1
|
Ridelfi M, Pierleoni G, Zucconi Galli Fonseca V, Batani G, Rappuoli R, Sala C. State of the Art and Emerging Technologies in Vaccine Design for Respiratory Pathogens. Semin Respir Crit Care Med 2025. [PMID: 39870103 DOI: 10.1055/a-2500-1878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2025]
Abstract
In this review, we present the efforts made so far in developing effective solutions to prevent infections caused by seven major respiratory pathogens: influenza virus, respiratory syncytial virus (RSV), the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), Bordetella pertussis, Streptococcus pneumoniae (pneumococcus), Mycobacterium tuberculosis, and Pseudomonas aeruginosa. Advancements driven by the recent coronavirus disease 2019 (COVID-19) crisis have largely focused on viruses, but effective prophylactic solutions for bacterial pathogens are also needed, especially in light of the antimicrobial resistance (AMR) phenomenon. Here, we discuss various innovative key technologies that can help address this critical need, such as (a) the development of Lung-on-Chip ex vivo models to gain a better understanding of the pathogenesis process and the host-microbe interactions; (b) a more thorough investigation of the mechanisms behind mucosal immunity as the first line of defense against pathogens; (c) the identification of correlates of protection (CoPs) which, in conjunction with the Reverse Vaccinology 2.0 approach, can push a more rational and targeted design of vaccines. By focusing on these critical areas, we expect substantial progress in the development of new vaccines against respiratory bacterial pathogens, thereby enhancing global health protection in the framework of the increasingly concerning AMR emergence.
Collapse
Affiliation(s)
- Matteo Ridelfi
- Monoclonal Antibody Discovery (MAD) Lab, Fondazione Toscana Life Sciences, Siena, Italy
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Giulio Pierleoni
- Monoclonal Antibody Discovery (MAD) Lab, Fondazione Toscana Life Sciences, Siena, Italy
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | | | - Giampiero Batani
- Monoclonal Antibody Discovery (MAD) Lab, Fondazione Toscana Life Sciences, Siena, Italy
| | | | - Claudia Sala
- Monoclonal Antibody Discovery (MAD) Lab, Fondazione Toscana Life Sciences, Siena, Italy
| |
Collapse
|
2
|
González FM, Bialer MG, Cerutti ML, Estein SM, Ramis LY, Baldi PC, Zorreguieta Á, Ferrero MC. Brucella suis Δ mapB outer membrane vesicles as an acellular vaccine against systemic and mucosal B. suis infection. Front Immunol 2025; 15:1501791. [PMID: 39902052 PMCID: PMC11788153 DOI: 10.3389/fimmu.2024.1501791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 12/30/2024] [Indexed: 02/05/2025] Open
Abstract
Introduction Swine brucellosis, caused by Brucella suis, is a worldwide infectious zoonotic disease. Currently, there are no available human or porcine vaccines to protect against B. suis infection, which is primarily acquired through the mucosa. We recently described B. suis MapB, the homologous protein of TamB, the inner membrane component of the TAM system. Our findings indicate that MapB is involved in bacterial cell envelope homeostasis. In this study, we characterize the outer membrane vesicles (OMVs) of B. suis 1330 (wt) and those of B. suis ΔmapB (ΔmapB) mutant strain and evaluate their vaccine potential in mice. Methods OMVs were isolated using the ultracentrifugation method and characterized through electron microscopy, Dynamic Light Scattering, SDS-PAGE and proteomics. Immunogenicity was assessed by intramuscular immunization of mice with wt OMVs or ΔmapB OMVs, followed by the measurement of antigen-specific antibody levels and functional assays to evaluate the protective capacity of the antibodies. Cellular immunity was assessed by characterizing cytokine secretion through ELISA after in vitro stimulation of spleen cells with heat-killed B. suis. To determine the level of protection conferred by immunization, mice were challenged with virulent B. suis via intraperitoneal or intratracheal routes, and the bacterial load was quantified post-challenge. Results Dynamic Light Scattering of the OMVs from both strains revealed the presence of spherical structures of 90-130 nm. Proteomic analysis identified 94 and 95 proteins in the wt and ΔmapB OMVs, respectively, including several known Brucella immunogens. Both OMVs showed immunoreactivity with sera from Brucella-infected pigs. Intramuscular immunization of mice with both OMVs induced antigen-specific IgG in serum, with the ΔmapB OMVs group showing higher titers compared to the wt OMVs group. Serum antibodies from both OMVs groups reduced B. suis adherence and invasion of lung epithelial cells and enhanced its phagocytosis by macrophages. Upon in vitro antigen stimulation, spleen cells from mice immunized with ΔmapB OMVs secreted higher levels of interleukin-17 and especially gamma interferon compared to cells from mice immunized with wt OMVs, suggesting the induction of a stronger T helper 1 response in the ΔmapB OMVs group. While immunization with both wt and ΔmapB OMVs achieved the same level of protection following intratracheal infection with B. suis (p<0.01), immunization with ΔmapB OMVs provided higher levels of protection against intraperitoneal infection. Discussion Overall, these results demonstrate that the B. suis ΔmapB OMVs are immunogenic and capable of inducing both cellular and humoral immune responses that protect against mucosal and systemic B. suis challenges.
Collapse
Affiliation(s)
- Florencia Muñoz González
- Facultad de Farmacia y Bioquímica, Cátedra de Inmunología, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Estudios de la Inmunidad Humoral (IDEHU), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Magali G. Bialer
- Fundación Instituto Leloir (FIL), IIBBA-CONICET (CONICET-FIL), Buenos Aires, Argentina
| | - Maria L. Cerutti
- Centro de Rediseño e Ingeniería de proteínas (CRIP), Universidad Nacional de San Martín, Buenos Aires, Argentina
| | - Silvia M. Estein
- Laboratorio de Inmunología, Departamento de Sanidad Animal y Medicina Preventiva (SAMP), Centro de Investigación Veterinaria Tandil (CIVETAN-CONICET-CICPBA), Facultad de Ciencias Veterinarias (FCV), Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), Tandil, Buenos Aires, Argentina
| | - Lila Y. Ramis
- Fundación Instituto Leloir (FIL), IIBBA-CONICET (CONICET-FIL), Buenos Aires, Argentina
| | - Pablo C. Baldi
- Facultad de Farmacia y Bioquímica, Cátedra de Inmunología, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Estudios de la Inmunidad Humoral (IDEHU), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Ángeles Zorreguieta
- Fundación Instituto Leloir (FIL), IIBBA-CONICET (CONICET-FIL), Buenos Aires, Argentina
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Mariana C. Ferrero
- Facultad de Farmacia y Bioquímica, Cátedra de Inmunología, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Estudios de la Inmunidad Humoral (IDEHU), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
3
|
Rudi E, Gaillard E, Bottero D, Ebensen T, Guzman CA, Hozbor D. Mucosal vaccination with outer membrane vesicles derived from Bordetella pertussis reduces nasal bacterial colonization after experimental infection. Front Immunol 2024; 15:1506638. [PMID: 39669568 PMCID: PMC11635837 DOI: 10.3389/fimmu.2024.1506638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 11/01/2024] [Indexed: 12/14/2024] Open
Abstract
Introduction We previously identified Bordetella pertussis-derived outer membrane vesicles (OMVs) as a promising immunogen for improving pertussis vaccines. In this study, we evaluated the efficacy of our vaccine prototype in immunization strategies aimed at reducing disease transmission by targeting colonization in the upper airways while maintaining protection against severe disease by reducing colonization in the lower respiratory tract. Methods We assessed different mucosal administration strategies in a murine model, including homologous mucosal 2-dose prime-boost schedules and heterologous prime-boost strategies combining intramuscular (IM) systemic immunization with mucosal routes (intranasal, IN; or sublingual, SL). We utilized alum and c-di-AMP as adjuvants for the systemic and mucosal formulations of the OMV vaccine prototype, respectively. A homologous prime/boost IM immunization schedule and commercial vaccines were used for comparisons. Results All tested heterologous schemes induced higher levels of specific IgG with significant avidity, as well as higher levels of IgG1 and IgG2c, compared to the corresponding homologous prime-boost 2-dose schemes via mucosal routes (OMVIN-IN or OMVSL-SL). High IgA levels were observed post-B. pertussis challenge following OMVIN-IN treatments and heterologous treatments where the second dose was administered via a mucosal route (prime-pull scheme). Furthermore, schemes involving the intranasal route, whether in a homologous or heterologous scheme, induced the highest levels of IL-17 and IFN-γ. Accordingly, these schemes showed superior efficacy against nasal colonization than the commercial vaccines. Homologous intranasal immunization exhibited the highest protective capacity against nasal colonization while maintaining an excellent level of protection in the lower respiratory tract. To further enhance protection against nasal colonization, we performed a comparative analysis of formulations containing either single or combined adjuvants, administered via homologous intranasal route. These assays revealed that the use of alum combined with c-di-AMP, did not enhance the immune protective capacity in comparison with that observed for the formulation containing c-di-AMP alone. Conclusions All the experiments presented here demonstrate that the use of OMVs, regardless of the scheme applied (except for OMVSL-SL), significantly outperformed acellular pertussis (aP) vaccines, achieving a higher reduction in bacterial colonization in the upper respiratory tract (p<0.01).
Collapse
Affiliation(s)
- E. Rudi
- Laboratorio VacSal, Instituto de Biotecnología y Biología Molecular (IBBM), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CCT-CONICET La Plata, La Plata, Argentina
| | - E. Gaillard
- Laboratorio VacSal, Instituto de Biotecnología y Biología Molecular (IBBM), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CCT-CONICET La Plata, La Plata, Argentina
| | - D. Bottero
- Laboratorio VacSal, Instituto de Biotecnología y Biología Molecular (IBBM), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CCT-CONICET La Plata, La Plata, Argentina
| | - T. Ebensen
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - C. A. Guzman
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Daniela Hozbor
- Laboratorio VacSal, Instituto de Biotecnología y Biología Molecular (IBBM), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CCT-CONICET La Plata, La Plata, Argentina
| |
Collapse
|
4
|
Galeas-Pena M, Hirsch A, Kuang E, Hoffmann J, Gellings P, Brown JB, Limbert VM, Callahan CL, McLachlan JB, Morici LA. A novel outer membrane vesicle adjuvant improves vaccine protection against Bordetella pertussis. NPJ Vaccines 2024; 9:190. [PMID: 39406780 PMCID: PMC11480359 DOI: 10.1038/s41541-024-00990-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 10/07/2024] [Indexed: 10/18/2024] Open
Abstract
Pertussis is a vaccine-preventable respiratory disease caused by the Gram negative coccobacillus Bordetella pertussis. The licensed acellular pertussis (aP) vaccines protect against disease but do not prevent bacterial colonization and transmission. Here, we developed and tested an intranasal vaccine composed of aP antigens combined with T-vant, a novel adjuvant derived from bacterial outer membrane vesicles, that elicits both mucosal and systemic immune responses. We hypothesized that immunization of mice with aP-T-vant would enhance mucosal immunity and eliminate B. pertussis in the respiratory tract. In contrast to mice immunized intramuscularly with the licensed aP vaccine, intranasal immunization with aP-T-vant eliminated bacteria in both the lung and nasopharynx. Protection was associated with IFN-gamma and IL-17-producing, non-circulating CD4 + T cells in the lung and nasopharynx, and sterilizing immunity in the nasopharynx was dependent on IL-17. Novel mucosal adjuvants, such as T-vant, warrant further investigation to enhance the efficacy of next generation pertussis vaccines.
Collapse
Affiliation(s)
- Michelle Galeas-Pena
- Tulane University School of Medicine, Dept. of Microbiology and Immunology, New Orleans, LA, 70112, USA
| | - Allyson Hirsch
- Tulane University School of Medicine, Dept. of Microbiology and Immunology, New Orleans, LA, 70112, USA
| | - Erin Kuang
- Tulane University School of Medicine, Dept. of Microbiology and Immunology, New Orleans, LA, 70112, USA
| | - Joseph Hoffmann
- Tulane University School of Medicine, Dept. of Microbiology and Immunology, New Orleans, LA, 70112, USA
| | - Patrick Gellings
- Tulane University School of Medicine, Dept. of Microbiology and Immunology, New Orleans, LA, 70112, USA
| | - Jasmine B Brown
- Tulane University School of Medicine, Dept. of Microbiology and Immunology, New Orleans, LA, 70112, USA
| | - Vanessa M Limbert
- Tulane University School of Medicine, Dept. of Microbiology and Immunology, New Orleans, LA, 70112, USA
| | - Claire L Callahan
- Tulane University School of Medicine, Dept. of Microbiology and Immunology, New Orleans, LA, 70112, USA
| | - James B McLachlan
- Tulane University School of Medicine, Dept. of Microbiology and Immunology, New Orleans, LA, 70112, USA.
| | - Lisa A Morici
- Tulane University School of Medicine, Dept. of Microbiology and Immunology, New Orleans, LA, 70112, USA.
| |
Collapse
|
5
|
Aganja RP, Sivasankar C, Lee JH. AI-2 quorum sensing controlled delivery of cytolysin-A by tryptophan auxotrophic low-endotoxic Salmonella and its anticancer effects in CT26 mice with colon cancer. J Adv Res 2024; 61:83-100. [PMID: 37689243 PMCID: PMC11258660 DOI: 10.1016/j.jare.2023.09.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/16/2023] [Accepted: 09/04/2023] [Indexed: 09/11/2023] Open
Abstract
INTRODUCTION The limitations of conventional cancer therapies necessitate target-oriented, highly invasive, and safe treatment approaches. Hence, the intrinsic anti-tumor activity of Salmonella can offer better options to combat cancers. OBJECTIVES This study aims to utilize attenuated Salmonella and deliver cytolytic protein cytolysin A (ClyA) under quorum sensing (QS) signaling for precise localized expression in tumors but not in healthy organs. METHODS The therapeutic delivery strain was imposed with tryptophan auxotroph for selective colonization in tumors by trpA and trpE deletion, and lipid-A and O-antigen were altered by pagL and rfaL deletions using lambda red recombination method. The strain was transformed with the designed QS-controlled ClyA expression vector which was validated by western blot. The in vivo passaged therapeutic strain was used for treatment four times at a weekly interval, with a dose of 5 × 106 CFU/mouse for cancer therapy. RESULTS The attenuated strain induced minimal endotoxicity-related cytokines TNF-α, IL-1β, and IFN-γ and exhibited adequate colonization despite earlier exposure in mice. The QS-controlled ClyA expression was confirmed by western blot from bacterial cultures grown at different cell densities. The results demonstrated that the in vivo passaged strain preferentially colonized the tumor after vacating the spleen, liver, and lung, leaving no outward histological scars. The anti-cancer effect of the designed construct was evaluated in the murine CT26 colon cancer model. The expression of ClyA increased tumoricidal activity by 67 % compared to vector control. CONCLUSION Hence, the anti-tumor effect of the engineered Salmonella strain was improved by ClyA expression via QS activation after achieving the threshold bacterial cell density. Further, immunohistochemical staining of the tumor and other organs corroborated the QS-controlled tumor-specific expression of ClyA. Overall, the results imply that the developed anti-cancer Salmonella has low endotoxicity and QS-controlled expression of ClyA as beneficial safety elements and supports recurrent Salmonella inoculation by O-antigen deficiency.
