1
|
Price SL, Oakes RS, Gonzalez RJ, Edwards C, Brady A, DeMarco JK, von Andrian UH, Jewell CM, Lawrenz MB. Microneedle array delivery of Yersinia pestis recapitulates bubonic plague. iScience 2024; 27:108600. [PMID: 38179062 PMCID: PMC10765063 DOI: 10.1016/j.isci.2023.108600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 09/25/2023] [Accepted: 11/28/2023] [Indexed: 01/06/2024] Open
Abstract
Fleas transmit Yersinia pestis directly within the dermis of mammals to cause bubonic plague. Syringe-mediated inoculation is widely used to recapitulate bubonic plague and study Y. pestis pathogenesis. However, intradermal needle inoculation is tedious, error prone, and poses a significant safety risk for laboratorians. Microneedle arrays (MNAs) are micron-scale polymeric structures that deliver materials to the dermis, while minimizing the risk of needle sticks. We demonstrated that MNA inoculation is a viable strategy to recapitulate bubonic plague and study bacterial virulence by defining the parameters needed to establish a lethal infection in the mouse model and characterizing the course of infection using live-animal optical imaging. Using MNAs, we also demonstrated that Y. pestis must overcome calprotectin-mediated zinc restriction within the dermis and dermal delivery of an attenuated mutant has vaccine potential. Together, these data demonstrate that MNAs are a safe alternative to study Y. pestis pathogenesis in the laboratory.
Collapse
Affiliation(s)
- Sarah L. Price
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Robert S. Oakes
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
- Department of Veterans Affairs, VA Maryland Health Care System, Baltimore, MD 21201, USA
| | - Rodrigo J. Gonzalez
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
- The Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Camilla Edwards
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Amanda Brady
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Jennifer K. DeMarco
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Ulrich H. von Andrian
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
- The Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Christopher M. Jewell
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
- Department of Veterans Affairs, VA Maryland Health Care System, Baltimore, MD 21201, USA
- Robert E. Fischell Institute for Biomedical Devices, College Park, MD 20742, USA
- Department of Microbiology and Immunology, University of Maryland Medical School, Baltimore, MD 21201, USA
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland Medical School, Baltimore, MD 21201, USA
| | - Matthew B. Lawrenz
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, KY 40202, USA
- Center for Predictive Medicine for Biodefense and Emerging Infectious Diseases, University of Louisville, Louisville, KY 40202, USA
| |
Collapse
|
2
|
Dahri M, Beheshtizadeh N, Seyedpour N, Nakhostin-Ansari A, Aghajani F, Seyedpour S, Masjedi M, Farjadian F, Maleki R, Adibkia K. Biomaterial-based delivery platforms for transdermal immunotherapy. Biomed Pharmacother 2023; 165:115048. [PMID: 37385212 DOI: 10.1016/j.biopha.2023.115048] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/14/2023] [Accepted: 06/20/2023] [Indexed: 07/01/2023] Open
Abstract
Nowadays, immunotherapy is one of the most essential treatments for various diseases and a broad spectrum of disorders are assumed to be treated by altering the function of the immune system. For this reason, immunotherapy has attracted a great deal of attention and numerous studies on different approaches for immunotherapies have been investigated, using multiple biomaterials and carriers, from nanoparticles (NPs) to microneedles (MNs). In this review, the immunotherapy strategies, biomaterials, devices, and diseases supposed to be treated by immunotherapeutic strategies are reviewed. Several transdermal therapeutic methods, including semisolids, skin patches, chemical, and physical skin penetration enhancers, are discussed. MNs are the most frequent devices implemented in transdermal immunotherapy of cancers (e.g., melanoma, squamous cell carcinoma, cervical, and breast cancer), infectious (e.g., COVID-19), allergic and autoimmune disorders (e.g., Duchenne's muscular dystrophy and Pollinosis). The biomaterials used in transdermal immunotherapy vary in shape, size, and sensitivity to external stimuli (e.g., magnetic field, photo, redox, pH, thermal, and even multi-stimuli-responsive) were reported. Correspondingly, vesicle-based NPs, including niosomes, transferosomes, ethosomes, microemulsions, transfersomes, and exosomes, are also discussed. In addition, transdermal immunotherapy using vaccines has been reviewed for Ebola, Neisseria gonorrhoeae, Hepatitis B virus, Influenza virus, respiratory syncytial virus, Hand-foot-and-mouth disease, and Tetanus.
Collapse
Affiliation(s)
- Mohammad Dahri
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran; Computational Biology and Chemistry Group (CBCG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nima Beheshtizadeh
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran; Regenerative Medicine group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nasrin Seyedpour
- Nanomedicine Research Association (NRA), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Department of Medical Physics and Biomedical Engineering, Tehran University of Medical Sciences, Tehran, Iran
| | - Amin Nakhostin-Ansari
- Sports Medicine Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Faezeh Aghajani
- Research Development Center, Arash Women's Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Simin Seyedpour
- Nanomedicine Research Association (NRA), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Student Research Committee, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Moein Masjedi
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Farjadian
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Maleki
- Department of Chemical Technologies, Iranian Research Organization for Sciences and Technology (IROST), P.O. Box 33535111 Tehran, Iran.
