1
|
Lupini C, Gentile N, Graziosi G, Quaglia G, Lizzi G, Pedrazzoli S, Tucciarone CM, Franzo G, Legnardi M, Baston R, Cecchinato M, Menotti L, Brandimarti R, Avitabile E, Catelli E. Avian metapneumovirus subtype B in a Northern shoveler ( Spatula clypeata) wintering in Italy: implications for the domestic-wild bird interface? Avian Pathol 2025; 54:351-358. [PMID: 39749584 DOI: 10.1080/03079457.2024.2441175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/11/2024] [Accepted: 12/03/2024] [Indexed: 01/04/2025]
Abstract
Avian metapneumovirus (aMPV) is an important pathogen in poultry, primarily affecting chickens and turkeys, and it causes acute respiratory disease or reproductive disorders. Considering previous molecular or serological evidence of aMPV in different wild bird species, the role of non-domestic hosts in the virus epidemiology has been called into question. A molecular survey was therefore performed on wild aquatic bird species sampled during the Italian Avian Influenza Surveillance plan from 2021-2023 in the Bologna province. A total of 250 oropharyngeal swabs were collected and screened for all circulating aMPV subtypes through multiplex real-time RT-PCR. An aMPV-B strain, named aMPV/B/Italy/Northern_shoveler/80/21, was detected in an adult Northern shoveler (Spatula clypeata) wintering in Italy in 2021, and it was characterized by partial amplification and sequencing of the attachment glycoprotein gene. Phylogenetic analysis showed close relationships between this strain and those circulating in Italian poultry from 2014-2019. Given the high aMPV-B burden on the Italian poultry sector and the similarity of aMPV/B/Italy/Northern_shoveler/80/21 strain to those circulating in chickens and turkeys, potential virus spillover from domestic to wild birds could have occurred at the livestock-wildlife interface. Considering that aMPV-B is well adapted to gallinaceans, this represents one of the rare molecular detections of this subtype in waterfowl species. Expanding aMPV monitoring and conducting further biological studies on wild hosts are essential for a better understanding of their role in maintaining aMPV circulation.RESEARCH HIGHLIGHTSWild birds sampled in Italy tested for aMPV detection and characterization.aMPV-B found for the first time in a wintering Northern shoveler.Close phylogenetic relationship with aMPV-B strains circulating in Italian poultry.
Collapse
Affiliation(s)
- Caterina Lupini
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, BO, Italy
| | - Nicla Gentile
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, BO, Italy
| | - Giulia Graziosi
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, BO, Italy
| | - Giulia Quaglia
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, BO, Italy
| | - Gabriele Lizzi
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, BO, Italy
| | - Sara Pedrazzoli
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, BO, Italy
| | - Claudia M Tucciarone
- Department of Animal Medicine, Production and Health, University of Padua, Legnaro, PD, Italy
| | - Giovanni Franzo
- Department of Animal Medicine, Production and Health, University of Padua, Legnaro, PD, Italy
| | - Matteo Legnardi
- Department of Animal Medicine, Production and Health, University of Padua, Legnaro, PD, Italy
| | - Riccardo Baston
- Department of Animal Medicine, Production and Health, University of Padua, Legnaro, PD, Italy
| | - Mattia Cecchinato
- Department of Animal Medicine, Production and Health, University of Padua, Legnaro, PD, Italy
| | - Laura Menotti
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Renato Brandimarti
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Elisa Avitabile
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Elena Catelli
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, BO, Italy
| |
Collapse
|
2
|
Mo J, Mo J. Infectious Laryngotracheitis Virus and Avian Metapneumovirus: A Comprehensive Review. Pathogens 2025; 14:55. [PMID: 39861016 PMCID: PMC11769561 DOI: 10.3390/pathogens14010055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/08/2025] [Accepted: 01/08/2025] [Indexed: 01/27/2025] Open
Abstract
Respiratory avian viral diseases significantly impact the world poultry sector, leading to notable economic losses. The highly contagious DNA virus, infectious laryngotracheitis virus, and the RNA virus, avian metapneumovirus, are well known for their prevalent effects on avian respiratory systems. The infectious laryngotracheitis virus (ILTV), stemming from the Herpesviridae family, manifests as an upper respiratory disease within birds. Characterized by acute respiratory signs, it sporadically emerges worldwide, presenting a persistent threat to poultry health. Avian metapneumovirus (aMPV), belonging to the Pneumoviridae family is identified as the cause behind severe rhinotracheitis in turkeys and swollen head syndrome in chickens. This disease can lead to heightened mortality rates, especially when coupled with secondary bacterial infections. This review offers a comprehensive analysis and understanding of the general properties of these specific avian respiratory viruses, control measures, and their global status.
Collapse
Affiliation(s)
- Jongsuk Mo
- Exotic and Emerging Avian Disease Research Unit, U.S. National Poultry Research Center, Agricultural Research Service, United States Department of Agriculture (USDA), Athens, GA 30605, USA;
| | - Jongseo Mo
- College of Pharmacy, Yeungnam University, Gyeongsan-si 38541, Gyeongsangbuk-do, Republic of Korea
| |
Collapse
|
3
|
Tucciarone CM, Legnardi M, Cecchinato M, Franzo G, Poletto F, Miccio L, Busquet M, Carceller E, Dardi M, Solé M, Pasotto D. Research note: Indirect evidence of avian Metapneumovirus circulation in broilers in Italy. Poult Sci 2024; 103:104182. [PMID: 39154613 PMCID: PMC11471103 DOI: 10.1016/j.psj.2024.104182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/17/2024] [Accepted: 08/01/2024] [Indexed: 08/20/2024] Open
Abstract
The clinical relevance of avian metapneumovirus (aMPV) is growing in the poultry sector, especially in broiler farming, where no vaccination is administered in Italy. Given the naïve status of the birds, a serological survey was conducted in a densely populated area of Northern Italy, to evaluate aMPV circulation. Seven farms were selected and sampled in summer/fall, then sampling was repeated in the following season (winter/spring) to assess a possible seasonal effect. In each farm, fifteen birds were blood sampled towards the end of the cycle and sera were analyzed with an ELISA test. Clinical signs were reported in 5 out of 7 farms, although all farms were positive at both sampling points, except for one, which was negative at the first sampling. The seroprevalence within farm ranged from 26.6% to 100%, and antibody titres appear to increase with age. No seasonality effect was evidenced, whereas a farm effect was more distinct. aMPV circulation appears wide in Northern Italian farms, with different clinical outcomes that could be modulated by intrinsic characteristics of the farms. In absence of vaccination, serological monitoring can be a useful tool for viral entrance monitoring, although sampling timing should be evaluated in order to spot seroconversion after late infections.
Collapse
Affiliation(s)
- Claudia M Tucciarone
- Department of Animal Medicine, Production and Health (MAPS), University of Padua, Legnaro 35020, Padua, Italy
| | - Matteo Legnardi
- Department of Animal Medicine, Production and Health (MAPS), University of Padua, Legnaro 35020, Padua, Italy.
| | - Mattia Cecchinato
- Department of Animal Medicine, Production and Health (MAPS), University of Padua, Legnaro 35020, Padua, Italy; Department of Comparative Biomedicine and Food Science (BCA), University of Padua, Legnaro 35020, Padua, Italy
| | - Giovanni Franzo
- Department of Animal Medicine, Production and Health (MAPS), University of Padua, Legnaro 35020, Padua, Italy
| | - Francesca Poletto
- Department of Animal Medicine, Production and Health (MAPS), University of Padua, Legnaro 35020, Padua, Italy
| | - Luciano Miccio
- Technical and Marketing Department, HIPRA Italia S.r.l., Brescia 25030, Italy
| | - Marta Busquet
- Technical and Marketing Department, HIPRA S.A., Amer 17170, Spain
| | | | - Martina Dardi
- Technical and Marketing Department, HIPRA S.A., Amer 17170, Spain
| | - Marina Solé
- Technical and Marketing Department, HIPRA S.A., Amer 17170, Spain
| | - Daniela Pasotto
- Department of Animal Medicine, Production and Health (MAPS), University of Padua, Legnaro 35020, Padua, Italy
| |
Collapse
|
4
|
A. Abd El-Ghany W. Avian Metapneumovirus Infection in Poultry Flocks: A Review of Current Knowledge. PERTANIKA JOURNAL OF TROPICAL AGRICULTURAL SCIENCE 2023; 46:971-1002. [DOI: 10.47836/pjtas.46.3.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Avian metapneumovirus (aMPV) is one of the respiratory viruses that cause global economic losses in poultry production systems. Therefore, it was important to design a comprehensive review article that gives more information about aMPV infection regarding the distribution, susceptibility, transmission, pathogenesis, pathology, diagnosis, and prevention. The aMPV infection is characterized by respiratory and reproductive disorders in turkeys and chickens. The disease condition is turkey rhinotracheitis in turkeys and swollen head syndrome in chickens. Infection with aMPV is associated with worldwide economic losses, especially in complications with other infections or poor environmental conditions. The genus Metapneumovirus is a single-stranded enveloped RNA virus and contains A, B, C, and D subtypes. Meat and egg-type birds are susceptible to aMPV infection. The virus can transmit through aerosol, direct contact, mechanical, and vertical routes. The disease condition is characterized by respiratory manifestations, a decrease in egg production, growth retardation, increasing morbidity rate, and sometimes nervous signs and a high mortality rate, particularly in concurrent infections. Definitive diagnosis of aMPV is based mainly on isolation and identification methods, detection of the viral DNA, as well as seroconversion. Prevention of aMPV infection depends on adopting biosecurity measures and vaccination using inactivated, live attenuated, and recombinant or DNA vaccines.
Collapse
|
5
|
Lupini C, Tucciarone CM, Mescolini G, Quaglia G, Graziosi G, Turblin V, Brown P, Cecchinato M, Legnardi M, Delquigny T, Lemiere S, Perreul G, Catelli E. Longitudinal Survey on aMPV Circulation in French Broiler Flocks following Different Vaccination Strategies. Animals (Basel) 2022; 13:ani13010057. [PMID: 36611670 PMCID: PMC9817960 DOI: 10.3390/ani13010057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/04/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
In recent years, the impact of respiratory disease resulting from Avian Metapneumovirus (aMPV) infection has been generally rising in the broiler industry in Europe. In this context, in order to investigate aMPV contribution to the clinical picture and the potential benefits of diversified vaccination strategies compared to nonvaccination policies, a longitudinal monitoring was performed, also evaluating Infectious Bronchitis Virus (IBV) presence. Broiler flocks located in Western France, where aMPV has already proven to be a health and productivity issue, were screened by RT-PCR on rhino-pharyngeal swabs, and the viruses were genetically characterized by sequence analysis. For a more comprehensive picture of aMPV molecular epidemiology and evolution in France, aMPV subtype B strains detected from 1985 to 1998 were sequenced and included in the analysis. The survey confirmed the detection of aMPV subtype B in commercial broiler flocks in France, together with a certain heterogeneity demonstrated by the circulation of more recent and historical French field strains. No IBV field strains were detected. The implementation and evaluation of different management choices and vaccine strategies suggests once again that immunization does not prevent infection but contributes greatly to the containment of the clinical manifestations.
