cancer & Genomic Sciences, College of Medical & Dental Sciences, University of Birmingham, Birmingham, UK
| | - Richard T Bryan
- Bladder Cancer Research Centre, Institute of Cancer & Genomic Sciences, College of Medical & Dental Sciences, University of Birmingham, Birmingham, UK
| | - Ulrika Segersten
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Martin Lord
- Department of Pharmacy, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Sara M Mangsbo
- Department of Pharmacy, Science for Life Laboratory, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
9
|
van Elsas MJ, Labrie C, Etzerodt A, Charoentong P, van Stigt Thans JJC, Van Hall T, van der Burg SH. Invasive margin tissue-resident macrophages of high CD163 expression impede responses to T cell-based immunotherapy. J Immunother Cancer 2023; 11:jitc-2022-006433. [PMID: 36914207 PMCID: PMC10016286 DOI: 10.1136/jitc-2022-006433] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2023] [Indexed: 03/14/2023] Open
Abstract
BACKGROUND Primary and secondary resistance is a major hurdle in cancer immunotherapy. Therefore, a better understanding of the underlying mechanisms involved in immunotherapy resistance is of pivotal importance to improve therapy outcome. METHOD Here, two mouse models with resistance against therapeutic vaccine-induced tumor regression were studied. Exploration of the tumor microenvironment by high dimensional flow cytometry in combination with therapeutic in vivo settings allowed for the identification of immunological factors driving immunotherapy resistance. RESULTS Comparison of the tumor immune infiltrate during early and late regression revealed a change from tumor-rejecting toward tumor-promoting macrophages. In concert, a rapid exhaustion of tumor-infiltrating T cells was observed. Perturbation studies identified a small but discernible CD163hi macrophage population, with high expression of several tumor-promoting macrophage markers and a functional anti-inflammatory transcriptome profile, but not other macrophages, to be responsible. In-depth analyses revealed that they localize at the tumor invasive margins and are more resistant to Csf1r inhibition when compared with other macrophages. In vivo studies validated the activity of heme oxygenase-1 as an underlying mechanism of immunotherapy resistance. The transcriptomic profile of CD163hi macrophages is highly similar to a human monocyte/macrophage population, indicating that they represent a target to improve immunotherapy efficacy. CONCLUSIONS In this study, a small population of CD163hi tissue-resident macrophages is identified to be responsible for primary and secondary resistance against T-cell-based immunotherapies. While these CD163hi M2 macrophages are resistant to Csf1r-targeted therapies, in-depth characterization and identification of the underlying mechanisms driving immunotherapy resistance allows the specific targeting of this subset of macrophages, thereby creating new opportunities for therapeutic intervention with the aim to overcome immunotherapy resistance.
Collapse
Affiliation(s)
- Marit J van Elsas
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Camilla Labrie
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Anders Etzerodt
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Pornpimol Charoentong
- Department of Medical Oncology, National Center for Tumor Diseases, University Hospital Heidelberg, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jordi J C van Stigt Thans
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Thorbald Van Hall
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Sjoerd H van der Burg
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
10
|
van Puffelen JH, Novakovic B, van Emst L, Kooper D, Zuiverloon TCM, Oldenhof UTH, Witjes JA, Galesloot TE, Vrieling A, Aben KKH, Kiemeney LALM, Oosterwijk E, Netea MG, Boormans JL, van der Heijden AG, Joosten LAB, Vermeulen SH. Intravesical BCG in patients with non-muscle invasive bladder cancer induces trained immunity and decreases respiratory infections. J Immunother Cancer 2023; 11:jitc-2022-005518. [PMID: 36693678 PMCID: PMC9884868 DOI: 10.1136/jitc-2022-005518] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/29/2022] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND BCG is recommended as intravesical immunotherapy to reduce the risk of tumor recurrence in patients with non-muscle invasive bladder cancer (NMIBC). Currently, it is unknown whether intravesical BCG application induces trained immunity. METHODS The aim of this research was to determine whether BCG immunotherapy induces trained immunity in NMIBC patients. We conducted a prospective observational cohort study in 17 NMIBC patients scheduled for BCG therapy and measured trained immunity parameters at 9 time points before and during a 1-year BCG maintenance regimen. Ex vivo cytokine production by peripheral blood mononuclear cells, epigenetic modifications, and changes in the monocyte transcriptome were measured. The frequency of respiratory infections was investigated in two larger cohorts of BCG-treated and non-BCG treated NMIBC patients as a surrogate measurement of trained immunity. Gene-based association analysis of genetic variants in candidate trained immunity genes and their association with recurrence-free survival and progression-free survival after BCG therapy was performed to investigate the hypothesized link between trained immunity and clinical response. RESULTS We found that intravesical BCG does induce trained immunity based on an increased production of TNF and IL-1β after heterologous ex vivo stimulation of circulating monocytes 6-12 weeks after intravesical BCG treatment; and a 37% decreased risk (OR 0.63 (95% CI 0.40 to 1.01)) for respiratory infections in BCG-treated versus non-BCG-treated NMIBC patients. An epigenomics approach combining chromatin immuno precipitation-sequencing and RNA-sequencing with in vitro trained immunity experiments identified enhanced inflammasome activity in BCG-treated individuals. Finally, germline variation in genes that affect trained immunity was associated with recurrence and progression after BCG therapy in NMIBC. CONCLUSION We conclude that BCG immunotherapy induces trained immunity in NMIBC patients and this may account for the protective effects against respiratory infections. The data of our gene-based association analysis suggest that a link between trained immunity and oncological outcome may exist. Future studies should further investigate how trained immunity affects the antitumor immune responses in BCG-treated NMIBC patients.
Collapse
Affiliation(s)
- Jelmer H van Puffelen
- Department of Internal Medicine, Radboudumc, Nijmegen, The Netherlands,Department for Health Evidence, Radboudumc, Nijmegen, The Netherlands
| | - Boris Novakovic
- Department of Paediatrics, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Liesbeth van Emst
- Department of Internal Medicine, Radboudumc, Nijmegen, The Netherlands
| | - Denise Kooper
- Department of Urology, Erasmus MC Cancer Centre, Rotterdam, The Netherlands
| | | | | | - J Alfred Witjes
- Department of Urology, Radboudumc, Nijmegen, The Netherlands
| | | | - Alina Vrieling
- Department for Health Evidence, Radboudumc, Nijmegen, The Netherlands
| | - Katja K H Aben
- Department for Health Evidence, Radboudumc, Nijmegen, The Netherlands,IKNL, Utrecht, The Netherlands
| | | | | | - Mihai G Netea
- Department of Internal Medicine, Radboudumc, Nijmegen, The Netherlands,Department of Immunology and Metabolism, University of Bonn, Life & Medical Sciences Institute, Bonn, Germany
| | - Joost L Boormans
- Department of Urology, Erasmus MC Cancer Centre, Rotterdam, The Netherlands
| | | | - Leo A B Joosten
- Department of Internal Medicine, Radboudumc, Nijmegen, The Netherlands,Department of Medical Genetics, Iuliu Hațieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Sita H Vermeulen
- Department for Health Evidence, Radboudumc, Nijmegen, The Netherlands
| |
Collapse
|
11
|
Yu X, Luo B, Lin J, Zhu Y. Alternative splicing event associated with immunological features in bladder cancer. Front Oncol 2023; 12:966088. [PMID: 36686818 PMCID: PMC9851621 DOI: 10.3389/fonc.2022.966088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/30/2022] [Indexed: 01/07/2023] Open
Abstract
Bladder cancer (BLCA) is the most prevalent urinary tumor with few treatments. Alternative splicing (AS) is closely related to tumor development and tumor immune microenvironment. However, the comprehensive analysis of AS and prognosis and immunological features in BLCA is still lacking. In this study, we downloaded RNA-Seq data and clinical information from The Cancer Genome Atlas (TCGA) database, and AS events were acquired from the TCGA Splice-seq. A total of eight prognostic AS events (C19orf57|47943|ES, ANK3|11845|AP, AK9|77203|AT, GRIK2|77096|AT, DYM|45472|ES, PTGER3|3415|AT, ACTG1|44120|RI, and TRMU|62711|AA) were identified by univariate analysis and least absolute shrinkage and selection operator (LASSO) regression analysis to construct a risk score model. The Kaplan-Meier analysis revealed that the high-risk group had a worse prognosis compared with the low-risk group. The area under the receiver operating characteristic (ROC) curves (AUCs) for this risk score model in 1, 3, and 5 years were 0.698, 0.742, and 0.772, respectively. One of the prognostic AS event-related genes, TRMU, was differentially expressed between tumor and normal tissues in BLCA. The single-sample gene set enrichment analysis (ssGSEA) and CIBERSORT algorithm showed that both the risk score model and TRMU were significantly associated with tumor immune microenvironment and immune status (immune cells, immune-related pathway, and immune checkpoint) in BLCA patients. The TIMER database confirmed the relationship between the expression of TRMU and immune cells and checkpoint genes. Furthermore, Cytoscape software 3.8.0 was used to construct the regulatory network between AS and splicing factors (SFs). Our study demonstrated that AS events were powerful biomarkers to predict the prognosis and immune status in BLCA, which may be potential therapeutic targets in BLCA.
Collapse
Affiliation(s)
- Xinbo Yu
- Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bixian Luo
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianwei Lin
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Zhu
- Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,*Correspondence: Yu Zhu,
| |
Collapse
|
12
|
Hu B, Chen R, Jiang M, Xiong S, Liu X, Fu B. EIF4A3 serves as a prognostic and immunosuppressive microenvironment factor and inhibits cell apoptosis in bladder cancer. PeerJ 2023; 11:e15309. [PMID: 37180585 PMCID: PMC10174062 DOI: 10.7717/peerj.15309] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 04/06/2023] [Indexed: 05/16/2023] Open
Abstract
EIF4A3 (Eukaryotic translation initiation factor 4A3 (EIF4A3) was recently recognized as an oncogene; however, its role in BLCA (bladder cancer) remains unclear. We explored EIF4A3 expression and its prognostic value in BLCA in public datasets, including the TCGA (The Cancer Genome Atlas) and GEO (Gene Expression Omnibus). Thereafter, the association between EIF4A3 expression and the infiltration of immune cells and immune-checkpoint expression was determined using TIMER2 (Tumor Immune Estimation Resource 2) tool. Additionally, the impact of EIF4A3 on cellular proliferation and apoptosis events in BLCA cell lines was determined by siRNA technology. In this study, EIF4A3 was found to be significantly upregulated in BLCA, upregulated expression of EIF4A3 was related to poor prognosis, advanced histologic grade, subtype, pathological stage, white race, and poor primary therapy outcome. The immune infiltration analysis revealed that EIF4A3 expression was negatively associated with CD8+ and CD4+ T cells and positively with myeloid-derived suppressor cells, macrophage M2, cancer-associated fibroblasts, and Treg cells. Moreover, EIF4A3 was coexpressed with PD-L1 (programmed cell death 1-ligand 1) and its expression was higher in patients responding to anti-PD-L1 therapy. EIF4A3 knockdown significantly inhibited proliferation and promoted apoptosis in 5,637 and T24 cells. In summary, BLCA patients with elevated EIF4A3 expression had an unfavorable prognosis and immunosuppressive microenvironment, and EIF4A3 may facilitate BLCA progression by promoting cell proliferation and inhibiting apoptosis. Furthermore, our study suggests that EIF4A3 is a potential biomarker and therapeutic target for BLCA.
