1
|
Heydarchi B, Fong DS, Gao H, Salazar-Quiroz NA, Edwards JM, Gonelli CA, Grimley S, Aktepe TE, Mackenzie C, Wales WJ, van Gils MJ, Cupo A, Rouiller I, Gooley PR, Moore JP, Sanders RW, Montefiori D, Sethi A, Purcell DFJ. Broad and ultra-potent cross-clade neutralization of HIV-1 by a vaccine-induced CD4 binding site bovine antibody. Cell Rep Med 2022; 3:100635. [PMID: 35584627 PMCID: PMC9133467 DOI: 10.1016/j.xcrm.2022.100635] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/27/2022] [Accepted: 04/22/2022] [Indexed: 11/30/2022]
Abstract
Human immunodeficiency virus type 1 (HIV-1) vaccination of cows has elicited broadly neutralizing antibodies (bNAbs). In this study, monoclonal antibodies (mAbs) are isolated from a clade A (KNH1144 and BG505) vaccinated cow using a heterologous clade B antigen (AD8). CD4 binding site (CD4bs) bNAb (MEL-1872) is more potent than a majority of CD4bs bNAbs isolated so far. MEL-1872 mAb with CDRH3 of 57 amino acids shows more potency (geometric mean half-maximal inhibitory concentration [IC50]: 0.009 μg/mL; breadth: 66%) than VRC01 against clade B viruses (29-fold) and than CHO1-31 against tested clade A viruses (21-fold). It also shows more breadth and potency than NC-Cow1, the only other reported anti-HIV-1 bovine bNAb, which has 60% breadth with geometric mean IC50 of 0.090 μg/mL in this study. Using successive different stable-structured SOSIP trimers in bovines can elicit bNAbs focusing on epitopes ubiquitous across subtypes. Furthermore, the cross-clade selection strategy also results in ultra-potent bNAbs. Sequential vaccine with different SOSIP trimers could elicit bNAbs Cross-clade B-cell-sorting probe could select ultra-potent bNAbs Bovine CD4bs monoclonal antibody neutralizes HIV-1 isolates potently
Collapse
Affiliation(s)
- Behnaz Heydarchi
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection Immunity, University of Melbourne, Melbourne, VIC 3000, Australia
| | - Danielle S Fong
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection Immunity, University of Melbourne, Melbourne, VIC 3000, Australia
| | - Hongmei Gao
- Department of Surgery, Duke University Medical Center, Durham, NC, USA
| | - Natalia A Salazar-Quiroz
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection Immunity, University of Melbourne, Melbourne, VIC 3000, Australia
| | - Jack M Edwards
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection Immunity, University of Melbourne, Melbourne, VIC 3000, Australia
| | - Christopher A Gonelli
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection Immunity, University of Melbourne, Melbourne, VIC 3000, Australia
| | - Samantha Grimley
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection Immunity, University of Melbourne, Melbourne, VIC 3000, Australia
| | - Turgut E Aktepe
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection Immunity, University of Melbourne, Melbourne, VIC 3000, Australia
| | - Charlene Mackenzie
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection Immunity, University of Melbourne, Melbourne, VIC 3000, Australia
| | - William J Wales
- Dairy Production Sciences, Victorian Department of Jobs, Precincts and Resources, Ellinbank, VIC, Australia; Centre for Agricultural Innovation, School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Marit J van Gils
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, 1105AZ Amsterdam, the Netherlands
| | - Albert Cupo
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY 10021, USA
| | - Isabelle Rouiller
- Department of Biochemistry & Pharmacology, The University of Melbourne, Melbourne, VIC 3010, Australia; Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC 3010, Australia; Australian Research Council Centre for Cryo-Electron Microscopy of Membrane Proteins, Parkville, VIC, Australia
| | - Paul R Gooley
- Department of Biochemistry & Pharmacology, The University of Melbourne, Melbourne, VIC 3010, Australia; Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - John P Moore
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY 10021, USA
| | - Rogier W Sanders
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, 1105AZ Amsterdam, the Netherlands; Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY 10021, USA
| | - David Montefiori
- Department of Surgery, Duke University Medical Center, Durham, NC, USA
| | - Ashish Sethi
- Department of Biochemistry & Pharmacology, The University of Melbourne, Melbourne, VIC 3010, Australia; Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Damian F J Purcell
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection Immunity, University of Melbourne, Melbourne, VIC 3000, Australia.
| |
Collapse
|
2
|
Ng QR, Tee KK, Binley JM, Tong T. Cross-Neutralizing CRF01_AE-Infected Plasma from Malaysia Targets CD4-Binding Site of Human Immunodeficiency Virus Type-1 Envelope Glycoprotein. AIDS Res Hum Retroviruses 2022; 38:162-172. [PMID: 34006141 PMCID: PMC9206480 DOI: 10.1089/aid.2020.0299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Human immunodeficiency virus type-1 (HIV-1) antigenic variation poses a great challenge for vaccine immunogen design to elicit broadly neutralizing antibodies (bNAbs). Over the last 10-15 years, great progress has been made to understand the conserved sites of sensitivity on HIV envelope glycoprotein spikes targeted by bNAbs. Plasma neutralization mapping and monoclonal antibody isolation efforts have revealed five major conserved epitope clusters. Most of this work has focused on subtype B and C-infected Caucasian or African donors. It is not clear if the same epitopes and epitope rank order preferences are also true in donors infected with different HIV-1 subtypes and with different racial backgrounds. To investigate this point, in this study we report the first attempt to profile the bNAb specificities of CRF01_AE-infected Malaysian plasmas. We first measured neutralization titers of 21 plasmas against a subtype A, B, and AE pseudovirus panel. This revealed that 14% (3 of 21) plasmas had cross-clade breadth. Focusing on the cross-neutralizing plasma P9, we used AE and JR-FL mutant pseudoviruses, gp120 monomer interference, and native polyacrylamide gel electrophoresis to better understand the neutralization specificity. P9 demonstrates CD4-binding-site specificity with trimer dependence and D368 independence.
Collapse
Affiliation(s)
- Qi Ron Ng
- Department of Biological Sciences, Sunway University, Bandar Sunway, Malaysia
| | - Kok Keng Tee
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - James M. Binley
- HIV and Coronavirus Vaccine Development, San Diego Biomedical Research Institute, San Diego, California, USA
| | - Tommy Tong
- Department of Biological Sciences, Sunway University, Bandar Sunway, Malaysia.,Address correspondence to: Tommy Tong, Department of Biological Sciences, Sunway University, Bandar Sunway 47500, Malaysia
| |
Collapse
|
3
|
Gonelli CA, King HAD, Mackenzie C, Sonza S, Center RJ, Purcell DFJ. Immunogenicity of HIV-1-Based Virus-Like Particles with Increased Incorporation and Stability of Membrane-Bound Env. Vaccines (Basel) 2021; 9:239. [PMID: 33801906 PMCID: PMC8002006 DOI: 10.3390/vaccines9030239] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/04/2021] [Accepted: 03/05/2021] [Indexed: 01/04/2023] Open
Abstract
An optimal prophylactic vaccine to prevent human immunodeficiency virus (HIV-1) transmission should elicit protective antibody responses against the HIV-1 envelope glycoprotein (Env). Replication-incompetent HIV-1 virus-like particles (VLPs) offer the opportunity to present virion-associated Env with a native-like structure during vaccination that closely resembles that encountered on infectious virus. Here, we optimized the incorporation of Env into previously designed mature-form VLPs (mVLPs) and assessed their immunogenicity in mice. The incorporation of Env into mVLPs was increased by replacing the Env transmembrane and cytoplasmic tail domains with those of influenza haemagglutinin (HA-TMCT). Furthermore, Env was stabilized on the VLP surface by introducing an interchain disulfide and proline substitution (SOSIP) mutations typically employed to stabilize soluble Env trimers. The resulting mVLPs efficiently presented neutralizing antibody epitopes while minimizing exposure of non-neutralizing antibody sites. Vaccination of mice with mVLPs elicited a broader range of Env-specific antibody isotypes than Env presented on immature VLPs or extracellular vesicles. The mVLPs bearing HA-TMCT-modified Env consistently induced anti-Env antibody responses that mediated modest neutralization activity. These mVLPs are potentially useful immunogens for eliciting neutralizing antibody responses that target native Env epitopes on infectious HIV-1 virions.
Collapse
Affiliation(s)
- Christopher A. Gonelli
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC 3000, Australia; (C.A.G.); (H.A.D.K.); (C.M.); (S.S.); (R.J.C.)
| | - Hannah A. D. King
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC 3000, Australia; (C.A.G.); (H.A.D.K.); (C.M.); (S.S.); (R.J.C.)
- Viral Entry and Vaccines Laboratory, Disease Elimination, Burnet Institute, Melbourne, VIC 3004, Australia
| | - Charlene Mackenzie
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC 3000, Australia; (C.A.G.); (H.A.D.K.); (C.M.); (S.S.); (R.J.C.)
| | - Secondo Sonza
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC 3000, Australia; (C.A.G.); (H.A.D.K.); (C.M.); (S.S.); (R.J.C.)
| | - Rob J. Center
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC 3000, Australia; (C.A.G.); (H.A.D.K.); (C.M.); (S.S.); (R.J.C.)
- Viral Entry and Vaccines Laboratory, Disease Elimination, Burnet Institute, Melbourne, VIC 3004, Australia
| | - Damian F. J. Purcell
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC 3000, Australia; (C.A.G.); (H.A.D.K.); (C.M.); (S.S.); (R.J.C.)
| |
Collapse
|
4
|
Li Z, Khanna M, Grimley SL, Ellenberg P, Gonelli CA, Lee WS, Amarasena TH, Kelleher AD, Purcell DFJ, Kent SJ, Ranasinghe C. Mucosal IL-4R antagonist HIV vaccination with SOSIP-gp140 booster can induce high-quality cytotoxic CD4 +/CD8 + T cells and humoral responses in macaques. Sci Rep 2020; 10:22077. [PMID: 33328567 PMCID: PMC7744512 DOI: 10.1038/s41598-020-79172-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 12/02/2020] [Indexed: 11/09/2022] Open
Abstract
Inducing humoral, cellular and mucosal immunity is likely to improve the effectiveness of HIV-1 vaccine strategies. Here, we tested a vaccine regimen in pigtail macaques using an intranasal (i.n.) recombinant Fowl Pox Virus (FPV)-gag pol env-IL-4R antagonist prime, intramuscular (i.m.) recombinant Modified Vaccinia Ankara Virus (MVA)-gag pol-IL-4R antagonist boost followed by an i.m SOSIP-gp140 boost. The viral vector-expressed IL-4R antagonist transiently inhibited IL-4/IL-13 signalling at the vaccination site. The SOSIP booster not only induced gp140-specific IgG, ADCC (antibody-dependent cellular cytotoxicity) and some neutralisation activity, but also bolstered the HIV-specific cellular and humoral responses. Specifically, superior sustained systemic and mucosal HIV Gag-specific poly-functional/cytotoxic CD4+ and CD8+ T cells were detected with the IL-4R antagonist adjuvanted strategy compared to the unadjuvanted control. In the systemic compartment elevated Granzyme K expression was linked to CD4+ T cells, whilst Granzyme B/TIA-1 to CD8+ T cells. In contrast, the cytotoxic marker expression by mucosal CD4+ and CD8+ T cells differed according to the mucosal compartment. This vector-based mucosal IL-4R antagonist/SOSIP booster strategy, which promotes cytotoxic mucosal CD4+ T cells at the first line of defence, and cytotoxic CD4+ and CD8+ T cells plus functional antibodies in the blood, may prove valuable in combating mucosal infection with HIV-1 and warrants further investigation.