Collapse
Affiliation(s)
- Ram Prasad Aganja
- Department of Veterinary Public Health, College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, South Korea
| | - Chandran Sivasankar
- Department of Veterinary Public Health, College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, South Korea
| | - John Hwa Lee
- Department of Veterinary Public Health, College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, South Korea.
| |
Collapse
|
6
|
Pschunder B, Locati L, López O, Martin Aispuro P, Zurita E, Stuible M, Durocher Y, Hozbor D. Outer membrane vesicles derived from Bordetella pertussis are potent adjuvant that drive Th1-biased response. Front Immunol 2024; 15:1387534. [PMID: 38650936 PMCID: PMC11033331 DOI: 10.3389/fimmu.2024.1387534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 03/25/2024] [Indexed: 04/25/2024] Open
Abstract
For several years, we have been committed to exploring the potential of Bordetella pertussis-derived outer membrane vesicles (OMVBp) as a promising third-generation vaccine against the reemerging pertussis disease. The results of our preclinical trials not only confirm its protective capacity against B. pertussis infection but also set the stage for forthcoming human clinical trials. This study delves into the examination of OMVBp as an adjuvant. To accomplish this objective, we implemented a two-dose murine schedule to evaluate the specific immune response induced by formulations containing OMVBp combined with 3 heterologous immunogens: Tetanus toxoid (T), Diphtheria toxoid (D), and the SARS-CoV-2 Spike protein (S). The specific levels of IgG, IgG1, and IgG2a triggered by the different tested formulations were evaluated using ELISA in dose-response assays for OMVBp and the immunogens at varying levels. These assays demonstrated that OMVBp exhibits adjuvant properties even at the low concentration employed (1.5 μg of protein per dose). As this effect was notably enhanced at medium (3 μg) and high concentrations (6 μg), we chose the medium concentration to determine the minimum immunogen dose at which the OMV adjuvant properties are significantly evident. These assays demonstrated that OMVBp exhibits adjuvant properties even at the lowest concentration tested for each immunogen. In the presence of OMVBp, specific IgG levels detected for the lowest amount of antigen tested increased by 2.5 to 10 fold compared to those found in animals immunized with formulations containing adjuvant-free antigens (p<0.0001). When assessing the adjuvant properties of OMVBp compared to the widely recognized adjuvant alum, we detected similar levels of specific IgG against D, T and S for both adjuvants. Experiments with OMVs derived from E. coli (OMVE.coli) reaffirmed that the adjuvant properties of OMVs extend across different bacterial species. Nonetheless, it's crucial to highlight that OMVBp notably skewed the immune response towards a Th1 profile (p<0.05). These collective findings emphasize the dual role of OMVBp as both an adjuvant and modulator of the immune response, positioning it favorably for incorporation into combined vaccine formulations.
Collapse
Affiliation(s)
- Bernarda Pschunder
- Laboratorio Vacunas Salud (VacSal), Instituto de Biotecnología y Biología Molecular (IBBM), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Centro Científico Tecnológico-Consejo Nacional de Investigaciones Científicas y Técnicas (CCT-CONICET) La Plata, La Plata, Argentina
| | - Lucia Locati
- Laboratorio Vacunas Salud (VacSal), Instituto de Biotecnología y Biología Molecular (IBBM), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Centro Científico Tecnológico-Consejo Nacional de Investigaciones Científicas y Técnicas (CCT-CONICET) La Plata, La Plata, Argentina
| | - Oriana López
- Laboratorio Vacunas Salud (VacSal), Instituto de Biotecnología y Biología Molecular (IBBM), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Centro Científico Tecnológico-Consejo Nacional de Investigaciones Científicas y Técnicas (CCT-CONICET) La Plata, La Plata, Argentina
| | - Pablo Martin Aispuro
- Laboratorio Vacunas Salud (VacSal), Instituto de Biotecnología y Biología Molecular (IBBM), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Centro Científico Tecnológico-Consejo Nacional de Investigaciones Científicas y Técnicas (CCT-CONICET) La Plata, La Plata, Argentina
| | - Eugenia Zurita
- Laboratorio Vacunas Salud (VacSal), Instituto de Biotecnología y Biología Molecular (IBBM), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Centro Científico Tecnológico-Consejo Nacional de Investigaciones Científicas y Técnicas (CCT-CONICET) La Plata, La Plata, Argentina
| | - Matthew Stuible
- Human Health Therapeutics Research Center, National Research Council Canada, Montreal, QC, Canada
| | - Yves Durocher
- Human Health Therapeutics Research Center, National Research Council Canada, Montreal, QC, Canada
| | - Daniela Hozbor
- Laboratorio Vacunas Salud (VacSal), Instituto de Biotecnología y Biología Molecular (IBBM), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Centro Científico Tecnológico-Consejo Nacional de Investigaciones Científicas y Técnicas (CCT-CONICET) La Plata, La Plata, Argentina
| |
Collapse
|
7
|
Sadeghi L, Mohit E, Moallemi S, Ahmadi FM, Bolhassani A. Recent advances in various bio-applications of bacteria-derived outer membrane vesicles. Microb Pathog 2023; 185:106440. [PMID: 37931826 DOI: 10.1016/j.micpath.2023.106440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 10/12/2023] [Accepted: 11/02/2023] [Indexed: 11/08/2023]
Abstract
Outer membrane vesicles (OMVs) are spherical nanoparticles released from gram-negative bacteria. OMVs were originally classified into native 'nOMVs' (produced naturally from budding of bacteria) and non-native (produced by mechanical means). nOMVs and detergent (dOMVs) are isolated from cell supernatant without any detergent cell disruption techniques and through detergent extraction, respectively. Growth stages and conditions e.g. different stress factors, including temperature, nutrition deficiency, and exposure to hazardous chemical agents can affect the yield of OMVs production and OMVs content. Because of the presence of bacterial antigens, pathogen-associated molecular patterns (PAMPs), various proteins and the vesicle structure, OMVs have been developed in many biomedical applications. OMVs due to their size can be phagocytized by APCs, enter lymph vessels, transport antigens efficiently, and induce both T and B cells immune responses. Non-engineered OMVs have been frequently used as vaccines against different bacterial and viral infections, and various cancers. OMVs can also be used in combination with different antigens as an attractive vaccine adjuvant. Indeed, foreign antigens from target microorganisms can be trapped in the lumen of nonpathogenic vesicles or can be displayed on the surface through bacterial membrane protein to increase the immunogenicity of the antigens. In this review, different factors affecting OMV production including time of cultivation, growth media, stress conditions and genetic manipulations to enhance vesiculation will be described. Furthermore, recent advances in various biological applications of OMVs such as vaccine, drug delivery, cancer therapy, and enzyme carrier are discussed. Generally, the application of OMVs as vaccine carrier in three categories (i.e., non-engineered OMVs, OMVs as an adjuvant, recombinant OMVs (rOMVs)), as delivery system for small interfering RNA and therapeutic agents, and as enzymes carrier will be discussed.
Collapse
Affiliation(s)
- Leila Sadeghi
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| | - Elham Mohit
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Protein Technology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Samaneh Moallemi
- School of Biomedical Sciences, Faculty of Medicine, UNSW Sydney, NSW, 2052, Australia
| | | | - Azam Bolhassani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
8
|
Xiao M, Li G, Yang H. Microbe-host interactions: structure and functions of Gram-negative bacterial membrane vesicles. Front Microbiol 2023; 14:1225513. [PMID: 37720140 PMCID: PMC10500606 DOI: 10.3389/fmicb.2023.1225513] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 08/17/2023] [Indexed: 09/19/2023] Open
Abstract
Bacteria-host interaction is a common, relevant, and intriguing biological phenomena. The host reacts actively or passively to the bacteria themselves, their products, debris, and so on, through various defense systems containing the immune system, the bacteria communicate with the local or distal tissues of the host via their own surface antigens, secreted products, nucleic acids, etc., resulting in relationships of attack and defense, adaptation, symbiosis, and even collaboration. The significance of bacterial membrane vesicles (MVs) as a powerful vehicle for the crosstalk mechanism between the two is growing. In the recent decade, the emergence of MVs in microbial interactions and a variety of bacterial infections, with multiple adhesions to host tissues, cell invasion and evasion of host defense mechanisms, have brought MVs to the forefront of bacterial pathogenesis research. Whereas MVs are a complex combination of molecules not yet fully understood, research into its effects, targeting and pathogenic components will advance its understanding and utilization. This review will summarize structural, extraction and penetration information on several classes of MVs and emphasize the role of MVs in transport and immune response activation. Finally, the potential of MVs as a therapeutic method will be highlighted, as will future research prospects.
Collapse
Affiliation(s)
- Min Xiao
- Yunnan Key Laboratory of Stomatology, Kunming Medical University, Kunming, Yunnan, China
- Department of Dental Research, The Affiliated Stomatology Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Guiding Li
- Yunnan Key Laboratory of Stomatology, Kunming Medical University, Kunming, Yunnan, China
- Department of Dental Research, The Affiliated Stomatology Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Hefeng Yang
- Yunnan Key Laboratory of Stomatology, Kunming Medical University, Kunming, Yunnan, China
- Department of Dental Research, The Affiliated Stomatology Hospital of Kunming Medical University, Kunming, Yunnan, China
| |
Collapse
|
9
|
Park J, Woo SJ, Hong Y, Lee JJ, Hong JY. Association between the Respiratory Microbiome and Plasma Microbial Extracellular Vesicles in Intubated Patients. Microorganisms 2023; 11:2128. [PMID: 37763972 PMCID: PMC10537887 DOI: 10.3390/microorganisms11092128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 09/29/2023] Open
Abstract
Extracellular vesicles (EVs) regulate various cellular and immunological functions in human diseases. There is growing interest in the clinical role of microbial EVs in pneumonia. However, there is a lack of research on the correlation between lung microbiome with microbial EVs and the microbiome of other body sites in pneumonia. We investigated the co-occurrence of lung microbiome and plasma microbe-derived EVs (mEVs) in 111 samples obtained from 60 mechanically ventilated patients (41 pneumonia and 19 non-pneumonia cases). The microbial correlation between the two samples was compared between the pneumonia and non-pneumonia cases. Bacterial composition of the plasma mEVs was distinct from that of the lung microbiome. There was a significantly higher correlation between lung microbiome and plasma mEVs in non-pneumonia individuals compared to pneumonia patients. In particular, Acinetobacter and Lactobacillus genera had high correlation coefficients in non-pneumonia patients. This indicates a beneficial effect of mEVs in modulating host lung immune response through EV component transfer.
Collapse
Affiliation(s)
- Jinkyeong Park
- Department of Pulmonary, Allergy and Critical Care Medicine, Kyung Hee University Hospital at Gangdong, School of Medicine, Kyung Hee University, Seoul 05278, Republic of Korea;
| | - Seong Ji Woo
- Institute of New Frontier Research Team, Hallym University College of Medicine, Chuncheon 24253, Republic of Korea; (S.J.W.); (J.J.L.)
| | - Yoonki Hong
- Department of Internal Medicine, Kangwon National University Hospital, School of Medicine, Kangwon National University, Chuncheon 24289, Republic of Korea;
| | - Jae Jun Lee
- Institute of New Frontier Research Team, Hallym University College of Medicine, Chuncheon 24253, Republic of Korea; (S.J.W.); (J.J.L.)
| | - Ji Young Hong
- Institute of New Frontier Research Team, Hallym University College of Medicine, Chuncheon 24253, Republic of Korea; (S.J.W.); (J.J.L.)
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Chuncheon Sacred Heart Hospital, Hallym University Medical Center, Chuncheon 24253, Republic of Korea
| |
Collapse
|
10
|
Martin Aispuro P, Bottero D, Zurita ME, Gaillard ME, Hozbor DF. Impact of maternal whole-cell or acellular pertussis primary immunization on neonatal immune response. Front Immunol 2023; 14:1192119. [PMID: 37435078 PMCID: PMC10330814 DOI: 10.3389/fimmu.2023.1192119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 06/05/2023] [Indexed: 07/13/2023] Open
Abstract
With the introduction of pertussis immunization for pregnant women in many countries, there has been renewed interest in the impact of whole-cell pertussis vaccine (wP) versus acellular vaccine (aP) on disease control, particularly regarding the best approach for priming. To gather evidence on this topic, we analyzed the impact of aP or wP priming on aP vaccination during pregnancy (aPpreg) in mice. Two-mother vaccination schemes were employed (wP-wP-aPpreg and aP-aP-aPpreg), and the immune response in the mothers and their offspring, as well as the protection of the offspring against Bordetella pertussis challenge, were assessed. Pertussis toxin (PTx)-specific IgG responses were detected in mothers after both the second and third doses, with higher titers after the third dose, regardless of the vaccination schedule. However, a significant reduction in PTx-IgG levels was observed after 22 weeks post aPpreg immunization in mothers with the aP-aP-aPpreg scheme but not in the wP-wP-aPpreg immunized mothers. The aP-aP-aPpreg schedule triggered a murine antibody response mainly to a Th2-profile, while wP-wP-aPpreg induced a Th1/Th2 mixed profile. Both immunization schemes administered to the mothers protected the offspring against pertussis, but the wP-wP-aPpreg vaccination conferred offspring protection in all pregnancies at least up to 20 weeks after receiving the aPpreg-dose. In contrast, the immunity induced by aP-aP-aPpreg began to decline in births that occurred 18 weeks after receiving the aPpreg dose. For the aP-aP-aPpreg scheme, pups born from gestations furthest from aPpreg (+22 weeks) had lower PTx-specific IgG levels than those born closer to the application of the dose during pregnancy. In contrast, for pups born to wP-wP-aPpreg vaccinated mothers, the PTx-specific IgG levels were maintained over time, even for those born at the longest time studied (+22 weeks). It is noteworthy that only the pups born from mothers with aP-aP-aPpreg and receiving a neonatal dose of either aP or wP were more susceptible to B. pertussis infection than mice with only maternal immunity, suggesting interference with the induced immunity (p<0.05). However, it should be noted that mice with maternal immunity, whether vaccinated or not with neonatal doses, are better protected against colonization with B. pertussis than mice without maternal immunity but vaccinated with aP or wP.