Collapse
Affiliation(s)
- Bing Hu
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Institute of Urology, Nanchang, China
| | - Ru Chen
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Institute of Urology, Nanchang, China
| | - Ming Jiang
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Institute of Urology, Nanchang, China
| | - Situ Xiong
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Institute of Urology, Nanchang, China
| | - Xiaoqiang Liu
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Institute of Urology, Nanchang, China
| | - Bin Fu
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Institute of Urology, Nanchang, China
| |
Collapse
|
13
|
Viveiros N, Flores BC, Lobo J, Martins-Lima C, Cantante M, Lopes P, Deantonio C, Palu C, Sainson RC, Henrique R, Jerónimo C. Detailed bladder cancer immunoprofiling reveals new clues for immunotherapeutic strategies. Clin Transl Immunology 2022; 11:e1402. [PMID: 36092481 PMCID: PMC9440624 DOI: 10.1002/cti2.1402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 05/22/2022] [Accepted: 06/17/2022] [Indexed: 11/09/2022] Open
Abstract
Objectives Bladder cancer (BlCa) is the tenth most frequent malignancy worldwide and the costliest to treat and monitor. Muscle-invasive BlCa (MIBC) has a dismal prognosis, entailing the need for alternative therapies for the standard radical cystectomy. Checkpoint blockade immunotherapy has been approved for high-grade non-muscle-invasive BlCa (HG NMIBC) and metastatic disease, but its effectiveness in localised MIBC remains under scrutiny. Herein, we sought to characterise and compare the immune infiltrate of HG NMIBC and MIBC samples, including ICOS expression, a targetable immune checkpoint associated with regulatory T cell(Tregs)-mediated immunosuppression. Methods Immunohistochemistry for CD83, CD20, CD68, CD163, CD3, CD8, CD4, FoxP3/ICOS and PD-L1 was performed in HG NMIBC and MIBC samples (n = 206), and positive staining was quantified in the peritumoral and/or intratumoral tissue compartments with QuPath imaging software. Results CD20+ B cells, CD68+ and CD163+ tumor-associated macrophages were significantly increased in MIBCs and associated with poor prognosis. In turn, higher infiltration of T cells was associated with prolonged survival, with exception of the CD4+ helper subset. Intratumoral expression of CD3 and CD8 was independent prognostic factors for increased disease-free survival (DFS) in multivariable analysis. Remarkably, Tregs (FoxP3+/FoxP3+ICOS+) were found differentially distributed between tissue compartments. PD-L1 immunoexpression independently predicted a shorter DFS and associated with higher infiltration of FoxP3+ICOS+ Tregs. Conclusions Immune infiltrates of HG NMIBC and MIBC display significant differences that may help selecting patients for immunotherapies. Considering ICOS immunoexpression results, it might constitute a relevant therapeutic target, eventually in combination with anti-PD-1/PD-L1 therapies, for certain BlCa patient subsets.
Collapse
Affiliation(s)
- Nicole Viveiros
- Cancer Biology and Epigenetics Group Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network) Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC) Porto Portugal
| | - Bianca Ct Flores
- Cancer Biology and Epigenetics Group Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network) Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC) Porto Portugal
| | - João Lobo
- Cancer Biology and Epigenetics Group Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network) Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC) Porto Portugal.,Department of Pathology Portuguese Oncology Institute of Porto (IPO Porto) Porto Portugal.,Department of Pathology and Molecular Immunology School of Medicine and Biomedical Sciences- University of Porto (ICBAS-UP) Porto Portugal
| | - Cláudia Martins-Lima
- Cancer Biology and Epigenetics Group Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network) Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC) Porto Portugal.,Department of Precision Medicine University of Campania "Luigi Vanvitelli" Naples Italy
| | - Mariana Cantante
- Cancer Biology and Epigenetics Group Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network) Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC) Porto Portugal.,Department of Pathology Portuguese Oncology Institute of Porto (IPO Porto) Porto Portugal
| | - Paula Lopes
- Cancer Biology and Epigenetics Group Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network) Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC) Porto Portugal.,Department of Pathology Portuguese Oncology Institute of Porto (IPO Porto) Porto Portugal
| | | | | | | | - Rui Henrique
- Cancer Biology and Epigenetics Group Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network) Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC) Porto Portugal.,Department of Pathology Portuguese Oncology Institute of Porto (IPO Porto) Porto Portugal.,Department of Pathology and Molecular Immunology School of Medicine and Biomedical Sciences- University of Porto (ICBAS-UP) Porto Portugal
| | - Carmen Jerónimo
- Cancer Biology and Epigenetics Group Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network) Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC) Porto Portugal.,Department of Pathology and Molecular Immunology School of Medicine and Biomedical Sciences- University of Porto (ICBAS-UP) Porto Portugal
| |
Collapse
|
14
|
Xing P, Jiang Z, Liu Y. Construction and validation of a gene signature related to bladder urothelial carcinoma based on immune gene analysis. BMC Cancer 2022; 22:926. [PMID: 36030212 PMCID: PMC9419388 DOI: 10.1186/s12885-022-09794-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 06/15/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND This study developed a gene signature associated with a malignant and common tumor of the urinary system, the Bladder Urothelial Carcinoma (BLCA). METHODS The Cancer Genome Atlas (TCGA) database was searched to obtain 414 BLCA samples and the expression spectra of 19 normal samples. Single-sample Gene Set Enrichment Analysis (ssGSEA) was conducted to determine the enrichment levels in the BLCA samples of the 29 immune genes. Unsupervised hierarchical clustering, gene set enrichment analysis (GSEA), single-factor Cox analysis, least absolute shrinkage and selection operator (LASSO) regression models, and GEO queues were used to determine the BLCA immune gene subtype, analyze the biological pathway differences between immune gene subtypes, determine the characteristic genes of BLCA associated with prognosis, identify the BLCA-related genes, and verify the gene signature, respectively. RESULTS We identified two immune gene subtypes (immunity_L and immunity_H). The latter was significantly related to receptors, JAK STAT signaling pathways, leukocyte interleukin 6 generation, and cell membrane signal receptor complexes. Four characteristic genes (RBP1, OAS1, LRP1, and AGER) were identified and constituted the gene signature. Significant survival advantages, higher mutation frequency, and superior immunotherapy were observed in the low-risk group patients. The gene signature had good predictive ability. The results of the validation group were consistent with TCGA queue results. CONCLUSIONS We constructed a 4-gene signature that helps monitor BLCA occurrence and prognosis, providing an important basis for developing personalized BLCA immunotherapy.
Collapse
Affiliation(s)
- Peng Xing
- Department of Urology, The First Hospital of China Medical University, Shenyang, 110013, P.R. China
| | - Zhengming Jiang
- Department of Urology, The First Hospital of China Medical University, Shenyang, 110013, P.R. China
| | - Yang Liu
- Department of Urology, The First Hospital of China Medical University, Shenyang, 110013, P.R. China.
| |
Collapse
|
15
|
Friedrich V, Choi HW. The Urinary Microbiome: Role in Bladder Cancer and Treatment. Diagnostics (Basel) 2022; 12:diagnostics12092068. [PMID: 36140470 PMCID: PMC9497549 DOI: 10.3390/diagnostics12092068] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/20/2022] [Accepted: 08/24/2022] [Indexed: 11/24/2022] Open
Abstract
Commensal microbes have increasingly been found to be involved in the development and progression of cancer. The recent discovery of the urinary microbiome bolstered the notion that microbes might play a role in bladder cancer. Although microbial involvement in bladder neoplastic transformation and metastatic progression, except schisto somiasis, has not been established, accumulating research suggests that dysbiosis of the urinary microbiome can produce a chronically inflammatory urothelial microenvironment and lead to bladder cancer. In this review, we describe how the urinary microbiome might facilitate the development of bladder cancer by altering the host immune system and the kind of cytokines that are directly involved in these responses. We investigated the therapeutic possibilities of modulating the urinary microbiome, including immune checkpoint therapy. The responsiveness of patients to intravesical Bacillus Calmette-Guerin therapy was evaluated with respect to microbiome composition. We conclude by noting that the application of microbes to orchestrate the inflammatory response in the bladder may facilitate the development of treatments for bladder cancer.
Collapse
|
16
|
Jiang S, Redelman-Sidi G. BCG in Bladder Cancer Immunotherapy. Cancers (Basel) 2022; 14:3073. [PMID: 35804844 PMCID: PMC9264881 DOI: 10.3390/cancers14133073] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/20/2022] [Accepted: 06/20/2022] [Indexed: 01/18/2023] Open
Abstract
BCG is a live attenuated strain of Mycobacterium bovis that is primarily used as a vaccine against tuberculosis. In the past four decades, BCG has also been used for the treatment of non-muscle invasive bladder cancer (NMIBC). In patients with NMIBC, BCG reduces the risk of tumor recurrence and decreases the likelihood of progression to more invasive disease. Despite the long-term clinical experience with BCG, its mechanism of action is still being elucidated. Data from animal models and from human studies suggests that BCG activates both the innate and adaptive arms of the immune system eventually leading to tumor destruction. Herein, we review the current data regarding the mechanism of BCG and summarize the evidence for its clinical efficacy and recommended indications and clinical practice.
Collapse
Affiliation(s)
- Song Jiang
- Urology Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA;
| | - Gil Redelman-Sidi
- Infectious Diseases Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
17
|
Abstract
Tumour-associated macrophages (TAMs) constitute a plastic and heterogeneous cell population of the tumour microenvironment (TME) that can account for up to 50% of solid tumours. TAMs heterogeneous are associated with different cancer types and stages, different stimulation of bioactive molecules and different TME, which are crucial drivers of tumour progression, metastasis and resistance to therapy. In this context, understanding the sources and regulatory mechanisms of TAM heterogeneity and searching for novel therapies targeting TAM subpopulations are essential for future studies. In this review, we discuss emerging evidence highlighting the redefinition of TAM heterogeneity from three different directions: origins, phenotypes and functions. We notably focus on the causes and consequences of TAM heterogeneity which have implications for the evolution of therapeutic strategies that targeted the subpopulations of TAMs.
Collapse
|
18
|
Lv C, Li S, Zhao J, Yang P, Yang C. M1 Macrophages Enhance Survival and Invasion of Oral Squamous Cell Carcinoma by Inducing GDF15-Mediated ErbB2 Phosphorylation. ACS OMEGA 2022; 7:11405-11414. [PMID: 35415372 PMCID: PMC8992263 DOI: 10.1021/acsomega.2c00571] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/10/2022] [Indexed: 05/15/2023]
Abstract
M2 macrophages are generally recognized to have a protumor role, while the effect of M1 macrophages in cancer is controversial. Here, the in vitro and in vivo effects of conditioned medium from M1 macrophages (M1-CM) on oral squamous cell carcinoma (OSCC) cells and a potential mechanism were studied. CCK-8, colony formation, EdU labeling, xenograft growth, and Transwell assays were utilized to observe cell survival/proliferation and migration/invasion, respectively, in OSCC cell lines treated with basic medium (BM) and M1-CM. The ErbB2 phosphorylation inhibitor (CI-1033) and GDF15 knockout cell lines were used to appraise the role of ErbB2 and GDF15 in mediating the effects of M1-CM. Compared with BM, M1-CM significantly enhanced the survival/proliferation of SCC25 cells. The migration/invasion of SCC25 and CAL27 cells also increased. Mechanically, M1-CM promoted GDF15 expression and increased the phosphorylation of ErbB2, AKT, and ErK. CI-1033 significantly declined the M1-CM-induced activation of p-AKT and p-ErK and its protumor effects. M1-CM stimulated enhancement of p-ErbB2 expression was significantly decreased in cells with GDF15 gene knockout vs without. In xenograft, M1-CM pretreatment significantly promoted the carcinogenic potential of OSCC cells. Our results demonstrate that M1 macrophages induce the proliferation, migration, invasion, and xenograft development of OSCC cells. Mechanistically, this protumor effect of M1 macrophages is partly associated with inducing GDF15-mediated ErbB2 phosphorylation.
Collapse
Affiliation(s)
- Chunxu Lv
- Department
of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University &
Shandong Key Laboratory of Oral Tissue Regeneration & Shandong
Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan 250012, Shandong, China
| | - Shutong Li
- Department
of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University &
Shandong Key Laboratory of Oral Tissue Regeneration & Shandong
Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan 250012, Shandong, China
| | - Jingjing Zhao
- Department
of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University &
Shandong Key Laboratory of Oral Tissue Regeneration & Shandong
Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan 250012, Shandong, China
| | - Pishan Yang
- Department
of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University &
Shandong Key Laboratory of Oral Tissue Regeneration & Shandong
Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan 250012, Shandong, China
- Tel: +86 053188382493. Fax: +86 53188382923.
| | - Chengzhe Yang
- Department
of Oral & Maxillofacial Surgery, Qilu
Hospital and Institute of Stomatology, Shandong University, Jinan 250012, Shandong, China
- Tel: +86 053182166772. Fax: +86 53186927544.
| |
Collapse
|
19
|
Hourani T, Holden JA, Li W, Lenzo JC, Hadjigol S, O’Brien-Simpson NM. Tumor Associated Macrophages: Origin, Recruitment, Phenotypic Diversity, and Targeting. Front Oncol 2021; 11:788365. [PMID: 34988021 PMCID: PMC8722774 DOI: 10.3389/fonc.2021.788365] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 11/30/2021] [Indexed: 12/20/2022] Open
Abstract
The tumor microenvironment (TME) is known to have a strong influence on tumorigenesis, with various components being involved in tumor suppression and tumor growth. A protumorigenic TME is characterized by an increased infiltration of tumor associated macrophages (TAMs), where their presence is strongly associated with tumor progression, therapy resistance, and poor survival rates. This association between the increased TAMs and poor therapeutic outcomes are stemming an increasing interest in investigating TAMs as a potential therapeutic target in cancer treatment. Prominent mechanisms in targeting TAMs include: blocking recruitment, stimulating repolarization, and depletion methods. For enhancing targeting specificity multiple nanomaterials are currently being explored for the precise delivery of chemotherapeutic cargo, including the conjugation with TAM-targeting peptides. In this paper, we provide a focused literature review of macrophage biology in relation to their role in tumorigenesis. First, we discuss the origin, recruitment mechanisms, and phenotypic diversity of TAMs based on recent investigations in the literature. Then the paper provides a detailed review on the current methods of targeting TAMs, including the use of nanomaterials as novel cancer therapeutics.
