1
|
Cheong DHJ, Yi B, Wong YH, Chu JJH. The Current Progress in the Quest for Vaccines Against the Semliki Forest Virus Complex. Med Res Rev 2025; 45:947-967. [PMID: 39757142 DOI: 10.1002/med.22097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 10/10/2024] [Accepted: 12/12/2024] [Indexed: 01/07/2025]
Abstract
The Semliki Forest virus (SFV) complex comprises of arboviruses that are transmitted by arthropod vectors and cause acute febrile illness in humans. In the last seven decades, re-emergence of these viruses has resulted in numerous outbreaks globally, affecting regions including Africa, Americas, Asia, Europe and the Caribbean. These viruses are transmitted to humans by the bite of infected mosquitoes. Symptoms of infection include high fever, severe joint pain, skin rash, muscle pain and headache. Fatal cases were reported, and mortality rate increased during the epidemic of these viruses. There is therefore a need to control the spread of these emerging arboviruses. Given that vaccination is one of the most effective ways to protect populations against viral outbreaks, efforts have been made to develop and test potential vaccine candidates. However, there are still no licensed vaccines available against the medically important viruses in the SFV complex. This review first summarizes the current knowledge of the SFV complex disease pathogenesis. Next, seven strategies that have been applied in vaccine development against these viruses are reviewed, indicating the immune response and efficacies of these vaccine candidates in in vivo models of infection. Finally, the more promising candidates that have entered clinical trials are discussed and insights into the future development of vaccines for viruses of the SFV complex are given.
Collapse
Affiliation(s)
- Dorothy Hui Juan Cheong
- Department of Microbiology and Immunology, Infectious Disease Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore City, Singapore
| | - Bowen Yi
- Biosafety Level 3 Core Facility, Yong Loo Lin School of Medicine, National University of Singapore, Singapore City, Singapore
| | - Yi Hao Wong
- Biosafety Level 3 Core Facility, Yong Loo Lin School of Medicine, National University of Singapore, Singapore City, Singapore
| | - Justin Jang Hann Chu
- Department of Microbiology and Immunology, Infectious Disease Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore City, Singapore
- Biosafety Level 3 Core Facility, Yong Loo Lin School of Medicine, National University of Singapore, Singapore City, Singapore
- Collaborative and Translation Unit for Hand, Foot and Mouth Disease (HFMD), Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore CIty, Singapore
| |
Collapse
|
2
|
Mazhed ZK, Vasilenko VE, Siniugina AA, Kaa KV, Motov AS, Pokidova KO, Ivin YY, Piniaeva AN, Khapchaev YK, Chernov KA, Ishmukhametov AA. Intensification of Vero cell adherence to microcarrier particles during cultivation in a wave bioreactor. Front Bioeng Biotechnol 2025; 13:1542060. [PMID: 40028290 PMCID: PMC11868258 DOI: 10.3389/fbioe.2025.1542060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 01/27/2025] [Indexed: 03/05/2025] Open
Abstract
Vaccination is the most effective strategy for fighting viral diseases, with both live and inactivated vaccines remaining crucial despite advancements in subunit vaccine technologies. A key player in vaccine production is the Vero cell line, derived from the kidney cells of the African green monkey, which is essential for manufacturing vaccines against diseases like polio, rabies, yellow fever, and COVID-19. The efficiency of Vero cell cultivation directly impacts vaccine production, often utilizing bioreactors ranging from small (1-10 L) to large (up to several thousand liters). Wave-type bioreactors are commonly employed for initial cell propagation due to their simplicity. However, achieving uniform cell distribution on microcarriers in these systems poses challenges. This study aims to evaluate intermittent stirring during the early cultivation stages to enhance Vero cell distribution and growth, potentially improving overall cultivation efficiency.
Collapse
Affiliation(s)
- Z. K. Mazhed
- Federal State Autonomous Scientific Institution “Chumakov Federal Scientific Center for Research and Development of Immune and Biological Products of the Russian Academy of Sciences” (FSASI “Chumakov FSC R&D IBP RAS”), Moscow, Russia
| | - V. E. Vasilenko
- Federal State Autonomous Scientific Institution “Chumakov Federal Scientific Center for Research and Development of Immune and Biological Products of the Russian Academy of Sciences” (FSASI “Chumakov FSC R&D IBP RAS”), Moscow, Russia
| | - A. A. Siniugina
- Federal State Autonomous Scientific Institution “Chumakov Federal Scientific Center for Research and Development of Immune and Biological Products of the Russian Academy of Sciences” (FSASI “Chumakov FSC R&D IBP RAS”), Moscow, Russia
| | - K. V. Kaa
- Federal State Autonomous Scientific Institution “Chumakov Federal Scientific Center for Research and Development of Immune and Biological Products of the Russian Academy of Sciences” (FSASI “Chumakov FSC R&D IBP RAS”), Moscow, Russia
| | - A. S. Motov
- Federal State Autonomous Scientific Institution “Chumakov Federal Scientific Center for Research and Development of Immune and Biological Products of the Russian Academy of Sciences” (FSASI “Chumakov FSC R&D IBP RAS”), Moscow, Russia
| | - K. O. Pokidova
- Federal State Autonomous Scientific Institution “Chumakov Federal Scientific Center for Research and Development of Immune and Biological Products of the Russian Academy of Sciences” (FSASI “Chumakov FSC R&D IBP RAS”), Moscow, Russia
| | - Y. Y. Ivin
- Federal State Autonomous Scientific Institution “Chumakov Federal Scientific Center for Research and Development of Immune and Biological Products of the Russian Academy of Sciences” (FSASI “Chumakov FSC R&D IBP RAS”), Moscow, Russia
| | - A. N. Piniaeva
- Federal State Autonomous Scientific Institution “Chumakov Federal Scientific Center for Research and Development of Immune and Biological Products of the Russian Academy of Sciences” (FSASI “Chumakov FSC R&D IBP RAS”), Moscow, Russia
| | - Y. K. Khapchaev
- Federal State Autonomous Scientific Institution “Chumakov Federal Scientific Center for Research and Development of Immune and Biological Products of the Russian Academy of Sciences” (FSASI “Chumakov FSC R&D IBP RAS”), Moscow, Russia
| | - K. A. Chernov
- Federal State Autonomous Scientific Institution “Chumakov Federal Scientific Center for Research and Development of Immune and Biological Products of the Russian Academy of Sciences” (FSASI “Chumakov FSC R&D IBP RAS”), Moscow, Russia
| | - A. A. Ishmukhametov
- Federal State Autonomous Scientific Institution “Chumakov Federal Scientific Center for Research and Development of Immune and Biological Products of the Russian Academy of Sciences” (FSASI “Chumakov FSC R&D IBP RAS”), Moscow, Russia
- Institute for Translational Medicine and Biotechnology, First Moscow State Medical University (Sechenov University), Moscow, Russia
| |
Collapse
|
3
|
Adib AA, Karim MM. Design of therapeutic siRNAs for potential application to infection with chikungunya virus. Heliyon 2025; 11:e41824. [PMID: 39897885 PMCID: PMC11782961 DOI: 10.1016/j.heliyon.2025.e41824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 01/08/2025] [Accepted: 01/08/2025] [Indexed: 02/04/2025] Open
Abstract
Emergence of the Chikungunya virus (CHIKV) is a new threat in the world. The disastrous effect of this virus and the unavailability of specific drugs complicated the control and management of the disease. The development of a siRNA-based drug using multiple computational tools could be a way out as one of its therapeutics. Currently, very few siRNAs against CHIKV have been computationally designed and published. Here, we considered various parts of the CHIKV genome encoding different essential protein-coding genes for designing siRNAs with a view to silencing them, thereby rendering the virus inactive. Seven potential primary siRNAs were constructed, of which, five are hereafter recommended to be used as a therapeutic tool against the virus.
Collapse
Affiliation(s)
- Ahmed Ahsan Adib
- Department of Microbiology, University of Dhaka, Dhaka, 1100, Bangladesh
| | | |
Collapse
|
4
|
Tretyakova I, Joh J, Gearon M, Kraenzle J, Goedeker S, Pignataro A, Alejandro B, Lukashevich IS, Chung D, Pushko P. Live-attenuated CHIKV vaccine with rearranged genome replicates in vitro and induces immune response in mice. PLoS Negl Trop Dis 2024; 18:e0012120. [PMID: 38648230 PMCID: PMC11075892 DOI: 10.1371/journal.pntd.0012120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 05/07/2024] [Accepted: 03/29/2024] [Indexed: 04/25/2024] Open
Abstract
Chikungunya fever virus (CHIKV) is a mosquito-borne alphavirus that causes wide-spread human infections and epidemics in Asia, Africa and recently, in the Americas. CHIKV is considered a priority pathogen by CEPI and WHO. Despite recent approval of a live-attenuated CHIKV vaccine, development of additional vaccines is warranted due to the worldwide outbreaks of CHIKV. Previously, we developed immunization DNA (iDNA) plasmid capable of launching live-attenuated CHIKV vaccine in vivo. Here we report the use of CHIKV iDNA plasmid to prepare a novel, live-attenuated CHIKV vaccine V5040 with rearranged RNA genome. In V5040, genomic RNA was rearranged to encode capsid gene downstream from the glycoprotein genes. Attenuated mutations derived from experimental CHIKV 181/25 vaccine were also engineered into E2 gene of V5040. The DNA copy of rearranged CHIKV genomic RNA with attenuated mutations was cloned into iDNA plasmid pMG5040 downstream from the CMV promoter. After transfection in vitro, pMG5040 launched replication of V5040 virus with rearranged genome and attenuating E2 mutations. Furthermore, V5040 virus was evaluated in experimental murine models for general safety and immunogenicity. Vaccination with V5040 virus subcutaneously resulted in elicitation of CHIKV-specific, virus-neutralizing antibodies. The results warrant further evaluation of V5040 virus with rearranged genome as a novel live-attenuated vaccine for CHIKV.
Collapse
Affiliation(s)
| | - Joongho Joh
- Department of Microbiology and Immunology, School of Medicine, University of Louisville, Louisville, Kentucky, United States of America
| | - Mary Gearon
- Department of Microbiology and Immunology, School of Medicine, University of Louisville, Louisville, Kentucky, United States of America
| | - Jennifer Kraenzle
- Department of Microbiology and Immunology, School of Medicine, University of Louisville, Louisville, Kentucky, United States of America
| | - Sidney Goedeker
- Department of Microbiology and Immunology, School of Medicine, University of Louisville, Louisville, Kentucky, United States of America
| | - Ava Pignataro
- Department of Microbiology and Immunology, School of Medicine, University of Louisville, Louisville, Kentucky, United States of America
| | - Brian Alejandro
- Department of Microbiology and Immunology, School of Medicine, University of Louisville, Louisville, Kentucky, United States of America
| | - Igor S. Lukashevich
- Department of Pharmacology and Toxicology, School of Medicine, and the Center for Predictive Medicine for Biodefense and Emerging Infectious Diseases, University of Louisville, Louisville, Kentucky, United States of America
| | - Donghoon Chung
- Department of Microbiology and Immunology, School of Medicine, University of Louisville, Louisville, Kentucky, United States of America
| | - Peter Pushko
- Medigen, Inc., Frederick, Maryland, United States of America
| |
Collapse
|
5
|
Rao S, Erku D, Mahalingam S, Taylor A. Immunogenicity, safety and duration of protection afforded by chikungunya virus vaccines undergoing human clinical trials. J Gen Virol 2024; 105. [PMID: 38421278 DOI: 10.1099/jgv.0.001965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024] Open
Abstract
Background. Chikungunya virus (CHIKV) causes chikungunya fever and has been responsible for major global epidemics of arthritic disease over the past two decades. Multiple CHIKV vaccine candidates are currently undergoing or have undergone human clinical trials, with one vaccine candidate receiving FDA approval. This scoping review was performed to evaluate the 'efficacy', 'safety' and 'duration of protection' provided by CHIKV vaccine candidates in human clinical trials.Methods. This scoping literature review addresses studies involving CHIKV vaccine clinical trials using available literature on the PubMed, Medline Embase, Cochrane Library and Clinicaltrial.gov databases published up to 25 August 2023. Covidence software was used to structure information and review the studies included in this article.Results. A total of 1138 studies were screened and, after removal of duplicate studies, 12 relevant studies were thoroughly reviewed to gather information. This review summarizs that all seven CHIKV vaccine candidates achieved over 90 % seroprotection against CHIKV after one or two doses. All vaccines were able to provide neutralizing antibody protection for at least 28 days.Conclusions. A variety of vaccine technologies have been used to develop CHIKV vaccine candidates. With one vaccine candidate having recently received FDA approval, it is likely that further CHIKV vaccines will be available commercially in the near future.