Collapse
Affiliation(s)
- Z Li
- Molecular Mucosal Vaccine Immunology Group, Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, 2601, Australia
| | - M Khanna
- Molecular Mucosal Vaccine Immunology Group, Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, 2601, Australia.,Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA
| | - S L Grimley
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, 3010, Australia
| | - P Ellenberg
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, 3010, Australia
| | - C A Gonelli
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Wen Shi Lee
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, 3010, Australia
| | - T H Amarasena
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, 3010, Australia
| | - A D Kelleher
- Immunovirology and Pathogenesis Program, Kirby Institute, University of New South Wales, Sydney, NSW, 2052, Australia
| | - D F J Purcell
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, 3010, Australia
| | - S J Kent
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, 3010, Australia.
| | - C Ranasinghe
- Molecular Mucosal Vaccine Immunology Group, Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, 2601, Australia.
| |
Collapse
|
5
|
Gartner MJ, Gorry PR, Tumpach C, Zhou J, Dantanarayana A, Chang JJ, Angelovich TA, Ellenberg P, Laumaea AE, Nonyane M, Moore PL, Lewin SR, Churchill MJ, Flynn JK, Roche M. Longitudinal analysis of subtype C envelope tropism for memory CD4 + T cell subsets over the first 3 years of untreated HIV-1 infection. Retrovirology 2020; 17:24. [PMID: 32762760 PMCID: PMC7409430 DOI: 10.1186/s12977-020-00532-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 07/27/2020] [Indexed: 12/14/2022] Open
Abstract
Background HIV-1 infects a wide range of CD4+ T cells with different phenotypic properties and differing expression levels of entry coreceptors. We sought to determine the viral tropism of subtype C (C-HIV) Envelope (Env) clones for different CD4+ T cell subsets and whether tropism changes during acute to chronic disease progression. HIV-1 envs were amplified from the plasma of five C-HIV infected women from three untreated time points; less than 2 months, 1-year and 3-years post-infection. Pseudoviruses were generated from Env clones, phenotyped for coreceptor usage and CD4+ T cell subset tropism was measured by flow cytometry. Results A total of 50 C-HIV envs were cloned and screened for functionality in pseudovirus infection assays. Phylogenetic and variable region characteristic analysis demonstrated evolution in envs between time points. We found 45 pseudoviruses were functional and all used CCR5 to mediate entry into NP2/CD4/CCR5 cells. In vitro infection assays showed transitional memory (TM) and effector memory (EM) CD4+ T cells were more frequently infected (median: 46% and 25% of total infected CD4+ T cells respectively) than naïve, stem cell memory, central memory and terminally differentiated cells. This was not due to these subsets contributing a higher proportion of the CD4+ T cell pool, rather these subsets were more susceptible to infection (median: 5.38% EM and 2.15% TM cells infected), consistent with heightened CCR5 expression on EM and TM cells. No inter- or intra-participant changes in CD4+ T cell subset tropism were observed across the three-time points. Conclusions CD4+ T cell subsets that express more CCR5 were more susceptible to infection with C-HIV Envs, suggesting that these may be the major cellular targets during the first 3 years of infection. Moreover, we found that viral tropism for different CD4+ T cell subsets in vitro did not change between Envs cloned from acute to chronic disease stages. Finally, central memory, naïve and stem cell memory CD4+ T cell subsets were susceptible to infection, albeit inefficiently by Envs from all time-points, suggesting that direct infection of these cells may help establish the latent reservoir early in infection.
Collapse
Affiliation(s)
- Matthew J Gartner
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Melbourne, VIC, Australia.,The Peter Doherty Institute for Infection and Immunity, University of Melbourne and Royal Melbourne Hospital, Melbourne, VIC, Australia
| | - Paul R Gorry
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Melbourne, VIC, Australia
| | - Carolin Tumpach
- The Peter Doherty Institute for Infection and Immunity, University of Melbourne and Royal Melbourne Hospital, Melbourne, VIC, Australia
| | - Jingling Zhou
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Melbourne, VIC, Australia
| | - Ashanti Dantanarayana
- The Peter Doherty Institute for Infection and Immunity, University of Melbourne and Royal Melbourne Hospital, Melbourne, VIC, Australia
| | - J Judy Chang
- The Peter Doherty Institute for Infection and Immunity, University of Melbourne and Royal Melbourne Hospital, Melbourne, VIC, Australia
| | - Thomas A Angelovich
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Melbourne, VIC, Australia.,Life Sciences, Burnet Institute, Melbourne, VIC, Australia
| | - Paula Ellenberg
- The Peter Doherty Institute for Infection and Immunity, University of Melbourne and Royal Melbourne Hospital, Melbourne, VIC, Australia
| | - Annemarie E Laumaea
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Melbourne, VIC, Australia.,Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC, Canada
| | - Molati Nonyane
- Centre for HIV and STIs, National Institute for Communicable Diseases (NICD) of the National Health Laboratory Service (NHLS), Johannesburg, South Africa
| | - Penny L Moore
- Centre for HIV and STIs, National Institute for Communicable Diseases (NICD) of the National Health Laboratory Service (NHLS), Johannesburg, South Africa.,Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
| | - Sharon R Lewin
- The Peter Doherty Institute for Infection and Immunity, University of Melbourne and Royal Melbourne Hospital, Melbourne, VIC, Australia.,Department of Infectious Diseases, Monash University and Alfred Hospital, Melbourne, Australia
| | - Melissa J Churchill
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Melbourne, VIC, Australia
| | - Jacqueline K Flynn
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Melbourne, VIC, Australia. .,The Peter Doherty Institute for Infection and Immunity, University of Melbourne and Royal Melbourne Hospital, Melbourne, VIC, Australia. .,School of Clinical Sciences, Monash University, Melbourne, VIC, Australia.
| | - Michael Roche
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Melbourne, VIC, Australia. .,The Peter Doherty Institute for Infection and Immunity, University of Melbourne and Royal Melbourne Hospital, Melbourne, VIC, Australia.
| |
Collapse
|
6
|
Billings H, Wines BD, Dyer WB, Center RJ, Trist HM, Kent SJ, Hogarth PM. Boosting of Markers of Fcγ Receptor Function in Anti-HIV Antibodies During Structured Treatment Interruption. AIDS Res Hum Retroviruses 2019; 35:842-852. [PMID: 31288562 PMCID: PMC6735329 DOI: 10.1089/aid.2019.0047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Anti-HIV envelope (Env) antibodies elicit important Fc receptor functions, including FcγRIIIa-mediated natural killer cell killing of opsonized infected targets. How these antibodies evolve during HIV infection and treatment remains poorly understood. We describe changes in anti-HIV Env IgG using longitudinal samples from seroconverter subjects treated soon after infection and later during periods of structured treatment interruption (STI). Our well-validated dimeric rsFcγR binding assays combine effects of opsonizing antibody subclasses, epitopes, and geometries to provide a measure of FcγR (Fcγ receptor)-mediated functionality. IgG1 anti-Env titers diminished rapidly during antiretroviral therapy (ART; t1/2 3.0 ± 0.8 months), while the dimeric rsFcγRIIIa activity persisted longer (t1/2 33 ± 11 months), suggesting that there is maintenance of functional antibody specificities within the diminished pool of anti-HIV Env Abs. The initial antibody response to infection in two subjects was characterized by approximately fivefold higher FcγRIIIa compared with FcγRIIa binding activity. Uncoupling of FcγRIIa and FcγRIIIa activities may be a distinct feature of the early antibody response that preferentially engages FcγRIIIa-mediated effector functions. Two to three STI cycles, even with low viremia, were sufficient to boost dimeric FcγR activity in these seroconverter subjects. We hypothesize that increased humoral immunity induced by STI is a desirable functional outcome potentially achievable by therapeutic immunization during ART. We conclude that controlled viral antigen exposure under the protection of suppressive ART may be effective in eliciting FcγR-dependent function in support of viral reactivation and kill strategies.
Collapse
Affiliation(s)
- Hugh Billings
- Immune Therapies Group, Life Sciences, Burnet Institute, Melbourne, Australia
| | - Bruce D. Wines
- Immune Therapies Group, Life Sciences, Burnet Institute, Melbourne, Australia
- Department of Immunology, Monash University Central Clinical School, Melbourne, Australia
- Department of Pathology, The University of Melbourne, Melbourne, Australia
| | - Wayne B. Dyer
- Australian Red Cross Blood Service, Alexandria, Australia
- School of Medical Science, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Robert J. Center
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
- Disease Elimination, Life Sciences, Burnet Institute, Melbourne, Australia
| | - Halina M. Trist
- Immune Therapies Group, Life Sciences, Burnet Institute, Melbourne, Australia
| | - Stephen J. Kent
- Disease Elimination, Life Sciences, Burnet Institute, Melbourne, Australia
- Department of Infectious Diseases, Melbourne Sexual Health Centre, Alfred Health, Central Clinical School, Monash University, Melbourne, Australia
| | - P. Mark Hogarth
- Immune Therapies Group, Life Sciences, Burnet Institute, Melbourne, Australia
- Department of Immunology, Monash University Central Clinical School, Melbourne, Australia
- Department of Pathology, The University of Melbourne, Melbourne, Australia
| |
Collapse
|
7
|
King HAD, Gonelli CA, Tullett KM, Lahoud MH, Purcell DFJ, Drummer HE, Poumbourios P, Center RJ. Conjugation of an scFab domain to the oligomeric HIV envelope protein for use in immune targeting. PLoS One 2019; 14:e0220986. [PMID: 31430333 PMCID: PMC6701830 DOI: 10.1371/journal.pone.0220986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 07/28/2019] [Indexed: 11/19/2022] Open
Abstract
A promising strategy for the enhancement of vaccine-mediated immune responses is by directly targeting protein antigens to immune cells. Targeting of antigens to the dendritic cell (DC) molecule Clec9A has been shown to enhance antibody affinity and titers for model antigens, and influenza and enterovirus antigens, and may be advantageous for immunogens that otherwise fail to elicit antibodies with sufficient titers and breadth for broad protection, such as the envelope protein (Env) of HIV. Previously employed targeting strategies often utilize receptor-specific antibodies, however it is impractical to conjugate a bivalent IgG antibody to oligomeric antigens, including HIV Env trimers. Here we designed single chain variable fragment (scFv) and single chain Fab (scFab) constructs of a Clec9A-targeting antibody, expressed as genetically fused conjugates with the soluble ectodomain of Env, gp140. This conjugation did not affect the presentation of Env neutralising antibody epitopes. The scFab moiety was shown to be more stable than scFv, and in the context of gp140 fusions, was able to mediate better binding to recombinant and cell surface-expressed Clec9A, although the level of binding to cell-surface Clec9A was lower than that of the anti-Clec9A IgG. However, binding to Clec9A on the surface of DCs was not detected. Mouse immunization experiments suggested that the Clec9A-binding activity of the scFab-gp140 conjugate was insufficient to enhance Env-specific antibody responses. This is an important first proof of principle study demonstrating the conjugation of a scFab to an oligomeric protein antigen, and that an scFab displays better antigen binding than the corresponding scFv. Future developments of this technique that increase the scFab affinity will provide a valuable means to target oligomeric proteins to cell surface antigens of interest, improving vaccine-generated immune responses.
