1
|
Yount KS, Darville T. Immunity to Sexually Transmitted Bacterial Infections of the Female Genital Tract: Toward Effective Vaccines. Vaccines (Basel) 2024; 12:863. [PMID: 39203989 PMCID: PMC11359697 DOI: 10.3390/vaccines12080863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/19/2024] [Accepted: 07/27/2024] [Indexed: 09/03/2024] Open
Abstract
Sexually transmitted infections (STIs) caused by bacterial pathogens Chlamydia trachomatis, Neisseria gonorrhoeae, and Treponema pallidum present significant public health challenges. These infections profoundly impact reproductive health, leading to pelvic inflammatory disease, infertility, and increased susceptibility to other infections. Prevention measures, including antibiotic treatments, are limited by the often-asymptomatic nature of these infections, the need for repetitive and continual screening of sexually active persons, antibiotic resistance for gonorrhea, and shortages of penicillin for syphilis. While vaccines exist for viral STIs like human papillomavirus (HPV) and hepatitis B virus (HBV), there are no vaccines available for bacterial STIs. This review examines the immune responses in the female genital tract to these bacterial pathogens and the implications for developing effective vaccines against bacterial STIs.
Collapse
Affiliation(s)
| | - Toni Darville
- Department of Pediatrics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
| |
Collapse
|
2
|
Roe SK, Zhu T, Slepenkin A, Berges A, Fairman J, de la Maza LM, Massari P. Structural Assessment of Chlamydia trachomatis Major Outer Membrane Protein (MOMP)-Derived Vaccine Antigens and Immunological Profiling in Mice with Different Genetic Backgrounds. Vaccines (Basel) 2024; 12:789. [PMID: 39066427 PMCID: PMC11281497 DOI: 10.3390/vaccines12070789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/13/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Chlamydia trachomatis (Ct) is the most common cause of bacterial sexually transmitted infections (STIs) worldwide. Ct infections are often asymptomatic in women, leading to severe reproductive tract sequelae. Development of a vaccine against Chlamydia is crucial. The Chlamydia major outer membrane protein (MOMP) is a prime vaccine antigen candidate, and it can elicit both neutralizing antibodies and protective CD4+ T cell responses. We have previously designed chimeric antigens composed of immunogenic variable regions (VDs) and conserved regions (CDs) of MOMP from Chlamydia muridarum (Cm) expressed into a carrier protein (PorB), and we have shown that these were protective in a mouse model of Cm respiratory infection. Here, we generated corresponding constructs based on MOMP from Ct serovar F. Preliminary structure analysis of the three antigens, PorB/VD1-3, PorB/VD1-4 and PorB/VD1-2-4, showed that they retained structure features consistent with those of PorB. The antigens induced robust humoral and cellular responses in mice with different genetic backgrounds. The antibodies were cross-reactive against Ct, but only anti-PorB/VD1-4 and anti-PorB/VD1-2-4 IgG antibodies were neutralizing, likely due to the antigen specificity. The cellular responses included proliferation in vitro and production of IFN-γ by splenocytes following Ct re-stimulation. Our results support further investigation of the PorB/VD antigens as potential protective candidates for a Chlamydia subunit vaccine.
Collapse
Affiliation(s)
- Shea K. Roe
- Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA; (S.K.R.)
| | - Tianmou Zhu
- Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA; (S.K.R.)
| | - Anatoli Slepenkin
- Department of Pathology and Laboratory Medicine, University of California, Irvine, CA 92697, USA (L.M.d.l.M.)
| | - Aym Berges
- Vaxcyte Inc., 825 Industrial Road, Suite 300, San Carlos, CA 94070, USA (J.F.)
| | - Jeff Fairman
- Vaxcyte Inc., 825 Industrial Road, Suite 300, San Carlos, CA 94070, USA (J.F.)
| | - Luis M. de la Maza
- Department of Pathology and Laboratory Medicine, University of California, Irvine, CA 92697, USA (L.M.d.l.M.)
| | - Paola Massari
- Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA; (S.K.R.)
| |
Collapse
|
3
|
Murthy AK, Wright-McAfee E, Warda K, Moy LN, Bui N, Musunuri T, Manam S, Chako CZ, Ramsey KH, Li W. Protective anti-chlamydial vaccine regimen-induced CD4+ T cell response mediates early inhibition of pathogenic CD8+ T cell response following genital challenge. Pathog Dis 2024; 82:ftae008. [PMID: 38684476 PMCID: PMC11149721 DOI: 10.1093/femspd/ftae008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/19/2024] [Accepted: 04/26/2024] [Indexed: 05/02/2024] Open
Abstract
We have demonstrated previously that TNF-α-producing CD8+ T cells mediate chlamydial pathogenesis, likely in an antigen (Ag)-specific fashion. Here we hypothesize that inhibition of Ag-specific CD8+ T cell response after immunization and/or challenge would correlate with protection against oviduct pathology induced by a protective vaccine regimen. Intranasal (i.n.) live chlamydial elementary body (EB), intramuscular (i.m.) live EB, or i.n. irrelevant antigen, bovine serum albumin (BSA), immunized animals induced near-total protection, 50% protection, or no protection, respectively against oviduct pathology following i.vag. C. muridarum challenge. In these models, we evaluated Ag-specific CD8+ T cell cytokine response at various time-periods after immunization or challenge. The results show protective efficacy of vaccine regimens correlated with reduction of Ag-specific CD8+ T cell TNF-α responses following i.vag. chlamydial challenge, not after immunization. Depletion of CD4+ T cells abrogated, whereas adoptive transfer of Ag-specific CD4+ T cells induced the significant reduction of Ag-specific CD8+ T cell TNF-α response after chlamydial challenge. In conclusion, protective anti-chlamydial vaccine regimens induce Ag-specific CD4+ T cell response that mediate early inhibition of pathogenic CD8+ T cell response following challenge and may serve as a predictive biomarker of protection against Chlamydia -induced chronic pathologies.
Collapse
Affiliation(s)
- Ashlesh K Murthy
- College of Veterinary Medicine, Midwestern University, Glendale, AZ 85308, USA
| | - Erika Wright-McAfee
- College of Veterinary Medicine, Midwestern University, Glendale, AZ 85308, USA
| | - Katerina Warda
- Arizona College of Osteopathic Medicine, Midwestern University, Glendale, AZ 85308, USA
| | - Lindsay N Moy
- Arizona College of Osteopathic Medicine, Midwestern University, Glendale, AZ 85308, USA
| | - Nhi Bui
- Arizona College of Osteopathic Medicine, Midwestern University, Glendale, AZ 85308, USA
| | - Tarakarama Musunuri
- Arizona College of Osteopathic Medicine, Midwestern University, Glendale, AZ 85308, USA
| | - Srikanth Manam
- College of Veterinary Medicine, Midwestern University, Glendale, AZ 85308, USA
| | - Clemence Z Chako
- College of Veterinary Medicine, Midwestern University, Glendale, AZ 85308, USA
| | - Kyle H Ramsey
- College of Veterinary Medicine, Midwestern University, Glendale, AZ 85308, USA
- College of Graduate Studies, Midwestern University, Glendale, AZ 85308, USA
| | - Weidang Li
- College of Veterinary Medicine, Midwestern University, Glendale, AZ 85308, USA
| |
Collapse
|
4
|
Russi RC, del Balzo D, Reidel IG, Alonso Bivou M, Flor N, Lujan A, Sanchez D, Damiani MT, Veaute C. Evaluation of three formulations based on Polymorphic membrane protein D in mice infected with Chlamydia trachomatis. Front Immunol 2023; 14:1267684. [PMID: 38045697 PMCID: PMC10690417 DOI: 10.3389/fimmu.2023.1267684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/23/2023] [Indexed: 12/05/2023] Open
Abstract
The significant impact of Chlamydia trachomatis(Ct) infections worldwide highlights the need to develop a prophylactic vaccine that elicits effective immunity and protects the host from the immunopathological effects of Ct infection. The aim of this study was to evaluate a vaccine based on a fragment of the Polymorphic membrane protein D (FPmpD) of C. trachomatis as an immunogen using a heterologous DNA prime-protein boost strategy in female mice Three different formulations were evaluated as protein boost: free recombinant FPmpD (rFPmpD) or rFPmpD formulated with a liposomal adjuvant alternatively supplemented with CpG or a cationic gemini lipopeptide as immunostimulants. The three candidates induced an increase in the cervicovaginal and systemic titers of anti-rFPmpD antibodies in two strains of mice (BALB/c and C57BL/6), with no evidence of fertility alterations. The three formulations induced a rapid and robust humoral immune response upon the Ct challenge. However, the booster with free rFPmpD more efficiently reduced the shedding of infective Ct and prevented the development of immunopathology. The formulations containing adjuvant induced a strong inflammatory reaction in the uterine tissue. Hence, the prime-boost strategy with the adjuvant-free FPmpD vaccine formulation might constitute a promissory candidate to prevent C. trachomatis intravaginal infection.
