1
|
Soliman RM, Nishioka K, Murakoshi F, Nakaya T. Use of live attenuated recombinant Newcastle disease virus carrying avian paramyxovirus 2 HN and F protein genes to enhance immune responses against species A rotavirus VP6 protein. Vet Res 2024; 55:16. [PMID: 38317245 PMCID: PMC10845738 DOI: 10.1186/s13567-024-01271-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 01/16/2024] [Indexed: 02/07/2024] Open
Abstract
Numerous infectious diseases in cattle lead to reductions in body weight, milk production, and reproductive performance. Cattle are primarily vaccinated using inactivated vaccines due to their increased safety. However, inactivated vaccines generally result in weaker immunity compared with live attenuated vaccines, which may be insufficient in certain cases. Over the last few decades, there has been extensive research on the use of the Newcastle disease virus (NDV) as a live vaccine vector for economically significant livestock diseases. A single vaccination dose of NDV can sufficiently induce immunity; therefore, a booster vaccination dose is expected to yield limited induction of further immune response. We previously developed recombinant chimeric NDV (rNDV-2F2HN), in which its hemagglutinin-neuraminidase (HN) and fusion (F) proteins were replaced with those of avian paramyxovirus 2 (APMV-2). In vitro analysis revealed that rNDV-2F2HN expressing human interferon-gamma had potential as a cancer therapeutic tool, particularly for immunized individuals. In the present study, we constructed rNDV-2F2HN expressing the bovine rotavirus antigen VP6 (rNDV-2F2HN-VP6) and evaluated its immune response in mice previously immunized with NDV. Mice primarily inoculated with recombinant wild-type NDV expressing VP6 (rNDV-WT-VP6), followed by a booster inoculation of rNDV-2F2HN-VP6, showed a significantly stronger immune response than that in mice that received rNDV-WT-VP6 as both primary and booster inoculations. Therefore, our findings suggest that robust immunity could be obtained from the effects of chimeric rNDV-2F2HN expressing the same or a different antigen of a particular pathogen as a live attenuated vaccine vector.
Collapse
Affiliation(s)
- Rofaida Mostafa Soliman
- Department of Infectious Diseases, Kyoto Prefectural University of Medicine, Kyoto, Japan
- Department of Animal Medicine (Infectious Diseases Division), Faculty of Veterinary Medicine, Damanhour University, Damanhour, El‑Beheira, Egypt
| | - Keisuke Nishioka
- Department of Infectious Diseases, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Fumi Murakoshi
- Laboratory of Sustainable Animal Environment, Graduate School of Agricultural Science, Tohoku University, Miyagi, Japan
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Miyagi, Japan
| | - Takaaki Nakaya
- Department of Infectious Diseases, Kyoto Prefectural University of Medicine, Kyoto, Japan.
| |
Collapse
|
2
|
Murr M, Freuling C, Pérez-Bravo D, Grund C, Mettenleiter TC, Römer-Oberdörfer A, Müller T, Finke S. Immune response after oral immunization of goats and foxes with an NDV vectored rabies vaccine candidate. PLoS Negl Trop Dis 2024; 18:e0011639. [PMID: 38408125 PMCID: PMC10919857 DOI: 10.1371/journal.pntd.0011639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 03/07/2024] [Accepted: 02/14/2024] [Indexed: 02/28/2024] Open
Abstract
Vaccination of the reservoir species is a key component in the global fight against rabies. For wildlife reservoir species and hard to reach spillover species (e. g. ruminant farm animals), oral vaccination is the only solution. In search for a novel potent and safe oral rabies vaccine, we generated a recombinant vector virus based on lentogenic Newcastle disease virus (NDV) strain Clone 30 that expresses the glycoprotein G of rabies virus (RABV) vaccine strain SAD L16 (rNDV_GRABV). Transgene expression and virus replication was verified in avian and mammalian cells. To test immunogenicity and viral shedding, in a proof-of-concept study six goats and foxes, representing herbivore and carnivore species susceptible to rabies, each received a single dose of rNDV_GRABV (108.5 TCID50/animal) by direct oral application. For comparison, three animals received the similar dose of the empty viral vector (rNDV). All animals remained clinically inconspicuous during the trial. Viral RNA could be isolated from oral and nasal swabs until four (goats) or seven days (foxes) post vaccination, while infectious NDV could not be re-isolated. After four weeks, three out of six rNDV_GRABV vaccinated foxes developed RABV binding and virus neutralizing antibodies. Five out of six rNDV_GRABV vaccinated goats displayed RABV G specific antibodies either detected by ELISA or RFFIT. Additionally, NDV and RABV specific T cell activity was demonstrated in some of the vaccinated animals by detecting antigen specific interferon γ secretion in lymphocytes isolated from pharyngeal lymph nodes. In conclusion, the NDV vectored rabies vaccine rNDV_GRABV was safe and immunogenic after a single oral application in goats and foxes, and highlight the potential of NDV as vector for oral vaccines in mammals.
Collapse
Affiliation(s)
- Magdalena Murr
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Conrad Freuling
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - David Pérez-Bravo
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Christian Grund
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Thomas C. Mettenleiter
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Angela Römer-Oberdörfer
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Thomas Müller
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Stefan Finke
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| |
Collapse
|
3
|
Murr M, Mettenleiter T. Negative-Strand RNA Virus-Vectored Vaccines. Methods Mol Biol 2024; 2786:51-87. [PMID: 38814390 DOI: 10.1007/978-1-0716-3770-8_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Vectored RNA vaccines offer a variety of possibilities to engineer targeted vaccines. They are cost-effective and safe, but replication competent, activating the humoral as well as the cellular immune system.This chapter focuses on RNA vaccines derived from negative-strand RNA viruses from the order Mononegavirales with special attention to Newcastle disease virus-based vaccines and their generation. It shall provide an overview on the advantages and disadvantages of certain vector platforms as well as their scopes of application, including an additional section on experimental COVID-19 vaccines.
Collapse
Affiliation(s)
- Magdalena Murr
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany.
| | - Thomas Mettenleiter
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| |
Collapse
|
4
|
Yao Y, Zhang Z, Yang Z. The combination of vaccines and adjuvants to prevent the occurrence of high incidence of infectious diseases in bovine. Front Vet Sci 2023; 10:1243835. [PMID: 37885619 PMCID: PMC10598632 DOI: 10.3389/fvets.2023.1243835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 09/27/2023] [Indexed: 10/28/2023] Open
Abstract
As the global population grows, the demand for beef and dairy products is also increasing. The cattle industry is facing tremendous pressures and challenges. The expanding cattle industry has led to an increased risk of disease in cattle. These diseases not only cause economic losses but also pose threats to public health and safety. Hence, ensuring the health of cattle is crucial. Vaccination is one of the most economical and effective methods of preventing bovine infectious diseases. However, there are fewer comprehensive reviews of bovine vaccines available. In addition, the variable nature of bovine infectious diseases will result in weakened or even ineffective immune protection from existing vaccines. This shows that it is crucial to improve overall awareness of bovine vaccines. Adjuvants, which are crucial constituents of vaccines, have a significant role in enhancing vaccine response. This review aims to present the latest advances in bovine vaccines mainly including types of bovine vaccines, current status of development of commonly used vaccines, and vaccine adjuvants. In addition, this review highlights the main challenges and outstanding problems of bovine vaccines and adjuvants in the field of research and applications. This review provides a theoretical and practical basis for the eradication of global bovine infectious diseases.
Collapse
Affiliation(s)
- Yiyang Yao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Zhipeng Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Zhangping Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou, China
| |
Collapse
|
5
|
Allam AM, Elbayoumy MK, Ghazy AA. Perspective vaccines for emerging viral diseases in farm animals. Clin Exp Vaccine Res 2023; 12:179-192. [PMID: 37599803 PMCID: PMC10435774 DOI: 10.7774/cevr.2023.12.3.179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 06/23/2023] [Accepted: 07/04/2023] [Indexed: 08/22/2023] Open
Abstract
The world has watched the emergence of numerous animal viruses that may threaten animal health which were added to the perpetual growing list of animal pathogens. This emergence drew the attention of the experts and animal health groups to the fact that it has become necessary to work on vaccine development. The current review aims to explore the perspective vaccines for emerging viral diseases in farm animals. This aim was fulfilled by focusing on modern technologies as well as next generation vaccines that have been introduced in the field of vaccines, either in clinical developments pending approval, or have already come to light and have been applied to animals with acceptable results such as viral-vectored vaccines, virus-like particles, and messenger RNA-based platforms. Besides, it shed the light on the importance of differentiation of infected from vaccinated animals technology in eradication programs of emerging viral diseases. The new science of nanomaterials was explored to elucidate its role in vaccinology. Finally, the role of Bioinformatics or Vaccinomics and its assist in vaccine designing and developments were discussed. The reviewing of the published manuscripts concluded that the use of conventional vaccines is considered an out-of-date approach in eliminating emerging diseases. However, these types of vaccines are considered the suitable plan especially in countries with few resources and capabilities. Piloted vaccines that rely on genetic-based technologies with continuous analyses of current viruses should be the aim of future vaccinology. Smart genomics of emerging viruses will be the gateway to choosing appropriate vaccines, regardless of the evolutionary rates of viruses.
Collapse
Affiliation(s)
- Ahmad Mohammad Allam
- Parasitology and Animal Diseases Department, Veterinary Research Institute, National Research Centre, Cairo, Egypt
| | - Mohamed Karam Elbayoumy
- Parasitology and Animal Diseases Department, Veterinary Research Institute, National Research Centre, Cairo, Egypt
| | - Alaa Abdelmoneam Ghazy
- Parasitology and Animal Diseases Department, Veterinary Research Institute, National Research Centre, Cairo, Egypt
| |
Collapse
|
6
|
Fulber JPC, Kamen AA. Development and Scalable Production of Newcastle Disease Virus-Vectored Vaccines for Human and Veterinary Use. Viruses 2022; 14:975. [PMID: 35632717 PMCID: PMC9143368 DOI: 10.3390/v14050975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/29/2022] [Accepted: 05/02/2022] [Indexed: 11/16/2022] Open
Abstract
The COVID-19 pandemic has highlighted the need for efficient vaccine platforms that can rapidly be developed and manufactured on a large scale to immunize the population against emerging viruses. Viral-vectored vaccines are prominent vaccine platforms that have been approved for use against the Ebola virus and SARS-CoV-2. The Newcastle Disease Virus is a promising viral vector, as an avian paramyxovirus that infects poultry but is safe for use in humans and other animals. NDV has been extensively studied not only as an oncolytic virus but also a vector for human and veterinary vaccines, with currently ongoing clinical trials for use against SARS-CoV-2. However, there is a gap in NDV research when it comes to process development and scalable manufacturing, which are critical for future approved vaccines. In this review, we summarize the advantages of NDV as a viral vector, describe the steps and limitations to generating recombinant NDV constructs, review the advances in human and veterinary vaccine candidates in pre-clinical and clinical tests, and elaborate on production in embryonated chicken eggs and cell culture. Mainly, we discuss the existing data on NDV propagation from a process development perspective and provide prospects for the next steps necessary to potentially achieve large-scale NDV-vectored vaccine manufacturing.
Collapse
Affiliation(s)
| | - Amine A. Kamen
- Viral Vectors and Vaccines Bioprocessing Group, Department of Bioengineering, McGill University, Montreal, QC H3A 0G4, Canada;
| |
Collapse
|
7
|
Vilela J, Rohaim MA, Munir M. Avian Orthoavulavirus Type-1 as Vaccine Vector against Respiratory Viral Pathogens in Animal and Human. Vaccines (Basel) 2022; 10:259. [PMID: 35214716 PMCID: PMC8876055 DOI: 10.3390/vaccines10020259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 01/30/2022] [Accepted: 02/04/2022] [Indexed: 11/17/2022] Open
Abstract
Avian orthoavulaviruses type-1 (AOaV-1) have recently transitioned from animal vaccine vector to a bona fide vaccine delivery vehicle in human. Owing to induction of robust innate and adaptive immune responses in mucus membranes in both birds and mammals, AOaVs offer an attractive vaccine against respiratory pathogens. The unique features of AOaVs include over 50 years of safety profile, stable expression of foreign genes, high infectivity rates in avian and mammalian hosts, broad host spectrum, limited possibility of recombination and lack of pre-existing immunity in humans. Additionally, AOaVs vectors allow the production of economical and high quantities of vaccine antigen in chicken embryonated eggs and several GMP-grade mammalian cell lines. In this review, we describe the biology of AOaVs and define protocols to manipulate AOaVs genomes in effectively designing vaccine vectors. We highlighted the potential and established portfolio of AOaV-based vaccines for multiple respiratory and non-respiratory viruses of veterinary and medical importance. We comment on the limitations of AOaV-based vaccines and propose mitigations strategies. The exploitation of AOaVs vectors is expanding at an exciting pace; thus, we have limited the scope to their use as vaccines against viral pathogens in both animals and humans.