Collapse
Affiliation(s)
- Shambhavi Rao
- The Emerging Viruses, Inflammation and Therapeutics Group, Menzies Health Institute Queensland, Griffith University, Gold Coast, Southport, QLD, 4215, Australia
- Global Virus Network (GVN) Centre of Excellence in Arboviruses, Griffith University, Gold Coast, QLD, Australia
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, QLD, Australia
| | - Daniel Erku
- Centre for Applied Health Economics, Menzies Health Institute Queensland, Griffith University, Gold Coast, Southport, QLD, 4215, Australia
| | - Suresh Mahalingam
- The Emerging Viruses, Inflammation and Therapeutics Group, Menzies Health Institute Queensland, Griffith University, Gold Coast, Southport, QLD, 4215, Australia
- Global Virus Network (GVN) Centre of Excellence in Arboviruses, Griffith University, Gold Coast, QLD, Australia
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, QLD, Australia
| | - Adam Taylor
- The Emerging Viruses, Inflammation and Therapeutics Group, Menzies Health Institute Queensland, Griffith University, Gold Coast, Southport, QLD, 4215, Australia
- Global Virus Network (GVN) Centre of Excellence in Arboviruses, Griffith University, Gold Coast, QLD, Australia
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, QLD, Australia
| |
Collapse
|
6
|
Powers AM, Williamson LE, Carnahan RH, Crowe JE, Hyde JL, Jonsson CB, Nasar F, Weaver SC. Developing a Prototype Pathogen Plan and Research Priorities for the Alphaviruses. J Infect Dis 2023; 228:S414-S426. [PMID: 37849399 PMCID: PMC11007399 DOI: 10.1093/infdis/jiac326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023] Open
Abstract
The Togaviridae family, genus, Alphavirus, includes several mosquito-borne human pathogens with the potential to spread to near pandemic proportions. Most of these are zoonotic, with spillover infections of humans and domestic animals, but a few such as chikungunya virus (CHIKV) have the ability to use humans as amplification hosts for transmission in urban settings and explosive outbreaks. Most alphaviruses cause nonspecific acute febrile illness, with pathogenesis sometimes leading to either encephalitis or arthralgic manifestations with severe and chronic morbidity and occasional mortality. The development of countermeasures, especially against CHIKV and Venezuelan equine encephalitis virus that are major threats, has included vaccines and antibody-based therapeutics that are likely to also be successful for rapid responses with other members of the family. However, further work with these prototypes and other alphavirus pathogens should target better understanding of human tropism and pathogenesis, more comprehensive identification of cellular receptors and entry, and better understanding of structural mechanisms of neutralization.
Collapse
Affiliation(s)
- Ann M Powers
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado, USA
| | - Lauren E Williamson
- The Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Robert H Carnahan
- The Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - James E Crowe
- The Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, Tennessee, USA
| | - Jennifer L Hyde
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| | - Colleen B Jonsson
- Department of Microbiology, Immunology and Biochemistry, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Farooq Nasar
- Emerging Infectious Diseases Branch and Viral Disease Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Scott C Weaver
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
- World Reference Center for Emerging Viruses and Arboviruses, Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, USA
| |
Collapse
|
7
|
Tretyakova I, Joh J, Lukashevich IS, Alejandro B, Gearon M, Chung D, Pushko P. Live-Attenuated CHIKV Vaccine with Rearranged Genome Replicates in vitro and Induces Immune Response in Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.16.558061. [PMID: 37745520 PMCID: PMC10516039 DOI: 10.1101/2023.09.16.558061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Chikungunya fever virus (CHIKV) is a mosquito-borne alphavirus that causes wide-spread human infections and epidemics in Asia, Africa and recently, in the Americas. There is no approved vaccine and CHIKV is considered a priority pathogen by CEPI and WHO. Previously, we developed immunization DNA (iDNA) plasmid capable of launching live-attenuated CHIKV vaccine in vivo . Here we report the use of CHIKV iDNA plasmid to prepare a novel, live-attenuated CHIKV vaccine V5040 with rearranged RNA genome for improved safety. In V5040, genomic RNA was rearranged to encode capsid gene downstream from the glycoprotein genes. To secure safety profile, attenuated mutations derived from experimental CHIKV 181/25 vaccine were also engineered into E2 gene of V5040. The DNA copy of rearranged CHIKV genomic RNA with attenuated mutations was cloned into iDNA plasmid pMG5040 downstream from the CMV promoter. After transfection in vitro, pMG5040 launched replication of V5040 virus with rearranged genome and attenuating E2 mutations. Furthermore, V5040 virus was evaluated in experimental murine models for safety and immunogenicity. Vaccination with V5040 virus subcutaneously resulted in elicitation of CHIKV-specific, virus-neutralizing antibodies. The results warrant further evaluation of V5040 virus with rearranged genome as a novel live-attenuated vaccine for CHIKV.
Collapse
|
8
|
Rao S, Abeyratne E, Freitas JR, Yang C, Tharmarajah K, Mostafavi H, Liu X, Zaman M, Mahalingam S, Zaid A, Taylor A. A booster regime of liposome-delivered live-attenuated CHIKV vaccine RNA genome protects against chikungunya virus disease in mice. Vaccine 2023; 41:3976-3988. [PMID: 37230889 DOI: 10.1016/j.vaccine.2023.05.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 05/27/2023]
Abstract
Mosquito-transmitted chikungunya virus (CHIKV) is the causal pathogen of CHIKV disease and is responsible for global epidemics of arthritic disease. CHIKV infection can lead to severe chronic and debilitating arthralgia, significantly impacting patient mobility and quality of life. Our previous studies have shown a live-attenuated CHIKV vaccine candidate, CHIKV-NoLS, to be effective in protecting against CHIKV disease in mice vaccinated with one dose. Further studies have demonstrated the value of a liposome RNA delivery system to deliver the RNA genome of CHIKV-NoLS directly in vivo, promoting de novo production of live-attenuated vaccine particles in vaccinated hosts. This system, designed to bypass live-attenuated vaccine production bottlenecks, uses CAF01 liposomes. However, one dose of CHIKV-NoLS CAF01 failed to provide systemic protection against CHIKV challenge in mice, with low levels of CHIKV-specific antibodies. Here we describe CHIKV-NoLS CAF01 booster vaccination regimes designed to increase vaccine efficacy. C57BL/6 mice were vaccinated with three doses of CHIKV-NoLS CAF01 either intramuscularly or subcutaneously. CHIKV-NoLS CAF01 vaccinated mice developed a systemic immune response against CHIKV that shared similarity to vaccination with CHIKV-NoLS, including high levels of CHIKV-specific neutralising antibodies in subcutaneously inoculated mice. CHIKV-NoLS CAF01 vaccinated mice were protected against disease signs and musculoskeletal inflammation when challenged with CHIKV. Mice given one dose of live-attenuated CHIKV-NoLS developed a long lasting protective immune response for up to 71 days. A clinically relevant CHIKV-NoLS CAF01 booster regime can overcome the challenges faced by our previous one dose strategy and provide systemic protection against CHIKV disease.
Collapse
Affiliation(s)
- Shambhavi Rao
- The Emerging Viruses, Inflammation and Therapeutics Group, Menzies Health Institute Queensland, Griffith University, Gold Coast, Southport, QLD 4215, Australia; School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, Southport, 4215 Queensland, Australia; Global Virus Network (GVN) Centre for Excellence in Arboviruses, Australia
| | - Eranga Abeyratne
- The Emerging Viruses, Inflammation and Therapeutics Group, Menzies Health Institute Queensland, Griffith University, Gold Coast, Southport, QLD 4215, Australia; School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, Southport, 4215 Queensland, Australia; Global Virus Network (GVN) Centre for Excellence in Arboviruses, Australia
| | - Joseph R Freitas
- The Emerging Viruses, Inflammation and Therapeutics Group, Menzies Health Institute Queensland, Griffith University, Gold Coast, Southport, QLD 4215, Australia; School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, Southport, 4215 Queensland, Australia; Global Virus Network (GVN) Centre for Excellence in Arboviruses, Australia
| | - Chenying Yang
- The Emerging Viruses, Inflammation and Therapeutics Group, Menzies Health Institute Queensland, Griffith University, Gold Coast, Southport, QLD 4215, Australia; School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, Southport, 4215 Queensland, Australia; Global Virus Network (GVN) Centre for Excellence in Arboviruses, Australia
| | - Kothila Tharmarajah
- The Emerging Viruses, Inflammation and Therapeutics Group, Menzies Health Institute Queensland, Griffith University, Gold Coast, Southport, QLD 4215, Australia; School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, Southport, 4215 Queensland, Australia; Global Virus Network (GVN) Centre for Excellence in Arboviruses, Australia
| | - Helen Mostafavi
- The Emerging Viruses, Inflammation and Therapeutics Group, Menzies Health Institute Queensland, Griffith University, Gold Coast, Southport, QLD 4215, Australia; School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, Southport, 4215 Queensland, Australia; Global Virus Network (GVN) Centre for Excellence in Arboviruses, Australia
| | - Xiang Liu
- The Emerging Viruses, Inflammation and Therapeutics Group, Menzies Health Institute Queensland, Griffith University, Gold Coast, Southport, QLD 4215, Australia; School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, Southport, 4215 Queensland, Australia; Global Virus Network (GVN) Centre for Excellence in Arboviruses, Australia
| | - Mehfuz Zaman
- Institute for Glycomics, Griffith University, Gold Coast Campus, Southport, 4222 Queensland, Australia
| | - Suresh Mahalingam
- The Emerging Viruses, Inflammation and Therapeutics Group, Menzies Health Institute Queensland, Griffith University, Gold Coast, Southport, QLD 4215, Australia; School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, Southport, 4215 Queensland, Australia; Global Virus Network (GVN) Centre for Excellence in Arboviruses, Australia
| | - Ali Zaid
- The Emerging Viruses, Inflammation and Therapeutics Group, Menzies Health Institute Queensland, Griffith University, Gold Coast, Southport, QLD 4215, Australia; School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, Southport, 4215 Queensland, Australia; Global Virus Network (GVN) Centre for Excellence in Arboviruses, Australia
| | - Adam Taylor
- The Emerging Viruses, Inflammation and Therapeutics Group, Menzies Health Institute Queensland, Griffith University, Gold Coast, Southport, QLD 4215, Australia; School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, Southport, 4215 Queensland, Australia; Global Virus Network (GVN) Centre for Excellence in Arboviruses, Australia.
| |
Collapse
|
9
|
Varikkodan MM, Kunnathodi F, Azmi S, Wu TY. An Overview of Indian Biomedical Research on the Chikungunya Virus with Particular Reference to Its Vaccine, an Unmet Medical Need. Vaccines (Basel) 2023; 11:1102. [PMID: 37376491 DOI: 10.3390/vaccines11061102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/08/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Chikungunya virus (CHIKV) is an infectious agent spread by mosquitos, that has engendered endemic or epidemic outbreaks of Chikungunya fever (CHIKF) in Africa, South-East Asia, America, and a few European countries. Like most tropical infections, CHIKV is frequently misdiagnosed, underreported, and underestimated; it primarily affects areas with limited resources, like developing nations. Due to its high transmission rate and lack of a preventive vaccine or effective treatments, this virus poses a serious threat to humanity. After a 32-year hiatus, CHIKV reemerged as the most significant epidemic ever reported, in India in 2006. Since then, CHIKV-related research was begun in India, and up to now, more than 800 peer-reviewed research papers have been published by Indian researchers and medical practitioners. This review gives an overview of the outbreak history and CHIKV-related research in India, to favor novel high-quality research works intending to promote effective treatment and preventive strategies, including vaccine development, against CHIKV infection.
Collapse
Affiliation(s)
- Muhammed Muhsin Varikkodan
- Department of Bioscience Technology, College of Science, Chung Yuan Christian University, Chung-Li, Taoyuan City 320314, Taiwan
| | - Faisal Kunnathodi
- Scientific Research Center, Prince Sultan Military Medical City, Riyadh 11159, Saudi Arabia
| | - Sarfuddin Azmi
- Scientific Research Center, Prince Sultan Military Medical City, Riyadh 11159, Saudi Arabia
| | - Tzong-Yuan Wu
- Department of Bioscience Technology, College of Science, Chung Yuan Christian University, Chung-Li, Taoyuan City 320314, Taiwan
- R&D Center of Membrane Technology, Chung Yuan Christian University, Chung-Li, Taoyuan City 320314, Taiwan
| |
Collapse
|
10
|
Kim AS, Diamond MS. A molecular understanding of alphavirus entry and antibody protection. Nat Rev Microbiol 2023; 21:396-407. [PMID: 36474012 PMCID: PMC9734810 DOI: 10.1038/s41579-022-00825-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/01/2022] [Indexed: 12/12/2022]
Abstract
Alphaviruses are arthropod-transmitted RNA viruses that cause epidemics of human infection and disease on a global scale. These viruses are classified as either arthritogenic or encephalitic based on their genetic relatedness and the clinical syndromes they cause. Although there are currently no approved therapeutics or vaccines against alphaviruses, passive transfer of monoclonal antibodies confers protection in animal models. This Review highlights recent advances in our understanding of the host factors required for alphavirus entry, the mechanisms of action by which protective antibodies inhibit different steps in the alphavirus infection cycle and candidate alphavirus vaccines currently under clinical evaluation that focus on humoral immunity. A comprehensive understanding of alphavirus entry and antibody-mediated protection may inform the development of new classes of countermeasures for these emerging viruses.