| | - Khosro Adibkia
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
3
|
Wu F, Qin M, Wang H, Sun X. Nanovaccines to combat virus-related diseases. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023; 15:e1857. [PMID: 36184873 DOI: 10.1002/wnan.1857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 09/08/2022] [Indexed: 11/05/2022]
Abstract
The invention and application of vaccines have made tremendous contributions to fight against pandemics for human beings. However, current vaccines still have shortcomings such as insufficient cellular immunity, the lack of cross-protection, and the risk of antibody-dependent enhancement (ADE). Thus, the prevention and control of pandemic viruses including Ebola Virus, human immunodeficiency virus (HIV), Influenza A viruses, Zika, and current SARS-CoV-2 are still extremely challenging. Nanoparticles with unique physical, chemical, and biological properties, hold promising potentials for the development of ideal vaccines against these viral infections. Moreover, the approval of the first nanoparticle-based mRNA vaccine BNT162b has established historic milestones that greatly inspired the clinical translation of nanovaccines. Given the safety and extensive application of subunit vaccines, and the rapid rise of mRNA vaccines, this review mainly focuses on these two vaccine strategies and provides an overview of the nanoparticle-based vaccine delivery platforms to tackle the current and next global health challenges. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
- Fuhua Wu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Ming Qin
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Hairui Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Xun Sun
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
| |
Collapse
|
4
|
Nanoparticles for Topical Application in the Treatment of Skin Dysfunctions-An Overview of Dermo-Cosmetic and Dermatological Products. Int J Mol Sci 2022; 23:ijms232415980. [PMID: 36555619 PMCID: PMC9780930 DOI: 10.3390/ijms232415980] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Nanomaterials (NM) arouse interest in various fields of science and industry due to their composition-tunable properties and the ease of modification. They appear currently as components of many consumer products such as sunscreen, dressings, sports clothes, surface-cleaning agents, computer devices, paints, as well as pharmaceutical and cosmetics formulations. The use of NPs in products for topical applications improves the permeation/penetration of the bioactive compounds into deeper layers of the skin, providing a depot effect with sustained drug release and specific cellular and subcellular targeting. Nanocarriers provide advances in dermatology and systemic treatments. Examples are a non-invasive method of vaccination, advanced diagnostic techniques, and transdermal drug delivery. The mechanism of action of NPs, efficiency of skin penetration, and potential threat to human health are still open and not fully explained. This review gives a brief outline of the latest nanotechnology achievements in products used in topical applications to prevent and treat skin diseases. We highlighted aspects such as the penetration of NPs through the skin (influence of physical-chemical properties of NPs, the experimental models for skin penetration, methods applied to improve the penetration of NPs through the skin, and methods applied to investigate the skin penetration by NPs). The review summarizes various therapies using NPs to diagnose and treat skin diseases (melanoma, acne, alopecia, vitiligo, psoriasis) and anti-aging and UV-protectant nano-cosmetics.
Collapse
|
5
|
Feraoun Y, Palgen JL, Joly C, Tchitchek N, Marcos-Lopez E, Dereuddre-Bosquet N, Gallouet AS, Contreras V, Lévy Y, Martinon F, Le Grand R, Beignon AS. The Route of Vaccine Administration Determines Whether Blood Neutrophils Undergo Long-Term Phenotypic Modifications. Front Immunol 2022; 12:784813. [PMID: 35058925 PMCID: PMC8764446 DOI: 10.3389/fimmu.2021.784813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/09/2021] [Indexed: 11/13/2022] Open
Abstract
Innate immunity modulates adaptive immunity and defines the magnitude, quality, and longevity of antigen-specific T- and B- cell immune memory. Various vaccine and administration factors influence the immune response to vaccination, including the route of vaccine delivery. We studied the dynamics of innate cell responses in blood using a preclinical model of non-human primates immunized with a live attenuated vaccinia virus, a recombinant Modified vaccinia virus Ankara (MVA) expressing a gag-pol-nef fusion of HIV-1, and mass cytometry. We previously showed that it induces a strong, early, and transient innate response, but also late phenotypic modifications of blood myeloid cells after two months when injected subcutaneously. Here, we show that the early innate effector cell responses and plasma inflammatory cytokine profiles differ between subcutaneous and intradermal vaccine injection. Additionally, we show that the intradermal administration fails to induce more highly activated/mature neutrophils long after immunization, in contrast to subcutaneous administration. Different batches of antibodies, staining protocols and generations of mass cytometers were used to generate the two datasets. Mass cytometry data were analyzed in parallel using the same analytical pipeline based on three successive clustering steps, including SPADE, and categorical heatmaps were compared using the Manhattan distance to measure the similarity between cell cluster phenotypes. Overall, we show that the vaccine per se is not sufficient for the late phenotypic modifications of innate myeloid cells, which are evocative of innate immune training. Its route of administration is also crucial, likely by influencing the early innate response, and systemic inflammation, and vaccine biodistribution.
Collapse
Affiliation(s)
- Yanis Feraoun
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-Immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses, France
| | - Jean-Louis Palgen
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-Immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses, France
| | - Candie Joly
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-Immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses, France
| | - Nicolas Tchitchek
- UMR_S 959, Immunology-Immunopathology-Immunotherapy (i3), Sorbonne Université and Inserm, Paris, France
| | - Ernesto Marcos-Lopez
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-Immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses, France
| | - Nathalie Dereuddre-Bosquet
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-Immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses, France
| | - Anne-Sophie Gallouet
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-Immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses, France
| | - Vanessa Contreras
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-Immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses, France
| | - Yves Lévy
- INSERM U955, Henri Mondor Hospital, University of Paris East, Créteil, France.,Vaccine Research Institute (VRI), Créteil, France
| | - Frédéric Martinon
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-Immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses, France
| | - Roger Le Grand
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-Immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses, France
| | - Anne-Sophie Beignon
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-Immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses, France
| |
Collapse
|
6
|
Tiwari N, Osorio‐Blanco ER, Sonzogni A, Esporrín‐Ubieto D, Wang H, Calderón M. Nanocarriers for Skin Applications: Where Do We Stand? Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202107960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Neha Tiwari
- POLYMAT Applied Chemistry Department Faculty of Chemistry University of the Basque Country UPV/EHU Paseo Manuel de Lardizabal 3 20018 Donostia-San Sebastián Spain
| | - Ernesto Rafael Osorio‐Blanco
- POLYMAT Applied Chemistry Department Faculty of Chemistry University of the Basque Country UPV/EHU Paseo Manuel de Lardizabal 3 20018 Donostia-San Sebastián Spain
| | - Ana Sonzogni
- Group of Polymers and Polymerization Reactors INTEC (Universidad Nacional del Litoral-CONICET) Güemes 3450 Santa Fe 3000 Argentina
| | - David Esporrín‐Ubieto
- POLYMAT Applied Chemistry Department Faculty of Chemistry University of the Basque Country UPV/EHU Paseo Manuel de Lardizabal 3 20018 Donostia-San Sebastián Spain
| | - Huiyi Wang
- POLYMAT Applied Chemistry Department Faculty of Chemistry University of the Basque Country UPV/EHU Paseo Manuel de Lardizabal 3 20018 Donostia-San Sebastián Spain
| | - Marcelo Calderón
- POLYMAT Applied Chemistry Department Faculty of Chemistry University of the Basque Country UPV/EHU Paseo Manuel de Lardizabal 3 20018 Donostia-San Sebastián Spain
- IKERBASQUE, Basque Foundation for Science 48009 Bilbao Spain
| |
Collapse
|
7
|
Tiwari N, Osorio‐Blanco ER, Sonzogni A, Esporrín‐Ubieto D, Wang H, Calderón M. Nanocarriers for Skin Applications: Where Do We Stand? Angew Chem Int Ed Engl 2022; 61:e202107960. [PMID: 34487599 PMCID: PMC9292798 DOI: 10.1002/anie.202107960] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Indexed: 12/15/2022]
Abstract
Skin penetration of active molecules for treatment of diverse diseases is a major field of research owing to the advantages associated with the skin like easy accessibility, reduced systemic-derived side effects, and increased therapeutic efficacy. Despite these advantages, dermal drug delivery is generally challenging due to the low skin permeability of therapeutics. Although various methods have been developed to improve skin penetration and permeation of therapeutics, they are usually aggressive and could lead to irreversible damage to the stratum corneum. Nanosized carrier systems represent an alternative approach for current technologies, with minimal damage to the natural barrier function of skin. In this Review, the use of nanoparticles to deliver drug molecules, genetic material, and vaccines into the skin is discussed. In addition, nanotoxicology studies and the recent clinical development of nanoparticles are highlighted to shed light on their potential to undergo market translation.
