1
|
Gori A, Bolognesi M, Colombo G, Gourlay LJ. Structural Vaccinology for Melioidosis Vaccine Design and Immunodiagnostics. CURRENT TROPICAL MEDICINE REPORTS 2017. [DOI: 10.1007/s40475-017-0117-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
2
|
McCluskie MJ, Evans DM, Zhang N, Benoit M, McElhiney SP, Unnithan M, DeMarco SC, Clay B, Huber C, Deora A, Thorn JM, Stead DR, Merson JR, Davis HL. The effect of preexisting anti-carrier immunity on subsequent responses to CRM197 or Qb-VLP conjugate vaccines. Immunopharmacol Immunotoxicol 2016; 38:184-96. [PMID: 27121368 DOI: 10.3109/08923973.2016.1165246] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
CONTEXT Certain antigens, such as haptens (small molecules), short peptides, and carbohydrates (e.g. bacterial polysaccharides) are non- or poorly immunogenic unless conjugated to a carrier molecule that provides a structural scaffold for antigen presentation as well as T cell help required for B-cell activation and maturation. However, the carriers themselves are immunogenic and resulting carrier-specific immune responses may impact the immunogenicity of other conjugate vaccines using the same carrier that are administered subsequently. OBJECTIVE Herein, using two different carriers (cross-reactive material 197, CRM and Qb-VLP), we examined in mice the impact that preexisting anti-carrier antibodies (Ab) had on subsequent immune responses to conjugates with either the same or a different carrier. METHOD For this purpose, we used two nicotine hapten conjugates (NIC7-CRM or NIC-Qb), two IgE peptide conjugates (Y-CRM or Y-Qb), and a pneumococcal polysaccharide conjugate (Prevnar 13(®)). RESULTS Prior exposure to CRM or Qb-VLP significantly reduced subsequent responses to the conjugated antigen having the homologous carrier, with the exception of Prevnar 13® where anti-polysaccharide responses were similar to those in animals without preexisting anti-carrier Ab. CONCLUSION Collectively, the data suggest that the relative sizes of the antigen and carrier, as well as the conjugation density for a given conjugate impact the extent of anti-carrier suppression. All animals developed anti-carrier responses with repeat vaccination and the differences in Ab titer between groups with and without preexisting anti-carrier responses became less apparent; however, anti-carrier effects were more durable for Ab function.
Collapse
Affiliation(s)
- Michael J McCluskie
- a Pfizer Vaccine Immunotherapeutics , Ottawa Laboratories , Ottawa , ON , Canada
| | - Dana M Evans
- a Pfizer Vaccine Immunotherapeutics , Ottawa Laboratories , Ottawa , ON , Canada
| | - Ningli Zhang
- a Pfizer Vaccine Immunotherapeutics , Ottawa Laboratories , Ottawa , ON , Canada
| | - Michelle Benoit
- a Pfizer Vaccine Immunotherapeutics , Ottawa Laboratories , Ottawa , ON , Canada
| | - Susan P McElhiney
- b Pfizer Vaccine Research and Early Development , Pearl River , NY , USA
| | - Manu Unnithan
- b Pfizer Vaccine Research and Early Development , Pearl River , NY , USA
| | - Suzanne C DeMarco
- c Pfizer Biotherapeutics Pharmaceutical Sciences , St. Louis , MO , USA
| | - Bryan Clay
- d Pfizer Vaccine Immunotherapeutics , La Jolla , CA , USA
| | | | - Aparna Deora
- c Pfizer Biotherapeutics Pharmaceutical Sciences , St. Louis , MO , USA
| | - Jennifer M Thorn
- c Pfizer Biotherapeutics Pharmaceutical Sciences , St. Louis , MO , USA
| | - David R Stead
- d Pfizer Vaccine Immunotherapeutics , La Jolla , CA , USA
| | - James R Merson
- d Pfizer Vaccine Immunotherapeutics , La Jolla , CA , USA
| | - Heather L Davis
- a Pfizer Vaccine Immunotherapeutics , Ottawa Laboratories , Ottawa , ON , Canada
| |
Collapse
|
3
|
Schellenberger MT, Grova N, Farinelle S, Willième S, Revets D, Muller CP. Immunogenicity of a promiscuous T cell epitope peptide based conjugate vaccine against benzo[a]pyrene: redirecting antibodies to the hapten. PLoS One 2012; 7:e38329. [PMID: 22666501 PMCID: PMC3364213 DOI: 10.1371/journal.pone.0038329] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Accepted: 05/04/2012] [Indexed: 12/19/2022] Open
Abstract
The prototype polycyclic aromatic hydrocarbon benzo[a]pyrene (B[a]P) is an environmental pollutant and food contaminant of epidemiological importance. To protect against adverse effects of this ubiquitous carcinogen, we developed an immunoprophylactic strategy based on a B[a]P-protein conjugate vaccine to induce B[a]P specific antibodies (Grova et al., Vaccine. 