1
|
Omidian H, Wilson RL. PLGA-Based Strategies for Intranasal and Pulmonary Applications. Pharmaceutics 2025; 17:207. [PMID: 40006573 PMCID: PMC11859611 DOI: 10.3390/pharmaceutics17020207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/19/2025] [Accepted: 02/04/2025] [Indexed: 02/27/2025] Open
Abstract
Poly(D,L-lactide-co-glycolide) (PLGA) has emerged as a cornerstone in the development of advanced drug delivery systems, particularly for intranasal and pulmonary routes. Its biodegradability, biocompatibility, and adaptability make it an ideal platform for addressing challenges associated with conventional therapies. By enabling sustained and controlled drug release, PLGA formulations reduce dosing frequency, improve patient compliance, and enhance therapeutic efficacy. These systems demonstrate versatility, accommodating hydrophilic and hydrophobic drugs, biological molecules, and co-delivery of synergistic agents. Moreover, surface modifications and advanced preparation techniques enhance targeting, bioavailability, and stability, expanding PLGA's applications to treat complex diseases such as tuberculosis, cancer, pulmonary fibrosis, and CNS disorders. This manuscript provides an in-depth review of PLGA's materials, properties, preparation methods, and therapeutic applications, alongside a critical evaluation of challenges and future opportunities in this field.
Collapse
Affiliation(s)
- Hossein Omidian
- Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
| | | |
Collapse
|
2
|
Wan W, Li Y, Wang J, Jin Z, Xin W, Kang L, Wang J, Li X, Cao Y, Yang H, Wang J, Gao S. PLGA Nanoparticle-Based Dissolving Microneedle Vaccine of Clostridium perfringens ε Toxin. Toxins (Basel) 2023; 15:461. [PMID: 37505730 PMCID: PMC10467084 DOI: 10.3390/toxins15070461] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/12/2023] [Accepted: 07/14/2023] [Indexed: 07/29/2023] Open
Abstract
Epsilon toxin (ETX) is an exotoxin produced by type B and D Clostridium perfringens that causes enterotoxemia or necrotic enteritis in animals such as goats, sheep, and cattle. Vaccination is a key method in preventing such diseases. In this study, we developed a new type of dissolving microneedle patch (dMN) with a nanoparticle adjuvant for enhanced immune response to deliver the rETXY196E-C protein vaccine. We chose FDA-approved poly(lactic-co-glycolic acid) (PLGA) to prepare nanospheres as the vaccine adjuvant and introduced dimethyldioctadecylammonium bromide (DDAB) to make the surface of PLGA nanoparticles (PLGA NPs) positively charged for antigen adsorption. PLGA NPs with a diameter of 100~200 nm, a surface ZETA potential of approximately +40 mV, and good safety were successfully prepared and could effectively adsorb rETXY196E-C protein. Using non-toxic and antibacterial fish gelatin as the microneedle (MN) matrix, we prepared a PLGA-DDAB dMN vaccine with good mechanical properties that successfully penetrated the skin. After immunization of subcutaneous (SC) and dMN, antibody titers of the PLGA and Al adjuvant groups were similar in both two immune ways. However, in vivo neutralization experiments showed that the dMN vaccines had a better protective effect. When challenged with 100 × LD50 GST-ETX, the survival rate of the MN group was 100%, while that of the SC Al group was 80%. However, a 100% protective effect was achieved in both immunization methods using PLGA NPs. In vitro neutralization experiments showed that the serum antibodies from the dMN and SC PLGA NPs groups both protect naive mice from 10 × LD50 GST-ETX attack after being diluted 20 times and could also protect MDCK cells from 20 × CT50 GST-ETX attack. In conclusion, the PLGA-DDAB dMN vaccine we prepared has good mechanical properties, immunogenicity, and protection, and can effectively prevent ETX poisoning. This provides a better way of delivering protein vaccines.
Collapse
Affiliation(s)
- Wei Wan
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences (AMMS), Beijing 100071, China; (W.W.); (Y.L.); (J.W.); (Z.J.); (W.X.); (L.K.); (X.L.); (Y.C.)
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yue Li
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences (AMMS), Beijing 100071, China; (W.W.); (Y.L.); (J.W.); (Z.J.); (W.X.); (L.K.); (X.L.); (Y.C.)
| | - Jing Wang
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences (AMMS), Beijing 100071, China; (W.W.); (Y.L.); (J.W.); (Z.J.); (W.X.); (L.K.); (X.L.); (Y.C.)
| | - Zhiying Jin
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences (AMMS), Beijing 100071, China; (W.W.); (Y.L.); (J.W.); (Z.J.); (W.X.); (L.K.); (X.L.); (Y.C.)
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Wenwen Xin
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences (AMMS), Beijing 100071, China; (W.W.); (Y.L.); (J.W.); (Z.J.); (W.X.); (L.K.); (X.L.); (Y.C.)
| | - Lin Kang
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences (AMMS), Beijing 100071, China; (W.W.); (Y.L.); (J.W.); (Z.J.); (W.X.); (L.K.); (X.L.); (Y.C.)
| | - Junhong Wang
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China;
| | - Xiaoyang Li
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences (AMMS), Beijing 100071, China; (W.W.); (Y.L.); (J.W.); (Z.J.); (W.X.); (L.K.); (X.L.); (Y.C.)
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yakun Cao
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences (AMMS), Beijing 100071, China; (W.W.); (Y.L.); (J.W.); (Z.J.); (W.X.); (L.K.); (X.L.); (Y.C.)
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Hao Yang
- Beijing Noninvasion Biomedical Technology Co., Ltd., Beijing 101111, China;
| | - Jinglin Wang
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences (AMMS), Beijing 100071, China; (W.W.); (Y.L.); (J.W.); (Z.J.); (W.X.); (L.K.); (X.L.); (Y.C.)
| | - Shan Gao
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences (AMMS), Beijing 100071, China; (W.W.); (Y.L.); (J.W.); (Z.J.); (W.X.); (L.K.); (X.L.); (Y.C.)
| |
Collapse
|
3
|
Immunogenicity and Safety of a Combined Intramuscular/Intranasal Recombinant Spike Protein COVID-19 Vaccine (RCP) in Healthy Adults Aged 18 to 55 Years Old: A Randomized, Double-Blind, Placebo-Controlled, Phase I Trial. Vaccines (Basel) 2023; 11:vaccines11020455. [PMID: 36851334 PMCID: PMC9961243 DOI: 10.3390/vaccines11020455] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/02/2023] [Accepted: 02/10/2023] [Indexed: 02/18/2023] Open
Abstract
Objectives: This study aimed to determine the safety and immunogenicity of a combined intramuscular/intranasal recombinant spike protein COVID-19 vaccine (RCP). Methods: We conducted a randomized, double-blind, placebo-controlled, phase I trial. Three vaccine strengths were compared with an adjuvant-only preparation. It included two intramuscular and a third intranasal dose. Eligible participants were followed for adverse reactions. Specific IgG, secretory IgA, neutralizing antibodies, and cell-mediated immunity were assessed. Results: A total of 153 participants were enrolled (13 sentinels, 120 randomized, 20 non-randomized open-labeled for IgA assessment). No related serious adverse event was observed. The geometric mean ratios (GMRs) and 95% CI for serum neutralizing antibodies compared with placebo two weeks after the second injection were 5.82 (1.46-23.13), 11.12 (2.74-45.09), and 20.70 (5.05-84.76) in 5, 10, and 20 µg vaccine groups, respectively. The GMR for anti-RBD IgA in mucosal fluid two weeks after the intranasal dose was 23.27 (21.27-25.45) in the 10 µg vaccine group. The humoral responses were sustained for up to five months. All vaccine strengths indicated a strong T-helper 1 response. Conclusion: RCP is safe and creates strong and durable humoral and cellular immunity and good mucosal immune response in its 10 µg /200 µL vaccine strengths. Trial registration: IRCT20201214049709N1.