Collapse
Affiliation(s)
- Romina Cecilia Russi
- Laboratorio de Bioquímica e Inmunidad, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Instituto de Medicina y Biología Experimental de Cuyo, Consejo Nacional de Investigaciones Científicas y Técnicas (IMBECUCONICET), Universidad Nacional de Cuyo, Mendoza, Argentina
- Experimental Immunology Laboratory, School of Biochemistry and Biological Sciences, National University of Litoral, Ciudad Universitaria, Santa Fe, Argentina
| | - Diego del Balzo
- Laboratorio de Bioquímica e Inmunidad, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Instituto de Medicina y Biología Experimental de Cuyo, Consejo Nacional de Investigaciones Científicas y Técnicas (IMBECUCONICET), Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Ivana Gabriela Reidel
- Experimental Immunology Laboratory, School of Biochemistry and Biological Sciences, National University of Litoral, Ciudad Universitaria, Santa Fe, Argentina
- Department of Immuno-Oncology, Beckman Research Institute of City of Hope, Duarte, CA, United States
| | - Mariano Alonso Bivou
- Laboratorio de Bioquímica e Inmunidad, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Instituto de Medicina y Biología Experimental de Cuyo, Consejo Nacional de Investigaciones Científicas y Técnicas (IMBECUCONICET), Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Noelia Flor
- Experimental Immunology Laboratory, School of Biochemistry and Biological Sciences, National University of Litoral, Ciudad Universitaria, Santa Fe, Argentina
| | - Agustín Lujan
- Laboratorio de Bioquímica e Inmunidad, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Instituto de Medicina y Biología Experimental de Cuyo, Consejo Nacional de Investigaciones Científicas y Técnicas (IMBECUCONICET), Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Diego Sanchez
- Laboratorio de Bioquímica e Inmunidad, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Instituto de Medicina y Biología Experimental de Cuyo, Consejo Nacional de Investigaciones Científicas y Técnicas (IMBECUCONICET), Universidad Nacional de Cuyo, Mendoza, Argentina
| | - María Teresa Damiani
- Laboratorio de Bioquímica e Inmunidad, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Instituto de Medicina y Biología Experimental de Cuyo, Consejo Nacional de Investigaciones Científicas y Técnicas (IMBECUCONICET), Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Carolina Veaute
- Experimental Immunology Laboratory, School of Biochemistry and Biological Sciences, National University of Litoral, Ciudad Universitaria, Santa Fe, Argentina
| |
Collapse
|
5
|
Lu C, Wang J, Zhong G. Preclinical screen for protection efficacy of chlamydial antigens that are immunogenic in humans. Infect Immun 2023; 91:e0034923. [PMID: 37889004 PMCID: PMC10652899 DOI: 10.1128/iai.00349-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 10/02/2023] [Indexed: 10/28/2023] Open
Abstract
To search for subunit vaccine candidates, immunogenic chlamydial antigens identified in humans were evaluated for protection against both infection and pathology in a mouse genital tract infection model under three different immunization regimens. The intramuscular immunization regimen was first used to evaluate 106 chlamydial antigens, which revealed that two antigens significantly reduced while 11 increased genital chlamydial burden. The two infection-reducing antigens failed to prevent pathology and 23 additional antigens even exacerbated pathology. Thus, intranasal mucosal immunization was tested next since intranasal inoculation with live Chlamydia muridarum prevented both genital infection and pathology. Two of the 29 chlamydial antigens evaluated were found to prevent genital infection but not pathology and three exacerbate pathology. To further improve protection efficacy, a combinational regimen (intranasal priming + intramuscular boosting + a third intraperitoneal/subcutaneous boost) was tested. This regimen identified four infection-reducing antigens, but only one of them prevented pathology. Unfortunately, this protective antigen was not advanced further due to its amino acid sequence homology with several human molecules. Two pathology-exacerbating antigens were also found. Nevertheless, intranasal mucosal priming with viable C. muridarum in control groups consistently prevented both genital infection and pathology regardless of the subsequent boosters. Thus, screening 140 different chlamydial antigens with 21 repeated multiple times in 17 experiments failed to identify a subunit vaccine candidate but demonstrated the superiority of viable chlamydial organisms in inducing immunity against both genital infection and pathology, laying the foundation for developing a live-attenuated Chlamydia vaccine.
Collapse
Affiliation(s)
- Chunxue Lu
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hengyang, Hunan, China
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center, San Antonio, Texas, USA
| | - Jie Wang
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center, San Antonio, Texas, USA
- Department of Immunology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Guangming Zhong
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center, San Antonio, Texas, USA
| |
Collapse
|
6
|
Xu Y, Wang J. Chlamydia
transmitting from the genital to gastrointestinal tract and inducing tubal disease: Double attack pattern. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2022; 47:1275-1280. [PMID: 36411712 PMCID: PMC10930326 DOI: 10.11817/j.issn.1672-7347.2022.220023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Indexed: 06/16/2023]
Abstract
Chlamydia trachomatis ( CT ) genital tract infection is insidious, and patients often have no conscious symptoms.Delayed treatment after infection can lead to serious complications. Chlamydia muridarum ( CM ) genital tract infection in female mice can simulate CT genital tract infection in women, which is an ideal model to investigate the pathogenesis of CT . CM plasmid protein pGP3, chromosomal protein TC0237/TC0668, CM -specific CD8 + T cells, TNF-α, and IL-13 can induce genital tract inflammation, CD4 + T cells are responsible for CM clearance. However, tubal inflammation persists after genital tract CM is removed. Genital tract CM can spread spontaneously in vivo and colonize the gastrointestinal (GI) tract, but the GI tract CM cannot reverse spread to the genital tract. The survival time and number of CM transmitted from genital tract to GI tract are positively correlated with the long-term lesion of oviduct, while the CM inoculated directly into the GI tract has no pathogenicity in both the genital and GI tract. The double attack pattern of Chlamydia -induced genital tract inflammatory lesions is as follows: CM infection of oviduct epithelial cells initiates the process of oviduct repair as the first attack. After genital CM spreads to the GI tract, activated chlamydia-specific CD8 + T cells are recruited to the genital tract and secreted pro-fibrotic cytokines such as TNF-α and IL-13. This process is called the second attack which transform tubal repair initiated by the first attack into long-term tubal fibrosis/hydrosalpinx. Elucidating the pathogenic mechanism of Chlamydia infection can provide new ideas for the development of Chlamydia vaccine, which is expected to solve the problems of infertility caused by repeated CT infection in women.
Collapse
Affiliation(s)
- Ying Xu
- Department of Immunology, School of Basic Medical Science, Central South University, Changsha 410078, China.
| | - Jie Wang
- Department of Immunology, School of Basic Medical Science, Central South University, Changsha 410078, China.
| |
Collapse
|
7
|
Characterization of pathogenic CD8 + T cells in Chlamydia-infected OT1 mice. Infect Immun 2021; 90:e0045321. [PMID: 34724387 DOI: 10.1128/iai.00453-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Chlamydia trachomatis is a leading infectious cause of infertility in women due to its induction of lasting pathology such as hydrosalpinx. Chlamydia muridarum induces mouse hydrosalpinx because C. muridarum can both invade tubal epithelia directly (as a 1st hit) and induce lymphocytes to promote hydrosalpinx indirectly (as a 2nd hit). In the current study, a critical role of CD8+ T cells in chlamydial induction of hydrosalpinx was validated in both wild type C57BL/6J and OT1 transgenic mice. OT1 mice failed to develop hydrosalpinx partially due to the failure of their lymphocytes to recognize chlamydial antigens. CD8+ T cells from naïve C57BL/6J rescued the recipient OT1 mice to develop hydrosalpinx when naïve CD8+ T cells were transferred at the time of infection with Chlamydia. However, when the transfer was delayed for 2 weeks or longer after the chlamydial infection, naïve CD8+ T cells no longer promoted hydrosalpinx. Nevertheless, Chlamydia-immunized CD8+ T cells still promoted significant hydrosalpinx in the recipient OT1 mice even when the transfer was delayed for 3 weeks. Thus, CD8+ T cells must be primed within 2 weeks after chlamydial infection to be pathogenic but once primed, they can promote hydrosalpinx for >3 weeks. However, Chlamydia-primed CD4+ T cells failed to promote chlamydial induction of pathology in OT1 mice. This study has optimized an OT1 mouse-based model for revealing the pathogenic mechanisms of Chlamydia-specific CD8+ T cells.
Collapse
|
8
|
Abstract
Chlamydia in the genital tract is known to spread via the blood circulation system to the large intestinal lumen to achieve long-lasting colonization. However, the precise pathways for genital Chlamydia to access to the large intestinal lumen remain unclear. The spleen was recently reported to be critical for the chlamydial spreading. In the current study, it was found that following intravaginal inoculation with Chlamydia, mice with or without splenectomy both produced infectious Chlamydia in the rectal swabs, indicating that spleen is not essential for genital Chlamydia to spread to the gastrointestinal tract. This conclusion was validated by the observation that intravenously inoculated Chlamydia was also detected in the rectal swabs of mice regardless of splenectomy. Careful comparison of the tissue distribution of live chlamydial organisms following intravenous inoculation revealed redundant pathways for Chlamydia to reach the large intestine lumen. The intravenously inoculated Chlamydia was predominantly recruited to the spleen within 12h and then detected in the stomach lumen by 24h, the intestinal lumen by 48h and rectal swabs by 72h. These observations suggest a potential spleen-to-stomach pathway for hematogenous Chlamydia to reach the large intestine lumen. This conclusion was supported by the observation made in mice under coprophagy-free condition. However, in the absence of spleen, hematogenous Chlamydia was predominantly recruited to the liver and then simultaneously detected in the intestinal tissue and lumen, suggesting a potential liver-to-intestine pathway for Chlamydia to reach the large intestine lumen. Thus, genital/hematogenous Chlamydia may reach the large intestinal lumen via multiple redundant pathways.
Collapse
|
9
|
Gastrointestinal Chlamydia-induced CD8 + T cells promote chlamydial pathogenicity in the female upper genital tract. Infect Immun 2021; 89:e0020521. [PMID: 34227838 DOI: 10.1128/iai.00205-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Chlamydia is known to both ascend to the upper genital tract and spread to the gastrointestinal tract following intravaginal inoculation. The gastrointestinal Chlamydia was recently reported to promote chlamydial pathogenicity in the genital tract since mice intravaginally inoculated with an attenuated Chlamydia, which alone failed to develop pathology in the genital tract, were restored to develop hydrosalpinx by intragastric co-inoculation with wild type Chlamydia. Gastrointestinal Chlamydia promoted hydrosalpinx via an indirect mechanism since Chlamydia in the gut did not directly spread to the genital tract lumen. In the current study, we further investigated the role of CD8+ T cells in the promotion of hydrosalpinx by gastrointestinal Chlamydia. First, we confirmed that intragastric co-inoculation with wild type Chlamydia promoted hydrosalpinx in mice that were inoculated with an attenuated Chlamydia in the genital tract one week earlier. Second, the promotion of hydrosalpinx by intragastrically co-inoculated Chlamydia was blocked by depleting CD8+ T cells. Third, adoptive transfer of the gastrointestinal Chlamydia-induced CD8+ T cells was sufficient for promoting hydrosalpinx in mice that were intravaginally inoculated with an attenuated Chlamydia. These observations have demonstrated that CD8+ T cells induced by gastrointestinal Chlamydia are both necessary and sufficient for promoting hydrosalpinx in the genital tract. The study has laid a foundation for further revealing the mechanisms by which Chlamydia-induced T lymphocyte responses (as a 2nd hit) promote hydrosalpinx in mice with genital Chlamydia-triggered tubal injury (as a 1st hit), a continuing effort in testing the two-hit hypothesis as a chlamydial pathogenic mechanism.