Collapse
Affiliation(s)
- Neha Tiwari
- POLYMATApplied Chemistry DepartmentFaculty of ChemistryUniversity of the Basque CountryUPV/EHUPaseo Manuel de Lardizabal 320018Donostia-San SebastiánSpain
| | - Ernesto Rafael Osorio‐Blanco
- POLYMATApplied Chemistry DepartmentFaculty of ChemistryUniversity of the Basque CountryUPV/EHUPaseo Manuel de Lardizabal 320018Donostia-San SebastiánSpain
| | - Ana Sonzogni
- Group of Polymers and Polymerization ReactorsINTEC (Universidad Nacional del Litoral-CONICET)Güemes 3450Santa Fe3000Argentina
| | - David Esporrín‐Ubieto
- POLYMATApplied Chemistry DepartmentFaculty of ChemistryUniversity of the Basque CountryUPV/EHUPaseo Manuel de Lardizabal 320018Donostia-San SebastiánSpain
| | - Huiyi Wang
- POLYMATApplied Chemistry DepartmentFaculty of ChemistryUniversity of the Basque CountryUPV/EHUPaseo Manuel de Lardizabal 320018Donostia-San SebastiánSpain
| | - Marcelo Calderón
- POLYMATApplied Chemistry DepartmentFaculty of ChemistryUniversity of the Basque CountryUPV/EHUPaseo Manuel de Lardizabal 320018Donostia-San SebastiánSpain
- IKERBASQUE, Basque Foundation for Science48009BilbaoSpain
| |
Collapse
|
8
|
Van Tilbeurgh M, Lemdani K, Beignon AS, Chapon C, Tchitchek N, Cheraitia L, Marcos Lopez E, Pascal Q, Le Grand R, Maisonnasse P, Manet C. Predictive Markers of Immunogenicity and Efficacy for Human Vaccines. Vaccines (Basel) 2021; 9:579. [PMID: 34205932 PMCID: PMC8226531 DOI: 10.3390/vaccines9060579] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/22/2021] [Accepted: 05/24/2021] [Indexed: 02/07/2023] Open
Abstract
Vaccines represent one of the major advances of modern medicine. Despite the many successes of vaccination, continuous efforts to design new vaccines are needed to fight "old" pandemics, such as tuberculosis and malaria, as well as emerging pathogens, such as Zika virus and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Vaccination aims at reaching sterilizing immunity, however assessing vaccine efficacy is still challenging and underscores the need for a better understanding of immune protective responses. Identifying reliable predictive markers of immunogenicity can help to select and develop promising vaccine candidates during early preclinical studies and can lead to improved, personalized, vaccination strategies. A systems biology approach is increasingly being adopted to address these major challenges using multiple high-dimensional technologies combined with in silico models. Although the goal is to develop predictive models of vaccine efficacy in humans, applying this approach to animal models empowers basic and translational vaccine research. In this review, we provide an overview of vaccine immune signatures in preclinical models, as well as in target human populations. We also discuss high-throughput technologies used to probe vaccine-induced responses, along with data analysis and computational methodologies applied to the predictive modeling of vaccine efficacy.
Collapse
Affiliation(s)
- Matthieu Van Tilbeurgh
- Immunology of Viral Infections and Autoimmune Diseases (IMVA), IDMIT Department, Institut de Biologie François-Jacob (IBJF), University Paris-Sud—INSERM U1184, CEA, 92265 Fontenay-Aux-Roses, France; (M.V.T.); (K.L.); (A.-S.B.); (C.C.); (L.C.); (E.M.L.); (Q.P.); (R.L.G.); (P.M.)
| | - Katia Lemdani
- Immunology of Viral Infections and Autoimmune Diseases (IMVA), IDMIT Department, Institut de Biologie François-Jacob (IBJF), University Paris-Sud—INSERM U1184, CEA, 92265 Fontenay-Aux-Roses, France; (M.V.T.); (K.L.); (A.-S.B.); (C.C.); (L.C.); (E.M.L.); (Q.P.); (R.L.G.); (P.M.)
| | - Anne-Sophie Beignon
- Immunology of Viral Infections and Autoimmune Diseases (IMVA), IDMIT Department, Institut de Biologie François-Jacob (IBJF), University Paris-Sud—INSERM U1184, CEA, 92265 Fontenay-Aux-Roses, France; (M.V.T.); (K.L.); (A.-S.B.); (C.C.); (L.C.); (E.M.L.); (Q.P.); (R.L.G.); (P.M.)
| | - Catherine Chapon
- Immunology of Viral Infections and Autoimmune Diseases (IMVA), IDMIT Department, Institut de Biologie François-Jacob (IBJF), University Paris-Sud—INSERM U1184, CEA, 92265 Fontenay-Aux-Roses, France; (M.V.T.); (K.L.); (A.-S.B.); (C.C.); (L.C.); (E.M.L.); (Q.P.); (R.L.G.); (P.M.)
| | - Nicolas Tchitchek
- Unité de Recherche i3, Inserm UMR-S 959, Bâtiment CERVI, Hôpital de la Pitié-Salpêtrière, 75013 Paris, France;
| | - Lina Cheraitia
- Immunology of Viral Infections and Autoimmune Diseases (IMVA), IDMIT Department, Institut de Biologie François-Jacob (IBJF), University Paris-Sud—INSERM U1184, CEA, 92265 Fontenay-Aux-Roses, France; (M.V.T.); (K.L.); (A.-S.B.); (C.C.); (L.C.); (E.M.L.); (Q.P.); (R.L.G.); (P.M.)
| | - Ernesto Marcos Lopez
- Immunology of Viral Infections and Autoimmune Diseases (IMVA), IDMIT Department, Institut de Biologie François-Jacob (IBJF), University Paris-Sud—INSERM U1184, CEA, 92265 Fontenay-Aux-Roses, France; (M.V.T.); (K.L.); (A.-S.B.); (C.C.); (L.C.); (E.M.L.); (Q.P.); (R.L.G.); (P.M.)