Collapse
|
4
|
Lipid Microparticles Show Similar Efficacy With Lipid Nanoparticles in Delivering mRNA and Preventing Cancer. Pharm Res 2023; 40:265-279. [PMID: 36451070 PMCID: PMC9713120 DOI: 10.1007/s11095-022-03445-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 11/20/2022] [Indexed: 12/03/2022]
Abstract
PURPOSE Messenger RNA (mRNA) has shown great promise for vaccine against both infectious diseases and cancer. However, mRNA is unstable and requires a delivery vehicle for efficient cellular uptake and degradation protection. So far, lipid nanoparticles (LNPs) represent the most advanced delivery platform for mRNA delivery. However, no published studies have compared lipid microparticles (LMPs) with lipid nanoparticles (LNPs) in delivering mRNA systematically, therefore, we compared the impact of particle size on delivery efficacy of mRNA vaccine and subsequent immune responses. METHODS Herein, we prepared 3 different size lipid particles, from nano-sized to micro-sized, and they loaded similar amounts of mRNA. These lipid particles were investigated both in vitro and in vivo, followed by evaluating the impact of particle size on inducing cellular and humoral immune responses. RESULTS In this study, all mRNA vaccines showed a robust immune response and lipid microparticles (LMPs) show similar efficacy with lipid nanoparticles (LNPs) in delivering mRNA and preventing cancer. In addition, immune adjuvants, either toll like receptors or active molecules from traditional Chinese medicine, can improve the efficacy of mRNA vaccines. CONCLUSIONS Considering the efficiency of delivery and endocytosis, besides lipid nanoparticles with size smaller than 150 nm, lipid microparticles (LMPs) also have the potential to be an alternative and promising delivery system for mRNA vaccines.
Collapse
|
5
|
Needle-free, spirulina-produced Plasmodium falciparum circumsporozoite vaccination provides sterile protection against pre-erythrocytic malaria in mice. NPJ Vaccines 2022; 7:113. [PMID: 36195607 PMCID: PMC9532447 DOI: 10.1038/s41541-022-00534-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 09/05/2022] [Indexed: 02/02/2023] Open
Abstract
Antibodies against the Plasmodium falciparum circumsporozoite protein (PfCSP) can block hepatocyte infection by sporozoites and protect against malaria. Needle-free vaccination strategies are desirable, yet most PfCSP-targeted vaccines like RTS,S require needle-based administration. Here, we evaluated the edible algae, Arthrospira platensis (commonly called 'spirulina') as a malaria vaccine platform. Spirulina were genetically engineered to express virus-like particles (VLPs) consisting of the woodchuck hepatitis B core capsid protein (WHcAg) displaying a (NANP)15 PfCSP antigen on its surface. PfCSP-spirulina administered to mice intranasally followed by oral PfCSP-spirulina boosters resulted in a strong, systemic anti-PfCSP immune response that was protective against subcutaneous challenge with PfCSP-expressing P. yoelii. Unlike male mice, female mice did not require Montanide adjuvant to reach high antibody titers or protection. The successful use of spirulina as a vaccine delivery system warrants further development of spirulina-based vaccines as a useful tool in addressing malaria and other diseases of global health importance.
Collapse
|
6
|
Huang X, Cavalcante DP, Townley HE. Macrophage-like THP-1 cells show effective uptake of silica nanoparticles carrying inactivated diphtheria toxoid for vaccination. JOURNAL OF NANOPARTICLE RESEARCH : AN INTERDISCIPLINARY FORUM FOR NANOSCALE SCIENCE AND TECHNOLOGY 2020; 22:23. [PMID: 32435151 PMCID: PMC7223038 DOI: 10.1007/s11051-019-4720-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 11/22/2019] [Indexed: 06/11/2023]
Abstract
Nanoparticles may be used in vaccinology as an antigen delivery and/or an immunostimulant to enhance immunity. Porous silica has been identified as an effective adjuvant for more than a decade, and we have therefore investigated the take up rate by an immortalized macrophage-like cell line of a number of mesoporous silica nanoparticles (MSNPs) with differing diameter and pore size. The MSNPs were synthesized using a sol-gel reaction and post-synthesis removal of the template. The MSNPs showed a clear distribution in take up rate peaking at 217 nm, whereas a comparison with solid spherical nanoparticles showed a similar distribution peaking at 377 nm. The MSNPs were investigated before and after loading with antigen. Diphtheria toxoid was used as a proof-of-concept antigen and showed a peak macrophage internalization of 53.42% for loaded LP3 particles which had a diameter of 217.75 ± 5.44 nm and large 16.5 nm pores. Optimal MSNP sizes appeared to be in the 200-400 nm range, and larger pores showed better antigen loading. The mesoporous silica particles were shown to be generally biocompatible, and cell viability was not altered by the loading of particles with or without antigen. Graphical abstract.
Collapse
Affiliation(s)
- Xinyue Huang
- Nuffield Department of women’s and reproductive health, Oxford University, John Radcliffe Hospital, Oxford, UK
| | | | - Helen E Townley
- Nuffield Department of women’s and reproductive health, Oxford University, John Radcliffe Hospital, Oxford, UK
- Department of Engineering Science, Oxford University, Park’s Road, Oxford, UK
| |
Collapse
|
7
|
Roces CB, Hussain MT, Schmidt ST, Christensen D, Perrie Y. Investigating Prime-Pull Vaccination through a Combination of Parenteral Vaccination and Intranasal Boosting. Vaccines (Basel) 2019; 8:vaccines8010010. [PMID: 31906072 PMCID: PMC7157738 DOI: 10.3390/vaccines8010010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 12/24/2019] [Accepted: 12/26/2019] [Indexed: 01/09/2023] Open
Abstract
Formulation of inhalable delivery systems containing tuberculosis (TB) antigens to target the site of infection (lungs) have been considered for the development of subunit vaccines. Inert delivery systems such as poly (lactic-co-glycolic acid) (PLGA) are an interesting approach due to its approval for human use. However, PLGA suffers hydrolytic degradation when stored in a liquid environment for prolonged time. Therefore, in this study, nano- and microparticles composed of different PLGA copolymers (50:50, 75:25 and 85:15), sucrose (10% w/v) and L-leucine (1% w/v) encapsulating H56 TB vaccine candidate were produced as dried powders. In vitro studies in three macrophage cell lines (MH-S, RAW264.7 and THP-1) showed the ability of these cells to take up the formulated PLGA:H56 particles and process the antigen. An in vivo prime-pull immunisation approach consisting of priming with CAF01:H56 (2 × subcutaneous (s.c.) injection) followed by a mucosal boost with PLGA:H56 (intranasal (i.n.) administration) demonstrated the retention of the immunogenicity of the antigen encapsulated within the lyophilised PLGA delivery system, although no enhancing effect could be observed compared to the administration of antigen alone as a boost. The work here could provide the foundations for the scale independent manufacture of polymer delivery systems encapsulating antigens for inhalation/aerolisation to the lungs.
Collapse
Affiliation(s)
- Carla B. Roces
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK; (C.B.R.); (M.T.H.)
| | - Maryam T. Hussain
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK; (C.B.R.); (M.T.H.)
| | - Signe T. Schmidt
- Center for Vaccine Research, Statens Serum Institut, 2300 Copenhagen, Denmark; (S.T.S.); (D.C.)
| | - Dennis Christensen
- Center for Vaccine Research, Statens Serum Institut, 2300 Copenhagen, Denmark; (S.T.S.); (D.C.)
| | - Yvonne Perrie
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK; (C.B.R.); (M.T.H.)