Collapse
Affiliation(s)
| | | | | | | | | | - Neil M. O’Brien-Simpson
- Antimicrobial, Cancer Therapeutics and Vaccines (ACTV) Research Group, Melbourne Dental School, Centre for Oral Health Research, Royal Dental Hospital, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
20
|
Huang X, Pan T, Yan L, Jin T, Zhang R, Chen B, Feng J, Duan T, Xiang Y, Zhang M, Chen X, Yang Z, Zhang W, Ding X, Xie T, Sui X. The inflammatory microenvironment and the urinary microbiome in the initiation and progression of bladder cancer. Genes Dis 2021; 8:781-797. [PMID: 34522708 PMCID: PMC8427242 DOI: 10.1016/j.gendis.2020.10.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 10/05/2020] [Accepted: 10/06/2020] [Indexed: 12/24/2022] Open
Abstract
Accumulating evidence suggests that chronic inflammation may play a critical role in various malignancies, including bladder cancer. This hypothesis stems in part from inflammatory cells observed in the urethral microenvironment. Chronic inflammation may drive neoplastic transformation and the progression of bladder cancer by activating a series of inflammatory molecules and signals. Recently, it has been shown that the microbiome also plays an important role in the development and progression of bladder cancer, which can be mediated through the stimulation of chronic inflammation. In effect, the urinary microbiome can play a role in establishing the inflammatory urethral microenvironment that may facilitate the development and progression of bladder cancer. In other words, chronic inflammation caused by the urinary microbiome may promote the initiation and progression of bladder cancer. Here, we provide a detailed and comprehensive account of the link between chronic inflammation, the microbiome and bladder cancer. Finally, we highlight that targeting the urinary microbiome might enable the development of strategies for bladder cancer prevention and personalized treatment.
Collapse
Affiliation(s)
- Xingxing Huang
- Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang Province, 310015, PR China
- College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang Province, 311121, PR China
| | - Ting Pan
- Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang Province, 310015, PR China
- College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang Province, 311121, PR China
| | - Lili Yan
- Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang Province, 310015, PR China
- College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang Province, 311121, PR China
| | - Ting Jin
- Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang Province, 310015, PR China
- College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang Province, 311121, PR China
| | - Ruonan Zhang
- Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang Province, 310015, PR China
- College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang Province, 311121, PR China
| | - Bi Chen
- Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang Province, 310015, PR China
- College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang Province, 311121, PR China
| | - Jiao Feng
- Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang Province, 310015, PR China
- College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang Province, 311121, PR China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang Province, 311121, PR China
| | - Ting Duan
- Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang Province, 310015, PR China
- College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang Province, 311121, PR China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang Province, 311121, PR China
| | - Yu Xiang
- Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang Province, 310015, PR China
- College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang Province, 311121, PR China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang Province, 311121, PR China
| | - Mingming Zhang
- Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang Province, 310015, PR China
- College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang Province, 311121, PR China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang Province, 311121, PR China
| | - Xiaying Chen
- Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang Province, 310015, PR China
- College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang Province, 311121, PR China
| | - Zuyi Yang
- Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang Province, 310015, PR China
- College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang Province, 311121, PR China
| | - Wenzheng Zhang
- Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang Province, 310015, PR China
- College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang Province, 311121, PR China
| | - Xia Ding
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, PR China
| | - Tian Xie
- Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang Province, 310015, PR China
- College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang Province, 311121, PR China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang Province, 311121, PR China
| | - Xinbing Sui
- Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang Province, 310015, PR China
- College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang Province, 311121, PR China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang Province, 311121, PR China
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, PR China
| |
Collapse
|
21
|
Wang B, He Z, Yu H, Ou Z, Chen J, Yang M, Fan X, Lin T, Huang J. Intravesical Pseudomonas aeruginosa mannose-sensitive Hemagglutinin vaccine triggers a tumor-preventing immune environment in an orthotopic mouse bladder cancer model. Cancer Immunol Immunother 2021; 71:1507-1517. [PMID: 34718847 DOI: 10.1007/s00262-021-03063-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 09/16/2021] [Indexed: 02/02/2023]
Abstract
Bacillus Calmette-Guerin (BCG) immunotherapy can prevent recurrence and progression in selected patients with non-muscle-invasive bladder cancer (NMIBC); however, significant adverse events and treatment failure suggest the need for alternative agents. A commercial anti-infection vaccine comprises a genetically engineered heat-killed Pseudomonas aeruginosa (PA) expressing many mannose-sensitive hemagglutination (MSHA) fimbriae, termed PA-MSHA, which could be a candidate for bladder cancer intravesical therapy. In an immunocompetent orthotopic MB49 bladder cancer model, we characterized the antitumor effects and mechanisms of PA-MSHA compared with those of BCG. Three weekly intravesical PA-MSHA or BCG treatments reduced tumor involvement; however, only PA-MSHA prolonged survival against MB49 implantation significantly. In non-tumor-bearing mice after treatment, flow-cytometry analysis showed PA-MSHA and BCG induced an increased CD4/CD8 ratio, the levels of effector memory T cell phenotypes (CD44, CXCR-3, and IFN-γ), and the proportion of CD11b+Ly6G-Ly6C-IA/IE+ mature macrophages, but a decrease in the proportion of CD11b+Ly6G-Ly6C+IA/IE- monocytic myeloid-derived suppressor cells (Mo-MDSCs) and the expression of suppressive molecules on immune cells (PD-L1, PD-1, TIM-3, and LAG-3). Notably, PA-MSHA, but not BCG, significantly reduced PD-1 and TIM-3 expression on CD4+ T cells, which might account for the better effects of PA-MSHA than BCG. However, in tumor-bearing mice after treatment, the increased proportion of Mo-MDSCs and high expression of PD-L1 might be involved in treatment failure. Thus, modulating the balance among adaptive and innate immune responses was identified as a key process underlying PA-MSHA-mediated treatment efficacy. The results demonstrated mechanisms underlying intravesical PA-MSHA therapy, pointing at its potential as an alternative effective treatment for NMIBC.
Collapse
Affiliation(s)
- Bo Wang
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen (Zhongshan) University, Guangzhou, 510120, People's Republic of China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Zhihua He
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen (Zhongshan) University, Guangzhou, 510120, People's Republic of China.,Department of Urology, First Affiliated Hospital of Gannan Medical University, Ganzhou, People's Republic of China
| | - Hao Yu
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen (Zhongshan) University, Guangzhou, 510120, People's Republic of China
| | - Ziwei Ou
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen (Zhongshan) University, Guangzhou, 510120, People's Republic of China
| | - Junyu Chen
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen (Zhongshan) University, Guangzhou, 510120, People's Republic of China
| | - Meihua Yang
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen (Zhongshan) University, Guangzhou, 510120, People's Republic of China
| | - Xinxiang Fan
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen (Zhongshan) University, Guangzhou, 510120, People's Republic of China
| | - Tianxin Lin
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen (Zhongshan) University, Guangzhou, 510120, People's Republic of China. .,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China.
| | - Jian Huang
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen (Zhongshan) University, Guangzhou, 510120, People's Republic of China. .,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China.
| |
Collapse
|
22
|
Leblond MM, Zdimerova H, Desponds E, Verdeil G. Tumor-Associated Macrophages in Bladder Cancer: Biological Role, Impact on Therapeutic Response and Perspectives for Immunotherapy. Cancers (Basel) 2021; 13:cancers13184712. [PMID: 34572939 PMCID: PMC8467100 DOI: 10.3390/cancers13184712] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/10/2021] [Accepted: 09/17/2021] [Indexed: 12/16/2022] Open
Abstract
Tumor-associated macrophages (TAMs) are one of the most abundant infiltrating immune cells of solid tumors. Despite their possible dual role, i.e., pro- or anti-tumoral, there is considerable evidence showing that the accumulation of TAMs promotes tumor progression rather than slowing it. Several strategies are being developed and clinically tested to target these cells. Bladder cancer (BCa) is one of the most common cancers, and despite heavy treatments, including immune checkpoint inhibitors (ICIs), the overall patient survival for advanced BCa is still poor. TAMs are present in bladder tumors and play a significant role in BCa development. However, few investigations have analyzed the effect of targeting TAMs in BCa. In this review, we focus on the importance of TAMs in a cancerous bladder, their association with patient outcome and treatment efficiency as well as on how current BCa treatments impact these cells. We also report different strategies used in other cancer types to develop new immunotherapeutic strategies with the aim of improving BCa management through TAMs targeting.
Collapse
Affiliation(s)
- Marine M. Leblond
- UNICAEN, CEA, CNRS, ISTCT/CERVOxy Group, GIP CYCERON, Normandie University, 14000 Caen, France;
| | - Hana Zdimerova
- Department of Oncology UNIL CHUV, University of Lausanne, 1015 Lausanne, Switzerland; (H.Z.); (E.D.)
| | - Emma Desponds
- Department of Oncology UNIL CHUV, University of Lausanne, 1015 Lausanne, Switzerland; (H.Z.); (E.D.)
| | - Grégory Verdeil
- Department of Oncology UNIL CHUV, University of Lausanne, 1015 Lausanne, Switzerland; (H.Z.); (E.D.)
- Correspondence:
| |
Collapse
|
23
|
de Queiroz NMGP, Marinho FV, de Araujo ACVSC, Fahel JS, Oliveira SC. MyD88-dependent BCG immunotherapy reduces tumor and regulates tumor microenvironment in bladder cancer murine model. Sci Rep 2021; 11:15648. [PMID: 34341449 PMCID: PMC8329301 DOI: 10.1038/s41598-021-95157-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 07/21/2021] [Indexed: 12/21/2022] Open
Abstract
Bacillus Calmette-Guerin (BCG) is the only FDA approved first line therapy for patients with nonmuscle invasive bladder cancer. The purpose of this study is to better understand the role of innate immune pathways involved in BCG immunotherapy against murine bladder tumor. We first characterized the immunological profile induced by the MB49 mouse urothelial carcinoma cell line. MB49 cells were not able to activate an inflammatory response (TNF-α, IL-6, CXCL-10 or IFN-β) after the stimulus with different agonists or BCG infection, unlike macrophages. Although MB49 cells are not able to induce an efficient immune response, BCG treatment could activate other cells in the tumor microenvironment (TME). We evaluated BCG intratumoral treatment in animals deficient for different innate immune molecules (STING-/-, cGAS-/-, TLR2-/-, TLR3-/-, TLR4-/-, TLR7-/-, TLR9-/-, TLR3/7/9-/-, MyD88-/-, IL-1R-/-, Caspase1/11-/-, Gasdermin-D-/- and IFNAR-/-) using the MB49 subcutaneous mouse model. Only MyD88-/- partially responded to BCG treatment compared to wild type (WT) mice, suggesting a role played by this adaptor molecule. Additionally, BCG intratumoral treatment regulates cellular infiltrate in TME with an increase of inflammatory macrophages, neutrophils and CD8+ T lymphocytes, suggesting an immune response activation that favors tumor remission in WT mice but not in MyD88-/-. The experiments using MB49 cells infected with BCG and co-cultured with macrophages also demonstrated that MyD88 is essential for an efficient immune response. Our data suggests that BCG immunotherapy depends partially on the MyD88-related innate immune pathway.