Collapse
|
10
|
de la Maza LM, Darville TL, Pal S. Chlamydia trachomatis vaccines for genital infections: where are we and how far is there to go? Expert Rev Vaccines 2021; 20:421-435. [PMID: 33682583 DOI: 10.1080/14760584.2021.1899817] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
INTRODUCTION Chlamydia trachomatis is the most common sexually transmitted bacterial pathogen in the world. Antibiotic treatment does not prevent against reinfection and a vaccine is not yet available. AREAS COVERED We focus the review on the progress made of our understanding of the immunological responses required for a vaccine to elicit protection, and on the antigens, adjuvants, routes of immunization and delivery systems that have been tested in animal models. PubMed and Google Scholar were used to search publication on these topics for the last 5 years and recent Reviews were examined. EXPERT OPINION The first Phase 1 clinical trial of a C. trachomatis vaccine to protect against genital infections was successfully completed. We expect that, in the next five years, additional vaccine clinical trials will be implemented.
Collapse
Affiliation(s)
- Luis M de la Maza
- Department of Pathology and Laboratory Medicine Medical Sciences, I, Room D440 University of California, Irvine, California, USA
| | - Toni L Darville
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Sukumar Pal
- Department of Pathology and Laboratory Medicine Medical Sciences, I, Room D440 University of California, Irvine, California, USA
| |
Collapse
|
11
|
Effects of Immunomodulatory Drug Fingolimod (FTY720) on Chlamydia Dissemination and Pathogenesis. Infect Immun 2020; 88:IAI.00281-20. [PMID: 32868341 DOI: 10.1128/iai.00281-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 08/24/2020] [Indexed: 12/21/2022] Open
Abstract
Fingolimod (FTY720), an FDA-approved immunomodulatory drug for treating multiple sclerosis, is an agonist of sphingosine-1-phosphate receptor (S1PR), which has been used as a research tool for inhibiting immune cell trafficking. FTY720 was recently reported to inhibit Chlamydia dissemination. Since genital Chlamydia spreading to the gastrointestinal tract correlated with its pathogenicity in the upper genital tract, we evaluated the effect of FTY720 on chlamydial pathogenicity in the current study. Following an intravaginal inoculation, live chlamydial organisms were detected in mouse rectal swabs. FTY720 treatment significantly delayed live organism shedding in the rectal swabs. However, FTY720 failed to block chlamydial spreading to the gastrointestinal tract. The live chlamydial organisms recovered from rectal swabs reached similar levels between mice with or without FTY720 treatment by day 42 in C57BL/6J and day 28 in CBA/J mice, respectively. Thus, genital Chlamydia is able to launch a 2nd wave of spreading via an FTY720-resistant pathway after the 1st wave of spreading is inhibited by FTY720. As a result, all mice developed significant hydrosalpinx. The FTY720-resistant spreading led to stable colonization of chlamydial organisms in the colon. Consistently, FTY720 did not alter the colonization of intracolonically inoculated Chlamydia Thus, we have demonstrated that, following a delay in chlamydial spreading caused by FTY720, genital Chlamydia is able to both spread to the gastrointestinal tract via an FTY720-resistant pathway and maintain its pathogenicity in the upper genital tract. Further characterization of the FTY720-resistant pathway(s) explored by Chlamydia for spreading to the gastrointestinal tract may promote our understanding of Chlamydia pathogenic mechanisms.
Collapse
|
12
|
Gastrointestinal Coinfection Promotes Chlamydial Pathogenicity in the Genital Tract. Infect Immun 2020; 88:IAI.00905-19. [PMID: 31988173 DOI: 10.1128/iai.00905-19] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 01/21/2020] [Indexed: 01/11/2023] Open
Abstract
Sexually transmitted Chlamydia, which can cause fibrotic pathology in women's genital tracts, is also frequently detected in the gastrointestinal tract. However, the medical significance of the gastrointestinal Chlamydia remains unclear. A murine Chlamydia readily spreads from the mouse genital tract to the gastrointestinal tract while inducing oviduct fibrotic blockage or hydrosalpinx. We previously proposed a two-hit model in which the mouse gastrointestinal Chlamydia might induce the second hit to promote genital tract pathology, and we are now providing experimental evidence for testing the hypothesis. First, chlamydial mutants that are attenuated in inducing hydrosalpinx in the genital tract also reduce their colonization in the gastrointestinal tract, leading to a better correlation of chlamydial induction of hydrosalpinx with chlamydial colonization in the gastrointestinal tract than in the genital tract. Second, intragastric coinoculation with a wild-type Chlamydia rescued an attenuated Chlamydia mutant to induce hydrosalpinx, while the chlamydial mutant infection in the genital tract alone was unable to induce any significant hydrosalpinx. Finally, the coinoculated gastrointestinal Chlamydia failed to directly spread to the genital tract lumen, suggesting that gastrointestinal Chlamydia may promote genital pathology via an indirect mechanism. Thus, we have demonstrated a significant role of gastrointestinal Chlamydia in promoting pathology in the genital tract possibly via an indirect mechanism. This study provides a novel direction/dimension for further investigating chlamydial pathogenic mechanisms.
Collapse
|
13
|
O'Neill LM, Keane OM, Ross PJ, Nally JE, Seshu J, Markey B. Evaluation of protective and immune responses following vaccination with recombinant MIP and CPAF from Chlamydia abortus as novel vaccines for enzootic abortion of ewes. Vaccine 2019; 37:5428-5438. [PMID: 31375438 DOI: 10.1016/j.vaccine.2019.06.088] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 06/26/2019] [Accepted: 06/28/2019] [Indexed: 11/18/2022]
Abstract
MIP and CPAF from Chlamydia have been shown to be effective in inducing immune responses important in clearing chlamydial infections. This study evaluates the protection conferred by MIP and CPAF as novel vaccines in pregnant C. abortus challenged ewes. Fifty C. abortus sero-negative sheep were randomly allocated into 5 groups of 10 according to the treatment they were to receive (1) 100 µg of MBP-MIP (2) 100 µg CPAF (3) 50 µg MBP-MIP and 50 µg CPAF (4) Tris-buffer (negative control) (5) Enzovax (positive control). Booster inoculations were administered 3 weeks after primary inoculations. Blood samples were taken pre-vaccination and weekly for 5 weeks. Five months after vaccination the ewes were mated. Pregnant ewes were then challenged on day 90 of gestation. Blood samples taken at four time-points post challenge were analysed for IFNγ levels, TNFα and IL-10 expression and anti-chlamydial antibody levels. Vaginal swabs, placental and foetal tissue and bacterial shedding were analysed using qPCR to quantify levels of C. abortus. Enzovax was 100% effective with no abortions occurring. The MIP/CPAF combined vaccine offered the greatest protection of the novel vaccines with 67% of ewes giving birth to one or more live lambs equating to a 50% vaccine efficacy rate. MIP and CPAF administered singly did not confer protection. Enzovax and MIP/CPAF vaccinated ewes had longer gestations and lambs with higher birth weights than negative control ewes. Aborting ewes shed higher numbers of C. abortus than ewes that had live lambs, all vaccinated ewes demonstrated lower levels of bacterial shedding than negative control ewes with Enzovax ewes shedding significantly fewer bacteria. Ewes that went on to abort had significantly higher levels of IFNγ and IL-10 at day 35 post challenge and significantly higher levels of anti-chlamydial antibodies at 24 h post lambing compared to ewes that had live lambs.
Collapse
Affiliation(s)
- L M O'Neill
- School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland; Animal & Bioscience Department, Teagasc Grange, Dunsany, Co. Meath, Ireland.
| | - O M Keane
- Animal & Bioscience Department, Teagasc Grange, Dunsany, Co. Meath, Ireland
| | - P J Ross
- Department of Agriculture, Food and the Marine, Central Veterinary Research Laboratory, Backweston, Co. Kildare, Ireland
| | - J E Nally
- Infectious Bacterial Diseases, National Animal Disease Center, Agriculture Research Service, United States Department of Agriculture, Ames, IA, USA
| | - J Seshu
- South Texas Center for Emerging Infectious Diseases, Centre of Excellence in Infection Genomics and Department of Biology, The University of Texas at San Antonio, San Antonio, TX, USA
| | - B Markey
- School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
14
|
Chlamydia muridarum Induces Pathology in the Female Upper Genital Tract via Distinct Mechanisms. Infect Immun 2019; 87:IAI.00145-19. [PMID: 31085708 DOI: 10.1128/iai.00145-19] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 05/06/2019] [Indexed: 12/23/2022] Open
Abstract
Sexually transmitted infection with Chlamydia trachomatis may lead to fibrotic blockage in women's upper genital tracts, resulting in tubal infertility. Intravaginal inoculation with C. muridarum readily induces fibrotic blockage or hydrosalpinx in mice and is used for investigating C. trachomatis pathogenicity. Using this model in combination with an antibody depletion approach, we confirmed CD4+ T cell-mediated protective immunity and a CD8+ T cell-dependent pathogenic mechanism during chlamydial infection in C57BL/6J mice. However, when mice genetically deficient in CD8+ T cells were evaluated, we found, surprisingly, that these mice were still able to develop robust hydrosalpinx following C. muridarum infection, both contradicting the observation made in C57BL/6J mice and suggesting a pathogenic mechanism that is independent of CD8+ T cells. We further found that depletion of CD4+ T cells from CD8+ T cell-deficient mice significantly reduced chlamydial induction of hydrosalpinx, indicating that CD4+ T cells became pathogenic in mice genetically deficient in CD8+ T cells. Since depletion of CD4+ T cells both promoted chlamydial infection and reduced chlamydial pathogenicity in CD8+ T cell-deficient mice, we propose that in the absence of CD8+ T cells, some CD4+ T cells may remain protective (as in C57BL/6J mice), while others may directly contribute to chlamydial pathogenicity. Thus, chlamydial pathogenicity can be mediated by distinct host mechanisms, depending upon host genetics and infection conditions. The CD8+ T cell-deficient mouse model may be useful for further investigating the mechanisms by which CD4+ T cells promote chlamydial pathogenicity.