| | - Quentin Pascal
- Immunology of Viral Infections and Autoimmune Diseases (IMVA), IDMIT Department, Institut de Biologie François-Jacob (IBJF), University Paris-Sud—INSERM U1184, CEA, 92265 Fontenay-Aux-Roses, France; (M.V.T.); (K.L.); (A.-S.B.); (C.C.); (L.C.); (E.M.L.); (Q.P.); (R.L.G.); (P.M.)
| | - Roger Le Grand
- Immunology of Viral Infections and Autoimmune Diseases (IMVA), IDMIT Department, Institut de Biologie François-Jacob (IBJF), University Paris-Sud—INSERM U1184, CEA, 92265 Fontenay-Aux-Roses, France; (M.V.T.); (K.L.); (A.-S.B.); (C.C.); (L.C.); (E.M.L.); (Q.P.); (R.L.G.); (P.M.)
| | - Pauline Maisonnasse
- Immunology of Viral Infections and Autoimmune Diseases (IMVA), IDMIT Department, Institut de Biologie François-Jacob (IBJF), University Paris-Sud—INSERM U1184, CEA, 92265 Fontenay-Aux-Roses, France; (M.V.T.); (K.L.); (A.-S.B.); (C.C.); (L.C.); (E.M.L.); (Q.P.); (R.L.G.); (P.M.)
| | - Caroline Manet
- Immunology of Viral Infections and Autoimmune Diseases (IMVA), IDMIT Department, Institut de Biologie François-Jacob (IBJF), University Paris-Sud—INSERM U1184, CEA, 92265 Fontenay-Aux-Roses, France; (M.V.T.); (K.L.); (A.-S.B.); (C.C.); (L.C.); (E.M.L.); (Q.P.); (R.L.G.); (P.M.)
| |
Collapse
|
9
|
Sanchez J, Gonçalves E, Llano A, Gonzáles P, Fernández-Maldonado M, Vogt A, Soria A, Perez S, Cedeño S, Fernández MA, Nourikyan J, de Bernard S, Ganoza C, Pedruzzi E, Bonduelle O, Mothe B, Gòmez CE, Esteban M, Garcia F, Lama JR, Brander C, Combadiere B. Immune Profiles Identification by Vaccinomics After MVA Immunization in Randomized Clinical Study. Front Immunol 2020; 11:586124. [PMID: 33244316 PMCID: PMC7683801 DOI: 10.3389/fimmu.2020.586124] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 10/12/2020] [Indexed: 12/04/2022] Open
Abstract
Background Our previous work has demonstrated the benefits of transcutaneous immunization in targeting Langerhans cells and preferentially inducing CD8 T-cell responses. Methods In this randomized phase Ib clinical trial including 20 HIV uninfected volunteers, we compared the safety and immunogenicity of the MVA recombinant vaccine expressing HIV-B antigen (MVA-B) by transcutaneous and intramuscular routes. We hypothesized that the quality of innate and adaptive immunity differs according to the route of immunization and explored the quality of the vector vaccine-induced immune responses. We also investigated the early blood transcriptome and serum cytokine levels to identify innate events correlated with the strength and quality of adaptive immunity. Results We demonstrate that MVA-B vaccine is safe by both routes, but that the quality and intensity of both innate and adaptive immunity differ significantly. Transcutaneous vaccination promoted CD8 responses in the absence of antibodies and slightly affected gene expression, involving mainly genes associated with metabolic pathways. Intramuscular vaccination, on the other hand, drove robust changes in the expression of genes involved in IL-6 and interferon signalling pathways, mainly those associated with humoral responses, and also some levels of CD8 response. Conclusion Thus, vaccine delivery route perturbs early innate responses that shape the quality of adaptive immunity. Clinical Trial Registration http://ClinicalTrials.gov, identifier PER-073-13.
Collapse
Affiliation(s)
- Jorge Sanchez
- Centro de Investigaciones Tecnológicas, Biomedicas y Medioambientales, Universidad Nacional Mayor de San Marcos, Lima, Peru
| | - Elena Gonçalves
- Sorbonne Université, Inserm, Centre d'Immunologie et des Maladies Infectieuses (CIMIParis), Paris, France
| | - Anuska Llano
- IrsiCaixa AIDS Research Institute-HIVACAT, Hospital Universitari Germans Trias i Pujol, Barcelona, Spain
| | | | | | - Annika Vogt
- Clinical Research Center for Hair and Skin Science, Department of Dermatology, Venerology and Allergy, Charité-Universitatsmedizin Berlin, corporate member of Freie Universitaet Berlin, Humboldt-Universitaet zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | | | - Susana Perez
- Centro de Investigaciones Tecnológicas, Biomedicas y Medioambientales, Universidad Nacional Mayor de San Marcos, Lima, Peru
| | - Samandhy Cedeño
- IrsiCaixa AIDS Research Institute-HIVACAT, Hospital Universitari Germans Trias i Pujol, Barcelona, Spain
| | - Marco Antonio Fernández
- Flow Cytometry Facility, Germans Trias i Pujol Research Institute (IGTP), Hospital Universitari Germans Trias i Pujol, Barcelona, Spain
| | | | | | | | - Eric Pedruzzi
- Sorbonne Université, Inserm, Centre d'Immunologie et des Maladies Infectieuses (CIMIParis), Paris, France
| | - Olivia Bonduelle
- Sorbonne Université, Inserm, Centre d'Immunologie et des Maladies Infectieuses (CIMIParis), Paris, France
| | - Beatriz Mothe
- IrsiCaixa AIDS Research Institute-HIVACAT, Hospital Universitari Germans Trias i Pujol, Barcelona, Spain.,Fundació Lluita contra la Sida, Infectious Diseases Department, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | - Carmen E Gòmez
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Mariano Esteban
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Felipe Garcia
- Infectious Diseases Department, Hospital Clínic, IDIBAPS, University of Barcelona, Barcelona, Spain
| | - Javier R Lama
- Asociacion Civil Impacta Salud y Educacion, Lima, Peru
| | - Christian Brander
- IrsiCaixa AIDS Research Institute-HIVACAT, Hospital Universitari Germans Trias i Pujol, Barcelona, Spain.,Faculty of Medicine, Universitat de Vic-Central de Catalunya (UVic-UCC), Vic, Spain.,Institució Catalana de Recerca I Estudis Avançats (ICREA), Barcelona, Spain
| | - Behazine Combadiere
- Sorbonne Université, Inserm, Centre d'Immunologie et des Maladies Infectieuses (CIMIParis), Paris, France
| |
Collapse
|
10
|
Gonçalves E, Combadière B. Prédire la réponse à la vaccination contre la grippe. Med Sci (Paris) 2020; 36:31-37. [DOI: 10.1051/medsci/2019266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
La vaccination est l’un des progrès majeurs de la médecine moderne. Mais afin d’améliorer l’efficacité des vaccins existants et d’en élaborer de nouveaux, nous devons mieux connaître les mécanismes d’action à l’origine de l’immunité protectrice et les stratégies vaccinales permettant d’induire une défense durable. La voie cutanée est une stratégie de vaccination importante, en raison de la richesse qu’elle présente en cellules de l’immunité innée qui ont un rôle clé dans la qualité, l’intensité et la persistance des réponses adaptatives qu’elles induisent. L’intégration des données biologiques obtenues au cours d’un essai clinique de vaccination antigrippale nous donne un aperçu de l’impact de la voie d’immunisation et de la signature innée sur la qualité des réponses immunitaires.