Collapse
Affiliation(s)
- Arthur S Kim
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Michael S Diamond
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA.
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, USA.
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO, USA.
- The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, Saint Louis, MO, USA.
| |
Collapse
|
11
|
Bartholomeeusen K, Daniel M, LaBeaud DA, Gasque P, Peeling RW, Stephenson KE, Ng LFP, Ariën KK. Chikungunya fever. Nat Rev Dis Primers 2023; 9:17. [PMID: 37024497 PMCID: PMC11126297 DOI: 10.1038/s41572-023-00429-2] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/10/2023] [Indexed: 04/08/2023]
Abstract
Chikungunya virus is widespread throughout the tropics, where it causes recurrent outbreaks of chikungunya fever. In recent years, outbreaks have afflicted populations in East and Central Africa, South America and Southeast Asia. The virus is transmitted by Aedes aegypti and Aedes albopictus mosquitoes. Chikungunya fever is characterized by severe arthralgia and myalgia that can persist for years and have considerable detrimental effects on health, quality of life and economic productivity. The effects of climate change as well as increased globalization of commerce and travel have led to growth of the habitat of Aedes mosquitoes. As a result, increasing numbers of people will be at risk of chikungunya fever in the coming years. In the absence of specific antiviral treatments and with vaccines still in development, surveillance and vector control are essential to suppress re-emergence and epidemics.
Collapse
Affiliation(s)
- Koen Bartholomeeusen
- Virology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine Antwerp, Antwerp, Belgium
| | - Matthieu Daniel
- Unité de Recherche en Pharmaco-Immunologie (UR-EPI), Université et CHU de La Réunion, Saint-Denis, France
- Service de Médecine d'Urgences-SAMU-SMUR, CHU de La Réunion, Saint-Denis, France
| | - Desiree A LaBeaud
- Department of Pediatrics, Division of Infectious Disease, Stanford University School of Medicine, Stanford, CA, USA
| | - Philippe Gasque
- Unité de Recherche en Pharmaco-Immunologie (UR-EPI), Université et CHU de La Réunion, Saint-Denis, France
- Laboratoire d'Immunologie Clinique et Expérimentale Océan Indien LICE-OI, Université de La Réunion, Saint-Denis, France
| | - Rosanna W Peeling
- Clinical Research Department, London School of Hygiene and Tropical Medicine, London, UK
| | - Kathryn E Stephenson
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Lisa F P Ng
- A*STAR Infectious Diseases Labs, Agency for Science, Technology and Research, Singapore, Singapore
- National Institute of Health Research, Health Protection Research Unit in Emerging and Zoonotic Infections, University of Liverpool, Liverpool, UK
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Kevin K Ariën
- Virology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine Antwerp, Antwerp, Belgium.
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
12
|
Liu J, Lu X, Li X, Huang W, Fang E, Li W, Liu X, Liu M, Li J, Li M, Zhang Z, Song H, Ying B, Li Y. Construction and immunogenicity of an mRNA vaccine against chikungunya virus. Front Immunol 2023; 14:1129118. [PMID: 37006310 PMCID: PMC10050897 DOI: 10.3389/fimmu.2023.1129118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/28/2023] [Indexed: 03/17/2023] Open
Abstract
Chikungunya fever (CHIKF) has spread to more than 100 countries worldwide, with frequent outbreaks in Europe and the Americas in recent years. Despite the relatively low lethality of infection, patients can suffer from long-term sequelae. Until now, no available vaccines have been approved for use; however, increasing attention is being paid to the development of vaccines against chikungunya virus (CHIKV), and the World Health Organization has included vaccine development in the initial blueprint deliverables. Here, we developed an mRNA vaccine using the nucleotide sequence encoding structural proteins of CHIKV. And immunogenicity was evaluated by neutralization assay, Enzyme-linked immunospot assay and Intracellular cytokine staining. The results showed that the encoded proteins elicited high levels of neutralizing antibody titers and T cell-mediated cellular immune responses in mice. Moreover, compared with the wild-type vaccine, the codon-optimized vaccine elicited robust CD8+ T-cell responses and mild neutralizing antibody titers. In addition, higher levels of neutralizing antibody titers and T-cell immune responses were obtained using a homologous booster mRNA vaccine regimen of three different homologous or heterologous booster immunization strategies. Thus, this study provides assessment data to develop vaccine candidates and explore the effectiveness of the prime-boost approach.
Collapse
Affiliation(s)
- Jingjing Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Division of Arboviral Vaccines, National Institutes for Food and Drug Control, Beijing, China
| | - Xishan Lu
- Department of Preclinical Vaccine Research, Suzhou Abogen Biosciences Co., Ltd., Suzhou, China
| | - Xingxing Li
- Division of Arboviral Vaccines, National Institutes for Food and Drug Control, Beijing, China
| | - Weijin Huang
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines, National Institutes for Food and Drug Control, Beijing, China
| | - Enyue Fang
- Division of Arboviral Vaccines, National Institutes for Food and Drug Control, Beijing, China
| | - Wenjuan Li
- Division of Arboviral Vaccines, National Institutes for Food and Drug Control, Beijing, China
| | - Xiaohui Liu
- Division of Arboviral Vaccines, National Institutes for Food and Drug Control, Beijing, China
| | - Minglei Liu
- Division of Arboviral Vaccines, National Institutes for Food and Drug Control, Beijing, China
| | - Jia Li
- Division of Arboviral Vaccines, National Institutes for Food and Drug Control, Beijing, China
| | - Ming Li
- Division of Arboviral Vaccines, National Institutes for Food and Drug Control, Beijing, China
| | - Zelun Zhang
- Division of Arboviral Vaccines, National Institutes for Food and Drug Control, Beijing, China
| | - Haifeng Song
- Department of Preclinical Vaccine Research, Suzhou Abogen Biosciences Co., Ltd., Suzhou, China
| | - Bo Ying
- Department of Preclinical Vaccine Research, Suzhou Abogen Biosciences Co., Ltd., Suzhou, China
- *Correspondence: Yuhua Li, ; Bo Ying,
| | - Yuhua Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Division of Arboviral Vaccines, National Institutes for Food and Drug Control, Beijing, China
- *Correspondence: Yuhua Li, ; Bo Ying,
| |
Collapse
|
13
|
Schmidt C, Schnierle BS. Chikungunya Vaccine Candidates: Current Landscape and Future Prospects. Drug Des Devel Ther 2022; 16:3663-3673. [PMID: 36277603 PMCID: PMC9580835 DOI: 10.2147/dddt.s366112] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 10/15/2022] [Indexed: 11/07/2022] Open
Abstract
Chikungunya virus (CHIKV) is an alphavirus that has spread globally in the last twenty years. Although mortality is rather low, infection can result in debilitating arthralgia that can persist for years. Unfortunately, no treatments or preventive vaccines are currently licensed against CHIKV infections. However, a large range of promising preclinical and clinical vaccine candidates have been developed during recent years. This review will give an introduction into the biology of CHIKV and the immune responses that are induced by infection, and will summarize CHIKV vaccine development.
Collapse
Affiliation(s)
- Christin Schmidt
- Paul-Ehrlich-Institut, Department of Virology, Section AIDS and Newly Emerging Pathogens, Langen, Germany
| | - Barbara S Schnierle
- Paul-Ehrlich-Institut, Department of Virology, Section AIDS and Newly Emerging Pathogens, Langen, Germany,Correspondence: Barbara S Schnierle, Paul-Ehrlich-Institut, Department of Virology, Section AIDS and newly emerging pathogens, Paul-Ehrlich-Strasse 51.59, Langen, 63225, Germany, Tel/Fax +49 6103 77 5504, Email
| |
Collapse
|
14
|
A Review on Chikungunya Virus Epidemiology, Pathogenesis and Current Vaccine Development. Viruses 2022; 14:v14050969. [PMID: 35632709 PMCID: PMC9147731 DOI: 10.3390/v14050969] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/28/2022] [Accepted: 05/03/2022] [Indexed: 12/20/2022] Open
Abstract
Chikungunya virus (CHIKV) is a mosquito-borne alphavirus that recently re-emerged in many parts of the world causing large-scale outbreaks. CHIKV infection presents as a febrile illness known as chikungunya fever (CHIKF). Infection is self-limited and characterized mainly by severe joint pain and myalgia that can last for weeks or months; however, severe disease presentation can also occur in a minor proportion of infections. Among the atypical CHIKV manifestations that have been described, severe arthralgia and neurological complications, such as encephalitis, meningitis, and Guillain–Barré Syndrome, are now reported in many outbreaks. Moreover, death cases were also reported, placing CHIKV as a relevant public health disease. Virus evolution, globalization, and climate change may have contributed to CHIKV spread. In addition to this, the lack of preventive vaccines and approved antiviral treatments is turning CHIKV into a major global health threat. In this review, we discuss the current knowledge about CHIKV pathogenesis, with a focus on atypical disease manifestations, such as persistent arthralgia and neurologic disease presentation. We also bring an up-to-date review of the current CHIKV vaccine development. Altogether, these topics highlight some of the most recent advances in our understanding of CHIKV pathogenesis and also provide important insights into the current development and clinical trials of CHIKV potential vaccine candidates.
Collapse
|
15
|
Ge N, Sun J, Liu Z, Shu J, Yan H, Kou Z, Wei Y, Jin X. An mRNA vaccine encoding Chikungunya virus E2-E1 protein elicits robust neutralizing antibody responses and CTL immune responses. Virol Sin 2022; 37:266-276. [PMID: 35527225 PMCID: PMC9170975 DOI: 10.1016/j.virs.2022.01.032] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 01/24/2022] [Indexed: 10/31/2022] Open
Abstract
Arthropod-borne chikungunya virus (CHIKV) infection can cause a debilitating arthritic disease in human. However, there are no specific antiviral drugs and effective licensed vaccines against CHIKV available for clinical use. Here, we developed an mRNA-lipid nanoparticle (mRNA-LNP) vaccine expressing CHIKV E2-E1 antigen, and compared its immunogenicity with soluble recombinant protein sE2-E1 antigen expressed in S2 cells. For comparison, we first showed that recombinant protein antigens mixed with aluminum adjuvant elicit strong antigen-specific humoral immune response and a moderate cellular immune response in C57BL/6 mice. Moreover, sE2-E1 vaccine stimulated 12–23 folds more neutralizing antibodies than sE1 vaccine and sE2 vaccine. Significantly, when E2-E1 gene was delivered by an mRNA-LNP vaccine, not only the better magnitude of neutralizing antibody responses was induced, but also greater cellular immune responses were generated, especially for CD8+ T cell responses. Moreover, E2-E1-LNP induced CD8+ T cells can perform cytotoxic effect in vivo. Considering its better immunogenicity and convenience of preparation, we suggest that more attention should be placed to develop CHIKV E2-E1-LNP mRNA vaccine. Heterodimer sE2-E1 is a more promising antigen than sE1 or sE2 monomer. CHIKV E2-E1-LNP mRNA vaccine is superior to subunit vaccine sE2-E1. mRNA vaccine elicits robust CTL response but modest CD4+ T cell response.
Collapse
|
16
|
Manzoor KN, Javed F, Ejaz M, Ali M, Mujaddadi N, Khan AA, Khattak AA, Zaib A, Ahmad I, Saeed WK, Manzoor S. The global emergence of Chikungunya infection: An integrated view. Rev Med Virol 2021; 32:e2287. [PMID: 34428335 DOI: 10.1002/rmv.2287] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/08/2021] [Accepted: 08/09/2021] [Indexed: 11/08/2022]
Abstract
Chikungunya virus (CHIKV) is one of the emerging viruses around the globe. It belongs to the family Togaviridae and genus Alphavirus and is an arthropod borne virus that transmits by the bite of an infected mosquito, mainly through Aedes aegypti and Aedes albopcitus. It is a spherical, enveloped virus with positive single stranded RNA genome. It was first discovered during 1952-53 in Tanganyika, after which outbreaks were documented in many regions of the world. CHIKV has two transmission cycles; an enzootic sylvatic cycle and an urban cycle. CHIKV genome contains 11,900 nucleotides and two open reading frames and shows great sequence variability. Molecular mechanisms of virus host-cell interactions and the pathogenesis of disease are not fully understood. The disease involves three phases; acute, post-acute and chronic with symptoms including high-grade fever, arthralgia, macupapular rashes and headache. There is no licensed vaccine or specific treatment for CHIKV infection. This lack of specific interventions combined with difficulties in making a precise diagnosis together make the disease difficult to manage. In this review we aim to present the current knowledge of global epidemiology, transmission, structure, various aspects of diagnosis as well as highlight potential antiviral drugs and vaccines against CHIKV.