Collapse
|
11
|
Yılmaz Çolak Ç, Tefon Öztürk BE. Bordetella pertussis and outer membrane vesicles. Pathog Glob Health 2023; 117:342-355. [PMID: 36047634 PMCID: PMC10177744 DOI: 10.1080/20477724.2022.2117937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
Abstract
Bordetella pertussis is the causative agent of a respiratory infection called pertussis (whooping cough) that can be fatal in newborns and infants. The pathogen produces a variety of antigenic compounds which alone or simultaneously can damage various host cells. Despite the availability of pertussis vaccines and high vaccination coverage around the world, a resurgence of the disease has been observed in many countries. Reasons for the increase in pertussis cases may include increased awareness, improved diagnostic techniques, low vaccine efficacy, especially acellular vaccines, and waning immunity. Many efforts have been made to develop more effective strategies to fight against B. pertussis and one of the strategies is the use of outer membrane vesicles (OMVs) in vaccine formulations. OMVs are attracting great interest as vaccine platforms since they can carry immunogenic structures such as toxins and LPS. Many studies have been carried out with OMVs from different B. pertussis strains and they revealed promising results in the animal challenge and human preclinical model. However, the composition of OMVs differs in terms of isolation and purification methods, strains, culture, and stress conditions. Although the vesicles from B. pertussis represent an attractive pertussis vaccine candidate, further studies are needed to advance clinical research for next-generation pertussis vaccines. This review summarizes general information about pertussis, the history of vaccines against the disease, and the immune response to these vaccines, with a focus on OMVs. We discuss progress in developing an OMV-based pertussis vaccine platform and highlight successful applications as well as potential challenges and gaps.
Collapse
|
12
|
Nian X, Liu H, Cai M, Duan K, Yang X. Coping Strategies for Pertussis Resurgence. Vaccines (Basel) 2023; 11:889. [PMID: 37242993 PMCID: PMC10220650 DOI: 10.3390/vaccines11050889] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/28/2023] Open
Abstract
Pertussis (whooping cough) is a respiratory disease caused primarily by Bordetella pertussis, a Gram-negative bacteria. Pertussis is a relatively contagious infectious disease in people of all ages, mainly affecting newborns and infants under 2 months of age. Pertussis is undergoing a resurgence despite decades of high rates of vaccination. To better cope with the challenge of pertussis resurgence, we evaluated its possible causes and potential countermeasures in the narrative review. Expanded vaccination coverage, optimized vaccination strategies, and the development of a new pertussis vaccine may contribute to the control of pertussis.
Collapse
Affiliation(s)
- Xuanxuan Nian
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China
| | - Hongbo Liu
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China
| | - Mengyao Cai
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China
| | - Kai Duan
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China
| | - Xiaoming Yang
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China
- China National Biotech Group Company Limited, Bejing 100029, China
| |
Collapse
|
13
|
Szwejser-Zawislak E, Wilk MM, Piszczek P, Krawczyk J, Wilczyńska D, Hozbor D. Evaluation of Whole-Cell and Acellular Pertussis Vaccines in the Context of Long-Term Herd Immunity. Vaccines (Basel) 2022; 11:vaccines11010001. [PMID: 36679846 PMCID: PMC9863224 DOI: 10.3390/vaccines11010001] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/04/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
After the pertussis vaccine had been introduced in the 1940s and was shown to be very successful in reducing the morbidity and mortality associated with the disease, the possibility of improving both vaccine composition and vaccination schedules has become the subject of continuous interest. As a result, we are witnessing a considerable heterogeneity in pertussis vaccination policies, which remains beyond universal consensus. Many pertussis-related deaths still occur in low- and middle-income countries; however, these deaths are attributable to gaps in vaccination coverage and limited access to healthcare in these countries, rather than to the poor efficacy of the first generation of pertussis vaccine consisting in inactivated and detoxified whole cell pathogen (wP). In many, particularly high-income countries, a switch was made in the 1990s to the use of acellular pertussis (aP) vaccine, to reduce the rate of post-vaccination adverse events and thereby achieve a higher percentage of children vaccinated. However the epidemiological data collected over the past few decades, even in those high-income countries, show an increase in pertussis prevalence and morbidity rates, triggering a wide-ranging debate on the causes of pertussis resurgence and the effectiveness of current pertussis prevention strategies, as well as on the efficacy of available pertussis vaccines and immunization schedules. The current article presents a systematic review of scientific reports on the evaluation of the use of whole-cell and acellular pertussis vaccines, in the context of long-term immunity and vaccines efficacy.
Collapse
Affiliation(s)
- Ewa Szwejser-Zawislak
- Institute of Biotechnology of Serums and Vaccines Biomed, Al. Sosnowa 8, 30-224 Krakow, Poland
| | - Mieszko M. Wilk
- Department of Immunology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland
| | - Piotr Piszczek
- Institute of Biotechnology of Serums and Vaccines Biomed, Al. Sosnowa 8, 30-224 Krakow, Poland
| | - Justyna Krawczyk
- Institute of Biotechnology of Serums and Vaccines Biomed, Al. Sosnowa 8, 30-224 Krakow, Poland
| | - Daria Wilczyńska
- Institute of Biotechnology of Serums and Vaccines Biomed, Al. Sosnowa 8, 30-224 Krakow, Poland
| | - Daniela Hozbor
- VacSal Laboratory, Institute of Biotechnology and Molecular Biology, Faculty of Sciences, National University of La Plata (UNLP), National Council for Scientific and Technical Research (CONICET), La Plata 1900, Argentina
- Correspondence:
| |
Collapse
|
14
|
Negahdaripour M, Vakili B, Nezafat N. Exosome-based vaccines and their position in next generation vaccines. Int Immunopharmacol 2022; 113:109265. [DOI: 10.1016/j.intimp.2022.109265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/04/2022] [Accepted: 09/16/2022] [Indexed: 11/05/2022]
|
15
|
Blanchard-Rohner G. Novel approaches to reactivate pertussis immunity. Expert Rev Vaccines 2022; 21:1787-1797. [PMID: 36400443 DOI: 10.1080/14760584.2022.2149499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
INTRODUCTION Whole cell and acellular pertussis vaccines have been very effective in decreasing the deaths of neonates and infants from Bordetella pertussis. Despite high vaccine coverage worldwide, pertussis remains one of the most common vaccine-preventable diseases, thus suggesting that new pertussis vaccination strategies are needed. Several candidates are currently under development, such as acellular pertussis vaccines that use genetically detoxified pertussis toxin, acellular pertussis vaccines delivered with new adjuvants or new delivery systems, or an intranasally delivered, live attenuated vaccine. AREAS COVERED This review discusses the different possibilities for improving current pertussis vaccines and the present state of knowledge on the pertussis vaccine candidates under development. EXPERT OPINION Until there is a safe, effective, and affordable alternative to the two types of existing vaccines, we should maintain sufficient childhood coverage and increase the vaccination of pregnant women, adolescents, and young adults.
Collapse
Affiliation(s)
- Geraldine Blanchard-Rohner
- Center of Vaccinology, Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Unit of Immunology and Vaccinology, Division of General Pediatrics, Department of Pediatrics, Gynecology and Obstetrics, Geneva University Hospitals, University of Geneva, Geneva, Switzerland
| |
Collapse
|
16
|
Involvement of Bacterial Extracellular Membrane Nanovesicles in Infectious Diseases and Their Application in Medicine. Pharmaceutics 2022; 14:pharmaceutics14122597. [PMID: 36559091 PMCID: PMC9784355 DOI: 10.3390/pharmaceutics14122597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/02/2022] [Accepted: 11/23/2022] [Indexed: 11/27/2022] Open
Abstract
Bacterial extracellular membrane nanovesicles (EMNs) are attracting the attention of scientists more and more every year. These formations are involved in the pathogenesis of numerous diseases, among which, of course, the leading role is occupied by infectious diseases, the causative agents of which are a range of Gram-positive and Gram-negative bacteria. A separate field for the study of the role of EMN is cancer. Extracellular membrane nanovesicles nowadays have a practical application as vaccine carriers for immunization against many infectious diseases. At present, the most essential point is their role in stimulating immune response to bacterial infections and tumor cells. The possibility of nanovesicles' practical use in several disease treatments is being evaluated. In our review, we listed diseases, focusing on their multitude and diversity, for which EMNs are essential, and also considered in detail the possibilities of using EMNs in the therapy and prevention of various pathologies.
Collapse
|
17
|
Long Q, Zheng P, Zheng X, Li W, Hua L, Yang Z, Huang W, Ma Y. Engineered bacterial membrane vesicles are promising carriers for vaccine design and tumor immunotherapy. Adv Drug Deliv Rev 2022; 186:114321. [PMID: 35533789 DOI: 10.1016/j.addr.2022.114321] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 04/18/2022] [Accepted: 04/30/2022] [Indexed: 02/06/2023]
Abstract
Bacterial membrane vesicles (BMVs) have emerged as novel and promising platforms for the development of vaccines and immunotherapeutic strategies against infectious and noninfectious diseases. The rich microbe-associated molecular patterns (MAMPs) and nanoscale membrane vesicle structure of BMVs make them highly immunogenic. In addition, BMVs can be endowed with more functions via genetic and chemical modifications. This article reviews the immunological characteristics and effects of BMVs, techniques for BMV production and modification, and the applications of BMVs as vaccines or vaccine carriers. In summary, given their versatile characteristics and immunomodulatory properties, BMVs can be used for clinical vaccine or immunotherapy applications.
Collapse
|
18
|
Gong W, Pan C, Cheng P, Wang J, Zhao G, Wu X. Peptide-Based Vaccines for Tuberculosis. Front Immunol 2022; 13:830497. [PMID: 35173740 PMCID: PMC8841753 DOI: 10.3389/fimmu.2022.830497] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/10/2022] [Indexed: 12/12/2022] Open
Abstract
Tuberculosis (TB) is an infectious disease caused by Mycobacterium tuberculosis. As a result of the coronavirus disease 2019 (COVID-19) pandemic, the global TB mortality rate in 2020 is rising, making TB prevention and control more challenging. Vaccination has been considered the best approach to reduce the TB burden. Unfortunately, BCG, the only TB vaccine currently approved for use, offers some protection against childhood TB but is less effective in adults. Therefore, it is urgent to develop new TB vaccines that are more effective than BCG. Accumulating data indicated that peptides or epitopes play essential roles in bridging innate and adaptive immunity and triggering adaptive immunity. Furthermore, innovations in bioinformatics, immunoinformatics, synthetic technologies, new materials, and transgenic animal models have put wings on the research of peptide-based vaccines for TB. Hence, this review seeks to give an overview of current tools that can be used to design a peptide-based vaccine, the research status of peptide-based vaccines for TB, protein-based bacterial vaccine delivery systems, and animal models for the peptide-based vaccines. These explorations will provide approaches and strategies for developing safer and more effective peptide-based vaccines and contribute to achieving the WHO's End TB Strategy.
Collapse
Affiliation(s)
- Wenping Gong
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The 8th Medical Center of PLA General Hospital, Beijing, China
| | - Chao Pan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
| | - Peng Cheng
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The 8th Medical Center of PLA General Hospital, Beijing, China
- Hebei North University, Zhangjiakou City, China
| | - Jie Wang
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The 8th Medical Center of PLA General Hospital, Beijing, China
| | - Guangyu Zhao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Xueqiong Wu
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The 8th Medical Center of PLA General Hospital, Beijing, China
| |
Collapse
|
19
|
Qasim M, Wrage M, Nüse B, Mattner J. Shigella Outer Membrane Vesicles as Promising Targets for Vaccination. Int J Mol Sci 2022; 23:994. [PMID: 35055181 PMCID: PMC8781765 DOI: 10.3390/ijms23020994] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/11/2022] [Accepted: 01/14/2022] [Indexed: 12/17/2022] Open
Abstract
The clinical symptoms of shigellosis, a gastrointestinal infection caused by Shigella spp. range from watery diarrhea to fulminant dysentery. Endemic infections, particularly among children in developing countries, represent the majority of clinical cases. The situation is aggravated due to the high mortality rate of shigellosis, the rapid dissemination of multi-resistant Shigella strains and the induction of only serotype-specific immunity. Thus, infection prevention due to vaccination, encompassing as many of the circulating serotypes as possible, has become a topic of interest. However, vaccines have turned out to be ineffective so far. Outer membrane vesicles (OMVs) are promising novel targets for vaccination. OMVs are constitutively secreted by Gram-negative bacteria including Shigella during growth. They are composed of soluble luminal portions and an insoluble membrane and can contain toxins, bioactive periplasmic and cytoplasmic (lipo-) proteins, (phospho-) lipids, nucleic acids and/or lipopolysaccharides. Thus, OMVs play an important role in bacterial cell-cell communication, growth, survival and pathogenesis. Furthermore, they modulate the secretion and transport of biomolecules, the stress response, antibiotic resistance and immune responses of the host. Thus, OMVs serve as novel secretion machinery. Here, we discuss the current literature and highlight the properties of OMVs as potent vaccine candidates because of their immunomodulatory, antigenic and adjuvant properties.