Collapse
|
11
|
Gonnet J, Poncelet L, Meriaux C, Gonçalves E, Weiss L, Tchitchek N, Pedruzzi E, Soria A, Boccara D, Vogt A, Bonduelle O, Hamm G, Ait-Belkacem R, Stauber J, Fournier I, Wisztorski M, Combadiere B. Mechanisms of innate events during skin reaction following intradermal injection of seasonal influenza vaccine. J Proteomics 2020; 216:103670. [PMID: 31991189 DOI: 10.1016/j.jprot.2020.103670] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 12/03/2019] [Accepted: 01/25/2020] [Indexed: 12/15/2022]
Abstract
The skin plays a crucial role in host defences against microbial attack and the innate cells must provide the immune system with sufficient information to organize these defences. This unique feature makes the skin a promising site for vaccine administration. Although cellular innate immune events during vaccination have been widely studied, initial events remain poorly understood. Our aim is to determine molecular biomarkers of skin innate reaction after intradermal (i.d.) immunization. Using an ex vivo human explant model from healthy donors, we investigated by NanoLC-MS/MS analysis and MALDI-MSI imaging, to detect innate molecular events (lipids, metabolites, proteins) few hours after i.d. administration of seasonal trivalent influenza vaccine (TIV). This multimodel approach allowed to identify early molecules differentially expressed in dermal and epidermal layers at 4 and 18 h after TIV immunization compared with control PBS. In the dermis, the most relevant network of proteins upregulated were related to cell-to-cell signalling and cell trafficking. The molecular signatures detected were associated with chemokines such as CXCL8, a chemoattractant of neutrophils. In the epidermis, the most relevant networks were associated with activation of antigen-presenting cells and related to CXCL10. Our study proposes a novel step-forward approach to identify biomarkers of skin innate reaction. SIGNIFICANCE: To our knowledge, there is no study analyzing innate molecular reaction to vaccines at the site of skin immunization. What is known on skin reaction is based on macroscopic (erythema, redness…), microscopic (epidermal and dermal tissues) and cellular events (inflammatory cell infiltrate). Therefore, we propose a multimodal approach to analyze molecular events at the site of vaccine injection on skin tissue. We identified early molecular networks involved biological functions such cell migration, cell-to-cell interaction and antigen presentation, validated by chemokine expression, in the epidermis and dermis, then could be used as early indicator of success in immunization.
Collapse
Affiliation(s)
- Jessica Gonnet
- Sorbonne Université, Centre d'Immunologie et des Maladies Infectieuses - Paris (Cimi-Paris), INSERM U1135, Paris, France
| | - Lauranne Poncelet
- Univ. Lille, INSERM, CHU Lille, U1008 - Controlled Drug Delivery Systems and Biomaterials, F-59000 Lille, France; ImaBiotech, 152 rue du Docteur Yersin, 59120 Loos, France
| | - Celine Meriaux
- Univ. Lille, Inserm, U1192 - Protéomique, Réponse Inflammatoire et Spectrométrie de Masse-PRISM, F-59000 Lille, France
| | - Elena Gonçalves
- Sorbonne Université, Centre d'Immunologie et des Maladies Infectieuses - Paris (Cimi-Paris), INSERM U1135, Paris, France
| | - Lina Weiss
- Sorbonne Université, Centre d'Immunologie et des Maladies Infectieuses - Paris (Cimi-Paris), INSERM U1135, Paris, France; Clinical Research Center for Hair and Skin Science, Department of Dermatology and Allergy, Charité - Universitätsmedizin Berlin (2), 10117 Berlin, Germany
| | - Nicolas Tchitchek
- CEA - Université Paris Sud 11 - INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases, Institut de Biologie François Jacob, 92265 Fontenay-aux-Roses, France
| | - Eric Pedruzzi
- Sorbonne Université, Centre d'Immunologie et des Maladies Infectieuses - Paris (Cimi-Paris), INSERM U1135, Paris, France
| | - Angele Soria
- Sorbonne Université, Centre d'Immunologie et des Maladies Infectieuses - Paris (Cimi-Paris), INSERM U1135, Paris, France; Service de Dermatologie et d'Allergologie, Hôpital Tenon, 4 rue de la Chine, Hôpitaux Universitaire Est Parisien (HUEP), Assistance Publique Hôpitaux de Paris (APHP), 75020 Paris, France
| | - David Boccara
- Sorbonne Université, Centre d'Immunologie et des Maladies Infectieuses - Paris (Cimi-Paris), INSERM U1135, Paris, France; Service de chirurgie plastique reconstructrice, esthétique, centre des brûlés, Hôpital Saint-Louis, Assistance Publique Hôpitaux de Paris (APHP), 1 avenue Claude Vellefaux, 75010 Paris, France
| | - Annika Vogt
- Sorbonne Université, Centre d'Immunologie et des Maladies Infectieuses - Paris (Cimi-Paris), INSERM U1135, Paris, France; Clinical Research Center for Hair and Skin Science, Department of Dermatology and Allergy, Charité - Universitätsmedizin Berlin (2), 10117 Berlin, Germany
| | - Olivia Bonduelle
- Sorbonne Université, Centre d'Immunologie et des Maladies Infectieuses - Paris (Cimi-Paris), INSERM U1135, Paris, France
| | - Gregory Hamm
- ImaBiotech, 152 rue du Docteur Yersin, 59120 Loos, France
| | | | | | - Isabelle Fournier
- Univ. Lille, Inserm, U1192 - Protéomique, Réponse Inflammatoire et Spectrométrie de Masse-PRISM, F-59000 Lille, France
| | - Maxence Wisztorski
- Univ. Lille, Inserm, U1192 - Protéomique, Réponse Inflammatoire et Spectrométrie de Masse-PRISM, F-59000 Lille, France
| | - Behazine Combadiere
- Sorbonne Université, Centre d'Immunologie et des Maladies Infectieuses - Paris (Cimi-Paris), INSERM U1135, Paris, France.