Collapse
MESH Headings
- AIDS Vaccines/administration & dosage
- AIDS Vaccines/genetics
- AIDS Vaccines/immunology
- Animals
- Antibodies, Neutralizing/immunology
- Antibody Affinity
- Antigens, Viral/genetics
- Antigens, Viral/immunology
- Dendritic Cells/immunology
- Dendritic Cells/metabolism
- Epitopes/immunology
- Female
- HEK293 Cells
- HIV Antibodies/immunology
- HIV Infections/immunology
- HIV Infections/therapy
- HIV Infections/virology
- Humans
- Immunogenicity, Vaccine
- Lectins, C-Type/immunology
- Lectins, C-Type/metabolism
- Mice
- Proof of Concept Study
- Protein Domains/genetics
- Protein Domains/immunology
- Receptors, Mitogen/immunology
- Receptors, Mitogen/metabolism
- Recombinant Fusion Proteins/administration & dosage
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/immunology
- Single-Chain Antibodies/administration & dosage
- Single-Chain Antibodies/genetics
- Single-Chain Antibodies/immunology
- Vaccination/methods
- Vaccines, DNA/administration & dosage
- Vaccines, DNA/genetics
- Vaccines, DNA/immunology
- env Gene Products, Human Immunodeficiency Virus/administration & dosage
- env Gene Products, Human Immunodeficiency Virus/genetics
- env Gene Products, Human Immunodeficiency Virus/immunology
Collapse
Affiliation(s)
- Hannah A. D. King
- Disease Elimination, Burnet Institute, Melbourne, Victoria, Australia
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Christopher A. Gonelli
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Kirsteen M. Tullett
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria, Australia
| | - Mireille H. Lahoud
- Disease Elimination, Burnet Institute, Melbourne, Victoria, Australia
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria, Australia
| | - Damian F. J. Purcell
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Heidi E. Drummer
- Disease Elimination, Burnet Institute, Melbourne, Victoria, Australia
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
- Department of Microbiology, Monash University, Melbourne, Victoria, Australia
| | - Pantelis Poumbourios
- Disease Elimination, Burnet Institute, Melbourne, Victoria, Australia
- Department of Microbiology, Monash University, Melbourne, Victoria, Australia
| | - Rob J. Center
- Disease Elimination, Burnet Institute, Melbourne, Victoria, Australia
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
- * E-mail:
| |
Collapse
|
8
|
Gonelli CA, Khoury G, Center RJ, Purcell DFJ. HIV-1-based Virus-like Particles that Morphologically Resemble Mature, Infectious HIV-1 Virions. Viruses 2019; 11:v11060507. [PMID: 31159488 PMCID: PMC6630479 DOI: 10.3390/v11060507] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 05/23/2019] [Accepted: 05/29/2019] [Indexed: 01/04/2023] Open
Abstract
A prophylactic vaccine eliciting both broad neutralizing antibodies (bNAbs) to the HIV-1 envelope glycoprotein (Env) and strong T cell responses would be optimal for preventing HIV-1 transmissions. Replication incompetent HIV-1 virus-like particles (VLPs) offer the opportunity to present authentic-structured, virion-associated Env to elicit bNAbs, and also stimulate T cell responses. Here, we optimize our DNA vaccine plasmids as VLP expression vectors for efficient Env incorporation and budding. The original vector that was used in human trials inefficiently produced VLPs, but maximized safety by inactivating RNA genome packaging, enzyme functions that are required for integration into the host genome, and deleting accessory proteins Vif, Vpr, and Nef. These original DNA vaccine vectors generated VLPs with incomplete protease-mediated cleavage of Gag and were irregularly sized. Mutations to restore function within the defective genes revealed that several of the reverse transcriptase (RT) deletions mediated this immature phenotype. Here, we made efficient budding, protease-processed, and mature-form VLPs that resembled infectious virions by introducing alternative mutations that completely removed the RT domain, but preserved most other safety mutations. These VLPs, either expressed from DNA vectors in vivo or purified after expression in vitro, are potentially useful immunogens that can be used to elicit antibody responses that target Env on fully infectious HIV-1 virions.
Collapse
Affiliation(s)
- Christopher A Gonelli
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria 3000, Australia.
| | - Georges Khoury
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria 3000, Australia.
| | - Rob J Center
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria 3000, Australia.
- Viral Entry and Vaccines Laboratory, Disease Elimination, Burnet Institute, Melbourne, Victoria 3004, Australia.
| | - Damian F J Purcell
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria 3000, Australia.
| |
Collapse
|
9
|
Parsons MS, Lloyd SB, Lee WS, Kristensen AB, Amarasena T, Center RJ, Keele BF, Lifson JD, LaBranche CC, Montefiori D, Wines BD, Hogarth PM, Swiderek KM, Venturi V, Davenport MP, Kent SJ. Partial efficacy of a broadly neutralizing antibody against cell-associated SHIV infection. Sci Transl Med 2018; 9:9/402/eaaf1483. [PMID: 28794282 DOI: 10.1126/scitranslmed.aaf1483] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 12/08/2016] [Accepted: 05/09/2017] [Indexed: 12/26/2022]
Abstract
Broadly neutralizing antibodies (BnAbs) protect macaques from cell-free simian/human immunodeficiency virus (SHIV) challenge, but their efficacy against cell-associated SHIV is unclear. Virus in cell-associated format is highly infectious, present in transmission-competent bodily fluids, and potentially capable of evading antibody-mediated neutralization. The PGT121 BnAb, which recognizes an epitope consisting of the V3 loop and envelope glycans, mediates antibody-dependent cellular cytotoxicity and neutralization of cell-to-cell HIV-1 transmission. To evaluate whether a BnAb can prevent infection after cell-associated viral challenge, we infused pigtail macaques with PGT121 or an isotype control and challenged animals 1 hour later intravenously with SHIVSF162P3-infected splenocytes. All five controls had high viremia 1 week after challenge. Three of six PGT121-infused animals were completely protected, two of six animals had a 1-week delay in onset of high viremia, and one animal had a 7-week delay in onset of viremia. The infused antibody had decayed on average to 2.0 μg/ml by 1 week after infusion and was well below 1 μg/ml (range, <0.1 to 0.8 μg/ml) by 8 weeks. The animals with a 1-week delay before high viremia had relatively lower plasma concentrations of PGT121. Transfer of 22 million peripheral blood mononuclear cells (PBMCs) stored at weeks 1 to 4 from the animal with the 7-week delayed onset of viremia into uninfected macaques did not initiate infection. Our results show that HIV-1-specific neutralizing antibodies have partial efficacy against cell-associated virus exposure in macaques. We conclude that sustaining high concentrations of bioavailable BnAb is important for protecting against cell-associated virus.
Collapse
Affiliation(s)
- Matthew S Parsons
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria 3000, Australia.
| | - Sarah B Lloyd
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria 3000, Australia
| | - Wen Shi Lee
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria 3000, Australia
| | - Anne B Kristensen
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria 3000, Australia
| | - Thakshila Amarasena
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria 3000, Australia
| | - Rob J Center
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria 3000, Australia.,Centre for Biomedical Research, Burnet Institute, Melbourne, Victoria 3004, Australia
| | - Brandon F Keele
- AIDS and Cancer Virus Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Jeffrey D Lifson
- AIDS and Cancer Virus Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | | | | | - Bruce D Wines
- Centre for Biomedical Research, Burnet Institute, Melbourne, Victoria 3004, Australia
| | - P Mark Hogarth
- Centre for Biomedical Research, Burnet Institute, Melbourne, Victoria 3004, Australia
| | | | - Vanessa Venturi
- Kirby Institute for Infection and Immunity, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Miles P Davenport
- Kirby Institute for Infection and Immunity, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Stephen J Kent
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria 3000, Australia. .,Melbourne Sexual Health Centre, Alfred Hospital Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, Victoria 3053, Australia.,Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, University of Melbourne, Parkville, Victoria 3052, Australia
| |
Collapse
|
10
|
Ramarathinam SH, Gras S, Alcantara S, Yeung AWS, Mifsud NA, Sonza S, Illing PT, Glaros EN, Center RJ, Thomas SR, Kent SJ, Ternette N, Purcell DFJ, Rossjohn J, Purcell AW. Identification of Native and Posttranslationally Modified HLA-B*57:01-Restricted HIV Envelope Derived Epitopes Using Immunoproteomics. Proteomics 2018; 18:e1700253. [PMID: 29437277 DOI: 10.1002/pmic.201700253] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 01/29/2018] [Indexed: 12/20/2022]
Abstract
The recognition of pathogen-derived peptides by T lymphocytes is the cornerstone of adaptive immunity, whereby intracellular antigens are degraded in the cytosol and short peptides assemble with class I human leukocyte antigen (HLA) molecules in the ER. These peptide-HLA complexes egress to the cell surface and are scrutinized by cytotoxic CD8+ T-cells leading to the eradication of the infected cell. Here, naturally presented HLA-B*57:01 bound peptides derived from the envelope protein of the human immunodeficiency virus (HIVenv) are identified. HIVenv peptides are present at a very small percentage of the overall HLA-B*57:01 peptidome (<0.1%) and both native and posttranslationally modified forms of two distinct HIV peptides are identified. Notably, a peptide bearing a natively encoded C-terminal tryptophan residue is also present in a modified form containing a kynurenine residue. Kynurenine is a major product of tryptophan catabolism and is abundant during inflammation and infection. Binding of these peptides at a molecular level and their immunogenicity in preliminary functional studies are examined. Modest immune responses are observed to the modified HIVenv peptide, highlighting a potential role for kynurenine-modified peptides in the immune response to HIV and other viral infections.