Collapse
Affiliation(s)
| | - Farakh Javed
- Department of Biomedical Sciences, Pak-Autria Fachhochschule: Institute of Applied Sciences & Technology, Haripur, Pakistan
| | - Muhammad Ejaz
- Department of Microbiology, The University of Haripur, Haripur, Pakistan
| | - Mubashar Ali
- Department of Microbiology, The University of Haripur, Haripur, Pakistan
| | - Neelam Mujaddadi
- Department of Microbiology, The University of Haripur, Haripur, Pakistan
| | - Abid Ali Khan
- Institute of Precision Medicine, Hochschule Furtwangen University, Furtwangen im Schwarzwald, Germany
| | - Aamer Ali Khattak
- Department of Medical Lab Technology, The University of Haripur, Haripur, Pakistan
| | - Assad Zaib
- Department of Medical Lab Technology, The University of Haripur, Haripur, Pakistan
| | - Ibrar Ahmad
- Center for Human Genetics, Hazara University, Mansehra, Pakistan
| | - Waqar Khalid Saeed
- Department of Biomedical Sciences, Pak-Autria Fachhochschule: Institute of Applied Sciences & Technology, Haripur, Pakistan
| | - Sobia Manzoor
- Atta-ur-Rehman school of applied biosciences, National University of science and Technology, Islamabad, Pakistan
| |
Collapse
|
17
|
Abstract
Chikungunya fever (CHIKF) is an arbovirus disease caused by chikungunya virus (CHIKV), an alphavirus of Togaviridae family. Transmission follows a human-mosquito-human cycle starting with a mosquito bite. Subsequently, symptoms develop after 2-6 days of incubation, including high fever and severe arthralgia. The disease is self-limiting and usually resolve within 2 weeks. However, chronic disease can last up to several years with persistent polyarthralgia. Overlapping symptoms and common vector with dengue and malaria present many challenges for diagnosis and treatment of this disease. CHIKF was reported in India in 1963 for the first time. After a period of quiescence lasting up to 32 years, CHIKV re-emerged in India in 2005. Currently, every part of the country has become endemic for the disease with outbreaks resulting in huge economic and productivity losses. Several mutations have been identified in circulating strains of the virus resulting in better adaptations or increased fitness in the vector(s), effective transmission, and disease severity. CHIKV evolution has been a significant driver of epidemics in India, hence, the need to focus on proper surveillance, and implementation of prevention and control measure in the country. Presently, there are no licensed vaccines or antivirals available; however, India has initiated several efforts in this direction including traditional medicines. In this review, we present the current status of CHIKF in India.
Collapse
|
18
|
Torres-Ruesta A, Chee RSL, Ng LF. Insights into Antibody-Mediated Alphavirus Immunity and Vaccine Development Landscape. Microorganisms 2021; 9:microorganisms9050899. [PMID: 33922370 PMCID: PMC8145166 DOI: 10.3390/microorganisms9050899] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/14/2021] [Accepted: 04/16/2021] [Indexed: 12/11/2022] Open
Abstract
Alphaviruses are mosquito-borne pathogens distributed worldwide in tropical and temperate areas causing a wide range of symptoms ranging from inflammatory arthritis-like manifestations to the induction of encephalitis in humans. Historically, large outbreaks in susceptible populations have been recorded followed by the development of protective long-lasting antibody responses suggesting a potential advantageous role for a vaccine. Although the current understanding of alphavirus antibody-mediated immunity has been mainly gathered in natural and experimental settings of chikungunya virus (CHIKV) infection, little is known about the humoral responses triggered by other emerging alphaviruses. This knowledge is needed to improve serology-based diagnostic tests and the development of highly effective cross-protective vaccines. Here, we review the role of antibody-mediated immunity upon arthritogenic and neurotropic alphavirus infections, and the current research efforts for the development of vaccines as a tool to control future alphavirus outbreaks.
Collapse
Affiliation(s)
- Anthony Torres-Ruesta
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore 138648, Singapore; (A.T.-R.); (R.S.-L.C.)
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
| | - Rhonda Sin-Ling Chee
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore 138648, Singapore; (A.T.-R.); (R.S.-L.C.)
| | - Lisa F.P. Ng
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore 138648, Singapore; (A.T.-R.); (R.S.-L.C.)
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 3BX, UK
- Correspondence: ; Tel.: +65-6407-0028
| |
Collapse
|
19
|
Arthritogenic Alphavirus Capsid Protein. Life (Basel) 2021; 11:life11030230. [PMID: 33799673 PMCID: PMC7999773 DOI: 10.3390/life11030230] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 01/03/2023] Open
Abstract
In the past two decades Old World and arthritogenic alphavirus have been responsible for epidemics of polyarthritis, causing high morbidity and becoming a major public health concern. The multifunctional arthritogenic alphavirus capsid protein is crucial for viral infection. Capsid protein has roles in genome encapsulation, budding and virion assembly. Its role in multiple infection processes makes capsid protein an attractive target to exploit in combating alphaviral infection. In this review, we summarize the function of arthritogenic alphavirus capsid protein, and describe studies that have used capsid protein to develop novel arthritogenic alphavirus therapeutic and diagnostic strategies.
Collapse
|
20
|
Kiesslich S, Kamen AA. Vero cell upstream bioprocess development for the production of viral vectors and vaccines. Biotechnol Adv 2020; 44:107608. [PMID: 32768520 PMCID: PMC7405825 DOI: 10.1016/j.biotechadv.2020.107608] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/28/2020] [Accepted: 07/30/2020] [Indexed: 12/13/2022]
Abstract
The Vero cell line is considered the most used continuous cell line for the production of viral vectors and vaccines. Historically, it is the first cell line that was approved by the WHO for the production of human vaccines. Comprehensive experimental data on the production of many viruses using the Vero cell line can be found in the literature. However, the vast majority of these processes is relying on the microcarrier technology. While this system is established for the large-scale manufacturing of viral vaccine, it is still quite complex and labor intensive. Moreover, scale-up remains difficult and is limited by the surface area given by the carriers. To overcome these and other drawbacks and to establish more efficient manufacturing processes, it is a priority to further develop the Vero cell platform by applying novel bioprocess technologies. Especially in times like the current COVID-19 pandemic, advanced and scalable platform technologies could provide more efficient and cost-effective solutions to meet the global vaccine demand. Herein, we review the prevailing literature on Vero cell bioprocess development for the production of viral vectors and vaccines with the aim to assess the recent advances in bioprocess development. We critically underline the need for further research activities and describe bottlenecks to improve the Vero cell platform by taking advantage of recent developments in the cell culture engineering field.
Collapse
Affiliation(s)
- Sascha Kiesslich
- Department of Bioengineering, McGill University, 817 Sherbrooke Street West, Montreal, Quebec H3A 0C3, Canada
| | - Amine A Kamen
- Department of Bioengineering, McGill University, 817 Sherbrooke Street West, Montreal, Quebec H3A 0C3, Canada.
| |
Collapse
|
21
|
Schrauf S, Tschismarov R, Tauber E, Ramsauer K. Current Efforts in the Development of Vaccines for the Prevention of Zika and Chikungunya Virus Infections. Front Immunol 2020; 11:592. [PMID: 32373111 PMCID: PMC7179680 DOI: 10.3389/fimmu.2020.00592] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 03/13/2020] [Indexed: 01/07/2023] Open
Abstract
Arboviruses represent major challenges to public health, particularly in tropical, and subtropical regions, and a substantial risk to other parts of the world as respective vectors extend their habitats. In recent years, two viruses transmitted by Aedes mosquitoes, Chikungunya and Zika virus, have gathered increased interest. After decades of regionally constrained outbreaks, both viruses have recently caused explosive outbreaks on an unprecedented scale, causing immense suffering and massive economic burdens in affected regions. Chikungunya virus causes an acute febrile illness that often transitions into a chronic manifestation characterized by debilitating arthralgia and/or arthritis in a substantial subset of infected individuals. Zika infection frequently presents as a mild influenza-like illness, often subclinical, but can cause severe complications such as congenital malformations in pregnancy and neurological disorders, including Guillain-Barré syndrome. With no specific treatments or vaccines available, vector control remains the most effective measure to manage spread of these diseases. Given that both viruses cause antibody responses that confer long-term, possibly lifelong protection and that such responses are cross-protective against the various circulating genetic lineages, the development of Zika and Chikungunya vaccines represents a promising route for disease control. In this review we provide a brief overview on Zika and Chikungunya viruses, the etiology and epidemiology of the illnesses they cause and the host immune response against them, before summarizing past and current efforts to develop vaccines to alleviate the burden caused by these emerging diseases. The development of the urgently needed vaccines is hampered by several factors including the unpredictable epidemiology, feasibility of rapid clinical trial implementation during outbreaks and regulatory pathways. We will give an overview of the current developments.
Collapse
|
22
|
Gao S, Song S, Zhang L. Recent Progress in Vaccine Development Against Chikungunya Virus. Front Microbiol 2019; 10:2881. [PMID: 31921059 PMCID: PMC6930866 DOI: 10.3389/fmicb.2019.02881] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 11/29/2019] [Indexed: 01/25/2023] Open
Abstract
Chikungunya fever (CHIKF) is an acute infectious disease that is mediated by the mosquito-transmitted chikungunya virus (CHIKV). People infected with CHIKV may experience high fever, severe joint pain, skin rash, and headache. In recent years, this disease has become a global public health problem. However, there is no licensed vaccine available for CHIKV. Accumulating research data have provided novel approaches and new directions for the development of CHIKV vaccines. Our review focuses on recent progress in CHIKV vaccine studies. The potential vaccine candidates are classified into seven types: inactivated vaccine, subunit vaccine, live-attenuated vaccine, recombinant virus-vectored vaccine, virus-like particle vaccine, chimeric vaccine, and nucleic acid vaccine. These studies will provide important insights into the future development of CHIKV vaccines.
Collapse
Affiliation(s)
- Shan Gao
- Institute of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Siqi Song
- Institute of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Leiliang Zhang
- Institute of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
23
|
Gupta P, Tripathy AS. Alternative pathway of complement activation has a beneficial role against Chandipura virus infection. Med Microbiol Immunol 2019; 209:109-124. [PMID: 31781935 PMCID: PMC7223837 DOI: 10.1007/s00430-019-00648-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 11/19/2019] [Indexed: 12/01/2022]
Abstract
The complement system is a critical component of both innate and adaptive immune responses. It has both protective and pathogenic roles in viral infections. There are no studies regarding the role of complement system in Chandipura virus (CHPV) infection. The current study has investigated the role of complement pathways in the in vitro neutralization of CHPV in Vero E6 cells. Using normal human serum (NHS), heat-inactivated serum (HIS), human serum deficient of complement factor, respective reconstituted serum, assays like in vitro neutralization, real-time PCR, and flow cytometry-based tissue culture-based limited dose assay (TC-LDA) were carried out for assessing the activation of different complement pathways. NHS from 9/10 donors showed complement dependent neutralization, reduction in viral load and decrease in percentage of CHPV-positive cells compared to their HIS counterparts. EGTA or EDTA pretreatment experiments indicated that CHPV neutralization proceeds through the alternative pathway of the complement activation. Our data showed a strong dependence on C3 for the in vitro neutralization of CHPV. Disparity in CHPV neutralization levels between factor B-deficient and reconstituted sera could be attributed to amplification loop/“tick-over” mechanism. Assays using C3, C5, and C8 deficient sera indicated that complement-mediated CHPV neutralization and suppression of CHPV infectivity are primarily through C3 and C5, and not dependent on downstream complement factor C8. With no specific anti-viral treatment/vaccine against Chandipura, the current data, elucidating role of human complement system in the neutralization of CHPV, may help in designing effective therapeutics.