Collapse
Affiliation(s)
- Caterina Lupini
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Ozzano dell’Emilia, BO, Italy
- Correspondence:
| | - Claudia Maria Tucciarone
- Department of Animal Medicine, Production and Health, University of Padua, 35020 Legnaro, PD, Italy
| | - Giulia Mescolini
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Ozzano dell’Emilia, BO, Italy
| | - Giulia Quaglia
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Ozzano dell’Emilia, BO, Italy
| | - Giulia Graziosi
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Ozzano dell’Emilia, BO, Italy
| | - Vincent Turblin
- MC VET Conseil—RESEAU CRISTAL, 72300 Sablé sur Sarthe, France
| | - Paul Brown
- Laboratoire de Ploufragan-Plouzané-Niort, Agence Nationale de Sécurité Sanitairede l’alimentation, de l’environnement et du Travail, B.P., 53-22440 Ploufragan, France
| | - Mattia Cecchinato
- Department of Animal Medicine, Production and Health, University of Padua, 35020 Legnaro, PD, Italy
| | - Matteo Legnardi
- Department of Animal Medicine, Production and Health, University of Padua, 35020 Legnaro, PD, Italy
| | | | | | | | - Elena Catelli
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Ozzano dell’Emilia, BO, Italy
| |
Collapse
|
6
|
Kariithi HM, Christy N, Decanini EL, Lemiere S, Volkening JD, Afonso CL, Suarez DL. Detection and Genome Sequence Analysis of Avian Metapneumovirus Subtype A Viruses Circulating in Commercial Chicken Flocks in Mexico. Vet Sci 2022; 9:vetsci9100579. [PMID: 36288192 PMCID: PMC9612082 DOI: 10.3390/vetsci9100579] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/14/2022] [Accepted: 10/17/2022] [Indexed: 11/11/2022] Open
Abstract
Avian metapneumoviruses (aMPV subtypes A-D) are respiratory and reproductive pathogens of poultry. Since aMPV-A was initially reported in Mexico in 2014, there have been no additional reports of its detection in the country. Using nontargeted next-generation sequencing (NGS) of FTA card-spotted respiratory samples from commercial chickens in Mexico, seven full genome sequences of aMPV-A (lengths of 13,288-13,381 nucleotides) were de novo assembled. Additionally, complete coding sequences of genes N (n = 2), P and M (n = 7 each), F and L (n = 1 each), M2 (n = 6), SH (n = 5) and G (n = 2) were reference-based assembled from another seven samples. The Mexican isolates phylogenetically group with, but in a distinct clade separate from, other aMPV-A strains. The genome and G-gene nt sequences of the Mexican aMPVs are closest to strain UK/8544/06 (97.22-97.47% and 95.07-95.83%, respectively). Various amino acid variations distinguish the Mexican isolates from each other, and other aMPV-A strains, most of which are in the G (n = 38), F (n = 12), and L (n = 19) proteins. Using our sequence data and publicly available aMPV-A data, we revised a previously published rRT-PCR test, which resulted in different cycling and amplification conditions for aMPV-A to make it more compatible with other commonly used rRT-PCR diagnostic cycling conditions. This is the first comprehensive sequence analysis of aMPVs in Mexico and demonstrates the value of nontargeted NGS to identify pathogens where targeted virus surveillance is likely not routinely performed.
Collapse
Affiliation(s)
- Henry M. Kariithi
- Exotic and Emerging Avian Viral Diseases Research Unit, Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, USDA-ARS, Athens, GA 30605, USA
- Biotechnology Research Institute, Kenya Agricultural and Livestock Research Organization, Kaptagat Rd, Nairobi P.O. Box 57811-00200, Kenya
- Correspondence: (H.M.K.); (D.L.S.); Tel.: +1-(706)-546-3479 (D.L.S.)
| | - Nancy Christy
- Boehringer Ingelheim Animal Health, Guadalajara 44940, Mexico
| | - Eduardo L. Decanini
- Boehringer Ingelheim Animal Health IMETA, Dubai P.O. Box 507066, United Arab Emirates
| | | | | | | | - David L. Suarez
- Exotic and Emerging Avian Viral Diseases Research Unit, Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, USDA-ARS, Athens, GA 30605, USA
- Correspondence: (H.M.K.); (D.L.S.); Tel.: +1-(706)-546-3479 (D.L.S.)
| |
Collapse
|
7
|
Graziosi G, Mescolini G, Silveira F, Lupini C, Tucciarone CM, Franzo G, Cecchinato M, Legnardi M, Gobbo F, Terregino C, Catelli E. First detection of Avian metapneumovirus subtype C Eurasian Lineage in a Eurasian wigeon ( Mareca penelope) wintering in Northeastern Italy: an additional hint on the role of migrating birds in the viral epidemiology. Avian Pathol 2022; 51:283-290. [PMID: 35261311 DOI: 10.1080/03079457.2022.2051429] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Avian metapneumovirus (aMPV) economically affects the global poultry industry causing respiratory and reproductive disorders. Considering the paucity of data on the aMPV occurrence in European free-ranging avifauna, a molecular survey was conducted on wild birds of 23 species belonging to the orders Anseriformes, Charadriiformes or Passeriformes, captured alive and sampled in Northeast Italy as part of the national Avian influenza virus (AIV) surveillance activities. A total of 492 oropharyngeal swabs, collected from 2007 to 2010, all AIV negative, were screened from aMPV by subtype-specific qRT-PCR. An aMPV-C strain, named aMPV/C/IT/Wigeon/758/07, was found in a wintering young Eurasian wigeon (Mareca penelope) sampled in November 2007. The matrix, fusion, and attachment glycoprotein genes of the detected strain were subsequently amplified by specific independent RT-PCRs, then sequenced, and compared in a phylogenetic framework with known aMPV homologous sequences retrieved from GenBank. Close genetic relationships were found between the aMPV/C/IT/Wigeon/758/07 strain and subtype C Eurasian lineage strains isolated in the late 1990s in French domestic ducks, suggesting epidemiological links. Eurasian wigeons are indeed medium to long-range migrant dabbling ducks that move along the Black Sea/Mediterranean flyway, our finding might therefore be related to migratory bridges between countries. To our knowledge, this is the first molecular evidence of the occurrence of a subtype C in Italy and backdates the aMPV-C circulation to 2007. Moreover, results suggest the susceptibility of Eurasian wigeons to aMPV. Broader investigations are needed to assess the role of wild ducks and the significance of the wildfowl/poultry interface in the aMPV-C epidemiology.
Collapse
Affiliation(s)
- Giulia Graziosi
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Ozzano dell'Emilia, BO, Italy
| | - Giulia Mescolini
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Ozzano dell'Emilia, BO, Italy
| | - Flavio Silveira
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Ozzano dell'Emilia, BO, Italy
| | - Caterina Lupini
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Ozzano dell'Emilia, BO, Italy
| | - Claudia M Tucciarone
- Department of Animal Medicine, Production and Health, University of Padua, 35020 Legnaro, PD, Italy
| | - Giovanni Franzo
- Department of Animal Medicine, Production and Health, University of Padua, 35020 Legnaro, PD, Italy
| | - Mattia Cecchinato
- Department of Animal Medicine, Production and Health, University of Padua, 35020 Legnaro, PD, Italy
| | - Matteo Legnardi
- Department of Animal Medicine, Production and Health, University of Padua, 35020 Legnaro, PD, Italy
| | - Federica Gobbo
- Comparative Biomedical Sciences Division, Istituto Zooprofilattico Sperimentale delle Venezie, 35020 Legnaro, PD, Italy
| | - Calogero Terregino
- Comparative Biomedical Sciences Division, Istituto Zooprofilattico Sperimentale delle Venezie, 35020 Legnaro, PD, Italy
| | - Elena Catelli
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Ozzano dell'Emilia, BO, Italy
| |
Collapse
|
8
|
Kaboudi K, Lachheb J. Avian metapneumovirus infection in turkeys: a review on turkey rhinotracheitis. J APPL POULTRY RES 2021. [DOI: 10.1016/j.japr.2021.100211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
9
|
Melk MM, El-Hawary SS, Melek FR, Saleh DO, Ali OM, El Raey MA, Selim NM. Nano Zinc Oxide Green-Synthesized from Plumbago auriculata Lam. Alcoholic Extract. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10112447. [PMID: 34834809 PMCID: PMC8624397 DOI: 10.3390/plants10112447] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/06/2021] [Accepted: 11/09/2021] [Indexed: 05/06/2023]
Abstract
Zinc oxide nanoparticles (ZnO NPs) were synthesized by using an alcoholic extract of the flowering aerial parts of Plumbago auriculata Lam. Dynamic Light Scattering (DLS) revealed that the average size of synthesized ZnO NPs was 10.58 ± 3.350 nm and the zeta potential was -19.6 mV. Transmission electron microscopy (TEM) revealed that the particle size was in the range from 5.08 to 6.56 nm. X-ray diffraction (XRD) analysis verified the existence of pure hexagonal shaped crystals of ZnO nanoparticles with an average size of 35.34 nm in the sample, which is similar to the particle size analysis acquired by scanning electron microscopy (SEM) (38.29 ± 6.88 nm). HPLC analysis of the phenolic ingredients present in the plant extract showed that gallic acid, chlorogenic acid, and catechin were found as major compounds at concentrations of 1720.26, 1600.42, and 840.20 µg/g, respectively. Furthermore, the inhibitory effects of ZnO NPs and the plant extract against avian metapneumovirus (aMPV) subtype B were also investigated. This assessment revealed that the uncalcinated form of Nano-ZnO mediated by P. auriculata Lam. extract possessed a significant antiviral activity with 50% cytotoxic concentration (CC50) and 50% inhibition concentration (IC50) of 52.48 ± 1.57 and 42.67 ± 4.08 µg/mL, respectively, while the inhibition percentage (IP) was 99% and the selectivity index (SI) was 1.23.
Collapse
Affiliation(s)
- Mina Michael Melk
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Giza 12613, Egypt; (M.M.M.); (S.S.E.-H.)
| | - Seham S. El-Hawary
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Giza 12613, Egypt; (M.M.M.); (S.S.E.-H.)
| | - Farouk Rasmy Melek
- Chemistry of Natural Compounds Department, National Research Centre, Giza 12622, Egypt;
| | - Dalia Osama Saleh
- Pharmacology Department, National Research Centre, Giza 12622, Egypt;
| | - Omar M. Ali
- Department of chemistry, Turabah University College, Turabah Branch, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
- Correspondence: (O.M.A.); (N.M.S.)
| | - Mohamed A. El Raey
- Department of Phytochemistry and Plant Systematics, Pharmaceutical Division, National Research Centre, 33 El Bohouth Street, P.O. Box 12622, Dokki, Cairo 12622, Egypt;
| | - Nabil Mohamed Selim
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Giza 12613, Egypt; (M.M.M.); (S.S.E.-H.)
- Correspondence: (O.M.A.); (N.M.S.)
| |
Collapse
|
10
|
Nguyen VG, Chung HC, Do HQ, Nguyen TT, Cao TBP, Truong HT, Mai TN, Le TT, Nguyen TH, Le TL, Huynh TML. Serological and Molecular Characterization of Avian Metapneumovirus in Chickens in Northern Vietnam. Vet Sci 2021; 8:vetsci8100206. [PMID: 34679036 PMCID: PMC8538526 DOI: 10.3390/vetsci8100206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/12/2021] [Accepted: 09/20/2021] [Indexed: 11/16/2022] Open
Abstract
Avian Metapneumovirus (aMPV) is a causative agent of respiratory disease complex in turkeys and chickens that has recently been detected in Vietnam. Due to its novelty, this study was conducted to elucidate the distribution of aMPV in several provinces in northern Vietnam. By the application of Enzyme-Linked Immunosorbent Assay (ELISA) and nested Reverse Transcription-Polymerase Chain Reaction (RT-PCR), this study demonstrated the circulation of aMPV in 12 out of 14 cities/provinces with positive rates of 37.6% and 17.2%, respectively. All nested RT-PCR positive samples were aMPV subgroup B. By pairing the detection results with age groups, it was observed that aMPV infections occurred in chickens of all ages. Additionally, by genetic characterization, aMPV strains were demonstrated to not be attenuated vaccine viruses and to belong to at least two genetic clades. Overall, the obtained results provided insights into the prevalence of aMPV and indicated a greater complexity of respiratory diseases in chickens in Vietnam.
Collapse
Affiliation(s)
- Van-Giap Nguyen
- Department of Veterinary Microbiology and Infectious Diseases, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi 100000, Vietnam; (V.-G.N.); (T.-B.-P.C.); (H.-T.T.); (T.-N.M.)
| | - Hee-Chun Chung
- Department of Veterinary Medicine Virology Lab., College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Korea; (H.-C.C.); (H.-Q.D.)
| | - Hai-Quynh Do
- Department of Veterinary Medicine Virology Lab., College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Korea; (H.-C.C.); (H.-Q.D.)