Collapse
Affiliation(s)
- Muhammad Qasim
- Department of Microbiology, Kohat University of Science and Technology, Kohat 26000, Pakistan;
| | - Marius Wrage
- Mikrobiologisches Institut-Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany; (M.W.); (B.N.)
| | - Björn Nüse
- Mikrobiologisches Institut-Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany; (M.W.); (B.N.)
| | - Jochen Mattner
- Mikrobiologisches Institut-Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany; (M.W.); (B.N.)
| |
Collapse
|
20
|
Naskar A, Cho H, Lee S, Kim KS. Biomimetic Nanoparticles Coated with Bacterial Outer Membrane Vesicles as a New-Generation Platform for Biomedical Applications. Pharmaceutics 2021; 13:1887. [PMID: 34834302 PMCID: PMC8618801 DOI: 10.3390/pharmaceutics13111887] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/03/2021] [Accepted: 11/04/2021] [Indexed: 12/13/2022] Open
Abstract
The biomedical field is currently reaping the benefits of research on biomimetic nanoparticles (NPs), which are synthetic nanoparticles fabricated with natural cellular materials for nature-inspired biomedical applications. These camouflage NPs are capable of retaining not only the physiochemical properties of synthetic nanoparticles but also the original biological functions of the cellular materials. Accordingly, NPs coated with cell-derived membrane components have achieved remarkable growth as prospective biomedical materials. Particularly, bacterial outer membrane vesicle (OMV), which is a cell membrane coating material for NPs, is regarded as an important molecule that can be employed in several biomedical applications, including immune response activation, cancer therapeutics, and treatment for bacterial infections with photothermal activity. The currently available cell membrane-coated NPs are summarized in this review. Furthermore, the general features of bacterial OMVs and several multifunctional NPs that could serve as inner core materials in the coating strategy are presented, and several methods that can be used to prepare OMV-coated NPs (OMV-NPs) and their characterization are highlighted. Finally, some perspectives of OMV-NPs in various biomedical applications for future potential breakthrough are discussed. This in-depth review, which includes potential challenges, will encourage researchers to fabricate innovative and improvised, new-generation biomimetic materials through future biomedical applications.
Collapse
Affiliation(s)
| | | | | | - Kwang-sun Kim
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Korea; (A.N.); (H.C.); (S.L.)
| |
Collapse
|
21
|
Evaluation of Outer Membrane Vesicles Obtained from Predominant Local Isolate of Boredetella pertussis as a Vaccine Candidate. IRANIAN BIOMEDICAL JOURNAL 2021; 25:399-407. [PMID: 34719226 PMCID: PMC8744696 DOI: 10.52547/ibj.25.6.399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Background: Pertussis is a current contagious bacterial disease caused by Bp. Given the prevalence of pertussis, development of new vaccines is important. This study was attempted to evaluate the expression of main virulence factors (PTX, PRN, and FHA) from Bp predominant strains and also compare the expression of these factors in the OMVs obtained from predominant circulating Bp isolate. Methods: The physicochemical features of the prepared OMVs were analyzed by electron microscopy and SDS-PAGE. The presence of the mentioned virulence factors was confirmed by Western blotting. BALB/c mice (n = 21) immunized with characterized OMVs were challenged intranasally with sublethal doses of Bp, to examine their protective capacity. Results: Electron microscopic examination of the OMVs indicated vesicles within the range of 40 to 200 nm. SDS-PAGE and Western blotting demonstrated the expression of all three main protective immunogens (PTX, PRN, and FHA), prevalent in the predominant, challenge, and vaccine strains, and OMVs of the predominant IR37 strain and BP134 vaccine strain. Significant differences were observed in lung bacterial counts between the immunized mice with OMV (30 CFU/lung) compared to the negative control group ((6 104 CFU/lung; p < 0.001). In mice immunized with OMVs (3 µg), the number of lungs recovered colonies after five days dropped at least five orders of magnitude compared to the control group. Conclusion: OMVs obtained from circulating isolates with the predominant profile may constitute a highly promising vaccine quality. They also can be proposed as a potential basic material for the development of new pertussis vaccine candidate.
Collapse
|
22
|
Carriquiriborde F, Martin Aispuro P, Ambrosis N, Zurita E, Bottero D, Gaillard ME, Castuma C, Rudi E, Lodeiro A, Hozbor DF. Pertussis Vaccine Candidate Based on Outer Membrane Vesicles Derived From Biofilm Culture. Front Immunol 2021; 12:730434. [PMID: 34603306 PMCID: PMC8479151 DOI: 10.3389/fimmu.2021.730434] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 08/27/2021] [Indexed: 01/02/2023] Open
Abstract
Outer membrane vesicles (OMV) derived from Bordetella pertussis-the etiologic agent of the resurgent disease called pertussis-are safe and effective in preventing bacterial colonization in the lungs of immunized mice. Vaccine formulations containing those OMV are capable of inducing a mixed Th1/Th2/Th17 profile, but even more interestingly, they may induce a tissue-resident memory immune response. This immune response is recommended for the new generation of pertussis-vaccines that must be developed to overcome the weaknesses of current commercial acellular vaccines (second-generation of pertussis vaccine). The third-generation of pertussis vaccine should also deal with infections caused by bacteria that currently circulate in the population and are phenotypically and genotypically different [in particular those deficient in the expression of pertactin antigen, PRN(-)] from those that circulated in the past. Here we evaluated the protective capacity of OMV derived from bacteria grown in biofilm, since it was observed that, by difference with older culture collection vaccine strains, circulating clinical B. pertussis isolates possess higher capacity for this lifestyle. Therefore, we performed studies with a clinical isolate with good biofilm-forming capacity. Biofilm lifestyle was confirmed by both scanning electron microscopy and proteomics. While scanning electron microscopy revealed typical biofilm structures in these cultures, BipA, fimbria, and other adhesins described as typical of the biofilm lifestyle were overexpressed in the biofilm culture in comparison with planktonic culture. OMV derived from biofilm (OMVbiof) or planktonic lifestyle (OMVplank) were used to formulate vaccines to compare their immunogenicity and protective capacities against infection with PRN(+) or PRN(-) B. pertussis clinical isolates. Using the mouse protection model, we detected that OMVbiof-vaccine was more immunogenic than OMVplank-vaccine in terms of both specific antibody titers and quality, since OMVbiof-vaccine induced antibodies with higher avidity. Moreover, when OMV were administered at suboptimal quantity for protection, OMVbiof-vaccine exhibited a significantly adequate and higher protective capacity against PRN(+) or PRN(-) than OMVplank-vaccine. Our findings indicate that the vaccine based on B. pertussis biofilm-derived OMV induces high protection also against pertactin-deficient strains, with a robust immune response.
Collapse
Affiliation(s)
- Francisco Carriquiriborde
- Laboratorio VacSal, Instituto de Biotecnología y Biología Molecular (IBBM), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CCT-CONICET La Plata, La Plata, Argentina
| | - Pablo Martin Aispuro
- Laboratorio VacSal, Instituto de Biotecnología y Biología Molecular (IBBM), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CCT-CONICET La Plata, La Plata, Argentina
| | - Nicolás Ambrosis
- Laboratorio VacSal, Instituto de Biotecnología y Biología Molecular (IBBM), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CCT-CONICET La Plata, La Plata, Argentina
| | - Eugenia Zurita
- Laboratorio VacSal, Instituto de Biotecnología y Biología Molecular (IBBM), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CCT-CONICET La Plata, La Plata, Argentina
| | - Daniela Bottero
- Laboratorio VacSal, Instituto de Biotecnología y Biología Molecular (IBBM), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CCT-CONICET La Plata, La Plata, Argentina
| | - María Emilia Gaillard
- Laboratorio VacSal, Instituto de Biotecnología y Biología Molecular (IBBM), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CCT-CONICET La Plata, La Plata, Argentina
| | - Celina Castuma
- Laboratorio VacSal, Instituto de Biotecnología y Biología Molecular (IBBM), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CCT-CONICET La Plata, La Plata, Argentina
| | - Erika Rudi
- Laboratorio VacSal, Instituto de Biotecnología y Biología Molecular (IBBM), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CCT-CONICET La Plata, La Plata, Argentina
| | - Aníbal Lodeiro
- Instituto de Biotecnología y Biología Molecular (IBBM), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CCT-CONICET La Plata, La Plata, Argentina
| | - Daniela F. Hozbor
- Laboratorio VacSal, Instituto de Biotecnología y Biología Molecular (IBBM), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CCT-CONICET La Plata, La Plata, Argentina
| |
Collapse
|
23
|
Pan C, Yue H, Zhu L, Ma GH, Wang HL. Prophylactic vaccine delivery systems against epidemic infectious diseases. Adv Drug Deliv Rev 2021; 176:113867. [PMID: 34280513 PMCID: PMC8285224 DOI: 10.1016/j.addr.2021.113867] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/20/2021] [Accepted: 07/11/2021] [Indexed: 01/04/2023]
Abstract
Prophylactic vaccines have evolved from traditional whole-cell vaccines to safer subunit vaccines. However, subunit vaccines still face problems, such as poor immunogenicity and low efficiency, while traditional adjuvants are usually unable to meet specific response needs. Advanced delivery vectors are important to overcome these barriers; they have favorable safety and effectiveness, tunable properties, precise location, and immunomodulatory capabilities. Nevertheless, there has been no systematic summary of the delivery systems to cover a wide range of infectious pathogens. We herein summarized and compared the delivery systems for major or epidemic infectious diseases caused by bacteria, viruses, fungi, and parasites. We also included the newly licensed vaccines (e.g., COVID-19 vaccines) and those close to licensure. Furthermore, we highlighted advanced delivery systems with high efficiency, cross-protection, or long-term protection against epidemic pathogens, and we put forward prospects and thoughts on the development of future prophylactic vaccines.
Collapse
Affiliation(s)
- Chao Pan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing 100071, PR China
| | - Hua Yue
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Li Zhu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing 100071, PR China
| | - Guang-Hui Ma
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| | - Heng-Liang Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing 100071, PR China.
| |
Collapse
|
24
|
Saso A, Kampmann B, Roetynck S. Vaccine-Induced Cellular Immunity against Bordetella pertussis: Harnessing Lessons from Animal and Human Studies to Improve Design and Testing of Novel Pertussis Vaccines. Vaccines (Basel) 2021; 9:877. [PMID: 34452002 PMCID: PMC8402596 DOI: 10.3390/vaccines9080877] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 07/28/2021] [Indexed: 12/14/2022] Open
Abstract
Pertussis ('whooping cough') is a severe respiratory tract infection that primarily affects young children and unimmunised infants. Despite widespread vaccine coverage, it remains one of the least well-controlled vaccine-preventable diseases, with a recent resurgence even in highly vaccinated populations. Although the exact underlying reasons are still not clear, emerging evidence suggests that a key factor is the replacement of the whole-cell (wP) by the acellular pertussis (aP) vaccine, which is less reactogenic but may induce suboptimal and waning immunity. Differences between vaccines are hypothesised to be cell-mediated, with polarisation of Th1/Th2/Th17 responses determined by the composition of the pertussis vaccine given in infancy. Moreover, aP vaccines elicit strong antibody responses but fail to protect against nasal colonisation and/or transmission, in animal models, thereby potentially leading to inadequate herd immunity. Our review summarises current knowledge on vaccine-induced cellular immune responses, based on mucosal and systemic data collected within experimental animal and human vaccine studies. In addition, we describe key factors that may influence cell-mediated immunity and how antigen-specific responses are measured quantitatively and qualitatively, at both cellular and molecular levels. Finally, we discuss how we can harness this emerging knowledge and novel tools to inform the design and testing of the next generation of improved infant pertussis vaccines.
Collapse
Affiliation(s)
- Anja Saso
- The Vaccine Centre, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London WC1 7HT, UK; (B.K.); (S.R.)
- Vaccines and Immunity Theme, MRC Unit, The Gambia at London School of Hygiene & Tropical Medicine, Banjul P.O. Box 273, The Gambia
| | - Beate Kampmann
- The Vaccine Centre, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London WC1 7HT, UK; (B.K.); (S.R.)
- Vaccines and Immunity Theme, MRC Unit, The Gambia at London School of Hygiene & Tropical Medicine, Banjul P.O. Box 273, The Gambia
| | - Sophie Roetynck
- The Vaccine Centre, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London WC1 7HT, UK; (B.K.); (S.R.)
- Vaccines and Immunity Theme, MRC Unit, The Gambia at London School of Hygiene & Tropical Medicine, Banjul P.O. Box 273, The Gambia
| |
Collapse
|
25
|
Sartorio MG, Pardue EJ, Feldman MF, Haurat MF. Bacterial Outer Membrane Vesicles: From Discovery to Applications. Annu Rev Microbiol 2021; 75:609-630. [PMID: 34351789 DOI: 10.1146/annurev-micro-052821-031444] [Citation(s) in RCA: 165] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Secretion of cellular components across the plasma membrane is an essential process that enables organisms to interact with their environments. Production of extracellular vesicles in bacteria is a well-documented but poorly understood process. Outer membrane vesicles (OMVs) are produced in gram-negative bacteria by blebbing of the outer membrane. In addition to their roles in pathogenesis, cell-to-cell communication, and stress responses, OMVs play important roles in immunomodulation and the establishment and balance of the gut microbiota. In this review, we discuss the multiple roles of OMVs and the current knowledge of OMV biogenesis. We also discuss the growing and promising biotechnological applications of OMV. Expected final online publication date for the Annual Review of Microbiology, Volume 75 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Mariana G Sartorio
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, Missouri 63110, USA;
| | - Evan J Pardue
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, Missouri 63110, USA;
| | - Mario F Feldman
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, Missouri 63110, USA;
| | - M Florencia Haurat
- Laboratory of Bacterial Polysaccharides, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland 20993, USA;
| |
Collapse
|
26
|
Santos P, Almeida F. Exosome-Based Vaccines: History, Current State, and Clinical Trials. Front Immunol 2021; 12:711565. [PMID: 34335627 PMCID: PMC8317489 DOI: 10.3389/fimmu.2021.711565] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 06/30/2021] [Indexed: 12/23/2022] Open
Abstract
Extracellular vesicles (EVs) are released by most cell types as part of an intracellular communication system in crucial processes such as inflammation, cell proliferation, and immune response. However, EVs have also been implicated in the pathogenesis of several diseases, such as cancer and numerous infectious diseases. An important feature of EVs is their ability to deliver a wide range of molecules to nearby targets or over long distances, which allows the mediation of different biological functions. This delivery mechanism can be utilized for the development of therapeutic strategies, such as vaccination. Here, we have highlighted several studies from a historical perspective, with respect to current investigations on EV-based vaccines. For example, vaccines based on exosomes derived from dendritic cells proved to be simpler in terms of management and cost-effectiveness than dendritic cell vaccines. Recent evidence suggests that EVs derived from cancer cells can be leveraged for therapeutics to induce strong anti-tumor immune responses. Moreover, EV-based vaccines have shown exciting and promising results against different types of infectious diseases. We have also summarized the results obtained from completed clinical trials conducted on the usage of exosome-based vaccines in the treatment of cancer, and more recently, coronavirus disease.