Collapse
Affiliation(s)
- Pooja Gupta
- Hepatitis Group, ICMR-National Institute of Virology, Pune, 130/1, Sus Road, Pashan, Pune, Maharashtra 411021 India
| | - Anuradha S. Tripathy
- Hepatitis Group, ICMR-National Institute of Virology, Pune, 130/1, Sus Road, Pashan, Pune, Maharashtra 411021 India
| |
Collapse
|
24
|
Levi LI, Vignuzzi M. Arthritogenic Alphaviruses: A Worldwide Emerging Threat? Microorganisms 2019; 7:microorganisms7050133. [PMID: 31091828 PMCID: PMC6560413 DOI: 10.3390/microorganisms7050133] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 05/09/2019] [Accepted: 05/10/2019] [Indexed: 12/20/2022] Open
Abstract
Arthritogenic alphaviruses are responsible for a dengue-like syndrome associated with severe debilitating polyarthralgia that can persist for months or years and impact life quality. Chikungunya virus is the most well-known member of this family since it was responsible for two worldwide epidemics with millions of cases in the last 15 years. However, other arthritogenic alphaviruses that are as of yet restrained to specific territories are the cause of neglected tropical diseases: O'nyong'nyong virus in Sub-Saharan Africa, Mayaro virus in Latin America, and Ross River virus in Australia and the Pacific island countries and territories. This review evaluates their emerging potential in light of the current knowledge for each of them and in comparison to chikungunya virus.
Collapse
Affiliation(s)
- Laura I Levi
- Populations Virales et Pathogenèse, Institut Pasteur, CNRS UMR 3569, 75015 Paris, France.
- Ecole doctorale BioSPC, Université Paris Diderot, Sorbonne Paris Cité, 75013 Paris, France.
| | - Marco Vignuzzi
- Populations Virales et Pathogenèse, Institut Pasteur, CNRS UMR 3569, 75015 Paris, France.
| |
Collapse
|
25
|
Rezza G, Weaver SC. Chikungunya as a paradigm for emerging viral diseases: Evaluating disease impact and hurdles to vaccine development. PLoS Negl Trop Dis 2019; 13:e0006919. [PMID: 30653504 PMCID: PMC6336248 DOI: 10.1371/journal.pntd.0006919] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Chikungunya fever (CHIKF) is an emerging infectious disease caused by an alphavirus transmitted by Aedes spp. mosquitoes. Because mosquito control programs are not highly efficient for outbreak containment, vaccines are essential to reduce the burden of disease. Although no licensed vaccine against CHIKF is yet available, many highly promising candidates are undergoing preclinical studies, and a few of them have been tested in human trials of phase 1 or 2. Here, we review recent findings regarding the need for a CHIKF vaccine and provide an update on vaccines nearing or having entered clinical trials. We also address needs to tackle bottlenecks to vaccine development—including scientific and financial barriers—and to accelerate the development of vaccines; several actions should be taken: (i) design efficacy trials to be conducted during the course of outbreaks; (ii) evaluate the opportunity for adopting the “animal rule”for demonstration of efficacy for regulatory purposes; (iii) strengthen the collective commitment of nations, international organizations, potential donors and industry; (iv) stimulate public and/or private partnerships to invest in vaccine development and licensure; and (v) identify potential markets for an effective and safe CHIKF vaccine.
Collapse
Affiliation(s)
- Giovanni Rezza
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Scott C. Weaver
- Institute for Human Infections and Immunity and Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
- * E-mail:
| |
Collapse
|
26
|
Abstract
Chikungunya is a clinically and economically important arbovirus that has spread globally in the twenty-first century. While uncommonly fatal, infection with the virus can lead to incapacitating arthralgia that can persist for months to years. The adverse impacts of viral spread are most severe in developing low- and middle-income countries in which medical infrastructure is insufficient and manual labor is an economic driver. Unfortunately, no prophylactic or therapeutic treatments are approved for human use to combat the virus. Historically, vaccination has proven to be the most efficient and successful strategy for protecting populations and eradicating infectious disease. A large and diverse range of promising vaccination approaches for use against Chikungunya has emerged in recent years and been shown to safely elicit protective immune responses in animal models and humans. Importantly, many of these are based on technologies that have been clinically approved for use against other pathogens. Furthermore, clinical trials are currently ongoing for a subset of these. The purpose of this review is to provide a description of the relevant immunobiology of Chikungunya infection, to present immune-stimulating technologies that have been successfully employed to protect against infection, and discuss priorities and challenges regarding the future development of a vaccine for clinical use.
Collapse
|
27
|
Goyal M, Chauhan A, Goyal V, Jaiswal N, Singh S, Singh M. Recent development in the strategies projected for chikungunya vaccine in humans. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:4195-4206. [PMID: 30573950 PMCID: PMC6292406 DOI: 10.2147/dddt.s181574] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The unprecedented epidemic spread of chikungunya worldwide illustrates the critical need for potent vaccines and therapeutic interventions. The morbidity and mortality associated with this arboviral infection has become a major public health problem in many countries across different continents. Increasing public–private partnerships have opened new avenues in research and development of vaccines. This review mainly focuses on the recent advances in patented approaches for chikungunya vaccine development and the forthcoming challenges.
Collapse
Affiliation(s)
- Manu Goyal
- Department of Pediatrics, Postgraduate Institute of Medical Education and Research, Chandigarh, India,
| | - Anil Chauhan
- Indian Council of Medical Research Advanced Centre for Evidence Based Child Health, Postgraduate Institute of Medical Education and Research, Chandigarh, India,
| | | | - Nishant Jaiswal
- Department of Pediatrics, Postgraduate Institute of Medical Education and Research, Chandigarh, India, .,Indian Council of Medical Research Advanced Centre for Evidence Based Child Health, Postgraduate Institute of Medical Education and Research, Chandigarh, India,
| | - Shreya Singh
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Meenu Singh
- Department of Pediatrics, Postgraduate Institute of Medical Education and Research, Chandigarh, India, .,Indian Council of Medical Research Advanced Centre for Evidence Based Child Health, Postgraduate Institute of Medical Education and Research, Chandigarh, India,
| |
Collapse
|
28
|
Silva JVJ, Ludwig-Begall LF, Oliveira-Filho EFD, Oliveira RAS, Durães-Carvalho R, Lopes TRR, Silva DEA, Gil LHVG. A scoping review of Chikungunya virus infection: epidemiology, clinical characteristics, viral co-circulation complications, and control. Acta Trop 2018; 188:213-224. [PMID: 30195666 PMCID: PMC7092809 DOI: 10.1016/j.actatropica.2018.09.003] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 09/02/2018] [Accepted: 09/03/2018] [Indexed: 02/07/2023]
Abstract
Chikungunya fever is a mosquito-borne viral illness characterized by a sudden onset of fever associated with joint pains. It was first described in the 1950s during a Chikungunya virus (CHIKV) outbreak in southern Tanzania and has since (re-) emerged and spread to several other geographical areas, reaching large populations and causing massive epidemics. In recent years, CHIKV has gained considerable attention due to its quick spread to the Caribbean and then in the Americas, with many cases reported between 2014 and 2017. CHIKV has further garnered attention due to the clinical diagnostic difficulties when Zika (ZIKV) and dengue (DENV) viruses are simultaneously present. In this review, topical CHIKV-related issues, such as epidemiology and transmission, are examined. The different manifestations of infection (acute, chronic and atypical) are described and a particular focus is placed upon the diagnostic handling in the case of ZIKV and DENV co-circulating. Natural and synthetic compounds under evaluation for treatment of chikungunya disease, including drugs already licensed for other purposes, are also discussed. Finally, previous and current vaccine strategies, as well as the control of the CHIKV transmission through an integrated vector management, are reviewed in some detail.
Collapse
Affiliation(s)
- José V J Silva
- Oswaldo Cruz Foundation, Aggeu Magalhães Institute, Department of Virology, Recife, PE, Brazil; Federal University of Santa Maria, Department of Preventive Veterinary Medicine, Virology Section, Santa Maria, RS, Brazil.
| | - Louisa F Ludwig-Begall
- Liège University, Faculty of Veterinary Medicine, Department of Infectious and Parasitic Diseases, Belgium
| | | | - Renato A S Oliveira
- Federal University of Paraíba, Department of Fisiology and Pathology, João Pessoa, PB, Brazil
| | - Ricardo Durães-Carvalho
- Oswaldo Cruz Foundation, Aggeu Magalhães Institute, Department of Virology, Recife, PE, Brazil
| | - Thaísa R R Lopes
- Federal University of Pernambuco, Laboratory of Immunopathology Keizo Asami, Virology Section, Recife, PE, Brazil
| | - Daisy E A Silva
- Oswaldo Cruz Foundation, Aggeu Magalhães Institute, Department of Virology, Recife, PE, Brazil
| | - Laura H V G Gil
- Oswaldo Cruz Foundation, Aggeu Magalhães Institute, Department of Virology, Recife, PE, Brazil.
| |
Collapse
|
29
|
Milligan GN, Schnierle BS, McAuley AJ, Beasley DWC. Defining a correlate of protection for chikungunya virus vaccines. Vaccine 2018; 37:7427-7436. [PMID: 30448337 DOI: 10.1016/j.vaccine.2018.10.033] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 10/08/2018] [Indexed: 12/22/2022]
Abstract
Chikungunya virus infection causes a debilitating febrile illness that in many affected individuals is associated with long-term sequelae that can persist for months or years. Over the past decade a large number of candidate vaccines have been developed, several of which have now entered clinical trials. The rapid and sporadic nature of chikungunya outbreaks poses challenges for planning of large clinical efficacy trials suggesting that licensure of chikungunya vaccines may utilize non-traditional approval pathways based on identification of immunological endpoint(s) predictive of clinical benefit. This report reviews the current status of nonclinical and clinical testing and potential challenges for defining a suitable surrogate or correlate of protection.
Collapse
Affiliation(s)
- Gregg N Milligan
- WHO Collaborating Center for Vaccine Research, Evaluation and Training on Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX, USA; Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX, USA; Department of Pediatrics, University of Texas Medical Branch, Galveston, TX, USA
| | - Barbara S Schnierle
- WHO Collaborating Center for Standardization and Evaluation of Vaccines, Paul Ehrlich Institut, Langen, Germany; Section AIDS, New and Emerging Pathogens, Virology Division, Paul Ehrlich Institut, Langen, Germany
| | - Alexander J McAuley
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - David W C Beasley
- WHO Collaborating Center for Vaccine Research, Evaluation and Training on Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX, USA; Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX, USA; Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|
30
|
Tanabe ISB, Tanabe ELL, Santos EC, Martins WV, Araújo IMTC, Cavalcante MCA, Lima ARV, Câmara NOS, Anderson L, Yunusov D, Bassi ÊJ. Cellular and Molecular Immune Response to Chikungunya Virus Infection. Front Cell Infect Microbiol 2018; 8:345. [PMID: 30364124 PMCID: PMC6191487 DOI: 10.3389/fcimb.2018.00345] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 09/11/2018] [Indexed: 11/13/2022] Open
Abstract
Chikungunya virus (CHIKV) is a re-emergent arthropod-borne virus (arbovirus) that causes a disease characterized primarily by fever, rash and severe persistent polyarthralgia. In the last decade, CHIKV has become a serious public health problem causing several outbreaks around the world. Despite the fact that CHIKV has been around since 1952, our knowledge about immunopathology, innate and adaptive immune response involved in this infectious disease is incomplete. In this review, we provide an updated summary of the current knowledge about immune response to CHIKV and about soluble immunological markers associated with the morbidity, prognosis and chronicity of this arbovirus disease. In addition, we discuss the progress in the research of new vaccines for preventing CHIKV infection and the use of monoclonal antibodies as a promising therapeutic strategy.