- Institute of Genome Research, Vietnam Academy of Science and Technology, Hanoi 100000, Vietnam
| | - Thanh-Trung Nguyen
- Department of Pharmacology, Toxicology, Internal Medicine and Diagnostics, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi 100000, Vietnam;
| | - Thi-Bich-Phuong Cao
- Department of Veterinary Microbiology and Infectious Diseases, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi 100000, Vietnam; (V.-G.N.); (T.-B.-P.C.); (H.-T.T.); (T.-N.M.)
| | - Ha-Thai Truong
- Department of Veterinary Microbiology and Infectious Diseases, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi 100000, Vietnam; (V.-G.N.); (T.-B.-P.C.); (H.-T.T.); (T.-N.M.)
| | - Thi-Ngan Mai
- Department of Veterinary Microbiology and Infectious Diseases, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi 100000, Vietnam; (V.-G.N.); (T.-B.-P.C.); (H.-T.T.); (T.-N.M.)
| | - Thi-Trinh Le
- Vietnam Green Vet Joint Stock Company, Hanoi 100000, Vietnam;
| | - Thi-Hoa Nguyen
- Key Laboratory for Veterinary Biotechnology, Vietnam National University of Agriculture, Hanoi 100000, Vietnam; (T.-H.N.); (T.-L.L.)
| | - Thi-Luyen Le
- Key Laboratory for Veterinary Biotechnology, Vietnam National University of Agriculture, Hanoi 100000, Vietnam; (T.-H.N.); (T.-L.L.)
| | - Thi-My-Le Huynh
- Department of Veterinary Microbiology and Infectious Diseases, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi 100000, Vietnam; (V.-G.N.); (T.-B.-P.C.); (H.-T.T.); (T.-N.M.)
- Correspondence: ; Tel.: +84-913-081-492
| |
Collapse
|
11
|
Techera C, Marandino A, Tomás G, Grecco S, Hernández M, Hernández D, Panzera Y, Pérez R. Origin, spreading and genetic variability of chicken anaemia virus. Avian Pathol 2021; 50:311-320. [PMID: 33928817 DOI: 10.1080/03079457.2021.1919289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Chicken anaemia virus (CAV) is a widespread pathogen that causes immunosuppression in chickens. The virus-induced immunosuppression often results in secondary infections and a sub-optimal response to vaccinations, leading to high mortality rates and significant economic losses in the poultry industry. The small circular ssDNA genome (2.3 kb) has three partially overlapping genes: vp1, vp2 and vp3. VP1 capsid protein is highly variable and contains the neutralizing epitopes. Here, we analysed CAV strains from Uruguay using the full-length vp1 gene and performed a global comparative analysis to provide new evidence about the origin, dispersion and genetic variability of the virus. The phylogenetic analysis classified CAV in three or four major clades. Two clades (II and III) grouped most of the strains circulating worldwide including the Uruguayan strains. The phylodynamic analyses indicated that CAV emerged in the early 1900s and diverged to originate clade II and III. This early period of viral emergence was characterised by local diversification promoted by the extremely high substitution rate inferred for the virus (3.8 × 10-4 substitutions/site/year). Later, the virus underwent a global spreading by intra- and inter-continental migrations that correlates with a significant rise in the effective population size. In South America, CAV was introduced in three different migratory events and spread across the continent. Our findings suggest that the current CAV distribution is the consequence of its continuous expansion capability that homogenizes the populations and prevents the detection of clear temporal and geographic patterns of evolution in most strains.RESEARCH HIGHLIGHTS Current strains of chicken anaemia virus emerged in Asia in the early 1900s.Chicken anaemia virus has a high substitution rate.The phylogenetic analysis classified chicken anaemia virus in four major clades.Evolution in South America was characterized by long migration and local spreading.
Collapse
Affiliation(s)
- Claudia Techera
- Sección Genética Evolutiva, Departamento de Biología Animal, Instituto de Biología, Facultad de Ciencias, Universidad de la República Montevideo, Uruguay
| | - Ana Marandino
- Sección Genética Evolutiva, Departamento de Biología Animal, Instituto de Biología, Facultad de Ciencias, Universidad de la República Montevideo, Uruguay
| | - Gonzalo Tomás
- Sección Genética Evolutiva, Departamento de Biología Animal, Instituto de Biología, Facultad de Ciencias, Universidad de la República Montevideo, Uruguay
| | - Sofía Grecco
- Sección Genética Evolutiva, Departamento de Biología Animal, Instituto de Biología, Facultad de Ciencias, Universidad de la República Montevideo, Uruguay
| | - Martín Hernández
- Sección Genética Evolutiva, Departamento de Biología Animal, Instituto de Biología, Facultad de Ciencias, Universidad de la República Montevideo, Uruguay
| | - Diego Hernández
- Sección Genética Evolutiva, Departamento de Biología Animal, Instituto de Biología, Facultad de Ciencias, Universidad de la República Montevideo, Uruguay
| | - Yanina Panzera
- Sección Genética Evolutiva, Departamento de Biología Animal, Instituto de Biología, Facultad de Ciencias, Universidad de la República Montevideo, Uruguay
| | - Ruben Pérez
- Sección Genética Evolutiva, Departamento de Biología Animal, Instituto de Biología, Facultad de Ciencias, Universidad de la República Montevideo, Uruguay
| |
Collapse
|
12
|
Mescolini G, Lupini C, Franzo G, Quaglia G, Legnardi M, Cecchinato M, Tucciarone CM, Blanco A, Turblin V, Biarnés M, Tatone F, Falchieri M, Catelli E. What is new on molecular characteristics of Avian metapneumovirus strains circulating in Europe? Transbound Emerg Dis 2020; 68:1314-1322. [PMID: 32794302 DOI: 10.1111/tbed.13788] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 08/10/2020] [Accepted: 08/10/2020] [Indexed: 12/25/2022]
Abstract
In the present study, one hundred and sixteen partial G gene sequences of Avian metapneumovirus (aMPV) subtype B, obtained during routine diagnostics in different European Countries in the last few years (2014-2019), were analysed by sequence and phylogenetic analyses in order to draw an updated picture of the molecular characteristics of circulating strains. Nucleotide sequences were compared with other sequences of European and non-European aMPV-Bs collected prior to that period or retrieved from GenBank. Phylogenetic relationships among the aMPV-B strains, reconstructed using the maximum likelihood method implemented in MEGA X, demonstrated that aMPV-B has evolved in Europe from its first appearance, frequently displaying a clear relation with the geographic area of detection. The 40% of aMPV-B viruses analysed were classified as vaccine-derived strains, being phylogenetically related, and showing high nucleotide identity with live commercial vaccine strains licensed in Europe. The remaining 60% were classified as field strains since they clustered separately and showed a low nucleotide identity with vaccines and vaccine-derived strains. The phylogenetic tree showed that the virus has continued to evolve from its first appearance in the '80s since more recently detected strains belonged to clades phylogenetically distant from the older strains. Unlike vaccine-derived strains, field strains tended to cluster according to their geographic origin and irrespective of the host species where the viruses had been detected. In conclusion, the molecular characterization of aMPV-B and the differentiation between vaccines and field strains through G gene sequence analysis can be a useful tool towards correct diagnosis and should be routinely applied in order to better address the control strategies.
Collapse
Affiliation(s)
- Giulia Mescolini
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia (BO), Italy
| | - Caterina Lupini
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia (BO), Italy
| | - Giovanni Franzo
- Department of Animal Medicine, Production and Health, University of Padua, Legnaro, Italy
| | - Giulia Quaglia
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia (BO), Italy
| | - Matteo Legnardi
- Department of Animal Medicine, Production and Health, University of Padua, Legnaro, Italy
| | - Mattia Cecchinato
- Department of Animal Medicine, Production and Health, University of Padua, Legnaro, Italy
| | - Claudia M Tucciarone
- Department of Animal Medicine, Production and Health, University of Padua, Legnaro, Italy
| | - Angela Blanco
- CESAC - Centre de Sanitat Avícola de Catalunya i Aragó, Reus, Spain
| | | | - Mar Biarnés
- CESAC - Centre de Sanitat Avícola de Catalunya i Aragó, Reus, Spain
| | | | | | - Elena Catelli
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia (BO), Italy
| |
Collapse
|
13
|
Franzo G, Legnardi M, Mescolini G, Tucciarone CM, Lupini C, Quaglia G, Catelli E, Cecchinato M. Avian Metapneumovirus subtype B around Europe: a phylodynamic reconstruction. Vet Res 2020; 51:88. [PMID: 32641149 PMCID: PMC7346485 DOI: 10.1186/s13567-020-00817-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 06/25/2020] [Indexed: 11/10/2022] Open
Abstract
Avian Metapneumovirus (aMPV) has been recognized as a respiratory pathogen of turkey and chickens for a long time. Recently, a crescent awareness of aMPV, especially subtype B, clinical and economic impact has risen among European researchers and veterinarians. Nevertheless, the knowledge of its epidemiology and evolution is still limited. In the present study, the broadest available collection of partial G gene sequences obtained from European aMPV-B strains was analyzed using different phylodynamic and biostatistical approaches to reconstruct the viral spreading over time and the role of different hosts on its evolution. After aMPV-B introduction, approximatively in 1985 in France, the infection spread was relatively quick, involving the Western and Mediterranean Europe until the end of the 1990s, and then spreading westwards at the beginning of the new millennium, in parallel with an increase of viral population size. In the following period, a wider mixing among aMPV-B strains detected in eastern and western countries could be observed. Most of the within-country genetic heterogeneity was ascribable to single or few introduction events, followed by local circulation. This, combined with the high evolutionary rate herein demonstrated, led to the establishment of genetically and phenotypically different clusters among countries, which could affect the efficacy of natural or vaccine-induced immunity and should be accounted for when planning control measure implementation. On the contrary, while a significant strain exchange was proven among turkey, guinea fowl and chicken, no evidence of differential selective pressures or specific amino-acid mutations was observed, suggesting that no host adaptation is occurring.
Collapse
Affiliation(s)
- Giovanni Franzo
- Department of Animal Medicine, Production and Health, University of Padua, Legnaro, PD, Italy.
| | - Matteo Legnardi
- Department of Animal Medicine, Production and Health, University of Padua, Legnaro, PD, Italy
| | - Giulia Mescolini
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'emilia, BO, Italy
| | | | - Caterina Lupini
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'emilia, BO, Italy
| | - Giulia Quaglia
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'emilia, BO, Italy
| | - Elena Catelli
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'emilia, BO, Italy
| | - Mattia Cecchinato
- Department of Animal Medicine, Production and Health, University of Padua, Legnaro, PD, Italy
| |
Collapse
|
14
|
Franzo G, Swart W, Boyer W, Pasotto D, Ramon G, Koutoulis K, Cecchinato M. No good vaccination quality without good control: the positive impact of a hatchery vaccination service program. Poult Sci 2020; 99:2976-2982. [PMID: 32475432 PMCID: PMC7597733 DOI: 10.1016/j.psj.2020.03.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 01/17/2020] [Accepted: 03/09/2020] [Indexed: 12/03/2022] Open
Abstract
Vaccination is currently one of the most relevant control strategies in poultry production to reduce infectious disease–induced economic losses and decrease antimicrobial use. Besides intrinsic vaccine efficacy, a proper administration is fundamental to achieve an adequate coverage and protection. Hatchery vaccination is becoming the standard approach for routine vaccination because of administration easiness, the possibility to standardize and optimize the overall process, and the lower impact on animal welfare compared with different types of on-farm vaccination. However, a continuous maintenance, refinement, and training of the personnel are the key to success. In the present work, the effect of longitudinal hatchery audits, performed using a standardized, expert-developed questionnaire was evaluated in 169 hatcheries, located in 11 European countries, over a period of more than 4 yr. A dedicated tablet-based application was implemented for data collection, storage, and analysis, and the obtained scores were used in the evaluation, reporting to the hatchery management and improvement of critical points. A positive significant association was demonstrated between the variation in global and process-specific hatchery scores and the number of performed audits. Similarly, when the longitudinal nature of the data (i.e., multiple visits) was accounted for using linear mixed models, including the hatchery and country as random factors, a significant trend in performance improvement was observed visit after visit, although with certain differences based on the specific score and country. The present study demonstrates the benefits of an objective evaluation of hatchery performances through a standardized questionnaire, followed by the discussion on the major required actions. The widespread application of this approach should lead to a significant improvement in vaccine administration performances, with direct consequences on infectious disease occurrence and animal production performances, and indirectly on therapeutic and control-related costs.