- Correspondence:
| |
Collapse
|
8
|
Gonzalez-Miro M, Chen S, Gonzaga ZJ, Evert B, Wibowo D, Rehm BHA. Polyester as Antigen Carrier toward Particulate Vaccines. Biomacromolecules 2019; 20:3213-3232. [DOI: 10.1021/acs.biomac.9b00509] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Majela Gonzalez-Miro
- School of Fundamental Sciences, Massey University, Palmerston North 4474, New Zealand
| | - Shuxiong Chen
- Centre for Cell
Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland 4111, Australia
| | - Zennia Jean Gonzaga
- Centre for Cell
Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland 4111, Australia
| | - Benjamin Evert
- Centre for Cell
Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland 4111, Australia
| | - David Wibowo
- Centre for Cell
Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland 4111, Australia
| | - Bernd H. A. Rehm
- Centre for Cell
Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland 4111, Australia
| |
Collapse
|
9
|
Li M, Zhao Y, Chen X, Fu X, Li W, Liu H, Dong Y, Liu C, Zhang X, Shen L, Li B, Tian Y. Contribution of sex‑based immunological differences to the enhanced immune response in female mice following vaccination with hepatitis B vaccine. Mol Med Rep 2019; 20:103-110. [PMID: 31115567 DOI: 10.3892/mmr.2019.10231] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Accepted: 04/16/2019] [Indexed: 11/06/2022] Open
Abstract
Hepatitis B virus (HBV) vaccination is regarded as the most economical and effective method for the prevention and control of HBV infection, a major global health problem. Previous studies have suggested that there may be sex‑specific differences regarding the immune response to the HBV vaccine in humans; however, the mechanisms associated with these sex‑specific differences are yet to be elucidated. In the present study, sex‑based immunological differences in mice following HBV vaccination were investigated to determine the mechanisms underlying sexual dimorphism, with the aim of identifying potential targets for clinical intervention. Balb/c mice (n=6) were vaccinated intramuscularly on 3 different days (days 0, 14 and 28) with the HBV vaccine. Sera were analyzed via ELISA for the presence of HBV surface antigen (HBsAg)‑specific immunoglobulin G (IgG), and of different IgG subtypes, 3 weeks following the third injection. Enzyme‑linked immunosorbent spot assays were conducted to determine interleukin‑4/interferon‑γ secretion. Immunological memory stimulated by the vaccine was detected via flow cytometry analysis and ELISA 1 week following the booster immunization. The seroconversion of the treated female group was higher compared with the male group at one week following the second vaccination. Female mice exhibited significantly increased HBsAg antibody titers compared with males at 1‑5 weeks following the third vaccination. Sera obtained from vaccinated female mice exhibited markedly increased titers of IgG1 and IgG2b compared with those from male mice. Furthermore, female mice exhibited elevated cytotoxic T lymphocyte responses and immune memory. Collectively, the results of the present study indicated that sex‑based immunological differences affected the dynamics and characteristics of the immune response in mice immunized with the HBV vaccine.
Collapse
Affiliation(s)
- Meng Li
- Blood Research Laboratory, Chengdu Blood Center, Chengdu, Sichuan 610041, P.R. China
| | - Yuwei Zhao
- Blood Research Laboratory, Chengdu Blood Center, Chengdu, Sichuan 610041, P.R. China
| | - Xue Chen
- Blood Research Laboratory, Chengdu Blood Center, Chengdu, Sichuan 610041, P.R. China
| | - Xuemei Fu
- Blood Research Laboratory, Chengdu Blood Center, Chengdu, Sichuan 610041, P.R. China
| | - Wen Li
- Blood Research Laboratory, Chengdu Blood Center, Chengdu, Sichuan 610041, P.R. China
| | - Humin Liu
- Blood Research Laboratory, Chengdu Blood Center, Chengdu, Sichuan 610041, P.R. China
| | - Yufang Dong
- Blood Research Laboratory, Chengdu Blood Center, Chengdu, Sichuan 610041, P.R. China
| | - Chuanyao Liu
- Blood Research Laboratory, Chengdu Blood Center, Chengdu, Sichuan 610041, P.R. China
| | - Xiao Zhang
- Blood Research Laboratory, Chengdu Blood Center, Chengdu, Sichuan 610041, P.R. China
| | - Li Shen
- Blood Research Laboratory, Chengdu Blood Center, Chengdu, Sichuan 610041, P.R. China
| | - Bing Li
- General Clinic, Affiliated Hospital of Inner Mongolia Agricultural University, Hohhot, Inner Mongolia Autonomous Region 010018, P.R. China
| | - Yaomei Tian
- College of Bioengineering, Sichuan University of Science and Engineering, Zigong, Sichuan 643000, P.R. China
| |
Collapse
|
10
|
Zhang L, Yang W, Hu C, Wang Q, Wu Y. Properties and applications of nanoparticle/microparticle conveyors with adjuvant characteristics suitable for oral vaccination. Int J Nanomedicine 2018; 13:2973-2987. [PMID: 29861631 PMCID: PMC5968786 DOI: 10.2147/ijn.s154743] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Vaccination is one of the most effective approaches in the prevention and control of disease worldwide. Oral vaccination could have wide applications if effective protection cannot be achieved through traditional (eg, parenteral) routes of vaccination. However, oral administration is hampered by the difficulties in transferring vaccines in vivo. This has led to the development of materials such as carriers with potential adjuvant effects. Considering the requirements for selecting adjuvants for oral vaccines as well as the advantages of nanoparticle/microparticle materials as immune effectors and antigen conveyors, synthetic materials could improve the efficiency of oral vaccination. In this review, nanoparticles and microparticles with adjuvant characteristics are described with regard to their potential importance for oral immunization, and some promising and successful modification strategies are summarized.
Collapse
Affiliation(s)
- Lei Zhang
- College of Life Sciences, Fujian Normal University, Fuzhou, China.,State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, China
| | - Wendi Yang
- College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Chaohua Hu
- National Engineering Research Center for Sugarcane, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qianchao Wang
- College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Yunkun Wu
- College of Life Sciences, Fujian Normal University, Fuzhou, China.,State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, China
| |
Collapse
|
11
|
Roointan A, Kianpour S, Memari F, Gandomani M, Gheibi Hayat SM, Mohammadi-Samani S. Poly(lactic-co-glycolic acid): The most ardent and flexible candidate in biomedicine! INT J POLYM MATER PO 2018. [DOI: 10.1080/00914037.2017.1405350] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Amir Roointan
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sedigheh Kianpour
- Department of Pharmaceutical Biotechnology, Pharmaceutical Sciences Research Center, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Memari
- Department of Medical Biotechnology, School of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Molood Gandomani
- Department of Bioengineering, Biotechnology Research Center, Cyprus international University, Nicosia, Cyprus
| | - Seyed Mohammad Gheibi Hayat
- Student Research Committee, Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Soliman Mohammadi-Samani
- Department of Pharmaceutics, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
12
|
Kim SK, Park H, Lee JM, Na K, Lee ES. pH-responsive starch microparticles for a tumor-targeting implant. POLYM ADVAN TECHNOL 2018. [DOI: 10.1002/pat.4248] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
| | - Hongsuk Park
- Division of Endocrinology, Metabolism & Lipid Research; Washington University School of Medicine; Saint Louis MO 63110 USA
| | - Jae Min Lee
- Department of Biotechnology; The Catholic University of Korea; 43 Jibong-ro Bucheon-si Gyeonggi-do 14662 Republic of Korea
| | - Kun Na
- Department of Biotechnology; The Catholic University of Korea; 43 Jibong-ro Bucheon-si Gyeonggi-do 14662 Republic of Korea
| | - Eun Seong Lee
- Department of Biotechnology; The Catholic University of Korea; 43 Jibong-ro Bucheon-si Gyeonggi-do 14662 Republic of Korea
| |
Collapse
|
13
|
Takeuchi I, Taniguchi Y, Tamura Y, Ochiai K, Makino K. Effects of l-leucine on PLGA microparticles for pulmonary administration prepared using spray drying: Fine particle fraction and phagocytotic ratio of alveolar macrophages. Colloids Surf A Physicochem Eng Asp 2018. [DOI: 10.1016/j.colsurfa.2017.10.047] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
14
|
Bailey BA, Desai KGH, Ochyl LJ, Ciotti SM, Moon JJ, Schwendeman SP. Self-encapsulating Poly(lactic-co-glycolic acid) (PLGA) Microspheres for Intranasal Vaccine Delivery. Mol Pharm 2017; 14:3228-3237. [PMID: 28726424 PMCID: PMC5642922 DOI: 10.1021/acs.molpharmaceut.7b00586] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Herein we describe a formulation of self-encapsulating poly(lactic-co-glycolic acid) (PLGA) microspheres for vaccine delivery. Self-healing encapsulation is a novel encapsulation method developed by our group that enables the aqueous loading of large molecules into premade PLGA microspheres. Calcium phosphate (CaHPO4) adjuvant gel was incorporated into the microspheres as a protein-trapping agent for improved encapsulation of antigen. Microspheres were found to have a median size of 7.05 ± 0.31 μm, with a w/w loading of 0.60 ± 0.05% of ovalbumin (OVA) model antigen. The formulation demonstrated continuous release of OVA over a 49-day period. Released OVA maintained its antigenicity over the measured period of >21 days of release. C57BL/6 mice were immunized via the intranasal route with prime and booster doses of OVA (10 μg) loaded into microspheres or coadministered with cholera toxin B (CTB), the gold standard of mucosal adjuvants. Microspheres generated a Th2-type response in both serum and local mucosa, with IgG antibody responses approaching those generated by CTB. The results suggest that this formulation of self-encapsulating microspheres shows promise for further study as a vaccine delivery system.