Collapse
Affiliation(s)
- Julianne Vilela
- Division of Biomedical and Life Sciences, Lancaster University, Lancaster LA1 4YG, UK; (J.V.); (M.A.R.)
| | - Mohammed A. Rohaim
- Division of Biomedical and Life Sciences, Lancaster University, Lancaster LA1 4YG, UK; (J.V.); (M.A.R.)
- Department of Virology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Muhammad Munir
- Division of Biomedical and Life Sciences, Lancaster University, Lancaster LA1 4YG, UK; (J.V.); (M.A.R.)
| |
Collapse
|
8
|
Fakri FZ, Bamouh Z, Elmejdoub S, Elkarhat Z, Tadlaoui K, Chen W, Bu Z, Elharrak M. Long term immunity against Peste Des Petits Ruminants mediated by a recombinant Newcastle disease virus vaccine. Vet Microbiol 2021; 261:109201. [PMID: 34399299 DOI: 10.1016/j.vetmic.2021.109201] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 08/03/2021] [Indexed: 11/18/2022]
Abstract
Peste des Petits Ruminants (PPR) is a highly contagious and often fatal disease of sheep and goats. Conventional live vaccines have been successfully used in endemic countries however, there are not completely safe and not allowing differentiation between vaccinated and infected animals (DIVA). In this study, a recombinant Newcastle disease virus (NDV) expressing the hemagglutinin of PPRV (NDV-PPRVH) was evaluated on small ruminants by serology response in sheep and goats, experimental infection in goats and immunity duration in sheep. The NDV-PPRVH vaccine injected twice at 28 days' interval, provided full protection against challenge with a virulent PPR strain in the most sensitive species and induced significant neutralizing antibodies. Immunological response in goats was slightly higher than sheep and the vaccine injected at 108.0 50 % egg infective dose/mL allowed anti-PPRV antibodies that lasted at least 12 months as shown by antibody response monitoring in sheep. The NDV vector presented a limited replication in the host and vaccinated animals remained negative when tested by cELISA based on PPRV nucleoprotein allowing DIVA. This recombinant vaccine appears to be a promising candidate in a free at risk countries and may be an important component of the global strategy for PPR eradication.
Collapse
Affiliation(s)
- F Z Fakri
- Research and Development, MCI Santé Animale, Lot. 157, Z. I., Sud-Ouest (ERAC) B.P: 278, Mohammedia, 28810, Morocco.
| | - Z Bamouh
- Research and Development, MCI Santé Animale, Lot. 157, Z. I., Sud-Ouest (ERAC) B.P: 278, Mohammedia, 28810, Morocco.
| | - S Elmejdoub
- Research and Development, MCI Santé Animale, Lot. 157, Z. I., Sud-Ouest (ERAC) B.P: 278, Mohammedia, 28810, Morocco.
| | - Z Elkarhat
- Research and Development, MCI Santé Animale, Lot. 157, Z. I., Sud-Ouest (ERAC) B.P: 278, Mohammedia, 28810, Morocco.
| | - K Tadlaoui
- Research and Development, MCI Santé Animale, Lot. 157, Z. I., Sud-Ouest (ERAC) B.P: 278, Mohammedia, 28810, Morocco.
| | - W Chen
- Key Laboratory of Veterinary Public Health of Ministry of Agriculture and State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, 150001, China.
| | - Z Bu
- Key Laboratory of Veterinary Public Health of Ministry of Agriculture and State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, 150001, China.
| | - M Elharrak
- Research and Development, MCI Santé Animale, Lot. 157, Z. I., Sud-Ouest (ERAC) B.P: 278, Mohammedia, 28810, Morocco.
| |
Collapse
|
9
|
Immunogenicity and protective efficacy of an intranasal live-attenuated vaccine against SARS-CoV-2. iScience 2021; 24:102941. [PMID: 34368648 PMCID: PMC8332743 DOI: 10.1016/j.isci.2021.102941] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 06/27/2021] [Accepted: 07/30/2021] [Indexed: 01/08/2023] Open
Abstract
Global deployment of an effective and safe vaccine is necessary to curtail the coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Here, we evaluated a Newcastle disease virus (NDV)-based vectored-vaccine in mice and hamsters for its immunogenicity, safety, and protective efficacy against SARS-CoV-2. Intranasal administration of recombinant (r)NDV-S vaccine expressing spike (S) protein of SARS-CoV-2 to mice induced high levels of SARS-CoV-2-specific neutralizing immunoglobulin A (IgA) and IgG2a antibodies and T-cell-mediated immunity. Hamsters immunized with two doses of vaccine showed complete protection from lung infection, inflammation, and pathological lesions following SARS-CoV-2 challenge. Importantly, administration of two doses of intranasal rNDV-S vaccine significantly reduced the SARS-CoV-2 shedding in nasal turbinate and lungs in hamsters. Collectively, intranasal vaccination has the potential to control infection at the site of inoculation, which should prevent both clinical disease and virus transmission to halt the spread of the COVID-19 pandemic. Vaccine induces high levels of neutralizing Abs and T-cell-mediated immunity Vaccine ameliorates lung inflammation and pathology in hamster induced by SARS-CoV-2 The SARS-CoV-2 remains undetectable in lungs and nasal turbinates of vaccinated hamster Two doses of intranasal vaccine show complete protection against SARS-CoV-2 challenge
Collapse
|
10
|
Vrba SM, Kirk NM, Brisse ME, Liang Y, Ly H. Development and Applications of Viral Vectored Vaccines to Combat Zoonotic and Emerging Public Health Threats. Vaccines (Basel) 2020; 8:E680. [PMID: 33202961 PMCID: PMC7712223 DOI: 10.3390/vaccines8040680] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 02/07/2023] Open
Abstract
Vaccination is arguably the most cost-effective preventative measure against infectious diseases. While vaccines have been successfully developed against certain viruses (e.g., yellow fever virus, polio virus, and human papilloma virus HPV), those against a number of other important public health threats, such as HIV-1, hepatitis C, and respiratory syncytial virus (RSV), have so far had very limited success. The global pandemic of COVID-19, caused by the SARS-CoV-2 virus, highlights the urgency of vaccine development against this and other constant threats of zoonotic infection. While some traditional methods of producing vaccines have proven to be successful, new concepts have emerged in recent years to produce more cost-effective and less time-consuming vaccines that rely on viral vectors to deliver the desired immunogens. This review discusses the advantages and disadvantages of different viral vaccine vectors and their general strategies and applications in both human and veterinary medicines. A careful review of these issues is necessary as they can provide important insights into how some of these viral vaccine vectors can induce robust and long-lasting immune responses in order to provide protective efficacy against a variety of infectious disease threats to humans and animals, including those with zoonotic potential to cause global pandemics.
Collapse
Affiliation(s)
- Sophia M. Vrba
- Department of Veterinary & Biomedical Sciences, University of Minnesota, Twin Cities, St. Paul, MN 55108, USA; (S.M.V.); (Y.L.)
| | - Natalie M. Kirk
- Comparative Molecular Biosciences Graduate Program, Department of Veterinary & Biomedical Sciences, University of Minnesota, Twin Cities, St. Paul, MN 55108, USA;
| | - Morgan E. Brisse
- Biochemistry, Molecular Biology and Biophysics Graduate Program, Department of Veterinary & Biomedical Sciences, University of Minnesota, Twin Cities, St. Paul, MN 55108, USA;
| | - Yuying Liang
- Department of Veterinary & Biomedical Sciences, University of Minnesota, Twin Cities, St. Paul, MN 55108, USA; (S.M.V.); (Y.L.)
| | - Hinh Ly
- Department of Veterinary & Biomedical Sciences, University of Minnesota, Twin Cities, St. Paul, MN 55108, USA; (S.M.V.); (Y.L.)
| |
Collapse
|
11
|
A Scalable Topical Vectored Vaccine Candidate against SARS-CoV-2. Vaccines (Basel) 2020; 8:vaccines8030472. [PMID: 32846910 PMCID: PMC7565466 DOI: 10.3390/vaccines8030472] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/17/2020] [Accepted: 08/22/2020] [Indexed: 01/30/2023] Open
Abstract
The severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) caused an ongoing unprecedented global public health crises of coronavirus disease in 2019 (CoVID-19). The precipitously increased death rates, its impact on livelihood and trembling economies warrant the urgent development of a SARS-CoV-2 vaccine which would be safe, efficacious and scalable. Owing to unavailability of the vaccine, we propose a de novo synthesized avian orthoavulavirus 1 (AOaV-1)-based topical respiratory vaccine candidate against CoVID-19. Avirulent strain of AOaV-1 was engineered to express full length spike (S) glycoprotein which is highly neutralizing and a major protective antigen of the SARS-CoV-2. Broad-scale in vitro characterization of a recombinant vaccine candidate demonstrated efficient co-expression of the hemagglutinin-neuraminidase (HN) of AOaV-1 and S protein of SARS-CoV-2, and comparable replication kinetics were observed in a cell culture model. The recombinant vaccine candidate virus actively replicated and spread within cells independently of exogenous trypsin. Interestingly, incorporation of S protein of SARS-CoV-2 into the recombinant AOaV-1 particles attributed the sensitivity to anti-SARS-CoV-2 antiserum and more prominently to anti-AOaV-1 antiserum. Finally, our results demonstrated that the recombinant vaccine vector stably expressed S protein after multiple propagations in chicken embryonated eggs, and this expression did not significantly impact the in vitro growth characteristics of the recombinant. Taken together, the presented respiratory vaccine candidate is highly attenuated in primates per se, safe and lacking pre-existing immunity in human, and carries the potential for accelerated vaccine development against CoVID-19 for clinical studies.
Collapse
|
12
|
Hu Z, Ni J, Cao Y, Liu X. Newcastle Disease Virus as a Vaccine Vector for 20 Years: A Focus on Maternally Derived Antibody Interference. Vaccines (Basel) 2020; 8:vaccines8020222. [PMID: 32422944 PMCID: PMC7349365 DOI: 10.3390/vaccines8020222] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 04/28/2020] [Accepted: 05/11/2020] [Indexed: 01/08/2023] Open
Abstract
It has been 20 years since Newcastle disease virus (NDV) was first used as a vector. The past two decades have witnessed remarkable progress in vaccine generation based on the NDV vector and optimization of the vector. Protective antigens of a variety of pathogens have been expressed in the NDV vector to generate novel vaccines for animals and humans, highlighting a great potential of NDV as a vaccine vector. More importantly, the research work also unveils a major problem restraining the NDV vector vaccines in poultry, i.e., the interference from maternally derived antibody (MDA). Although many efforts have been taken to overcome MDA interference, a lack of understanding of the mechanism of vaccination inhibition by MDA in poultry still hinders vaccine improvement. In this review, we outline the history of NDV as a vaccine vector by highlighting some milestones. The recent advances in the development of NDV-vectored vaccines or therapeutics for animals and humans are discussed. Particularly, we focus on the mechanisms and hypotheses of vaccination inhibition by MDA and the efforts to circumvent MDA interference with the NDV vector vaccines. Perspectives to fill the gap of understanding concerning the mechanism of MDA interference in poultry and to improve the NDV vector vaccines are also proposed.