Collapse
Affiliation(s)
- Giovanni Franzo
- Department of Animal Medicine, Production and Health (MAPS), University of Padua, 35020 Legnaro (PD), Italy.
| | | | | | - Daniela Pasotto
- Department of Animal Medicine, Production and Health (MAPS), University of Padua, 35020 Legnaro (PD), Italy
| | - Gema Ramon
- Ceva Santé Animale, 33500 Libourne, France
| | - Kostas Koutoulis
- Department of Poultry Diseases, Faculty of Veterinary Medicine, University of Thessaly, Karditsa, Greece
| | - Mattia Cecchinato
- Department of Animal Medicine, Production and Health (MAPS), University of Padua, 35020 Legnaro (PD), Italy
| |
Collapse
|
15
|
Ball C, Forrester A, Herrmann A, Lemiere S, Ganapathy K. Comparative protective immunity provided by live vaccines of Newcastle disease virus or avian metapneumovirus when co-administered alongside classical and variant strains of infectious bronchitis virus in day-old broiler chicks. Vaccine 2019; 37:7566-7575. [PMID: 31607602 PMCID: PMC7127460 DOI: 10.1016/j.vaccine.2019.09.081] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 09/23/2019] [Accepted: 09/25/2019] [Indexed: 01/07/2023]
Abstract
This study reports on the simultaneous administration of live NDV or aMPV subtype B vaccines alongside two live IBV (Massachusetts-H120 and 793B-CR88) vaccines in day-old maternal-antibody positive commercial broiler chicks. In the first experiment, chicks were divided into four groups; one unvaccinated and three groups vaccinated with live NDV VG/GA-Avinew, live H120 + CR88, or VG/GA-Avinew + H120 + CR88. In the second experiment, live aMPV subtype B vaccine was used in place of NDV. Clinical signs were monitored daily and oropharyngeal swabs were taken at regular intervals for vaccine virus detection. Blood was collected at 21 dpv for serology. 10 chicks from each group were challenged with virulent strains of M41 or QX or aMPV subtype B. For IBV, after 5 days post challenge (dpc), tracheal ciliary protection was assessed. For aMPV, clinical scores were recorded up to 10 dpc. For NDV, haemagglutination inhibition (HI) antibody titres were assayed as an indicator of protective immunity. In both experiments, ciliary protection for IBV vaccinated groups was maintained above 90%. The protection against virulent aMPV challenge was not compromised when aMPV, H120 and CR88 were co-administered. NDV HI mean titres in single and combined NDV-vaccinated groups remained above the protective titre (>3 log2). Both experiments demonstrated that simultaneous administration of live NDV VG/GA-Avinew or aMPV subtype B alongside H120 and CR88 vaccines does not interfere with protection conferred against NDV, IBV or aMPV.
Collapse
Affiliation(s)
- Christopher Ball
- Institute of Infection and Global Health, University of Liverpool, Leahurst Campus, Neston, Cheshire CH64 7TE, UK
| | - Anne Forrester
- Institute of Infection and Global Health, University of Liverpool, Leahurst Campus, Neston, Cheshire CH64 7TE, UK
| | - Andreas Herrmann
- Boehringer Ingelheim, 69007 Lyon, 29 avenue Tony Garnier, France
| | - Stephane Lemiere
- Boehringer Ingelheim, 69007 Lyon, 29 avenue Tony Garnier, France
| | - Kannan Ganapathy
- Institute of Infection and Global Health, University of Liverpool, Leahurst Campus, Neston, Cheshire CH64 7TE, UK.
| |
Collapse
|
16
|
Laconi A, Catelli E, Cecchinato M, Naylor CJ. Two similar commercial live attenuated AMPV vaccines prepared by random passage of the identical field isolate, have unrelated sequences. Vaccine 2019; 37:2765-2767. [PMID: 31003913 DOI: 10.1016/j.vaccine.2019.04.036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 04/08/2019] [Accepted: 04/12/2019] [Indexed: 11/20/2022]
Abstract
Since late '80 s Avian metapneumovirus subtype A causes sufficient disease in Europe for commercial companies to have started developing live attenuated vaccines. Here, two of those vaccines were fully consensus sequenced alongside their progenitor field strain (#8544). Sequences comparison shows that the attenuation of field strain #8544 was associated with no common substitutions between the two derived vaccines. This finding suggests that the attenuation of field viruses via serial passage on cell cultures or tissues is the result of a random process, rather than a mechanism aiming to achieve a specific sequence. Furthermore, field vaccination strategies would greatly benefit by the unambiguous vaccine markers identified in this study, enabling a prompt and confident vaccines detection.
Collapse
Affiliation(s)
- Andrea Laconi
- Department of Infection Biology, University of Liverpool, Leahurst Campus, Neston, Cheshire CH64 7TE, United Kingdom.
| | - Elena Catelli
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra, 50, 40064 Ozzano dell'Emilia, BO, Italy
| | - Mattia Cecchinato
- Department of Animal Medicine, Production and Health, University of Padua, Viale dell'Università, 16, 35020 Legnaro, PD, Italy
| | - Clive J Naylor
- Department of Infection Biology, University of Liverpool, Leahurst Campus, Neston, Cheshire CH64 7TE, United Kingdom
| |
Collapse
|
17
|
Tucciarone CM, Franzo G, Lupini C, Alejo CT, Listorti V, Mescolini G, Brandão PE, Martini M, Catelli E, Cecchinato M. Avian Metapneumovirus circulation in Italian broiler farms. Poult Sci 2018; 97:503-509. [PMID: 29253264 DOI: 10.3382/ps/pex350] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 10/19/2017] [Indexed: 11/20/2022] Open
Abstract
With increasing frequency, avian Metapneumovirus (aMPV) is reported to induce respiratory signs in chickens. An adequate knowledge of current aMPV prevalence among Italian broilers is lacking, with little information available on its economical and health impact on the poultry industry. In order to collect preliminary data on the epidemiological context of aMPV in broiler flocks, a survey was performed in areas of Northern Italy with high poultry density from 2014 to 2016. Upper respiratory tract swabs were collected and processed by A and B subtype-specific multiplex real-time reverse transcription PCR (RT-PCR). Samples were also screened for infectious bronchitis virus (IBV) by generic RT-PCR and sequencing. Productive data and respiratory signs were detailed where possible. The high prevalence of aMPV was confirmed in broilers older than 26 d and also attested in IBV-negative farms. All aMPV detections belonged to subtype B. Italian strain genetic variability was evaluated by the partial attachment (G) gene sequencing of selected strains and compared with contemporary turkey strains and previously published aMPV references, revealing no host specificity and the progressive evolution of this virus in Italy.
Collapse
Affiliation(s)
- Claudia Maria Tucciarone
- Department of Animal Medicine, Production and Health, University of Padua, viale dell'Università 16, Legnaro 35020, PD, Italy
| | - Giovanni Franzo
- Department of Animal Medicine, Production and Health, University of Padua, viale dell'Università 16, Legnaro 35020, PD, Italy
| | - Caterina Lupini
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra 50, Ozzano dell'Emilia 40064, BO, Italy
| | - Carolina Torres Alejo
- Department of Preventive Veterinary Medicine and Animal Health, College of Veterinary Medicine, University of São Paulo, 05508-270, São Paulo, SP, Brazil
| | - Valeria Listorti
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra 50, Ozzano dell'Emilia 40064, BO, Italy
| | - Giulia Mescolini
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra 50, Ozzano dell'Emilia 40064, BO, Italy
| | - Paulo Eduardo Brandão
- Department of Preventive Veterinary Medicine and Animal Health, College of Veterinary Medicine, University of São Paulo, 05508-270, São Paulo, SP, Brazil
| | - Marco Martini
- Department of Animal Medicine, Production and Health, University of Padua, viale dell'Università 16, Legnaro 35020, PD, Italy
| | - Elena Catelli
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra 50, Ozzano dell'Emilia 40064, BO, Italy
| | - Mattia Cecchinato
- Department of Animal Medicine, Production and Health, University of Padua, viale dell'Università 16, Legnaro 35020, PD, Italy
| |
Collapse
|
18
|
Listorti V, Laconi A, Catelli E, Cecchinato M, Lupini C, Naylor CJ. Identification of IBV QX vaccine markers : Should vaccine acceptance by authorities require similar identifications for all live IBV vaccines? Vaccine 2017; 35:5531-5534. [PMID: 28917538 DOI: 10.1016/j.vaccine.2017.06.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 06/01/2017] [Accepted: 06/03/2017] [Indexed: 10/18/2022]
Abstract
IBV genotype QX causes sufficient disease in Europe for several commercial companies to have started developing live attenuated vaccines. Here, one of those vaccines (L1148) was fully consensus sequenced alongside its progenitor field strain (1148-A) to determine vaccine markers, thereby enabling detection on farms. Twenty-eight single nucleotide substitutions were associated with the 1148-A attenuation, of which any combination can identify vaccine L1148 in the field. Sixteen substitutions resulted in amino acid coding changes of which half were in spike. One change in the 1b gene altered the normally highly conserved final 5 nucleotides of the transcription regulatory sequence of the S gene, common to all IBV QX genes. No mutations can currently be associated with the attenuation process. Field vaccination strategies would greatly benefit by such comparative sequence data being mandatorily submitted to regulators prior to vaccine release following a successful registration process.
Collapse
Affiliation(s)
- Valeria Listorti
- Department of Infection Biology, University of Liverpool, Leahurst Campus, Neston, Cheshire CH64 7TE, United Kingdom
| | - Andrea Laconi
- Department of Infection Biology, University of Liverpool, Leahurst Campus, Neston, Cheshire CH64 7TE, United Kingdom
| | - Elena Catelli
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra, 50, 40064 Ozzano dell'Emilia, BO, Italy
| | - Mattia Cecchinato
- Department of Animal Medicine, Production and Health, University of Padua, Viale dell'Università, 16, 35020 Legnaro, PD, Italy
| | - Caterina Lupini
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra, 50, 40064 Ozzano dell'Emilia, BO, Italy
| | - Clive J Naylor
- Department of Infection Biology, University of Liverpool, Leahurst Campus, Neston, Cheshire CH64 7TE, United Kingdom.
| |
Collapse
|
19
|
Tucciarone CM, Andreopoulou M, Franzo G, Prentza Z, Chaligiannis I, Cecchinato M. First Identification and Molecular Characterization of Avian metapneumovirus Subtype B from Chickens in Greece. Avian Dis 2017; 61:409-413. [DOI: 10.1637/11631-032017-caser] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Claudia Maria Tucciarone
- Department of Animal Medicine, Production and Health (MAPS), University of Padua, Viale dell'Università 16, 35020 Legnaro (PD), Italy
| | - Marianna Andreopoulou
- Department of Animal Medicine, Production and Health (MAPS), University of Padua, Viale dell'Università 16, 35020 Legnaro (PD), Italy
| | - Giovanni Franzo
- Department of Animal Medicine, Production and Health (MAPS), University of Padua, Viale dell'Università 16, 35020 Legnaro (PD), Italy
| | - Zoi Prentza
- Department of Avian Pathology, Faculty of Veterinary Science, University of Thessaly, Trikalon 224, 43100, Karditsa, Greece
| | - Ilias Chaligiannis
- Directorate of Veterinary Center of Thessaloniki, Ministry of Rural Development and Food, 26th October Street 80, 54627, Thessaloniki, Greece
| | - Mattia Cecchinato
- Department of Animal Medicine, Production and Health (MAPS), University of Padua, Viale dell'Università 16, 35020 Legnaro (PD), Italy
| |
Collapse
|
20
|
Engineered Newcastle disease virus expressing the F and G proteins of AMPV-C confers protection against challenges in turkeys. Sci Rep 2017. [PMID: 28642611 PMCID: PMC5481403 DOI: 10.1038/s41598-017-04267-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Avian metapneumovirus (AMPV) infects the respiratory and reproductive tracts of domestic poultry, resulting in substantial economic losses for producers. Live attenuated vaccines appear to be the most effective in countries where the disease is prevalent. However, reversion to virulence has been demonstrated in several studies. Therefore, the development of a stable and safe next generation vaccine against the AMPV disease is needed. In the present study, we generated a recombinant Newcastle disease virus (NDV) vectoring the fusion (F) protein and glycoprotein (G) genes of AMPV subtype-C (AMPV-C) as a bivalent vaccine candidate using reverse genetics technology. The recombinant virus, rLS/AMPV-C F&G, was slightly attenuated in vivo, yet maintained similar characteristics in vitro when compared to the parental LaSota virus. Vaccination of turkeys with rLS/AMPV-C F&G induced both AMPV-C and NDV-specific antibody responses, and provided significant protection against pathogenic AMPV-C challenge and complete protection against velogenic NDV challenge. These results suggest that the rLS/AMPV-C F&G recombinant virus is a safe and effective bivalent vaccine candidate and that the expression of both F and G proteins of AMPV-C induces a protective response against the AMPV-C disease.