| |
Collapse
|
12
|
Gonzalez-Miro M, Chen S, Gonzaga ZJ, Evert B, Wibowo D, Rehm BHA. Polyester as Antigen Carrier toward Particulate Vaccines. Biomacromolecules 2019; 20:3213-3232. [DOI: 10.1021/acs.biomac.9b00509] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Majela Gonzalez-Miro
- School of Fundamental Sciences, Massey University, Palmerston North 4474, New Zealand
| | - Shuxiong Chen
- Centre for Cell
Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland 4111, Australia
| | - Zennia Jean Gonzaga
- Centre for Cell
Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland 4111, Australia
| | - Benjamin Evert
- Centre for Cell
Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland 4111, Australia
| | - David Wibowo
- Centre for Cell
Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland 4111, Australia
| | - Bernd H. A. Rehm
- Centre for Cell
Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland 4111, Australia
| |
Collapse
|
13
|
Gonçalves E, Bonduelle O, Soria A, Loulergue P, Rousseau A, Cachanado M, Bonnabau H, Thiebaut R, Tchitchek N, Behillil S, van der Werf S, Vogt A, Simon T, Launay O, Combadière B. Innate gene signature distinguishes humoral versus cytotoxic responses to influenza vaccination. J Clin Invest 2019; 129:1960-1971. [PMID: 30843873 DOI: 10.1172/jci125372] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Systems vaccinology allows cutting-edge analysis of innate biomarkers of vaccine efficacy. We have been exploring novel strategies to shape the adaptive immune response, by targeting innate immune cells through novel immunization routes. METHODS This randomized phase I/II clinical study (n=60 healthy subjects aged 18-45 years old) used transcriptomic analysis to discover early biomarkers of immune response quality after transcutaneous (t.c.), intradermal (i.d.), and intramuscular (i.m.) administration of a trivalent influenza vaccine (TIV season 2012-2013) (1:1:1 ratio). Safety and immunogenicity (hemagglutinin inhibition (HI), microneutralization (MN) antibodies and CD4, CD8 effector T cells) were measured at baseline Day (D)0 and at D21. Blood transcriptome was analyzed at D0 and D1. RESULTS TIV-specific CD8+GranzymeB+(GRZ) T cells appeared in more individuals immunized by the t.c. and i.d. routes, while immunization by the i.d. and i.m. routes prompted high levels of HI antibody titers and MN against A/H1N1 and A/H3N2 influenza viral strains. The early innate gene signature anticipated immunological outcome by discriminating two clusters of individuals with either distinct humoral or CD8 cytotoxic responses. Several pathways explained this dichotomy confirmed by nine genes and serum level of CXCL10 were correlated with either TIV-specific cytotoxic CD8+GRZ+ T-cell or antibody responses. A logistic regression analysis demonstrated that these nine genes and serum levels of CXCL10 (D1/D0) best foreseen TIV-specific CD8+GRZ+ T-cell and antibody responses at D21. CONCLUSION This study provides new insight into the impact of immunization routes and innate signature in the quality of adaptive immune responses.
Collapse
Affiliation(s)
- Eléna Gonçalves
- Sorbonne Université, Centre d'Immunologie et des Maladies Infectieuses - Paris (Cimi-Paris), INSERM U1135, Paris, France
| | - Olivia Bonduelle
- Sorbonne Université, Centre d'Immunologie et des Maladies Infectieuses - Paris (Cimi-Paris), INSERM U1135, Paris, France
| | - Angèle Soria
- Sorbonne Université, Centre d'Immunologie et des Maladies Infectieuses - Paris (Cimi-Paris), INSERM U1135, Paris, France.,Service de Dermatologie et Allergologie, Hôpital Tenon, Assistance Publique Hôpitaux de Paris (AP-HP), Paris, France
| | - Pierre Loulergue
- Université Paris Descartes, Sorbonne Paris Cité, Centre d'Investigation Clinique Cochin Pasteur, INSERM CIC 1417, French Clinical Research Infrastructure Network, Innovative Clinical Research Network in Vaccinology, AP-HP, Hôpital Cochin, Paris, France
| | - Alexandra Rousseau
- Department of Clinical Pharmacology and Clinical Research Platform of East of Paris, Assistance Publique-Hôpitaux de Paris, Paris, France. Sorbonne Université, Paris, France
| | - Marine Cachanado
- Department of Clinical Pharmacology and Clinical Research Platform of East of Paris, Assistance Publique-Hôpitaux de Paris, Paris, France. Sorbonne Université, Paris, France
| | - Henri Bonnabau
- INSERM U1219, INRIA SISTM, Université de Bordeaux, Bordeaux France
| | | | - Nicolas Tchitchek
- CEA - Université Paris Sud 11 - INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases, Institut de Biologie François Jacob, 92265 Fontenay-aux-Roses, France
| | - Sylvie Behillil
- Institut Pasteur, CNR des Virus des Infections Respiratoires, Département de Virologie and Centre National de Recherche Scientifique UMR CNRS 3569, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Unité de Génétique Moléculaire des Virus à ARN, Paris, France
| | - Sylvie van der Werf
- Institut Pasteur, CNR des Virus des Infections Respiratoires, Département de Virologie and Centre National de Recherche Scientifique UMR CNRS 3569, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Unité de Génétique Moléculaire des Virus à ARN, Paris, France
| | - Annika Vogt
- Sorbonne Université, Centre d'Immunologie et des Maladies Infectieuses - Paris (Cimi-Paris), INSERM U1135, Paris, France.,Clinical Research Center for Hair and Skin Science, Department of Dermatology and Allergy, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Tabassome Simon
- Department of Clinical Pharmacology and Clinical Research Platform of East of Paris, Assistance Publique-Hôpitaux de Paris, Paris, France. Sorbonne Université, Paris, France
| | - Odile Launay
- Université Paris Descartes, Sorbonne Paris Cité, Centre d'Investigation Clinique Cochin Pasteur, INSERM CIC 1417, French Clinical Research Infrastructure Network, Innovative Clinical Research Network in Vaccinology, AP-HP, Hôpital Cochin, Paris, France
| | - Behazine Combadière
- Sorbonne Université, Centre d'Immunologie et des Maladies Infectieuses - Paris (Cimi-Paris), INSERM U1135, Paris, France
| |
Collapse
|
14
|
Modulation of Vaccine-Induced CD4 T Cell Functional Profiles by Changes in Components of HIV Vaccine Regimens in Humans. J Virol 2018; 92:JVI.01143-18. [PMID: 30209165 DOI: 10.1128/jvi.01143-18] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 08/02/2018] [Indexed: 12/11/2022] Open
Abstract