Collapse
Affiliation(s)
- Zenglei Hu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Jie Ni
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Yongzhong Cao
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
| | - Xiufan Liu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
13
|
Murr M, Hoffmann B, Grund C, Römer-Oberdörfer A, Mettenleiter TC. A Novel Recombinant Newcastle Disease Virus Vectored DIVA Vaccine against Peste des Petits Ruminants in Goats. Vaccines (Basel) 2020; 8:vaccines8020205. [PMID: 32354145 PMCID: PMC7348985 DOI: 10.3390/vaccines8020205] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/21/2020] [Accepted: 04/24/2020] [Indexed: 02/06/2023] Open
Abstract
Peste des petits ruminants virus (PPRV, species: small ruminant morbillivirus) is the causative agent of the eponymous notifiable disease, the peste des petits ruminants (PPR) in wild and domestic sheep and goats. Mortality rates vary between 50% and 100%, causing significant losses of estimated 1.5 to 2 billion US Dollars per year. Live-attenuated PPRV vaccine strains are used in the field for disease prevention, but the application of a more thermostable vaccine enabling differentiation between infected and vaccinated animals (DIVA) would be highly desirable to achieve the goal of global disease eradication. We generated a recombinant Newcastle disease virus (rNDV) based on the live-attenuated NDV Clone 30 that expresses the surface protein hemagglutinin (H) of PPRV strain Kurdistan/11 (rNDV_HKur). In vitro analyses confirmed transgene expression as well as virus replication in avian, caprine, and ovine cells. Two consecutive subcutaneous vaccinations of German domestic goats with rNDV_HKur prevented clinical signs and hematogenic dissemination after an intranasal challenge with virulent PPRV Kurdistan/11. Virus shedding by different routes was reduced to a similar extent as after vaccination with the live-attenuated PPRV strain Nigeria 75/1. Goats that were either not vaccinated or inoculated with parental rNDV were used as controls. In summary, we demonstrate in a proof-of-concept study that an NDV vectored vaccine can protect against PPR. Furthermore, it provides DIVA-applicability and a high thermal tolerance.
Collapse
Affiliation(s)
- Magdalena Murr
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany
- Correspondence: ; Tel.: +49-38351-7-1629
| | - Bernd Hoffmann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| | - Christian Grund
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| | - Angela Römer-Oberdörfer
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| | - Thomas C. Mettenleiter
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| |
Collapse
|
14
|
Bello MB, Yusoff K, Ideris A, Hair-Bejo M, Jibril AH, Peeters BPH, Omar AR. Exploring the Prospects of Engineered Newcastle Disease Virus in Modern Vaccinology. Viruses 2020; 12:v12040451. [PMID: 32316317 PMCID: PMC7232247 DOI: 10.3390/v12040451] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/13/2020] [Accepted: 03/15/2020] [Indexed: 12/12/2022] Open
Abstract
Many traditional vaccines have proven to be incapable of controlling newly emerging infectious diseases. They have also achieved limited success in the fight against a variety of human cancers. Thus, innovative vaccine strategies are highly needed to overcome the global burden of these diseases. Advances in molecular biology and reverse genetics have completely restructured the concept of vaccinology, leading to the emergence of state-of-the-art technologies for vaccine design, development and delivery. Among these modern vaccine technologies are the recombinant viral vectored vaccines, which are known for their incredible specificity in antigen delivery as well as the induction of robust immune responses in the vaccinated hosts. Although a number of viruses have been used as vaccine vectors, genetically engineered Newcastle disease virus (NDV) possesses some useful attributes that make it a preferable candidate for vectoring vaccine antigens. Here, we review the molecular biology of NDV and discuss the reverse genetics approaches used to engineer the virus into an efficient vaccine vector. We then discuss the prospects of the engineered virus as an efficient vehicle of vaccines against cancer and several infectious diseases of man and animals.
Collapse
Affiliation(s)
- Muhammad Bashir Bello
- Department of Veterinary Microbiology, Faculty of Veterinary Medicine, Usmanu Danfodiyo University PMB, Sokoto 2346, Nigeria;
- Laboratory of Vaccines and Immunotherapeutics, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia; (K.Y.); (A.I.); (M.H.-B.)
| | - Khatijah Yusoff
- Laboratory of Vaccines and Immunotherapeutics, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia; (K.Y.); (A.I.); (M.H.-B.)
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia
| | - Aini Ideris
- Laboratory of Vaccines and Immunotherapeutics, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia; (K.Y.); (A.I.); (M.H.-B.)
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia Serdang, Selangor 43400, Malaysia
| | - Mohd Hair-Bejo
- Laboratory of Vaccines and Immunotherapeutics, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia; (K.Y.); (A.I.); (M.H.-B.)
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia Serdang, Selangor 43400, Malaysia
| | - Abdurrahman Hassan Jibril
- Department of Veterinary Public Health and Preventive Medicine, Faculty of Veterinary Medicine, Usmanu Danfodiyo University PMB, Sokoto 2346, Nigeria;
| | - Ben P. H. Peeters
- Department of Virology, Wageningen Bioveterinary Research, POB 65, NL8200 Lelystad, The Netherlands;
| | - Abdul Rahman Omar
- Laboratory of Vaccines and Immunotherapeutics, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia; (K.Y.); (A.I.); (M.H.-B.)
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia Serdang, Selangor 43400, Malaysia
- Correspondence: ; Tel.:+603-89472111
| |
Collapse
|
15
|
Protective immunity following vaccination with a recombinant multiple-epitope protein of bovine herpesvirus type I in a rabbit model. Appl Microbiol Biotechnol 2020; 104:3011-3023. [PMID: 32002602 DOI: 10.1007/s00253-020-10420-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 01/19/2020] [Accepted: 01/26/2020] [Indexed: 10/25/2022]
Abstract
Bovine herpesvirus type 1 (BoHV-1) causes considerable economic losses to the cow industry. Vaccination remains an effective strategy to control the diseases associated with BoHV-1. However, live vaccines present safety concerns, especially in pregnant cows; thus, nonreplicating vaccines have been developed to control the disease. The envelope glycoproteins of BoHV-1 induce a protective immune response. In this work, selected epitopes on glycoproteins gD, gC, and gB were constructed in triplicate with linker peptides. Vaccination of rabbits demonstrated that P2-gD/gC/gB with AAYAAY induced higher specific antibodies than that with GGGGS linker. P2-gD/gC/gB with AAYAAY linker was fused with bovine interleukin-6 (BoIL-6) or rabbit IL-6 (RaIL-6) and bacterially expressed. Rabbits were intramuscularly immunized with 100 μg of P2-gD/gC/gB-BoIL-6, P2-gD/gC/gB-RaIL-6, P2-gD/gC/gB, P2-gD/gC/gB plus BoIL-6, P2-(gD-a)3-BoIL-6, or P2-(gD-a)3 emulsified with ISA 206 adjuvant thrice at 3-week intervals. P2-gD/gC/gB-BoIL-6 generated a higher titer of BoHV-1-specific antibodies, neutralizing antibodies, interferon (IFN)-γ, and IL-4 compared with P2-gD/gC/gB plus BoIL-6, P2-gD/gC/gB-RaIL-6, or other formulation. P2-gD/gC/gB-BoIL-6 triggered similar levels of antibodies and significantly higher titer of IFN-γ and IL-4 compared with inactivated bovine viral diarrhea (BVD)-infectious bovine rhinotracheitis (IBR) vaccine. Rabbits vaccinated with P2-gD/gC/gB-BoIL-6 dramatically reduced viral shedding and tissue lesions in lungs and trachea after viral challenge and reactivation compared with those with P2-gD/gC/gB plus BoIL-6 or P2-gD/gC/gB-RaIL-6. P2-gD/gC/gB-BoIL-6 provided protective effects against viral shedding and tissue pathogenesis similar to those of the inactivated vaccine. The data confirmed the safety and immunogenicity of multiple-epitope recombinant protein and a potential vaccine candidate to control the disease, especially for pregnant cattle.
Collapse
|
16
|
Zhang H, Nan F, Li Z, Zhao G, Xie C, Ha Z, Zhang J, Han J, Xiao P, Zhuang X, Wang W, Ge J, Tian M, Lu H, Bu Z, Jin N. Construction and immunological evaluation of recombinant Newcastle disease virus vaccines expressing highly pathogenic porcine reproductive and respiratory syndrome virus GP3/GP5 proteins in pigs. Vet Microbiol 2019; 239:108490. [PMID: 31767075 DOI: 10.1016/j.vetmic.2019.108490] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 10/15/2019] [Accepted: 10/27/2019] [Indexed: 11/29/2022]
Abstract
Highly pathogenic porcine reproductive and respiratory syndrome (HP-PRRS) poses a significant threat to the pig industry, for which vaccination is considered to be an effective means of prevention and control. Here, we developed two recombinant Newcastle disease virus (NDV) LaSota-vectored PRRS candidate vaccines, rLaSota-GP5 and rLaSota-GP3-GP5, using reverse genetic techniques. The two recombinant viruses exhibited a high degree of genetic stability after 10 successive generations in chicken embryos. There was no significant difference in pathogenicity compared with the rLaSota parent strain in poultry, mice and pigs. The recombinant viruses could not be detected in the feeding environment of immunized pigs, but could be detected in the organs and tissues of pigs for no more than 10 days after immunization. Importantly, in contrast to rLaSota-GP5, rLaSota-GP3-GP5 elicited both significant humoral and cellular immune responses in pigs. In particular, the neutralizing antibody titer in the rLaSota-GP3-GP5 group was 1.51 times significantly higher than that of the commercial vaccine group at 42 days post-immunization. At the same time, there was significant difference in the level of IFN-γ between the rLaSota-GP3-GP5 group and the commercial vaccine group. Furthermore, the viral load in the organs and tissues of rLaSota-GP3-GP5-immunized pigs was substantially lower than that of unimmunized pigs after being challenged with HP-PRRS virus GD strain. These results suggest that rLaSota-GP3-GP5 is a safe and promising candidate vaccine, and there is potential for further development of a recombinant virus vaccine for PRRS using NDV.
Collapse
Affiliation(s)
- He Zhang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Academy of Military Sciences, Changchun, China
| | - Fulong Nan
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Academy of Military Sciences, Changchun, China; College of Veterinary Medicine, Jilin University, Changchun, China
| | - Zhuoxin Li
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Academy of Military Sciences, Changchun, China; College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Guanyu Zhao
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Academy of Military Sciences, Changchun, China; College of Veterinary Medicine, Jilin University, Changchun, China
| | - Changzhan Xie
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Academy of Military Sciences, Changchun, China; College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Zhuo Ha
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Academy of Military Sciences, Changchun, China; College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Jinyong Zhang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Academy of Military Sciences, Changchun, China; College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Jicheng Han
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Academy of Military Sciences, Changchun, China; Medical College, Yanbian University, Yanji, China
| | - Pengpeng Xiao
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Academy of Military Sciences, Changchun, China; Institute of Virology, Wenzhou University, Wenzhou, China
| | - Xinyu Zhuang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Academy of Military Sciences, Changchun, China
| | - Wei Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Academy of Military Sciences, Changchun, China; College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Jinying Ge
- National Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Mingyao Tian
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Academy of Military Sciences, Changchun, China
| | - Huijun Lu
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Academy of Military Sciences, Changchun, China.
| | - Zhigao Bu
- National Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China.
| | - Ningyi Jin
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Academy of Military Sciences, Changchun, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.
| |
Collapse
|
17
|
Kumar R, Kumar V, Kekungu P, Barman NN, Kumar S. Evaluation of surface glycoproteins of classical swine fever virus as immunogens and reagents for serological diagnosis of infections in pigs: a recombinant Newcastle disease virus approach. Arch Virol 2019; 164:3007-3017. [PMID: 31598846 DOI: 10.1007/s00705-019-04425-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 09/04/2019] [Indexed: 12/18/2022]
Abstract
Classical swine fever (CSF) is an important viral disease of domestic pigs and wild boar. The structural proteins E2 and Erns of classical swine fever virus (CSFV), which participate in the attachment of the virion to the host cell surface and its subsequent entry, are immunogenic. The E2 and Erns proteins are used for diagnosis and the development of vaccines against CSFV infection in swine. Newcastle disease virus (NDV) has been successfully used as a viral vector to express heterologous proteins. In the present study, the E2 and Erns proteins of CSFV were expressed in cell culture as well as embryonated chicken eggs, using recombinant NDV (rNDV). Rescued rNDV expressing the E2 and Erns proteins induced the production of CSFV-neutralizing antibodies upon intranasal vaccination of pigs. Serum samples from vaccinated animals were found to neutralize both homologous and heterologous CSFV strains. Furthermore, rNDV expressing the E2 and Erns proteins of CSFV was used to develop an indirect ELISA, which was used to measure the the antibody titers of randomly collected serum samples. The results suggested that the ELISA based on rNDV-expressed E2 and Erns proteins could be used to screen for CSFV infections. This study shows that rNDV-based expression of CSFV antigens is potentially applicable for development of vaccines and diagnostic tests for CSFV infection. This approach could be an economically favorable alternative to the existing vaccine and diagnostics for CSFV in pigs.