Collapse
|
21
|
Lupini C, Giovanardi D, Pesente P, Bonci M, Felice V, Rossi G, Morandini E, Cecchinato M, Catelli E. A molecular epidemiology study based on VP2 gene sequences reveals that a new genotype of infectious bursal disease virus is dominantly prevalent in Italy. Avian Pathol 2017; 45:458-64. [PMID: 27108539 DOI: 10.1080/03079457.2016.1165792] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
A distinctive infectious bursal disease (IBD) virus genotype (ITA) was detected in IBD-live vaccinated broilers in Italy without clinical signs of IBD. It was isolated in specific-pathogen-free eggs and molecularly characterized in the hypervariable region of the virus protein (VP) 2. Phylogenetic analysis showed that ITA strains clustered separately from other homologous reference sequences of IBDVs, either classical or very virulent, retrieved from GenBank or previously reported in Italy, and from vaccine strains. The new genotype shows peculiar molecular characteristics in key positions of the VP2 hypervariable region, which affect charged or potentially glycosylated amino acids virtually associated with important changes in virus properties. Characterization of 41 IBDV strains detected in Italy between 2013 and 2014 showed that ITA is emergent in densely populated poultry areas of Italy, being 68% of the IBDV detections made during routine diagnostic activity over a two-year period, in spite of the immunity induced by large-scale vaccination. Four very virulent strains (DV86) and one classical strain (HPR2), together with eight vaccine strains, were also detected. The currently available epidemiological and clinical data do not allow the degree of pathogenicity of the ITA genotype to be defined. Only in vivo experimental pathogenicity studies conducted in secure isolation conditions, through the evaluation of clinical signs and macro/microscopic lesions, will clarify conclusively the virulence of the new Italian genotype.
Collapse
Affiliation(s)
- Caterina Lupini
- a Department of Veterinary Medical Sciences , University of Bologna , Ozzano dell'Emilia (BO) , Italy
| | | | | | - Michela Bonci
- a Department of Veterinary Medical Sciences , University of Bologna , Ozzano dell'Emilia (BO) , Italy
| | - Viviana Felice
- a Department of Veterinary Medical Sciences , University of Bologna , Ozzano dell'Emilia (BO) , Italy
| | - Giulia Rossi
- b Tre Valli Laboratory , San Michele Extra (VR) , Italy
| | | | - Mattia Cecchinato
- d Department of Animal Medicine, Production and Health , University of Padua , Legnaro (PD) , Italy
| | - Elena Catelli
- a Department of Veterinary Medical Sciences , University of Bologna , Ozzano dell'Emilia (BO) , Italy
| |
Collapse
|
22
|
Yun B, Zhang Y, Liu Y, Guan X, Wang Y, Qi X, Cui H, Liu C, Zhang Y, Gao H, Gao L, Li K, Gao Y, Wang X. TMPRSS12 Is an Activating Protease for Subtype B Avian Metapneumovirus. J Virol 2016; 90:11231-11246. [PMID: 27707927 PMCID: PMC5126379 DOI: 10.1128/jvi.01567-16] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 09/29/2016] [Indexed: 12/28/2022] Open
Abstract
The entry of avian metapneumovirus (aMPV) into host cells initially requires the fusion of viral and cell membranes, which is exclusively mediated by fusion (F) protein. Proteolysis of aMPV F protein by endogenous proteases of host cells allows F protein to induce membrane fusion; however, these proteases have not been identified. Here, we provide the first evidence that the transmembrane serine protease TMPRSS12 facilitates the cleavage of subtype B aMPV (aMPV/B) F protein. We found that overexpression of TMPRSS12 enhanced aMPV/B F protein cleavage, F protein fusogenicity, and viral replication. Subsequently, knockdown of TMPRSS12 with specific small interfering RNAs (siRNAs) reduced aMPV/B F protein cleavage, F protein fusogenicity, and viral replication. We also found a cleavage motif in the aMPV/B F protein (amino acids 100 and 101) that was recognized by TMPRSS12. The histidine, aspartic acid, and serine residue (HDS) triad of TMPRSS12 was shown to be essential for the proteolysis of aMPV/B F protein via mutation analysis. Notably, we observed TMPRSS12 mRNA expression in target organs of aMPV/B in chickens. Overall, our results indicate that TMPRSS12 is crucial for aMPV/B F protein proteolysis and aMPV/B infectivity and that TMPRSS12 may serve as a target for novel therapeutics and prophylactics for aMPV. IMPORTANCE Proteolysis of the aMPV F protein is a prerequisite for F protein-mediated membrane fusion of virus and cell and for aMPV infection; however, the proteases used in vitro and vivo are not clear. A combination of analyses, including overexpression, knockdown, and mutation methods, demonstrated that the transmembrane serine protease TMPRSS12 facilitated cleavage of subtype B aMPV (aMPV/B) F protein. Importantly, we located the motif in the aMPV/B F protein recognized by TMPRSS12 and the catalytic triad in TMPRSS12 that facilitated proteolysis of the aMPV/B F protein. This is the first report on TMPRSS12 as a protease for proteolysis of viral envelope glycoproteins. Our study will shed light on the mechanism of proteolysis of aMPV F protein and pathogenesis of aMPV.
Collapse
Affiliation(s)
- Bingling Yun
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Nan Gang District, Harbin, Heilongjiang Province, People's Republic of China
| | - Yao Zhang
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Nan Gang District, Harbin, Heilongjiang Province, People's Republic of China
| | - Yongzhen Liu
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Nan Gang District, Harbin, Heilongjiang Province, People's Republic of China
| | - Xiaolu Guan
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Nan Gang District, Harbin, Heilongjiang Province, People's Republic of China
| | - Yongqiang Wang
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Nan Gang District, Harbin, Heilongjiang Province, People's Republic of China
| | - Xiaole Qi
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Nan Gang District, Harbin, Heilongjiang Province, People's Republic of China
| | - Hongyu Cui
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Nan Gang District, Harbin, Heilongjiang Province, People's Republic of China
| | - Changjun Liu
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Nan Gang District, Harbin, Heilongjiang Province, People's Republic of China
| | - Yanping Zhang
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Nan Gang District, Harbin, Heilongjiang Province, People's Republic of China
| | - Honglei Gao
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Nan Gang District, Harbin, Heilongjiang Province, People's Republic of China
| | - Li Gao
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Nan Gang District, Harbin, Heilongjiang Province, People's Republic of China
| | - Kai Li
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Nan Gang District, Harbin, Heilongjiang Province, People's Republic of China
| | - Yulong Gao
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Nan Gang District, Harbin, Heilongjiang Province, People's Republic of China
| | - Xiaomei Wang
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Nan Gang District, Harbin, Heilongjiang Province, People's Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, People's Republic of China
| |
Collapse
|
23
|
Kohn LK, Foglio MA, Rodrigues RA, Sousa IMDO, Martini MC, Padilla MA, Lima Neto DFD, Arns CW. In-Vitro Antiviral Activities of Extracts of Plants of The Brazilian Cerrado against the Avian Metapneumovirus (aMPV). BRAZILIAN JOURNAL OF POULTRY SCIENCE 2015. [DOI: 10.1590/1516-635x1703275-280] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- LK Kohn
- Universidade de São Francisco, Brazil; University of Campinas, Brazil
| | | | | | | | | | | | | | - CW Arns
- University of Campinas, Brazil
| |
Collapse
|
24
|
Franzo G, Naylor CJ, Drigo M, Croville G, Ducatez MF, Catelli E, Laconi A, Cecchinato M. Subpopulations in aMPV vaccines are unlikely to be the only cause of reversion to virulence. Vaccine 2015; 33:2438-41. [PMID: 25865471 DOI: 10.1016/j.vaccine.2015.03.092] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 03/23/2015] [Accepted: 03/27/2015] [Indexed: 11/25/2022]
Abstract
Avian metapneumovirus (aMPV) infects respiratory and reproductive tracts of domestic poultry, often involving secondary infections, and leads to serious economic losses in most parts of the world. While in general disease is effectively controlled by live vaccines, reversion to virulence of those vaccines has been demonstrated on several occasions. Consensus sequence mutations involved in the process have been identified in more than one instance. In one previous subtype A aMPV candidate vaccine study, small subpopulations were implicated. In the current study, the presence of subpopulations in a subtype B vaccine was investigated by deep sequencing. Of the 19 positions where vaccine (strain VCO3/50) and progenitor (strain VCO3/60616) consensus sequences differed, subpopulations were found to have sequence matching progenitor sequence in 4 positions. However none of these mutations occurred in a virulent revertant of that vaccine, thereby demonstrating that the majority progenitor virus population had not survived the attenuation process, hence was not obviously involved in any return to virulence. However within the vaccine, a single nucleotide variation was found which agreed with consensus sequence of a derived virulent revertant virus, hence this and other undetected, potentially virulent subpopulations, can be involved in reversion. Much deeper sequencing of progenitor, vaccine and revertant may clarify whether problematic virulent subpopulations are present and therefore whether these need to be routinely removed during aMPV vaccine preparation prior to registration and release.
Collapse
Affiliation(s)
- G Franzo
- Department of Animal Medicine, Production and Health, University of Padua, Viale dell'università, 16, 35020 Legnaro, PD, Italy.
| | - C J Naylor
- Department of Infection Biology, University of Liverpool, Leahurst Campus, Neston, Cheshire CH64 7TE, United Kingdom
| | - M Drigo
- Department of Animal Medicine, Production and Health, University of Padua, Viale dell'università, 16, 35020 Legnaro, PD, Italy
| | - G Croville
- INRA and Université de Toulouse, INP, ENVT, UMR 1225 IHAP, F-31076 Toulouse, France
| | - M F Ducatez
- INRA and Université de Toulouse, INP, ENVT, UMR 1225 IHAP, F-31076 Toulouse, France
| | - E Catelli
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra, 50, 40064 Ozzano Emilia, BO, Italy
| | - A Laconi
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra, 50, 40064 Ozzano Emilia, BO, Italy
| | - M Cecchinato
- Department of Animal Medicine, Production and Health, University of Padua, Viale dell'università, 16, 35020 Legnaro, PD, Italy
| |
Collapse
|
25
|
Franzo G, Naylor CJ, Lupini C, Drigo M, Catelli E, Listorti V, Pesente P, Giovanardi D, Morandini E, Cecchinato M. Continued use of IBV 793B vaccine needs reassessment after its withdrawal led to the genotype's disappearance. Vaccine 2014; 32:6765-7. [PMID: 25446828 PMCID: PMC7172084 DOI: 10.1016/j.vaccine.2014.10.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 10/01/2014] [Accepted: 10/06/2014] [Indexed: 11/30/2022]
Abstract
Over a period of almost two years, broilers chickens on several hundred Italian farms, were monitored for infectious bronchitis virus. Detections were genotyped using a hypervariable region of the gene coding for the S1 segment of the spike protein. A range of genotypes were detected which comprised QX, Q1, Mass, D274 and 793B. Sequences of 793B viruses detected in chickens, vaccinated with either of the two commonly used 793B type vaccines were almost identical to sequences of one or other of these vaccines. This strong indication of vaccine association led to the withdrawal of live 793B vaccine use on all of the farms of the study. Except for one sample collected soon after 793B vaccination ceased, it was no longer possible to detect 793B vaccine on these farms. It appears that field 793B strains have disappeared from the region of Italy tested thus obviating any need for current vaccine protection against 793B.