Collapse
Affiliation(s)
- Nina M G P de Queiroz
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Fabio V Marinho
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ana Carolina V S C de Araujo
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Julia S Fahel
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Sergio C Oliveira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
- Instituto Nacional de Ciência e Tecnologia em Doenças Tropicais (INCT-DT), CNPq MCT, Salvador, BA, 31270-901, Brazil.
| |
Collapse
|
24
|
Sadasivan SM, Chen Y, Gupta NS, Han X, Bobbitt KR, Chitale DA, Williamson SR, Rundle AG, Tang D, Rybicki BA. The interplay of growth differentiation factor 15 (GDF15) expression and M2 macrophages during prostate carcinogenesis. Carcinogenesis 2021; 41:1074-1082. [PMID: 32614434 DOI: 10.1093/carcin/bgaa065] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/05/2020] [Accepted: 06/22/2020] [Indexed: 01/08/2023] Open
Abstract
M2 (tumor-supportive) macrophages may upregulate growth differentiation factor 15 (GDF15), which is highly expressed in prostate tumors, but the combined utility of these markers as prognostic biomarkers are unclear. We retrospectively studied 90 prostate cancer cases that underwent radical prostatectomy as their primary treatment and were followed for biochemical recurrence (BCR). These cases also had a benign prostate biopsy at least 1 year or more before their prostate cancer surgery. Using computer algorithms to analyze digitalized immunohistochemically stained slides, GDF15 expression and the presence of M2 macrophages based on the relative density of CD204- and CD68-positive macrophages were measured in prostate: (i) benign biopsy, (ii) cancer and (iii) tumor-adjacent benign (TAB) tissue. Both M2 macrophages (P = 0.0004) and GDF15 (P < 0.0001) showed significant inter-region expression differences. Based on a Cox proportional hazards model, GDF15 expression was not associated with BCR but, in men where GDF15 expression differences between cancer and TAB were highest, the risk of BCR was significantly reduced (hazard ratio = 0.26; 95% confidence interval = 0.09-0.94). In addition, cases with high levels of M2 macrophages in prostate cancer had almost a 5-fold increased risk of BCR (P = 0.01). Expression of GDF15 in prostate TAB was associated with M2 macrophage levels in both prostate cancer and TAB and appeared to moderate M2-macrophage-associated BCR risk. In summary, the relationship of GDF15 expression and CD204-positive M2 macrophage levels is different in a prostate tumor environment compared with an earlier benign biopsy and, collectively, these markers may predict aggressive disease.
Collapse
Affiliation(s)
| | - Yalei Chen
- Department of Public Health Sciences, Detroit, MI, USA
| | | | - Xiaoxia Han
- Department of Public Health Sciences, Detroit, MI, USA
| | | | | | | | - Andrew G Rundle
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Deliang Tang
- Environmental Heath Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | | |
Collapse
|
25
|
Abstract
Bladder cancer has been successfully treated with immunotherapy, whereas prostate cancer is a cold tumor with inadequate immune-related treatment response. A greater understanding of the tumor microenvironment and methods for harnessing the immune system to address tumor growth will be needed to improve immunotherapies for both prostate and bladder cancer. Here, we provide an overview of prostate and bladder cancer, including fundamental aspects of the disease and treatment, the elaborate cellular makeup of the tumor microenvironment, and methods for exploiting relevant pathways to develop more effective treatments.
Collapse
|
26
|
Li CF, Liang PI, Chan TC, Shiue YL. Molecular biology of urothelial carcinoma. JOURNAL OF CANCER RESEARCH AND PRACTICE 2021. [DOI: 10.4103/jcrp.jcrp_1_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
27
|
Kardoust Parizi M, Shariat SF, Margulis V, Mori K, Lotan Y. Value of tumour-infiltrating immune cells in predicting response to intravesical BCG in patients with non-muscle-invasive bladder cancer: a systematic review and meta-analysis. BJU Int 2020; 127:617-625. [PMID: 33073457 DOI: 10.1111/bju.15276] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/28/2020] [Accepted: 10/13/2020] [Indexed: 11/28/2022]
Abstract
OBJECTIVE To investigate the predictive value of tumour-infiltrating immune cells (TIICs) on oncological outcomes and response to BCG treatment in patients with non-muscle-invasive bladder cancer (NMIBC). MATERIALS AND METHODS A systematic review and meta-analysis was performed using PubMed, Scopus and the Cochrane Library in July 2020 to identify relevant studies according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement. The pooled recurrence-free survival (RFS) rate was calculated using a fixed-effect model. RESULTS We retrieved 15 studies (including 791 patients) evaluating the effect of TIICs on oncological outcomes in patients with NMIBC treated with intravesical BCG. TIICs were reported to be a significant predictor of oncological outcomes and response to BCG treatment in 10 studies. Tumour-associated macrophages were associated with worse RFS (pooled hazard ratio 2.30, 95% confidence interval 1.64-3.22). CONCLUSIONS Based on these data, TIICs are significant predictors of RFS and response to BCG treatment in patients with NMIBC; therefore, incorporation of TIICs into risk stratification models may help patients and physicians in the clinical decision-making process in order to achieve the maximum possible benefit from BCG treatment.
Collapse
Affiliation(s)
- Mehdi Kardoust Parizi
- Department of Urology, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran.,Department of Urology, Medical University of Vienna, Vienna, Austria
| | - Shahrokh F Shariat
- Department of Urology, Medical University of Vienna, Vienna, Austria.,Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Urology, Weill Cornell Medical College, New York, NY, USA.,Department of Urology, Second Faculty of Medicine, Charles University, Prag, Czech Republic.,Institute for Urology and Reproductive Health, I.M. Sechenov First Moscow State Medical University, Moscow, Russia.,Division of Urology, Department of Special Surgery, Jordan University Hospital, The University of Jordan, Amman, Jordan.,European Association of Urology Research Foundation, Arnhem, The Netherlands
| | - Vitaly Margulis
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Keiichiro Mori
- Department of Urology, Medical University of Vienna, Vienna, Austria.,Department of Urology, The Jikei University School of Medicine, Tokyo, Japan
| | - Yair Lotan
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
28
|
Kovacs L, Cabral P, Chammas R. Mannose receptor 1 expression does not determine the uptake of high-density mannose dendrimers by activated macrophages populations. PLoS One 2020; 15:e0240455. [PMID: 33048944 PMCID: PMC7553290 DOI: 10.1371/journal.pone.0240455] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 09/25/2020] [Indexed: 11/29/2022] Open
Abstract
The presence of a high number of macrophages within solid tumors is often significantly associated with poor prognosis and predict treatment failure for chemotherapy and radiotherapy. Macrophages are innate immune cells capable of performing diverse functions depending on the different signals from the microenvironment. The classically activated macrophage is commonly present during the early stages of tumor development while alternatively activated macrophages are associated with more advanced tumors. The distinction of the antitumoral macrophages from the pro-tumoral macrophages is not absolute. However, they have different cell surface markers such as mannose receptor (MRC1 or CD206) abundantly expressed by macrophages treated with interleukin-4 (IL-4). The important roles of macrophages in cancers suggest that it is important to develop novel therapies that target these cells. In the present study, we designed a probe using Polyamidoamine (PAMAM) fifth-generation (G5) dendrimers conjugated with mannose, Cyanine 7 (Cy7), and hydrazinonicotinamide (HYNIC) for target macrophages with high expression of MRC1 in the tumor. The intracellular uptake of 99mTc-HYNIC-dendrimer-mannose-Cy7 through the interaction with MRC1 in bone marrow-derived macrophages (BMDMs) untreated or treated with lipopolysaccharides (LPS) + interferon (IFN)γ or IL-4 was analyzed. Our results show that high-density mannose dendrimers are preferentially bound by macrophages treated by IFNγ and LPS that express lower levels of MRC1 than for macrophages treated by IL-4 that express high levels of MRC1. Furthermore, the intracellular 99mTc-HYNIC-dendrimer-mannose-Cy7 uptake in BMDMs was not inhibited in the presence of free mannose or glucose. This result suggests that 99mTc-HYNIC-dendrimer-mannose-Cy7 is not internalized via macrophage MRC1. Based on these findings, we concluded that MRC1 expression does not determine the uptake of high-density mannose dendrimers.
Collapse
Affiliation(s)
- Luciana Kovacs
- Centro de Investigação Translacional em Oncologia, Instituto do Câncer do Estado de São Paulo, Faculdade de Medicina, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Pablo Cabral
- Departamento de Radiofarmacia, Centro de Investigaciones Nucleares, Facultad de Ciencias Universidad de la República, Montevideo, Uruguay
| | - Roger Chammas
- Centro de Investigação Translacional em Oncologia, Instituto do Câncer do Estado de São Paulo, Faculdade de Medicina, Universidade de São Paulo, São Paulo, São Paulo, Brazil
- Departamento de Radiologia e Oncologia da Faculdade de Medicina da Universidade de São Paulo, São Paulo, São Paulo, Brazil
| |
Collapse
|
29
|
Skytthe MK, Graversen JH, Moestrup SK. Targeting of CD163 + Macrophages in Inflammatory and Malignant Diseases. Int J Mol Sci 2020; 21:E5497. [PMID: 32752088 PMCID: PMC7432735 DOI: 10.3390/ijms21155497] [Citation(s) in RCA: 144] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/28/2020] [Accepted: 07/29/2020] [Indexed: 02/07/2023] Open
Abstract
The macrophage is a key cell in the pro- and anti-inflammatory response including that of the inflammatory microenvironment of malignant tumors. Much current drug development in chronic inflammatory diseases and cancer therefore focuses on the macrophage as a target for immunotherapy. However, this strategy is complicated by the pleiotropic phenotype of the macrophage that is highly responsive to its microenvironment. The plasticity leads to numerous types of macrophages with rather different and, to some extent, opposing functionalities, as evident by the existence of macrophages with either stimulating or down-regulating effect on inflammation and tumor growth. The phenotypes are characterized by different surface markers and the present review describes recent progress in drug-targeting of the surface marker CD163 expressed in a subpopulation of macrophages. CD163 is an abundant endocytic receptor for multiple ligands, quantitatively important being the haptoglobin-hemoglobin complex. The microenvironment of inflammation and tumorigenesis is particular rich in CD163+ macrophages. The use of antibodies for directing anti-inflammatory (e.g., glucocorticoids) or tumoricidal (e.g., doxorubicin) drugs to CD163+ macrophages in animal models of inflammation and cancer has demonstrated a high efficacy of the conjugate drugs. This macrophage-targeting approach has a low toxicity profile that may highly improve the therapeutic window of many current drugs and drug candidates.
Collapse
Affiliation(s)
- Maria K. Skytthe
- Department of Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark; (M.K.S.); (S.K.M.)
| | - Jonas Heilskov Graversen
- Department of Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark; (M.K.S.); (S.K.M.)
| | - Søren K. Moestrup
- Department of Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark; (M.K.S.); (S.K.M.)
- Department of Biomedicine, Aarhus University, 8200 Aarhus, Denmark
| |
Collapse
|
30
|
Annels NE, Simpson GR, Pandha H. Modifying the Non-muscle Invasive Bladder Cancer Immune Microenvironment for Optimal Therapeutic Response. Front Oncol 2020; 10:175. [PMID: 32133299 PMCID: PMC7040074 DOI: 10.3389/fonc.2020.00175] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 01/31/2020] [Indexed: 12/31/2022] Open
Abstract
It is now well-recognized that the tumor microenvironment (TME) is not only a key regulator of cancer progression but also plays a crucial role in cancer treatment responses. Recently, several high-profile publications have demonstrated the importance of particular immune parameters and cell types that dictate responsiveness to immunotherapies. With this increased understanding of TME-mediated therapy, approaches that increase therapeutic efficacy by remodeling the TME are actively being pursued. A classic example of this, in practice by urologists for over 40 years, is the manipulation of the bladder microenvironment for the treatment of non-muscle invasive bladder cancer (NMIBC) by instillation of intravesical bacillus Calmette-Guerin (BCG). The success of BCG treatment is thought to be due to its ability to induce a massive influx of Th1-polarized inflammatory cells, production of Th1 inflammatory cytokines and the generation of tumor-targeted Th1-mediated cytotoxic responses. Whilst BCG immunotherapy is currently the best treatment for NMIBC, ~30% of patients show no response to this treatment. Here we present a review highlighting a variety of promising alternative immunotherapies being developed that remodel the bladder tumor microenvironment. These include (1) the use of oncolytic viruses which selectively replicate within cancer cells whilst also modifying the immunological components of the TME, (2) manipulation of the bladder microbiome to augment the response to BCG or other immunotherapies (3) utilizing Toll-like Receptor agonists as anti-tumor agents due to their potent stimulation of innate and adaptive immunity and (4) the growing recognition that immunotherapeutic strategies that will have the largest impact on patients may require multiple therapeutic approaches combined together. The accumulating knowledge on TME remodeling holds promise for providing an alternative therapy for patients with BCG-unresponsive NMIBC.