Collapse
Affiliation(s)
- Sri H Ramarathinam
- Infection and Immunity Program, Biomedicine Discovery Institute & Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia
| | - Stephanie Gras
- Infection and Immunity Program, Biomedicine Discovery Institute & Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia.,ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Australia
| | - Sheilajen Alcantara
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Australia
| | - Amanda W S Yeung
- Mechanisms of Disease and Translational Medicine, Department of Pathology, School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Nicole A Mifsud
- Infection and Immunity Program, Biomedicine Discovery Institute & Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia
| | - Secondo Sonza
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Australia
| | - Patricia T Illing
- Infection and Immunity Program, Biomedicine Discovery Institute & Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia
| | - Elias N Glaros
- Mechanisms of Disease and Translational Medicine, Department of Pathology, School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Robert J Center
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Australia.,Burnet Institute, Melbourne, Australia
| | - Shane R Thomas
- Mechanisms of Disease and Translational Medicine, Department of Pathology, School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Stephen J Kent
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Australia.,Melbourne Sexual Health Centre, Central Clinical School, Monash University, Melbourne, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of Melbourne, Parkville, Australia
| | - Nicola Ternette
- The Jenner Institute, Target Discovery Institute Mass Spectrometry Laboratory, University of Oxford, Oxford, UK
| | - Damian F J Purcell
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Australia
| | - Jamie Rossjohn
- Infection and Immunity Program, Biomedicine Discovery Institute & Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia.,ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Australia.,Institute of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - Anthony W Purcell
- Infection and Immunity Program, Biomedicine Discovery Institute & Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia
| |
Collapse
|
11
|
Effect of Combination Antiretroviral Therapy on HIV-1-specific Antibody-Dependent Cellular Cytotoxicity Responses in Subtype B- and Subtype C-Infected Cohorts. J Acquir Immune Defic Syndr 2017; 75:345-353. [PMID: 28346319 DOI: 10.1097/qai.0000000000001380] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND There is growing interest in immune therapies to clear the latent HIV-1 after combination antiretroviral therapy (cART). There is limited information on the effect of cART on antibody-dependent cellular cytotoxicity (ADCC), and no studies have directly compared ADCC in HIV-1 subtype B- and subtype C-infected subjects. The effect of improving immunocompetence on ADCC to influenza also remains unexplored. METHODS The effect of cART on HIV-1- and influenza-specific ADCC was analyzed in 2 cohorts (39 subtype B- and 47 subtype C-infected subjects) before and after 2 years of cART. ADCC analyses included an enzyme-linked immunosorbent assay-based dimeric recombinant soluble (rs) FcγRIIIa-binding assay, antibody-dependent natural killer cell activation assay, and ADCC-mediated killing assays. RESULTS HIV-1 subtype B and C Env-specific antibody binding to dimeric rsFcγRIIIa were reduced in subtypes B- and C-infected cohorts after 2 years of cART (both P < 0.05). Reduced ADCC-mediated killing of target cells expressing subtype B Env in the subtype B-infected cohort (P = 0.003) was observed after 96 weeks of cART, but not of subtype C Env in the subtype C-infected cohort. A greater reduction in ADCC was detected in subjects with baseline CD4 counts >300 cells/μL (P < 0.05). The resolving immunodeficiency after 96 weeks of cART resulted in improved HA-specific ADCC to 6 strains of influenza (all P < 0.01). CONCLUSIONS cART results in HIV-1 antigen loss and reductions in HIV-1 Env-specific antibodies with Fc functionality in both subtype B- and C-infected subjects, particularly in immunocompetent subjects. Simultaneously, cART improves ADCC to diverse strains of influenza, suggesting reduction in influenza disease after cART.
Collapse
|
12
|
HIV-1 Env- and Vpu-Specific Antibody-Dependent Cellular Cytotoxicity Responses Associated with Elite Control of HIV. J Virol 2017; 91:JVI.00700-17. [PMID: 28701393 DOI: 10.1128/jvi.00700-17] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 06/19/2017] [Indexed: 12/20/2022] Open
Abstract
Studying HIV-infected individuals who control HIV replication (elite controllers [ECs]) enables exploration of effective anti-HIV immunity. HIV Env-specific and non-Env-specific antibody-dependent cellular cytotoxicity (ADCC) may contribute to protection from progressive HIV infection, but the evidence is limited. We recruited 22 ECs and matched them with 44 viremic subjects. HIV Env- and Vpu-specific ADCC responses in sera were studied using a novel enzyme-linked immunosorbent assay (ELISA)-based dimeric recombinant soluble FcγRIIIa (rsFcγRIIIa)-binding assay, surface plasmon resonance, antibody-dependent natural killer (NK) cell activation assays, and ADCC-mediated killing assays. ECs had higher levels of HIV Env-specific antibodies capable of binding FcγRIIIa, activating NK cells, and mediating granzyme B activity (all P < 0.01) than viremic subjects. ECs also had higher levels of antibodies against a C-terminal 13-mer Vpu peptide capable of mediating FcγRIIIa binding and NK cell activation than viremic subjects (both P < 0.05). Our data associate Env-specific and Vpu epitope-specific ADCC in effective immune responses against HIV among ECs. Our findings have implications for understanding the role of ADCC in HIV control.IMPORTANCE Understanding immune responses associated with elite control of HIV may aid the development of immunotherapeutic and vaccine strategies for controlling HIV infection. Env is a major HIV protein target of functional antibody responses that are heightened in ECs. Interestingly, EC antibodies also target Vpu, an accessory protein crucial to HIV, which degrades CD4 and antagonizes tetherin. Antibodies specific to Vpu are a common feature of the immune response of ECs that may prove to be of functional importance to the design of improved ADCC-based immunotherapy and preventative HIV vaccines.
Collapse
|
13
|
Heydarchi B, Center RJ, Bebbington J, Cuthbertson J, Gonelli C, Khoury G, Mackenzie C, Lichtfuss M, Rawlin G, Muller B, Purcell D. Trimeric gp120-specific bovine monoclonal antibodies require cysteine and aromatic residues in CDRH3 for high affinity binding to HIV Env. MAbs 2016; 9:550-566. [PMID: 27996375 PMCID: PMC5384801 DOI: 10.1080/19420862.2016.1270491] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2022] Open
Abstract
We isolated HIV-1 Envelope (Env)-specific memory B cells from a cow that had developed high titer polyclonal immunoglobulin G (IgG) with broad neutralizing activity after a long duration vaccination with HIV-1AD8 Env gp140 trimers. We cloned the bovine IgG matched heavy (H) and light (L) chain variable (V) genes from these memory B cells and constructed IgG monoclonal antibodies (mAbs) with either a human constant (C)-region/bovine V-region chimeric or fully bovine C and V regions. Among 42 selected Ig+ memory B cells, two mAbs (6A and 8C) showed high affinity binding to gp140 Env. Characterization of both the fully bovine and human chimeric isoforms of these two mAbs revealed them as highly type-specific and capable of binding only to soluble AD8 uncleaved gp140 trimers and covalently stabilized AD8 SOSIP gp140 cleaved trimers, but not monomeric gp120. Genomic sequence analysis of the V genes showed the third heavy complementarity-determining region (CDRH3) of 6A mAb was 21 amino acids in length while 8C CDRH3 was 14 amino acids long. The entire V heavy (VH) region was 27% and 25% diverged for 6A and 8C, respectively, from the best matched germline V genes available, and the CDRH3 regions of 6A and 8C were 47.62% and 78.57% somatically mutated, respectively, suggesting a high level of somatic hypermutation compared with CDRH3 of other species. Alanine mutagenesis of the VH genes of 6A and 8C, showed that CDRH3 cysteine and tryptophan amino acids were crucial for antigen binding. Therefore, these bovine vaccine-induced anti-HIV antibodies shared some of the notable structural features of elite human broadly neutralizing antibodies, such as CDRH3 size and somatic mutation during affinity-maturation. However, while the 6A and 8C mAbs inhibited soluble CD4 binding to gp140 Env, they did not recapitulate the neutralizing activity of the polyclonal antibodies against HIV infection.
Collapse
Affiliation(s)
- Behnaz Heydarchi
- a Department of Microbiology and Immunology , The University of Melbourne at The Peter Doherty Institute for Infection & Immunity , Melbourne , VIC , Australia
| | - Rob J Center
- a Department of Microbiology and Immunology , The University of Melbourne at The Peter Doherty Institute for Infection & Immunity , Melbourne , VIC , Australia
| | - Jonathan Bebbington
- a Department of Microbiology and Immunology , The University of Melbourne at The Peter Doherty Institute for Infection & Immunity , Melbourne , VIC , Australia
| | - Jack Cuthbertson
- a Department of Microbiology and Immunology , The University of Melbourne at The Peter Doherty Institute for Infection & Immunity , Melbourne , VIC , Australia
| | - Christopher Gonelli
- a Department of Microbiology and Immunology , The University of Melbourne at The Peter Doherty Institute for Infection & Immunity , Melbourne , VIC , Australia
| | - Georges Khoury
- a Department of Microbiology and Immunology , The University of Melbourne at The Peter Doherty Institute for Infection & Immunity , Melbourne , VIC , Australia
| | - Charlene Mackenzie
- a Department of Microbiology and Immunology , The University of Melbourne at The Peter Doherty Institute for Infection & Immunity , Melbourne , VIC , Australia
| | - Marit Lichtfuss
- a Department of Microbiology and Immunology , The University of Melbourne at The Peter Doherty Institute for Infection & Immunity , Melbourne , VIC , Australia
| | - Grant Rawlin
- a Department of Microbiology and Immunology , The University of Melbourne at The Peter Doherty Institute for Infection & Immunity , Melbourne , VIC , Australia
| | - Brian Muller
- a Department of Microbiology and Immunology , The University of Melbourne at The Peter Doherty Institute for Infection & Immunity , Melbourne , VIC , Australia
| | - Damian Purcell
- a Department of Microbiology and Immunology , The University of Melbourne at The Peter Doherty Institute for Infection & Immunity , Melbourne , VIC , Australia
| |
Collapse
|
14
|
Heydarchi B, Center RJ, Gonelli C, Muller B, Mackenzie C, Khoury G, Lichtfuss M, Rawlin G, Purcell DFJ. Repeated Vaccination of Cows with HIV Env gp140 during Subsequent Pregnancies Elicits and Sustains an Enduring Strong Env-Binding and Neutralising Antibody Response. PLoS One 2016; 11:e0157353. [PMID: 27300145 PMCID: PMC4907510 DOI: 10.1371/journal.pone.0157353] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 05/28/2016] [Indexed: 11/18/2022] Open
Abstract
An important feature of a potential vaccine against HIV is the production of broadly neutralising antibodies (BrNAbs) capable of potentially blocking infectivity of a diverse array of HIV strains. BrNAbs naturally arise in some HIV infected individuals after several years of infection and their serum IgG can neutralise various HIV strains across different subtypes. We previously showed that vaccination of cows with HIV gp140 AD8 trimers resulted in a high titre of serum IgG against HIV envelope (Env) that had strong BrNAb activity. These polyclonal BrNAbs concentrated into the colostrum during the late stage of pregnancy and can be harvested in vast quantities immediately after calving. In this study, we investigated the effect of prolonged HIV gp140 vaccination on bovine colostrum IgG HIV Env-binding and BrNAb activity over subsequent pregnancies. Repeated immunisation led to a maintained high titre of HIV Env specific IgG in the colostrum batches, but this did not increase through repeated cycles. Colostrum IgG from all batches also strongly competed with sCD4 binding to gp140 Env trimer and with human-derived monoclonal VRC01 and b12 BrNAbs that bind the CD4 binding site (CD4bs). Furthermore, competition neutralisation assays using RSC3 Env gp120 protein core and a derivative CD4bs mutant, RSC3 Δ371I/P363N, showed that CD4bs neutralising antibodies contribute to the neutralising activity of all batches of purified bovine colostrum IgG. This result indicates that the high IgG titre/avidity of anti-CD4bs antibodies with BrNAb activity was achieved during the first year of vaccination and was sustained throughout the years of repeated vaccinations in the cow tested. Although IgG of subsequent colostrum batches may have a higher avidity towards the CD4bs, the overall breadth in neutralisation was not enhanced. This implies that the boosting vaccinations over 4 years elicited a polyclonal antibody response that maintained the proportion of both neutralising and non-neutralising CD4bs antibodies.