Collapse
Affiliation(s)
- Giovanni Franzo
- Department of Animal Medicine, Production and Health, University of Padua, Viale dell'università, 16, 35020 Legnaro, PD, Italy.
| | - Clive John Naylor
- Department of Infection Biology, Faculty of Health and Life Sciences, University of Liverpool, Leahurst Campus, Neston CH64 7TE, United Kingdom
| | - Caterina Lupini
- Department of Veterinary Medical Sciences - University of Bologna, Via Tolara di Sopra, 50, 40064 Ozzano Emilia, BO, Italy
| | - Michele Drigo
- Department of Animal Medicine, Production and Health, University of Padua, Viale dell'università, 16, 35020 Legnaro, PD, Italy
| | - Elena Catelli
- Department of Veterinary Medical Sciences - University of Bologna, Via Tolara di Sopra, 50, 40064 Ozzano Emilia, BO, Italy
| | - Valeria Listorti
- Department of Veterinary Medical Sciences - University of Bologna, Via Tolara di Sopra, 50, 40064 Ozzano Emilia, BO, Italy
| | - Patrizia Pesente
- Tre Valli Laboratory, Viale A. Veronesi, 5, 37132 San Michele Extra, VR, Italy
| | - Davide Giovanardi
- Tre Valli Laboratory, Viale A. Veronesi, 5, 37132 San Michele Extra, VR, Italy
| | | | - Mattia Cecchinato
- Department of Animal Medicine, Production and Health, University of Padua, Viale dell'università, 16, 35020 Legnaro, PD, Italy
| |
Collapse
|
26
|
Franzo G, Drigo M, Lupini C, Catelli E, Laconi A, Listorti V, Bonci M, Naylor CJ, Martini M, Cecchinato M. A sensitive, reproducible, and economic real-time reverse transcription PCR detecting avian metapneumovirus subtypes A and B. Avian Dis 2014; 58:216-22. [PMID: 25055624 DOI: 10.1637/10676-092413-reg.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Use of real-time PCR is increasing in the diagnosis of infectious disease due to its sensitivity, specificity, and speed of detection. These characteristics make it particularly suited for the diagnosis of viral infections, like avian metapneumovirus (AMPV), for which effective control benefits from continuously updated knowledge of the epidemiological situation. Other real-time reverse transcription (RT)-PCRs have been published based on highly specific fluorescent dye-labeled probes, but they have high initial cost, complex validation, and a marked susceptibility to the genetic variability of their target sequence. With this in mind, we developed and validated a SYBR Green I-based quantitative RT-PCR for the detection of the two most prevalent AMPV subtypes (i.e., subtypes A and B). The assay demonstrated an analytical sensitivity comparable with that of a previously published real-time RT-PCR and the ability to detect RNA equivalent to approximately 0.5 infectious doses for both A and B subtypes. The high efficiency and linearity between viral titer and crossing point displayed for both subtypes make it suited for viral quantification. Optimization of reaction conditions and the implementation of melting curve analysis guaranteed the high specificity of the assay. The stable melting temperature difference between the two subtypes indicated the possibility of subtyping through melting temperature analysis. These characteristics make our assay a sensitive, specific, and rapid tool, enabling contemporaneous detection, quantification, and discrimination of AMPV subtype A and B.
Collapse
|
27
|
Methyltransferase-defective avian metapneumovirus vaccines provide complete protection against challenge with the homologous Colorado strain and the heterologous Minnesota strain. J Virol 2014; 88:12348-63. [PMID: 25122790 DOI: 10.1128/jvi.01095-14] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
UNLABELLED Avian metapneumovirus (aMPV), also known as avian pneumovirus or turkey rhinotracheitis virus, is the causative agent of turkey rhinotracheitis and is associated with swollen head syndrome in chickens. Since its discovery in the 1970s, aMPV has been recognized as an economically important pathogen in the poultry industry worldwide. The conserved region VI (CR VI) of the large (L) polymerase proteins of paramyxoviruses catalyzes methyltransferase (MTase) activities that typically methylate viral mRNAs at guanine N-7 (G-N-7) and ribose 2'-O positions. In this study, we generated a panel of recombinant aMPV (raMPV) Colorado strains carrying mutations in the S-adenosyl methionine (SAM) binding site in the CR VI of L protein. These recombinant viruses were specifically defective in ribose 2'-O, but not G-N-7 methylation and were genetically stable and highly attenuated in cell culture and viral replication in the upper and lower respiratory tracts of specific-pathogen-free (SPF) young turkeys. Importantly, turkeys vaccinated with these MTase-defective raMPVs triggered a high level of neutralizing antibody and were completely protected from challenge with homologous aMPV Colorado strain and heterologous aMPV Minnesota strain. Collectively, our results indicate (i) that aMPV lacking 2'-O methylation is highly attenuated in vitro and in vivo and (ii) that inhibition of mRNA cap MTase can serve as a novel target to rationally design live attenuated vaccines for aMPV and perhaps other paramyxoviruses. IMPORTANCE Paramyxoviruses include many economically and agriculturally important viruses such as avian metapneumovirus (aMPV), and Newcastle disease virus (NDV), human pathogens such as human respiratory syncytial virus, human metapneumovirus, human parainfluenza virus type 3, and measles virus, and highly lethal emerging pathogens such as Nipah virus and Hendra virus. For many of them, there is no effective vaccine or antiviral drug. These viruses share common strategies for viral gene expression and replication. During transcription, paramyxoviruses produce capped, methylated, and polyadenylated mRNAs. Using aMPV as a model, we found that viral ribose 2'-O methyltransferase (MTase) is a novel approach to rationally attenuate the virus for vaccine purpose. Recombinant aMPV (raMPV) lacking 2'-O MTase were not only highly attenuated in turkeys but also provided complete protection against the challenge of homologous and heterologous aMPV strains. This novel approach can be applicable to other animal and human paramyxoviruses for rationally designing live attenuated vaccines.
Collapse
|
28
|
Cecchinato M, Catelli E, Lupini C, Ricchizzi E, Prosperi S, Naylor C. Reversion to virulence of a subtype B avian metapneumovirus vaccine: Is it time for regulators to require availability of vaccine progenitors? Vaccine 2014; 32:4660-4. [DOI: 10.1016/j.vaccine.2014.06.030] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 05/20/2014] [Accepted: 06/06/2014] [Indexed: 11/24/2022]
|
29
|
Brown PA, Lemaitre E, Briand FX, Courtillon C, Guionie O, Allée C, Toquin D, Bayon-Auboyer MH, Jestin V, Eterradossi N. Molecular comparisons of full length metapneumovirus (MPV) genomes, including newly determined French AMPV-C and -D isolates, further supports possible subclassification within the MPV Genus. PLoS One 2014; 9:e102740. [PMID: 25036224 PMCID: PMC4103871 DOI: 10.1371/journal.pone.0102740] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 06/20/2014] [Indexed: 01/12/2023] Open
Abstract
Four avian metapneumovirus (AMPV) subgroups (A-D) have been reported previously based on genetic and antigenic differences. However, until now full length sequences of the only known isolates of European subgroup C and subgroup D viruses (duck and turkey origin, respectively) have been unavailable. These full length sequences were determined and compared with other full length AMPV and human metapneumoviruses (HMPV) sequences reported previously, using phylogenetics, comparisons of nucleic and amino acid sequences and study of codon usage bias. Results confirmed that subgroup C viruses were more closely related to HMPV than they were to the other AMPV subgroups in the study. This was consistent with previous findings using partial genome sequences. Closer relationships between AMPV-A, B and D were also evident throughout the majority of results. Three metapneumovirus "clusters" HMPV, AMPV-C and AMPV-A, B and D were further supported by codon bias and phylogenetics. The data presented here together with those of previous studies describing antigenic relationships also between AMPV-A, B and D and between AMPV-C and HMPV may call for a subclassification of metapneumoviruses similar to that used for avian paramyxoviruses, grouping AMPV-A, B and D as type I metapneumoviruses and AMPV-C and HMPV as type II.
Collapse
Affiliation(s)
- Paul A. Brown
- French Agency for Food, Environmental and Occupational Health Safety (ANSES), Avian and Rabbit Virology Immunology and Parasitology Unit (VIPAC), Université Européenne de Bretagne, Ploufragan/Plouzané laboratory, Ploufragan, France
| | - Evelyne Lemaitre
- French Agency for Food, Environmental and Occupational Health Safety (ANSES), Avian and Rabbit Virology Immunology and Parasitology Unit (VIPAC), Université Européenne de Bretagne, Ploufragan/Plouzané laboratory, Ploufragan, France
| | - François-Xavier Briand
- French Agency for Food, Environmental and Occupational Health Safety (ANSES), Avian and Rabbit Virology Immunology and Parasitology Unit (VIPAC), Université Européenne de Bretagne, Ploufragan/Plouzané laboratory, Ploufragan, France
| | - Céline Courtillon
- French Agency for Food, Environmental and Occupational Health Safety (ANSES), Avian and Rabbit Virology Immunology and Parasitology Unit (VIPAC), Université Européenne de Bretagne, Ploufragan/Plouzané laboratory, Ploufragan, France
| | - Olivier Guionie
- French Agency for Food, Environmental and Occupational Health Safety (ANSES), Avian and Rabbit Virology Immunology and Parasitology Unit (VIPAC), Université Européenne de Bretagne, Ploufragan/Plouzané laboratory, Ploufragan, France
| | - Chantal Allée
- French Agency for Food, Environmental and Occupational Health Safety (ANSES), Avian and Rabbit Virology Immunology and Parasitology Unit (VIPAC), Université Européenne de Bretagne, Ploufragan/Plouzané laboratory, Ploufragan, France
| | - Didier Toquin
- French Agency for Food, Environmental and Occupational Health Safety (ANSES), Avian and Rabbit Virology Immunology and Parasitology Unit (VIPAC), Université Européenne de Bretagne, Ploufragan/Plouzané laboratory, Ploufragan, France
| | - Marie-Hélène Bayon-Auboyer
- French Agency for Food, Environmental and Occupational Health Safety (ANSES), Avian and Rabbit Virology Immunology and Parasitology Unit (VIPAC), Université Européenne de Bretagne, Ploufragan/Plouzané laboratory, Ploufragan, France
| | - Véronique Jestin
- French Agency for Food, Environmental and Occupational Health Safety (ANSES), Avian and Rabbit Virology Immunology and Parasitology Unit (VIPAC), Université Européenne de Bretagne, Ploufragan/Plouzané laboratory, Ploufragan, France
| | - Nicolas Eterradossi
- French Agency for Food, Environmental and Occupational Health Safety (ANSES), Avian and Rabbit Virology Immunology and Parasitology Unit (VIPAC), Université Européenne de Bretagne, Ploufragan/Plouzané laboratory, Ploufragan, France
| |
Collapse
|
30
|
Abdel-Azeem AAS, Franzo G, Dalle Zotte A, Drigo M, Catelli E, Lupini C, Martini M, Cecchinato M. First evidence of avian metapneumovirus subtype A infection in turkeys in Egypt. Trop Anim Health Prod 2014; 46:1093-7. [PMID: 24756465 DOI: 10.1007/s11250-014-0591-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/31/2014] [Indexed: 10/25/2022]
Abstract
Although avian metapneumovirus (aMPV) infection has been reported in most regions of the world, to date, only subtype B has been detected in Egypt. At the end of November 2013, dry oropharyngeal swabs were collected during an outbreak of respiratory diseases in a free-range, multi-age turkey dealer farm in Northern Upper Egypt. The clinical signs that appeared when turkeys were 3 weeks-old were characterized by ocular and nasal discharge and swelling of sinuses. aMPV of subtype A was detected by real-time reverse transcription-polymerase chain reaction. In order to confirm the results and obtain more information on the molecular characteristics of the virus, F and G protein genes were partially sequenced and compared with previously published sequences deposited in GenBank by using BLAST. Subtype of the strain was confirmed by sequencing of partial F and G protein genes. The highest percentages of identity were observed when G sequence of the Egyptian strain was compared with the sequence of an aMPV-A isolated in Nigeria (96.4 %) and when the F sequence was compared with strains isolated respectively in Italy and in UK (97.1 %). Moreover, the alignment of the sequences with commercial subtype A vaccine or vaccine-derived strains showed differences in the Egyptian strain that indicate its probable field origin. The detection of aMPV in the investigated turkey flock highlights some relevant epidemiological issues regarding the role that multi-age farms and dealers may play in perpetuating aMPV infection within and among farms. To our knowledge, this is the first report of aMPV subtype A in Egypt.