Collapse
Affiliation(s)
- Nicola E Annels
- Department of Clinical and Experimental Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Guy R Simpson
- Department of Clinical and Experimental Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Hardev Pandha
- Department of Clinical and Experimental Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| |
Collapse
|
31
|
Kobatake K, Ikeda KI, Nakata Y, Yamasaki N, Ueda T, Kanai A, Sentani K, Sera Y, Hayashi T, Koizumi M, Miyakawa Y, Inaba T, Sotomaru Y, Kaminuma O, Ichinohe T, Honda ZI, Yasui W, Horie S, Black PC, Matsubara A, Honda H. Kdm6a Deficiency Activates Inflammatory Pathways, Promotes M2 Macrophage Polarization, and Causes Bladder Cancer in Cooperation with p53 Dysfunction. Clin Cancer Res 2020; 26:2065-2079. [PMID: 32047002 DOI: 10.1158/1078-0432.ccr-19-2230] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 11/04/2019] [Accepted: 01/15/2020] [Indexed: 11/16/2022]
Abstract
PURPOSE Epigenetic deregulation is deeply implicated in the pathogenesis of bladder cancer. KDM6A (Lysine (K)-specific demethylase 6A) is a histone modifier frequently mutated in bladder cancer. However, the molecular mechanisms of how KDM6A deficiency contributes to bladder cancer development remains largely unknown. We hypothesized that clarification of the pathogenic mechanisms underlying KDM6A-mutated bladder cancer can help in designing new anticancer therapies. EXPERIMENTAL DESIGN We generated mice lacking Kdm6a in the urothelium and crossed them with mice heterozygous for p53, whose mutation/deletion significantly overlaps with the KDM6A mutation in muscle-invasive bladder cancer (MIBC). In addition, BBN (N-butyl-N-(4-hydroxybutyl) nitrosamine), a cigarette smoke-like mutagen, was used as a tumor-promoting agent. Isolated urothelia were subjected to phenotypic, pathologic, molecular, and cellular analyses. The clinical relevance of our findings was further analyzed using genomic and clinical data of patients with MIBC. RESULTS We found that Kdm6a deficiency activated cytokine and chemokine pathways, promoted M2 macrophage polarization, increased cancer stem cells and caused bladder cancer in cooperation with p53 haploinsufficiency. We also found that BBN treatment significantly enhanced the expression of proinflammatory molecules and accelerated disease development. Human bladder cancer samples with decreased KDM6A expression also showed activated proinflammatory pathways. Notably, dual inhibition of IL6 and chemokine (C-C motif) ligand 2, upregulated in response to Kdm6a deficiency, efficiently suppressed Kdm6a-deficient bladder cancer cell growth. CONCLUSIONS Our findings provide insights into multistep carcinogenic processes of bladder cancer and suggest molecular targeted therapeutic approaches for patients with bladder cancer with KDM6A dysfunction.
Collapse
Affiliation(s)
- Kohei Kobatake
- Department of Disease Models, Research Institute for Radiation Biology and Medicine, Hiroshima University, Minami-ku, Hiroshima, Japan.,Department of Urology, Institute of Biomedical and Health Sciences, Hiroshima University, Minami-ku, Hiroshima, Japan
| | - Ken-Ichiro Ikeda
- Department of Urology, Institute of Biomedical and Health Sciences, Hiroshima University, Minami-ku, Hiroshima, Japan.,Department of Urologic Sciences, The Vancouver Prostate Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Yuichiro Nakata
- Department of Disease Models, Research Institute for Radiation Biology and Medicine, Hiroshima University, Minami-ku, Hiroshima, Japan
| | - Norimasa Yamasaki
- Department of Disease Models, Research Institute for Radiation Biology and Medicine, Hiroshima University, Minami-ku, Hiroshima, Japan
| | - Takeshi Ueda
- Department of Biochemistry, Faculty of Medicine, Kindai University, Osakasayama, Osaka, Japan
| | - Akinori Kanai
- Department of Molecular Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Minami-ku, Hiroshima, Japan
| | - Kazuhiro Sentani
- Department of Molecular Pathology, Institute of Biomedical and Health Sciences, Hiroshima University, Minami-ku, Hiroshima, Japan
| | - Yasuyuki Sera
- Field of Human Disease Models, Major in Advanced Life Sciences and Medicine, Institute of Laboratory Animals, Tokyo Women's Medical University, Shinjuku-ku, Tokyo, Japan
| | - Tetsutaro Hayashi
- Department of Urology, Institute of Biomedical and Health Sciences, Hiroshima University, Minami-ku, Hiroshima, Japan
| | - Miho Koizumi
- Field of Human Disease Models, Major in Advanced Life Sciences and Medicine, Institute of Laboratory Animals, Tokyo Women's Medical University, Shinjuku-ku, Tokyo, Japan
| | - Yoshihiko Miyakawa
- Field of Human Disease Models, Major in Advanced Life Sciences and Medicine, Institute of Laboratory Animals, Tokyo Women's Medical University, Shinjuku-ku, Tokyo, Japan
| | - Toshiya Inaba
- Department of Molecular Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Minami-ku, Hiroshima, Japan
| | - Yusuke Sotomaru
- Natural Science Center for Basic Research and Development, Hiroshima University, Minami-ku, Hiroshima, Japan
| | - Osamu Kaminuma
- Department of Disease Models, Research Institute for Radiation Biology and Medicine, Hiroshima University, Minami-ku, Hiroshima, Japan
| | - Tatsuo Ichinohe
- Department of Hematology and Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Minami-ku, Hiroshima, Japan
| | - Zen-Ichiro Honda
- Health Care Center and Graduate School of Humanities and Sciences, Institute of Environmental Science for Human Life, Ochanomizu University, Tokyo, Japan
| | - Wataru Yasui
- Department of Molecular Pathology, Institute of Biomedical and Health Sciences, Hiroshima University, Minami-ku, Hiroshima, Japan
| | - Shigeo Horie
- Department of Urology, Juntendo University, Graduate School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Peter C Black
- Department of Urologic Sciences, The Vancouver Prostate Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Akio Matsubara
- Department of Urology, Institute of Biomedical and Health Sciences, Hiroshima University, Minami-ku, Hiroshima, Japan
| | - Hiroaki Honda
- Field of Human Disease Models, Major in Advanced Life Sciences and Medicine, Institute of Laboratory Animals, Tokyo Women's Medical University, Shinjuku-ku, Tokyo, Japan.
| |
Collapse
|
32
|
Sathianathen NJ, Regmi S, Gupta S, Konety BR. Immuno-Oncology Approaches to Salvage Treatment for Non-muscle invasive Bladder Cancer. Urol Clin North Am 2020; 47:103-110. [DOI: 10.1016/j.ucl.2019.09.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
33
|
Batista R, Lima L, Vinagre J, Pinto V, Lyra J, Máximo V, Santos L, Soares P. TERT Promoter Mutation as a Potential Predictive Biomarker in BCG-Treated Bladder Cancer Patients. Int J Mol Sci 2020; 21:ijms21030947. [PMID: 32023888 PMCID: PMC7037401 DOI: 10.3390/ijms21030947] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 01/27/2020] [Accepted: 01/30/2020] [Indexed: 12/22/2022] Open
Abstract
Telomerase reverse transcriptase gene promoter (TERTp) mutations are recognized as one of the most frequent genetic events in bladder cancer (BC). No studies have focused on the relevance of TERTp mutations in the specific group of tumors treated with Bacillus Calmette–Guérin (BCG) intravesical therapy. Methods — 125 non muscle invasive BC treated with BCG therapy (BCG-NMIBC) were screened for TERTp mutations, TERT rs2853669 single nucleotide polymorphism, and Fibroblast Growth Factor Receptor 3 (FGFR3) hotspot mutations. Results — TERTp mutations were found in 56.0% of BCG-NMIBC and were not associated with tumor stage or grade. FGFR3 mutations were found in 44.9% of the cases and were not associated with tumor stage or grade nor with TERTp mutations. The TERT rs2853669 single nucleotide polymorphism was associated with tumors of higher grade. The specific c.1-146G>A TERTp mutation was an independent predictor of nonrecurrence after BCG therapy (hazard ratio—0.382; 95% confidence interval—0.150–0.971, p = 0.048). Conclusions — TERTp mutations are frequent in BCG-NMIBC and -146G>A appears to be an independent predictive marker of response to BCG treatment with an impact in recurrence-free survival.
Collapse
Affiliation(s)
- Rui Batista
- Instituto de Investigação e Inovação em Saúde (i3S), 4200-135 Porto, Portugal; (R.B.); (J.V.); (V.M.)
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), 4200-135 Porto, Portugal; (V.P.); (J.L.)
- Faculdade de Medicina da Universidade do Porto (FMUP), 4200-319 Porto, Portugal
| | - Luís Lima
- Grupo de Patologia e Terapêutica Experimental, Instituto Português de Oncologia do Porto FG, EPE (IPO-Porto), 4200-072 Porto, Portugal; (L.L.); (L.S.)
| | - João Vinagre
- Instituto de Investigação e Inovação em Saúde (i3S), 4200-135 Porto, Portugal; (R.B.); (J.V.); (V.M.)
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), 4200-135 Porto, Portugal; (V.P.); (J.L.)
- Faculdade de Medicina da Universidade do Porto (FMUP), 4200-319 Porto, Portugal
| | - Vasco Pinto
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), 4200-135 Porto, Portugal; (V.P.); (J.L.)
- Faculdade de Medicina da Universidade do Porto (FMUP), 4200-319 Porto, Portugal
| | - Joana Lyra
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), 4200-135 Porto, Portugal; (V.P.); (J.L.)
- Faculdade de Medicina da Universidade do Porto (FMUP), 4200-319 Porto, Portugal
| | - Valdemar Máximo
- Instituto de Investigação e Inovação em Saúde (i3S), 4200-135 Porto, Portugal; (R.B.); (J.V.); (V.M.)
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), 4200-135 Porto, Portugal; (V.P.); (J.L.)
- Faculdade de Medicina da Universidade do Porto (FMUP), 4200-319 Porto, Portugal
| | - Lúcio Santos
- Grupo de Patologia e Terapêutica Experimental, Instituto Português de Oncologia do Porto FG, EPE (IPO-Porto), 4200-072 Porto, Portugal; (L.L.); (L.S.)
| | - Paula Soares
- Instituto de Investigação e Inovação em Saúde (i3S), 4200-135 Porto, Portugal; (R.B.); (J.V.); (V.M.)
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), 4200-135 Porto, Portugal; (V.P.); (J.L.)
- Faculdade de Medicina da Universidade do Porto (FMUP), 4200-319 Porto, Portugal
- Correspondence: ; Tel.: +351-2255-70700
| |
Collapse
|
34
|
The Tumor Microenvironment of Bladder Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1296:275-290. [PMID: 34185299 DOI: 10.1007/978-3-030-59038-3_17] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Bladder cancer has been well known as immunotherapy-responsive disease as intravesical therapy with BCG has been the standard of care for non-muscle invasive disease for several decades. In addition, immune checkpoint inhibitors have dramatically changed the treatment of metastatic bladder cancer. However, only a small fraction of patients with bladder cancer can benefit from these therapies. As immunotherapies act on the tumor microenvironment, understanding it is essential to expand the efficacy of modern treatments. The bladder cancer microenvironment consists of various components including tumor cells, immune cells, and other stromal cells, affecting each other via immune checkpoint molecules, cytokines, and chemokines. The development of an antitumor immune response depends on tumor antigen recognition by antigen presenting cells and priming and recruitment of effector T cells. Accumulated evidence shows that these processes are impacted by multiple types of immune cells in the tumor microenvironment including regulatory T cells, tumor-associated macrophages, and myeloid derived suppressor cells. In addition, recent advances in genomic profiling have shed light on the relationship between molecular subtypes and the tumor microenvironment. Finally, emerging evidence has shown that multiple factors can impact the tumor microenvironment in bladder cancer, including tumor-oncogenic signaling, patient genetics, and the commensal microbiome.