Collapse
Affiliation(s)
- Ithallo S B Tanabe
- IMUNOREG-Grupo de Pesquisa em Regulação da Resposta Imune, Laboratório de Pesquisas em Virologia e Imunologia, Instituto de Ciências Biológicas e da Saúde, Universidade Federal de Alagoas, Maceió, Brazil
| | - Eloiza L L Tanabe
- IMUNOREG-Grupo de Pesquisa em Regulação da Resposta Imune, Laboratório de Pesquisas em Virologia e Imunologia, Instituto de Ciências Biológicas e da Saúde, Universidade Federal de Alagoas, Maceió, Brazil
| | - Elane C Santos
- IMUNOREG-Grupo de Pesquisa em Regulação da Resposta Imune, Laboratório de Pesquisas em Virologia e Imunologia, Instituto de Ciências Biológicas e da Saúde, Universidade Federal de Alagoas, Maceió, Brazil
| | - Wanessa V Martins
- IMUNOREG-Grupo de Pesquisa em Regulação da Resposta Imune, Laboratório de Pesquisas em Virologia e Imunologia, Instituto de Ciências Biológicas e da Saúde, Universidade Federal de Alagoas, Maceió, Brazil
| | - Isadora M T C Araújo
- IMUNOREG-Grupo de Pesquisa em Regulação da Resposta Imune, Laboratório de Pesquisas em Virologia e Imunologia, Instituto de Ciências Biológicas e da Saúde, Universidade Federal de Alagoas, Maceió, Brazil
| | - Maria C A Cavalcante
- IMUNOREG-Grupo de Pesquisa em Regulação da Resposta Imune, Laboratório de Pesquisas em Virologia e Imunologia, Instituto de Ciências Biológicas e da Saúde, Universidade Federal de Alagoas, Maceió, Brazil
| | - Ana R V Lima
- IMUNOREG-Grupo de Pesquisa em Regulação da Resposta Imune, Laboratório de Pesquisas em Virologia e Imunologia, Instituto de Ciências Biológicas e da Saúde, Universidade Federal de Alagoas, Maceió, Brazil
| | - Niels O S Câmara
- Laboratório de Imunobiologia dos Transplantes, Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Leticia Anderson
- IMUNOREG-Grupo de Pesquisa em Regulação da Resposta Imune, Laboratório de Pesquisas em Virologia e Imunologia, Instituto de Ciências Biológicas e da Saúde, Universidade Federal de Alagoas, Maceió, Brazil.,Centro Universitário CESMAC, Maceió, Brazil
| | - Dinar Yunusov
- Cold Spring Harbor Laboratory, Genome Research Center, Woodbury, NY, United States
| | - Ênio J Bassi
- IMUNOREG-Grupo de Pesquisa em Regulação da Resposta Imune, Laboratório de Pesquisas em Virologia e Imunologia, Instituto de Ciências Biológicas e da Saúde, Universidade Federal de Alagoas, Maceió, Brazil
| |
Collapse
|
31
|
Patterson EI, Warmbrod KL, Bouyer DH, Forrester NL. Evaluation of the inactivation of Venezuelan equine encephalitis virus by several common methods. J Virol Methods 2018; 254:31-34. [PMID: 29407211 DOI: 10.1016/j.jviromet.2018.01.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 01/22/2018] [Accepted: 01/22/2018] [Indexed: 12/11/2022]
Abstract
Working with virological samples requires validated inactivation protocols for safe handling and disposal. Although many techniques exist to inactivate samples containing viruses, not all procedures have been properly validated or are compatible with subsequent assays. To aid in the development of inactivation protocols for Alphaviruses, and specifically Venezuelan equine encephalitis virus (VEEV), a variety of methods were evaluated for their ability to completely inactivate a high titer sample of the vaccine strain VEEV TC-83. The methods evaluated include reagents used in RNA extraction, fixation, treatment with a detergent, and heat inactivation. Most methods were successful at inactivating the sample; however, treatment with only Buffer AVL, SDS, and heat inactivation at 58 °C for one hour were not capable of complete inactivation of the virus in the sample. These results provide a substantial framework for identifying techniques that are safe for complete inactivation of Alphaviruses and to advise protocol implementation.
Collapse
Affiliation(s)
- Edward I Patterson
- Institute for Human Infections and Immunity, Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA.
| | - Kelsey L Warmbrod
- Institute for Human Infections and Immunity, Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Donald H Bouyer
- Institute for Human Infections and Immunity, Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Naomi L Forrester
- Institute for Human Infections and Immunity, Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
32
|
|
33
|
Abstract
Beginning in 2004, chikungunya virus (CHIKV) went from an endemic pathogen limited to Africa and Asia that caused periodic outbreaks to a global pathogen. Given that outbreaks caused by CHIKV have continued and expanded, serious consideration must be given to identifying potential options for vaccines and therapeutics. Currently, there are no licensed products in this realm, and control relies completely on the use of personal protective measures and integrated vector control, which are only minimally effective. Therefore, it is prudent to urgently examine further possibilities for control. Vaccines have been shown to be highly effective against vector-borne diseases. However, as CHIKV is known to rapidly spread and generate high attack rates, therapeutics would also be highly valuable. Several candidates are currently being developed; this review describes the multiple options under consideration for future development and assesses their relative advantages and disadvantages.
Collapse
|
34
|
Abstract
To date, there have been several million infections by the Chikungunya virus (CHIKV), a mosquito-transmitted emerging pathogen that is considered to be taxonomically an Old World RNA virus. Although original CHIKV outbreaks were restricted to India, East Asian countries, Northern Italy, and France, a recent sharp rise had been identified in 41 countries or territories in the Caribbean, Central America, South America, and North America. A total of 1,012,347 suspected and 22,579 laboratory-confirmed CHIKV cases have been reported from these areas, which signals an increasing risk to the US mainland. Unlike past epidemics that were usually associated with Ae. aegypti transmission, the Caribbean outbreak was associated with Ae. albopictus transmission as the principal mosquito vector. In addition, the substantial increase in the number of deaths during this epidemic, as well as incidence of neurologic disease, suggests that CHIKV may have become more virulent. Currently, there are no licensed vaccines or therapeutics available for CHIKV or its associated disease pathologies. Therefore, development of new vaccines and therapies that could confer immunity and/or treat clinical symptoms of CHIKV is greatly desired. This chapter describes the use of entirely cutting edge technologies/methodologies developed by our group for the development and evaluation of novel DNA vaccines against CHIKV.
Collapse
|
35
|
Schwameis M, Buchtele N, Wadowski PP, Schoergenhofer C, Jilma B. Chikungunya vaccines in development. Hum Vaccin Immunother 2017; 12:716-31. [PMID: 26554522 PMCID: PMC4964651 DOI: 10.1080/21645515.2015.1101197] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Chikungunya virus has become a global health threat, spreading to the industrial world of Europe and the Americas; no treatment or prophylactic vaccine is available. Since the late 1960s much effort has been put into the development of a vaccine, and several heterogeneous strategies have already been explored. Only two candidates have recently qualified to enter clinical phase II trials, a chikungunya virus-like particle-based vaccine and a recombinant live attenuated measles virus-vectored vaccine. This review focuses on the current status of vaccine development against chikungunya virus in humans and discusses the diversity of immunization strategies, results of recent human trials and promising vaccine candidates.
Collapse
Affiliation(s)
- Michael Schwameis
- a Departments of Clinical Pharmacology and Internal Medicine I , Medical University of Vienna , Vienna , Austria
| | - Nina Buchtele
- a Departments of Clinical Pharmacology and Internal Medicine I , Medical University of Vienna , Vienna , Austria
| | - Patricia Pia Wadowski
- a Departments of Clinical Pharmacology and Internal Medicine I , Medical University of Vienna , Vienna , Austria
| | | | - Bernd Jilma
- a Departments of Clinical Pharmacology and Internal Medicine I , Medical University of Vienna , Vienna , Austria
| |
Collapse
|
36
|
Abstract
Chikungunya virus (CHIKV) is a mosquito-borne alphavirus in the family Togaviridae that causes outbreaks of debilitating acute and chronic arthralgia in humans. Although historically associated with localized outbreaks in Africa and Asia, recent epidemics in the Indian Ocean region and the Americas have led to the recognition that CHIKV is capable of moving into previously unaffected areas and causing significant levels of human suffering. The severity of CHIKV rheumatic disease, which can severely impact life quality of infected individuals for weeks, months, or even years, combined with the explosive nature of CHIKV outbreaks and its demonstrated ability to quickly spread into new regions, has led to renewed interest in developing strategies for the prevention or treatment of CHIKV-induced disease. Therefore, this chapter briefly discusses the biology of CHIKV and the factors contributing to CHIKV dissemination, while also discussing the pathogenesis of CHIKV-induced disease and summarizing the status of efforts to develop safe and effective therapies and vaccines against CHIKV and related viruses.
Collapse
|
37
|
DeZure AD, Berkowitz NM, Graham BS, Ledgerwood JE. Whole-Inactivated and Virus-Like Particle Vaccine Strategies for Chikungunya Virus. J Infect Dis 2017; 214:S497-S499. [PMID: 27920180 DOI: 10.1093/infdis/jiw352] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Chikungunya virus (CHIKV) is a global public health threat, having been identified in >60 countries in Asia, Africa, Europe, and the Americas. There is no cure for or licensed vaccine against CHIKV infection. Initial attempts at CHIKV vaccine development began in the early 1960s. Whole-inactivated and virus-like particle (VLP) vaccines are 2 of the current approaches being evaluated. Success of these approaches is dependent on a safe, well-tolerated vaccine that is immunogenic and deployable in regard to manufacturing, stability, and delivery characteristics.
Collapse
Affiliation(s)
- Adam D DeZure
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Nina M Berkowitz
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Barney S Graham
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Julie E Ledgerwood
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
38
|
Abstract
Chikungunya fever, an acute and often chronic arthralgic disease caused by the mosquito-borne chikungunya virus (CHIKV), has reemerged since 2004 to cause millions of cases. Because CHIKV exhibits limited antigenic diversity and is not known to be capable of reinfection, a vaccine could serve to both prevent disease and diminish human amplification during epidemic circulation. Here, we review the many promising vaccine platforms and candidates developed for CHIKV since the 1970s, including several in late preclinical or clinical development. We discuss the advantages and limitations of each, as well as the commercial and regulatory challenges to bringing a vaccine to market.
Collapse
Affiliation(s)
- Jesse H Erasmus
- Institute for Human Infections and Immunity.,Institute for Translational Science.,Sealy Center for Vaccine Development.,Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston
| | - Shannan L Rossi
- Institute for Human Infections and Immunity.,Institute for Translational Science.,Sealy Center for Vaccine Development.,Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston
| | - Scott C Weaver
- Institute for Human Infections and Immunity.,Institute for Translational Science.,Sealy Center for Vaccine Development.,Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston
| |
Collapse
|
39
|
Erasmus JH, Auguste AJ, Kaelber JT, Luo H, Rossi SL, Fenton K, Leal G, Kim DY, Chiu W, Wang T, Frolov I, Nasar F, Weaver SC. A chikungunya fever vaccine utilizing an insect-specific virus platform. Nat Med 2016; 23:192-199. [PMID: 27991917 DOI: 10.1038/nm.4253] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 11/10/2016] [Indexed: 12/19/2022]
Abstract
Traditionally, vaccine development involves tradeoffs between immunogenicity and safety. Live-attenuated vaccines typically offer rapid and durable immunity but have reduced safety when compared to inactivated vaccines. In contrast, the inability of inactivated vaccines to replicate enhances safety at the expense of immunogenicity, often necessitating multiple doses and boosters. To overcome these tradeoffs, we developed the insect-specific alphavirus, Eilat virus (EILV), as a vaccine platform. To address the chikungunya fever (CHIKF) pandemic, we used an EILV cDNA clone to design a chimeric virus containing the chikungunya virus (CHIKV) structural proteins. The recombinant EILV/CHIKV was structurally identical at 10 Å to wild-type CHIKV, as determined by single-particle cryo-electron microscopy, and it mimicked the early stages of CHIKV replication in vertebrate cells from attachment and entry to viral RNA delivery. Yet the recombinant virus remained completely defective for productive replication, providing a high degree of safety. A single dose of EILV/CHIKV produced in mosquito cells elicited rapid (within 4 d) and long-lasting (>290 d) neutralizing antibodies that provided complete protection in two different mouse models. In nonhuman primates, EILV/CHIKV elicited rapid and robust immunity that protected against viremia and telemetrically monitored fever. Our EILV platform represents the first structurally native application of an insect-specific virus in preclinical vaccine development and highlights the potential application of such viruses in vaccinology.
Collapse
Affiliation(s)
- Jesse H Erasmus
- Institute for Translational Science, University of Texas Medical Branch, Galveston, Texas, USA.,Institute of Human Infections and Immunity, and Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, Texas, USA
| | - Albert J Auguste
- Institute of Human Infections and Immunity, and Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, Texas, USA.,Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Jason T Kaelber
- National Center for Macromolecular Imaging, Verna and Marrs McLean Department of Biochemistry and Molecular Biology and Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Huanle Luo
- Institute of Human Infections and Immunity, and Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, Texas, USA
| | - Shannan L Rossi
- Institute of Human Infections and Immunity, and Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, Texas, USA.,Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Karla Fenton
- Institute of Human Infections and Immunity, and Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, Texas, USA
| | - Grace Leal
- Institute of Human Infections and Immunity, and Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, Texas, USA
| | - Dal Y Kim
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Wah Chiu
- National Center for Macromolecular Imaging, Verna and Marrs McLean Department of Biochemistry and Molecular Biology and Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Tian Wang
- Institute of Human Infections and Immunity, and Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, Texas, USA
| | - Ilya Frolov
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Farooq Nasar
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, USA
| | - Scott C Weaver
- Institute for Translational Science, University of Texas Medical Branch, Galveston, Texas, USA.,Institute of Human Infections and Immunity, and Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, Texas, USA.,Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA.,Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| |
Collapse
|
40
|
Rezza G. Vaccines against chikungunya, Zika and other emerging Aedes mosquito-borne viruses: unblocking existing bottlenecks. Future Virol 2016. [DOI: 10.2217/fvl-2016-0067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The emergence of Aedes mosquito-borne viral diseases is a global public health challenge. Since mosquito control programs are not highly efficient for outbreak containment, vaccines are essential to limit disease burden. Besides yellow fever vaccines, a vaccine against dengue is now available, while research on vaccines against Zika has just started. Several vaccine candidates against chikungunya are undergoing preclinical studies, and few of them have been tested in Phase II trials. To overcome hurdles and speed-up the development of vaccines against these viral diseases, several actions should be planned: first, the ‘animal rule’ could be considered for regulatory purposes; second, public–private partnership should be stimulated; third, countries, international organizations and donors commitment should be strengthened, and potential markets identified.