Collapse
|
31
|
Longitudinal field studies of avian metapneumovirus and turkey hemorrhagic enteritis virus in turkeys suffering from colibacillosis associated mortality. Vet Res Commun 2014; 38:129-37. [PMID: 24585393 DOI: 10.1007/s11259-014-9596-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2014] [Indexed: 10/25/2022]
Abstract
The aim of this study was to evaluate if the exposure to Avian metapneumovirus (aMPV) and/or to Turkey hemorrhagic enteritis virus (THEV) was significant for the induction of episodes of colibacillosis in aMPV and THEV vaccinated turkeys. Colibacillosis-associated mortality was recorded and longitudinal virological studies performed in three consecutive turkey flocks reared in the same farm. aMPV and THEV diagnostic swabs and blood samples were made once a week up to 14 weeks of age. Swabs were processed by molecular techniques for viruses detection and antibody titres were evaluated. Field subtype B aMPVs were detected in all flocks at different ages of life always associated with respiratory signs and increase of colibacillosis-associated mortality. THEV has been consistently detected in all flocks since the 9th week of age. Vaccination with a single dose of the THEV commercial inactivated vaccine available in Italy seems does not protect the birds from the infection. Sequence comparison of the hexon protein of one of the THEV strains detected, and strains isolated worldwide, revealed high similarity between them. These results are consistent with the notion that the hexon protein, being the major antigenic component of the virus, is highly conserved between the strains. Results showed that field aMPV infection is directly correlated to colibacillosis-associated mortality. Less clear appears the role of THEV because the endemicity of aMPV makes difficult to evaluate its role in predisposing colibacillosis in absence of aMPV. It would be interesting to further investigate this issue through experimental trials in secure isolation conditions.
Collapse
|
32
|
Listorti V, Lupini C, Cecchinato M, Pesente P, Rossi G, Giovanardi D, Naylor CJ, Catelli E. Rapid detection of subtype B avian metapneumoviruses using RT-PCR restriction endonuclease digestion indicates field circulation of vaccine-derived viruses in older turkeys. Avian Pathol 2014; 43:51-6. [PMID: 24397865 DOI: 10.1080/03079457.2013.866212] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Live vaccines predominantly control avian metapneumovirus (aMPV) infection in poultry flocks, but vaccine virus can be found for extended periods after application. The most frequently used aMPV vaccine in Italy, VCO3 subtype B, was shown to contain a unique Tru9I restriction endonuclease site within the amplicons produced by a commonly used aMPV diagnostic reverse transcriptase (RT)-nested polymerase chain reaction (PCR). Analysis of European and database logged subtype B aMPV sequences confirmed that the sequence occurred only in the VC03 vaccine. A subsequent RT-PCR restriction endonuclease study of field samples, collected from turkeys between 2007 and 2012, detected subtype B vaccine-derived strains in 12 of 90 samples tested that were collected from birds under 12 weeks of age.
Collapse
Affiliation(s)
- Valeria Listorti
- a Department of Veterinary Medical Sciences , University of Bologna , Ozzano Emilia , Italy
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Cecchinato M, Lupini C, Munoz Pogoreltseva OS, Listorti V, Mondin A, Drigo M, Catelli E. Development of a real-time RT-PCR assay for the simultaneous identification, quantitation and differentiation of avian metapneumovirus subtypes A and B. Avian Pathol 2013; 42:283-9. [PMID: 23650927 DOI: 10.1080/03079457.2013.788130] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In recent years, special attention has been paid to real-time polymerase chain reaction (PCR) for avian metapneumovirus (AMPV) diagnosis, due to its numerous advantages over classical PCR. A new multiplex quantitative real-time reverse transcription-PCR (qRT-PCR) with molecular beacon probe assay, designed to target the SH gene, was developed. The test was evaluated in terms of specificity, sensitivity and repeatability, and compared with conventional RT nested-PCR based on the G gene. All of the AMPV subtype A and B strains tested were amplified and specifically detected while no amplification occurred with other non-target bird respiratory pathogens. The detection limit of the assay was 10(-0.41) median infectious dose/ml and 10(1.15) median infectious dose/ml when the AMPV-B strain IT/Ty/B/Vr240/87 and the AMPV-A strain IT/Ty/A/259-01/03 were used, respectively, as templates. In all cases, the amplification efficiency was approximately 2 and the error values were <0.2. Standard curves, generated either using the serial dilution of an RNA suspension or RNA extracted from the serial dilution of titrated viral suspensions as templates, exhibited good linearity (R (2)>0.9375) between crossing point values and virus quantities, making the assay herein designed reliable for quantification. When the newly developed qRT-PCR was compared with a conventional RT nested-PCR, it showed greater sensitivity with RNA extracted from both positive controls and from experimentally infected birds. This assay can be effectively used for the detection, identification, differentiation and quantitation of AMPV subtype A or subtype B to assist in disease diagnosis and to carry out rapid surveillance with high levels of sensitivity and specificity.
Collapse
Affiliation(s)
- Mattia Cecchinato
- Department of Animal Medicine, Production and Health, University of Padua, Legnaro, Padua, Italy.
| | | | | | | | | | | | | |
Collapse
|
34
|
Avian metapneumoviruses expressing Infectious Bronchitis virus genes are stable and induce protection. Vaccine 2013; 31:2565-71. [PMID: 23588091 PMCID: PMC7127184 DOI: 10.1016/j.vaccine.2013.03.055] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 02/14/2013] [Accepted: 03/28/2013] [Indexed: 11/24/2022]
Abstract
Foreign viral genes can be inserted into the AMPV genome. Resultant recombinant viruses express the inserted genes and are stable in cell culture. Both S1 and N genes from IBX QX induced protection against QX challenge. Induced seroconversion after recombinant inoculation was minimal.
The study investigates the ability of subtype A Avian metapneumovirus (AMPV) to accept foreign genes and be used as a vector for delivery of Infectious bronchitis virus (IBV) QX genes to chickens. Initially the GFP gene was added to AMPV at all gene junctions in conjunction with the development of cassetted full length DNA AMPV copies. After recombinant virus had been recovered by reverse genetics, GFP positions supporting gene expression while maintaining virus viability in vitro, were determined. Subsequently, either S1 or nucleocapsid (N) genes of IBV were positioned between AMPV M and F genes, while later a bivalent recombinant was prepared by inserting S1 and N at AMPV MF and GL junctions respectively. Immunofluorescent antibody staining showed that all recombinants expressed the inserted IBV genes in vitro and furthermore, all recombinant viruses were found to be highly stable during serial passage. Eyedrop inoculation of chickens with some AMPV-IBV recombinants at one-day-old induced protection against virulent IBV QX challenge 3 weeks later, as assessed by greater motility of tracheal cilia from chickens receiving the recombinants. Nonetheless evidence of AMPV/IBV seroconversion, or major recombinant tracheal replication, were largely absent.
Collapse
|
35
|
Cecchinato M, Lupini C, Ricchizzi E, Falchieri M, Meini A, Jones RC, Catelli E. Italian field survey reveals a high diffusion of avian metapneumovirus subtype B in layers and weaknesses in the vaccination strategy applied. Avian Dis 2013; 56:720-4. [PMID: 23397844 DOI: 10.1637/10202-041312-reg.1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The current information on the prevalence of avian metapneumovirus (aMPV) infection in layers is fragmentary and its true impact on egg production often remains unknown or unclear. In order to draw an epidemiologic picture of aMPV presence in layer flocks in Italy, a survey was performed on 19 flocks of pullets and layers based on longitudinal studies or sporadic samplings. aMPV was detected by reverse transcription (RT)-PCR, and blood samples were collected for serology by aMPV ELISA. Occurrences of respiratory signs and a drop in egg production were recorded. Possible involvement of infectious bronchitis (IB) and egg drop syndrome (EDS) viruses that could have caused loss of egg production we ruled out for IB virus by RT-PCR, and EDS virus was ruled out by hemagglutination-inhibition (HI). Only subtype B of aMPV was found in both pullet and layer farms. Surveys of pullets showed that most groups became infected prior to the onset of lay without showing clear respiratory signs. At the point of lay, these groups were serologically positive to aMPV. In two layer flocks, egg drops were observed and could be strongly linked to the presence of aMPV infection. Results were correlated with aMPV vaccination programs applied to the birds in three flocks on the same farm. Only a vaccination program which included two live and one killed vaccines gave complete protection from aMPV infection to the birds, while a single live vaccine application was not efficacious. The current study gives an inside view of field aMPV diffusion in Italy and its control in layers.
Collapse
Affiliation(s)
- Mattia Cecchinato
- Department of Animal Medicine, Production and Health, University of Padua, Viale dell'Università, 16, 35020 Legnaro (PD), Italy
| | | | | | | | | | | | | |
Collapse
|
36
|
Yu Q, Roth JP, Hu H, Estevez CN, Zhao W, Zsak L. Protection by Recombinant Newcastle Disease Viruses (NDV) Expressing the Glycoprotein (G) of Avian Metapneumovirus (aMPV) Subtype A or B against Challenge with Virulent NDV and aMPV. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/wjv.2013.34018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
37
|
Avian metapneumovirus RT-nested-PCR: A novel false positive reducing inactivated control virus with potential applications to other RNA viruses and real time methods. J Virol Methods 2012; 186:171-5. [DOI: 10.1016/j.jviromet.2012.07.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Revised: 05/16/2012] [Accepted: 07/09/2012] [Indexed: 11/23/2022]
|
38
|
The perspective of immunoprophylaxis and selected immunological issues in the course of the turkey rhinotracheitis. Pol J Vet Sci 2012; 15:175-80. [DOI: 10.2478/v10181-011-0131-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
39
|
Hu H, Roth JP, Estevez CN, Zsak L, Liu B, Yu Q. Generation and evaluation of a recombinant Newcastle disease virus expressing the glycoprotein (G) of avian metapneumovirus subgroup C as a bivalent vaccine in turkeys. Vaccine 2011; 29:8624-33. [DOI: 10.1016/j.vaccine.2011.09.007] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Revised: 08/19/2011] [Accepted: 09/02/2011] [Indexed: 11/15/2022]
|
40
|
Clubbe J, Naylor CJ. Avian metapneumovirus M2:2 protein inhibits replication in Vero cells: modification facilitates live vaccine development. Vaccine 2011; 29:9493-8. [PMID: 22019755 DOI: 10.1016/j.vaccine.2011.10.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Revised: 08/25/2011] [Accepted: 10/07/2011] [Indexed: 10/16/2022]
Abstract
Throughout the world, avian metapneumovirus (AMPV) infection of subtype A is principally controlled by two live vaccines both derived from UK field strain #8544. Improvements of those vaccines by use of reverse genetics technology was found to be hampered by the inability of #8544 to replicate in the commonly exploited Vero cell based reverse genetics system. A systematic reverse genetics based genome modification of a DNA copy of #8544, employing sequence data from a Vero grown, #8544 derived, live vaccine; was used to determine mutations required to facilitate virus recovery and replication in Vero cells. This identified a single coding substitution in the M2:2 reading frame as responsible. Furthermore, ablation of M2:2 was found to elicit the same outcome. M2:2 sequence analysis of seven AMPVs found Vero cell adaption to be associated with non similar amino acid changes in M2:2. The study shows that M2:2 modification of field virus #8544 will enable research leading to improved vaccines. This may have more general application to other AMPV field strains.
Collapse
Affiliation(s)
- Jayne Clubbe
- Department of Infection Biology, Faculty of Health and Life Sciences, University of Liverpool, Leahurst Campus, Neston, Cheshire CH64 7TE, United Kingdom
| | | |
Collapse
|
41
|
Lupini C, Cecchinato M, Ricchizzi E, Naylor CJ, Catelli E. A turkey rhinotracheitis outbreak caused by the environmental spread of a vaccine-derived avian metapneumovirus. Avian Pathol 2011; 40:525-30. [DOI: 10.1080/03079457.2011.607428] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
42
|
Felippe PA, Silva LHAD, Santos MBD, Sakata ST, Arns CW. Detection of and phylogenetic studies with avian metapneumovirus recovered from feral pigeons and wild birds in Brazil. Avian Pathol 2011; 40:445-52. [PMID: 21777083 DOI: 10.1080/03079457.2011.596812] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The aim of the present study was to determine whether avian metapneumovirus (aMPV)-related viruses were present in wild and synanthropic birds in Brazil. Therefore, we analysed samples from wild birds, feral pigeons and domestic chickens in order to perform a phylogenetic comparison. To detect the presence of aMPV, a nested reverse transcriptase-polymerase chain reaction was performed with the aim of amplifying a fragment of 270 bases for subtype A and 330 bases for subtype B, comprising the gene coding the G glycoprotein. Positive samples for aMPV subtypes A and B were found in seven (13.2%) different asymptomatic wild birds and pigeons (50%) that had been received at the Bosque dos Jequitibás Zoo Triage Center, Brazil. Also analysed were positive samples from 15 (12.9%) domestic chickens with swollen head syndrome from several regions of Brazil. The positive samples from wild birds, pigeons and domestic chickens clustered in two major phylogenetic groups: some with aMPV subtype A and others with subtype B. The similarity of the G fragment nucleotide sequence of aMPV isolated from chickens and synanthropic and wild avian species ranged from 100 to 97.5% (from 100 to 92.5% for the amino acids). Some positive aMPV samples, which were obtained from wild birds classified in the Orders Psittaciformes, Anseriformes and Craciformes, clustered with subtype A, and others from the Anas and Dendrocygma genera (Anseriformes Order) with subtype B. The understanding of the epizootiology of aMPV is very important, especially if this involves the participation of non-domestic bird species, which would add complexity to their control on farms and to implementation of vaccination programmes for aMPV.