2009;27:4142-51). Here, we investigated in mice the efficacy of B[a]P-peptide conjugates based on promiscuous T cell epitopes (TCE) into further improve this approach. We showed that B[a]P-peptide conjugates induced very different levels of hapten-specific antibodies with variable functional efficacy, depending on the carrier. In some cases peptide carriers induced a more efficient antibody response against B[a]P than tetanus toxoid as a protein carrier, with the capacity to sequester more B[a]P in the blood. Reducing the carrier size to a single TCE can dramatically shift the antibody bias from the carrier to the B[a]P. Conjugates based on the TCE FIGITEL induced the best anti-hapten response and no antibodies against the carrier peptide. Some peptide conjugates increased the selectivity of the antibodies for the activated metabolite 7,8-diol-B[a]P and B[a]P by one or two orders of magnitude. The antibody efficacy was also demonstrated in their ability to sequester B[a]P in the blood and modulate its faecal excretion (15-56%). We further showed that pre-existing immunity to the carrier from which the TCE was derived did not reduce the immunogenicity of the peptide conjugate. In conclusion, we showed that a vaccination against B[a]P using promiscuous TCEs of tetanus toxin as carriers is feasible even in case of a pre-existing immunity to the toxoid and that some TCE epitopes dramatically redirect the antibody response to the hapten. Further studies to demonstrate a long-term protection of an immunoprophylactic immunisation against B[a]P are warranted.
Collapse
Affiliation(s)
- Mario T Schellenberger
- Centre de Recherche Public-Santé/National Public Health Laboratory, Institute of Immunology, Luxembourg, Grand Duchy of Luxembourg
| | | | | | | | | | | |
Collapse
|
4
|
Ovsyannikova IG, Poland GA. Vaccinomics: current findings, challenges and novel approaches for vaccine development. AAPS J 2011; 13:438-44. [PMID: 21671143 PMCID: PMC3160164 DOI: 10.1208/s12248-011-9281-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Accepted: 05/05/2011] [Indexed: 02/06/2023] Open
Abstract
Recent years have witnessed a growing interest in a field of vaccinology that we have named vaccinomics. The overall idea behind vaccinomics is to identify genetic and other mechanisms and pathways that determine immune responses, and thereby provide new candidate vaccine approaches. Considerable data show that host genetic polymorphisms act as important determinants of innate and adaptive immunity to vaccines. This review highlights examples of the role of immunogenetics and immunogenomics in understanding immune responses to vaccination, which are highly variable across the population. The influence of HLA genes, non-HLA, and innate genes in inter-individual variations in immune responses to viral vaccines are examined using population-based gene/SNP association studies. The ability to understand relationships between immune response gene variants and vaccine-specific immunity may assist in designing new vaccines. At the same time, application of state-of-the-art next-generation sequencing technology (and bioinformatics) is desired to provide new genetic information and its relationship to the immune response.
Collapse
Affiliation(s)
- Inna G. Ovsyannikova
- />Vaccine Research Group, Mayo Clinic, Rochester, Minnesota USA
- />Program in Translational Immunovirology and Biodefense, Rochester, Minnesota USA
- />Department of Medicine, Mayo Clinic, Rochester, Minnesota USA
| | - Gregory A. Poland
- />Vaccine Research Group, Mayo Clinic, Rochester, Minnesota USA
- />Program in Translational Immunovirology and Biodefense, Rochester, Minnesota USA
- />Department of Medicine, Mayo Clinic, Rochester, Minnesota USA
- />Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota USA
- />Mayo Clinic, 611C Guggenheim Building, 200 First Street, SW, Rochester, Minnesota 55905 USA
| |
Collapse
|
5
|
Poland GA, Ovsyannikova IG, Jacobson RM, Smith DI. Heterogeneity in vaccine immune response: the role of immunogenetics and the emerging field of vaccinomics. Clin Pharmacol Ther 2007; 82:653-64. [PMID: 17971814 DOI: 10.1038/sj.clpt.6100415] [Citation(s) in RCA: 157] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Recent advances in the fields of immunology, genetics, molecular biology, bioinformatics, and the Human Genome Project have allowed for the emergence of the field of vaccinomics. Vaccinomics encompasses the fields of immunogenetics and immunogenomics as applied to understanding the mechanisms of heterogeneity in immune responses to vaccines. In this study, we examine the role of HLA genes, cytokine genes, and cell surface receptor genes as examples of how genetic polymorphism leads to individual and population variations in immune responses to vaccines. In turn, this data, in concert with new high-throughput technology, inform the immune-response network theory to vaccine response. Such information can be used in the directed and rational development of new vaccines, and this new golden age of vaccinology has been termed "predictive vaccinology", which will predict the likelihood of a vaccine response or an adverse response to a vaccine, the number of doses needed and even whether a vaccine is likely to be of benefit (i.e., is the individual at risk for the outcome for which the vaccine is being administered?).