Collapse
Affiliation(s)
- Rakesh Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Vishnu Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Puro Kekungu
- ICAR Research Complex for North East Hill Region, Shillong, Meghalaya, India
| | - Nagendra N Barman
- Department of Veterinary Microbiology, College of Veterinary Sciences, Assam Agricultural University, Khanapara, Guwahati, Assam, 781022, India
| | - Sachin Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India.
| |
Collapse
|
18
|
Manoharan VK, Khattar SK, LaBranche CC, Montefiori DC, Samal SK. Modified Newcastle Disease virus as an improved vaccine vector against Simian Immunodeficiency virus. Sci Rep 2018; 8:8952. [PMID: 29895833 PMCID: PMC5997738 DOI: 10.1038/s41598-018-27433-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 05/23/2018] [Indexed: 11/26/2022] Open
Abstract
SIV infection in macaques is a relevant animal model for HIV pathogenesis and vaccine study in humans. To design a safe and effective vaccine against HIV, we evaluated the suitability of naturally-occurring avirulent Newcastle disease virus (NDV) strains and several modified versions of NDV as vectors for the expression and immunogenicity of SIV envelope protein gp160. All the NDV vectors expressed gp160 protein in infected cells. The gp160 expressed by these vectors formed oligomers and was incorporated into the NDV envelope. All the NDV vectors expressing gp160 were attenuated in chickens. Intranasal immunization of guinea pigs with modified NDV vectors such as rNDV-APMV-2CS/gp160 and rNDV-APMV-8CS/gp160 (NDV strain LaSota containing the cleavage site sequences of F protein of avian paramyxovirus (APMV) serotype 2 and 8, respectively), and rNDV-BC-F-HN/gp160 (NDV strain BC containing LaSota F cleavage site and LaSota F and HN genes) elicited improved SIV-specific humoral and mucosal immune responses compared to other NDV vectors. These modified vectors were also efficient in inducing neutralizing antibody responses to tier 1 A SIVmac251.6 and tier 1B SIVmac251/M766 strains. This study suggests that our novel modified NDV vectors are safe and immunogenic and can be used as vaccine vector to control HIV.
Collapse
Affiliation(s)
- Vinoth K Manoharan
- Virginia-Maryland College of Veterinary Medicine, University of Maryland, College Park, Maryland, USA
| | - Sunil K Khattar
- Virginia-Maryland College of Veterinary Medicine, University of Maryland, College Park, Maryland, USA
| | - Celia C LaBranche
- Division of Surgical Sciences, Duke University, Durham, North Carolina, USA
| | - David C Montefiori
- Division of Surgical Sciences, Duke University, Durham, North Carolina, USA
| | - Siba K Samal
- Virginia-Maryland College of Veterinary Medicine, University of Maryland, College Park, Maryland, USA.
| |
Collapse
|
19
|
Yu GM, Zu SL, Zhou WW, Wang XJ, Shuai L, Wang XL, Ge JY, Bu ZG. Chimeric rabies glycoprotein with a transmembrane domain and cytoplasmic tail from Newcastle disease virus fusion protein incorporates into the Newcastle disease virion at reduced levels. J Vet Sci 2018; 18:351-359. [PMID: 27515260 PMCID: PMC5583423 DOI: 10.4142/jvs.2017.18.s1.351] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 04/29/2016] [Accepted: 07/21/2016] [Indexed: 11/20/2022] Open
Abstract
Rabies remains an important worldwide health problem. Newcastle disease virus (NDV) was developed as a vaccine vector in animals by using a reverse genetics approach. Previously, our group generated a recombinant NDV (LaSota strain) expressing the complete rabies virus G protein (RVG), named rL-RVG. In this study, we constructed the variant rL-RVGTM, which expresses a chimeric rabies virus G protein (RVGTM) containing the ectodomain of RVG and the transmembrane domain (TM) and a cytoplasmic tail (CT) from the NDV fusion glycoprotein to study the function of RVG's TM and CT. The RVGTM did not detectably incorporate into NDV virions, though it was abundantly expressed at the surface of infected BHK-21 cells. Both rL-RVG and rL-RVGTM induced similar levels of NDV virus-neutralizing antibody (VNA) after initial and secondary vaccination in mice, whereas rabies VNA induction by rL-RVGTM was markedly lower than that induced by rL-RVG. Though rL-RVG could spread from cell to cell like that in rabies virus, rL-RVGTM lost this ability and spread in a manner similar to the parental NDV. Our data suggest that the TM and CT of RVG are essential for its incorporation into NDV virions and for spreading of the recombinant virus from the initially infected cells to surrounding cells.
Collapse
Affiliation(s)
- Gui Mei Yu
- Key Laboratory of Veterinary Public Health of Ministry of Agriculture, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Shu Long Zu
- Key Laboratory of Veterinary Public Health of Ministry of Agriculture, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Wei Wei Zhou
- Key Laboratory of Veterinary Public Health of Ministry of Agriculture, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Xi Jun Wang
- Key Laboratory of Veterinary Public Health of Ministry of Agriculture, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Lei Shuai
- Key Laboratory of Veterinary Public Health of Ministry of Agriculture, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Xue Lian Wang
- Key Laboratory of Veterinary Public Health of Ministry of Agriculture, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Jin Ying Ge
- Key Laboratory of Veterinary Public Health of Ministry of Agriculture, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Zhi Gao Bu
- Key Laboratory of Veterinary Public Health of Ministry of Agriculture, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| |
Collapse
|
20
|
LIU RQ, GE JY, WANG JL, SHAO Y, ZHANG HL, WANG JL, WEN ZY, BU ZG. Newcastle disease virus-based MERS-CoV candidate vaccine elicits high-level and lasting neutralizing antibodies in Bactrian camels. JOURNAL OF INTEGRATIVE AGRICULTURE : JIA 2017; 16:2264-2273. [PMID: 32288953 PMCID: PMC7128255 DOI: 10.1016/s2095-3119(17)61660-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 05/10/2017] [Indexed: 06/11/2023]
Abstract
Middle East respiratory syndrome coronavirus (MERS-CoV), a member of the Coronaviridae family, is the causative pathogen for MERS that is characterized by high fever, pneumonia, acute respiratory distress syndrome (ARDS), as well as extrapulmonary manifestations. Currently, there are no approved treatment regimens or vaccines for MERS. Here, we generated recombinant nonvirulent Newcastle disease virus (NDV) LaSota strain expressing MERS-CoV S protein (designated as rLa-MERS-S), and evaluated its immunogenicity in mice and Bactrian camels. The results revealed that rLa-MERS-S showed similar growth properties to those of LaSota in embryonated chicken eggs, while animal immunization studies showed that rLa-MERS-S induced MERS-CoV neutralizing antibodies in mice and camels. Our findings suggest that recombinant rLa-MERS-S may be a potential MERS-CoV veterinary vaccine candidate for camels and other animals affected by MERS.
Collapse
Affiliation(s)
- Ren-qiang LIU
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, P.R.China
| | - Jin-ying GE
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, P.R.China
| | - Jin-ling WANG
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010018, P.R.China
| | - Yu SHAO
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, P.R.China
| | - Hui-lei ZHANG
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, P.R.China
| | - Jin-liang WANG
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, P.R.China
| | - Zhi-yuan WEN
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, P.R.China
| | - Zhi-gao BU
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, P.R.China
| |
Collapse
|
21
|
Xu J, Zhang X, Zhou S, Shen J, Yang D, Wu J, Li X, Li M, Huang X, Sealy JE, Iqbal M, Li Y. A DNA aptamer efficiently inhibits the infectivity of Bovine herpesvirus 1 by blocking viral entry. Sci Rep 2017; 7:11796. [PMID: 28924154 PMCID: PMC5603541 DOI: 10.1038/s41598-017-10070-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 08/03/2017] [Indexed: 01/24/2023] Open
Abstract
Bovine herpesvirus 1 (BoHV-1) is an important pathogen of domestic and wild cattle responsible for major economic losses in dairy and beef industries throughout the world. Inhibition of viral entry plays a crucial role in the control of BoHV-1 infection and aptamers have been reported to inhibit viral replication. In this study, nine DNA aptamers that target BoHV-1 were generated using systemic evolution of ligands by exponential enrichment. Of the nine candidates, aptamer IBRV-A4 exhibited the highest affinity and specificity for BoHV-1, which bound to BoHV-1 with a Kd value of 3.519 nM and demonstrated the greatest virus binding as shown by fluorescence imaging. The neutralizing ability of aptamer IBRV-A4 was determined using neutralization assays and real time PCR in BoHV-1 infected Madin-darby bovine kidney cells. Virus titration, immunofluorescence and confocal laser scanning microscopy showed virus replication significantly decreased when aptamer IBRV-A4 was added to BoHV-1 infected MDBK cells at 0 and 0.5 hours post-infection, whereas no change was seen when IBRV-A4 was added 2 hours post-infection. This concludes that aptamer IBRV-A4 efficiently inhibits viral entry of BoHV-1 in MDBK cells and is therefore a novel tool for diagnosis and treatment of BoHV-1 infection in cattle.
Collapse
Affiliation(s)
- Jian Xu
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of agricultural and Forestry Sciences, Beijing, 100097, P.R. China
| | - Xixi Zhang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of agricultural and Forestry Sciences, Beijing, 100097, P.R. China
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, P.R. China
| | - Shuanghai Zhou
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, P.R. China
| | - Junjun Shen
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of agricultural and Forestry Sciences, Beijing, 100097, P.R. China
| | - Dawei Yang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of agricultural and Forestry Sciences, Beijing, 100097, P.R. China
| | - Jing Wu
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of agricultural and Forestry Sciences, Beijing, 100097, P.R. China
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045, P.R. China
| | - Xiaoyang Li
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of agricultural and Forestry Sciences, Beijing, 100097, P.R. China
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045, P.R. China
| | - Meiling Li
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of agricultural and Forestry Sciences, Beijing, 100097, P.R. China
| | - Xiufen Huang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of agricultural and Forestry Sciences, Beijing, 100097, P.R. China
| | - Joshua E Sealy
- The Pirbright Institute, Ash Rd, Pirbright, Woking, GU24 0NF, UK
| | - Munir Iqbal
- The Pirbright Institute, Ash Rd, Pirbright, Woking, GU24 0NF, UK
| | - Yongqing Li
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of agricultural and Forestry Sciences, Beijing, 100097, P.R. China.
| |
Collapse
|
22
|
Choi KS. Newcastle disease virus vectored vaccines as bivalent or antigen delivery vaccines. Clin Exp Vaccine Res 2017; 6:72-82. [PMID: 28775971 PMCID: PMC5540967 DOI: 10.7774/cevr.2017.6.2.72] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Revised: 04/27/2017] [Accepted: 05/10/2017] [Indexed: 01/03/2023] Open
Abstract
Recent advances in reverse genetics techniques make it possible to manipulate the genome of RNA viruses such as Newcastle disease virus (NDV). Several NDV vaccine strains have been used as vaccine vectors in poultry, mammals, and humans to express antigens of different pathogens. The safety, immunogenicity, and protective efficacy of these NDV-vectored vaccines have been evaluated in pre-clinical and clinical studies. The vaccines are safe in mammals, humans, and poultry. Bivalent NDV-vectored vaccines against pathogens of economic importance to the poultry industry have been developed. These bivalent vaccines confer solid protective immunity against NDV and other foreign antigens. In most cases, NDV-vectored vaccines induce strong local and systemic immune responses against the target foreign antigen. This review summarizes the development of NDV-vectored vaccines and their potential use as a base for designing other effective vaccines for veterinary and human use.