Collapse
Affiliation(s)
- Paulo Anselmo Felippe
- Laboratory of Virology, Institute of Biology, State University of Campinas, Campinas, SP, Brazil
| | | | | | | | | |
Collapse
|
43
|
Chacón JL, Mizuma M, Vejarano MP, Toquín D, Eterradossi N, Patnayak DP, Goyal SM, Ferreira AJP. Avian metapneumovirus subtypes circulating in Brazilian vaccinated and nonvaccinated chicken and turkey farms. Avian Dis 2011; 55:82-9. [PMID: 21500641 DOI: 10.1637/9501-081310-reg.1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Avian metapneumovirus (AMPV) causes turkey rhinotracheitis and is associated with swollen head syndrome in chickens, which is usually accompanied by secondary infections that increase mortality. AMPVs circulating in Brazilian vaccinated and nonvaccinated commercial chicken and turkey farms were detected using a universal reverse transcriptase (RT)-PCR assay that can detect the four recognized subtypes of AMPV. The AMPV status of 228 farms with respiratory and reproductive disturbances was investigated. AMPV was detected in broiler, hen, breeder, and turkey farms from six different geographic regions of Brazil. The detected viruses were subtyped using a nested RT-PCR assay and sequence analysis of the G gene. Only subtypes A and B were detected in both vaccinated and nonvaccinated farms. AMPV-A and AMPV-B were detected in 15 and 23 farms, respectively, while both subtypes were simultaneously found in one hen farm. Both vaccine and field viruses were detected in nonvaccinated farms. In five cases, the detected subtype was different than the vaccine subtype. Field subtype B virus was detected mainly during the final years of the survey period. These viruses showed high molecular similarity (more than 96% nucleotide similarity) among themselves and formed a unique phylogenetic group, suggesting that they may have originated from a common strain. These results demonstrate the cocirculation of subtypes A and B in Brazilian commercial farms.
Collapse
Affiliation(s)
- Jorge Luis Chacón
- Department of Pathology, College of Veterinary Medicine, University of São Paulo, Avenida Professor Doutor Orlando Marques de Paiva, 87, Cidade Universitária, Butanā, CEP 05508-900, São Paulo, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Weng Y, Lu W, Harmon A, Xiang X, Deng Q, Song M, Wang D, Yu Q, Li F. The cellular endosomal sorting complex required for transport pathway is not involved in avian metapneumovirus budding in a virus-like-particle expression system. J Gen Virol 2011; 92:1205-1213. [PMID: 21248175 DOI: 10.1099/vir.0.029306-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Avian metapneumovirus (AMPV) is a paramyxovirus that principally causes respiratory disease and egg production drops in turkeys and chickens. Together with its closely related human metapneumovirus (HMPV), they comprise the genus Metapneumovirus in the family Paramyxoviridae. Little is currently known about the mechanisms involved in the budding of metapneumovirus. By using AMPV as a model system, we showed that the matrix (M) protein by itself was insufficient to form virus-like-particles (VLPs). The incorporation of M into VLPs was shown to occur only when both the viral nucleoprotein (N) and the fusion (F) proteins were co-expressed. Furthermore, we provided evidence indicating that two YSKL and YAGL segments encoded within the M protein were not a functional late domain, and the endosomal sorting complex required for transport (ESCRT) machinery was not involved in metapneumovirus budding, consistent with a recent observation that human respiratory syncytial virus, closely related to HMPV, uses an ESCRT-independent budding mechanism. Taken together, these results suggest that metapneumovirus budding is independent of the ESCRT pathway and the minimal budding machinery described here will aid our future understanding of metapneumovirus assembly and egress.
Collapse
Affiliation(s)
- Yuejin Weng
- Center for Infectious Disease Research and Vaccinology, South Dakota State University, Brookings, SD 57007, USA.,Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD 57007, USA.,Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA
| | - Wuxun Lu
- Center for Infectious Disease Research and Vaccinology, South Dakota State University, Brookings, SD 57007, USA.,Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA
| | - Aaron Harmon
- Center for Infectious Disease Research and Vaccinology, South Dakota State University, Brookings, SD 57007, USA.,Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD 57007, USA.,Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA
| | - Xiaoxiao Xiang
- Center for Infectious Disease Research and Vaccinology, South Dakota State University, Brookings, SD 57007, USA.,Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA
| | - Qiji Deng
- Center for Infectious Disease Research and Vaccinology, South Dakota State University, Brookings, SD 57007, USA.,Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD 57007, USA
| | - Minxun Song
- Institute of Poultry Science, Shandong Academy of Agricultural Sciences, Jinan 250023, PR China
| | - Dan Wang
- Center for Infectious Disease Research and Vaccinology, South Dakota State University, Brookings, SD 57007, USA.,Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA
| | - Qingzhong Yu
- Southeast Poultry Research Laboratory, Agricultural Research Services, U. S. Department of Agriculture, Athens, GA 30605, USA
| | - Feng Li
- Center for Infectious Disease Research and Vaccinology, South Dakota State University, Brookings, SD 57007, USA.,Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD 57007, USA.,Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA
| |
Collapse
|
45
|
Rubbenstroth D, Rautenschlein S. Compromised T-cell immunity in turkeys may lead to an unpredictable avian metapneumovirus vaccine response and variable protection against challenge. Avian Pathol 2010; 39:349-57. [DOI: 10.1080/03079457.2010.507240] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
46
|
Sugiyama M, Ito H, Hata Y, Ono E, Ito T. Complete nucleotide sequences of avian metapneumovirus subtype B genome. Virus Genes 2010; 41:389-95. [PMID: 20676749 DOI: 10.1007/s11262-010-0518-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Accepted: 07/16/2010] [Indexed: 11/24/2022]
Abstract
Complete nucleotide sequences were determined for subtype B avian metapneumovirus (aMPV), the attenuated vaccine strain VCO3/50 and its parental pathogenic strain VCO3/60616. The genomes of both strains comprised 13,508 nucleotides (nt), with a 42-nt leader at the 3'-end and a 46-nt trailer at the 5'-end. The genome contains eight genes in the order 3'-N-P-M-F-M2-SH-G-L-5', which is the same order shown in the other metapneumoviruses. The genes are flanked on either side by conserved transcriptional start and stop signals and have intergenic sequences varying in length from 1 to 88 nt. Comparison of nt and predicted amino acid (aa) sequences of VCO3/60616 with those of other metapneumoviruses revealed higher homology with aMPV subtype A virus than with other metapneumoviruses. A total of 18 nt and 10 deduced aa differences were seen between the strains, and one or a combination of several differences could be associated with attenuation of VCO3/50.
Collapse
Affiliation(s)
- Miki Sugiyama
- Research and Development, Merial Japan Limited, 2-14-2 Nagata-cho, Chiyoda-ku, Tokyo, Japan
| | | | | | | | | |
Collapse
|
47
|
Abstract
The use of vaccines is the main approach to control of the economically important poultry viral respiratory diseases infectious laryngotracheitis (ILT), avian metapneumovirus (aMPV) infections and infectious bronchitis (IB). This paper appraises the current methods of vaccine control in the light of the nature of each virus and epidemiological factors associated with each disease. Infectious laryngotracheitis virus (ILTV) exists as a single type with a wide range of disease severity. It is a serious disease in certain regions of the world. Recent work has distinguished molecular differences between vaccine and field strains and vaccine virus can be a cause of disease. Vaccines have remained unaltered for many years but new ones are being developed to counter vaccine side effects and reversion and reactivation of latent virus. Avian metapneumoviruses, the cause of turkey rhinotracheitis and respiratory disease in chickens exists as 4 subtypes, A, B, C and D. A and B are widespread and vaccines work well provided that accurate doses are given. Newer vaccine developments are designed to eliminate reversion and possibly counter the appearance of newer field strains which may break through established vaccine coverage. IB presents the biggest problem of the three. Being an unstable RNA virus, part of the viral genome that codes for the S1 spike gene can undergo mutation and recombination so that important antigenic variants can appear irregularly which may evade existing vaccine protection. While conventional vaccines work well against homologous types, new strategies are needed to counter this instability. Molecular approaches involving tailoring viruses to suit field challenges are in progress. However, the simple use of two genetically different vaccines to protect against a wide range of heterologous types is now a widespread practice that is very effective. None of the three diseases described can claim to be satisfactorily controlled and it remains to be seen whether the newer generations of vaccines will be more efficacious and cost effective. The importance of constant surveillance is emphasised and the testing of novel vaccines cannot be achieved without the use of vaccine-challenge experiments in poultry.
Collapse
Affiliation(s)
- Richard C Jones
- School of Veterinary Science, University of Liverpool, Neston, South Wirral, England, UK.
| |
Collapse
|
48
|
Rubbenstroth D, Dalgaard TS, Kothlow S, Juul-Madsen HR, Rautenschlein S. Effects of cyclosporin A induced T-lymphocyte depletion on the course of avian Metapneumovirus (aMPV) infection in turkeys. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2010; 34:518-529. [PMID: 20043941 DOI: 10.1016/j.dci.2009.12.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2009] [Revised: 12/22/2009] [Accepted: 12/22/2009] [Indexed: 05/28/2023]
Abstract
The avian Metapneumovirus (aMPV) causes an economically important acute respiratory disease in turkeys (turkey rhinotracheitis, TRT). While antibodies were shown to be insufficient for protection against aMPV-infection, the role of T-lymphocytes in the control of aMPV-infection is not clear. In this study we investigated the role of T-lymphocytes in aMPV-pathogenesis in a T-cell-suppression model in turkeys. T-cell-intact turkeys and turkeys partly depleted of functional CD4(+) and CD8(+) T-lymphocytes by Cyclosporin A (CsA) treatment were inoculated with the virulent aMPV subtype A strain BUT 8544. CsA-treatment resulted in a significant reduction of absolute numbers of circulating CD4(+) and CD8alpha(+) T-lymphocytes by up to 82 and 65%, respectively (P<0.05). Proportions of proliferating T-cells within mitogen-stimulated peripheral blood mononuclear cells were reduced by similar levels in CsA-treated birds compared to untreated controls (P<0.05). CsA-treated turkeys showed delayed recovery from aMPV-induced clinical signs and histopathological lesions and a prolonged detection of aMPV in choanal swabs. The results of this study show that T-lymphocytes play an important role in the control of primary aMPV-infection in turkeys.
Collapse
Affiliation(s)
- Dennis Rubbenstroth
- Clinic for Poultry, University of Veterinary Medicine Hannover, Bünteweg 17, Hannover, Germany
| | | | | | | | | |
Collapse
|
49
|
Ganapathy K, Bufton A, Pearson A, Lemiere S, Jones RC. Vaccination of commercial broiler chicks against avian metapneumovirus infection: a comparison of drinking-water, spray and oculo-oral delivery methods. Vaccine 2010; 28:3944-8. [DOI: 10.1016/j.vaccine.2010.03.065] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2009] [Revised: 03/24/2010] [Accepted: 03/26/2010] [Indexed: 11/29/2022]
|
50
|
Ongor H, Karahan M, Kalin R, Bulut H, Cetinkaya B. Detection of avian metapneumovirus subtypes in turkeys using RT-PCR. Vet Rec 2010; 166:363-6. [DOI: 10.1136/vr.c1607] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
| | | | | | - H. Bulut
- Department of Virology; Faculty of Veterinary Medicine; University of Firat; 23119 Elazig Turkey
| | | |
Collapse
|