Collapse
Affiliation(s)
- G A Poland
- Mayo Vaccine Research Group and the Program in Translational Immunovirology and Biodefense, Mayo Clinic College of Medicine, Rochester, Minnesota, USA.
| | | | | | | |
Collapse
|
6
|
Cho HJ, Shin HJ, Han IK, Jung WW, Kim YB, Sul D, Oh YK. Induction of mucosal and systemic immune responses following oral immunization of mice with Lactococcus lactis expressing human papillomavirus type 16 L1. Vaccine 2007; 25:8049-57. [PMID: 17936447 DOI: 10.1016/j.vaccine.2007.09.024] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2007] [Revised: 08/04/2007] [Accepted: 09/06/2007] [Indexed: 12/21/2022]
Abstract
Human papillomavirus type 16 L1 (HPV16 L1) has shown considerable promise as a parenteral vaccine for prevention of cervical cancers. Here, we report the possibility of oral vaccination for HPV16 L1 using Lactococcus lactis (L. lactis) as a live vector. L. lactis MG1363 was transformed with two types of HPV16 L1-encoding plasmids for intracellular expression or secretion. L. lactis transformed with HPV16 L1-encoding plasmids retained biochemical lactic acid production capability. The mucosal and systemic immune responses were affected by the cellular location of expressed HPV16 L1 proteins in L. lactis. Serum IgG responses were induced after oral immunizations of L. lactis secreting HPV16 L1. Vaginal IgA immune responses were observed following oral immunization with L. lactis expressing HPV16 L1 in an intracellular form, but not with L. lactis secreting HPV16 L1. Furthermore, induction of HPV16 L1-specific mucosal immune responses was affected by immunization frequency. Six immunizations over 5 weeks were required to induce vaginal immune responses. The levels of HPV16 L1-specific vaginal IgA were maintained until 12 weeks after the first vaccination. These results suggest the feasibility of L. lactis as an oral vaccine vehicle of HPV16 L1 and demonstrate the importance of cellular loci of expressed antigen for induction of vaginal and systemic immune responses.
Collapse
Affiliation(s)
- Hee-Jeong Cho
- School of Life Sciences and Biotechnology, Korea University, Anam-dong, Seongbuk-gu, Seoul 136-713, South Korea
| | | | | | | | | | | | | |
Collapse
|
7
|
Schulze K, Olive C, Ebensen T, Guzmán CA. Intranasal vaccination with SfbI or M protein-derived peptides conjugated to diphtheria toxoid confers protective immunity against a lethal challenge with Streptococcus pyogenes. Vaccine 2006; 24:6088-95. [PMID: 16828529 DOI: 10.1016/j.vaccine.2006.05.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2006] [Revised: 05/16/2006] [Accepted: 05/16/2006] [Indexed: 10/24/2022]
Abstract
We investigated whether intranasal immunisation with diphtheria toxoid (DT) conjugated polypeptides encompassing T and B cell epitopes of the SfbI protein (FNBR) or a conformational-constrained B cell epitope of the M1 protein (J8) was able to confer protection against lethal mucosal challenge with a heterologous Streptococcus pyogenes strain. To this end, BALB/c mice were immunised with the conjugates. Strong antigen-specific antibody responses were observed in both serum and mucosal secretions. Vaccinated mice were challenged 10 days after the last boost by the intranasal route. Animals receiving FNBR-DT co-administered with either the cholera toxin B subunit (CTB) or the TLR 2/6 agonist MALP-2 were efficiently protected against the virulent S. pyogenes strain (90% and 70% survival, respectively), whereas those immunised with J8-DT plus either CTB or MALP-2 showed intermediate levels of protection (60% and 40%, respectively). The obtained results indicate that in our experimental animal model peptide-based conjugate vaccines represent a valid alternative to protect against streptococcal infection.
Collapse
Affiliation(s)
- Kai Schulze
- Department of Vaccinology, GBF-German Research Centre for Biotechnology, Mascheroder Weg 1, D-38124 Braunschweig, Germany.