Collapse
Affiliation(s)
- Patrick Santos
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Fausto Almeida
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
27
|
Dubois V, Locht C. Mucosal Immunization Against Pertussis: Lessons From the Past and Perspectives. Front Immunol 2021; 12:701285. [PMID: 34211481 PMCID: PMC8239240 DOI: 10.3389/fimmu.2021.701285] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 05/26/2021] [Indexed: 01/11/2023] Open
Abstract
Background Current vaccination strategies against pertussis are sub-optimal. Optimal protection against Bordetella pertussis, the causative agent of pertussis, likely requires mucosal immunity. Current pertussis vaccines consist of inactivated whole B. pertussis cells or purified antigens thereof, combined with diphtheria and tetanus toxoids. Although they are highly protective against severe pertussis disease, they fail to elicit mucosal immunity. Compared to natural infection, immune responses following immunization are short-lived and fail to prevent bacterial colonization of the upper respiratory tract. To overcome these shortcomings, efforts have been made for decades, and continue to be made, toward the development of mucosal vaccines against pertussis. Objectives In this review we systematically analyzed published literature on protection conferred by mucosal immunization against pertussis. Immune responses mounted by these vaccines are summarized. Method The PubMed Library database was searched for published studies on mucosal pertussis vaccines. Eligibility criteria included mucosal administration and the evaluation of at least one outcome related to efficacy, immunogenicity and safety. Results While over 349 publications were identified by the search, only 63 studies met the eligibility criteria. All eligible studies are included here. Initial attempts of mucosal whole-cell vaccine administration in humans provided promising results, but were not followed up. More recently, diverse vaccination strategies have been tested, including non-replicating and replicating vaccine candidates given by three different mucosal routes: orally, nasally or rectally. Several adjuvants and particulate formulations were tested to enhance the efficacy of non-replicating vaccines administered mucosally. Most novel vaccine candidates were only tested in animal models, mainly mice. Only one novel mucosal vaccine candidate was tested in baboons and in human trials. Conclusion Three vaccination strategies drew our attention, as they provided protective and durable immunity in the respiratory tract, including the upper respiratory tract: acellular vaccines adjuvanted with lipopeptide LP1569 and c-di-GMP, outer membrane vesicles and the live attenuated BPZE1 vaccine. Among all experimental vaccines, BPZE1 is the only one that has advanced into clinical development.
Collapse
Affiliation(s)
- Violaine Dubois
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Camille Locht
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| |
Collapse
|
28
|
Pirolli NH, Bentley WE, Jay SM. Bacterial Extracellular Vesicles and the Gut-Microbiota Brain Axis: Emerging Roles in Communication and Potential as Therapeutics. Adv Biol (Weinh) 2021; 5:e2000540. [PMID: 33857347 DOI: 10.1002/adbi.202000540] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 03/24/2021] [Indexed: 12/20/2022]
Abstract
Bacterial extracellular vesicles (BEVs) have emerged as candidate signaling vectors for long-distance interkingdom communication within the gut-microbiota brain axis. Most bacteria release these nanosized vesicles, capable of signaling to the brain via their abundant protein and small RNA cargo, possibly directly via crossing the blood-brain barrier. BEVs have been shown to regulate brain gene expression and induce pathology at most stages of neuroinflammation and neurodegeneration, and thus they may play a causal role in diseases such as Alzheimer's, Parkinson's, and depression/anxiety. On the other hand, BEVs have intrinsic therapeutic properties that may be relevant to probiotic therapy and can also be engineered to function as drug delivery vehicles and vaccines. Thus, BEVs may be both a cause of and solution to neuropathological conditions. In this review, current knowledge of the physiological roles of BEVs as well as state of the art pertaining to the development of therapeutic BEVs in the context of the microbiome-gut-brain axis are summarized.
Collapse
Affiliation(s)
- Nicholas H Pirolli
- Fischell Department of Bioengineering, University of Maryland, 3102 A. James Clark Hall, College Park, MD, 20742, USA
| | - William E Bentley
- Fischell Department of Bioengineering, Robert E. Fischell Institute, and Institute for Bioscience and Biotechnology Research, University of Maryland, 5120A A. James Clark Hall, College Park, MD, 20742, USA
| | - Steven M Jay
- Fischell Department of Bioengineering and Program in Molecular and Cell Biology, University of Maryland, 3116 A. James Clark Hall, College Park, MD, 20742, USA
| |
Collapse
|
29
|
Behrens F, Funk-Hilsdorf TC, Kuebler WM, Simmons S. Bacterial Membrane Vesicles in Pneumonia: From Mediators of Virulence to Innovative Vaccine Candidates. Int J Mol Sci 2021; 22:3858. [PMID: 33917862 PMCID: PMC8068278 DOI: 10.3390/ijms22083858] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 04/03/2021] [Accepted: 04/06/2021] [Indexed: 02/07/2023] Open
Abstract
Pneumonia due to respiratory infection with most prominently bacteria, but also viruses, fungi, or parasites is the leading cause of death worldwide among all infectious disease in both adults and infants. The introduction of modern antibiotic treatment regimens and vaccine strategies has helped to lower the burden of bacterial pneumonia, yet due to the unavailability or refusal of vaccines and antimicrobials in parts of the global population, the rise of multidrug resistant pathogens, and high fatality rates even in patients treated with appropriate antibiotics pneumonia remains a global threat. As such, a better understanding of pathogen virulence on the one, and the development of innovative vaccine strategies on the other hand are once again in dire need in the perennial fight of men against microbes. Recent data show that the secretome of bacteria consists not only of soluble mediators of virulence but also to a significant proportion of extracellular vesicles-lipid bilayer-delimited particles that form integral mediators of intercellular communication. Extracellular vesicles are released from cells of all kinds of organisms, including both Gram-negative and Gram-positive bacteria in which case they are commonly termed outer membrane vesicles (OMVs) and membrane vesicles (MVs), respectively. (O)MVs can trigger inflammatory responses to specific pathogens including S. pneumonia, P. aeruginosa, and L. pneumophila and as such, mediate bacterial virulence in pneumonia by challenging the host respiratory epithelium and cellular and humoral immunity. In parallel, however, (O)MVs have recently emerged as auspicious vaccine candidates due to their natural antigenicity and favorable biochemical properties. First studies highlight the efficacy of such vaccines in animal models exposed to (O)MVs from B. pertussis, S. pneumoniae, A. baumannii, and K. pneumoniae. An advanced and balanced recognition of both the detrimental effects of (O)MVs and their immunogenic potential could pave the way to novel treatment strategies in pneumonia and effective preventive approaches.
Collapse
Affiliation(s)
- Felix Behrens
- Institute of Physiology, Charité—Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany; (F.B.); (T.C.F.-H.); (S.S.)
- Berlin Institute of Health (BIH), 10178 Berlin, Germany
| | - Teresa C. Funk-Hilsdorf
- Institute of Physiology, Charité—Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany; (F.B.); (T.C.F.-H.); (S.S.)
| | - Wolfgang M. Kuebler
- Institute of Physiology, Charité—Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany; (F.B.); (T.C.F.-H.); (S.S.)
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 10117 Berlin, Germany
- The Keenan Research Centre for Biomedical Science at St. Michael’s, Toronto, ON M5B 1X1, Canada
- Departments of Surgery and Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Szandor Simmons
- Institute of Physiology, Charité—Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany; (F.B.); (T.C.F.-H.); (S.S.)
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 10117 Berlin, Germany
| |
Collapse
|
30
|
Locht C. The Path to New Pediatric Vaccines against Pertussis. Vaccines (Basel) 2021; 9:vaccines9030228. [PMID: 33807962 PMCID: PMC7998139 DOI: 10.3390/vaccines9030228] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/04/2021] [Accepted: 03/04/2021] [Indexed: 12/21/2022] Open
Abstract
Whooping cough, or pertussis, mostly caused by Bordetella pertussis, is a respiratory disease that affects all age groups, but severe and fatal pertussis occurs almost exclusively in young children. The widespread use of whole-cell and, more recently, of acellular vaccines has substantially reduced the disease incidence. However, it has not been eliminated in any part of the world and has made a worrisome rebound in several areas. Cocoon and maternal immunization have been implemented in several countries but have their intrinsic limitations. To effectively control pertussis, novel vaccines are needed that protect against disease and prevent B. pertussis infection and transmission, which is not the case for current vaccines. Several approaches are contemplated, including alternative administration routes, such as nasal immunization, improvement of acellular vaccines by adding more antigens and T-cell-promoting adjuvants, and the development of novel vaccines, such as outer membrane vesicles and live attenuated vaccines. Among them, only a live attenuated vaccine has so far been assessed for safety and immunogenicity in preclinical models other than mice and is in clinical development. Before any of these vaccines can be used in neonates, extensive safety and immunogenicity assessment in pre-clinical neonatal models and in carefully designed clinical trials is necessary. The aim of this review is to discuss the current pertussis problem, implemented strategies to resolve it, the value of animal models and novel vaccine approaches.
Collapse
Affiliation(s)
- Camille Locht
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 8204-CIIL-Center for Infection and Immunity of Lille, F-59000 Lille, France
| |
Collapse
|
31
|
Balhuizen MD, Veldhuizen EJA, Haagsman HP. Outer Membrane Vesicle Induction and Isolation for Vaccine Development. Front Microbiol 2021; 12:629090. [PMID: 33613498 PMCID: PMC7889600 DOI: 10.3389/fmicb.2021.629090] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 01/08/2021] [Indexed: 12/14/2022] Open
Abstract
Gram-negative bacteria release vesicular structures from their outer membrane, so called outer membrane vesicles (OMVs). OMVs have a variety of functions such as waste disposal, communication, and antigen or toxin delivery. These vesicles are the promising structures for vaccine development since OMVs carry many surface antigens that are identical to the bacterial surface. However, isolation is often difficult and results in low yields. Several methods to enhance OMV yield exist, but these do affect the resulting OMVs. In this review, our current knowledge about OMVs will be presented. Different methods to induce OMVs will be reviewed and their advantages and disadvantages will be discussed. The effects of the induction and isolation methods used in several immunological studies on OMVs will be compared. Finally, the challenges for OMV-based vaccine development will be examined and one example of a successful OMV-based vaccine will be presented.
Collapse
Affiliation(s)
| | - Edwin J. A. Veldhuizen
- Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | | |
Collapse
|
32
|
Shkair L, Garanina EE, Stott RJ, Foster TL, Rizvanov AA, Khaiboullina SF. Membrane Microvesicles as Potential Vaccine Candidates. Int J Mol Sci 2021; 22:1142. [PMID: 33498909 PMCID: PMC7865840 DOI: 10.3390/ijms22031142] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/21/2021] [Accepted: 01/21/2021] [Indexed: 12/11/2022] Open
Abstract
The prevention and control of infectious diseases is crucial to the maintenance and protection of social and public healthcare. The global impact of SARS-CoV-2 has demonstrated how outbreaks of emerging and re-emerging infections can lead to pandemics of significant public health and socio-economic burden. Vaccination is one of the most effective approaches to protect against infectious diseases, and to date, multiple vaccines have been successfully used to protect against and eradicate both viral and bacterial pathogens. The main criterion of vaccine efficacy is the induction of specific humoral and cellular immune responses, and it is well established that immunogenicity depends on the type of vaccine as well as the route of delivery. In addition, antigen delivery to immune organs and the site of injection can potentiate efficacy of the vaccine. In light of this, microvesicles have been suggested as potential vehicles for antigen delivery as they can carry various immunogenic molecules including proteins, nucleic acids and polysaccharides directly to target cells. In this review, we focus on the mechanisms of microvesicle biogenesis and the role of microvesicles in infectious diseases. Further, we discuss the application of microvesicles as a novel and effective vaccine delivery system.
Collapse
Affiliation(s)
- Layaly Shkair
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (L.S.); (E.E.G.); (A.A.R.)
| | - Ekaterina E. Garanina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (L.S.); (E.E.G.); (A.A.R.)
- M.M. Shemyakin-Yu.A. Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia
| | - Robert J. Stott
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, Sutton Bonington Campus, University of Nottingham, Loughborough LE12 5RD, UK; (R.J.S.); (T.L.F.)
| | - Toshana L. Foster
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, Sutton Bonington Campus, University of Nottingham, Loughborough LE12 5RD, UK; (R.J.S.); (T.L.F.)
| | - Albert A. Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (L.S.); (E.E.G.); (A.A.R.)
| | - Svetlana F. Khaiboullina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (L.S.); (E.E.G.); (A.A.R.)
- Department of Microbiology and Immunology, University of Nevada, Reno, NV 89557, USA
| |
Collapse
|
33
|
Recent Advances in the Pursuit of an Effective Acinetobacter baumannii Vaccine. Pathogens 2020; 9:pathogens9121066. [PMID: 33352688 PMCID: PMC7766458 DOI: 10.3390/pathogens9121066] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/15/2020] [Accepted: 12/17/2020] [Indexed: 12/22/2022] Open
Abstract
Acinetobacter baumannii has been a major cause of nosocomial infections for decades. The absence of an available vaccine coupled with emerging multidrug resistance has prevented the medical community from effectively controlling this human pathogen. Furthermore, the ongoing pandemic caused by SARS-CoV-2 has increased the risk of hospitalized patients developing ventilator-associated pneumonia caused by bacterial opportunists including A. baumannii. The shortage of antibiotics in the development pipeline prompted the World Health Organization to designate A. baumannii a top priority for the development of new medical countermeasures, such as a vaccine. There are a number of important considerations associated with the development of an A. baumannii vaccine, including strain characteristics, diverse disease manifestations, and target population. In the past decade, research efforts have revealed a number of promising new immunization strategies that could culminate in a safe and protective vaccine against A. baumannii. In this review, we highlight the recent progress in the development of A. baumannii vaccines, discuss potential challenges, and propose future directions to achieve an effective intervention against this human pathogen.