Collapse
Affiliation(s)
- Brittany A. Bailey
- Department of Pharmaceutical Sciences and the Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Kashappa-Goud H. Desai
- Department of Pharmaceutical Sciences and the Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Lukasz J. Ochyl
- Department of Pharmaceutical Sciences and the Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Susan M. Ciotti
- NanoBio Corporation, 2311 Green Road, Ann Arbor, Michigan 48105, United States
| | - James J. Moon
- Department of Pharmaceutical Sciences and the Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Biomedical Engineering and the Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Steven P. Schwendeman
- Department of Pharmaceutical Sciences and the Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
15
|
Zhang L, Hu C, Yang W, Liu X, Wu Y. Chemical Synthesis, Versatile Structures and Functions of Tailorable Adjuvants for Optimizing Oral Vaccination. ACS APPLIED MATERIALS & INTERFACES 2016; 8:34933-34950. [PMID: 27935687 DOI: 10.1021/acsami.6b10470] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Oral vaccines have become a recent focus because of their potential significance in disease prevention and therapy. In the development of oral vaccine-based therapeutics, synthetic materials with tailorable structures and versatile functions can act as antigen conveyers with adjuvant effects, reduce the time cost for vaccine optimization, and provide high security and enhanced immunity. This review presents an overview of the current status of tailoring synthetic adjuvants for oral vaccination, modification strategies for producing effectors with specific structures and functions, enhancement of immune-associated efficiencies, including the barrier-crossing capability to protect antigens in the gastrointestinal tract, coordination of the antigens penetrating mucosa and cell barriers, targeting of concentrated antigens to immune-associated cells, and direct stimulation of immune cells. Finally, we focus on prospective synthetic adjuvants that facilitate the use of oral vaccines via two approaches, namely, in vivo antigen expression and cancer immunotherapy.
Collapse
Affiliation(s)
- Lei Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences , Fuzhou 350002, China
| | - Chaohua Hu
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University , Fuzhou 350002, China
| | - Wendi Yang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences , Fuzhou 350002, China
| | - Xiaolin Liu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences , Fuzhou 350002, China
| | - Yunkun Wu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences , Fuzhou 350002, China
| |
Collapse
|
16
|
Synergistic effect of rSAG1 and rGRA2 antigens formulated in PLGA microspheres in eliciting immune protection against Toxoplasama gondii. Exp Parasitol 2016; 170:236-246. [PMID: 27663469 DOI: 10.1016/j.exppara.2016.09.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 08/16/2016] [Accepted: 09/20/2016] [Indexed: 11/20/2022]
Abstract
There is still no human vaccine against Toxoplasma gondii (T. gondii), as one of the most successful parasites. In present study, we designed a subunit vaccine composed of recombinant SAG1 (rSAG1) and recombinant GRA2 (rGRA2) proteins. In order to improve the induced immune responses, rSAG1 and rGRA2 were adsorbed on Poly (DL-lactide-co-glycolide) (PLGA) microspheres (MS) prepared by double emulsion solvent evaporation method. BALB/c mice were subcutaneously vaccinated by rSAG1-adsorbed PLGA MS (rSAG1-PLGA), rGRA2-adsorbed PLGA MS (rGRA2-PLGA), and the mixture of both formulations (rSAG1/rGRA2-PLGA), twice with a 3-week interval. PLGA MS characteristics, protein release, cellular and humoral immune responses, and protection against acute toxoplasmosis were evaluated. All vaccinated mice induced significantly partial protection and longer survival times associated with higher IFN-γ/IL-10 ratio and higher amount of Toxoplasma-specific IgG antibodies compared to control groups. Interestingly, the synergistic effect of rSAG1 and rGRA2 in eliciting more potent cellular and humoral responses and consequently higher protection in comparison to single antigen was confirmed. This study introduces the mixture of rSAG1 and rGRA2 (derived from different stages of Toxoplasma life-cycle) formulated in PLGA MS as a promising candidate in vaccine development against T. gondii.
Collapse
|
17
|
Bobbala S, Hook S. Is There an Optimal Formulation and Delivery Strategy for Subunit Vaccines? Pharm Res 2016; 33:2078-97. [DOI: 10.1007/s11095-016-1979-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 06/21/2016] [Indexed: 12/16/2022]
|
18
|
Allahyari M, Mohit E. Peptide/protein vaccine delivery system based on PLGA particles. Hum Vaccin Immunother 2016; 12:806-28. [PMID: 26513024 PMCID: PMC4964737 DOI: 10.1080/21645515.2015.1102804] [Citation(s) in RCA: 145] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 09/15/2015] [Accepted: 09/27/2015] [Indexed: 12/19/2022] Open
Abstract
Due to the excellent safety profile of poly (D,L-lactide-co-glycolide) (PLGA) particles in human, and their biodegradability, many studies have focused on the application of PLGA particles as a controlled-release vaccine delivery system. Antigenic proteins/peptides can be encapsulated into or adsorbed to the surface of PLGA particles. The gradual release of loaded antigens from PLGA particles is necessary for the induction of efficient immunity. Various factors can influence protein release rates from PLGA particles, which can be defined intrinsic features of the polymer, particle characteristics as well as protein and environmental related factors. The use of PLGA particles encapsulating antigens of different diseases such as hepatitis B, tuberculosis, chlamydia, malaria, leishmania, toxoplasma and allergy antigens will be described herein. The co-delivery of antigens and immunostimulants (IS) with PLGA particles can prevent the systemic adverse effects of immunopotentiators and activate both dendritic cells (DCs) and natural killer (NKs) cells, consequently enhancing the therapeutic efficacy of antigen-loaded PLGA particles. We will review co-delivery of different TLR ligands with antigens in various models, highlighting the specific strengths and weaknesses of the system. Strategies to enhance the immunotherapeutic effect of DC-based vaccine using PLGA particles can be designed to target DCs by functionalized PLGA particle encapsulating siRNAs of suppressive gene, and disease specific antigens. Finally, specific examples of cellular targeting where decorating the surface of PLGA particles target orally administrated vaccine to M-cells will be highlighted.
Collapse
Affiliation(s)
- Mojgan Allahyari
- Department of Recombinant Protein Production, Research & Production Complex, Pasteur Institute of Iran, Tehran, Iran
| | - Elham Mohit
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
19
|
Powles L, Xiang SD, Selomulya C, Plebanski M. The Use of Synthetic Carriers in Malaria Vaccine Design. Vaccines (Basel) 2015; 3:894-929. [PMID: 26529028 PMCID: PMC4693224 DOI: 10.3390/vaccines3040894] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 09/28/2015] [Accepted: 10/16/2015] [Indexed: 11/29/2022] Open
Abstract
Malaria vaccine research has been ongoing since the 1980s with limited success. However, recent improvements in our understanding of the immune responses required to combat each stage of infection will allow for intelligent design of both antigens and their associated delivery vaccine vehicles/vectors. Synthetic carriers (also known as vectors) are usually particulate and have multiple properties, which can be varied to control how an associated vaccine interacts with the host, and consequently how the immune response develops. This review comprehensively analyzes both historical and recent studies in which synthetic carriers are used to deliver malaria vaccines. Furthermore, the requirements for a synthetic carrier, such as size, charge, and surface chemistry are reviewed in order to understand the design of effective particle-based vaccines against malaria, as well as providing general insights. Synthetic carriers have the ability to alter and direct the immune response, and a better control of particle properties will facilitate improved vaccine design in the near future.