Collapse
|
15
|
Lin H, He C, Koprivsek JJ, Chen J, Zhou Z, Arulanandam B, Xu Z, Tang L, Zhong G. Antigen-Specific CD4 + T Cell-Derived Gamma Interferon Is Both Necessary and Sufficient for Clearing Chlamydia from the Small Intestine but Not the Large Intestine. Infect Immun 2019; 87:e00055-19. [PMID: 30962403 PMCID: PMC6529659 DOI: 10.1128/iai.00055-19] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 03/27/2019] [Indexed: 02/07/2023] Open
Abstract
The genital tract pathogen Chlamydia trachomatis is frequently detected in the gastrointestinal tract, but the host immunity that regulates chlamydial colonization in the gut remains unclear. In a Chlamydia muridarum-C57 mouse model, chlamydial organisms are cleared from the genital tract in ∼4 weeks, but the genital organisms can spread to the gastrointestinal tract. We found that the gastrointestinal chlamydial organisms were cleared from the small intestine by day 28, paralleling their infection course in the genital tract, but persisted in the large intestine for long periods. Mice deficient in α/β T cells or CD4+ T cells but not CD8+ T cells showed chlamydial persistence in the small intestine, indicating a critical role for CD4+ T cells in clearing Chlamydia from the small intestine. The CD4+ T cell-dependent clearance is likely mediated by gamma interferon (IFN-γ), since mice deficient in IFN-γ but not interleukin 22 (IL-22) signaling pathways rescued chlamydial colonization in the small intestine. Furthermore, exogenous IFN-γ was sufficient for clearing Chlamydia from the small intestine but not the large intestine. Mice deficient in developing Chlamydia-specific Th1 immunity showed chlamydial persistence in the small intestine. Finally, IFN-γ-producing CD4+ but not CD8+ T cells from immunized donor mice were sufficient for eliminating Chlamydia from the small intestine but not the large intestine of recipient mice. Thus, we have demonstrated a critical role for Th1 immunity in clearing Chlamydia from the small intestine but not the large intestine, indicating that chlamydial colonization in different regions of the gastrointestinal tract is regulated by distinct immune mechanisms.
Collapse
Affiliation(s)
- Hui Lin
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Microbiology, Immunology, and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Conghui He
- Department of Microbiology, Immunology, and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - John J Koprivsek
- Department of Microbiology, Immunology, and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Jianlin Chen
- Department of Obstetrics & Gynecology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhiguang Zhou
- Department of Metabolism & Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Bernard Arulanandam
- Department of Biology, College of Science, University of Texas at San Antonio, San Antonio, Texas, USA
| | - Zhenming Xu
- Department of Microbiology, Immunology, and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Lingli Tang
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Guangming Zhong
- Department of Microbiology, Immunology, and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| |
Collapse
|
16
|
van Ess EF, Eck-Hauer A, Land JA, Morré SA, Ouburg S. Combining individual Chlamydia trachomatis IgG antibodies MOMP, TARP, CPAF, OMP2, and HSP60 for tubal factor infertility prediction. Am J Reprod Immunol 2019; 81:e13091. [PMID: 30629310 PMCID: PMC6593993 DOI: 10.1111/aji.13091] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 11/30/2018] [Accepted: 01/08/2019] [Indexed: 02/04/2023] Open
Abstract
PROBLEM Tubal factor infertility (TFI) is a severe complication of genital Chlamydia trachomatis infections. In fertility workup, chlamydia antibody test (CAT) is used to predict TFI. The predictive value for TFI of most commonly used CAT is moderate. METHOD OF STUDY A total of 183 infertile Dutch Caucasian women were included in this study. All underwent tubal patency testing (hysterosalpingography [HSG] or laparoscopy). Cases had TFI, and controls had no TFI (ie normal findings during HSG or laparoscopy). TFI was categorized based on severity (TFI 1-TFI 4). This study investigated the predictive values of major outer membrane protein (MOMP), translocated actin-recruiting phosphoprotein (TARP), chlamydial protease-like activity factor (CPAF), heat shock protein-60 (HSP60) and outer membrane protein 2 (OMP2) for TFI. A predictive algorithm is developed to detect TFI with a high certainty based on combinations of antibody titres. Serum was tested with the Mikrogen recomLine immunoblot and quantified with the recomScan. A greedy algorithm that explores all possible antibody combinations was developed. RESULTS Significant differences in the distributions of antigen titres between cases and controls were observed for CPAF (P = 0.0021), HSP60 (P = 0.0061), MOMP (P = 0.0497) and OMP2 (P = 0.0016). Single antibodies could not discriminate between TFI and controls by themselves. The greedy algorithm performs better in specificity, positive predictive value (PPV), accuracy and clinical utility index than the original Mikrogen algorithm. CPAF combined with HSP60 identified 18.2% of TFI cases with 100% certainty. Most of the TFI 4 cases were identified with cut-offs of CPAF > 10.7 or OMP2 > 3.9. CONCLUSION This proof-of-principle study shows that combinations of antibodies in serum are predictive for TFI. A commercially available test can be adapted to predict TFI with a 100% specificity.
Collapse
Affiliation(s)
- Eleanne F van Ess
- Department of Medical Microbiology & Infection Control, Laboratory of Immunogenetics, Amsterdam UMC, VU University Medical Centre, Amsterdam, The Netherlands
| | - Anat Eck-Hauer
- Department of Medical Microbiology & Infection Control, Laboratory of Immunogenetics, Amsterdam UMC, VU University Medical Centre, Amsterdam, The Netherlands
| | - Jolande A Land
- Department of Genetics and Cell Biology, Faculty of Health, Medicine & Life Sciences, Institute for Public Health Genomics (IPHG), Research Institute GROW, University of Maastricht, Maastricht, The Netherlands
| | - Servaas A Morré
- Department of Medical Microbiology & Infection Control, Laboratory of Immunogenetics, Amsterdam UMC, VU University Medical Centre, Amsterdam, The Netherlands.,Department of Genetics and Cell Biology, Faculty of Health, Medicine & Life Sciences, Institute for Public Health Genomics (IPHG), Research Institute GROW, University of Maastricht, Maastricht, The Netherlands
| | - Sander Ouburg
- Department of Medical Microbiology & Infection Control, Laboratory of Immunogenetics, Amsterdam UMC, VU University Medical Centre, Amsterdam, The Netherlands
| |
Collapse
|
17
|
Chlamydia trachomatis ct143 stimulates secretion of proinflammatory cytokines via activating the p38/MAPK signal pathway in THP-1 cells. Mol Immunol 2018; 105:233-239. [PMID: 30554084 DOI: 10.1016/j.molimm.2018.12.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 11/03/2018] [Accepted: 12/09/2018] [Indexed: 01/22/2023]
Abstract
Chlamydia trachomatis (Ct) infections can cause bacterial sexually-transmitted and preventable blindness. The Ct infections induced excessive cytokines generation which attributed to pathologic changes in host cells. However, the precise mechanisms of Ct-induced cytokines production are still unclear.CT143 protein was identified as a novel Ct specific protein with high immunogenicity. In the present study. The CT143 fusion protein was recombined and purified. The mice immune serum was prepared by immunizing BALB/c mice with the purified fusion protein. The specificity of the antibody was confirmed using Immunoblotting. Indirect immunoflurescence assay (IFA) and Immunoblotting assays were performed to detect the temporal and spatial characteristics of CT143 in Ct infected cells. ELISA was performed to analyze the secretion of proinflammatory cytokines IL-1β, IL-8 and TNF-α by human macrophages under the stimulation of CT143 protein. Finally, the involvement of p38 signaling in CT143-induced cytokine secretion was validated. CT143 protein was located in the inclusion body and represented an Elementary body (EB)-related protein, which may be encoded by the mid- and late-stage expressing genes. CT143 protein could stimulate the secretion of inflammatory cytokines in macrophages which differentiated from THP-1 This induction may be mediated by the activation of p38 signaling. In summary, CT143 protein is involved in inflammatory processes during Ct infection.
Collapse
|
18
|
Luan X, Peng B, Li Z, Tang L, Chen C, Chen L, Wu H, Sun Z, Lu C. Vaccination with MIP or Pgp3 induces cross-serovar protection against chlamydial genital tract infection in mice. Immunobiology 2018; 224:223-230. [PMID: 30558842 DOI: 10.1016/j.imbio.2018.11.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 11/15/2018] [Accepted: 11/19/2018] [Indexed: 01/26/2023]
Abstract
Previously we reported that recombinant Chlamydia muridarum macrophage infectivity potentiator (MIP) provided partial protection against C. muridarum genital tract infection in mice. On the other hand, Chlamydia trachomatis plasmid encoded Pgp3could induce the protection against C. muridarum air way infection. This study aimed to evaluate the immunogenicity of MIP and Pgp3 from C. trachomatis serovar D and further investigate whether MIP and Pgp3 provide cross-serovar protection against C. muridarum genital tract infection in mice. Our results showed that vaccination by any regimen, including MIP alone, Pgp3 alone or MIP plus Pgp3, induced specific serum antibody production and Th1-dominant cellular responses in mice. Live chlamydial shedding from the vaginal and inflammatory pathologies in the oviduct markedly reduced. However, MIP + Pgp3 vaccination did not provide better protection than the single immunization. In conclusion, this study demonstrated that both MIP and Pgp3 can induce cross-serovar protective against chlamydial genital tract infection, and provided the guide for the development of optimal multisubunit vaccines against C. trachomatis infection.