Collapse
|
35
|
Crispen PL, Kusmartsev S. Mechanisms of immune evasion in bladder cancer. Cancer Immunol Immunother 2019; 69:3-14. [PMID: 31811337 PMCID: PMC6949323 DOI: 10.1007/s00262-019-02443-4] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 11/27/2019] [Indexed: 12/16/2022]
Abstract
With the introduction of multiple new agents, the role of immunotherapy is rapidly expanding across all malignancies. Bladder cancer is known to be immunogenic and is responsive to immunotherapy including intravesical BCG and immune checkpoint inhibitors. Multiple trials have addressed the role of checkpoint inhibitors in advanced bladder cancer, including atezolizumab, avelumab, durvalumab, nivolumab and pembrolizumab (all targeting the PD1/PD-L1 pathway). While these trials have demonstrated promising results and improvements over existing therapies, less than half of patients with advanced disease demonstrate clinical benefit from checkpoint inhibitor therapy. Recent breakthroughs in cancer biology and immunology have led to an improved understanding of the influence of the tumor microenvironment on the host’s immune system. It appears that tumors promote the formation of highly immunosuppressive microenvironments preventing generation of effective anti-tumor immune response through multiple mechanisms. Therefore, reconditioning of the tumor microenvironment and restoration of the competent immune response is essential for achieving optimal efficacy of cancer immunotherapy. In this review, we aim to discuss the major mechanisms of immune evasion in bladder cancer and highlight novel pathways and molecular targets that may help to attenuate tumor-induced immune tolerance, overcome resistance to immunotherapy and improve clinical outcomes.
Collapse
Affiliation(s)
- Paul L Crispen
- Department of Urology, University of Florida, College of Medicine, 1200 Newell Dr, PO BOX 100247, Gainesville, FL, 32610, USA
| | - Sergei Kusmartsev
- Department of Urology, University of Florida, College of Medicine, 1200 Newell Dr, PO BOX 100247, Gainesville, FL, 32610, USA.
| |
Collapse
|
36
|
Marques P, Barry S, Carlsen E, Collier D, Ronaldson A, Awad S, Dorward N, Grieve J, Mendoza N, Muquit S, Grossman AB, Balkwill F, Korbonits M. Chemokines modulate the tumour microenvironment in pituitary neuroendocrine tumours. Acta Neuropathol Commun 2019; 7:172. [PMID: 31703742 PMCID: PMC6839241 DOI: 10.1186/s40478-019-0830-3] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 10/13/2019] [Indexed: 02/06/2023] Open
Abstract
Non-tumoural cells within the tumour microenvironment (TME) influence tumour proliferation, invasiveness and angiogenesis. Little is known about TME in pituitary neuroendocrine tumours (PitNETs). We aimed to characterise the role of TME in the aggressive behaviour of PitNETs, focusing on immune cells and cytokines. The cytokine secretome of 16 clinically non-functioning PitNETs (NF-PitNETs) and 8 somatotropinomas was assessed in primary culture using an immunoassay panel with 42 cytokines. This was correlated with macrophage (CD68, HLA-DR, CD163), T-lymphocyte (CD8, CD4, FOXP3), B-lymphocyte (CD20), neutrophil (neutrophil elastase) and endothelial cells (CD31) content, compared to normal pituitaries (NPs, n = 5). In vitro tumour-macrophage interactions were assessed by conditioned medium (CM) of GH3 (pituitary tumour) and RAW264.7 (macrophage) cell lines on morphology, migration/invasion, epithelial-to-mesenchymal transition and cytokine secretion. IL-8, CCL2, CCL3, CCL4, CXCL10, CCL22 and CXCL1 are the main PitNET-derived cytokines. PitNETs with increased macrophage and neutrophil content had higher IL-8, CCL2, CCL3, CCL4 and CXCL1 levels. CD8+ T-lymphocytes were associated to higher CCL2, CCL4 and VEGF-A levels. PitNETs had more macrophages than NPs (p < 0.001), with a 3-fold increased CD163:HLA-DR macrophage ratio. PitNETs contained more CD4+ T-lymphocytes (p = 0.005), but fewer neutrophils (p = 0.047) with a 2-fold decreased CD8:CD4 ratio. NF-PitNETs secreted more cytokines and had 9 times more neutrophils than somatotropinomas (p = 0.002). PitNETs with higher Ki-67 had more FOXP3+ T cells, as well as lower CD68:FOXP3, CD8:CD4 and CD8:FOXP3 ratios. PitNETs with "deleterious immune phenotype" (CD68hiCD4hiFOXP3hiCD20hi) had a Ki-67 ≥ 3%. CD163:HLA-DR macrophage ratio was positively correlated with microvessel density (p = 0.015) and area (p < 0.001). GH3 cell-CM increased macrophage chemotaxis, while macrophage-CM changed morphology, invasion, epithelial-to-mesenchymal transition and secreted cytokines of GH3 cells. PitNETs are characterised by increased CD163:HLA-DR macrophage and reduced CD8:CD4 and CD8:FOXP3 T cell ratios. PitNET-derived chemokines facilitate macrophage, neutrophil and T cell recruitment into the tumours which can determine aggressive behaviour.
Collapse
|
37
|
Ohadian Moghadam S, Nowroozi MR. Toll‐like receptors: The role in bladder cancer development, progression and immunotherapy. Scand J Immunol 2019; 90:e12818. [DOI: 10.1111/sji.12818] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 08/16/2019] [Accepted: 08/20/2019] [Indexed: 12/18/2022]
|
38
|
Sharifi L, Nowroozi MR, Amini E, Arami MK, Ayati M, Mohsenzadegan M. A review on the role of M2 macrophages in bladder cancer; pathophysiology and targeting. Int Immunopharmacol 2019; 76:105880. [PMID: 31522016 DOI: 10.1016/j.intimp.2019.105880] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 08/16/2019] [Accepted: 09/03/2019] [Indexed: 12/13/2022]
Abstract
Tumor-associated macrophages (TAMs) which are often referred to as immunosuppressive cells (M2 macrophage), constitute a subset of tumor microenvironment cells and affect tumor progression in solid tumors. Recently, these cells have gained remarkable importance as therapeutic candidates for solid tumors. In bladder cancer, major studies have focused on evaluating TAMs in response to Bacillus Calmette-Guerin (BCG) therapy. M2 macrophages may directly impact the BCG-induced immune responses against tumor in bladder cancer. They are the main inhibitors of the tumor microenvironment that promotes growth and metastasis of the tumor. However, the clinical significance of M2 macrophages in bladder cancer is controversial. In this review, we will discuss the clinical significance of M2 macrophages in prognosis of bladder cancer as well as worth of their potential targeting in bladder cancer treatment. In the following, we will introduce important factors resulting in M2 macrophage promotion and also experimental therapeutic agents that may cause the inhibition of bladder cancer tumor growth.
Collapse
Affiliation(s)
- Laleh Sharifi
- Uro-Oncology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Erfan Amini
- Uro-Oncology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoumeh Kourosh Arami
- Department of Basic Sciences, Faculty of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Mohsen Ayati
- Uro-Oncology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Monireh Mohsenzadegan
- Department of Medical Laboratory Science, Faculty of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
39
|
Abstract
Bladder cancer is an important public health concern owing to its prevalence, high recurrence risk and treatment failures. Maintaining the equilibrium between prompt and effective immunity and an excessive and protracted immune response is critical for successful immune defence. This delicate balance is ensured by intrinsic or extrinsic immunoregulatory mechanisms. Intrinsic control of immune cell activation is mediated by stimulatory and inhibitory receptors expressed on the effector cell itself, whereas extrinsic control is mediated via other immune cells by cell-cell contact and/or secretion of inhibitory factors. Tumours can exacerbate these immunosuppressive pathways, fostering a tolerant microenvironment. These mechanisms have previously been poorly described in urothelial carcinoma, but a growing body of evidence highlights the key role of immune regulation in bladder cancer. This process includes immune checkpoints (mostly programmed cell death 1 (PD-1) and programmed cell death 1 ligand 1 (PD-L1)), as well as regulatory T cells, myeloid-derived suppressor cells, tumour-associated macrophages and type 2 innate and adaptive lymphocytes. For each component, quantitative and qualitative alterations, clinical relevance and potential targeting strategies are currently being explored. An improved understanding of immune regulation pathways in bladder cancer development, recurrence and progression will help in the design of novel diagnostic and prognostic tools as well as treatments.
Collapse
|
40
|
O’Donnell MA, Singh S, Sood R, Amlani J, Krishnamoorthy H, Shukla K, Mohanty N, Bhatia S, Chakraborty B, Desai N, Modi R, Shukla C, Vachhani K, Patel R, Kundu A, Khamar B. A Clinical Trial of the Intradermal TLR2 Agonist CADI-05 for BCG Recurrent and Unresponsive Non-Muscle Invasive Bladder Cancer. Bladder Cancer 2019. [DOI: 10.3233/blc-190211] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
| | - Sharwan Singh
- Post Graduate Institute of Medical Education & Research, Chandigarh, India
| | - Rajeev Sood
- Dr. Ram Manohar Lohia Hospital & Post Graduate Institute of Medical Education and Research, New Delhi, India
| | | | | | | | | | | | | | - Nirav Desai
- Cadila Pharmaceuticals Limited, Ahmedabad, India
| | - Rajiv Modi
- Cadila Pharmaceuticals Limited, Ahmedabad, India
| | | | | | - Rashmi Patel
- Institute Of Kidney Disease and Research Centre, Ahmedabad, India
| | - Anup Kundu
- The Institute of Post-Graduate Medical Education and Research and Seth Sukhlal Karnani Memorial Hospital, Kolkata, India
| | | |
Collapse
|
41
|
Slavyanskaya TA, Salnikova SV. Precision oncology: myth or reality? BULLETIN OF RUSSIAN STATE MEDICAL UNIVERSITY 2019. [DOI: 10.24075/brsmu.2019.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cancer incidence rates are growing at an alarming pace pressing for the development of innovative personalized approaches to treating this disease. The absence of clinical symptoms in the early stages delays the onset of adequate treatment. Traditional therapies are not always as effective as they should be and do not guarantee long-lasting relapse-free survival. Metastatic cancers pose a particular challenge to healthcare professionals. This review touches upon the immunologic mechanisms underlying the development of malignancies, talks about conventional and innovative therapeutic modalities, such as targeted, gene or specific immunotherapies, and analyzes the literature on the use of different approaches that form a basis for precision oncology.
Collapse
|
42
|
Rubio C, Munera-Maravilla E, Lodewijk I, Suarez-Cabrera C, Karaivanova V, Ruiz-Palomares R, Paramio JM, Dueñas M. Macrophage polarization as a novel weapon in conditioning tumor microenvironment for bladder cancer: can we turn demons into gods? Clin Transl Oncol 2018; 21:391-403. [PMID: 30291519 DOI: 10.1007/s12094-018-1952-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 09/10/2018] [Indexed: 12/11/2022]
Abstract
Macrophages are major components of the immune infiltration in cancer where they can affect tumor behavior. In the bladder, they play important roles during the resolution of infectious processes and they have been associated with a worse clinical prognosis in bladder cancer. The present review focused on the characteristics of these important immune cells, not only eliciting an innate immune surveillance, but also on their importance during the cancer immunoediting process. We further discuss the potential of targeting macrophages for anticancer therapy, the current strategies and the state of the art as well as the foreseen role on combined therapies on the near future. This review shows how a comprehensive understanding of macrophages within the tumor should translate to better clinical outcome and new therapeutic strategies focusing especially on bladder cancer.