Collapse
Affiliation(s)
- Behnaz Heydarchi
- Department of Microbiology and Immunology, at The Peter Doherty Institute for Infection & Immunity, The University of Melbourne, Melbourne, Victoria, Australia
| | - Rob J. Center
- Department of Microbiology and Immunology, at The Peter Doherty Institute for Infection & Immunity, The University of Melbourne, Melbourne, Victoria, Australia
| | - Christopher Gonelli
- Department of Microbiology and Immunology, at The Peter Doherty Institute for Infection & Immunity, The University of Melbourne, Melbourne, Victoria, Australia
| | - Brian Muller
- Department of Microbiology and Immunology, at The Peter Doherty Institute for Infection & Immunity, The University of Melbourne, Melbourne, Victoria, Australia
| | - Charlene Mackenzie
- Department of Microbiology and Immunology, at The Peter Doherty Institute for Infection & Immunity, The University of Melbourne, Melbourne, Victoria, Australia
| | - Georges Khoury
- Department of Microbiology and Immunology, at The Peter Doherty Institute for Infection & Immunity, The University of Melbourne, Melbourne, Victoria, Australia
| | - Marit Lichtfuss
- Department of Microbiology and Immunology, at The Peter Doherty Institute for Infection & Immunity, The University of Melbourne, Melbourne, Victoria, Australia
| | - Grant Rawlin
- Department of Microbiology and Immunology, at The Peter Doherty Institute for Infection & Immunity, The University of Melbourne, Melbourne, Victoria, Australia
| | - Damian F. J. Purcell
- Department of Microbiology and Immunology, at The Peter Doherty Institute for Infection & Immunity, The University of Melbourne, Melbourne, Victoria, Australia
- * E-mail:
| |
Collapse
|
15
|
Gooneratne SL, Center RJ, Kent SJ, Parsons MS. Functional advantage of educated KIR2DL1(+) natural killer cells for anti-HIV-1 antibody-dependent activation. Clin Exp Immunol 2016; 184:101-9. [PMID: 26647083 DOI: 10.1111/cei.12752] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 11/13/2015] [Accepted: 11/25/2015] [Indexed: 11/28/2022] Open
Abstract
Evidence from the RV144 HIV-1 vaccine trial implicates anti-HIV-1 antibody-dependent cellular cytotoxicity (ADCC) in vaccine-conferred protection from infection. Among effector cells that mediate ADCC are natural killer (NK) cells. The ability of NK cells to be activated in an antibody-dependent manner is reliant upon several factors. In general, NK cell-mediated antibody-dependent activation is most robust in terminally differentiated CD57(+) NK cells, as well as NK cells educated through ontological interactions between inhibitory killer immunoglobulin-like receptors (KIR) and their major histocompatibility complex class I [MHC-I or human leucocyte antigen (HLA-I)] ligands. With regard to anti-HIV-1 antibody-dependent NK cell activation, previous research has demonstrated that the epidemiologically relevant KIR3DL1/HLA-Bw4 receptor/ligand combination confers enhanced activation potential. In the present study we assessed the ability of the KIR2DL1/HLA-C2 receptor/ligand combination to confer enhanced activation upon direct stimulation with HLA-I-devoid target cells or antibody-dependent stimulation with HIV-1 gp140-pulsed CEM.NKr-CCR5 target cells in the presence of an anti-HIV-1 antibody source. Among donors carrying the HLA-C2 ligand for KIR2DL1, higher interferon (IFN)-γ production was observed within KIR2DL1(+) NK cells than in KIR2DL1(-) NK cells upon both direct and antibody-dependent stimulation. No differences in KIR2DL1(+) and KIR2DL1(-) NK cell activation were observed in HLA-C1 homozygous donors. Additionally, higher activation in KIR2DL1(+) than KIR2DL1(-) NK cells from HLA-C2 carrying donors was observed within less differentiated CD57(-) NK cells, demonstrating that the observed differences were due to education and not an overabundance of KIR2DL1(+) NK cells within differentiated CD57(+) NK cells. These observations are relevant for understanding the regulation of anti-HIV-1 antibody-dependent NK cell responses.
Collapse
Affiliation(s)
- S L Gooneratne
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - R J Center
- Centre for Biomedical Research, Burnet Institute, Melbourne, VIC, Australia
| | - S J Kent
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia.,Melbourne Sexual Health Centre, Carlton, VIC, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of Melbourne, Melbourne, VIC, Australia
| | - M S Parsons
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
16
|
Role of education and differentiation in determining the potential of natural killer cells to respond to antibody-dependent stimulation. AIDS 2014; 28:2781-6. [PMID: 25493604 DOI: 10.1097/qad.0000000000000489] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Antibody-dependent activation of natural killer (NK) cells might facilitate protective outcomes in the context of HIV exposure or infection. Antibody-dependent activation is heightened in NK cells educated by interactions between killer immunoglobulin-like receptors (KIRs) and their major histocompatibility complex class I ligands during ontogeny. Differentiated NK cells, defined as CD57, also exhibit enhanced antibody-dependent responsiveness. Although KIRs are more frequently expressed on CD57 NK cells, the presented data suggest education and differentiation make independent contributions to NK cell anti-HIV envelope antibody-dependent activation.
Collapse
|
17
|
Madhavi V, Ana-Sosa-Batiz FE, Jegaskanda S, Center RJ, Winnall WR, Parsons MS, Ananworanich J, Cooper DA, Kelleher AD, Hsu D, Pett S, Stratov I, Kramski M, Kent SJ. Antibody-dependent effector functions against HIV decline in subjects receiving antiretroviral therapy. J Infect Dis 2014; 211:529-38. [PMID: 25170105 DOI: 10.1093/infdis/jiu486] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Combination antiretroviral therapy (cART) effectively controls human immunodeficiency virus (HIV) infection but does not eliminate HIV, and lifelong treatment is therefore required. HIV-specific cytotoxic T lymphocyte (CTL) responses decline following cART initiation. Alterations in other HIV-specific immune responses that may assist in eliminating latent HIV infection, specifically antibody-dependent cellular cytotoxicity (ADCC) and antibody-dependent phagocytosis (ADP), are unclear. METHODS A cohort of 49 cART-naive HIV-infected subjects from Thailand (mean baseline CD4 count, 188 cells/µL; mean viral load, 5.4 log10 copies/mL) was followed for 96 weeks after initiating cART. ADCC and ADP assays were performed using serum samples obtained at baseline and after 96 weeks of cART. RESULTS A 35% reduction in HIV type 1 envelope (Env)-specific ADCC-mediated killing of target cells (P<.001) was observed after 96 weeks of cART. This was corroborated by a significant reduction in the ability of Env-specific ADCC antibodies to activate natural killer cells (P<.001). Significantly reduced ADP was also observed after 96 weeks of cART (P=.018). CONCLUSIONS This longitudinal study showed that cART resulted in significant reductions of HIV-specific effector antibody responses, including ADCC and ADP. Therapeutic vaccines or other immunomodulatory approaches may be required to improve antibody-mediated control of HIV during cART.
Collapse
Affiliation(s)
- Vijaya Madhavi
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville
| | - Fernanda E Ana-Sosa-Batiz
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville
| | - Sinthujan Jegaskanda
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville
| | - Rob J Center
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville
| | - Wendy R Winnall
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville
| | - Matthew S Parsons
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville
| | - Jintanat Ananworanich
- Thai Red Cross AIDS Research Centre, HIV Netherlands Australia Thailand Research Collaboration, Bangkok, Thailand
| | - David A Cooper
- Kirby Institute for Infection and Immunity in Society, University of New South Wales, Sydney, Australia
| | - Anthony D Kelleher
- Kirby Institute for Infection and Immunity in Society, University of New South Wales, Sydney, Australia
| | - Denise Hsu
- Kirby Institute for Infection and Immunity in Society, University of New South Wales, Sydney, Australia
| | - Sarah Pett
- Kirby Institute for Infection and Immunity in Society, University of New South Wales, Sydney, Australia Medical Research Council Clinical Trials Unit, Department of Infection and Population Health, University College London, United Kingdom
| | - Ivan Stratov
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville
| | - Marit Kramski
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville
| | - Stephen J Kent
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville
| |
Collapse
|
18
|
Breadth of HIV-1 Env-specific antibody-dependent cellular cytotoxicity: relevance to global HIV vaccine design. AIDS 2014; 28:1859-70. [PMID: 24937308 DOI: 10.1097/qad.0000000000000310] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE The objective of this study is to determine the breadth of HIV-1 Env-specific antibody-dependent cellular cytotoxicity (ADCC) in HIV controllers and HIV progressors with a view to design globally relevant HIV vaccines. DESIGN The breadth of ADCC towards four major HIV-1 Env subtypes was measured in vitro for 11 HIV controllers and 11 HIV progressors. METHODS Plasma from 11 HIV controllers (including long-term slow progressors, viremic controllers, elite controller and posttreatment controller) and 11 HIV progressors, mostly infected with HIV-1 subtype B, was analysed for ADCC responses. ADCC assays were performed against 10 HIV-1 gp120 and 8 gp140 proteins from four major HIV-1 subtypes (A, B, C and E) and 3 glycosylation-mutant gp140 proteins. RESULTS ADCC-mediated natural killer cell activation was significantly broader (P = 0.02) and of higher magnitude (P < 0.001) in HIV controllers than in HIV progressors. HIV controllers also showed significantly higher magnitude of ADCC-mediated killing of Env-coated target cells than HIV progressors to both HIV-1 subtype B and the heterologous subtype E gp140 (P = 0.001). We found good ADCC reactivity to subtype B and E Envs, less cross-reactivity to subtype A and minimal cross-reactivity to subtype C Envs. Glycosylation-dependent ADCC epitopes comprise a significant proportion of the total Env-specific ADCC response, as evident from the reduction in ADCC to nonglycosylated form of HIV-1 gp140 (P = 0.004). CONCLUSION HIV controllers have robust ADCC responses that recognize a broad range of HIV-1 Env. Glycosylation of Env was found to be important for recognition of ADCC epitopes. Identifying conserved ADCC epitopes will assist in designing globally relevant ADCC-based HIV vaccines.