Collapse
Affiliation(s)
- Giovanni Rezza
- Department of Infectious Diseases, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00142 Roma, Italy
| |
Collapse
|
41
|
Saraswat S, Athmaram TN, Parida M, Agarwal A, Saha A, Dash PK. Expression and Characterization of Yeast Derived Chikungunya Virus Like Particles (CHIK-VLPs) and Its Evaluation as a Potential Vaccine Candidate. PLoS Negl Trop Dis 2016; 10:e0004782. [PMID: 27399001 PMCID: PMC4939942 DOI: 10.1371/journal.pntd.0004782] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 05/25/2016] [Indexed: 12/17/2022] Open
Abstract
Chikungunya virus (CHIKV) has emerged as a global health concern due to its recent spread in both old and new world. So far, no CHIKV specific drug or vaccine is licensed for human use. In this study, we report production of Chikungunya virus like particles (CHIK-VLPs) using novel yeast expression system (Pichia pastoris) and its evaluation as vaccine candidate. The gene encoding structural polyprotein of CHIKV from a recent epidemic strain was cloned into yeast expression system. The multicopy integrants were processed for expression of CHIK-VLPs. The VLPs were purified and confirmed through electron microscopic analysis for their morphological identity with CHIKV. The in vitro and in vivo evaluation of CHIK-VLPs as vaccine candidate was determined in Balb/c mice. Induction of both humoral and cellular immune response was observed with different doses of CHIK-VLPs. The humoral immune response was studied through different techniques like enzyme linked immunosorbent assay, IgG Isotyping and plaque reduction neutralization test. CHIK-VLPs were found to elicit high titer of antibodies that are able to recognize native CHIKV. Higher level of IgG2a and IgG1 subtypes was identified suggestive of balanced Th1/Th2 response. Both in vitro and in vivo neutralization activity of CHIK-VLPs antibodies was observed even with low concentration, which shows its high specificity and neutralizing activity against two different CHIKV strains. Neonatal mice receiving anti-CHIK-VLPs antibodies were protected from CHIKV challenge. Induction of cellular immune response was confirmed through higher level of TNF-α, IL-10 and substantial level of IL-2, IL-4 and IFN-γ indicating a balanced response. This is the first report, where CHIK-VLPs has been expressed by Pichia pastoris and evaluated for neutralizing activity against CHIKV. These promising results indicate the utility of CHIK-VLPs as a promising vaccine candidate against emerging CHIKV. Chikungunya virus (CHIKV) has emerged in many parts of tropics in last decade. The absence of an approved vaccine or antiviral drug for CHIKV makes it one of the important public health challenges. Though attempt to develop a CHIKV vaccine was initiated in 1980s, however it has not succeeded so far. The Virus like particles (VLPs) are now explored as promising vaccine candidate against many viruses viz. HBV, HPV etc. In this study, we report the production of CHIK-VLPs using novel yeast expression system (Pichia pastoris) and its evaluation as vaccine candidate. These CHIK-VLPs share morphological identity to native CHIKV. The results indicate that CHIK-VLPs induced both cell mediated as well as humoral response in a balanced manner, which fulfils its criteria as a potent immunogen. Further, antibodies generated against CHIK-VLPs demonstrated efficient in vitro and in vivo neutralization activity, as evaluated through plaque reduction in Vero cells and protection in CHIKV infected neonatal mice respectively using two different CHIKV strains, which makes it a promising vaccine candidate. The yeast expressed CHIK-VLPs has high potential for development of an effective vaccine candidate against CHIKV during epidemic situations.
Collapse
Affiliation(s)
- Shweta Saraswat
- Virology Division, Defense Research and Development Establishment, Gwalior, India
| | - T. N. Athmaram
- Virology Division, Defense Research and Development Establishment, Gwalior, India
| | - Manmohan Parida
- Virology Division, Defense Research and Development Establishment, Gwalior, India
| | - Ankita Agarwal
- Virology Division, Defense Research and Development Establishment, Gwalior, India
| | - Amrita Saha
- Virology Division, Defense Research and Development Establishment, Gwalior, India
| | - Paban Kumar Dash
- Virology Division, Defense Research and Development Establishment, Gwalior, India
- * E-mail: ;
| |
Collapse
|
42
|
Ahola T, Couderc T, Courderc T, Ng LFP, Hallengärd D, Powers A, Lecuit M, Esteban M, Merits A, Roques P, Liljeström P. Therapeutics and vaccines against chikungunya virus. Vector Borne Zoonotic Dis 2016; 15:250-7. [PMID: 25897811 DOI: 10.1089/vbz.2014.1681] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Currently, there are no licensed vaccines or therapies available against chikungunya virus (CHIKV), and these were subjects discussed during a CHIKV meeting recently organized in Langkawi, Malaysia. In this review, we chart the approaches taken in both areas. Because of a sharp increase in new data in these fields, the present paper is complementary to previous reviews by Weaver et al. in 2012 and Kaur and Chu in 2013 . The most promising antivirals so far discovered are reviewed, with a special focus on the virus-encoded replication proteins as potential targets. Within the vaccines in development, our review emphasizes the various strategies in parallel development that are unique in the vaccine field against a single disease.
Collapse
Affiliation(s)
- Tero Ahola
- 1 Department of Food and Environmental Sciences, University of Helsinki , Helsinki, Finland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Next generation sequencing of DNA-launched Chikungunya vaccine virus. Virology 2016; 490:83-90. [PMID: 26855330 DOI: 10.1016/j.virol.2016.01.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 01/11/2016] [Accepted: 01/13/2016] [Indexed: 11/22/2022]
Abstract
Chikungunya virus (CHIKV) represents a pandemic threat with no approved vaccine available. Recently, we described a novel vaccination strategy based on iDNA® infectious clone designed to launch a live-attenuated CHIKV vaccine from plasmid DNA in vitro or in vivo. As a proof of concept, we prepared iDNA plasmid pCHIKV-7 encoding the full-length cDNA of the 181/25 vaccine. The DNA-launched CHIKV-7 virus was prepared and compared to the 181/25 virus. Illumina HiSeq2000 sequencing revealed that with the exception of the 3' untranslated region, CHIKV-7 viral RNA consistently showed a lower frequency of single-nucleotide polymorphisms than the 181/25 RNA including at the E2-12 and E2-82 residues previously identified as attenuating mutations. In the CHIKV-7, frequencies of reversions at E2-12 and E2-82 were 0.064% and 0.086%, while in the 181/25, frequencies were 0.179% and 0.133%, respectively. We conclude that the DNA-launched virus has a reduced probability of reversion mutations, thereby enhancing vaccine safety.
Collapse
|
44
|
Deeba F, Islam A, Kazim SN, Naqvi IH, Broor S, Ahmed A, Parveen S. Chikungunya virus: recent advances in epidemiology, host pathogen interaction and vaccine strategies. Pathog Dis 2015; 74:ftv119. [PMID: 26657109 DOI: 10.1093/femspd/ftv119] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/05/2015] [Indexed: 12/22/2022] Open
Abstract
The Chikungunya virus is a re-emerging alphavirus that belongs to the family Togaviridae. The symptoms include fever, rashes, nausea and joint pain that may last for months. The laboratory diagnosis of the infection is based on the serologic assays, virus isolation and molecular methods. The pathogenesis of the Chikungunya viral infection is not completely understood. Some of the recent investigations have provided information on replication of the virus in various cells and organs. In addition, some recent reports have indicated that the severity of the disease is correlated with the viral load and cytokines. The Chikungunya virus infection re-emerged as an explosive epidemic during 2004-09 affecting millions of people in the Indian Ocean. Subsequent global attention was given to research on this viral pathogen due to its broad area of geographical distribution during this epidemic. Chikungunya viral infection has become a challenge for the public health system because of the absence of a vaccine as well as antiviral drugs. A number of potential vaccine candidates have been tested on humans and animal models during clinical and preclinical trials. In this review, we mainly discuss the host-pathogen relationship, epidemiology and recent advances in the development of drugs and vaccines for the Chikungunya viral infection.
Collapse
Affiliation(s)
- Farah Deeba
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Syed Naqui Kazim
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | | | - Shobha Broor
- Department of Microbiology, SGT University, Gurgaon 122001, Haryana, India
| | - Anwar Ahmed
- Protein Research Chair, Department of Biochemistry, King Saud University, Riyadh 11451, Saudi Arabia
| | - Shama Parveen
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| |
Collapse
|
45
|
Goh LYH, Kam YW, Metz SW, Hobson-Peters J, Prow NA, McCarthy S, Smith DW, Pijlman GP, Ng LFP, Hall RA. A sensitive epitope-blocking ELISA for the detection of Chikungunya virus-specific antibodies in patients. J Virol Methods 2015; 222:55-61. [PMID: 26025459 DOI: 10.1016/j.jviromet.2015.05.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 05/25/2015] [Accepted: 05/25/2015] [Indexed: 01/09/2023]
Abstract
Chikungunya fever (CHIKF) has re-emerged as an arboviral disease that mimics clinical symptoms of other diseases such as dengue, malaria, as well as other alphavirus-related illnesses leading to problems with definitive diagnosis of the infection. Herein we describe the development and evaluation of a sensitive epitope-blocking ELISA (EB-ELISA) capable of specifically detecting anti-chikungunya virus (CHIKV) antibodies in clinical samples. The assay uses a monoclonal antibody (mAb) that binds an epitope on the E2 protein of CHIKV and does not exhibit cross-reactivity to other related alphaviruses. We also demonstrated the use of recombinant CHIK virus-like particles (VLPs) as a safe alternative antigen to infectious virions in the assay. Based on testing of 60 serum samples from patients in the acute or convalescent phase of CHIKV infection, the EB-ELISA provided us with 100% sensitivity, and exhibited 98.5% specificity when Ross River virus (RRV)- or Barmah Forest virus (BFV)-immune serum samples were included. This assay meets the public health demands of a rapid, robust, sensitive and specific, yet simple assay for specifically diagnosing CHIK-infections in humans.
Collapse
Affiliation(s)
- Lucas Y H Goh
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia 4072, QLD, Australia
| | - Yiu-Wing Kam
- Laboratory of Microbial Immunity, Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore 138648, Singapore
| | - Stefan W Metz
- Laboratory of Virology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Jody Hobson-Peters
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia 4072, QLD, Australia
| | - Natalie A Prow
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia 4072, QLD, Australia
| | - Suzi McCarthy
- School of Pathology and Laboratory Medicine, The University of Western Australia, Crawley 6009, WA, Australia; Division of Microbiology and Infectious Diseases, PathWest Laboratory Medicine, Nedlands 6009, WA, Australia
| | - David W Smith
- School of Pathology and Laboratory Medicine, The University of Western Australia, Crawley 6009, WA, Australia; Division of Microbiology and Infectious Diseases, PathWest Laboratory Medicine, Nedlands 6009, WA, Australia
| | - Gorben P Pijlman
- Laboratory of Virology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Lisa F P Ng
- Laboratory of Microbial Immunity, Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore 138648, Singapore
| | - Roy A Hall
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia 4072, QLD, Australia.
| |
Collapse
|
46
|
Chowdhury P, Ahmed Khan S, Topno R, Dutta P, Yadav RNS, Mahanta J. Immunogenic potential and protective efficacy of formalin inactivated circulating Indian strain of West Nile virus. ASIAN PAC J TROP MED 2014; 7:946-51. [PMID: 25479622 DOI: 10.1016/s1995-7645(14)60167-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 10/15/2014] [Accepted: 11/15/2014] [Indexed: 11/29/2022] Open
Abstract
OBJECTIVE To assess the best suitable condition for virus inactivation, and to study the immunogenic potential and protective efficacy of a circulating West Nile virus (WNV) strain in Assam. METHODS Bulk preparation of circulating WNV: WNIRGC07 (GeneBank ID: HQ246154), was undertaken in a bioreactor using cytodex-1. Virus Inactivation was done in three different conditions; 22 °C, 4 °C and room temperature. The virus preparations were evaluated for antigenicity by ELISA and toxicity by cell proliferation kit. Virus efficacy was done in-vivo on swiss albino mice against standard Indian WNV and Japanese encephalitis virus (JEV) strain. Humoral and cell mediated immune response was evaluated in mice sera by ELISA and neutralization assay. RESULTS Inactivation at 22 °C was found to be more suitable in terms of less toxicity and high antigenicity. The same was selected to study the immune response and efficacy in mice. It induced neutralizing antibody titre of 1: 625 and high IgG response. In vivo experiment showed 100% protective efficacy against WNV and 20.8% cross protective efficacy against JEV. Further assessment of cellular immunity through immunized mice revealed augmentation of high levels of pro-inflammatory cytokines and moderate levels of anti-cytokines indicating a mixed balance of Th1 and Th2 response. CONCLUSIONS Findings suggest that formalin inactivated Indian WNV strain has a good immunogenic potential. This is the first study on assessment of immunogenic potential of a lineage 5 strain of WNV. Our study reveals that it would be a promising and effective candidate for vaccine studies which warrants further evaluation.