Collapse
Affiliation(s)
- Liam Powles
- Department of Chemical Engineering, Monash University, Clayton, VIC 3800, Australia.
| | - Sue D Xiang
- Department of Immunology and Pathology, Monash University, Melbourne, VIC 3004, Australia.
- Therapeutics and Regenerative Medicine Division, The Monash Institute of Medical Engineering (MIME), Monash University, Clayton, VIC 3800, Australia.
| | - Cordelia Selomulya
- Department of Chemical Engineering, Monash University, Clayton, VIC 3800, Australia.
| | - Magdalena Plebanski
- Department of Immunology and Pathology, Monash University, Melbourne, VIC 3004, Australia.
- Therapeutics and Regenerative Medicine Division, The Monash Institute of Medical Engineering (MIME), Monash University, Clayton, VIC 3800, Australia.
| |
Collapse
|
20
|
Polymeric micro/nanoparticles: Particle design and potential vaccine delivery applications. Vaccine 2015; 33:5927-36. [PMID: 26263197 DOI: 10.1016/j.vaccine.2015.07.100] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 05/28/2015] [Accepted: 07/23/2015] [Indexed: 12/13/2022]
Abstract
Particle based adjuvant showed promising signs on delivering antigen to immune cells and acting as stimulators to elicit preventive or therapeutic response. Nevertheless, the wide size distribution of available polymeric particles has so far obscured the immunostimulative effects of particle adjuvant, and compromised the progress in pharmacological researches. To conquer this hurdle, our research group has carried out a series of researches regarding the particulate vaccine, by taking advantage of the successful fabrication of polymeric particles with uniform size. In this review, we highlight the insight and practical progress focused on the effects of physiochemical property (e.g. particle size, charge, hydrophobicity, surface chemical group, and particle shape) and antigen loading mode on the resultant biological/immunological outcome. The underlying mechanisms of how the particles-based vaccine functioned in the immune system are also discussed. Based on the knowledge, particles with high antigen payload and optimized attributes could be designed for expected adjuvant purpose, leading to the development of high efficient vaccine candidates.
Collapse
|
21
|
Curtidor H, Patarroyo ME, Patarroyo MA. Recent advances in the development of a chemically synthesised anti-malarial vaccine. Expert Opin Biol Ther 2015; 15:1567-81. [DOI: 10.1517/14712598.2015.1075505] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
22
|
Legorreta-Herrera M, Mosqueda-Romo NA, Nava-Castro KE, Morales-Rodríguez AL, Buendía-González FO, Morales-Montor J. Sex hormones modulate the immune response to Plasmodium berghei ANKA in CBA/Ca mice. Parasitol Res 2015; 114:2659-69. [DOI: 10.1007/s00436-015-4471-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 04/05/2015] [Indexed: 10/23/2022]
|
23
|
Combined meningococcal serogroup A and W135 outer-membrane vesicles activate cell-mediated immunity and long-term memory responses against non-covalent capsular polysaccharide A. Immunol Res 2014; 58:75-85. [PMID: 23660844 DOI: 10.1007/s12026-013-8427-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Outer-membrane vesicles (OMVs) have inherent adjuvant properties, and many vaccines use OMV as vaccine components. Utilizing the adjuvant properties of OMV could lead to the formulation of vaccines that are less expensive and potentially more immunogenic than covalently conjugated polysaccharide vaccines. We evaluated the adjuvant effect in Balb/c mice of combinations of OMV from Neisseria meningitidis serogroup A and W135 as compared to that of the non-covalently conjugated capsular polysaccharide A. Both antigens were adsorbed onto aluminum hydroxide. The mice were given a booster dose of plain polysaccharide A to stimulate an immunologic memory response. Subclasses determination and cytokine assays demonstrated the capacity of OMV to induce a IgG2a/IgG2b isotype profile and IFN-γ production, suggesting the induction of a Th1 pattern immune response. Lymphoproliferative responses to OMVs were high, with affinity maturation of antibodies observed. Bactericidal titers after the booster dose were also observed. Memory B cells and long-term memory T cells were also detected. The results of this study indicate that combined meningococcal serogroup A and W135 OMV can activate cell-mediated immunity and induce a long-term memory response.
Collapse
|
24
|
Salvador A, Hernández RM, Pedraz JL, Igartua M. Plasmodium falciparummalaria vaccines: current status, pitfalls and future directions. Expert Rev Vaccines 2014; 11:1071-86. [DOI: 10.1586/erv.12.87] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
25
|
Single low-dose un-adjuvanted HBsAg nanoparticle vaccine elicits robust, durable immunity. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2013; 9:923-34. [DOI: 10.1016/j.nano.2013.03.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Revised: 03/18/2013] [Accepted: 03/19/2013] [Indexed: 11/18/2022]
|
26
|
Malaria vaccine adjuvants: latest update and challenges in preclinical and clinical research. BIOMED RESEARCH INTERNATIONAL 2013; 2013:282913. [PMID: 23710439 PMCID: PMC3655447 DOI: 10.1155/2013/282913] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 03/21/2013] [Indexed: 12/11/2022]
Abstract
There is no malaria vaccine currently available, and the most advanced candidate has recently reported a modest 30% efficacy against clinical malaria. Although many efforts have been dedicated to achieve this goal, the research was mainly directed to identify antigenic targets. Nevertheless, the latest progresses on understanding how immune system works and the data recovered from vaccination studies have conferred to the vaccine formulation its deserved relevance. Additionally to the antigen nature, the manner in which it is presented (delivery adjuvants) as well as the immunostimulatory effect of the formulation components (immunostimulants) modulates the immune response elicited. Protective immunity against malaria requires the induction of humoral, antibody-dependent cellular inhibition (ADCI) and effector and memory cell responses. This review summarizes the status of adjuvants that have been or are being employed in the malaria vaccine development, focusing on the pharmaceutical and immunological aspects, as well as on their immunization outcomings at clinical and preclinical stages.
Collapse
|
27
|
Santos DM, Carneiro MW, de Moura TR, Soto M, Luz NF, Prates DB, Irache JM, Brodskyn C, Barral A, Barral-Netto M, Espuelas S, Borges VM, de Oliveira CI. PLGA nanoparticles loaded with KMP-11 stimulate innate immunity and induce the killing of Leishmania. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2013; 9:985-95. [PMID: 23603355 DOI: 10.1016/j.nano.2013.04.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 04/07/2013] [Accepted: 04/08/2013] [Indexed: 10/26/2022]
Abstract
UNLABELLED We recently demonstrated that immunization with polyester poly(lactide-co-glycolide acid) (PLGA) nanoparticles loaded with the 11-kDa Leishmania vaccine candidate kinetoplastid membrane protein 11 (KMP-11) significantly reduced parasite load in vivo. Presently, we explored the ability of the recombinant PLGA nanoparticles to stimulate innate responses in macrophages and the outcome of infection with Leishmania braziliensis in vitro. Incubation of macrophages with KMP-11-loaded PLGA nanoparticles significantly decreased parasite load. In parallel, we observed the augmented production of nitric oxide, superoxide, TNF-α and IL-6. An increased release of CCL2/MCP-1 and CXCL1/KC was also observed, resulting in macrophage and neutrophil recruitment in vitro. Lastly, the incubation of macrophages with KMP-11-loaded PLGA nanoparticles triggered the activation of caspase-1 and the secretion of IL-1β and IL-18, suggesting inflammasome participation. Inhibition of caspase-1 significantly increased the parasite load. We conclude that KMP-11-loaded PLGA nanoparticles promote the killing of intracellular Leishmania parasites through the induction of potent innate responses. FROM THE CLINICAL EDITOR In this novel study, KMP-11-loaded PLGA nanoparticles are demonstrated to promote the killing of intracellular Leishmania parasites through enhanced innate immune responses by multiple mechanisms. Future clinical applications would have a major effect on our efforts to address parasitic infections.