Collapse
Affiliation(s)
- Xiuli Luan
- Pathogenic Biology Institute, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, 421001, China; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, 421001, China
| | - Bo Peng
- Pathogenic Biology Institute, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, 421001, China; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, 421001, China; Department of Pathology, Hengyang Medical College, University of South China, Hengyang, 421001, China
| | - Zhongyu Li
- Pathogenic Biology Institute, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, 421001, China; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, 421001, China
| | - Lingli Tang
- Department of Clinic Diagnosis, Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Chaoqun Chen
- Pathogenic Biology Institute, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, 421001, China
| | - Lili Chen
- Pathogenic Biology Institute, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, 421001, China
| | - Haiying Wu
- Pathogenic Biology Institute, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, 421001, China
| | - Zhenjie Sun
- Pathogenic Biology Institute, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, 421001, China
| | - Chunxue Lu
- Pathogenic Biology Institute, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, 421001, China; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, 421001, China.
| |
Collapse
|
19
|
Li W, Gudipaty P, Li C, Henderson KK, Ramsey KH, Murthy AK. Intranasal immunization with recombinant chlamydial protease-like activity factor attenuates atherosclerotic pathology following Chlamydia pneumoniae infection in mice. Immunol Cell Biol 2018; 97:85-91. [PMID: 30051926 DOI: 10.1111/imcb.12192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 07/23/2018] [Accepted: 07/23/2018] [Indexed: 12/17/2022]
Abstract
We have shown previously that intranasal vaccination with recombinant chlamydial protease-like activity factor (rCPAF: antigen) and interleukin-12 (IL-12) as an adjuvant induces robust protection against pathological consequences of female genital tract infection with Chlamydia muridarum, a closely related species and a rodent model for the human pathogen Chlamydia trachomatis. Another related species Chlamydia pneumoniae, a human respiratory pathogen, has been associated with exacerbation of atherosclerotic pathology. CPAF is highly conserved among Chlamydia spp. leading us to hypothesize that immunization with rCPAF with IL-12 will protect against high-fat diet (HFD) and C. pneumoniae-induced acceleration of atherosclerosis. rCPAF ± IL-12 immunization induced robust splenic antigen (Ag)-specific IFN-γ and TNF-α production and significantly elevated serum total anti-CPAF Ab, IgG2c, and IgG1 antibody levels compared to mock or IL-12 alone groups. The addition of IL-12 to rCPAF significantly elevated splenic Ag-specific IFN-γ production and IgG2c/IgG1 anti-CPAF antibody ratio. Following intranasal C. pneumoniae challenge and HFD feeding, rCPAF ± IL-12-immunized mice displayed significantly enhanced splenic IFN-γ, not TNF-α, response on days 6 and 9 after challenge, and significantly reduced lung chlamydial burden on day 9 post-challenge compared to mock- or IL-12-immunized mice. Importantly, rCPAF ± IL-12-immunized mice displayed significantly reduced atherosclerotic pathology in the aortas after C. pneumoniae challenge. Serum cholesterol levels were comparable between the groups suggesting that the observed differences in pathology were due to protective immunity against the infection. Together, these results confirm and extend our previous observations that CPAF is a promising candidate antigen for a multisubunit vaccine regimen to protect against Chlamydia-induced pathologies, including atherosclerosis.
Collapse
Affiliation(s)
- Weidang Li
- College of Veterinary Medicine, Midwestern University, Glendale, CA, USA
| | - Pareesha Gudipaty
- College of Health Sciences, Midwestern University, Glendale, CA, USA
| | - Chuxi Li
- Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL, USA.,College of Pharmacy, The University of Texas at Austin, Austin, TX, USA
| | - Kyle K Henderson
- Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL, USA
| | - Kyle H Ramsey
- College of Veterinary Medicine, Midwestern University, Glendale, CA, USA.,Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL, USA
| | - Ashlesh K Murthy
- College of Veterinary Medicine, Midwestern University, Glendale, CA, USA
| |
Collapse
|
20
|
Zhong G. Chlamydia Spreading from the Genital Tract to the Gastrointestinal Tract - A Two-Hit Hypothesis. Trends Microbiol 2017; 26:611-623. [PMID: 29289422 DOI: 10.1016/j.tim.2017.12.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 11/21/2017] [Accepted: 12/06/2017] [Indexed: 12/18/2022]
Abstract
Chlamydia trachomatis, a leading bacterial cause of sexually transmitted infection-induced infertility, is frequently detected in the gastrointestinal tract. Chlamydia muridarum, a model pathogen for investigating C. trachomatis pathogenesis, readily spreads from the mouse genital tract to the gastrointestinal tract, establishing long-lasting colonization. C. muridarum mutants, despite their ability to activate acute oviduct inflammation, are attenuated in inducing tubal fibrosis and are no longer able to colonize the gastrointestinal tract, suggesting that the spread of C. muridarum to the gastrointestinal tract may contribute to its pathogenicity in the upper genital tract. However, gastrointestinal C. muridarum cannot directly autoinoculate the genital tract. Both antigen-specific CD8+ T cells and profibrotic cytokines, such as TNFα and IL-13, are essential for C. muridarum to induce tubal fibrosis; this may be induced by the gastrointestinal C. muridarum, as a second hit, to transmucosally convert tubal repairing - initiated by C. muridarum infection of tubal epithelial cells (serving as the first hit) - into pathogenic fibrosis. Testing the two-hit mouse model should both add new knowledge to the growing list of mechanisms by which gastrointestinal microbes contribute to pathologies in extragastrointestinal tissues and provide information for investigating the potential role of gastrointestinal C. trachomatis in human chlamydial pathogenesis.
Collapse
Affiliation(s)
- Guangming Zhong
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health, Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA.
| |
Collapse
|
21
|
Zhong G, Brunham RC, de la Maza LM, Darville T, Deal C. National Institute of Allergy and Infectious Diseases workshop report: "Chlamydia vaccines: The way forward". Vaccine 2017; 37:7346-7354. [PMID: 29097007 DOI: 10.1016/j.vaccine.2017.10.075] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 10/24/2017] [Indexed: 01/06/2023]
Abstract
Chlamydia trachomatis (Ct), an intracellular pathogen, is the most common bacterial sexually transmitted infection. In addition to acute cervicitis and urethritis, Ct can lead to serious sequelae of significant public health burden including pelvic inflammatory disease (PID) and infertility. Ct control efforts have not resulted in desired outcomes such as reduced incidence and reinfection, and this highlights the need for the development of an effective Ct vaccine. To this end, NIAID organized a workshop to consider the current status of Ct vaccine research and address critical questions in Ct vaccine design and clinical testing. Topics included the goal(s) of a vaccine and the feasibility of achieving these goals, animal models of infection including mouse and nonhuman primate (NHP) models, and correlates of protection to guide vaccine design. Decades of research have provided both whole cell-based and subunit vaccine candidates for development. At least one is currently in clinical development and efforts now need to be directed toward further development of the most attractive candidates. Overall, the discussions and presentations from the workshop highlighted optimism about the current status of Ct vaccine research and detailed the remaining gaps and questions needed to move vaccines forward.
Collapse
Affiliation(s)
- Guangming Zhong
- Department of Microbiology, Immunology & Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA.
| | - Robert C Brunham
- Vaccine Research Laboratory, UBC Centre for Disease Control, University of British Columbia, Vancouver, BC V5Z 4R4, Canada
| | - Luis M de la Maza
- Department of Pathology and Laboratory Medicine, University of California, Irvine, Irvine, CA 92697, USA
| | - Toni Darville
- Department of Pediatrics, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599-7509, USA
| | - Carolyn Deal
- Division of Microbiology and Infectious Diseases, NIAID, Bethesda, MD, USA
| |
Collapse
|
22
|
Update on Chlamydia trachomatis Vaccinology. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2017; 24:CVI.00543-16. [PMID: 28228394 DOI: 10.1128/cvi.00543-16] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Attempts to produce a vaccine to protect against Chlamydia trachomatis-induced trachoma were initiated more than 100 years ago and continued for several decades. Using whole organisms, protective responses were obtained. However, upon exposure to C. trachomatis, disease exacerbation developed in some immunized individuals, precluding the implementation of the vaccine. Evidence of the role of C. trachomatis as a sexually transmitted pathogen started to emerge in the 1960s, and it soon became evident that it can cause acute infections and long-term sequelae in women, men, and newborns. The main focus of this minireview is to summarize recent findings and discuss formulations, including antigens, adjuvants, routes, and delivery systems for immunization, primarily explored in the female mouse model, with the goal of implementing a vaccine against C. trachomatis genital infections.
Collapse
|
23
|
Wali S, Gupta R, Yu JJ, Lanka GKK, Chambers JP, Guentzel MN, Zhong G, Murthy AK, Arulanandam BP. Chlamydial protease-like activity factor mediated protection against C. trachomatis in guinea pigs. Immunol Cell Biol 2016; 95:454-460. [PMID: 27990018 PMCID: PMC5449249 DOI: 10.1038/icb.2016.122] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Revised: 12/02/2016] [Accepted: 12/06/2016] [Indexed: 01/30/2023]
Abstract
We have comprehensively demonstrated using the mouse model that intranasal immunization with recombinant chlamydial protease-like activity factor (rCPAF) leads to a significant reduction in bacterial burden, genital tract pathology and preserves fertility following intravaginal genital chlamydial challenge. In the present report, we evaluated the protective efficacy of rCPAF immunization in guinea pigs, a second animal model for genital chlamydial infection. Using a vaccination strategy similar to the mouse model, we intranasally immunized female guinea pigs with rCPAF plus CpG deoxynucleotides (CpG; as an adjuvant), and challenged intravaginally with C. trachomatis serovar D (CT-D). Immunization with rCPAF/CpG significantly reduced vaginal CT-D shedding and induced resolution of infection by day 24, compared to day 33 in CpG alone treated and challenged animals. Immunization induced robust anti-rCPAF serum IgG 2 weeks following the last immunization, and was sustained at a high level 4 weeks post challenge. Upregulation of antigen specific IFN-γ gene expression was observed in rCPAF/CpG vaccinated splenocytes. Importantly, a significant reduction in inflammation in the genital tissue in rCPAF/CpG-immunized guinea pigs compared to CpG-immunized animals was observed. Taken together, this study provides evidence of the protective efficacy of rCPAF as a vaccine candidate in a second animal model of genital chlamydial infection.