Collapse
Affiliation(s)
- Pritom Chowdhury
- Regional Medical Research Centre, ICMR (NE Region), Dibrugarh, Assam, India; Centre for studies in Biotechnology, Dibrugarh University, Dibrugarh-786004, Assam, India
| | - Siraj Ahmed Khan
- Regional Medical Research Centre, ICMR (NE Region), Dibrugarh, Assam, India.
| | - Rashmee Topno
- Regional Medical Research Centre, ICMR (NE Region), Dibrugarh, Assam, India; Centre for studies in Biotechnology, Dibrugarh University, Dibrugarh-786004, Assam, India
| | - Prafulla Dutta
- Regional Medical Research Centre, ICMR (NE Region), Dibrugarh, Assam, India
| | - R N S Yadav
- Centre for studies in Biotechnology, Dibrugarh University, Dibrugarh-786004, Assam, India
| | - Jagadish Mahanta
- Regional Medical Research Centre, ICMR (NE Region), Dibrugarh, Assam, India
| |
Collapse
|
47
|
Chang LJ, Dowd KA, Mendoza FH, Saunders JG, Sitar S, Plummer SH, Yamshchikov G, Sarwar UN, Hu Z, Enama ME, Bailer RT, Koup RA, Schwartz RM, Akahata W, Nabel GJ, Mascola JR, Pierson TC, Graham BS, Ledgerwood JE. Safety and tolerability of chikungunya virus-like particle vaccine in healthy adults: a phase 1 dose-escalation trial. Lancet 2014; 384:2046-52. [PMID: 25132507 DOI: 10.1016/s0140-6736(14)61185-5] [Citation(s) in RCA: 178] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
BACKGROUND Chikungunya virus--a mosquito-borne alphavirus--is endemic in Africa and south and southeast Asia and has recently emerged in the Caribbean. No drugs or vaccines are available for treatment or prevention. We aimed to assess the safety, tolerability, and immunogenicity of a new candidate vaccine. METHODS VRC 311 was a phase 1, dose-escalation, open-label clinical trial of a virus-like particle (VLP) chikungunya virus vaccine, VRC-CHKVLP059-00-VP, in healthy adults aged 18-50 years who were enrolled at the National Institutes of Health Clinical Center (Bethesda, MD, USA). Participants were assigned to sequential dose level groups to receive vaccinations at 10 μg, 20 μg, or 40 μg on weeks 0, 4, and 20, with follow-up for 44 weeks after enrolment. The primary endpoints were safety and tolerability of the vaccine. Secondary endpoints were chikungunya virus-specific immune responses assessed by ELISA and neutralising antibody assays. This trial is registered with ClinicalTrials.gov, NCT01489358. FINDINGS 25 participants were enrolled from Dec 12, 2011, to March 22, 2012, into the three dosage groups: 10 μg (n=5), 20 μg (n=10), and 40 μg (n=10). The protocol was completed by all five participants at the 10 μg dose, all ten participants at the 20 μg dose, and eight of ten participants at the 40 μg dose; non-completions were for personal circumstances unrelated to adverse events. 73 vaccinations were administered. All injections were well tolerated, with no serious adverse events reported. Neutralising antibodies were detected in all dose groups after the second vaccination (geometric mean titres of the half maximum inhibitory concentration: 2688 in the 10 μg group, 1775 in the 20 μg group, and 7246 in the 40 μg group), and a significant boost occurred after the third vaccination in all dose groups (10 μg group p=0·0197, 20 μg group p<0·0001, and 40 μg group p<0·0001). 4 weeks after the third vaccination, the geometric mean titres of the half maximum inhibitory concentration were 8745 for the 10 μg group, 4525 for the 20 μg group, and 5390 for the 40 μg group. INTERPRETATION The chikungunya VLP vaccine was immunogenic, safe, and well tolerated. This study represents an important step in vaccine development to combat this rapidly emerging pathogen. Further studies should be done in a larger number of participants and in more diverse populations. FUNDING Intramural Research Program of the Vaccine Research Center, National Institute of Allergy and Infectious Diseases, and National Institutes of Health.
Collapse
Affiliation(s)
- Lee-Jah Chang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Kimberly A Dowd
- Viral Pathogenesis Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Floreliz H Mendoza
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jamie G Saunders
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Sandra Sitar
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Sarah H Plummer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Galina Yamshchikov
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Uzma N Sarwar
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Zonghui Hu
- Biostatistics Research Branch, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Mary E Enama
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Robert T Bailer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Richard A Koup
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Richard M Schwartz
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Wataru Akahata
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Gary J Nabel
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - John R Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Theodore C Pierson
- Viral Pathogenesis Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Barney S Graham
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Julie E Ledgerwood
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
48
|
Noranate N, Takeda N, Chetanachan P, Sittisaman P, A-nuegoonpipat A, Anantapreecha S. Characterization of chikungunya virus-like particles. PLoS One 2014; 9:e108169. [PMID: 25265335 PMCID: PMC4180278 DOI: 10.1371/journal.pone.0108169] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 08/19/2014] [Indexed: 12/19/2022] Open
Abstract
Chikungunya virus (CHIKV) is becoming a global concern due to the increasing number of outbreaks throughout the world and the absence of any CHIKV-specific vaccine or treatment. Virus-like particles (VLPs) are multistructured proteins that mimic the organization and conformation of native viruses but lack the viral genome. They are noninfectious and potentially safer vaccine candidates. Recent studies demonstrated that the yield of CHIKV VLPs varies depending on the strains, despite the 95% amino acid similarity of the strains. This might be due to the codon usage, since protein expression is differently controlled by different organisms. We optimized the region encoding CHIKV structural proteins, C-E3-E2-6k-E1, inserted it into a mammalian expression vector, and used the resulting construct to transfect 293 cells. We detected 50-kDa proteins corresponding to E1 and/or E2 in the cell lysate and the supernatant. Transmission electron microscopy revealed spherical particles with a 50- to 60-nm diameter in the supernatant that resembled the native CHIKV virions. The buoyant density of the VLPs was 1.23 g/mL, and the yield was 20 µg purified VLPs per 108 cells. The VLPs aggregated when mixed with convalescent sera from chikungunya patients, indicating that their antigenicity is similar to that of native CHIKV. Antibodies elicited with the VLPs were capable of detecting native CHIKV, demonstrating that the VLPs retain immunogenicity similar to that of the native virion. These results indicated that CHIKV VLPs are morphologically, antigenically, and immunologically similar to the native CHIKV, suggesting that they have potential for use in chikungunya vaccines.
Collapse
Affiliation(s)
- Nitchakarn Noranate
- Thailand-Japan Research Collaboration Center on Emerging and Re-emerging Infections (RCC-ERI), Nonthaburi, Thailand
- * E-mail:
| | - Naokazu Takeda
- Thailand-Japan Research Collaboration Center on Emerging and Re-emerging Infections (RCC-ERI), Nonthaburi, Thailand
- Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Prukswan Chetanachan
- National Institute of Health, Department of Medical Sciences, Ministry of Public Health, Nonthaburi, Thailand
| | - Pathompong Sittisaman
- National Institute of Health, Department of Medical Sciences, Ministry of Public Health, Nonthaburi, Thailand
| | - Atchareeya A-nuegoonpipat
- National Institute of Health, Department of Medical Sciences, Ministry of Public Health, Nonthaburi, Thailand
| | - Surapee Anantapreecha
- National Institute of Health, Department of Medical Sciences, Ministry of Public Health, Nonthaburi, Thailand
| |
Collapse
|
49
|
Abstract
UNLABELLED Chikungunya virus (CHIKV) is a reemerging mosquito-borne alphavirus that causes debilitating arthralgia in humans. Here we describe the development and testing of novel DNA replicon and protein CHIKV vaccine candidates and evaluate their abilities to induce antigen-specific immune responses against CHIKV. We also describe homologous and heterologous prime-boost immunization strategies using novel and previously developed CHIKV vaccine candidates. Immunogenicity and efficacy were studied in a mouse model of CHIKV infection and showed that the DNA replicon and protein antigen were potent vaccine candidates, particularly when used for priming and boosting, respectively. Several prime-boost immunization strategies eliciting unmatched humoral and cellular immune responses were identified. Further characterization by antibody epitope mapping revealed differences in the qualitative immune responses induced by the different vaccine candidates and immunization strategies. Most vaccine modalities resulted in complete protection against wild-type CHIKV infection; however, we did identify circumstances under which certain immunization regimens may lead to enhancement of inflammation upon challenge. These results should help guide the design of CHIKV vaccine studies and will form the basis for further preclinical and clinical evaluation of these vaccine candidates. IMPORTANCE As of today, there is no licensed vaccine to prevent CHIKV infection. In considering potential new vaccine candidates, a vaccine that could raise long-term protective immunity after a single immunization would be preferable. While humoral immunity seems to be central for protection against CHIKV infection, we do not yet fully understand the correlates of protection. Therefore, in the absence of a functional vaccine, there is a need to evaluate a number of different candidates, assessing their merits when they are used either in a single immunization or in a homologous or heterologous prime-boost modality. Here we show that while single immunization with various vaccine candidates results in potent responses, combined approaches significantly enhance responses, suggesting that such approaches need to be considered in the further development of an efficacious CHIKV vaccine.
Collapse
|
50
|
van den Doel P, Volz A, Roose JM, Sewbalaksing VD, Pijlman GP, van Middelkoop I, Duiverman V, van de Wetering E, Sutter G, Osterhaus ADME, Martina BEE. Recombinant modified vaccinia virus Ankara expressing glycoprotein E2 of Chikungunya virus protects AG129 mice against lethal challenge. PLoS Negl Trop Dis 2014; 8:e3101. [PMID: 25188230 PMCID: PMC4154657 DOI: 10.1371/journal.pntd.0003101] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 07/07/2014] [Indexed: 01/04/2023] Open
Abstract
Chikungunya virus (CHIKV) infection is characterized by rash, acute high fever, chills, headache, nausea, photophobia, vomiting, and severe polyarthralgia. There is evidence that arthralgia can persist for years and result in long-term discomfort. Neurologic disease with fatal outcome has been documented, although at low incidences. The CHIKV RNA genome encodes five structural proteins (C, E1, E2, E3 and 6K). The E1 spike protein drives the fusion process within the cytoplasm, while the E2 protein is believed to interact with cellular receptors and therefore most probably constitutes the target of neutralizing antibodies. We have constructed recombinant Modified Vaccinia Ankara (MVA) expressing E3E2, 6KE1, or the entire CHIKV envelope polyprotein cassette E3E26KE1. MVA is an appropriate platform because of its demonstrated clinical safety and its suitability for expression of various heterologous proteins. After completing the immunization scheme, animals were challenged with CHIV-S27. Immunization of AG129 mice with MVAs expressing E2 or E3E26KE1 elicited neutralizing antibodies in all animals and provided 100% protection against lethal disease. In contrast, 75% of the animals immunized with 6KE1 were protected against lethal infection. In conclusion, MVA expressing the glycoprotein E2 of CHIKV represents as an immunogenic and effective candidate vaccine against CHIKV infections.
Collapse
Affiliation(s)
- Petra van den Doel
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Asisa Volz
- Institute for Infectious Diseases and Zoonoses, University of Munich LMU, Munich, Germany
| | - Jouke M. Roose
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | - Gorben P. Pijlman
- Laboratory of Virology, Wageningen University, Wageningen, The Netherlands
| | | | - Vincent Duiverman
- Erasmus Medical Center Laboratory Animal Science Center (EDC), Rotterdam, The Netherlands
| | - Eva van de Wetering
- Erasmus Medical Center Laboratory Animal Science Center (EDC), Rotterdam, The Netherlands
| | - Gerd Sutter
- Institute for Infectious Diseases and Zoonoses, University of Munich LMU, Munich, Germany
| | - Albert D. M. E. Osterhaus
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
- Artemis One Health, Utrecht, The Netherlands
| | - Byron E. E. Martina
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
- Artemis One Health, Utrecht, The Netherlands
- * E-mail:
| |
Collapse
|