Collapse
Affiliation(s)
- C Rubio
- Biomedical Research Institute I + 12, University Hospital "12 de Octubre", Av Córdoba s/n, 28041, Madrid, Spain.,Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Avenida Complutense nº40, 28040, Madrid, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029, Madrid, Spain
| | - E Munera-Maravilla
- Biomedical Research Institute I + 12, University Hospital "12 de Octubre", Av Córdoba s/n, 28041, Madrid, Spain.,Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Avenida Complutense nº40, 28040, Madrid, Spain
| | - I Lodewijk
- Biomedical Research Institute I + 12, University Hospital "12 de Octubre", Av Córdoba s/n, 28041, Madrid, Spain.,Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Avenida Complutense nº40, 28040, Madrid, Spain
| | - C Suarez-Cabrera
- Biomedical Research Institute I + 12, University Hospital "12 de Octubre", Av Córdoba s/n, 28041, Madrid, Spain.,Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Avenida Complutense nº40, 28040, Madrid, Spain
| | - V Karaivanova
- Biomedical Research Institute I + 12, University Hospital "12 de Octubre", Av Córdoba s/n, 28041, Madrid, Spain.,Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Avenida Complutense nº40, 28040, Madrid, Spain
| | - R Ruiz-Palomares
- Biomedical Research Institute I + 12, University Hospital "12 de Octubre", Av Córdoba s/n, 28041, Madrid, Spain.,Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Avenida Complutense nº40, 28040, Madrid, Spain
| | - J M Paramio
- Biomedical Research Institute I + 12, University Hospital "12 de Octubre", Av Córdoba s/n, 28041, Madrid, Spain. .,Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Avenida Complutense nº40, 28040, Madrid, Spain. .,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029, Madrid, Spain.
| | - M Dueñas
- Biomedical Research Institute I + 12, University Hospital "12 de Octubre", Av Córdoba s/n, 28041, Madrid, Spain. .,Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Avenida Complutense nº40, 28040, Madrid, Spain. .,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029, Madrid, Spain.
| |
Collapse
|
43
|
Wu SQ, Xu R, Li XF, Zhao XK, Qian BZ. Prognostic roles of tumor associated macrophages in bladder cancer: a system review and meta-analysis. Oncotarget 2018; 9:25294-25303. [PMID: 29861872 PMCID: PMC5982745 DOI: 10.18632/oncotarget.25334] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 04/06/2018] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Tumor associated macrophages (TAMs) have multifaceted roles in the development of many tumor types. However, the prognostic value of TAMs in bladder cancer is still not conclusive. EXPERIMENTAL DESIGN This review evaluated the prognostic value of TAMs density in bladder cancer by reviewing published literatures and integrating the results via a meta-analysis. A systematic search was conducted in PubMed, Embase and Chinese National Knowledge Infrastructure (CNKI), WanFang, and Web of Science databases for relevant studies. Overall survival (OS), relapse free survival (RFS), disease specific survival (DSS), and progression free survival (PFS) were assessed in bladder cancer patients. RESULTS The pooled hazard ratios (HRs) and 95% confidence intervals (CIs) indicated that TAMs identified with CD68 alone have no significant correlation with OS (HR = 1.01, 95% CI = 1.00-1.02), RFS (HR = 0.99, 95% CI = 0.91-1.06), or PFS (HR = 1.19, 95% CI = 0.70-1.68) in bladder cancer patients. Subgroup analyses involved with Bacillus Calmette Guerin (BCG) treatment or sample locations either showed that CD68+ TAMs presented no prognostic value with regard to OS in bladder cancer patients. However, TAMs detected by CD163 are significantly correlated with poor RFS in bladder cancer patients (HR = 1.54, 95% CI = 1.16-1.92). CONCLUSIONS Our data indicated that TAMs identified only with CD68 have no significant correlation with the prognosis and clinicopathological parameters of bladder cancer patients. However, TAMs detected with CD163 could serve as a prognostic marker for bladder cancer patients. These findings invite further research on the role of TAM subsets in bladder cancer patients.
Collapse
Affiliation(s)
- Shui-Qing Wu
- Department of Urology, The Second Xiangya Hospital, Central South University, 410011, Hunan Province, People's Republic of China
- MRC Centre for Reproductive Health, EH16 4TJ, Edinburgh, United Kingdom
| | - Ran Xu
- Department of Urology, The Second Xiangya Hospital, Central South University, 410011, Hunan Province, People's Republic of China
| | - Xue-Feng Li
- MRC Centre for Reproductive Health, EH16 4TJ, Edinburgh, United Kingdom
| | - Xiao-Kun Zhao
- Department of Urology, The Second Xiangya Hospital, Central South University, 410011, Hunan Province, People's Republic of China
| | - Bin-Zhi Qian
- MRC Centre for Reproductive Health, EH16 4TJ, Edinburgh, United Kingdom
- Edinburgh Cancer Research UK Centre Queen's Medical Research Institute, EH16 4TJ, Edinburgh, United Kingdom
| |
Collapse
|
44
|
Peixoto A, Fernandes E, Gaiteiro C, Lima L, Azevedo R, Soares J, Cotton S, Parreira B, Neves M, Amaro T, Tavares A, Teixeira F, Palmeira C, Rangel M, Silva AMN, Reis CA, Santos LL, Oliveira MJ, Ferreira JA. Hypoxia enhances the malignant nature of bladder cancer cells and concomitantly antagonizes protein O-glycosylation extension. Oncotarget 2018; 7:63138-63157. [PMID: 27542232 PMCID: PMC5325352 DOI: 10.18632/oncotarget.11257] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 07/26/2016] [Indexed: 12/18/2022] Open
Abstract
Invasive bladder tumours express the cell-surface Sialyl-Tn (STn) antigen, which stems from a premature stop in protein O-glycosylation. The STn antigen favours invasion, immune escape, and possibly chemotherapy resistance, making it attractive for target therapeutics. However, the events leading to such deregulation in protein glycosylation are mostly unknown. Since hypoxia is a salient feature of advanced stage tumours, we searched into how it influences bladder cancer cells glycophenotype, with emphasis on STn expression. Therefore, three bladder cancer cell lines with distinct genetic and molecular backgrounds (T24, 5637 and HT1376) were submitted to hypoxia. To disclose HIF-1α-mediated events, experiments were also conducted in the presence of Deferoxamine Mesilate (Dfx), an inhibitor of HIF-1α proteasomal degradation. In both conditions all cell lines overexpressed HIF-1α and its transcriptionally-regulated protein CA-IX. This was accompanied by increased lactate biosynthesis, denoting a shift toward anaerobic metabolism. Concomitantly, T24 and 5637 cells acquired a more motile phenotype, consistent with their more mesenchymal characteristics. Moreover, hypoxia promoted STn antigen overexpression in all cell lines and enhanced the migration and invasion of those presenting more mesenchymal characteristics, in an HIF-1α-dependent manner. These effects were reversed by reoxygenation, demonstrating that oxygen affects O-glycan extension. Glycoproteomics studies highlighted that STn was mainly present in integrins and cadherins, suggesting a possible role for this glycan in adhesion, cell motility and invasion. The association between HIF-1α and STn overexpressions and tumour invasion was further confirmed in bladder cancer patient samples. In conclusion, STn overexpression may, in part, result from a HIF-1α mediated cell-survival strategy to adapt to the hypoxic challenge, favouring cell invasion. In addition, targeting STn-expressing glycoproteins may offer potential to treat tumour hypoxic niches harbouring more malignant cells.
Collapse
Affiliation(s)
- Andreia Peixoto
- Experimental Pathology and Therapeutics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), Porto, Portugal.,New Therapies Group, INEB-Institute for Biomedical Engineering, Porto, Portugal.,Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal.,Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal
| | - Elisabete Fernandes
- Experimental Pathology and Therapeutics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), Porto, Portugal.,Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal.,Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal.,Biomaterials for Multistage Drug and Cell Delivery, INEB-Institute for Biomedical Engineering, Porto, Portugal
| | - Cristiana Gaiteiro
- Experimental Pathology and Therapeutics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), Porto, Portugal
| | - Luís Lima
- Experimental Pathology and Therapeutics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), Porto, Portugal.,Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal.,Glycobiology in Cancer, Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
| | - Rita Azevedo
- Experimental Pathology and Therapeutics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), Porto, Portugal.,Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal
| | - Janine Soares
- Experimental Pathology and Therapeutics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), Porto, Portugal
| | - Sofia Cotton
- Experimental Pathology and Therapeutics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), Porto, Portugal
| | - Beatriz Parreira
- Experimental Pathology and Therapeutics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), Porto, Portugal
| | - Manuel Neves
- Experimental Pathology and Therapeutics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), Porto, Portugal.,Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal
| | - Teresina Amaro
- Department of Pathology, Hospital Pedro Hispano, Matosinhos, Portugal
| | - Ana Tavares
- Experimental Pathology and Therapeutics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), Porto, Portugal.,Department of Pathology, Hospital Pedro Hispano, Matosinhos, Portugal
| | - Filipe Teixeira
- LAQV-REQUIMTE, Faculty of Sciences of the University of Porto, Porto, Portugal
| | - Carlos Palmeira
- Experimental Pathology and Therapeutics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), Porto, Portugal.,Health School of University Fernando Pessoa, Porto, Portugal
| | - Maria Rangel
- UCIBIO-REQUIMTE, Instituto de Ciências Biomédicas Abel Salazar, University of Porto, Porto, Portugal
| | - André M N Silva
- UCIBIO-REQUIMTE/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Celso A Reis
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal.,Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal.,Glycobiology in Cancer, Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal.,Department of Pathology and Oncology, Faculty of Medicine, Porto University, Porto, Portugal
| | - Lúcio Lara Santos
- Experimental Pathology and Therapeutics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), Porto, Portugal.,Health School of University Fernando Pessoa, Porto, Portugal.,Department of Surgical Oncology, Portuguese Institute of Oncology, Porto, Portugal
| | - Maria José Oliveira
- New Therapies Group, INEB-Institute for Biomedical Engineering, Porto, Portugal.,Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal
| | - José Alexandre Ferreira
- Experimental Pathology and Therapeutics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), Porto, Portugal.,Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal.,Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal.,Glycobiology in Cancer, Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal.,Porto Comprehensive Cancer Center (P.ccc), Porto, Portugal
| |
Collapse
|
45
|
Xu Z, Wang L, Tian J, Man H, Li P, Shan B. High expression of B7-H3 and CD163 in cancer tissues indicates malignant clinicopathological status and poor prognosis of patients with urothelial cell carcinoma of the bladder. Oncol Lett 2018; 15:6519-6526. [PMID: 29725402 DOI: 10.3892/ol.2018.8173] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 11/29/2017] [Indexed: 11/05/2022] Open
Abstract
The objective of the present study was to investigate the association of B7-H3 expression and cluster of differentiation (CD)163+ tumor-associated macrophage (TAM) infiltration with clinicopathological parameters in urothelial cell carcinoma of the bladder (UCB), and to investigate their potential conjoint effects on progression of UCB. B7-H3 expression and CD163+ TAM infiltration in tumor specimens from 134 consecutive patients that underwent radical cystectomy for UCB were tested using immunohistochemistry, followed by statistical analysis. In these 134 patients, B7-H3 expression and CD163+ TAM infiltration in the bladder carcinoma tissues were significantly associated with an increased ratio of vascular invasion (P=0.009; P=0.012) and distant metastasis (P=0.015; P=0.038); however, they were not associated with gender, age, pathologic grade, tumor stage, recurrence or lymphatic metastasis. The results of χ2 test analysis indicated that CD163+ TAM infiltration and B7-H3 expression were positively correlated (χ2=20.714; P<0.001). Overall survival (OS) and progression-free survival (PFS) rates were significantly worsened by high B7-H3 expression (P=0.002; P=0.020). However, CD163+ TAM infiltration was not associated with OS or PFS rate. Notably, the OS and PFS rates in patients with high B7-H3 expression or high CD163+ TAM infiltration were significantly poorer than the patients with low B7-H3 expression (P<0.001; P<0.001) or low CD163+ TAM infiltration (P=0.022; P=0.017) in the subgroup of 115 patients with muscle-invasive bladder cancer. The results of the present study indicate that B7-H3 expression level could be used as an independent prognostic indicator following radical cystectomy for UCB and patients with high B7-H3 expression and high CD163+ TAM infiltration experience a poorer prognosis.