Collapse
Affiliation(s)
- Shradha Wali
- South Texas Center for Emerging Infectious Diseases and Center for Excellence in Infection Genomics, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, USA
| | - Rishein Gupta
- South Texas Center for Emerging Infectious Diseases and Center for Excellence in Infection Genomics, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, USA
| | - Jieh-Juen Yu
- South Texas Center for Emerging Infectious Diseases and Center for Excellence in Infection Genomics, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, USA
| | - Gopala Krishna Koundinya Lanka
- South Texas Center for Emerging Infectious Diseases and Center for Excellence in Infection Genomics, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, USA
| | - James P Chambers
- South Texas Center for Emerging Infectious Diseases and Center for Excellence in Infection Genomics, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, USA
| | - M Neal Guentzel
- South Texas Center for Emerging Infectious Diseases and Center for Excellence in Infection Genomics, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, USA
| | - Guangming Zhong
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Ashlesh K Murthy
- Department of Pathology, Midwestern University, Downers Grove, IL, USA
| | - Bernard P Arulanandam
- South Texas Center for Emerging Infectious Diseases and Center for Excellence in Infection Genomics, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, USA
| |
Collapse
|
24
|
Genital Chlamydia trachomatis: understanding the roles of innate and adaptive immunity in vaccine research. Clin Microbiol Rev 2016; 27:346-70. [PMID: 24696438 DOI: 10.1128/cmr.00105-13] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Chlamydia trachomatis is the leading cause of bacterial sexually transmitted disease worldwide, and despite significant advances in chlamydial research, a prophylactic vaccine has yet to be developed. This Gram-negative obligate intracellular bacterium, which often causes asymptomatic infection, may cause pelvic inflammatory disease (PID), ectopic pregnancies, scarring of the fallopian tubes, miscarriage, and infertility when left untreated. In the genital tract, Chlamydia trachomatis infects primarily epithelial cells and requires Th1 immunity for optimal clearance. This review first focuses on the immune cells important in a chlamydial infection. Second, we summarize the research and challenges associated with developing a chlamydial vaccine that elicits a protective Th1-mediated immune response without inducing adverse immunopathologies.
Collapse
|
25
|
Van Laar TA, Hole C, Rajasekhar Karna SL, Miller CL, Reddick R, Wormley FL, Seshu J. Statins reduce spirochetal burden and modulate immune responses in the C3H/HeN mouse model of Lyme disease. Microbes Infect 2016; 18:430-435. [PMID: 26993029 DOI: 10.1016/j.micinf.2016.03.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 03/07/2016] [Indexed: 12/22/2022]
Abstract
Lyme disease (LD) is a systemic disorder caused by Borrelia burgdorferi. Lyme spirochetes encode for a functional 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase (HMGR EC 1.1.1.88) serving as a rate limiting enzyme of the mevalonate pathway that contribute to components critical for cell wall biogenesis. Statins have been shown to inhibit B. burgdorferi in vitro. Using a mouse model of Lyme disease, we found that statins contribute to reducing bacterial burden and altering the murine immune response to favor clearance of spirochetes.
Collapse
Affiliation(s)
- Tricia A Van Laar
- South Texas Center for Emerging Infectious Diseases, Center for Excellence in Infection Genomics and Department of Biology, The University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Camaron Hole
- South Texas Center for Emerging Infectious Diseases, Center for Excellence in Infection Genomics and Department of Biology, The University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - S L Rajasekhar Karna
- South Texas Center for Emerging Infectious Diseases, Center for Excellence in Infection Genomics and Department of Biology, The University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Christine L Miller
- South Texas Center for Emerging Infectious Diseases, Center for Excellence in Infection Genomics and Department of Biology, The University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Robert Reddick
- The Department of Pathology, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78249, USA
| | - Floyd L Wormley
- South Texas Center for Emerging Infectious Diseases, Center for Excellence in Infection Genomics and Department of Biology, The University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - J Seshu
- South Texas Center for Emerging Infectious Diseases, Center for Excellence in Infection Genomics and Department of Biology, The University of Texas at San Antonio, San Antonio, TX 78249, USA.
| |
Collapse
|
26
|
Murthy AK, Li W, Ramsey KH. Immunopathogenesis of Chlamydial Infections. Curr Top Microbiol Immunol 2016; 412:183-215. [PMID: 27370346 DOI: 10.1007/82_2016_18] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Chlamydial infections lead to a number of clinically relevant diseases and induce significant morbidity in human populations. It is generally understood that certain components of the host immune response to infection also mediate such disease pathologies. A clear understanding of pathogenic mechanisms will enable us to devise better preventive and/or intervention strategies to mitigate the morbidity caused by these infections. Over the years, numerous studies have been conducted to explore the immunopathogenic mechanisms of Chlamydia-induced diseases of the eye, reproductive tract, respiratory tract, and cardiovascular systems. In this article, we provide an overview of the diseases caused by Chlamydia, animal models used to study disease pathology, and a historical context to the efforts to understand chlamydial pathogenesis. Furthermore, we discuss recent findings regarding pathogenesis, with an emphasis on the role of the adaptive immune response in the development of chlamydial disease sequelae. Finally, we summarize the key insights obtained from studies of chlamydial pathogenesis and avenues that remain to be explored in order to inform the next steps of vaccine development against chlamydial infections.
Collapse
Affiliation(s)
- Ashlesh K Murthy
- Department of Pathology, Midwestern University, 555, 31st Steet, Downers Grove, IL, 60515, USA.
| | - Weidang Li
- Department of Pathology, Midwestern University, 555, 31st Steet, Downers Grove, IL, 60515, USA
| | - Kyle H Ramsey
- Department of Microbiology and Immunology, Midwestern University, Downers Grove, IL, 60515, USA
| |
Collapse
|
27
|
Poston TB, Darville T. Chlamydia trachomatis: Protective Adaptive Responses and Prospects for a Vaccine. Curr Top Microbiol Immunol 2016; 412:217-237. [PMID: 27033698 DOI: 10.1007/82_2016_6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Chlamydia trachomatis is the most common cause of sexually transmitted bacterial infection globally. These infections translate to a significant public health burden, particularly women's healthcare costs due to serious disease sequelae such as pelvic inflammatory disease (PID), tubal factor infertility, chronic pelvic pain, and ectopic pregnancy. There is no evidence that natural immunity can provide complete, long-term protection necessary to prevent chronic pathology, making human vaccine development critical. Vaccine design will require careful consideration of protective versus pathological host-response mechanisms in concert with elucidation of optimal antigens and adjuvants. Evidence suggests that a Th1 response, facilitated by IFN-γ-producing CD4 T cells, will be instrumental in generating long-term, sterilizing immunity. Although the role of antibodies is not completely understood, they have exhibited a protective effect by enhancing chlamydial clearance. Future work will require investigation of broadly neutralizing antibodies and antibody-augmented cellular immunity to successfully design a vaccine that potently elicits both arms of the immune response. Sterilizing immunity is the ultimate goal. However, vaccine-induced partial immunity that prevents upper genital tract infection and inflammation would be cost-effective compared to current screening and treatment strategies. In this chapter, we examine evidence from animal and human studies demonstrating protective adaptive immune responses to Chlamydia and discuss future challenges and prospects for vaccine development.
Collapse
Affiliation(s)
- Taylor B Poston
- Department of Pediatrics, University of North Carolina, Chapel Hill, NC, USA
| | - Toni Darville
- Department of Pediatrics, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
28
|
Wali S, Gupta R, Veselenak RL, Li Y, Yu JJ, Murthy AK, Cap AP, Guentzel MN, Chambers JP, Zhong G, Rank RG, Pyles RB, Arulanandam BP. Use of a Guinea pig-specific transcriptome array for evaluation of protective immunity against genital chlamydial infection following intranasal vaccination in Guinea pigs. PLoS One 2014; 9:e114261. [PMID: 25502875 PMCID: PMC4263467 DOI: 10.1371/journal.pone.0114261] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 11/05/2014] [Indexed: 12/21/2022] Open
Abstract
Guinea pigs have been used as a second animal model to validate putative anti-chlamydial vaccine candidates tested in mice. However, the lack of guinea pig-specific reagents has limited the utility of this animal model in Chlamydia sp. vaccine studies. Using a novel guinea pig-specific transcriptome array, we determined correlates of protection in guinea pigs vaccinated with Chlamydia caviae (C. caviae) via the intranasal route, previously reported by us and others to provide robust antigen specific immunity against subsequent intravaginal challenge. C. caviae vaccinated guinea pigs resolved genital infection by day 3 post challenge. In contrast, mock vaccinated animals continued to shed viable Chlamydia up to day 18 post challenge. Importantly, at day 80 post challenge, vaccinated guinea pigs experienced significantly reduced genital pathology - a sequelae of genital chlamydial infections, in comparison to mock vaccinated guinea pigs. Sera from vaccinated guinea pigs displayed antigen specific IgG responses and increased IgG1 and IgG2 titers capable of neutralizing GPIC in vitro. Th1-cellular/inflammatory immune genes and Th2-humoral associated genes were also found to be elevated in vaccinated guinea pigs at day 3 post-challenge and correlated with early clearance of the bacterium. Overall, this study provides the first evidence of guinea pig-specific genes involved in anti-chlamydial vaccination and illustrates the enhancement of the utility of this animal model in chlamydial pathogenesis.