| | | | | | | |
Collapse
|
8
|
Wu L, Kong WP, Nabel GJ. Enhanced breadth of CD4 T-cell immunity by DNA prime and adenovirus boost immunization to human immunodeficiency virus Env and Gag immunogens. J Virol 2005; 79:8024-31. [PMID: 15956548 PMCID: PMC1143709 DOI: 10.1128/jvi.79.13.8024-8031.2005] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A variety of gene-based vaccination approaches have been used to enhance the immune response to viral pathogens. Among them, the ability to perform heterologous immunization by priming with DNA and boosting with replication-defective adenoviral (ADV) vectors encoding foreign antigens has proven particularly effective in eliciting enhanced cellular and humoral immunity compared to either agent alone. Because adenoviral vector immunization alone can elicit substantial cellular and humoral immune responses in a shorter period of time, we asked whether the immune response induced by the prime-boost immunization was different from adenoviral vaccines with respect to the potency and breadth of T-cell recognition. While DNA/ADV immunization stimulated the CD8 response, it was directed to the same epitopes in Gag and Env immunogens of human immunodeficiency virus as DNA or ADV alone. In contrast, the CD4 response to these immunogens diversified after DNA/ADV immunization compared to each vector alone. These findings suggest that the diversity of the CD4 immune response is increased by DNA/ADV prime-boost vaccination and that these components work synergistically to enhance T-cell epitope recognition.
Collapse
Affiliation(s)
- Lan Wu
- Vaccine Research Center, NIAID, National Institutes of Health, Room 4502, Bldg. 40, MSC-3005, 40 Convent Drive, Bethesda, MD 20892-3005, USA
| | | | | |
Collapse
|
9
|
Halassy B, Mateljak S, Bouche FB, Pütz MM, Muller CP, Frkanec R, Habjanec L, Tomasić J. Immunogenicity of peptides of measles virus origin and influence of adjuvants. Vaccine 2005; 24:185-94. [PMID: 16122851 DOI: 10.1016/j.vaccine.2005.07.057] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2005] [Accepted: 07/25/2005] [Indexed: 11/25/2022]
Abstract
Epitope-based peptide antigens have been under development for protection against measles virus. The immunogenicity of five peptides composed of the same B cell epitope (BCE) (H236-250 of the measles virus hemagglutinin), and different T cell epitopes of measles virus fusion protein (F421-435, F256-270, F288-302) and nucleoprotein (NP335-345) was studied in mice (subcutaneous immunisation). The adjuvant effects of peptidoglycan monomer (PGM), Montanide ISA 720 and 206 were also investigated. Results showed basic differences in peptide immunogenicity that were consistent with already described structural differences. PGM elevated peptide-specific IgG when applied together with four of five tested peptides. A strong synergistic effect was observed after co-immunisation of mice with a mixture containing all five chimeric peptides in small and equal amounts. Results revealed for the first time that immunisation with several peptides having the common BCE generated significantly higher levels of both anti-peptide and anti-BCE IgG in comparison to those obtained after immunisation with a single peptide in much higher quantity. Further improvement of immune response was obtained after incorporation of such a peptide mixture into oil-based adjuvants.
Collapse
Affiliation(s)
- Beata Halassy
- Institute of Immunology, Research and Development Department, Rockefellerova 10, HR-10000 Zagreb, Croatia.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Law M, Pütz MM, Smith GL. An investigation of the therapeutic value of vaccinia-immune IgG in a mouse pneumonia model. J Gen Virol 2005; 86:991-1000. [PMID: 15784892 DOI: 10.1099/vir.0.80660-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Vaccinia-immune globulin (VIG) was used to treat severe complications of smallpox vaccination, but its use was controversial because it resolved disease in only some clinical cases. VIG is a pool of hyperimmune sera collected from individuals with a high neutralizing titre against the intracellular mature form (IMV) of vaccinia virus (VACV), but activity against the extracellular enveloped form (EEV) was often not considered. Here, the efficacy of anti-VACV antibodies (Abs) in protecting mice from intranasal infection with the VACV strain Western Reserve (WR) was evaluated. Mice were immunized passively with hyperimmune rabbit Abs (IgG) generated against inactivated IMV or produced following infection by VACV; subsequently, animals were challenged with VACV WR. The results demonstrated that: (i) good protection requires Abs to EEV in addition to IMV; (ii) Abs were effective when given before or up to 4 days after infection; and (iii) protection of mice from VACV WR correlated with a reduction of virus replication in lungs, but not in brain. In agreement with studies conducted before smallpox was eradicated and recent studies using EEV antigens for immunization, this study reiterates the importance of anti-EEV Abs in protecting against orthopoxvirus infection and illustrates the need to evaluate both anti-IMV and anti-EEV neutralizing Abs in VIG.
Collapse
Affiliation(s)
- Mansun Law
- Department of Virology, Faculty of Medicine, Imperial College London, St Mary's Campus, Norfolk Place, London W2 1PG, UK
| | - Mike M Pütz
- Department of Virology, Faculty of Medicine, Imperial College London, St Mary's Campus, Norfolk Place, London W2 1PG, UK
| | - Geoffrey L Smith
- Department of Virology, Faculty of Medicine, Imperial College London, St Mary's Campus, Norfolk Place, London W2 1PG, UK
| |
Collapse
|