Collapse
Affiliation(s)
- Kang-Seuk Choi
- OIE Reference Laboratory for Newcastle Disease, Avian Disease Research Division, Animal and Plant Quarantine Agency, Gimcheon, Korea
| |
Collapse
|
23
|
Yoshida A, Samal SK. Avian Paramyxovirus Type-3 as a Vaccine Vector: Identification of a Genome Location for High Level Expression of a Foreign Gene. Front Microbiol 2017; 8:693. [PMID: 28473820 PMCID: PMC5397467 DOI: 10.3389/fmicb.2017.00693] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Accepted: 04/04/2017] [Indexed: 01/10/2023] Open
Abstract
Avian paramyxovirus serotype 3 (APMV-3) causes infection in a wide variety of avian species, but it does not cause apparent diseases in chickens. On the contrary, APMV-1, also known as Newcastle disease virus (NDV), can cause severe disease in chickens. Currently, natural low virulence strains of NDV are used as live-attenuated vaccines throughout the world. NDV is also being evaluated as a vaccine vector against poultry pathogens. However, due to routine vaccination programs, chickens often possess pre-existing antibodies against NDV, which may cause the chickens to be less sensitive to recombinant NDV vaccines expressing antigens of other avian pathogens. Therefore, it may be possible for an APMV-3 vector vaccine to circumvent this issue. In this study, we determined the optimal insertion site in the genome of APMV-3 for high level expression of a foreign gene. We generated recombinant APMV-3 viruses expressing the green fluorescent protein (GFP) by inserting the GFP gene at five different intergenic regions in the genome. The levels of GFP transcription and translation were evaluated. Interestingly, the levels of GFP transcription and translation did not follow the 3′-to-5′ attenuation mechanism of non-segmented, negative-sense RNA viruses. The insertion of GFP gene into the P-M gene junction resulted in higher level of expression of GFP than when the gene was inserted into the upstream N-P gene junction. Unlike NDV, insertion of GFP did not attenuate the growth efficiency of AMPV-3. Thus, APMV-3 could be a more useful vaccine vector for avian pathogens than NDV.
Collapse
Affiliation(s)
- Asuka Yoshida
- Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College ParkMD, USA
| | - Siba K Samal
- Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College ParkMD, USA
| |
Collapse
|
24
|
Rescue of a recombinant Newcastle disease virus strain R2B expressing green fluorescent protein. Virus Genes 2017; 53:410-417. [DOI: 10.1007/s11262-017-1433-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 02/02/2017] [Indexed: 12/16/2022]
|
25
|
Del Medico Zajac MP, Zanetti FA, Esusy MS, Federico CR, Zabal O, Valera AR, Calamante G. Induction of Both Local Immune Response in Mice and Protection in a Rabbit Model by Intranasal Immunization with Modified Vaccinia Ankara Virus Expressing a Secreted Form of Bovine Herpesvirus 1 Glycoprotein D. Viral Immunol 2016; 30:70-76. [PMID: 27809679 DOI: 10.1089/vim.2016.0090] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
In this study, we evaluated the immunogenicity and efficacy of mucosal delivery of a recombinant modified vaccinia Ankara virus (MVA) expressing the secreted version of bovine herpesvirus type 1 (BoHV-1) glycoprotein D (MVA-gDs) without addition of adjuvant in two animal models. First, we demonstrated the capability of MVA-gDs of inducing both local and systemic anti-gD humoral immune response after intranasal immunization of mice. Then, we confirmed that two doses of MVA-gDs administered intranasally to rabbits induced systemic anti-gD antibodies and conferred protection against BoHV-1 challenge. Our results show the potential of using MVA as a vector for the rational design of veterinary vaccines capable of inducing specific and protective immune responses both at local and systemic level.
Collapse
Affiliation(s)
- María Paula Del Medico Zajac
- 1 Instituto de Biotecnología, Instituto Nacional de Tecnología Agropecuaria (CICVyA-INTA) , Hurlingham, Argentina .,2 Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) , Ciudad Autónoma de Buenos Aires, Argentina
| | - Flavia Adriana Zanetti
- 1 Instituto de Biotecnología, Instituto Nacional de Tecnología Agropecuaria (CICVyA-INTA) , Hurlingham, Argentina .,2 Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) , Ciudad Autónoma de Buenos Aires, Argentina
| | - María Soledad Esusy
- 1 Instituto de Biotecnología, Instituto Nacional de Tecnología Agropecuaria (CICVyA-INTA) , Hurlingham, Argentina
| | - Carlos Rodolfo Federico
- 1 Instituto de Biotecnología, Instituto Nacional de Tecnología Agropecuaria (CICVyA-INTA) , Hurlingham, Argentina .,2 Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) , Ciudad Autónoma de Buenos Aires, Argentina
| | - Osvaldo Zabal
- 3 Instituto de Virología, Instituto Nacional de Tecnología Agropecuaria (CICVyA-INTA) , Hurlingham, Argentina
| | - Alejandro Rafael Valera
- 4 Cátedra de Virología, Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata , La Plata, Argentina
| | - Gabriela Calamante
- 1 Instituto de Biotecnología, Instituto Nacional de Tecnología Agropecuaria (CICVyA-INTA) , Hurlingham, Argentina
| |
Collapse
|
26
|
Characterization of a recombinant Newcastle disease virus expressing the glycoprotein of bovine ephemeral fever virus. Arch Virol 2016; 162:359-367. [PMID: 27757685 PMCID: PMC5306239 DOI: 10.1007/s00705-016-3078-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Accepted: 09/19/2016] [Indexed: 11/13/2022]
Abstract
Bovine ephemeral fever (BEF) is caused by the arthropod-borne bovine ephemeral fever virus (BEFV), which is a member of the family Rhabdoviridae and the genus Ephemerovirus. BEFV causes an acute febrile infection in cattle and water buffalo. In this study, a recombinant Newcastle disease virus (NDV) expressing the glycoprotein (G) of BEFV (rL-BEFV-G) was constructed, and its biological characteristics in vitro and in vivo, pathogenicity, and immune response in mice and cattle were evaluated. BEFV G enabled NDV to spread from cell to cell. rL-BEFV-G remained nonvirulent in poultry and mice compared with vector LaSota virus. rL-BEFV-G triggered a high titer of neutralizing antibodies against BEFV in mice and cattle. These results suggest that rL-BEFV-G might be a suitable candidate vaccine against BEF.
Collapse
|
27
|
Chung YC, Shen HY, Cheng LT, Liu SS, Chu CY. Effectiveness of a BHV-1/BEFV bivalent vaccine against bovine herpesvirus type 1 infection in cattle. Res Vet Sci 2016; 109:161-165. [PMID: 27892866 DOI: 10.1016/j.rvsc.2016.10.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 09/29/2016] [Accepted: 10/11/2016] [Indexed: 11/24/2022]
Abstract
Bovine herpesvirus type 1 (BHV-1) causes acute febrile respiratory diseases (infectious bovine rhinotracheitis, IBR), decreased milk production, weight loss and abortion. Bovine ephemeral fever virus (BEFV) causes acute febrile respiratory disease, with pulmonary emphysema and pulmonary edema as the main signs. These viruses infect domesticated herds and lead to significant economic losses. In our previous study, an inactivated BHV-1 and BEFV bivalent vaccine was formulated with water-in-oil-in-water adjuvant, and vaccine efficacy was evaluated in guinea pigs. In this study, we evaluated the efficacy of the bivalent vaccine in cattle. Results showed that immunized cattle had a significantly higher level of total anti-BHV-1 antibody response (S/P ratio of 12.7) than the control group (S/P ratio of 0.07) 32weeks post-vaccination. The immunized group also showed higher neutralizing antibody levels against BHV-1 (SN=23.8) and BEFV (SN=24.6) than the control group (SN<2) 4 to 32weeks post-vaccination (p<0.05). In a BHV-1 challenge experiment, immunized cattle showed low virus shedding (101.2TCID50/mL) and a significant reduction in pathological lesion scores (p<0.01). In conclusion, the BHV-1+BEFV+w/o/w vaccine not only improved long-term antibody immune response but also significantly reduced clinical signs in a BHV-1 challenge experiment. Our approach may be feasible for developing an effective vaccine against bovine herpesvirus type 1 and bovine ephemeral fever virus.
Collapse
Affiliation(s)
- Yao-Chi Chung
- Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, Neipu, Pingtung 912, Taiwan, ROC
| | - Hsiu-Yen Shen
- Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, Neipu, Pingtung 912, Taiwan, ROC
| | - Li-Ting Cheng
- Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, Neipu, Pingtung 912, Taiwan, ROC
| | - Shyh-Shyan Liu
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Neipu, Pingtung 912, Taiwan, ROC
| | - Chun-Yen Chu
- Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, Neipu, Pingtung 912, Taiwan, ROC.
| |
Collapse
|
28
|
Newcastle Disease Virus as a Vaccine Vector for Development of Human and Veterinary Vaccines. Viruses 2016; 8:v8070183. [PMID: 27384578 PMCID: PMC4974518 DOI: 10.3390/v8070183] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 06/16/2016] [Accepted: 06/22/2016] [Indexed: 12/11/2022] Open
Abstract
Viral vaccine vectors have shown to be effective in inducing a robust immune response against the vaccine antigen. Newcastle disease virus (NDV), an avian paramyxovirus, is a promising vaccine vector against human and veterinary pathogens. Avirulent NDV strains LaSota and B1 have long track records of safety and efficacy. Therefore, use of these strains as vaccine vectors is highly safe in avian and non-avian species. NDV replicates efficiently in the respiratory track of the host and induces strong local and systemic immune responses against the foreign antigen. As a vaccine vector, NDV can accommodate foreign sequences with a good degree of stability and as a RNA virus, there is limited possibility for recombination with host cell DNA. Using NDV as a vaccine vector in humans offers several advantages over other viral vaccine vectors. NDV is safe in humans due to host range restriction and there is no pre-existing antibody to NDV in the human population. NDV is antigenically distinct from common human pathogens. NDV replicates to high titer in a cell line acceptable for human vaccine development. Therefore, NDV is an attractive vaccine vector for human pathogens for which vaccines are currently not available. NDV is also an attractive vaccine vector for animal pathogens.
Collapse
|
29
|
Wang J, Yang J, Ge J, Hua R, Liu R, Li X, Wang X, Shao Y, Sun E, Wu D, Qin C, Wen Z, Bu Z. Newcastle disease virus-vectored West Nile fever vaccine is immunogenic in mammals and poultry. Virol J 2016; 13:109. [PMID: 27342050 PMCID: PMC4920995 DOI: 10.1186/s12985-016-0568-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Accepted: 06/21/2016] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND West Nile virus (WNV) is an emerging zoonotic pathogen which is harmful to human and animal health. Effective vaccination in susceptible hosts should protect against WNV infection and significantly reduce viral transmission between animals and from animals to humans. A versatile vaccine suitable for different species that can be delivered via flexible routes remains an essential unmet medical need. In this study, we developed a recombinant avirulent Newcastle disease virus (NDV) LaSota strain expressing WNV premembrane/envelope (PrM/E) proteins (designated rLa-WNV-PrM/E) and evaluated its immunogenicity in mice, horses, chickens, ducks and geese. RESULTS Mouse immunization experiments disclosed that rLa-WNV-PrM/E induces significant levels of WNV-neutralizing antibodies and E protein-specific CD4+ and CD8+ T-cell responses. Moreover, recombinant rLa-WNV-PrM/E elicited significant levels of WNV-specific IgG in horses upon delivery via intramuscular immunization, and in chickens, ducks and geese via intramuscular, oral or intranasal immunization. CONCLUSIONS Our results collectively support the utility of rLa-WNV-PrM/E as a promising WNV veterinary vaccine candidate for mammals and poultry.