Collapse
|
34
|
Chasaide CN, Mills KH. Next-Generation Pertussis Vaccines Based on the Induction of Protective T Cells in the Respiratory Tract. Vaccines (Basel) 2020; 8:E621. [PMID: 33096737 PMCID: PMC7711671 DOI: 10.3390/vaccines8040621] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/13/2020] [Accepted: 10/16/2020] [Indexed: 12/11/2022] Open
Abstract
Immunization with current acellular pertussis (aP) vaccines protects against severe pertussis, but immunity wanes rapidly after vaccination and these vaccines do not prevent nasal colonization with Bordetella pertussis. Studies in mouse and baboon models have demonstrated that Th1 and Th17 responses are integral to protective immunity induced by previous infection with B. pertussis and immunization with whole cell pertussis (wP) vaccines. Mucosal Th17 cells, IL-17 and secretory IgA (sIgA) are particularly important in generating sustained sterilizing immunity in the nasal cavity. Current aP vaccines induce potent IgG and Th2-skewed T cell responses but are less effective at generating Th1 and Th17 responses and fail to prime respiratory tissue-resident memory T (TRM) cells, that maintain long-term immunity at mucosal sites. In contrast, a live attenuated pertussis vaccine, pertussis outer membrane vesicle (OMV) vaccines or aP vaccines formulated with novel adjuvants do induce cellular immune responses in the respiratory tract, especially when delivered by the intranasal route. An increased understanding of the mechanisms of sustained protective immunity, especially the role of respiratory TRM cells, will facilitate the development of next generation pertussis vaccines that not only protect against pertussis disease, but prevent nasal colonization and transmission of B. pertussis.
Collapse
Affiliation(s)
| | - Kingston H.G. Mills
- School of Biochemistry and Immunology, Trinity College Dublin, 2, D02 PN40 Dublin, Ireland;
| |
Collapse
|
35
|
Elizagaray ML, Gomes MTR, Guimaraes ES, Rumbo M, Hozbor DF, Oliveira SC, Moreno G. Canonical and Non-canonical Inflammasome Activation by Outer Membrane Vesicles Derived From Bordetella pertussis. Front Immunol 2020; 11:1879. [PMID: 32973778 PMCID: PMC7468456 DOI: 10.3389/fimmu.2020.01879] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 07/13/2020] [Indexed: 12/11/2022] Open
Abstract
Outer Membrane Vesicles (OMVs) derived from different Gram-negative bacteria have been proposed as an attractive vaccine platform because of their own immunogenic adjuvant properties. Pertussis or whooping cough is a highly contagious vaccine-preventable respiratory disease that resurged during the last decades in many countries. In response to the epidemiological situation, new boosters have been incorporated into vaccination schedules worldwide and new vaccine candidates have started to be designed. Particularly, our group designed a new pertussis vaccine candidate based on OMVs derived from Bordetella pertussis (BpOMVs). To continue with the characterization of the immune response induced by our OMV based vaccine candidate, this work aimed to investigate the ability of OMVs to activate the inflammasome pathway in macrophages. We observed that NLRP3, caspase-1/11, and gasdermin-D (GSDMD) are involved in inflammasome activation by BpOMVs. Moreover, we demonstrated that BpOMVs as well as transfected B. pertussis lipooligosaccharide (BpLOS) induce caspase-11 (Casp11) and guanylate-binding proteins (GBPs) dependent non-canonical inflammasome activation. Our results elucidate the mechanism by which BpOMVs trigger one central pathway of the innate response activation that is expected to skew the adaptive immune response elicited by BpOMVs vaccination.
Collapse
Affiliation(s)
- Maia L Elizagaray
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), Facultad de Ciencias Exactas UNLP CONICET, La Plata, Argentina
| | - Marco Túlio R Gomes
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Erika S Guimaraes
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Programa de Pós-Graduação em Genética, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Martín Rumbo
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), Facultad de Ciencias Exactas UNLP CONICET, La Plata, Argentina
| | - Daniela F Hozbor
- Laboratorio VacSal, Facultad de Ciencias Exactas, Instituto de Biotecnología y Biología Molecular (IBBM), CCT-CONICET La Plata, Universidad Nacional de La Plata, La Plata, Argentina
| | - Sergio C Oliveira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Griselda Moreno
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), Facultad de Ciencias Exactas UNLP CONICET, La Plata, Argentina
| |
Collapse
|
36
|
Rossi O, Citiulo F, Mancini F. Outer membrane vesicles: moving within the intricate labyrinth of assays that can predict risks of reactogenicity in humans. Hum Vaccin Immunother 2020; 17:601-613. [PMID: 32687736 PMCID: PMC7899674 DOI: 10.1080/21645515.2020.1780092] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Outer membrane vesicles (OMV) are exosomes naturally released from the surface of Gram-negative bacteria. Since the ’80s, OMVs have been proposed as powerful vaccine platforms due to their intrinsic self-adjuvanticity and ability to present multiple antigens in natural conformation. However, the presence of several pathogen-associated molecular patterns (PAMPs), especially lipid A, has raised concerns about potential systemic reactogenicity in humans. Recently, chemical and genetic approaches allowed to efficiently modulate the balance between reactogenicity and immunogenicity for the use of OMV in humans. Several assays (monocyte activation test, rabbit pyrogenicity test, limulus amebocyte lysate, human transfectant cells, and toxicology studies) were developed to test, with highly predictive potential, the risk of reactogenicity in humans before moving to clinical use. In this review, we provide a historical perspective on how different assays were and can be used to successfully evaluate systemic reactogenicity during clinical development and after licensure.
Collapse
Affiliation(s)
- Omar Rossi
- GSK Vaccines Institute for Global Health S.r.l (GVGH) , Siena, Italy
| | - Francesco Citiulo
- GSK Vaccines Institute for Global Health S.r.l (GVGH) , Siena, Italy
| | - Francesca Mancini
- GSK Vaccines Institute for Global Health S.r.l (GVGH) , Siena, Italy
| |
Collapse
|
37
|
Raeven RHM, Rockx-Brouwer D, Kanojia G, van der Maas L, Bindels THE, Ten Have R, van Riet E, Metz B, Kersten GFA. Intranasal immunization with outer membrane vesicle pertussis vaccine confers broad protection through mucosal IgA and Th17 responses. Sci Rep 2020; 10:7396. [PMID: 32355188 PMCID: PMC7192948 DOI: 10.1038/s41598-020-63998-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 04/08/2020] [Indexed: 12/15/2022] Open
Abstract
A vaccine based on outer membrane vesicles of pertussis (omvPV) is protective in a mouse-challenge model and induces a broad antibody and mixed Th1/Th2/Th17 response against multiple antigens following subcutaneous immunization. However, this route did not result in mucosal immunity and did not prevent nasopharyngeal colonization. In this study, we explored the potential of intranasal immunization with omvPV. Only intranasal immunization induced strong mucosal immune responses that encompasses enhanced pulmonary and nasal IgA antibody levels, mainly directed against Vag8 and LPS. Furthermore, high numbers of IgA- and IgG-producing plasma cells were detected as well as lung-resident IgA memory B-cells. Finally, only intranasal immunization induced pulmonary Th1/Th17-related cytokine responses. The magnitude and type of systemic immunity was comparable between both routes and included high systemic IgG antibody levels, strong IgG-producing plasma cell responses, memory B-cells residing in the spleen and systemic Th1/Th2/Th17-related cytokine responses. Importantly, only intranasal immunization prevented colonization in both the lungs and the nasal cavity. In conclusion, intranasal omvPV immunization induces mucosal IgA and Th17-mediated responses without influencing the systemic immunity profile. These responses resulted in prevention of Bordetella pertussis colonization in the respiratory tract, including the nasal cavity, thereby potentially preventing transmission.
Collapse
Affiliation(s)
- René H M Raeven
- Intravacc (Institute for Translational Vaccinology), Bilthoven, The Netherlands.
| | | | - Gaurav Kanojia
- Intravacc (Institute for Translational Vaccinology), Bilthoven, The Netherlands
| | | | - Tim H E Bindels
- Intravacc (Institute for Translational Vaccinology), Bilthoven, The Netherlands
| | - Rimko Ten Have
- Intravacc (Institute for Translational Vaccinology), Bilthoven, The Netherlands
| | - Elly van Riet
- Intravacc (Institute for Translational Vaccinology), Bilthoven, The Netherlands
| | - Bernard Metz
- Intravacc (Institute for Translational Vaccinology), Bilthoven, The Netherlands
| | - Gideon F A Kersten
- Intravacc (Institute for Translational Vaccinology), Bilthoven, The Netherlands
- Division of Drug Delivery Technology, Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands
| |
Collapse
|
38
|
Martin Aispuro P, Ambrosis N, Zurita ME, Gaillard ME, Bottero D, Hozbor DF. Use of a Neonatal-Mouse Model to Characterize Vaccines and Strategies for Overcoming the High Susceptibility and Severity of Pertussis in Early Life. Front Microbiol 2020; 11:723. [PMID: 32362890 PMCID: PMC7182080 DOI: 10.3389/fmicb.2020.00723] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 03/27/2020] [Indexed: 01/07/2023] Open
Abstract
Newborns and unvaccinated infants, compared to other age groups, are more susceptible to pertussis infection, manifesting severe symptoms leading to a higher mortality. The recent increase in pertussis cases demands more effective strategies to overcome this major health problem. In parallel with maternal-immunization, neonatal-immunization (NI) is a strategy needing revision. Here, using the intranasal-challenge-mouse-model we evaluated the protective capacity of NI in both naïve-mice and those with maternally acquired immunity. We tested our acellular-vaccine-candidate based on outer-membrane-vesicles derived from Bordetella pertussis (OMVP) that induces Th2-profile but also the recommended Th-profile for protection: Th1/Th17-profile and CD4 T-memory-cells that reside in the lungs. Commercial acellular-vaccine (aP) and whole cell-vaccine (wP) inducing mainly Th2-profile and Th1-profile, respectively, were also tested. Analyzing the induced immunity and protection capability of NI included in 1- or 2-dose schedules with the same or different types of vaccine, we detected that the aP-vaccine administered in either single- or 2-dose schedules protected against sublethal B. pertussis infection. Schedules consisting of doses of aP neonatally and of OMVP or wP vaccine during infancy greatly reduced bacterial lung colonization while inducing the highest levels of high-avidity anti-pertussis toxin (PTx) IgG. That OMVP or wP neonatal dose did not interfere with the protection of transferred maternal immunity was especially encouraging. Moreover, OMVP- or wP used as a neonatal dose enhanced the quality of the humoral immune response in immunized pups. Antibodies generated by OMVP-or wP-vaccinated mice born to aP-immunized mothers were of higher avidity than those from mice that harbored only maternal immunity; but when mothers and neonates were immunized with the same aP-vaccine, the humoral response in the neonates was partially suppressed through the blunting of the level of anti-PTx IgG induced by the neonatal aP dose. These results demonstrated that neonatal immunization is a possible strategy to be considered to improve the current pertussis epidemiology. For neonates without maternal-immunity, mixed-vaccination schedules that include the aP- and OMVP-vaccines appear to be the most appropriate to induce protection in the pups. For offspring from immune mothers, to avoid blunting-effect, NI should be carried out with vaccines other than those applied during pregnancy.
Collapse
Affiliation(s)
- Pablo Martin Aispuro
- Laboratorio VacSal, Instituto de Biotecnología y Biología Molecular (IBBM), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Centro Científico Tecnológico - Consejo Nacional de Investigaciones Científicas y Técnicas (CCT-CONICET), La Plata, Argentina
| | - Nicolás Ambrosis
- Laboratorio VacSal, Instituto de Biotecnología y Biología Molecular (IBBM), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Centro Científico Tecnológico - Consejo Nacional de Investigaciones Científicas y Técnicas (CCT-CONICET), La Plata, Argentina
| | - María Eugenia Zurita
- Laboratorio VacSal, Instituto de Biotecnología y Biología Molecular (IBBM), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Centro Científico Tecnológico - Consejo Nacional de Investigaciones Científicas y Técnicas (CCT-CONICET), La Plata, Argentina
| | - María Emilia Gaillard
- Laboratorio VacSal, Instituto de Biotecnología y Biología Molecular (IBBM), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Centro Científico Tecnológico - Consejo Nacional de Investigaciones Científicas y Técnicas (CCT-CONICET), La Plata, Argentina
| | - Daniela Bottero
- Laboratorio VacSal, Instituto de Biotecnología y Biología Molecular (IBBM), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Centro Científico Tecnológico - Consejo Nacional de Investigaciones Científicas y Técnicas (CCT-CONICET), La Plata, Argentina
| | - Daniela Flavia Hozbor
- Laboratorio VacSal, Instituto de Biotecnología y Biología Molecular (IBBM), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Centro Científico Tecnológico - Consejo Nacional de Investigaciones Científicas y Técnicas (CCT-CONICET), La Plata, Argentina
| |
Collapse
|
39
|
Zurita ME, Wilk MM, Carriquiriborde F, Bartel E, Moreno G, Misiak A, Mills KHG, Hozbor D. A Pertussis Outer Membrane Vesicle-Based Vaccine Induces Lung-Resident Memory CD4 T Cells and Protection Against Bordetella pertussis, Including Pertactin Deficient Strains. Front Cell Infect Microbiol 2019; 9:125. [PMID: 31106160 PMCID: PMC6498398 DOI: 10.3389/fcimb.2019.00125] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Accepted: 04/09/2019] [Indexed: 12/22/2022] Open
Abstract
Pertussis is a respiratory infectious disease that has been resurged during the last decades. The change from the traditional multi-antigen whole-cell pertussis (wP) vaccines to acellular pertussis (aP) vaccines that consist of a few antigens formulated with alum, appears to be a key factor in the resurgence of pertussis in many countries. Though current aP vaccines have helped to reduce the morbidity and mortality associated with pertussis, they do not provide durable immunity or adequate protection against the disease caused by the current circulating strains of Bordetella pertussis, which have evolved in the face of the selection pressure induced by the vaccines. Based on the hypothesis that a new vaccine containing multiple antigens could overcome deficiencies in the current aP vaccines, we have designed and characterized a vaccine candidate based on outer membrane vesicle (OMVs). Here we show that the OMVs vaccine, but not an aP vaccine, protected mice against lung infection with a circulating pertactin (PRN)-deficient isolate. Using isogenic bacteria that in principle only differ in PRN expression, we found that deficiency in PRN appears to be largely responsible for the failure of the aP vaccine to protect against this circulating clinical isolates. Regarding the durability of induced immunity, we have already reported that the OMV vaccine is able to induce long-lasting immune responses that effectively prevent infection with B. pertussis. Consistent with this, here we found that CD4 T cells with a tissue-resident memory (TRM) cell phenotype (CD44+CD62LlowCD69+ and/or CD103+) accumulated in the lungs of mice 14 days after immunization with 2 doses of the OMVs vaccine. CD4 TRM cells, which have previously been shown to play a critical role sustained protective immunity against B. pertussis, were also detected in mice immunized with wP vaccine, but not in the animals immunized with a commercial aP vaccine. The CD4 TRM cells secreted IFN-γ and IL-17 and were significantly expanded through local proliferation following respiratory challenge of mice with B. pertussis. Our findings that the OMVs vaccine induce respiratory CD4 TRM cells may explain the ability of this vaccine to induce long-term protection and is therefore an ideal candidate for a third generation vaccine against B. pertussis.