Collapse
Affiliation(s)
- Shradha Wali
- South Texas Center for Emerging Infectious Diseases and Center of Excellence in Infection Genomics, University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249, United Stats of America
| | - Rishein Gupta
- South Texas Center for Emerging Infectious Diseases and Center of Excellence in Infection Genomics, University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249, United Stats of America
| | - Ronald L. Veselenak
- Departments of Pediatrics and Microbiology & Immunology, University of Texas Medical Branch, 301 University Boulevard, Galveston, Texas 77555, United States of America
| | - Yansong Li
- US Army Institute of Surgical Research, 3650 Chambers Pass, BHT2, Building 3610/Room224-1, Fort Sam Houston, Texas 78234, United States of America
| | - Jieh-Juen Yu
- South Texas Center for Emerging Infectious Diseases and Center of Excellence in Infection Genomics, University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249, United Stats of America
| | - Ashlesh K. Murthy
- Department of Pathology, Midwestern University, Downer's Grove, Illinois, 60148, United States of America
| | - Andrew P. Cap
- US Army Institute of Surgical Research, 3650 Chambers Pass, BHT2, Building 3610/Room224-1, Fort Sam Houston, Texas 78234, United States of America
| | - M. Neal Guentzel
- South Texas Center for Emerging Infectious Diseases and Center of Excellence in Infection Genomics, University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249, United Stats of America
| | - James P. Chambers
- South Texas Center for Emerging Infectious Diseases and Center of Excellence in Infection Genomics, University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249, United Stats of America
| | - Guangming Zhong
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, 7702 Floyd Curl Drive, San Antonio, Texas 78229, United States of America
| | - Roger G. Rank
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, and Arkansas Children's Hospital Research Institute, Little Rock, Arkansas 72202, United States of America
| | - Richard B. Pyles
- Departments of Pediatrics and Microbiology & Immunology, University of Texas Medical Branch, 301 University Boulevard, Galveston, Texas 77555, United States of America
| | - Bernard P. Arulanandam
- South Texas Center for Emerging Infectious Diseases and Center of Excellence in Infection Genomics, University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249, United Stats of America
- * E-mail:
| |
Collapse
|
29
|
Gupta R, Arkatkar T, Yu JJ, Wali S, Haskins WE, Chambers JP, Murthy AK, Bakar SA, Guentzel MN, Arulanandam BP. Chlamydia muridarum infection associated host MicroRNAs in the murine genital tract and contribution to generation of host immune response. Am J Reprod Immunol 2014; 73:126-40. [PMID: 24976530 DOI: 10.1111/aji.12281] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 05/21/2014] [Indexed: 12/23/2022] Open
Abstract
PROBLEM Chlamydia trachomatis (CT) is the leading sexually transmitted bacterial infection in humans and is associated with reproductive tract damage. However, little is known about the involvement and regulation of microRNAs (miRs) in genital CT. METHODS We analyzed miRs in the genital tract (GT) following C. muridarum (murine strain of CT) challenge of wild type (WT) and CD4(+) T-cell deficient (CD4(-/-)) C57BL/6 mice at days 6 and 12 post-challenge. RESULTS At day 6, miRs significantly downregulated in the lower GT were miR-125b-5p, -16, -214, -23b, -135a, -182, -183, -30c, and -30e while -146 and -451 were significantly upregulated, profiles not exhibited at day 12 post-bacterial challenge. Significant differences in miR-125b-5p (+5.06-fold change), -135a (+4.9), -183 (+7.9), and -182 (+3.2) were observed in C. muridarum-infected CD4(-/-) compared to WT mice. In silico prediction and mass spectrometry revealed regulation of miR-135a and -182 and associated proteins, that is, heat-shock protein B1 and alpha-2HS-glycoprotein. CONCLUSION This study provides evidence on regulation of miRs following genital chlamydial infection suggesting a role in pathogenesis and host immunity.
Collapse
Affiliation(s)
- Rishein Gupta
- South Texas Center for Emerging Infectious Diseases and Center of Excellence in Infection Genomics, University of Texas at San Antonio, San Antonio, TX, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Snavely EA, Kokes M, Dunn JD, Saka HA, Nguyen BD, Bastidas RJ, McCafferty DG, Valdivia RH. Reassessing the role of the secreted protease CPAF in Chlamydia trachomatis infection through genetic approaches. Pathog Dis 2014; 71:336-51. [PMID: 24838663 DOI: 10.1111/2049-632x.12179] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 04/10/2014] [Accepted: 04/10/2014] [Indexed: 12/30/2022] Open
Abstract
The secreted Chlamydia protease CPAF cleaves a defined set of mammalian and Chlamydia proteins in vitro. As a result, this protease has been proposed to modulate a range of bacterial and host cellular functions. However, it has recently come into question the extent to which many of its identified substrates constitute bona fide targets of proteolysis in infected host cell rather than artifacts of postlysis degradation. Here, we clarify the role played by CPAF in cellular models of infection by analyzing Chlamydia trachomatis mutants deficient for CPAF activity. Using reverse genetic approaches, we identified two C. trachomatis strains possessing nonsense, loss-of-function mutations in cpa (CT858) and a third strain containing a mutation in type II secretion (T2S) machinery that inhibited CPAF activity by blocking zymogen secretion and subsequent proteolytic maturation into the active hydrolase. HeLa cells infected with T2S(-) or CPAF(-) C. trachomatis mutants lacked detectable in vitro CPAF proteolytic activity and were not defective for cellular traits that have been previously attributed to CPAF activity, including resistance to staurosporine-induced apoptosis, Golgi fragmentation, altered NFκB-dependent gene expression, and resistance to reinfection. However, CPAF-deficient mutants did display impaired generation of infectious elementary bodies (EBs), indicating an important role for this protease in the full replicative potential of C. trachomatis. In addition, we provide compelling evidence in live cells that CPAF-mediated protein processing of at least two host protein targets, vimentin filaments and the nuclear envelope protein lamin-associated protein-1 (LAP1), occurs rapidly after the loss of the inclusion membrane integrity, but before loss of plasma membrane permeability and cell lysis. CPAF-dependent processing of host proteins correlates with a loss of inclusion membrane integrity, and so we propose that CPAF plays a role late in infection, possibly during the stages leading to the dismantling of the infected cell prior to the release of EBs during cell lysis.
Collapse
Affiliation(s)
- Emily A Snavely
- Department of Molecular Genetics and Microbiology, Center for Microbial Pathogenesis, Duke University Medical Center, Durham, NC, USA
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Lack of long-lasting hydrosalpinx in A/J mice correlates with rapid but transient chlamydial ascension and neutrophil recruitment in the oviduct following intravaginal inoculation with Chlamydia muridarum. Infect Immun 2014; 82:2688-96. [PMID: 24711570 DOI: 10.1128/iai.00055-14] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Lower genital tract infection with Chlamydia trachomatis and C. muridarum can induce long-lasting hydrosalpinx in the upper genital tract of women and female mice, respectively. However, A/J mice were highly resistant to induction of long-lasting hydrosalpinx by C. muridarum. We further compared host inflammatory responses and chlamydial infection courses between the hydrosalpinx-resistant A/J mice and CBA/J mice known to be susceptible to hydrosalpinx induction. Both mouse strains developed robust pyosalpinx during the acute phase followed by hydrosalpinx during the chronic phase. However, the hydrosalpinges disappeared in A/J mice by day 60 after infection, suggesting that some early hydrosalpinges are reversible. Although the overall inflammatory responses were indistinguishable between CBA/J and A/J mice, we found significantly more neutrophils in oviduct lumen of A/J mice on days 7 and 10, which correlated with a rapid but transient oviduct invasion by C. muridarum with a peak infection on day 7. In contrast, CBA/J mice developed a delayed and extensive oviduct infection. These comparisons have revealed an important role of the interactions of oviduct infection with inflammatory responses in chlamydial induction of long-lasting hydrosalpinx, suggesting that a rapid but transient invasion of oviduct by chlamydial organisms can prevent the development of the long-lasting hydrosalpinges.
Collapse
|
32
|
Tang L, Yang Z, Zhang H, Zhou Z, Arulanandam B, Baseman J, Zhong G. Induction of protective immunity against Chlamydia muridarum intracervical infection in DBA/1j mice. Vaccine 2013; 32:1407-13. [PMID: 24188757 DOI: 10.1016/j.vaccine.2013.10.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2013] [Revised: 09/25/2013] [Accepted: 10/03/2013] [Indexed: 12/22/2022]
Abstract
We previously reported that intracervical inoculation with Chlamydia muridarum induced hydrosalpinx in DBA/1j mice, but intravaginal inoculation failed to do so. In the current study, we found unexpectedly that intrabursal inoculation of live chlamydial organisms via the oviduct failed to induce significant hydrosalpinx. We further tested whether primary infection via intravaginal or intrabursal inoculation could induce protective immunity against hydrosalpinx following intracervical challenge infection. Mice infected intravaginally with C. muridarum were fully protected from developing hydrosalpinx, while intrabursal inoculation offered partial protection. We then compared immune responses induced by the two genital tract inoculations. Both inoculations induced high IFNγ and IL-17 T cell responses although the ratio of IgG2a versus IgG1 in intravaginally infected mice was significantly higher than in mice infected intrabursally. When the antigen-specificities of antibody responses were compared, both groups of mice dominantly recognized 24 C. muridarum antigens, while each group preferentially recognized unique sets of antigens. Thus, we have demonstrated that intrabursal inoculation is neither effective for causing hydrosalpinx nor efficient in inducing protective immunity in DBA/1j mice. Intravaginal immunization, in combination with intracervical challenge infection in DBA/1j mice, can be a useful model for understanding mechanisms of chlamydial pathogenicity and protective immunity.