Collapse
Affiliation(s)
- Jinliang Wang
- />State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 427 Maduan Street, Harbin, Heilongjiang 150001 People’s Republic of China
| | - Jie Yang
- />State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 427 Maduan Street, Harbin, Heilongjiang 150001 People’s Republic of China
| | - Jinying Ge
- />State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 427 Maduan Street, Harbin, Heilongjiang 150001 People’s Republic of China
| | - Ronghong Hua
- />State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 427 Maduan Street, Harbin, Heilongjiang 150001 People’s Republic of China
| | - Renqiang Liu
- />State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 427 Maduan Street, Harbin, Heilongjiang 150001 People’s Republic of China
| | - Xiaofeng Li
- />Department of Virology, State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Xijun Wang
- />State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 427 Maduan Street, Harbin, Heilongjiang 150001 People’s Republic of China
| | - Yu Shao
- />State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 427 Maduan Street, Harbin, Heilongjiang 150001 People’s Republic of China
| | - Encheng Sun
- />State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 427 Maduan Street, Harbin, Heilongjiang 150001 People’s Republic of China
| | - Donglai Wu
- />State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 427 Maduan Street, Harbin, Heilongjiang 150001 People’s Republic of China
| | - Chengfeng Qin
- />Department of Virology, State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Zhiyuan Wen
- />State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 427 Maduan Street, Harbin, Heilongjiang 150001 People’s Republic of China
| | - Zhigao Bu
- />State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 427 Maduan Street, Harbin, Heilongjiang 150001 People’s Republic of China
| |
Collapse
|
30
|
Zhang M, Ge J, Li X, Chen W, Wang X, Wen Z, Bu Z. Protective efficacy of a recombinant Newcastle disease virus expressing glycoprotein of vesicular stomatitis virus in mice. Virol J 2016; 13:31. [PMID: 26911572 PMCID: PMC4765107 DOI: 10.1186/s12985-016-0481-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 02/02/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Vesicular stomatitis virus (VSV) causes severe losses to the animal husbandry industry. In this study, a recombinant Newcastle disease virus (NDV) expressing the glycoprotein (G) of VSV (rL-VSV-G) was constructed and its pathogenicity and immune protective efficacy in mouse were evaluated. RESULTS In pathogenicity evaluation test, the analysis of the viral distribution in mouse organs and body weight change showed that rL-VSV-G was safe in mice. In immune protection assay, the recombinant rL-VSV-G triggered a high titer of neutralizing antibodies against VSV. After challenge, the wild-type (wt) VSV viral load in mouse organs was lower in rL-VSV-G group than that in rLaSota groups. wt VSV was not detected in the blood, liver, or kidneys of mice, whereas it was found in these tissues in control groups. The mice body weight had no significant change after challenge in the rL-VSV-G group. Additionally, suckling mice produced from female mice immunized with rL-VSV-G were partially protected from wt VSV challenge. CONCLUSIONS These results demonstrated that rL-VSV-G may be a suitable candidate vaccine against vesicular stomatitis (VS).
Collapse
Affiliation(s)
- Minmin Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 427 Maduan Street, Harbin, 150001, People's Republic of China.
| | - Jinying Ge
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 427 Maduan Street, Harbin, 150001, People's Republic of China.
| | - Xiaofang Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 427 Maduan Street, Harbin, 150001, People's Republic of China.
| | - Weiye Chen
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 427 Maduan Street, Harbin, 150001, People's Republic of China.
| | - Xijun Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 427 Maduan Street, Harbin, 150001, People's Republic of China.
| | - Zhiyuan Wen
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 427 Maduan Street, Harbin, 150001, People's Republic of China.
| | - Zhigao Bu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 427 Maduan Street, Harbin, 150001, People's Republic of China.
| |
Collapse
|
31
|
Duan Z, Xu H, Ji X, Zhao J. Recombinant Newcastle disease virus-vectored vaccines against human and animal infectious diseases. Future Microbiol 2015; 10:1307-23. [PMID: 26234909 DOI: 10.2217/fmb.15.59] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Recent advances in recombinant genetic engineering techniques have brought forward a leap in designing new vaccines in modern medicine. One attractive strategy is the application of reverse genetics technology to make recombinant Newcastle disease virus (rNDV) deliver protective antigens of pathogens. In recent years, numerous studies have demonstrated that rNDV-vectored vaccines can induce quicker and better humoral and mucosal immune responses than conventional vaccines and are protective against pathogen challenges. With deeper understanding of NDV molecular biology, it is feasible to develop gene-modified rNDV vaccines accompanied by good safety, high efficacy, low toxicity and better immunogenicity. This review summarizes the development of reverse genetics technology in using NDV as a promising vaccine vector to design new vaccines for human and animal use.
Collapse
Affiliation(s)
- Zhiqiang Duan
- College of Animal Science, Guizhou University, Guiyang 550025, Guizhou, China.,Key Laboratory of Animal Genetics, Breeding & Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, Guizhou, China
| | - Houqiang Xu
- College of Animal Science, Guizhou University, Guiyang 550025, Guizhou, China.,Key Laboratory of Animal Genetics, Breeding & Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, Guizhou, China
| | - Xinqin Ji
- College of Animal Science, Guizhou University, Guiyang 550025, Guizhou, China
| | - Jiafu Zhao
- College of Animal Science, Guizhou University, Guiyang 550025, Guizhou, China.,Key Laboratory of Animal Genetics, Breeding & Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, Guizhou, China
| |
Collapse
|
32
|
A conformational epitope mapped in the bovine herpesvirus type 1 envelope glycoprotein B by phage display and the HSV-1 3D structure. Res Vet Sci 2015; 101:34-7. [PMID: 26267086 DOI: 10.1016/j.rvsc.2015.05.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 05/20/2015] [Accepted: 05/30/2015] [Indexed: 11/20/2022]
Abstract
The selected dodecapeptide (1)DRALYGPTVIDH(12) from a phage-displayed peptide library and the crystal structure of the envelope glycoprotein B (Env gB) from Herpes Simplex Virus type 1 (HSV-1) led us to the identification of a new discontinuous epitope on the Bovine herpesvirus type 1 (BoHV-1) Env gB. In silico analysis revealed a short BoHV-1 gB motif ((338)YKRD(341)) within a epitope region, with a high similarity to the motifs shared by the dodecapeptide N-terminal region ((5)YxARD(1)) and HSV-1 Env gB ((326)YARD(329)), in which the (328)Arg residue is described to be a neutralizing antibody target. Besides the characterization of an antibody-binding site of the BoHV-1 Env gB, we have demonstrated that the phage-fused peptide has the potential to be used as a reagent for virus diagnosis by phage-ELISA assay, which discriminated BoHV-1 infected serum samples from negative ones.
Collapse
|
33
|
Kumar S. Newcastle disease virus outbreaks in India: Time to revisit the vaccine type and strategies. Vaccine 2015; 33:3268-9. [DOI: 10.1016/j.vaccine.2015.03.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Revised: 02/28/2015] [Accepted: 03/02/2015] [Indexed: 11/16/2022]
|
34
|
Gogoi P, Ganar K, Kumar S. Avian Paramyxovirus: A Brief Review. Transbound Emerg Dis 2015; 64:53-67. [DOI: 10.1111/tbed.12355] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Indexed: 12/01/2022]
Affiliation(s)
- P. Gogoi
- Department of Biosciences and Bioengineering; Indian Institute of Technology Guwahati; Guwahati India
| | - K. Ganar
- Department of Biosciences and Bioengineering; Indian Institute of Technology Guwahati; Guwahati India
| | - S. Kumar
- Department of Biosciences and Bioengineering; Indian Institute of Technology Guwahati; Guwahati India
| |
Collapse
|
35
|
Kanabagatte Basavarajappa M, Kumar S, Khattar SK, Gebreluul GT, Paldurai A, Samal SK. A recombinant Newcastle disease virus (NDV) expressing infectious laryngotracheitis virus (ILTV) surface glycoprotein D protects against highly virulent ILTV and NDV challenges in chickens. Vaccine 2014; 32:3555-63. [PMID: 24793943 DOI: 10.1016/j.vaccine.2014.04.068] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Revised: 04/08/2014] [Accepted: 04/09/2014] [Indexed: 11/15/2022]
Abstract
Infectious laryngotracheitis (ILT) is a highly contagious acute respiratory disease of chickens caused by infectious laryngotracheitis virus (ILTV). Currently, modified live ILTV vaccines are used to control ILT infections. However, the live ILTV vaccines can revert to virulence after bird-to-bird passage and are capable of establishing latent infections, suggesting the need to develop safer vaccines against ILT. We have evaluated the role of three major ILTV surface glycoproteins, namely, gB, gC, and gD in protection and immunity against ILTV infection in chickens. Using reverse genetics approach, three recombinant Newcastle disease viruses (rNDVs) designated rNDV gB, rNDV gC, and rNDV gD were generated, each expressing gB, gC, and gD, respectively, of ILTV. Chickens received two immunizations with rNDVs alone (gB, gC, and gD) or in combination (gB+gC, gB+gD, gC+gD, and gB+gC+gD). Immunization with rNDV gD induced detectable levels of neutralizing antibodies with the magnitude of response greater than the rest of the experimental groups including those vaccinated with commercially available vaccines. The birds immunized with rNDV gD showed complete protection against virulent ILTV challenge. The birds immunized with rNDV gC alone or multivalent vaccines consisting of combination of rNDVs displayed partial protection with minimal disease and reduced replication of challenge virus in trachea. Immunization with rNDV gB neither reduced the severity of the disease nor the replication of challenge virus in trachea. The superior protective efficacy of rNDV gD vaccine compared to rNDV gB or rNDV gC vaccine was attributed to the higher levels of envelope incorporation and infected cell surface expression of gD than gB or gC. Our results suggest that rNDV expressing gD is a safe and effective bivalent vaccine against NDV and ILTV.
Collapse
Affiliation(s)
| | - Sachin Kumar
- Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, MD 20742, USA
| | - Sunil K Khattar
- Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, MD 20742, USA
| | - Girmay T Gebreluul
- Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, MD 20742, USA
| | - Anandan Paldurai
- Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, MD 20742, USA
| | - Siba K Samal
- Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
36
|
Newcastle disease virus: current status and our understanding. Virus Res 2014; 184:71-81. [PMID: 24589707 PMCID: PMC7127793 DOI: 10.1016/j.virusres.2014.02.016] [Citation(s) in RCA: 253] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 02/17/2014] [Accepted: 02/19/2014] [Indexed: 01/23/2023]
Abstract
Newcastle disease (ND) is one of the highly pathogenic viral diseases of avian species. ND is economically significant because of the huge mortality and morbidity associated with it. The disease is endemic in many third world countries where agriculture serves as the primary source of national income. Newcastle disease virus (NDV) belongs to the family Paramyxoviridae and is well characterized member among the avian paramyxovirus serotypes. In recent years, NDV has lured the virologists not only because of its pathogenic potential, but also for its oncolytic activity and its use as a vaccine vector for both humans and animals. The NDV based recombinant vaccine offers a pertinent choice for the construction of live attenuated vaccine due to its modular nature of transcription, minimum recombination frequency, and lack of DNA phase during replication. Our current understanding about the NDV biology is expanding rapidly because of the availability of modern molecular biology tools and high-throughput complete genome sequencing.
Collapse
|
37
|
Abstract
Bovine herpesvirus 1 (BHV-1) infection is widespread and causes a variety of diseases. Although similar in many respects to the human immune response to human herpesvirus 1, the differences in the bovine virus proteins, immune system components and strategies, physiology, and lifestyle mean the bovine immune response to BHV-1 is unique. The innate immune system initially responds to infection, and primes a balanced adaptive immune response. Cell-mediated immunity, including cytotoxic T lymphocyte killing of infected cells, is critical to recovery from infection. Humoral immunity, including neutralizing antibody and antibody-dependent cell-mediated cytotoxicity, is important to prevention or control of (re-)infection. BHV-1 immune evasion strategies include suppression of major histocompatibility complex presentation of viral antigen, helper T-cell killing, and latency. Immune suppression caused by the virus potentiates secondary infections and contributes to the costly bovine respiratory disease complex. Vaccination against BHV-1 is widely practiced. The many vaccines reported include replicating and non-replicating, conventional and genetically engineered, as well as marker and non-marker preparations. Current development focuses on delivery of major BHV-1 glycoproteins to elicit a balanced, protective immune response, while excluding serologic markers and virulence or other undesirable factors. In North America, vaccines are used to prevent or reduce clinical signs, whereas in some European Union countries marker vaccines have been employed in the eradication of BHV-1 disease.