To date, six vaccine strategies have been evaluated in clinical trials for their efficacy at inducing protective immune responses against HIV infection. However, only the ALVAC-HIV/AIDSVAX B/E vaccine (RV144 trial) has demonstrated protection, albeit modestly (31%; P = 0.03). One potential correlate of protection was a low-frequency HIV-specific CD4 T cell population with diverse functionality. Although CD4 T cells, particularly T follicular helper (Tfh) cells, are critical for effective antibody responses, most studies involving HIV vaccines have focused on humoral immunity or CD8 T cell effector responses, and little is known about the functionality and frequency of vaccine-induced CD4 T cells. We therefore assessed responses from several phase I/II clinical trials and compared them to responses to natural HIV-1 infection. We found that all vaccines induced a lower magnitude of HIV-specific CD4 T cell responses than that observed for chronic infection. Responses differed in functionality, with a CD40 ligand (CD40L)-dominated response and more Tfh cells after vaccination, whereas chronic HIV infection provoked tumor necrosis factor alpha (TNF-α)-dominated responses. The vaccine delivery route further impacted CD4 T cells, showing a stronger Th1 polarization after dendritic cell delivery than after intramuscular vaccination. In prime/boost regimens, the choice of prime and boost influenced the functional profile of CD4 T cells to induce more or less polyfunctionality. In summary, vaccine-induced CD4 T cell responses differ remarkably between vaccination strategies, modes of delivery, and boosts and do not resemble those induced by chronic HIV infection. Understanding the functional profiles of CD4 T cells that best facilitate protective antibody responses will be critical if CD4 T cell responses are to be considered a clinical trial go/no-go criterion.IMPORTANCE Only one HIV-1 candidate vaccine strategy has shown protection, albeit marginally (31%), against HIV-1 acquisition, and correlates of protection suggested that a multifunctional CD4 T cell immune response may be important for this protective effect. Therefore, the functional phenotypes of HIV-specific CD4 T cell responses induced by different phase I and phase II clinical trials were assessed to better show how different vaccine strategies influence the phenotype and function of HIV-specific CD4 T cell immune responses. The significance of this research lies in our comprehensive comparison of the compositions of the T cell immune responses to different HIV vaccine modalities. Specifically, our work allows for the evaluation of vaccination strategies in terms of their success at inducing Tfh cell populations.
Collapse
|
15
|
Chonco L, Fernández G, Kalhapure R, Hernáiz MJ, García-Oliva C, Gonzalez VM, Martín ME, Govender T, Parboosing R. Novel DNA Aptamers Against CCL21 Protein: Characterization and Biomedical Applications for Targeted Drug Delivery to T Cell-Rich Zones. Nucleic Acid Ther 2018; 28:242-251. [PMID: 29733244 DOI: 10.1089/nat.2017.0689] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The chemokine (C-C motif) ligand 21 (CCL21) is a cytokine that attracts CCR7-positive cells to the T cell (paracortical) zone of lymph nodes by directional migration of these cells along the CCL21 gradient. In this article, we sought to mimic this chemotactic mechanism, by identifying a novel aptamer that binds CCL21 with high affinity. In vitro selection of DNA aptamers was performed by the Systematic Evolution of Ligands by Exponential Enrichment. Quantitative polymerase chain reaction (qPCR) and enzyme-linked oligonucleotide assay were used to screen for high-affinity aptamers against human and mouse CCL21 protein, respectively. Three such aptamers were identified. Surface plasmon resonance showed equilibrium dissociation constant (Kd) for these three aptamers in the nano to picomolar range. Cytotoxicity assays showed <10% toxicity in HEK293 and HL-60 cells. Last, in vivo biodistribution was successfully performed and CCL21 chemokine-binding aptamers were quantified within the draining lymph nodes and spleen using qPCR. Fluorescence microscopy revealed that one of the aptamers showed significantly higher presence in the paracortex than the control aptamer. The use of anti-CCL21 aptamers to mimic the chemotaxis mechanism thus represents a promising approach to achieve targeted delivery of drugs to the T cell-rich zones of the lymph node. This may be important for the treatment of HIV infection and the eradication of HIV reservoirs.
Collapse
Affiliation(s)
- Louis Chonco
- 1 Department of Virology, National Health Laboratory Service/University of KwaZulu-Natal , c/o Inkosi Albert Luthuli Central Hospital, Durban, South Africa
| | - Gerónimo Fernández
- 2 Aptus Biotech SL , Madrid, Spain
- 3 Departamento de Bioquímica-Investigación, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS)-Hospital Ramón y Cajal , Madrid, Spain
| | - Rahul Kalhapure
- 4 Discipline of Pharmaceutical Sciences, School of Health Sciences, University of KwaZulu-Natal , Durban, South Africa
| | - María J Hernáiz
- 5 Department of Organic and Pharmaceutical Chemistry, Faculty of Pharmacy, Complutense University of Madrid , Madrid, Spain
| | - Cecilia García-Oliva
- 5 Department of Organic and Pharmaceutical Chemistry, Faculty of Pharmacy, Complutense University of Madrid , Madrid, Spain
| | - Victor M Gonzalez
- 2 Aptus Biotech SL , Madrid, Spain
- 3 Departamento de Bioquímica-Investigación, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS)-Hospital Ramón y Cajal , Madrid, Spain
| | - M Elena Martín
- 2 Aptus Biotech SL , Madrid, Spain
- 3 Departamento de Bioquímica-Investigación, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS)-Hospital Ramón y Cajal , Madrid, Spain
| | - Thirumala Govender
- 4 Discipline of Pharmaceutical Sciences, School of Health Sciences, University of KwaZulu-Natal , Durban, South Africa
| | - Raveen Parboosing
- 1 Department of Virology, National Health Laboratory Service/University of KwaZulu-Natal , c/o Inkosi Albert Luthuli Central Hospital, Durban, South Africa
| |
Collapse
|
16
|
Haidari G, Cope A, Miller A, Venables S, Yan C, Ridgers H, Reijonen K, Hannaman D, Spentzou A, Hayes P, Bouliotis G, Vogt A, Joseph S, Combadiere B, McCormack S, Shattock RJ. Combined skin and muscle vaccination differentially impact the quality of effector T cell functions: the CUTHIVAC-001 randomized trial. Sci Rep 2017; 7:13011. [PMID: 29026141 PMCID: PMC5638927 DOI: 10.1038/s41598-017-13331-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 09/21/2017] [Indexed: 02/07/2023] Open
Abstract
Targeting of different tissues via transcutaneous (TC), intradermal (ID) and intramuscular (IM) injection has the potential to tailor the immune response to DNA vaccination. In this Phase I randomised controlled clinical trial in HIV-1 negative volunteers we investigate whether the site and mode of DNA vaccination influences the quality of the cellular immune responses. We adopted a strategy of concurrent immunization combining IM injection with either ID or TC administration. As a third arm we assessed the response to IM injection administered with electroporation (EP). The DNA plasmid encoded a MultiHIV B clade fusion protein designed to induce cellular immunity. The vaccine and regimens were well tolerated. We observed differential shaping of vaccine induced virus-specific CD4 + and CD8 + cell-mediated immune responses. DNA given by IM + EP promoted strong IFN-γ responses and potent viral inhibition. ID + IM without EP resulted in a similar pattern of response but of lower magnitude. By contrast TC + IM (without EP) shifted responses towards a more Th-17 dominated phenotype, associated with mucosal and epidermal protection. Whilst preliminary, these results offer new perspectives for differential shaping of desired cellular immunity required to fight the wide range of complex and diverse infectious diseases and cancers.