Collapse
Affiliation(s)
- Diego M Santos
- Centro de Pesquisas Gonçalo Moniz, FIOCRUZ, Salvador, BA, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Dehghan S, Kheiri MT, Tabatabaiean M, Darzi S, Tafaghodi M. Dry-powder form of chitosan nanospheres containing influenza virus and adjuvants for nasal immunization. Arch Pharm Res 2013; 36:981-92. [DOI: 10.1007/s12272-013-0043-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Accepted: 02/04/2013] [Indexed: 12/12/2022]
|
29
|
Nawwab Al-Deen F, Ma C, Xiang SD, Selomulya C, Plebanski M, Coppel RL. On the efficacy of malaria DNA vaccination with magnetic gene vectors. J Control Release 2013; 168:10-7. [PMID: 23500060 DOI: 10.1016/j.jconrel.2013.02.030] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Revised: 02/04/2013] [Accepted: 02/21/2013] [Indexed: 01/01/2023]
Abstract
We investigated the efficacy and types of immune responses from plasmid malaria DNA vaccine encoding VR1020-PyMSP119 condensed on the surface of polyethyleneimine (PEI)-coated SPIONs. In vivo mouse studies were done firstly to determine the optimum magnetic vector composition, and then to observe immune responses elicited when magnetic vectors were introduced via different administration routes. Higher serum antibody titers against PyMSP119 were observed with intraperitoneal and intramuscular injections than subcutaneous and intradermal injections. Robust IgG2a and IgG1 responses were observed for intraperitoneal administration, which could be due to the physiology of peritoneum as a major reservoir of macrophages and dendritic cells. Heterologous DNA prime followed by single protein boost vaccination regime also enhanced IgG2a, IgG1, and IgG2b responses, indicating the induction of appropriate memory immunity that can be elicited by protein on recall. These outcomes support the possibility to design superparamagnetic nanoparticle-based DNA vaccines to optimally evoke desired antibody responses, useful for a variety of diseases including malaria.
Collapse
Affiliation(s)
- Fatin Nawwab Al-Deen
- Department of Chemical Engineering, Monash University, Clayton VIC 3800, Australia
| | | | | | | | | | | |
Collapse
|
30
|
Polymeric nanogels as vaccine delivery systems. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2013; 9:159-73. [DOI: 10.1016/j.nano.2012.06.001] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Revised: 04/11/2012] [Accepted: 06/18/2012] [Indexed: 01/22/2023]
|
31
|
Tougan T, Aoshi T, Coban C, Katakai Y, Kai C, Yasutomi Y, Ishii KJ, Horii T. TLR9 adjuvants enhance immunogenicity and protective efficacy of the SE36/AHG malaria vaccine in nonhuman primate models. Hum Vaccin Immunother 2013; 9:283-90. [PMID: 23291928 DOI: 10.4161/hv.22950] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The SE36 antigen, derived from serine repeat antigen 5 (SERA5) of Plasmodium falciparum, is a promising blood stage malaria vaccine candidate. Ongoing clinical trials suggest the efficacy of the SE36 vaccine could be increased by the incorporation of more effective adjuvants into the vaccine formulation. In this study, we assessed the safety, immunogenicity and protective efficacy of SE36/AHG formulated with TLR9 ligand adjuvants K3 CpG oligodeoxyribonucleotides (CpG ODNs) (K3 ODN), D3 ODN or synthetic hemozoin, in two non-human primate models. SE36/AHG with or without each adjuvant was administrated to cynomolgus monkeys. A combination of TLR9 ligand adjuvant with SE36/AHG induced higher humoral and cellular immune response compared with SE36/AHG alone. Administration of a crude extract of P. falciparum parasite resulted in the induction of more SE36-specific IgG antibodies in monkeys vaccinated with a combination of SE36/AHG and adjuvant, as opposed to vaccination with SE36/AHG alone. The most effective TLR9 ligand, K3 ODN, was chosen for further vaccine trials in squirrel monkeys, in combination with SE36/AHG. All monkeys immunized with the combined SE36/AHG and K3 ODN formulation effectively suppressed parasitemia and symptoms of malaria following challenge infections. Furthermore, no serious adverse events were observed. Our results show that the novel vaccine formulation of K3 ODN with SE36/AHG demonstrates safety, potent immunogenicity and efficacy in nonhuman primates, and this vaccine formulation may form the basis of a more effective malaria vaccine.
Collapse
Affiliation(s)
- Takahiro Tougan
- Department of Molecular Protozoology; Research Institute for Microbial Diseases; Osaka University at Suita; Osaka, Japan
| | | | | | | | | | | | | | | |
Collapse
|
32
|
|
33
|
Naahidi S, Jafari M, Edalat F, Raymond K, Khademhosseini A, Chen P. Biocompatibility of engineered nanoparticles for drug delivery. J Control Release 2012; 166:182-94. [PMID: 23262199 DOI: 10.1016/j.jconrel.2012.12.013] [Citation(s) in RCA: 451] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Revised: 12/06/2012] [Accepted: 12/10/2012] [Indexed: 02/07/2023]
Abstract
The rapid advancement of nanotechnology has raised the possibility of using engineered nanoparticles that interact within biological environments for treatment of diseases. Nanoparticles interacting with cells and the extracellular environment can trigger a sequence of biological effects. These effects largely depend on the dynamic physicochemical characteristics of nanoparticles, which determine the biocompatibility and efficacy of the intended outcomes. Understanding the mechanisms behind these different outcomes will allow prediction of the relationship between nanostructures and their interactions with the biological milieu. At present, almost no standard biocompatibility evaluation criteria have been established, in particular for nanoparticles used in drug delivery systems. Therefore, an appropriate safety guideline of nanoparticles on human health with assessable endpoints is needed. In this review, we discuss the data existing in the literature regarding biocompatibility of nanoparticles for drug delivery applications. We also review the various types of nanoparticles used in drug delivery systems while addressing new challenges and research directions. Presenting the aforementioned information will aid in getting one step closer to formulating compatibility criteria for biological systems under exposure to different nanoparticles.
Collapse
Affiliation(s)
- Sheva Naahidi
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | | | | | | | | | | |
Collapse
|
34
|
Barhate G, Gautam M, Gairola S, Jadhav S, Pokharkar V. Quillaja saponaria extract as mucosal adjuvant with chitosan functionalized gold nanoparticles for mucosal vaccine delivery: stability and immunoefficiency studies. Int J Pharm 2012; 441:636-42. [PMID: 23117021 DOI: 10.1016/j.ijpharm.2012.10.033] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Revised: 10/20/2012] [Accepted: 10/23/2012] [Indexed: 10/27/2022]
Abstract
Carrier mediated delivery of vaccines along with adjuvants can possibly address the issue related to oral vaccines like inadequate immune potentiation. In this study, chitosan functionalized gold nanoparticles (CsAuNPs) were used as a carrier for the model antigen tetanus toxoid (TT) along with immunostimulant Quillaja saponaria extract (QS). Physicochemical properties (size, zeta potential, pH value) of formulation were investigated as stability indicating parameters. The synthesized CsAuNPs were spherical in shape, around 40 nm in size, positively charged (around +35 mV) and had TT and QS payload of 65% and 0.01%, respectively. Formulation parameters did not alter the secondary structure of TT, as determined by FTIR, fluorescence and CD spectroscopy. Antigen specificity, determined by an ELISA, was also not compromised. The CsAuNPs conferred protection to TT against gastric hydrolysis as studied in vitro. TT-QS-CsAuNPs induced up to 28-fold immune responses compared to control formulations (TT, TT-QS) after oral administration of formulations in BALB/c mice. The immune responses were quantified by measuring the TT-specific IgG and IgA titers using ELISA. Findings herein demonstrate that co-delivery of TT and QS with functionalized CsAuNPs promotes better systemic and local immune responses and hence can be considered as a sound approach for oral vaccine delivery.