Collapse
Affiliation(s)
- Zhili Xu
- Department of Immunology, Cancer Research Institute, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Ling Wang
- Department of Immunology, Cancer Research Institute, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Jianhua Tian
- Department of Urology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Hongwei Man
- Department of Immunology, Cancer Research Institute, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Pengfei Li
- Department of Immunology, Cancer Research Institute, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Baoen Shan
- Department of Immunology, Cancer Research Institute, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| |
Collapse
|
46
|
Severino PF, Silva M, Carrascal M, Malagolini N, Chiricolo M, Venturi G, Barbaro Forleo R, Astolfi A, Catera M, Videira PA, Dall'Olio F. Oxidative damage and response to Bacillus Calmette-Guérin in bladder cancer cells expressing sialyltransferase ST3GAL1. BMC Cancer 2018; 18:198. [PMID: 29454317 PMCID: PMC5816560 DOI: 10.1186/s12885-018-4107-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 02/08/2018] [Indexed: 12/25/2022] Open
Abstract
Background Treatment with Bacillus Calmette-Guérin (BCG) is the gold standard adjuvant immunotherapy of non-muscle invasive bladder cancer (NMIBC), although it fails in one third of the patients. NMIBC expresses two tumor-associated O-linked carbohydrates: the disaccharide (Galβ1,3GalNAc) Thomsen-Friedenreich (T) antigen, and its sialylated counterpart (Siaα2,3Galβ1,3GalNAc) sialyl-T (sT), synthesized by sialyltransferase ST3GAL1, whose roles in BCG response are unknown. Methods The human bladder cancer (BC) cell line HT1376 strongly expressing the T antigen, was retrovirally transduced with the ST3GAL1 cDNA or with an empty vector, yielding the cell lines HT1376sT and HT1376T, that express, respectively, either the sT or the T antigens. Cells were in vitro challenged with BCG. Whole gene expression was studied by microarray technology, cytokine secretion was measured by multiplex immune-beads assay. Human macrophages derived from blood monocytes were challenged with the secretome of BCG-challenged BC cells. Results The secretome from BCG-challenged HT1376sT cells induced a stronger macrophage secretion of IL-6, IL-1β, TNFα and IL-10 than that of HT1376T cells. Transcriptomic analysis revealed that ST3GAL1 overexpression and T/sT replacement modulated hundreds of genes. Several genes preserving genomic stability were down-regulated in HT1376sT cells which, as a consequence, displayed increased sensitivity to oxidative damage. After BCG challenge, the transcriptome of HT1376sT cells showed higher susceptibility to BCG modulation than that of HT1376T cells. Conclusions High ST3GAL1 expression and T/sT replacement in BCG challenged-BC cancer cells induce a stronger macrophage response and alter the gene expression towards genomic instability, indicating a potential impact on BC biology and patient’s response to BCG. Electronic supplementary material The online version of this article (10.1186/s12885-018-4107-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Paulo F Severino
- Centro de Estudos de Doenças Crónicas, CEDOC, NOVA Medical School/Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056, Lisbon, Portugal.,Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale, Sede di Patologia Generale, Università di Bologna, Via S. Giacomo 14, 40126, Bologna, Italy
| | - Mariana Silva
- Centro de Estudos de Doenças Crónicas, CEDOC, NOVA Medical School/Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056, Lisbon, Portugal
| | - Mylene Carrascal
- Centro de Estudos de Doenças Crónicas, CEDOC, NOVA Medical School/Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056, Lisbon, Portugal
| | - Nadia Malagolini
- Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale, Sede di Patologia Generale, Università di Bologna, Via S. Giacomo 14, 40126, Bologna, Italy
| | - Mariella Chiricolo
- Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale, Sede di Patologia Generale, Università di Bologna, Via S. Giacomo 14, 40126, Bologna, Italy
| | - Giulia Venturi
- Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale, Sede di Patologia Generale, Università di Bologna, Via S. Giacomo 14, 40126, Bologna, Italy
| | - Roberto Barbaro Forleo
- Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale, Sede di Patologia Generale, Università di Bologna, Via S. Giacomo 14, 40126, Bologna, Italy
| | - Annalisa Astolfi
- Centro Interdipartimentale Ricerche sul Cancro "Giorgio Prodi", Università di Bologna, Bologna, Italy
| | - Mariangela Catera
- Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale, Sede di Patologia Generale, Università di Bologna, Via S. Giacomo 14, 40126, Bologna, Italy
| | - Paula A Videira
- Centro de Estudos de Doenças Crónicas, CEDOC, NOVA Medical School/Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056, Lisbon, Portugal. .,UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal.
| | - Fabio Dall'Olio
- Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale, Sede di Patologia Generale, Università di Bologna, Via S. Giacomo 14, 40126, Bologna, Italy.
| |
Collapse
|
47
|
Lacerda Mariano L, Ingersoll MA. Bladder resident macrophages: Mucosal sentinels. Cell Immunol 2018; 330:136-141. [PMID: 29422271 DOI: 10.1016/j.cellimm.2018.01.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 01/18/2018] [Accepted: 01/31/2018] [Indexed: 12/28/2022]
Abstract
Macrophages are instrumental in the response to infectious and noninfectious diseases, however, their role in the bladder is poorly understood. Indeed, the bladder is a mucosal tissue frequently overlooked in research, despite the prevalence of illnesses such as urinary tract infection and bladder cancer. Notably, bladder tissue macrophages are among the most populous resident immune cells in this organ and recent studies support that resident macrophages and infiltrating monocytes play nonredundant roles in response to infection, immunotherapy, and inflammation. Advancing our understanding of macrophage behavior in the bladder is complicated by the difficulty in obtaining tissue-resident cells. Surmounting this challenge, however, for a greater understanding of macrophage ontology, impact on innate and adaptive immunity, and regulation of homeostasis, will ultimately contribute to better therapies for common afflictions of the bladder.
Collapse
Affiliation(s)
- Livia Lacerda Mariano
- Unit of Dendritic Cell Immunobiology, Department of Immunology, Institut Pasteur, Paris 75015, France; Inserm U1223, Paris 75015, France
| | - Molly A Ingersoll
- Unit of Dendritic Cell Immunobiology, Department of Immunology, Institut Pasteur, Paris 75015, France; Inserm U1223, Paris 75015, France.
| |
Collapse
|
48
|
Pichler R, Fritz J, Zavadil C, Schäfer G, Culig Z, Brunner A. Tumor-infiltrating immune cell subpopulations influence the oncologic outcome after intravesical Bacillus Calmette-Guérin therapy in bladder cancer. Oncotarget 2018; 7:39916-39930. [PMID: 27221038 PMCID: PMC5129981 DOI: 10.18632/oncotarget.9537] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 05/05/2016] [Indexed: 12/22/2022] Open
Abstract
Although Bacillus Calmette-Guérin (BCG) is the most successful immunotherapy for high-risk non-muscle-invasive bladder cancer, approximately 30% of patients are unresponsive to treatment. New biomarkers are important to identify patients who will benefit most from BCG during a worldwide BCG shortage. Local immune cell subsets were measured on formalin-fixed, paraffin-embedded tissue sections of bladder cancer by immunohistochemistry, using monoclonal antibodies to tumor-associated macrophages (TAMs; CD68, CD163), B-lymphocytes (CD20) and T-lymphocyte subsets (CD3, CD4, CD8, GATA3, T-bet, FOXP3 and CD25). Cell densities in the lamina propria without invasion, at the invasive front if present, in the papillary tumor stroma, and in the neoplastic urothelium were calculated. Twenty-nine (72.5%) of 40 patients were classified as BCG responders after a mean follow-up of 35.3 months. A statistically significant association was observed for BCG failure with low density of CD4+ and GATA3+ T-cells, and increased expression of FOXP3+ and CD25+ regulatory T-cells (Tregs) as well as CD68+ and CD163+ TAMs. Survival analysis demonstrated prolonged recurrence-free survival (RFS) in patients with an increased count of CD4+ and GATA3+ T-cells. TAMs, Tregs and T-bet+ T-cells were inversely correlated with RFS. Thus, the tumor microenvironment seems to influence the therapeutic response to BCG, permitting an individualized treatment.
Collapse
Affiliation(s)
- Renate Pichler
- Department of Urology, Division of Experimental Urology, Medical University of Innsbruck, A-6020 Innsbruck, Austria
| | - Josef Fritz
- Department of Medical Statistics, Informatics and Health Economics, Medical University of Innsbruck, A-6020 Innsbruck, Austria
| | - Claudia Zavadil
- Department of Pathology, Division of General Pathology, Medical University of Innsbruck, A-6020 Innsbruck, Austria
| | - Georg Schäfer
- Department of Pathology, Division of General Pathology, Medical University of Innsbruck, A-6020 Innsbruck, Austria
| | - Zoran Culig
- Department of Urology, Division of Experimental Urology, Medical University of Innsbruck, A-6020 Innsbruck, Austria
| | - Andrea Brunner
- Department of Pathology, Division of General Pathology, Medical University of Innsbruck, A-6020 Innsbruck, Austria
| |
Collapse
|
49
|
Chen XJ, Han LF, Wu XG, Wei WF, Wu LF, Yi HY, Yan RM, Bai XY, Zhong M, Yu YH, Liang L, Wang W. Clinical Significance of CD163+ and CD68+ Tumor-associated Macrophages in High-risk HPV-related Cervical Cancer. J Cancer 2017; 8:3868-3875. [PMID: 29151975 PMCID: PMC5688941 DOI: 10.7150/jca.21444] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 08/16/2017] [Indexed: 12/11/2022] Open
Abstract
Objective. To explore the influence of M2-polarized tumor-associated macrophages (TAMs) on high-risk human papillomavirus (hr-HPV)-related cervical carcinogenesis and metastasis. Methods. CD68+ and CD163+ macrophages were examined immunohistochemically in a series of 130 samples, including 26 cases of normal cervical tissues, 59 cases of cervical intraepithelial neoplasia (CIN), and 45 cases of squamous cell carcinoma (SCC), and the results were statistically analyzed. The macrophage count was corrected for the epithelial and stromal compartments respectively. Clinical data were also obtained. Results. High counts of CD68+ and CD163+ macrophages were associated with hr-HPV infection (both p < 0.05) and positively correlated with cervical carcinogenesis (Spearman's rho = 0.478, p = 0.000; Spearman's rho = 0.676, p =0.000, respectively). The immunostaining pattern of CD163 exhibited clearer background than that of CD68. CD163+ macrophages showed a more obviously increasing migration into the epithelium along with the progression of CIN to invasive cancer. Notably, a high index of CD163+ macrophages was significantly associated with higher FIGO stages (p = 0.009) and lymph node metastasis (p = 0.012), but a similar finding was not found for CD68+ macrophages (p = 0.067, p = 0.079, respectively). Conclusions. Our study supported a critical role of TAMs as a prospective predictor for hr-HPV-related cervical carcinogenesis. CD163, as a promising TAMs marker, is superior to CD68 for predicting the malignant transformation and metastatic potential of cervical cancer.
Collapse
Affiliation(s)
- Xiao-Jing Chen
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University/The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong Province, People's Republic of China
| | - Ling-Fei Han
- Department of Minimally Invasive Gynecologic Surgery, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Xiang-Guang Wu
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University/The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong Province, People's Republic of China
| | - Wen-Fei Wei
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University/The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong Province, People's Republic of China
| | - Lan-Fang Wu
- Department of Obstetrics and Gynecology, the Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong Province, People's Republic of China
| | - Hong-Yan Yi
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University/The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong Province, People's Republic of China
| | - Rui-Ming Yan
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University/The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong Province, People's Republic of China
| | - Xiang-Yang Bai
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University/The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong Province, People's Republic of China
| | - Mei Zhong
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University/The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong Province, People's Republic of China
| | - Yan-Hong Yu
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University/The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong Province, People's Republic of China
| | - Li Liang
- Department of Pathology, Nanfang Hospital, Southern Medical University/The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong Province, People's Republic of China
| | - Wei Wang
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University/The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong Province, People's Republic of China.,Department of Obstetrics and Gynecology, the First Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong Province, People's Republic of China
| |
Collapse
|
50
|
Sui X, Lei L, Chen L, Xie T, Li X. Inflammatory microenvironment in the initiation and progression of bladder cancer. Oncotarget 2017; 8:93279-93294. [PMID: 29190997 PMCID: PMC5696263 DOI: 10.18632/oncotarget.21565] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 09/08/2017] [Indexed: 12/18/2022] Open
Abstract
Accumulating evidence suggests the idea that chronic inflammation may play a critical role in various malignancies including bladder cancer and long-term treatment with non-steroidal anti-inflammatory drugs (NSAIDs) is significantly effective in reducing certain cancer incidence and mortality. However, the molecular mechanisms leading to malignant transformation and the progression of bladder cancer in a chronically inflammatory environment remain largely unknown. In this review, we will describe the role of inflammation in the formation and development of bladder cancer and summarize the possible molecular mechanisms by which chronic inflammation regulates cell immune response, proliferation and metastasis. Understanding the novel function orchestrating inflammation and bladder cancer will hopefully provide us insights into their future clinical significance in preventing bladder carcinogenesis and progression.
Collapse
Affiliation(s)
- Xinbing Sui
- Department of Medical Oncology Holistic Integrative Oncology Institutes and Holistic Integrative Pharmacy Institutes, The Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, China.,Department of Medical Oncology Holistic Integrative Cancer Center of Traditional Chinese and Western Medicine, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Liming Lei
- Department of Cardiovascular Surgery of Guangdong Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Laboratory of South China Structural Heart Disease, Guangzhou, China
| | - Liuxi Chen
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Tian Xie
- Department of Medical Oncology Holistic Integrative Oncology Institutes and Holistic Integrative Pharmacy Institutes, The Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, China.,Department of Medical Oncology Holistic Integrative Cancer Center of Traditional Chinese and Western Medicine, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Xue Li
- Departments of Urology and Pathology, Boston Children's Hospital, Boston, MA, USA.,Department of Surgery, Harvard Medical School, Boston, MA, USA
| |
Collapse
|