Collapse
|
38
|
Wen Z, Zhao B, Song K, Hu X, Chen W, Kong D, Ge J, Bu Z. Recombinant lentogenic Newcastle disease virus expressing Ebola virus GP infects cells independently of exogenous trypsin and uses macropinocytosis as the major pathway for cell entry. Virol J 2013; 10:331. [PMID: 24209904 PMCID: PMC3826533 DOI: 10.1186/1743-422x-10-331] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 11/05/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Using reverse genetics, we generated a recombinant low-pathogenic LaSota strain Newcastle disease virus (NDV) expressing the glycoprotein (GP) of Ebola virus (EBOV), designated rLa-EBOVGP, and evaluated its biological characteristic in vivo and in vitro. RESULTS The introduction and expression of the EBOV GP gene did not increase the virulence of the NDV vector in poultry or mice. EBOV GP was incorporated into the particle of the vector virus and the recombinant virus rLa-EBOVGP infected cells and spread within them independently of exogenous trypsin. rLa-EBOVGP is more resistant to NDV antiserum than the vector NDV and is moderately sensitive to EBOV GP antiserum. More importantly, infection with rLa-EBOVGP was markedly inhibited by IPA3, indicating that rLa-EBOVGP uses macropinocytosis as the major internalization pathway for cell entry. CONCLUSIONS The results demonstrate that EBOV GP in recombinant NDV particles functions independently to mediate the viral infection of the host cells and alters the cell-entry pathway.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Zhigao Bu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 427 Maduan Street, Harbin 150001, People's Republic of China.
| |
Collapse
|
39
|
Evaluation of the replication, pathogenicity, and immunogenicity of avian paramyxovirus (APMV) serotypes 2, 3, 4, 5, 7, and 9 in rhesus macaques. PLoS One 2013; 8:e75456. [PMID: 24130713 PMCID: PMC3794941 DOI: 10.1371/journal.pone.0075456] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 08/15/2013] [Indexed: 11/19/2022] Open
Abstract
Avian paramyxoviruses (APMV) serotypes 1–9 are frequently isolated from domestic and wild birds worldwide. APMV-1 (also called Newcastle disease virus, NDV) is attenuated in non-human primates and is being developed as a candidate human vaccine vector. The vector potential of the other serotypes was unknown. In the present study, we evaluated nine different biologically- or recombinantly-derived APMV strains for the ability to replicate and cause disease in rhesus macaque model. Five of the viruses were: biologically-derived wild type (wt) APMV-2, -3, -5, -7 and -9. Another virus was a recombinant (r) version of wt APMV-4. The remaining three viruses were versions of wt rAPMV-2, -4 and -7 in which the F cleavage site had been modified to be multi-basic. Rhesus macaques were inoculated intranasally and intratracheally and monitored for clinical disease, virus shedding from the upper and lower respiratory tract, and seroconversion. Virus shedding was not detected for wt APMV-5. Very limited shedding was detected for wt rAPMV-4 and modified rAPMV-4, and only in a subset of animals. Shedding by the other viruses was detected in every infected animal, and usually from both the upper and lower respiratory tract. In particular, shedding over a number of days in every animal was observed for modified rAPMV-2, wt APMV-7, and modified rAPMV-7. Modification of the F protein cleavage site appeared to increase shedding by wt rAPMV-2 and marginally by wt rAPMV-4. All APMVs except wt APMV-5 induced a virus-specific serum antibody response in all infected animals. None of the animals exhibited any clinical disease signs. These results indicate that APMVs 2, 3, 4, 7, and 9 are competent to infect non-human primates, but are moderately-to-highly restricted, depending on the serotype. This suggests that they are not likely to significantly infect primates in nature, and represent promising attenuated candidates for vector development.
Collapse
|
40
|
Lawrence TM, Wanjalla CN, Gomme EA, Wirblich C, Gatt A, Carnero E, García-Sastre A, Lyles DS, McGettigan JP, Schnell MJ. Comparison of Heterologous Prime-Boost Strategies against Human Immunodeficiency Virus Type 1 Gag Using Negative Stranded RNA Viruses. PLoS One 2013; 8:e67123. [PMID: 23840600 PMCID: PMC3694142 DOI: 10.1371/journal.pone.0067123] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 05/14/2013] [Indexed: 11/19/2022] Open
Abstract
This study analyzed a heterologous prime-boost vaccine approach against HIV-1 using three different antigenically unrelated negative-stranded viruses (NSV) expressing HIV-1 Gag as vaccine vectors: rabies virus (RABV), vesicular stomatitis virus (VSV) and Newcastle disease virus (NDV). We hypothesized that this approach would result in more robust cellular immune responses than those achieved with the use of any of the vaccines alone in a homologous prime-boost regimen. To this end, we primed BALB/c mice with each of the NSV-based vectors. Primed mice were rested for thirty-five days after which we administered a second immunization with the same or heterologous NSV-Gag viruses. The magnitude and quality of the Gag-specific CD8+ T cells in response to these vectors post boost were measured. In addition, we performed challenge experiments using vaccinia virus expressing HIV-1 Gag (VV-Gag) thirty-three days after the boost inoculation. Our results showed that the choice of the vaccine used for priming was important for the detected Gag-specific CD8+ T cell recall responses post boost and that NDV-Gag appeared to result in a more robust recall of CD8+ T cell responses independent of the prime vaccine used. However, the different prime-boost strategies were not distinct for the parameters studied in the challenge experiments using VV-Gag but did indicate some benefits compared to single immunizations. Taken together, our data show that NSV vectors can individually stimulate HIV-Gag specific CD8+ T cells that are effectively recalled by other NSV vectors in a heterologous prime-boost approach. These results provide evidence that RABV, VSV and NDV can be used in combination to develop vaccines needing prime-boost regimens to stimulate effective immune responses.
Collapse
Affiliation(s)
- Tessa M. Lawrence
- Department of Microbiology and Immunology, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Celestine N. Wanjalla
- Department of Microbiology and Immunology, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Emily A. Gomme
- Department of Microbiology and Immunology, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Christoph Wirblich
- Department of Microbiology and Immunology, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Anthony Gatt
- Department of Microbiology and Immunology, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Elena Carnero
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Douglas S. Lyles
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - James P. McGettigan
- Department of Microbiology and Immunology, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Matthias J. Schnell
- Department of Microbiology and Immunology, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
- Jefferson Vaccine Center, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
41
|
Kong D, Wen Z, Su H, Ge J, Chen W, Wang X, Wu C, Yang C, Chen H, Bu Z. Newcastle disease virus-vectored Nipah encephalitis vaccines induce B and T cell responses in mice and long-lasting neutralizing antibodies in pigs. Virology 2012; 432:327-335. [PMID: 22726244 DOI: 10.1016/j.virol.2012.06.001] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Revised: 04/13/2012] [Accepted: 06/01/2012] [Indexed: 11/29/2022]
Abstract
Nipah virus (NiV), a member of the Paramyxoviridae family, causes deadly encephalitis in humans and huge economic losses to the pig industry. Here, we generated recombinant avirulent Newcastle disease virus (NDV) LaSota strains expressing the NiV G and F proteins respectively (designated as rLa-NiVG and rLa-NiVF), and evaluated their immunogenicity in mice and pigs. Both rLa-NiVG and rLa-NiVF displayed growth properties similar to those of LaSota virus in chicken eggs. Co-infection of rLa-NiVG and rLa-NiVF caused marked syncytia formation, while intracerebral co-inoculation of these viruses in mice showed they were safe in at least one mammalian species. Animal immunization studies showed rLa-NiVG and rLa-NiVF induced NiV neutralizing antibody responses in mice and pigs, and F protein-specific CD8+ T cell responses in mice. Most importantly, rLa-NiVG and rLa-NiVF administered alone or together, induced a long-lasting neutralizing antibody response in pigs. Recombinant rLa-NiVG/F thus appear to be promising NiV vaccine candidates for pigs and potentially humans.
Collapse
Affiliation(s)
- Dongni Kong
- State Key Laboratory of Veterinary Biotechnology and Animal Influenza Laboratory of the Ministry of Agriculture, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Blanc AM, Berois MB, Tomé LM, Epstein AL, Arbiza JR. Induction of humoral responses to BHV-1 glycoprotein D expressed by HSV-1 amplicon vectors. J Vet Sci 2012; 13:59-65. [PMID: 22437537 PMCID: PMC3317458 DOI: 10.4142/jvs.2012.13.1.59] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Herpes simplex virus type-1 (HSV-1) amplicon vectors are versatile and useful tools for transferring genes into cells that are capable of stimulating a specific immune response to their expressed antigens. In this work, two HSV-1-derived amplicon vectors were generated. One of these expressed the full-length glycoprotein D (gD) of bovine herpesvirus 1 while the second expressed the truncated form of gD (gDtr) which lacked the trans-membrane region. After evaluating gD expression in the infected cells, the ability of both vectors to induce a specific gD immune response was tested in BALB/c mice that were intramuscularly immunized. Specific serum antibody responses were detected in mice inoculated with both vectors, and the response against truncated gD was higher than the response against full-length gD. These results reinforce previous findings that HSV-1 amplicon vectors can potentially deliver antigens to animals and highlight the prospective use of these vectors for treating infectious bovine rhinotracheitis disease.
Collapse
Affiliation(s)
- Andrea Maria Blanc
- Sección Virología, Facultad de Ciencias, Universidad de la República, Montevideo 11600, Uruguay
| | | | | | | | | |
Collapse
|
43
|
Ferrer MF, Del Médico Zajac MP, Zanetti FA, Valera AR, Zabal O, Calamante G. Recombinant MVA expressing secreted glycoprotein D of BoHV-1 induces systemic and mucosal immunity in animal models. Viral Immunol 2011; 24:331-9. [PMID: 21830904 DOI: 10.1089/vim.2011.0018] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Bovine herpesvirus-1 (BoHV-1) infection is distributed worldwide and the development of new tools to fight against this pathogen has become extremely important. In this work a recombinant modified vaccinia virus Ankara (MVA) vector expressing the secreted version of glycoprotein D, MVA-gDs, was obtained and evaluated as a candidate vaccine. First, the correct expression, antigenicity, and N-glycosylation of glycoprotein D were confirmed by molecular techniques. Then MVA-gDs was used as parenteral immunogen in BALB/C mice in which a specific anti-gD humoral immune response was induced and maintained for 7 mo. Two doses of MVA-gDs supplemented with cholera toxin delivered by intranasal immunization induced IgA anti-gD humoral immune responses in nasal and bronchopulmonary washes, as well as IgG anti-gD antibodies in serum samples. In order to evaluate the protection conferred by MVA-gDs immunization, a rabbit BoHV-1 challenge assay was performed. A shorter viral excretion period and a reduction in the number of animals shedding BoHV-1 was observed in the group immunized with recombinant MVA-gDs. In conclusion our data encourage further studies to evaluate MVA-gDs, alone or combined with other immunogens, as a candidate vaccine for BoHV-1.
Collapse
Affiliation(s)
- María Florencia Ferrer
- Consejo Nacional de Investigaciones Científicas y Técnicas, Castilla de Correo 25, Buenos Aires, Argentina
| | | | | | | | | | | |
Collapse
|
44
|
Newcastle disease virus expressing human immunodeficiency virus type 1 envelope glycoprotein induces strong mucosal and serum antibody responses in Guinea pigs. J Virol 2011; 85:10529-41. [PMID: 21849467 DOI: 10.1128/jvi.05050-11] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) is transmitted mainly through mucosal sites. Optimum strategies to elicit both systemic and mucosal immunity are critical for the development of vaccines against HIV-1. We therefore sought to evaluate the induction of systemic and mucosal immune responses by the use of Newcastle disease virus (NDV) as a vaccine vector. We generated a recombinant NDV, designated rLaSota/gp160, expressing the gp160 envelope (Env) protein of HIV-1 from an added gene. The gp160 protein expressed by rLaSota/gp160 virus was detected on an infected cell surface and was incorporated into the NDV virion. Biochemical studies showed that gp160 present in infected cells and in the virion formed a higher-order oligomer that retained recognition by conformationally sensitive monoclonal antibodies. Expression of gp160 did not increase the virulence of recombinant NDV (rNDV) strain LaSota. Guinea pigs were administered rLaSota/gp160 via the intranasal (i.n.) or intramuscular (i.m.) route in different prime-boost combinations. Systemic and mucosal antibody responses specific to the HIV-1 envelope protein were assessed in serum and vaginal washes, respectively. Two or three immunizations via the i.n. or i.m. route induced a more potent systemic and mucosal immune response than a single immunization by either route. Priming by the i.n. route was more immunogenic than by the i.m. route, and the same was true for the boosts. Furthermore, immunization with rLaSota/gp160 by any route or combination of routes induced a Th1-type response, as reflected by the induction of stronger antigen-specific IgG2a than IgG1 antibody responses. Additionally, i.n. immunization elicited a stronger neutralizing serum antibody response to laboratory-adapted HIV-1 strain MN.3. These data illustrate that it is feasible to use NDV as a vaccine vector to elicit potent humoral and mucosal responses to the HIV-1 envelope protein.