Collapse
|
19
|
HIV‐specific antibody‐dependent phagocytosis matures during HIV infection. Immunol Cell Biol 2014; 92:679-87. [DOI: 10.1038/icb.2014.42] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 04/29/2014] [Accepted: 04/29/2014] [Indexed: 02/02/2023]
|
20
|
Quantifying susceptibility of CD4+ stem memory T-cells to infection by laboratory adapted and clinical HIV-1 strains. Viruses 2014; 6:709-26. [PMID: 24517971 PMCID: PMC3939479 DOI: 10.3390/v6020709] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 02/05/2014] [Accepted: 02/06/2014] [Indexed: 12/03/2022] Open
Abstract
CD4+ T cells are principal targets for human immunodeficiency virus type 1 (HIV-1) infection. CD4+ T cell subsets are heterogeneous cell populations, divided by functional and phenotypic differences into naïve and memory T cells. The memory CD4+ T cells are further segregated into central, effector and transitional memory cell subsets by functional, phenotypic and homeostatic characteristics. Defining the distribution of HIV-1 infection in different T cell subsets is important, as this can play a role in determining the size and composition of the viral reservoir. Both central memory and transitional memory CD4+ T cells have been described as long-lived viral reservoirs for HIV. Recently, the newly described stem memory T cell subset has also been implicated as a long-lived HIV reservoir. Using green fluorescent protein (GFP) reporter strains of HIV-1 and multi parameter flow cytometry, we developed an assay to simultaneously quantify the susceptibility of stem memory (TSCM), central memory, effector memory, transitional memory and naïve CD4+ T cell subsets, to HIV-1 infection in vitro. We show that TSCM are susceptible to infection with laboratory adapted and clinical HIV-1 strains. Our system facilitates the quantitation of HIV-1 infection in alternative T cell subsets by CCR5- and CXCR4-using viruses across different HIV-1 subtypes, and will be useful for studies of HIV-1 pathogenesis and viral reservoirs.
Collapse
|
21
|
Parsons MS, Tang CC, Jegaskanda S, Center RJ, Brooks AG, Stratov I, Kent SJ. Anti-HIV antibody-dependent activation of NK cells impairs NKp46 expression. THE JOURNAL OF IMMUNOLOGY 2013; 192:308-15. [PMID: 24319263 DOI: 10.4049/jimmunol.1301247] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
There is much interest in the potential of Ab-dependent cellular cytotoxicity (ADCC) to slow disease progression following HIV infection. Despite several studies demonstrating a positive association between ADCC and slower disease progression, it is possible that continued stimulation of NK cells by ADCC during chronic HIV infection could render these cells dysfunctional. Indeed, activation of NK cells by ADCC results in matrix metalloproteinase-induced reductions in CD16 expression and activation refractory periods. In addition, ex vivo analyses of NK cells from HIV-infected individuals revealed other alterations in phenotype, such as decreased expression of the activating NKp46 receptor that is essential for NK-mediated antitumor responses and immunity from infection. Because NKp46 shares a signaling pathway with CD16, we hypothesized that activation-induced downregulation of both receptors could be controlled by a common mechanism. We found that activation of NK cells by anti-HIV or anti-CD16 Abs resulted in NKp46 downregulation. The addition of a matrix metalloproteinase inhibitor attenuated NKp46 downregulation following NK cell activation by anti-HIV Abs. Consequently, these results suggest that continued stimulation through CD16 has the potential to impair natural cytotoxicity via attenuation of NKp46-dependent signals.
Collapse
Affiliation(s)
- Matthew S Parsons
- Department of Microbiology and Immunology, University of Melbourne, Parkville 3010, Victoria, Australia
| | | | | | | | | | | | | |
Collapse
|
22
|
Parsons MS, Center RJ, Routy JP, Rouleau D, LeBlanc R, Wainberg MA, Tremblay CL, Zannou MD, Kent SJ, Grant MD, Bernard NF. Short communication: antibody responses to human immunodeficiency virus envelope from infections with multiple subtypes utilize the 1F7-idiotypic repertoire. AIDS Res Hum Retroviruses 2013; 29:778-83. [PMID: 23265432 DOI: 10.1089/aid.2012.0094] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A common idiotype of anti-HIV antibodies (Abs), designated as 1F7, was recently observed on anti-HIV broadly neutralizing Abs (BnAbs). The presence of the 1F7-idiotype on BnAbs suggests that continuous selection of 1F7-idiotypic Abs may allow these clones to achieve the somatic hypermutation necessary for broad neutralization. As the selection of type-specific BnAbs occurs in the setting of infections with a wide array of HIV subtypes, we investigated Abs from subjects infected with diverse subtypes for the selection of 1F7-idiotypic Abs. We observed the 1F7-idiotype on antiviral Abs in infections with various HIV subtypes. Furthermore, gp140-specific 1F7-idiotypic Abs recognized the gp140 antigens from several HIV subtypes. These results demonstrate that the 1F7-idiotype is a common characteristic of Abs from infections with diverse HIV subtypes, and suggests that early cross-reactivity of 1F7-idiotypic clones may act in conjunction with somatic hypermutation to produce BnAbs.
Collapse
Affiliation(s)
- Matthew S. Parsons
- Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
- Division of Clinical Immunology and Allergy, McGill University Health Centre, Montréal, Québec, Canada
- Division of Experimental Medicine, McGill University, Montréal, Québec, Canada
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria, Australia
| | - Robert J. Center
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria, Australia
| | - Jean-Pierre Routy
- Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
- Division of Clinical Immunology and Allergy, McGill University Health Centre, Montréal, Québec, Canada
- Immunodeficiency Service and Division of Hematology, McGill University Health Centre, Montréal, Québec, Canada
| | - Danielle Rouleau
- Départements de Microbiologie et Infectiologie, Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada
| | - Roger LeBlanc
- Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
- Clinique LORI, Montréal, Québec, Canada
| | - Mark A. Wainberg
- McGill University AIDS Centre, Lady Davis Institute, Jewish General Hospital, Montréal, Quebec, Canada
| | - Cécile L. Tremblay
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Hôpital Saint-Luc, Montréal, Québec, Canada
| | - Marcel D. Zannou
- Faculté des Sciences de la Santé, Université d'Abomey-Calavi, Cotonou, Bénin
| | - Stephen J. Kent
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria, Australia
| | - Michael D. Grant
- Immunology and Infectious Diseases Program, Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Nicole F. Bernard
- Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
- Division of Clinical Immunology and Allergy, McGill University Health Centre, Montréal, Québec, Canada
- Division of Experimental Medicine, McGill University, Montréal, Québec, Canada
| |
Collapse
|
23
|
Center RJ, Miller A, Wheatley AK, Campbell SM, Siebentritt C, Purcell DFJ. Utility of the Sindbis replicon system as an Env-targeted HIV vaccine. Vaccine 2013; 31:2260-6. [PMID: 23499600 DOI: 10.1016/j.vaccine.2013.02.064] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 02/20/2013] [Accepted: 02/28/2013] [Indexed: 02/06/2023]
Abstract
Sindbis replicon-based vaccine vectors are designed to combine the immunostimulatory properties of replicating viruses with the superior safety profile of non-replicating systems. In this study we performed a detailed assessment of Sindbis (SIN) replicon vectors expressing HIV-1 envelope protein (Env) for the induction of cell-mediated and humoral immune responses in a small animal model. SIN-derived virus-like particles (VLP) elicited Env-specific antibody responses that were detectable after boosting with recombinant Env protein. This priming effect could be mediated by replicon activity alone but may be enhanced by Env attached to the surface of VLP, offering a potential advantage for this mode of replicon delivery for Env based vaccination strategies. In contrast, the Env-specific CTL responses that were elicited by SIN-VLP were entirely dependent on replicon activity. SIN-VLP priming induced more durable humoral responses than immunization with protein only. This is important from a vaccine perspective, given the intrinsic tendency of Env to induce short-lived antibody responses in the context of vaccination or infection. These results indicate that further efforts to enhance the magnitude and durability of the HIV-1 Env-specific immune responses generated by Sindbis vectors, either alone or as part of prime-boost regimens, are justified.
Collapse
Affiliation(s)
- Rob J Center
- Department of Microbiology and Immunology, University of Melbourne, Australia
| | | | | | | | | | | |
Collapse
|
24
|
The magnitude of HIV-1 resistance to the CCR5 antagonist maraviroc may impart a differential alteration in HIV-1 tropism for macrophages and T-cell subsets. Virology 2013; 442:51-8. [PMID: 23602007 DOI: 10.1016/j.virol.2013.03.026] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2012] [Revised: 01/31/2013] [Accepted: 03/26/2013] [Indexed: 11/24/2022]
Abstract
Human immunodeficiency virus type 1 (HIV-1) resistance to CCR5 antagonists, including maraviroc (MVC), results from alterations in the HIV-1 envelope glycoproteins (Env) enabling recognition of antagonist-bound CCR5. Here, we characterized tropism alterations for CD4+ T-cell subsets and macrophages by Envs from two subjects who developed MVC resistance in vivo, which displayed either relatively efficient or inefficient recognition of MVC-bound CCR5. We show that MVC-resistant Env with efficient recognition of drug-bound CCR5 displays a tropism shift for CD4+ T-cell subsets associated with increased infection of central memory T-cells and reduced infection of effector memory and transitional memory T-cells, and no change in macrophage infectivity. In contrast, MVC-resistant Env with inefficient recognition of drug-bound CCR5 displays no change in tropism for CD4+ T-cell subsets, but exhibits a significant reduction in macrophage infectivity. The pattern of HIV-1 tropism alterations for susceptible cells may therefore be variable in subjects with MVC resistance.