Collapse
Affiliation(s)
- Lingli Tang
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA; Department of Clinic Laboratory, Second Xiangya Hospital, Central South University, 139 Renmin Middle Rd., Changsha, Hunan 410011, China
| | - Zhangsheng Yang
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - Hongbo Zhang
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - Zhiguang Zhou
- Department of Clinic Laboratory, Second Xiangya Hospital, Central South University, 139 Renmin Middle Rd., Changsha, Hunan 410011, China
| | - Bernard Arulanandam
- Department of Biology, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, USA
| | - Joel Baseman
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - Guangming Zhong
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA.
| |
Collapse
|
33
|
Li W, Murthy AK, Lanka GK, Chetty SL, Yu JJ, Chambers JP, Zhong G, Forsthuber TG, Guentzel MN, Arulanandam BP. A T cell epitope-based vaccine protects against chlamydial infection in HLA-DR4 transgenic mice. Vaccine 2013; 31:5722-8. [PMID: 24096029 DOI: 10.1016/j.vaccine.2013.09.036] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 09/05/2013] [Accepted: 09/19/2013] [Indexed: 01/01/2023]
Abstract
Vaccination with recombinant chlamydial protease-like activity factor (rCPAF) has been shown to provide robust protection against genital Chlamydia infection. Adoptive transfer of IFN-γ competent CPAF-specific CD4⁺ T cells was sufficient to induce early resolution of chlamydial infection and reduction of subsequent pathology in recipient IFN-γ-deficient mice indicating the importance of IFN-γ secreting CD4⁺ T cells in host defense against Chlamydia. In this study, we identify CD4⁺ T cell reactive CPAF epitopes and characterize the activation of epitope-specific CD4⁺ T cells following antigen immunization or Chlamydia challenge. Using the HLA-DR4 (HLA-DRB1*0401) transgenic mouse for screening overlapping peptides that induced T cell IFN-γ production, we identified at least 5 CPAF T cell epitopes presented by the HLA-DR4 complex. Immunization of HLA-DR4 transgenic mice with a rCPAFep fusion protein containing these 5 epitopes induced a robust cell-mediated immune response and significantly accelerated the resolution of genital and pulmonary Chlamydia infection. rCPAFep vaccination induced CPAF-specific CD4⁺ T cells in the spleen were detected using HLA-DR4/CPAF-epitope tetramers. Additionally, CPAF-specific CD4⁺ clones could be detected in the mouse spleen following Chlamydia muridarum and a human Chlamydia trachomatis strain challenge using these novel tetramers. These results provide the first direct evidence that a novel CPAF epitope vaccine can provide protection and that HLA-DR4/CPAF-epitope tetramers can detect CPAF epitope-specific CD4⁺ T cells in HLA-DR4 mice following C. muridarum or C. trachomatis infection. Such tetramers could be a useful tool for monitoring CD4⁺ T cells in immunity to Chlamydia infection and in developing epitope-based human vaccines using the murine model.
Collapse
Affiliation(s)
- Weidang Li
- South Texas Center for Emerging Infectious Diseases and Center for Excellence in Infection Genomics, Department of Biology, University of Texas at San Antonio, San Antonio, TX 78249, United States; Department of Pathology and Department of Dental Medicine, Midwestern University, Downers Grove, IL 60515, United States
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Manam S, Chaganty BKR, Evani SJ, Zafiratos MT, Ramasubramanian AK, Arulanandam BP, Murthy AK. Intranasal vaccination with Chlamydia pneumoniae induces cross-species immunity against genital Chlamydia muridarum challenge in mice. PLoS One 2013; 8:e64917. [PMID: 23741420 PMCID: PMC3669087 DOI: 10.1371/journal.pone.0064917] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 04/21/2013] [Indexed: 01/14/2023] Open
Abstract
Chlamydia trachomatis is the most common bacterial sexually transmitted disease in the world and specifically in the United States, with the highest incidence in age-groups 14-19 years. In a subset of females, the C. trachomatis genital infection leads to serious pathological sequelae including pelvic inflammatory disease, ectopic pregnancy, and infertility. Chlamydia pneumoniae, another member of the same genus, is a common cause of community acquired respiratory infection with significant number of children aged 5-14 yr displaying sero-conversion. Since these bacteriae share several antigenic determinants, we evaluated whether intranasal immunization with live C. pneumoniae (1×10(6) inclusion forming units; IFU) in 5 week old female C57BL/6 mice would induce cross-species protection against subsequent intravaginal challenge with Chlamydia muridarum (5×10(4) IFU), which causes a similar genital infection and pathology in mice as C. trachomatis in humans. Mice vaccinated intranasally with live C. pneumoniae, but not mock (PBS) immunized animals, displayed high levels of splenic cellular antigen-specific IFN-γ production and serum antibody response against C. muridarum and C. trachomatis. Mice vaccinated with C. pneumoniae displayed a significant reduction in the vaginal C. muridarum shedding as early as day 12 after secondary i.vag. challenge compared to PBS (mock) immunized mice. At day 19 after C. muridarum challenge, 100% of C. pneumoniae vaccinated mice had cleared the infection compared to none (0%) of the mock immunized mice, which cleared the infection by day 27. At day 80 after C. muridarum challenge, C. pneumoniae vaccinated mice displayed a significant reduction in the incidence (50%) and degree of hydrosalpinx compared to mock immunized animals (100%). These results suggest that respiratory C. pneumoniae infection induces accelerated chlamydial clearance and reduction of oviduct pathology following genital C. muridarum challenge, and may have important implications to the C. trachomatis-induced reproductive disease in humans.
Collapse
Affiliation(s)
- Srikanth Manam
- Department of Pathology, Midwestern University, Downers Grove, Illinois, United States of America
| | - Bharat K. R. Chaganty
- South Texas Center for Emerging Infectious Diseases, Department of Biology, The University of Texas at San Antonio, San Antonio, Texas, United States of America
| | - Shankar Jaikishan Evani
- South Texas Center for Emerging Infectious Diseases, Department of Biology, The University of Texas at San Antonio, San Antonio, Texas, United States of America
| | - Mark T. Zafiratos
- Department of Pathology, Midwestern University, Downers Grove, Illinois, United States of America
| | - Anand K. Ramasubramanian
- South Texas Center for Emerging Infectious Diseases, Department of Biology, The University of Texas at San Antonio, San Antonio, Texas, United States of America
| | - Bernard P. Arulanandam
- South Texas Center for Emerging Infectious Diseases, Department of Biology, The University of Texas at San Antonio, San Antonio, Texas, United States of America
| | - Ashlesh K. Murthy
- Department of Pathology, Midwestern University, Downers Grove, Illinois, United States of America
- * E-mail:
| |
Collapse
|
35
|
Picard MD, Cohane KP, Gierahn TM, Higgins DE, Flechtner JB. High-throughput proteomic screening identifies Chlamydia trachomatis antigens that are capable of eliciting T cell and antibody responses that provide protection against vaginal challenge. Vaccine 2012; 30:4387-93. [PMID: 22682294 DOI: 10.1016/j.vaccine.2012.01.017] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Revised: 12/24/2011] [Accepted: 01/06/2012] [Indexed: 11/20/2022]
Abstract
A comprehensive proteomic screening technology was previously used to characterize T cell responses to Chlamydia trachomatis infection. In this study, we demonstrated that T cells specific for protein antigens identified through this comprehensive technology home to the site of infection after mucosal challenge with C. trachomatis. In addition, T cell responses to these proteins were elicited in multiple genetic backgrounds. Two protein antigens, CT823 and CT144, were evaluated as vaccine candidates. When administered with AbISCO-100 adjuvant, these antigens stimulated potent CD8(+) T cell responses, polyfunctional T(H)1-polarized CD4(+) T cell responses, and high titer protein-specific T(H)1-skewed antibody responses. Vaccination with either antigen with AbISCO-100 provided long-lived protection against intravaginal challenge with C. trachomatis. Adoptive transfer of immune T cells also conferred protection in the challenge model whereas passive transfer of immune serum did not, indicating the critical role for T cell responses in control of this infection. The ability of these antigens to induce potent immune responses and provide long-lived protection in response to challenge provides a basis for the rational design of a C. trachomatis subunit vaccine.
Collapse
Affiliation(s)
- Michele D Picard
- Genocea Biosciences, Inc., 161 First Street, Cambridge, MA 02142, United States
| | | | | | | | | |
Collapse
|
36
|
Li W, Murthy AK, Chaganty BKR, Guentzel MN, Seshu J, Chambers JP, Zhong G, Arulanandam BP. Immunization with dendritic cells pulsed ex vivo with recombinant chlamydial protease-like activity factor induces protective immunity against genital chlamydiamuridarum challenge. Front Immunol 2011; 2:73. [PMID: 22566862 PMCID: PMC3342055 DOI: 10.3389/fimmu.2011.00073] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Accepted: 11/23/2011] [Indexed: 12/04/2022] Open
Abstract
We have shown that immunization with soluble recombinant chlamydial protease-like activity factor (rCPAF) and a T helper 1 type adjuvant can induce significantly enhanced bacterial clearance and protection against Chlamydia-induced pathological sequelae in the genital tract. In this study, we investigated the use of bone marrow derived dendritic cells (BMDCs) pulsed ex vivo with rCPAF + CpG in an adoptive subcutaneous immunization for the ability to induce protective immunity against genital chlamydial infection. We found that BMDCs pulsed with rCPAF + CpG efficiently up-regulated the expression of activation markers CD86, CD80, CD40, and major histocompatibility complex class II (MHC II), and secreted interleukin-12, but not IL-10 and IL-4. Mice adoptively immunized with rCPAF + CpG-pulsed BMDCs or UV-EB + CpG-pulsed BMDCs produced elevated levels of antigen-specific IFN-γ and enhanced IgG1 and IgG2a antibodies. Moreover, mice immunized with rCPAF + CpG-pulsed BMDCs or UV-EB + CpG-pulsed BMDCs exhibited significantly reduced genital Chlamydia shedding, accelerated resolution of infection, and reduced oviduct pathology when compared to infected mock-immunized animals. These results suggest that adoptive subcutaneous immunization with ex vivo rCPAF-pulsed BMDCs is an effective approach, comparable to that induced by UV-EB–BMDCs, for inducing robust anti-Chlamydia immunity.
Collapse
Affiliation(s)
- Weidang Li
- Department of Biology, South Texas Center for Emerging Infectious Diseases, University of Texas at San Antonio San Antonio, TX, USA
| | | | | | | | | | | | | | | |
Collapse
|