Collapse
|
45
|
Ge J, Wang X, Tao L, Wen Z, Feng N, Yang S, Xia X, Yang C, Chen H, Bu Z. Newcastle disease virus-vectored rabies vaccine is safe, highly immunogenic, and provides long-lasting protection in dogs and cats. J Virol 2011; 85:8241-52. [PMID: 21632762 PMCID: PMC3147977 DOI: 10.1128/jvi.00519-11] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Accepted: 05/18/2011] [Indexed: 12/24/2022] Open
Abstract
Effective, safe, and affordable rabies vaccines are still being sought. Newcastle disease virus (NDV), an avian paramyxovirus, has shown promise as a vaccine vector for mammals. Here, we generated a recombinant avirulent NDV La Sota strain expressing the rabies virus glycoprotein (RVG) and evaluated its potential to serve as a vaccine against rabies. The recombinant virus, rL-RVG, retained its high-growth property in chicken eggs, with titers of up to 10⁹·⁸ 50% egg infective doses (EID₅₀)/ml of allantoic fluid. RVG expression enabled rL-RVG to spread from cell to cell in a rabies virus-like manner, and RVG was incorporated on the surface of the rL-RVG viral particle. RVG incorporation did not alter the trypsin-dependent infectivity of the NDV vector in mammalian cells. rL-RVG and La Sota NDV showed similar levels of sensitivity to a neutralization antibody against NDV and similar levels of resistance to a neutralization antibody against rabies virus. Animal studies demonstrated that rL-RVG is safe in several species, including cats and dogs, when administered as multiple high doses of recombinant vaccine. Intramuscular vaccination with rL-RVG induced a substantial rabies virus neutralization antibody response and provided complete protection from challenge with circulating rabies virus strains. Most importantly, rL-RVG induced strong and long-lasting protective neutralization antibody responses to rabies virus in dogs and cats. A low vaccine dose of 10⁸·³ EID₅₀ completely protected dogs from challenge with a circulating strain of rabies virus for more than a year. This is the first study to demonstrate that immunization with an NDV-vectored vaccine can induce long-lasting, systemic protective immunity against rabies.
Collapse
Affiliation(s)
- Jinying Ge
- Harbin Veterinary Research Institute, CAAS, 427 Maduan Street, Harbin 150001, People's Republic of China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Xiao S, Kumar M, Yang X, Akkoyunlu M, Collins PL, Samal SK, Pal U. A host-restricted viral vector for antigen-specific immunization against Lyme disease pathogen. Vaccine 2011; 29:5294-303. [PMID: 21600949 PMCID: PMC3138909 DOI: 10.1016/j.vaccine.2011.05.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Revised: 04/21/2011] [Accepted: 05/05/2011] [Indexed: 11/21/2022]
Abstract
Newcastle disease virus (NDV) is an avian virus that is attenuated in primates and is a potential vaccine vector for human use. We evaluated NDV as a vector for expressing selected antigens of the Lyme disease pathogen Borrelia burgdorferi. A series of recombinant NDVs were generated that expressed intracellular or extracellular forms of two B. burgdorferi antigens: namely, the basic membrane protein A (BmpA) and the outer surface protein C (OspC). Expression of the intracellular and extracellular forms of these antigens was confirmed in cultured chicken cells. C3H or Balb/C mice that were immunized intranasally with the NDV vectors mounted vigorous serum antibody responses against the NDV vector, but failed to mount a robust response against either the intracellular or extracellular forms of BmpA or OspC. By contrast, a single immunization of hamsters with the NDV vectors via the intranasal, intramuscular, or intraperitoneal route resulted in rapid and rigorous antibody responses against the intracellular or extracellular forms of BmpA and OspC. When groups of hamsters were separately inoculated with various NDV vectors and challenged with B. burgdorferi (108 cells/animal), immunization with vector expressing either intracellular or extracellular BmpA was associated with a significant reduction of the pathogen load in the joints. Taken together, our studies highlighted the importance of NDV as vaccine vector that can be used for simple yet effective immunization of hosts against bacterial infections including Lyme disease.
Collapse
Affiliation(s)
- Sa Xiao
- Department of Veterinary Medicine, University of Maryland, College Park, MD 20742, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Wang X, Xie G, Liao J, Yin D, Guan W, Pan M, Li J, Li Y. Design and evaluation of a multi-epitope assembly peptide (MEAP) against herpes simplex virus type 2 infection in BALB/c mice. Virol J 2011; 8:232. [PMID: 21575169 PMCID: PMC3113306 DOI: 10.1186/1743-422x-8-232] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Accepted: 05/16/2011] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Human herpes simplex virus (HSV) 1 and 2 causes oral, ocular, or genital infections, which remains a significant health problem worldwide. HSV-1 and -2 infections in humans range from localized skin infections of the oral, ocular, and genital regions to severe and often disseminated infections in immunocompromised hosts. Epitope based vaccination is a promising mean to achieve protective immunity and to avoid infections with Human herpes simplex virus type 2 (HSV-2). METHODS The twelve selected epitopes, six B cell epitopes from different glycoprotein of HSV-2 (amino acid residues 466-473 (EQDRKPRN) from envelope glycoprotein B, 216-223 (GRTDRPSA) from C, 6-18 (DPSLKMADPNRFR) from D, 483-491 (DPPERPDSP) from E, 572-579 (EPPDDDDS) from G and 286-295 (CRRRYRRPRG) from I glycoprotein of HSV-2), four CD4+ T cell epitopes (amino acid residues 21-28 (NLPVLDQL) from D, 162-177 (KDVTVSQVWFGHRYSQ) from B, 205-224 (KAYQQGVTVDSIGMLPRFIP) from D and 245-259 (KPPYTSTLLPPELSD) from D) and two CD8+ T cell epitopes (amino acid residues 10-20 (KMADPNRFRGK) from D and 268-276 (ALLEDPAGT) from D), are responsible for the elicitation of the neutralizing antibodies and cytotoxic T lymphocytes (CTLs) that impart protective immunity to the host. In this study, all above epitopes were inserted into the extracellular fragment (amino acid residues 1-290) of HSV-2 glycoprotein D to construct multi-epitope assembly peptides (MEAPs) by replacing some non-epitope amino acid sequences. The epitope independency of the MEAPs was predicted by three-dimensional software algorithms. The gene of the selected MEAP was expressed in E.coli BL21(DE3), and its protective efficacy against HSV-2 infection was assessed in BALB/c mice. RESULTS The MEAP, with each inserted epitopes independently displayed on the molecule surface, was selected as candidate proteins. The results showed that the MEAP was highly immunogenic and could elicit high titer neutralizing antibodies and cell-mediated immune responses. CONCLUSIONS The MEAP provided complete protection against infection with HSV-2 in mice, which indicates that it might be a potential candidate vaccine against HSV-2.
Collapse
MESH Headings
- Animals
- Antibodies, Neutralizing/blood
- Antibodies, Viral/blood
- Antigens, Viral/genetics
- Antigens, Viral/immunology
- Epitopes, B-Lymphocyte/genetics
- Epitopes, B-Lymphocyte/immunology
- Epitopes, T-Lymphocyte/genetics
- Epitopes, T-Lymphocyte/immunology
- Female
- Herpes Simplex/prevention & control
- Herpes Simplex/virology
- Herpesvirus 2, Human/immunology
- Herpesvirus Vaccines/genetics
- Herpesvirus Vaccines/immunology
- Male
- Mice
- Mice, Inbred BALB C
- T-Lymphocytes, Cytotoxic/immunology
- Vaccines, Subunit/genetics
- Vaccines, Subunit/immunology
- Vaccines, Synthetic/genetics
- Vaccines, Synthetic/immunology
Collapse
Affiliation(s)
- Xingsheng Wang
- Huadong Research Institute for Medicine and Biotechniques, Nanjing, 210002, China
| | - Guangyan Xie
- Department of Pharmacy, Anhui University of Traditional Chinese Medicine, Hefei, China, 230038
| | - Jianming Liao
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China, 210009
| | - Dengke Yin
- Department of Pharmacy, Anhui University of Traditional Chinese Medicine, Hefei, China, 230038
| | - Wenyan Guan
- Huadong Research Institute for Medicine and Biotechniques, Nanjing, 210002, China
| | - Mingjie Pan
- Huadong Research Institute for Medicine and Biotechniques, Nanjing, 210002, China
| | - Jingnian Li
- Department of Immunology and Microbiology, Anhui Agriculture University, Hefei, China, 230038
| | - Yuexi Li
- Huadong Research Institute for Medicine and Biotechniques, Nanjing, 210002, China
| |
Collapse
|
48
|
Khattar SK, Kumar S, Xiao S, Collins PL, Samal SK. Experimental infection of mice with avian paramyxovirus serotypes 1 to 9. PLoS One 2011; 6:e16776. [PMID: 21347313 PMCID: PMC3037383 DOI: 10.1371/journal.pone.0016776] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Accepted: 12/29/2010] [Indexed: 11/18/2022] Open
Abstract
The nine serotypes of avian paramyxoviruses (APMVs) are frequently isolated from domestic and wild birds worldwide. APMV-1, also called Newcastle disease virus, was shown to be attenuated in non-avian species and is being developed as a potential vector for human vaccines. In the present study, we extended this evaluation to the other eight serotypes by evaluating infection in BALB/c mice. Mice were inoculated intranasally with a prototype strain of each of the nine serotypes and monitored for clinical disease, gross pathology, histopathology, virus replication and viral antigen distribution, and seroconversion. On the basis of multiple criteria, each of the APMV serotypes except serotype 5 was found to replicate in mice. Five of the serotypes produced clinical disease and significant weight loss in the following order of severity: 1, 2>6, 9>7. However, disease was short-lived. The other serotypes produced no evident clinical disease. Replication of all of the APMVs except APMV-5 in the nasal turbinates and lungs was confirmed by the recovery of infectious virus and by substantial expression of viral antigen in the epithelial lining detected by immunohistochemistry. Trace levels of infectious APMV-4 and -9 were detected in the brain of some animals; otherwise, no virus was detected in the brain, small intestine, kidney, or spleen. Histologically, infection with the APMVs resulted in lung lesions consistent with broncho-interstitial pneumonia of varying severity that were completely resolved at 14 days post infection. All of the mice infected with the APMVs except APMV-5 produced serotype-specific HI serum antibodies, confirming a lack of replication of APMV-5. Taken together, these results demonstrate that all APMV serotypes except APMV-5 are capable of replicating in mice with minimal disease and pathology.
Collapse
Affiliation(s)
- Sunil K. Khattar
- Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, Maryland, United States of America
| | - Sachin Kumar
- Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, Maryland, United States of America
| | - Sa Xiao
- Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, Maryland, United States of America
| | - Peter L. Collins
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, United States of America
| | - Siba K. Samal
- Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, Maryland, United States of America
| |
Collapse
|
49
|
DiNapoli JM, Yang L, Samal SK, Murphy BR, Collins PL, Bukreyev A. Respiratory tract immunization of non-human primates with a Newcastle disease virus-vectored vaccine candidate against Ebola virus elicits a neutralizing antibody response. Vaccine 2010; 29:17-25. [PMID: 21034822 PMCID: PMC3428043 DOI: 10.1016/j.vaccine.2010.10.024] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2010] [Revised: 09/16/2010] [Accepted: 10/11/2010] [Indexed: 02/03/2023]
Abstract
We previously developed a respiratory tract vaccine candidate against Ebola virus (EBOV) based on human parainfluenza virus type 3 (HPIV3), a respiratory paramyxovirus, expressing the EBOV GP envelope protein (HPIV3/GP) from an added gene. Two doses of this vaccine candidate delivered by the intranasal and intratracheal route protected monkeys against intraperitoneal challenge with EBOV; however, concerns exist that the vaccine candidate may have reduced immunogenicity in the adult human population due to pre-existing immunity against HPIV3. Here we developed a new vaccine candidate (NDV/GP) based on Newcastle disease virus (NDV), an avian paramyxovirus that is antigenically distinct from human viral pathogens and is highly attenuated in monkeys. Following one intranasal and intratracheal inoculation of Rhesus monkeys with NDV/GP, titers of EBOV-specific antibodies in respiratory tract secretions and serum samples determined by ELISA, as well as serum EBOV-neutralizing antibodies, were undetectable or low compared to those induced by HPIV3/GP. A second immunization resulted in a substantial boost in serum IgG ELISA titers, yet the titers remained lower than those induced by a second dose of HPIV3/GP. In contrast, the ELISA IgA titers in respiratory tract secretions and, more importantly, the serum EBOV-neutralizing antibody titers were equal to those induced after the second dose of HPIV3/GP. These data suggest that NDV/GP can be effective for immunization against EBOV alone, or in combination with either HPIV3/GP or another vaccine platform in a heterologous prime-boost regimen.
Collapse
Affiliation(s)
- Joshua M DiNapoli
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-MSC, USA
| | | | | | | | | | | |
Collapse
|