Collapse
|
25
|
Nitayaphan S, Ngauy V, O'Connell R, Excler JL. HIV epidemic in Asia: optimizing and expanding vaccine development. Expert Rev Vaccines 2012; 11:805-19. [PMID: 22913258 DOI: 10.1586/erv.12.49] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The recent evidence in Thailand for protection from acquisition of HIV through vaccination in a mostly heterosexual population has generated considerable hope. Building upon these results and the analysis of the correlates of risk remains among the highest priorities. Improved vaccine concepts including heterologous prime-boost regimens, improved proteins with potent adjuvants and new vectors expressing mosaic antigens may soon enter clinical development to assess vaccine efficacy in men who have sex with men. Identifying heterosexual populations with sufficient HIV incidence for the conduct of efficacy trials represents perhaps the main challenge in Asia. Fostering translational research efforts in Asian countries may benefit from the development of master strategic plans and program management processes.
Collapse
Affiliation(s)
- Sorachai Nitayaphan
- Royal Thai Army Component, Armed Forces Research Institute of Medical Sciences, 315/6 Rajvithi Road, Bangkok 10400, Thailand
| | | | | | | |
Collapse
|
26
|
Kramski M, Lichtfuss GF, Navis M, Isitman G, Wren L, Rawlin G, Center RJ, Jaworowski A, Kent SJ, Purcell DFJ. Anti-HIV-1 antibody-dependent cellular cytotoxicity mediated by hyperimmune bovine colostrum IgG. Eur J Immunol 2012; 42:2771-81. [PMID: 22730083 DOI: 10.1002/eji.201242469] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Revised: 05/11/2012] [Accepted: 06/15/2012] [Indexed: 11/07/2022]
Abstract
Antibodies with antibody-dependent cellular cytotoxicity (ADCC) activity play an important role in protection against HIV-1 infection, but generating sufficient amounts of antibodies to study their protective efficacy is difficult. HIV-specific IgG can be easily and inexpensively produced in large quantities using bovine colostrum. We previously vaccinated cows with HIV-1 envelope gp140 and elicited high titers of anti-gp140-binding IgG in colostrum. In the present study, we determined whether bovine antibodies would also demonstrate specific cytotoxic activity. We found that bovine IgG bind to Fcγ-receptors (FcγRs) on human neutrophils, monocytes, and NK cells in a dose-dependent manner. Antibody-dependent killing was observed in the presence of anti-HIV-1 colostrum IgG but not nonimmune colostrum IgG. Killing was dependent on Fc and FcγR interaction since ADDC activity was not seen with F(ab')(2) fragments. ADCC activity was primarily mediated by CD14(+) monocytes with FcγRIIa (CD32a) as the major receptor responsible for monocyte-mediated ADCC in response to bovine IgG. In conclusion, we demonstrate that bovine anti-HIV colostrum IgG have robust HIV-1-specific ADCC activity and therefore offer a useful source of antibodies able to provide a rapid and potent response against HIV-1 infection. This could assist the development of novel Ab-mediated approaches for prevention of HIV-1 transmission.
Collapse
Affiliation(s)
- Marit Kramski
- Department of Microbiology and Immunology, University of Melbourne, Melbourne, Australia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Kramski M, Center RJ, Wheatley AK, Jacobson JC, Alexander MR, Rawlin G, Purcell DFJ. Hyperimmune bovine colostrum as a low-cost, large-scale source of antibodies with broad neutralizing activity for HIV-1 envelope with potential use in microbicides. Antimicrob Agents Chemother 2012; 56:4310-9. [PMID: 22664963 PMCID: PMC3421555 DOI: 10.1128/aac.00453-12] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Accepted: 05/23/2012] [Indexed: 11/20/2022] Open
Abstract
Bovine colostrum (first milk) contains very high concentrations of IgG, and on average 1 kg (500 g/liter) of IgG can be harvested from each immunized cow immediately after calving. We used a modified vaccination strategy together with established production systems from the dairy food industry for the large-scale manufacture of broadly neutralizing HIV-1 IgG. This approach provides a low-cost mucosal HIV preventive agent potentially suitable for a topical microbicide. Four cows were vaccinated pre- and/or postconception with recombinant HIV-1 gp140 envelope (Env) oligomers of clade B or A, B, and C. Colostrum and purified colostrum IgG were assessed for cross-clade binding and neutralization against a panel of 27 Env-pseudotyped reporter viruses. Vaccination elicited high anti-gp140 IgG titers in serum and colostrum with reciprocal endpoint titers of up to 1 × 10(5). While nonimmune colostrum showed some intrinsic neutralizing activity, colostrum from 2 cows receiving a longer-duration vaccination regimen demonstrated broad HIV-1-neutralizing activity. Colostrum-purified polyclonal IgG retained gp140 reactivity and neutralization activity and blocked the binding of the b12 monoclonal antibody to gp140, showing specificity for the CD4 binding site. Colostrum-derived anti-HIV antibodies offer a cost-effective option for preparing the substantial quantities of broadly neutralizing antibodies that would be needed in a low-cost topical combination HIV-1 microbicide.
Collapse
Affiliation(s)
- Marit Kramski
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria, Australia
| | - Rob J. Center
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria, Australia
| | - Adam K. Wheatley
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria, Australia
| | - Jonathan C. Jacobson
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria, Australia
| | - Marina R. Alexander
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria, Australia
| | - Grant Rawlin
- Immuron Ltd., North Melbourne, Victoria, Australia
| | - Damian F. J. Purcell
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
28
|
Kramski M, Schorcht A, Johnston APR, Lichtfuss GF, Jegaskanda S, De Rose R, Stratov I, Kelleher AD, French MA, Center RJ, Jaworowski A, Kent SJ. Role of monocytes in mediating HIV-specific antibody-dependent cellular cytotoxicity. J Immunol Methods 2012; 384:51-61. [PMID: 22841577 DOI: 10.1016/j.jim.2012.07.006] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2012] [Revised: 07/17/2012] [Accepted: 07/17/2012] [Indexed: 10/28/2022]
Abstract
Antibodies (Abs) that mediate antibody-dependent cellular cytotoxicity (ADCC) activity against HIV-1 are of major interest. A widely used method to measure ADCC Abs is the rapid and fluorometric antibody-dependent cellular cytotoxicity (RFADCC) assay. Antibody-dependent killing of a labelled target cell line by PBMC is assessed by loss of intracellular CFSE but retention of membrane dye PKH26 (CFSE-PKH26+). Cells of this phenotype are assumed to be derived from CFSE+PKH26+ target cells killed by NK cells. We assessed the effector cells that mediate ADCC in this assay. Backgating analysis and phenotyping of CFSE-PKH26+ revealed that the RFADCC assay's readout mainly represents CD3-CD14+ monocytes taking up the PKH26 dye. This was confirmed for 53 HIV+plasma-purified IgG samples when co-cultured with PBMC from three separate healthy donors. Emergence of the CFSE-PKH26+ monocyte population was observed upon co-culture of targets with purified monocytes but not with purified NK cells. Image flow cytometry and microscopy showed a monocyte-specific interaction with target cells without typical morphological changes associated with phagocytosis, suggesting a monocyte-mediated ADCC process. We conclude that the RFADCC assay primarily reflects Ab-mediated monocyte function. Further studies on the immunological importance of HIV-specific monocyte-mediated ADCC are warranted.
Collapse
Affiliation(s)
- M Kramski
- Department of Microbiology and Immunology, University of Melbourne, Australia.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Wren L, Parsons MS, Isitman G, Center RJ, Kelleher AD, Stratov I, Bernard NF, Kent SJ. Influence of cytokines on HIV-specific antibody-dependent cellular cytotoxicity activation profile of natural killer cells. PLoS One 2012; 7:e38580. [PMID: 22701674 PMCID: PMC3372512 DOI: 10.1371/journal.pone.0038580] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Accepted: 05/07/2012] [Indexed: 01/12/2023] Open
Abstract
There is growing interest in HIV-specific antibody-dependent cellular cytotoxicity (ADCC) as an effective immune response to prevent or control HIV infection. ADCC relies on innate immune effector cells, particularly NK cells, to mediate control of virus-infected cells. The activation of NK cells (i.e., expression of cytokines and/or degranulation) by ADCC antibodies in serum is likely subject to the influence of other factors that are also present. We observed that the HIV-specific ADCC antibodies, within serum samples from a panel of HIV-infected individuals induced divergent activation profiles of NK cells from the same donor. Some serum samples primarily induced NK cell cytokine expression (i.e., IFNγ), some primarily initiated NK cell expression of a degranulation marker (CD107a) and others initiated a similar magnitude of responses across both effector functions. We therefore evaluated a number of HIV-relevant soluble factors for their influence on the activation of NK cells by HIV-specific ADCC antibodies. Key findings were that the cytokines IL-15 and IL-10 consistently enhanced the ability of NK cells to respond to HIV-specific ADCC antibodies. Furthermore, IL-15 was demonstrated to potently activate “educated” KIR3DL1+ NK cells from individuals carrying its HLA-Bw4 ligand. The cytokine was also demonstrated to activate “uneducated” KIR3DL1+ NK cells from HLA-Bw6 homozygotes, but to a lesser extent. Our results show that cytokines influence the ability of NK cells to respond to ADCC antibodies in vitro. Manipulating the immunological environment to enhance the potency of NK cell-mediated HIV-specific ADCC effector functions could be a promising immunotherapy or vaccine strategy.
Collapse
Affiliation(s)
- Leia Wren
- Department of Microbiology and Immunology, University of Melbourne, Victoria, Australia
| | - Matthew S. Parsons
- Department of Microbiology and Immunology, University of Melbourne, Victoria, Australia
- Division of Experimental Medicine, McGill University, Montréal, Québec, Canada
| | - Gamze Isitman
- Department of Microbiology and Immunology, University of Melbourne, Victoria, Australia
| | - Robert J. Center
- Department of Microbiology and Immunology, University of Melbourne, Victoria, Australia
| | | | - Ivan Stratov
- Department of Microbiology and Immunology, University of Melbourne, Victoria, Australia
- Melbourne Sexual Health Clinic, Alfred Health, Carlton, Victoria, Australia
| | - Nicole F. Bernard
- Division of Experimental Medicine, McGill University, Montréal, Québec, Canada
| | - Stephen J. Kent
- Department of Microbiology and Immunology, University of Melbourne, Victoria, Australia
- Melbourne Sexual Health Clinic, Alfred Health, Carlton, Victoria, Australia
- * E-mail:
| |
Collapse
|
30
|
Johansson SE, Rollman E, Chung AW, Center RJ, Hejdeman B, Stratov I, Hinkula J, Wahren B, Kärre K, Kent SJ, Berg L. NK cell function and antibodies mediating ADCC in HIV-1-infected viremic and controller patients. Viral Immunol 2011; 24:359-68. [PMID: 21958370 DOI: 10.1089/vim.2011.0025] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Natural killer (NK) cells have been suggested to play a protective role in HIV disease progression. One potent effector mechanism of NK cells is antibody-dependent cellular cytotoxicity (ADCC) mediated by antiviral antibodies binding to the FcγRIIIa receptor (CD16) on NK cells. We investigated NK cell-mediated ADCC function and the presence of ADCC antibodies in plasma from 20 HIV-1-infected patients and 10 healthy donors. The HIV-positive patients were divided into two groups: six who controlled viremia for at least 8 y without treatment (controllers), and 14 who were persistently viremic and not currently on treatment. Plasma from both patient groups induced NK cell IFN-γ expression and degranulation in response to HIV-1 envelope (Env) gp140-protein-coated cells. Patient antibodies mediating ADCC were largely directed towards the Env V3 loop, as identified by a gp140 protein lacking the V3 loop. Interestingly, in two controllers ADCC-mediating antibodies were more broadly directed to other parts of Env. A high viral load in patients correlated with decreased ADCC-mediated cytolysis of gp140-protein-coated target cells. NK cells from both infected patients and healthy donors degranulated efficiently in the presence of antibody-coated HIV-1-infected Jurkat cells. In conclusion, the character of ADCC-mediating antibodies differed in some controllers compared to viremic patients. NK cell ADCC activity is not compromised in HIV-infected patients.