Collapse
Affiliation(s)
- María Eugenia Zurita
- Laboratorio VacSal, Facultad de Ciencias Exactas, Instituto de Biotecnología y Biología Molecular (IBBM), CCT-CONICET La Plata, Universidad Nacional de La Plata, La Plata, Argentina
| | - Mieszko M Wilk
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Francisco Carriquiriborde
- Laboratorio VacSal, Facultad de Ciencias Exactas, Instituto de Biotecnología y Biología Molecular (IBBM), CCT-CONICET La Plata, Universidad Nacional de La Plata, La Plata, Argentina
| | - Erika Bartel
- Laboratorio VacSal, Facultad de Ciencias Exactas, Instituto de Biotecnología y Biología Molecular (IBBM), CCT-CONICET La Plata, Universidad Nacional de La Plata, La Plata, Argentina
| | - Griselda Moreno
- Facultad de Ciencias Exactas, Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), CCT-CONICET La Plata, Universidad Nacional de La Plata, La Plata, Argentina
| | - Alicja Misiak
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Kingston H G Mills
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Daniela Hozbor
- Laboratorio VacSal, Facultad de Ciencias Exactas, Instituto de Biotecnología y Biología Molecular (IBBM), CCT-CONICET La Plata, Universidad Nacional de La Plata, La Plata, Argentina
| |
Collapse
|
40
|
Hozbor D. New Pertussis Vaccines: A Need and a Challenge. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1183:115-126. [PMID: 31432399 DOI: 10.1007/5584_2019_407] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Effective diphtheria, tetanus toxoids, whole-cell pertussis (wP) vaccines were used for massive immunization in the 1950s. The broad use of these vaccines significantly reduced the morbidity and mortality associated with pertussis. Because of reports on the induction of adverse reactions, less-reactogenic acellular vaccines (aP) were later developed and in many countries, especially the industrialized ones, the use of wP was changed to aP. For many years, the situation of pertussis seemed to be controlled with the use of these vaccines, however in the last decades the number of pertussis cases increased in several countries. The loss of the immunity conferred by the vaccines, which is faster in the individuals vaccinated with the acellular vaccines, and the evolution of the pathogen towards geno/phenotypes that escape more easily the immunity conferred by the vaccines were proposed as the main causes of the disease resurgence. According to their composition of few immunogens, the aP vaccines seem to be exerting a greater selection pressure on the circulating bacterial population causing the prevalence of bacterial isolates defective in the expression of vaccine antigens. Under this context, it is clear that new vaccines against pertussis should be developed. Several vaccine candidates are in preclinical development and few others have recently completed phaseI/phaseII trials. Vaccine candidate based on OMVs is a promising candidate since appeared overcoming the major weaknesses of current aP-vaccines. The most advanced development is the live attenuated-vaccine BPZE1 which has successfully completed a first-in-man clinical trial.
Collapse
Affiliation(s)
- Daniela Hozbor
- Laboratorio VacSal. Instituto de Biotecnología y Biología Molecular, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata y CCT-La Plata, CONICET, La Plata, Argentina.
| |
Collapse
|
41
|
Bottero D, Zurita ME, Gaillard ME, Carriquiriborde F, Martin Aispuro P, Elizagaray M, Bartel E, Castuma C, Hozbor D. Outer-Membrane-Vesicle-Associated O Antigen, a Crucial Component for Protecting Against Bordetella parapertussis Infection. Front Immunol 2018; 9:2501. [PMID: 30459769 PMCID: PMC6232878 DOI: 10.3389/fimmu.2018.02501] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 10/10/2018] [Indexed: 01/06/2023] Open
Abstract
Bordetella parapertussis is a respiratory-disease pathogen producing symptomatology similar to that of pertussis but of underestimated incidence and with no specific vaccine existing. We recently designed a vaccine candidate from B. parapertussis outer-membrane vesicles (OMVs) that proved to be safe and protective in a murine-infection model. Based on protection recently reported for the B. parapertussis O antigen in aqueous solution, we assessed here whether the B. parapertussis O-antigen-containing lipopolysaccharide (BppLPS-O+) embedded in the membranes, as present in B. parapertussis-derived OMVs (OMVs(Bpp-LPS-O+)), was the component responsible for that previously observed protection by OMVs. By performing a comparative study with OMVs from a human strain with undetectable O antigen (OMVs(Bpp-LPS-O-)), we demonstrated that the OMVs(Bpp-LPS-O+), but not the OMVs(Bpp-LPS-O-), protected mice against sublethal B. parapertussis infections. Indeed, the B. parapertussis loads were significantly reduced in the lungs of OMVs(Bpp-LPS-O+) -vaccinated animals, with the CFUs recovered being decreased by 4 log units below those detected in the non-immunized animals or in the animals treated with the OMVs(Bpp-LPS-O-), (p < 0.001). We detected that the OMVs(Bpp-LPS-O+) induced IgG antibodies against B. parapertussis whole-cell lysates, which immunocomponents recognized, among others, the O antigen and accordingly conferred protection against B. parapertussis infection, as observed in in-vivo-passive-transfer experiments. Of interest was that the OMVs(Bpp-LPS-O+) -generated sera had opsonophagocytic and bactericidal capabilities that were not detected with the OMVs(Bpp-LPS-O-)-induced sera, suggesting that those activities were involved in the clearance of B. parapertussis. Though stimulation of cultured spleen cells from immunized mice with formulations containing the O antigen resulted in gamma interferon (IFN-γ) and interleukin-17 production, spleen cells from OMVs(Bpp-LPS-O+) -immunized mice did not significantly contribute to the observed protection against B. parapertussis infection. The protective capability of the B. parapertussis O antigen was also detected in formulations containing both the OMVs derived from B. pertussis and purified BppLPS-O+. This combined formulation protected mice against B. pertussis along with B. parapertussis.
Collapse
Affiliation(s)
- Daniela Bottero
- Laboratorio VacSal, Facultad de Ciencias Exactas, Instituto de Biotecnología y Biología Molecular, Universidad Nacional de La Plata, La Plata, Argentina
| | - María Eugenia Zurita
- Laboratorio VacSal, Facultad de Ciencias Exactas, Instituto de Biotecnología y Biología Molecular, Universidad Nacional de La Plata, La Plata, Argentina
| | - María Emilia Gaillard
- Laboratorio VacSal, Facultad de Ciencias Exactas, Instituto de Biotecnología y Biología Molecular, Universidad Nacional de La Plata, La Plata, Argentina
| | - Francisco Carriquiriborde
- Laboratorio VacSal, Facultad de Ciencias Exactas, Instituto de Biotecnología y Biología Molecular, Universidad Nacional de La Plata, La Plata, Argentina
| | - Pablo Martin Aispuro
- Laboratorio VacSal, Facultad de Ciencias Exactas, Instituto de Biotecnología y Biología Molecular, Universidad Nacional de La Plata, La Plata, Argentina
| | - Maia Elizagaray
- Facultad de Ciencias Exactas, Instituto de Estudios Inmunológicos y Fisiopatológicos, Universidad Nacional de La Plata, La Plata, Argentina
| | - Erika Bartel
- Laboratorio VacSal, Facultad de Ciencias Exactas, Instituto de Biotecnología y Biología Molecular, Universidad Nacional de La Plata, La Plata, Argentina
| | - Celina Castuma
- Laboratorio VacSal, Facultad de Ciencias Exactas, Instituto de Biotecnología y Biología Molecular, Universidad Nacional de La Plata, La Plata, Argentina
| | - Daniela Hozbor
- Laboratorio VacSal, Facultad de Ciencias Exactas, Instituto de Biotecnología y Biología Molecular, Universidad Nacional de La Plata, La Plata, Argentina
| |
Collapse
|
42
|
Raeven RH, Brummelman J, Pennings JLA, van der Maas L, Helm K, Tilstra W, van der Ark A, Sloots A, van der Ley P, van Eden W, Jiskoot W, van Riet E, van Els CA, Kersten GF, Han WG, Metz B. Molecular and cellular signatures underlying superior immunity against Bordetella pertussis upon pulmonary vaccination. Mucosal Immunol 2018; 11:979-993. [PMID: 28930286 DOI: 10.1038/mi.2017.81] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 08/15/2017] [Indexed: 02/04/2023]
Abstract
Mucosal immunity is often required for protection against respiratory pathogens but the underlying cellular and molecular mechanisms of induction remain poorly understood. Here, systems vaccinology was used to identify immune signatures after pulmonary or subcutaneous immunization of mice with pertussis outer membrane vesicles. Pulmonary immunization led to improved protection, exclusively induced mucosal immunoglobulin A (IgA) and T helper type 17 (Th17) responses, and in addition evoked elevated systemic immunoglobulin G (IgG) antibody levels, IgG-producing plasma cells, memory B cells, and Th17 cells. These adaptive responses were preceded by unique local expression of genes of the innate immune response related to Th17 (e.g., Rorc) and IgA responses (e.g., Pigr) in addition to local and systemic secretion of Th1/Th17-promoting cytokines. This comprehensive systems approach identifies the effect of the administration route on the development of mucosal immunity, its importance in protection against Bordetella pertussis, and reveals potential molecular correlates of vaccine immunity to this reemerging pathogen.
Collapse
Affiliation(s)
- R Hm Raeven
- Institute for Translational Vaccinology (Intravacc), Bilthoven, The Netherlands.,Division of Drug Delivery Technology, Cluster BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden, The Netherlands
| | - J Brummelman
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands.,Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, The Netherlands
| | - J L A Pennings
- Centre for Health Protection, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - L van der Maas
- Institute for Translational Vaccinology (Intravacc), Bilthoven, The Netherlands
| | - K Helm
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - W Tilstra
- Institute for Translational Vaccinology (Intravacc), Bilthoven, The Netherlands
| | - A van der Ark
- Institute for Translational Vaccinology (Intravacc), Bilthoven, The Netherlands
| | - A Sloots
- Institute for Translational Vaccinology (Intravacc), Bilthoven, The Netherlands
| | - P van der Ley
- Institute for Translational Vaccinology (Intravacc), Bilthoven, The Netherlands
| | - W van Eden
- Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, The Netherlands
| | - W Jiskoot
- Division of Drug Delivery Technology, Cluster BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden, The Netherlands
| | - E van Riet
- Institute for Translational Vaccinology (Intravacc), Bilthoven, The Netherlands
| | - C Acm van Els
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - G Fa Kersten
- Institute for Translational Vaccinology (Intravacc), Bilthoven, The Netherlands.,Division of Drug Delivery Technology, Cluster BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden, The Netherlands
| | - W Gh Han
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - B Metz
- Institute for Translational Vaccinology (Intravacc), Bilthoven, The Netherlands
| |
Collapse
|
43
|
Yu YJ, Wang XH, Fan GC. Versatile effects of bacterium-released membrane vesicles on mammalian cells and infectious/inflammatory diseases. Acta Pharmacol Sin 2018; 39:514-533. [PMID: 28858295 PMCID: PMC5888691 DOI: 10.1038/aps.2017.82] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 05/10/2017] [Indexed: 01/18/2023]
Abstract
Gram-negative bacterium-released outer-membrane vesicles (OMVs) and Gram-positive bacterium-released membrane vesicles (MVs) share significant similarities with mammalian cell-derived MVs (eg, microvesicles and exosomes) in terms of structure and their biological activities. Recent studies have revealed that bacterial OMVs/MVs could (1) interact with immune cells to regulate inflammatory responses, (2) transport virulence factors (eg, enzymes, DNA and small RNAs) to host cells and result in cell injury, (3) enhance barrier function by stimulating the expression of tight junction proteins in intestinal epithelial cells, (4) upregulate the expression of endothelial cell adhesion molecules, and (5) serve as natural nanocarriers for immunogenic antigens, enzyme support and drug delivery. In addition, OMVs/MVs can enter the systemic circulation and induce a variety of immunological and metabolic responses. This review highlights the recent advances in the understanding of OMV/MV biogenesis and their compositional remodeling. In addition, interactions between OMVs/MVs and various types of mammalian cells (ie, immune cells, epithelial cells, and endothelial cells) and their pathological/preventive effects on infectious/inflammatory diseases are summarized. Finally, methods for engineering OMVs/MVs and their therapeutic potential are discussed.