Collapse
Affiliation(s)
- Ganesh Barhate
- Bharati Vidyapeeth University, Poona College of Pharmacy, Department of Pharmaceutics, Erandwane, Pune 411038, India
| | | | | | | | | |
Collapse
|
35
|
Richie TL. Malaria vaccines for travelers. Travel Med Infect Dis 2012; 2:193-210. [PMID: 17291981 DOI: 10.1016/j.tmaid.2004.07.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2004] [Accepted: 07/07/2004] [Indexed: 11/21/2022]
Affiliation(s)
- Thomas L Richie
- Naval Medical Research Center Malaria Program, 503 Robert Grant Avenue, Silver Spring, MD 20910-7500, USA
| |
Collapse
|
36
|
Chablani L, Tawde SA, Akalkotkar A, D'Souza C, Selvaraj P, D'Souza MJ. Formulation and evaluation of a particulate oral breast cancer vaccine. J Pharm Sci 2012; 101:3661-71. [DOI: 10.1002/jps.23275] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Revised: 07/02/2012] [Accepted: 07/06/2012] [Indexed: 12/28/2022]
|
37
|
Tyagi RK, Garg NK, Sahu T. Vaccination Strategies against Malaria: novel carrier(s) more than a tour de force. J Control Release 2012; 162:242-254. [PMID: 22564369 DOI: 10.1016/j.jconrel.2012.04.037] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 04/20/2012] [Accepted: 04/23/2012] [Indexed: 02/07/2023]
Abstract
The introduction of vaccine technology has facilitated an unprecedented multi-antigen approach to develop an effective vaccine against complex systemic inflammatory pathogens such as Plasmodium spp. that cause severe malaria. The capacity of multi subunit DNA vaccine encoding different stage Plasmodium antigens to induce CD8(+) cytotoxic T lymphocytes and interferon-γ responses in mice, monkeys and humans has been observed. Moreover, genetic vaccination may be capable of eliciting both cell mediated and humoral immune responses. The cytotoxic T cell responses are categorically needed against intracellular hepatic stage and humoral response with antibodies targeted against antigens from all stages of malaria parasite life cycle. Therefore, the key to success for any DNA based vaccine is to design a vector able to serve as a safe and efficient delivery system. This has encouraged the development of non-viral DNA-mediated gene transfer techniques such as liposome, virosomes, microsphere and nanoparticles. Efficient and relatively safe DNA transfection using lipoplexes makes them an appealing alternative to be explored for gene delivery. Also, liposome-entrapped DNA has been shown to enhance the potency of DNA vaccines, possibly by facilitating uptake of the plasmid by antigen-presenting cells (APC). Another recent technology using cationic lipids has been deployed and has generated substantial interest in this approach to gene transfer. In this review we discussed various aspects that could be decisive in the formulation of efficient and stable carrier system(s) for the development of malaria vaccine.
Collapse
Affiliation(s)
- Rajeev K Tyagi
- Global Health Infectious Disease Research Program, Department of Global Health, College of Public Health, University of South Florida, 3720 Spectrum Blvd, Tampa, FL 33612-9415, USA.
| | | | | |
Collapse
|
38
|
References. Parasitology 2012. [DOI: 10.1002/9781119968986.refs] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
39
|
Santos DM, Carneiro MW, de Moura TR, Fukutani K, Clarencio J, Soto M, Espuelas S, Brodskyn C, Barral A, Barral-Netto M, de Oliveira CI. Towards development of novel immunization strategies against leishmaniasis using PLGA nanoparticles loaded with kinetoplastid membrane protein-11. Int J Nanomedicine 2012; 7:2115-27. [PMID: 22619548 PMCID: PMC3356203 DOI: 10.2147/ijn.s30093] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Vaccine development has been a priority in the fight against leishmaniases, which are vector-borne diseases caused by Leishmania protozoa. Among the different immunization strategies employed to date is inoculation of plasmid DNA coding for parasite antigens, which has a demonstrated ability to induce humoral and cellular immune responses. In this sense, inoculation of plasmid DNA encoding Leishmania kinetoplasmid membrane protein-11 (KMP-11) was able to confer protection against visceral leishmaniasis. However, recently the use of antigen delivery systems such as poly(lactic-co-glycolic acid) (PLGA) nanoparticles has also proven effective for eliciting protective immune responses. METHODS In the present work, we tested two immunization strategies with the goal of obtaining protection, in terms of lesion development and parasite load, against cutaneous leishmaniasis caused by L. braziliensis. One strategy involved immunization with plasmid DNA encoding L. infantum chagasi KMP-11. Alternatively, mice were primed with PLGA nanoparticles loaded with the recombinant plasmid DNA and boosted using PLGA nanoparticles loaded with recombinant KMP-11. RESULTS Both immunization strategies elicited detectable cellular immune responses with the presence of both proinflammatory and anti-inflammatory cytokines; mice receiving the recombinant PLGA nanoparticle formulations also demonstrated anti-KMP-11 IgG1 and IgG2a. Mice were then challenged with L. braziliensis, in the presence of sand fly saliva. Lesion development was not inhibited following either immunization strategy. However, immunization with PLGA nanoparticles resulted in a more prominent reduction in parasite load at the infection site when compared with immunization using plasmid DNA alone. This effect was associated with a local increase in interferon-gamma and in tumor necrosis factor-alpha. Both immunization strategies also resulted in a lower parasite load in the draining lymph nodes, albeit not significantly. CONCLUSION Our results encourage the pursuit of immunization strategies employing nanobased delivery systems for vaccine development against cutaneous leishmaniasis caused by L. braziliensis infection.
Collapse
Affiliation(s)
- Diego M Santos
- Centro de Pesquisas Gonçalo Moniz, FIOCRUZ, Salvador, BA, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Soybean agglutinin coated PLA particles entrapping candidate vaccines induces enhanced primary and sustained secondary antibody response from single point immunization. Eur J Pharm Sci 2012; 45:282-95. [DOI: 10.1016/j.ejps.2011.11.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Revised: 10/31/2011] [Accepted: 11/28/2011] [Indexed: 11/22/2022]
|
41
|
Puras G, Salvador A, Igartua M, Hernández R, Pedraz J. Encapsulation of Aβ1–15 in PLGA microparticles enhances serum antibody response in mice immunized by subcutaneous and intranasal routes. Eur J Pharm Sci 2011; 44:200-6. [DOI: 10.1016/j.ejps.2011.07.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Revised: 06/08/2011] [Accepted: 07/20/2011] [Indexed: 11/25/2022]
|
42
|
Enhancing immunogenicity to PLGA microparticulate systems by incorporation of alginate and RGD-modified alginate. Eur J Pharm Sci 2011; 44:32-40. [DOI: 10.1016/j.ejps.2011.05.015] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Revised: 04/25/2011] [Accepted: 05/29/2011] [Indexed: 12/24/2022]
|
43
|
An overview on the field of micro- and nanotechnologies for synthetic Peptide-based vaccines. JOURNAL OF DRUG DELIVERY 2011; 2011:181646. [PMID: 21773041 PMCID: PMC3134826 DOI: 10.1155/2011/181646] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Accepted: 04/05/2011] [Indexed: 11/17/2022]
Abstract
The development of synthetic peptide-based vaccines has many advantages in comparison with vaccines based on live attenuated organisms, inactivated or killed organism, or toxins. Peptide-based vaccines cannot revert to a virulent form, allow a better conservation, and are produced more easily and safely. However, they generate a weaker immune response than other vaccines, and the inclusion of adjuvants and/or the use of vaccine delivery systems is almost always needed. Among vaccine delivery systems, micro- and nanoparticulated ones are attractive, because their particulate nature can increase cross-presentation of the peptide. In addition, they can be passively or actively targeted to antigen presenting cells. Furthermore, particulate adjuvants are able to directly activate innate immune system in vivo. Here, we summarize micro- and nanoparticulated vaccine delivery systems used in the field of synthetic peptide-based vaccines as well as strategies to increase their immunogenicity.