Collapse
Affiliation(s)
- Susanne E Johansson
- Department of Microbiology, Tumor and Cell Biology and Strategic Research Center IRIS, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Kirkegaard T, Wheatley A, Melchjorsen J, Bahrami S, Pedersen FS, Center RJ, Purcell DFJ, Ostergaard L, Duch M, Tolstrup M. Induction of humoral and cellular immune responses against the HIV-1 envelope protein using γ-retroviral virus-like particles. Virol J 2011; 8:381. [PMID: 21806819 PMCID: PMC3161963 DOI: 10.1186/1743-422x-8-381] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Accepted: 08/01/2011] [Indexed: 01/08/2023] Open
Abstract
This study evaluates the immunogenicity of the HIV envelope protein (env) in mice presented either attached to γ-retroviral virus-like-particles (VLPs), associated with cell-derived microsomes or as solubilized recombinant protein (gp160). The magnitude and polyfunctionality of the cellular immune response was enhanced when delivering HIV env in the VLP or microsome form compared to recombinant gp160. Humoral responses measured by antibody titres were comparable across the groups and low levels of antibody neutralization were observed. Lastly, we identified stronger IgG2a class switching in the two particle-delivered antigen vaccinations modalities compared to recombinant gp160.
Collapse
Affiliation(s)
- Tea Kirkegaard
- Department of Infectious Diseases, Aarhus University Hospital, Skejby, DK-8200 Aarhus N, Denmark
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Immune escape from HIV-specific antibody-dependent cellular cytotoxicity (ADCC) pressure. Proc Natl Acad Sci U S A 2011; 108:7505-10. [PMID: 21502492 DOI: 10.1073/pnas.1016048108] [Citation(s) in RCA: 118] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Effective immunity to HIV is poorly understood. In particular, a role for antibody-dependent cellular cytotoxicity (ADCC) in controlling HIV is controversial. We hypothesized that significant pressure from HIV-specific ADCC would result in immune-escape variants. A series of ADCC epitopes in HIV-infected subjects to specific consensus strain HIV peptides were mapped using a flow cytometric assay for natural killer cell activation. We then compared the ADCC responses to the same peptide epitope derived from the concurrent HIV sequence(s) expressed in circulating virus. In 9 of 13 epitopes studied, ADCC antibodies were unable to recognize the concurrent HIV sequence. Our studies suggest ADCC responses apply significant immune pressure on the virus. This result has implications for the induction of ADCC responses by HIV vaccines.
Collapse
|
33
|
Wheatley AK, Kramski M, Alexander MR, Toe JG, Center RJ, Purcell DFJ. Co-expression of miRNA targeting the expression of PERK, but not PKR, enhances cellular immunity from an HIV-1 Env DNA vaccine. PLoS One 2011; 6:e18225. [PMID: 21464971 PMCID: PMC3064671 DOI: 10.1371/journal.pone.0018225] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Accepted: 02/28/2011] [Indexed: 01/03/2023] Open
Abstract
Small non-coding micro-RNAs (miRNA) are important post-transcriptional regulators of mammalian gene expression that can be used to direct the knockdown of expression from targeted genes. We examined whether DNA vaccine vectors co-expressing miRNA with HIV-1 envelope (Env) antigens could influence the magnitude or quality of the immune responses to Env in mice. Human miR-155 and flanking regions from the non-protein encoding gene mirhg155 were introduced into an artificial intron within an expression vector for HIV-1 Env gp140. Using the miR-155-expressing intron as a scaffold, we developed novel vectors for miRNA-mediated targeting of the cellular antiviral proteins PKR and PERK, which significantly down-modulated target gene expression and led to increased Env expression in vitro. Finally, vaccinating BALB/c mice with a DNA vaccine vector delivering miRNA targeting PERK, but not PKR, was able to augment the generation of Env-specific T-cell immunity. This study provides proof-of-concept evidence that miRNA effectors incorporated into vaccine constructs can positively influence vaccine immunogenicity. Further testing of vaccine-encoded miRNA will determine if such strategies can enhance protective efficacy from vaccines against HIV-1 for eventual human use.
Collapse
Affiliation(s)
- Adam K. Wheatley
- Department of Microbiology and Immunology, University of Melbourne, Melbourne, Victoria, Australia
| | - Marit Kramski
- Department of Microbiology and Immunology, University of Melbourne, Melbourne, Victoria, Australia
| | - Marina R. Alexander
- Department of Microbiology and Immunology, University of Melbourne, Melbourne, Victoria, Australia
| | - Jesse G. Toe
- Department of Microbiology and Immunology, University of Melbourne, Melbourne, Victoria, Australia
- Division of Infection and Immunity, The Walter & Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
| | - Rob J. Center
- Department of Microbiology and Immunology, University of Melbourne, Melbourne, Victoria, Australia
| | - Damian F. J. Purcell
- Department of Microbiology and Immunology, University of Melbourne, Melbourne, Victoria, Australia
- * E-mail:
| |
Collapse
|
34
|
Rerks-Ngarm S, Pitisuttithum P, Ganguly N, Zhang L, Tamashiro H, Cooper DA, Vun MC, Bela B, Ditangco R, Van Kinh N, Bernstein A, Osmanov S, Mathieson B, Kent SJ, Shao Y. Defining the objectives of the AIDS vaccine for Asia network: report of the WHO-UNAIDS/Global HIV vaccine enterprise regional consultation on expanding AIDS vaccine research and development capacity in Asia. Curr Opin HIV AIDS 2010; 5:435-52. [PMID: 20978386 PMCID: PMC3125721 DOI: 10.1097/coh.0b013e32833c95c1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
| | | | | | - Linqi Zhang
- Tsinghua University, Chinese Academy of Medical Sciences and Peking Union Medical College, China
| | | | | | - Mean Chhi Vun
- National Center for HIV/AIDS, Dermatology and STIs (NCHADS), Phnom Penh, Cambodia
| | | | | | - Nguyen Van Kinh
- National Institute of Infectious and Tropical Diseases (NIITD), Viet Nam
| | | | - Saladin Osmanov
- World Health Organization/Joint United Nations Programme on HIV/AIDS, Geneva, Switzerland
| | | | | | - Yiming Shao
- National Center for AIDS/STD Control and Prevention, China
| |
Collapse
|
35
|
Romani B, Glashoff RH, Engelbrecht S. Functional integrity of naturally occurring mutants of HIV-1 subtype C Vpr. Virus Res 2010; 153:288-98. [PMID: 20801175 DOI: 10.1016/j.virusres.2010.08.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2010] [Revised: 08/02/2010] [Accepted: 08/19/2010] [Indexed: 02/01/2023]
Abstract
HIV-1 Vpr, an accessory protein with multiple functions, is involved in the induction of apoptosis, cell cycle G2 arrest, and modulation of gene expression. Many functions of this protein have been documented for the wild-type subtype B Vpr, however the functionality of other subtypes has not sufficiently been addressed. In this study, the functionality of Subtype B Vpr, 6 subtype C mutant Vpr proteins and the consensus sequence of subtype C Vpr were compared with each other. All the subtype B and C Vpr proteins localized to the nucleus of human 293T cells. Subtype C Vpr proteins induced cell cycle G2 arrest in a lower proportion of human 293T cells compared to subtype B Vpr. Subtype B and the naturally mutant Vpr proteins induced apoptosis in a similar manner, ranging from 95.33% to 98.64%. However, an artificially designed Vpr protein containing the consensus sequences of subtype C Vpr indicated a reduced ability in induction of apoptosis. The study of mRNA profile of the transfected cells indicated that all Vpr proteins modulated the apoptotic genes triggering the intrinsic pathway of apoptosis. Our results indicate that subtype C Vpr is able to exert the same functions previously reported for subtype B Vpr. Most natural mutations in Vpr not only do not disturb the functions of the protein but also potentiate the protein for an increased functionality. The natural mutations of Vpr may thus not always be regarded as defective mutations. The study suggests the adaptive role of the natural mutations commonly found in subtype C Vpr.
Collapse
Affiliation(s)
- Bizhan Romani
- Division of Medical Virology, Department of Pathology, University of Stellenbosch, Tygerberg 7505, South Africa.
| | | | | |
Collapse
|
36
|
Alexander MR, Wheatley AK, Center RJ, Purcell DFJ. Efficient transcription through an intron requires the binding of an Sm-type U1 snRNP with intact stem loop II to the splice donor. Nucleic Acids Res 2010; 38:3041-53. [PMID: 20071748 PMCID: PMC2875018 DOI: 10.1093/nar/gkp1224] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The mechanism behind the positive action of introns upon transcription and the biological significance of this positive feedback remains unclear. Functional ablation of splice sites within an HIV-derived env cDNA significantly reduced transcription that was rescued by a U1 snRNA modified to bind to the mutated splice donor (SD). Using this model we further characterized both the U1 and pre-mRNA structural requirements for transcriptional enhancement. U1 snRNA rescued as a mature Sm-type snRNP with an intact stem loop II. Position and sequence context for U1-binding is crucial because a promoter proximal intron placed upstream of the mutated SD failed to rescue transcription. Furthermore, U1-rescue was independent of promoter and exon sequence and is partially replaced by the transcription elongation activator Tat, pointing to an intron-localized block in transcriptional elongation. Thus, transcriptional coupling of U1 snRNA binding to the SD may licence the polymerase for transcription through the intron.
Collapse
Affiliation(s)
- Marina R Alexander
- Department of Microbiology and Immunology, University of Melbourne, Melbourne 3010, Australia
| | | | | | | |
Collapse
|