Collapse
Affiliation(s)
- You-jiang Yu
- Medical College of Yangzhou Polytechnic College, Yangzhou 225009, China
| | - Xiao-hong Wang
- Department of Pharmacology and Cell Biophysics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Guo-Chang Fan
- Department of Pharmacology and Cell Biophysics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| |
Collapse
|
44
|
Membrane Vesicles Derived from Bordetella bronchiseptica: Active Constituent of a New Vaccine against Infections Caused by This Pathogen. Appl Environ Microbiol 2018; 84:AEM.01877-17. [PMID: 29180369 DOI: 10.1128/aem.01877-17] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 11/02/2017] [Indexed: 11/20/2022] Open
Abstract
Bordetella bronchiseptica, a Gram-negative bacterium, causes chronic respiratory tract infections in a wide variety of mammalian hosts, including humans (albeit rarely). We recently designed Bordetella pertussis and Bordetella parapertussis experimental vaccines based on outer membrane vesicles (OMVs) derived from each pathogen, and we obtained protection against the respective infections in mice. Here, we demonstrated that OMVs derived from virulent-phase B. bronchiseptica (OMVBbvir+) protected mice against sublethal infections with different B. bronchiseptica strains, two isolated from farm animals and one isolated from a human patient. In all infections, we observed that the B. bronchiseptica loads were significantly reduced in the lungs of vaccinated animals; the lung-recovered CFU were decreased by ≥4 log units, compared with those detected in the lungs of nonimmunized animals (P < 0.001). In the OMVBbvir+-immunized mice, we detected IgG antibody titers against B. bronchiseptica whole-cell lysates, along with an immune serum having bacterial killing activity that both recognized B. bronchiseptica lipopolysaccharides and polypeptides such as GroEL and outer membrane protein C (OMPc) and demonstrated an essential protective capacity against B. bronchiseptica infection, as detected by passive in vivo transfer experiments. Stimulation of cultured splenocytes from immunized mice with OMVBbvir+ resulted in interleukin 5 (IL-5), gamma interferon (IFN-γ), and IL-17 production, indicating that the vesicles induced mixed Th2, Th1, and Th17 T-cell immune responses. We detected, by adoptive transfer assays, that spleen cells from OMVBbvir+-immunized mice also contributed to the observed protection against B. bronchiseptica infection. OMVs from avirulent-phase B. bronchiseptica and the resulting induced immune sera were also able to protect mice against B. bronchiseptica infection.IMPORTANCEBordetella bronchiseptica, a Gram-negative bacterium, causes chronic respiratory tract infections in a wide variety of mammalian hosts, including humans (albeit rarely). Several vaccines aimed at preventing B. bronchiseptica infection have been developed and used, but a safe effective vaccine is still needed. The significance and relevance of our research lie in the characterization of the OMVs derived from B. bronchiseptica as the source of a new experimental vaccine. We demonstrated here that our formulation based on OMVs derived from virulent-phase B. bronchiseptica (OMVBbvir+) was effective against infections caused by B. bronchiseptica isolates obtained from different hosts (farm animals and a human patient). In vitro and in vivo characterization of humoral and cellular immune responses induced by the OMVBbvir+ vaccine enabled a better understanding of the mechanism of protection necessary to control B. bronchiseptica infection. Here we also demonstrated that OMVs derived from B. bronchiseptica in the avirulent phase and the corresponding induced humoral immune response were able to protect mice from B. bronchiseptica infection. This realization provides the basis for the development of novel vaccines not only against the acute stages of the disease but also against stages of the disease or the infectious cycle in which avirulence factors could play a role.
Collapse
|
45
|
Burdin N, Handy LK, Plotkin SA. What Is Wrong with Pertussis Vaccine Immunity? The Problem of Waning Effectiveness of Pertussis Vaccines. Cold Spring Harb Perspect Biol 2017; 9:a029454. [PMID: 28289064 PMCID: PMC5710106 DOI: 10.1101/cshperspect.a029454] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Pertussis is resurgent in some countries, particularly those in which children receive acellular pertussis (aP) vaccines in early infancy and boosters later in life. Immunologic studies show that, whereas whole-cell pertussis (wP) vaccines orient the immune system toward Th1/Th17 responses, acellular pertussis vaccines orient toward Th1/Th2 responses. Although aP vaccines do provide protection during the first years of life, the change in T-cell priming results in waning effectiveness of aP as early as 2-3 years post-boosters. Although other factors, such as increased virulence of pertussis strains, better diagnosis, and better surveillance may play a role, the increase in pertussis appears to be the result of waning immunity. In addition, studies in baboon models, requiring confirmation in humans, show that aP is less able to prevent nasopharyngeal colonization of Bordetella pertussis than wP or natural infection.
Collapse
Affiliation(s)
- Nicolas Burdin
- EU Research and Non Clinical Safety, R&D, Sanofi Pasteur, Campus Mérieux, 69280 Marcy l'Etoile, France
| | - Lori Kestenbaum Handy
- Assistant Professor of Pediatrics, Sidney Kimmel Medical College at Thomas Jefferson University, Division of Infectious Diseases, Nemours/Alfred I. duPont Hospital for Children, Wilmington, Delaware 19803
| | - Stanley A Plotkin
- Emeritus Professor of Pediatrics, University of Pennsylvania, Vaxconsult, Doylestown, Pennsylvania 18902
| |
Collapse
|
46
|
Abstract
Outer membrane vesicles (OMVs) (∼50-250 nm in diameter) are produced by both pathogenic and nonpathogenic bacteria as a canonical end product of secretion. In this review, we focus on the OMVs produced by gram-negative bacteria. We provide an overview of the OMV structure, various factors regulating their production, and their role in modulating host immune response using a few representative examples. In light of the importance of the diverse cargoes carried by OMVs, we discuss the different modes of their entry into the host cell and advances in the high-throughput detection of these OMVs. A conspicuous application of OMVs lies in the field of vaccination; we discuss its success in immunization against human diseases such as pertussis, meningitis, shigellosis and aqua-farming endangering diseases like edwardsiellosis.
Collapse
Affiliation(s)
- Deepak Anand
- a Max-Planck-Institut für terrestrische Mikrobiologie , Marburg , Germany
| | - Arunima Chaudhuri
- b Department of Cell Biology , Yale School of Medicine , New Haven , CT , USA
| |
Collapse
|
47
|
Gasperini G, Arato V, Pizza M, Aricò B, Leuzzi R. Physiopathological roles of spontaneously released outer membrane vesicles of Bordetella pertussis. Future Microbiol 2017; 12:1247-1259. [PMID: 28980823 DOI: 10.2217/fmb-2017-0064] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM Bordetella pertussis has been shown to release outer membrane vesicles (OMV) both in vitro and in vivo but little is known about their biological role during the initial phases of B. pertussis infection of the airways. RESULTS We have demonstrated that OMV are released by B. pertussis in a human ciliated-airway cell model and purified vesicles can interact with host cells. Binding and uptake are strictly Bvg-regulated and OMV-associated pertussis toxin contributes to host-cell intoxication. Furthermore, we have shown that OMV act as iron-delivery systems complementing the B. pertussis growth defect in iron-limiting conditions. CONCLUSION We have proved that OMV play different roles in B. pertussis physiopathology and we opened new perspectives to be further investigated.
Collapse
|
48
|
Gaillard ME, Bottero D, Zurita ME, Carriquiriborde F, Martin Aispuro P, Bartel E, Sabater-Martínez D, Bravo MS, Castuma C, Hozbor DF. Pertussis Maternal Immunization: Narrowing the Knowledge Gaps on the Duration of Transferred Protective Immunity and on Vaccination Frequency. Front Immunol 2017; 8:1099. [PMID: 28932228 PMCID: PMC5592197 DOI: 10.3389/fimmu.2017.01099] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 08/22/2017] [Indexed: 01/02/2023] Open
Abstract
Maternal safety through pertussis vaccination and subsequent maternal–fetal-antibody transfer are well documented, but information on infant protection from pertussis by such antibodies and by subsequent vaccinations is scarce. Since mice are used extensively for maternal-vaccination studies, we adopted that model to narrow those gaps in our understanding of maternal pertussis immunization. Accordingly, we vaccinated female mice with commercial acellular pertussis (aP) vaccine and measured offspring protection against Bordetella pertussis challenge and specific-antibody levels with or without revaccination. Maternal immunization protected the offspring against pertussis, with that immune protection transferred to the offspring lasting for several weeks, as evidenced by a reduction (4–5 logs, p < 0.001) in the colony-forming-units recovered from the lungs of 16-week-old offspring. Moreover, maternal-vaccination-acquired immunity from the first pregnancy still conferred protection to offspring up to the fourth pregnancy. Under the conditions of our experimental protocol, protection to offspring from the aP-induced immunity is transferred both transplacentally and through breastfeeding. Adoptive-transfer experiments demonstrated that transferred antibodies were more responsible for the protection detected in offspring than transferred whole spleen cells. In contrast to reported findings, the protection transferred was not lost after the vaccination of infant mice with the same or other vaccine preparations, and conversely, the immunity transferred from mothers did not interfere with the protection conferred by infant vaccination with the same or different vaccines. These results indicated that aP-vaccine immunization of pregnant female mice conferred protective immunity that is transferred both transplacentally and via offspring breastfeeding without compromising the protection boostered by subsequent infant vaccination. These results—though admittedly not necessarily immediately extrapolatable to humans—nevertheless enabled us to test hypotheses under controlled conditions through detailed sampling and data collection. These findings will hopefully refine hypotheses that can then be validated in subsequent human studies.
Collapse
Affiliation(s)
- María Emilia Gaillard
- Laboratorio VacSal, Instituto de Biotecnología y Biología Molecular (IBBM), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CCT-CONICET La Plata, La Plata, Argentina
| | - Daniela Bottero
- Laboratorio VacSal, Instituto de Biotecnología y Biología Molecular (IBBM), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CCT-CONICET La Plata, La Plata, Argentina
| | - María Eugenia Zurita
- Laboratorio VacSal, Instituto de Biotecnología y Biología Molecular (IBBM), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CCT-CONICET La Plata, La Plata, Argentina
| | - Francisco Carriquiriborde
- Laboratorio VacSal, Instituto de Biotecnología y Biología Molecular (IBBM), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CCT-CONICET La Plata, La Plata, Argentina
| | - Pablo Martin Aispuro
- Laboratorio VacSal, Instituto de Biotecnología y Biología Molecular (IBBM), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CCT-CONICET La Plata, La Plata, Argentina
| | - Erika Bartel
- Laboratorio VacSal, Instituto de Biotecnología y Biología Molecular (IBBM), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CCT-CONICET La Plata, La Plata, Argentina
| | - David Sabater-Martínez
- Laboratorio VacSal, Instituto de Biotecnología y Biología Molecular (IBBM), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CCT-CONICET La Plata, La Plata, Argentina
| | - María Sol Bravo
- Laboratorio VacSal, Instituto de Biotecnología y Biología Molecular (IBBM), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CCT-CONICET La Plata, La Plata, Argentina
| | - Celina Castuma
- Laboratorio VacSal, Instituto de Biotecnología y Biología Molecular (IBBM), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CCT-CONICET La Plata, La Plata, Argentina
| | - Daniela Flavia Hozbor
- Laboratorio VacSal, Instituto de Biotecnología y Biología Molecular (IBBM), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CCT-CONICET La Plata, La Plata, Argentina
| |
Collapse
|
49
|
Affiliation(s)
- Daniela F Hozbor
- a Laboratorio VacSal , Instituto de Biotecnología y Biología Molecular, Facultad de Ciencias Exactas, Universidad Nacional de La Plata , La Plata , Argentina
| |
Collapse
|
50
|
Metz B, Hoonakker M, Uittenbogaard JP, Weyts M, Mommen GPM, Meiring HD, Tilstra W, Pennings JLA, van der Pol LA, Kuipers B, Sloots A, van den IJssel J, van de Waterbeemd B, van der Ark A. Proteome Analysis Is a Valuable Tool to Monitor Antigen Expression during Upstream Processing of Whole-Cell Pertussis Vaccines. J Proteome Res 2016; 16:528-537. [PMID: 27977922 DOI: 10.1021/acs.jproteome.6b00668] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Physicochemical and immunochemical assays were applied to substantiate the relation between upstream processing and the quality of whole-cell pertussis vaccines. Bordetella pertussis bacteria were cultured on a chemically defined medium using a continuous cultivation process in stirred tank reactors to obtain uniform protein expression. Continuous culture favors the consistent production of proteins known as virulence factors. Magnesium sulfate was added during the steady state of the culture in order to diminish the expression of virulence proteins. Changes in gene expression and antigen composition were measured by microarrays, mass spectrometry and ELISA. Transcriptome and proteome data revealed high similarity between the biological triplicates demonstrating consistent cultivation of B. pertussis. The addition of magnesium sulfate resulted in an instant downregulation of the virulence genes in B. pertussis, but a gradual decrease of virulence proteins. The quantity of virulence proteins concurred highly with the potency of the corresponding whole-cell pertussis vaccines, which were determined by the Kendrick test. In conclusion, proteome analysis provided detailed information on the composition and proportion of virulence proteins present in the whole-cell preparations of B. pertussis. Moreover, proteome analysis is a valuable method to monitor the production process of whole-cell biomass and predict the product quality of whole-cell pertussis vaccines.
Collapse
Affiliation(s)
- Bernard Metz
- Institute for Translational Vaccinology (Intravacc) , P.O. Box 450, 3720 AL Bilthoven, The Netherlands
| | - Marieke Hoonakker
- Institute for Translational Vaccinology (Intravacc) , P.O. Box 450, 3720 AL Bilthoven, The Netherlands
| | - Joost P Uittenbogaard
- Institute for Translational Vaccinology (Intravacc) , P.O. Box 450, 3720 AL Bilthoven, The Netherlands
| | - Michel Weyts
- Institute for Translational Vaccinology (Intravacc) , P.O. Box 450, 3720 AL Bilthoven, The Netherlands
| | - Geert P M Mommen
- Institute for Translational Vaccinology (Intravacc) , P.O. Box 450, 3720 AL Bilthoven, The Netherlands
| | - Hugo D Meiring
- Institute for Translational Vaccinology (Intravacc) , P.O. Box 450, 3720 AL Bilthoven, The Netherlands
| | - Wichard Tilstra
- Institute for Translational Vaccinology (Intravacc) , P.O. Box 450, 3720 AL Bilthoven, The Netherlands
| | - Jeroen L A Pennings
- National Institute for Public Health and the Environment , P.O. Box 1, 3720 BA Bilthoven, The Netherlands
| | - Leo A van der Pol
- Institute for Translational Vaccinology (Intravacc) , P.O. Box 450, 3720 AL Bilthoven, The Netherlands
| | - Betsy Kuipers
- National Institute for Public Health and the Environment , P.O. Box 1, 3720 BA Bilthoven, The Netherlands
| | - Arjen Sloots
- Institute for Translational Vaccinology (Intravacc) , P.O. Box 450, 3720 AL Bilthoven, The Netherlands
| | - Jan van den IJssel
- Institute for Translational Vaccinology (Intravacc) , P.O. Box 450, 3720 AL Bilthoven, The Netherlands
| | - Bas van de Waterbeemd
- Institute for Translational Vaccinology (Intravacc) , P.O. Box 450, 3720 AL Bilthoven, The Netherlands
| | - Arno van der Ark
- Institute for Translational Vaccinology (Intravacc) , P.O. Box 450, 3720 AL Bilthoven, The Netherlands
| |
Collapse
|