Collapse
|
44
|
Nicolete R, dos Santos DF, Faccioli LH. The uptake of PLGA micro or nanoparticles by macrophages provokes distinct in vitro inflammatory response. Int Immunopharmacol 2011; 11:1557-63. [PMID: 21621649 DOI: 10.1016/j.intimp.2011.05.014] [Citation(s) in RCA: 164] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Revised: 05/05/2011] [Accepted: 05/13/2011] [Indexed: 10/18/2022]
Abstract
Biodegradable micro/nanoparticles generated from PLGA have recently attracted attention due to their clinically proven biocompatibility, especially for immunization purposes. These polymeric particulate delivery systems are able to present antigens and activate both humoral and cellular responses. Many studies have discussed the ideal size of these particles in contributing to the generation of the different types of immune response. However, these studies do not demonstrate the effect of micro or nanoparticles, without any encapsulated bioactive, on phagocytic cells after the uptake process. In this context, the aim of this study was to analyze the in vitro inflammatory behavior of J774 murine macrophages after particles' uptake, since nano/microparticles per se can differently activate phagocytic cells, using or not appropriate receptors, inducing distinct inflammatory responses. An o/w emulsion solvent extraction-evaporation method was chosen to prepare the particles. We determined their diameters, zeta potential and morphology. Fluorescent particles' uptake by J774 murine "macrophage-like" cells was also analyzed. To evaluate the in vitro inflammatory profile of these cells after micro or nanoparticles' uptake, we conducted NF-κB translocation assay by confocal microscopy and also determined the pro-inflammatory cytokines production provoked by the particles.
Collapse
Affiliation(s)
- Roberto Nicolete
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, 14040-903, Ribeirão Preto, São Paulo, Brazil.
| | | | | |
Collapse
|
45
|
McNeela EA, Lavelle EC. Recent Advances in Microparticle and Nanoparticle Delivery Vehicles for Mucosal Vaccination. Curr Top Microbiol Immunol 2011; 354:75-99. [DOI: 10.1007/82_2011_140] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
46
|
Bhat AA, Seth RK, Kumar S, Ali R, Mohan T, Biswas S, Rao DN. Induction of cell-mediated immune responses to peptide antigens of P. vivax in microparticles using intranasal immunization. Immunol Invest 2010; 39:483-99. [PMID: 20450288 DOI: 10.3109/08820131003674826] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
T-cells play a critical role in resistance to malaria, not only because they function as helper cells for an antibody response, but also because they serve as effector cells. Such cellular immunity is directly implicated in protection from sporozoites as well as from blood stage parasites. The aim of this study was to induce cell mediated immune responses to peptide antigens of Plasmodium vivax co-encapsulated with CpG oligodeoxynucleotide (ODN) in microparticles. In the present study, we have investigated the immunomodulatory effects of two CpG adjuvants, CpG 1826 and CpG 2006 to the five peptide antigens of Plasmodium vivax derived from circumsporozoite protein, merozoite surface protein-1, apical membrane antigen-1 and gametocyte surface antigen (Pvs24) in microparticle delivery. The T-cell proliferation response study of the cells collected from spleen, lamina propria and peyer's patches showed significantly high (p<0.001) stimulation index when primed with peptide antigens in microparticles co-encapsulating CpG ODN adjuvant as compared to peptide alone primed mice. The cytokine measurement profile of IFN-gamma, TNF-alpha, IL-2, IL-4 and IL-10 in culture supernatants of cells primed with peptide antigens in microparticles co-encapsulating CpG ODN showed higher levels of IFN- gamma followed by TNF-alpha and IL-2, with relatively low levels of IL-4 and IL-10.
Collapse
Affiliation(s)
- Ajaz A Bhat
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi 110029, India
| | | | | | | | | | | | | |
Collapse
|
47
|
Mata E, Igartua M, Hernández RM, Rosas JE, Patarroyo ME, Pedraz JL. Comparison of the adjuvanticity of two different delivery systems on the induction of humoral and cellular responses to synthetic peptides. Drug Deliv 2010; 17:490-9. [PMID: 20500129 DOI: 10.3109/10717544.2010.483254] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
48
|
Ragupathi G, Damani P, Deng K, Adams MM, Hang J, George C, Livingston PO, Gin DY. Preclinical evaluation of the synthetic adjuvant SQS-21 and its constituent isomeric saponins. Vaccine 2010; 28:4260-7. [PMID: 20450868 DOI: 10.1016/j.vaccine.2010.04.034] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2009] [Revised: 04/10/2010] [Accepted: 04/15/2010] [Indexed: 11/19/2022]
Abstract
The saponin fraction QS-21 from Quillaja saponaria has been demonstrated to be a potent immunological adjuvant when mixed with keyhole limpet hemocyanin conjugate vaccines, as well as with other classes of subunit antigen vaccines. QS-21 adjuvant is composed of two isomers that include the apiose and xylose forms in a ratio of 65:35, respectively. The chemical syntheses of these two isomers in pure form have recently been disclosed. Herein we describe detailed in vivo immunological evaluations of these synthetic QS-21 isomeric constituents, employing the GD3-KLH melanoma antigen. With this vaccine construct, high antibody titers against GD3 ganglioside and KLH were elicited when GD3-KLH was co-administered with adjuvant, either as the individual separate synthetic QS-21 isomers (SQS-21-Api or SQS-21-Xyl), or as its reconstituted 65:35 isomeric mixture (SQS-21). These antibody titer levels were comparable to that elicited by vaccinations employing naturally derived QS-21 (PQS-21). Moreover, toxicities of the synthetic saponin adjuvants were also found to be comparable to that of naturally derived PQS-21. These findings demonstrate unequivocally that the adjuvant activity of QS-21 resides in these two principal isomeric forms, and not in trace contaminants within the natural extracts. This lays the foundation for future exploration of structure-function correlations to enable the discovery of novel saponins with increased potency, enhanced stability, and attenuated toxicity.
Collapse
Affiliation(s)
- Govind Ragupathi
- Laboratory of Tumor Vaccinology, Melanoma and Sarcoma Service, Department of Medicine, 1275 York Avenue, New York, NY 10065, USA.
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Apicella C, Rey Roldan E, Chiappetta DA, Molinari C, Bregni C, Dokmetjian J, Gentile T. Asymmetric IgG Antibodies Induced by Different Immunotherapies in a Murine Model of Allergy. Immunol Invest 2009; 38:572-88. [DOI: 10.1080/08820130903005961] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
50
|
Bhat AA, Seth RK, Babu J, Biswas S, Rao DN. Induction of mucosal and systemic humoral immune responses in murine system by intranasal immunization with peptide antigens of P. vivax and CpG oligodeoxynucleotide (ODN) in microparticle delivery. Int Immunopharmacol 2009; 9:1197-208. [PMID: 19595793 DOI: 10.1016/j.intimp.2009.06.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2009] [Revised: 06/19/2009] [Accepted: 06/25/2009] [Indexed: 01/19/2023]
Abstract
In the present study we have investigated the immunomodulatory effects of two adjuvants, CpG 1826 (two copies of CpG motifs) and CpG 2006 (three copies of CpG motifs) to the five peptide antigens of Plasmodium vivax derived from circumsporozoite protein (CSP), merozoite surface protein-1 (MSP1#1, MSP1#23), apical membrane antigen-1 (AMA-1) and gametocyte surface antigen (Pvs24) in alum and microparticle formulations, using intramuscular and intranasal routes of immunization. Alum formulation without CpG ODN generated low serum IgG and IgA antibody titers and the predominant IgG isotypes were IgG1 but with the addition of CpG ODN (1826 or 2006), the antibody titers were increased by four fold with the predominance of IgG2a/2b isotypes. The SIgA peak titers in lung and intestinal washes were significantly increased with the intranasal mode of administration. Specific activity measurement was done to calculate for the accurate amounts of total serum IgG, IgA and SIgA in washes and showed direct correlation between antibody titer and its concentration. High titer anti-Pvs24 antibodies have significant inhibitory effects on parasite development in the mosquito midgut when tested in membrane feeding assays. The immunofluorescence results show that the peptide specific antisera reacted with the air-dried parasite antigens isolated from P. vivax patients. The present study demonstrates that intranasal route of immunization appears to be an alternate mode of inducing protective immunity in P. vivax malaria.
Collapse
Affiliation(s)
- Ajaz A Bhat
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | | | | | | | | |
Collapse
|