Collapse
Affiliation(s)
- G Haidari
- Imperial College London, Department of Medicine, Section of Virology, Group of Mucosal Infection and Immunity, London, United Kingdom
| | - A Cope
- Imperial College London, Department of Medicine, Section of Virology, Group of Mucosal Infection and Immunity, London, United Kingdom
| | - A Miller
- Imperial College London, Department of Medicine, Section of Virology, Group of Mucosal Infection and Immunity, London, United Kingdom
| | - S Venables
- Imperial College London, Department of Medicine, Section of Virology, Group of Mucosal Infection and Immunity, London, United Kingdom
| | - C Yan
- Imperial College London, Department of Medicine, Section of Virology, Group of Mucosal Infection and Immunity, London, United Kingdom
| | - H Ridgers
- Imperial College London, Department of Medicine, Section of Virology, Group of Mucosal Infection and Immunity, London, United Kingdom
| | | | - D Hannaman
- Ichor Medical Systems Inc, San Diego, CA, United States
| | - A Spentzou
- Imperial College London, Department of Medicine, Section of Virology, Group of Mucosal Infection and Immunity, London, United Kingdom
| | - P Hayes
- Human Immunology Laboratory, International AIDS Vaccine Initiative, London, United Kingdom
| | - G Bouliotis
- Imperial College London, Department of Medicine, Section of Virology, Group of Mucosal Infection and Immunity, London, United Kingdom
| | - A Vogt
- Clinical Research Center for Hair and Skin Science, Department of Dermatology and Allergy, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - S Joseph
- Medical Research Council Clinical Trials Unit at UCL, University College London, London, UK
| | - B Combadiere
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, U1135, CNRS, ERL 8255, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), 91 Boulevard de l'Hôpital, F-75013, Paris, France
| | - S McCormack
- Medical Research Council Clinical Trials Unit at UCL, University College London, London, UK
| | - R J Shattock
- Imperial College London, Department of Medicine, Section of Virology, Group of Mucosal Infection and Immunity, London, United Kingdom.
| |
Collapse
|
17
|
Du G, Hathout RM, Nasr M, Nejadnik MR, Tu J, Koning RI, Koster AJ, Slütter B, Kros A, Jiskoot W, Bouwstra JA, Mönkäre J. Intradermal vaccination with hollow microneedles: A comparative study of various protein antigen and adjuvant encapsulated nanoparticles. J Control Release 2017; 266:109-118. [PMID: 28943194 DOI: 10.1016/j.jconrel.2017.09.021] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 09/12/2017] [Accepted: 09/13/2017] [Indexed: 12/17/2022]
Abstract
In this study, we investigated the potential of intradermal delivery of nanoparticulate vaccines to modulate the immune response of protein antigen using hollow microneedles. Four types of nanoparticles covering a broad range of physiochemical parameters, namely poly (lactic-co-glycolic) (PLGA) nanoparticles, liposomes, mesoporous silica nanoparticles (MSNs) and gelatin nanoparticles (GNPs) were compared. The developed nanoparticles were loaded with a model antigen (ovalbumin (OVA)) with and without an adjuvant (poly(I:C)), followed by the characterization of size, zeta potential, morphology, and loading and release of antigen and adjuvant. An in-house developed hollow-microneedle applicator was used to inject nanoparticle suspensions precisely into murine skin at a depth of about 120μm. OVA/poly(I:C)-loaded nanoparticles and OVA/poly(I:C) solution elicited similarly strong total IgG and IgG1 responses. However, the co-encapsulation of OVA and poly(I:C) in nanoparticles significantly increased the IgG2a response compared to OVA/poly(I:C) solution. PLGA nanoparticles and liposomes induced stronger IgG2a responses than MSNs and GNPs, correlating with sustained release of the antigen and adjuvant and a smaller nanoparticle size. When examining cellular responses, the highest CD8+ and CD4+ T cell responses were induced by OVA/poly(I:C)-loaded liposomes. In conclusion, the applicator controlled hollow microneedle delivery is an excellent method for intradermal injection of nanoparticle vaccines, allowing selection of optimal nanoparticle formulations for humoral and cellular immune responses.
Collapse
Affiliation(s)
- Guangsheng Du
- Division of Drug Delivery Technology, Cluster BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Rania M Hathout
- Division of Drug Delivery Technology, Cluster BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands; Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Maha Nasr
- Division of Drug Delivery Technology, Cluster BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands; Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - M Reza Nejadnik
- Division of Drug Delivery Technology, Cluster BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Jing Tu
- Department of Supramolecular & Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Roman I Koning
- Department of Molecular Cell Biology, Section Electron Microscopy, Leiden University Medical Center, Leiden University, Leiden, The Netherlands
| | - Abraham J Koster
- Department of Molecular Cell Biology, Section Electron Microscopy, Leiden University Medical Center, Leiden University, Leiden, The Netherlands
| | - Bram Slütter
- Division of Drug Delivery Technology, Cluster BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands; Division of Biopharmaceutics, Cluster BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Alexander Kros
- Department of Supramolecular & Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Wim Jiskoot
- Division of Drug Delivery Technology, Cluster BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Joke A Bouwstra
- Division of Drug Delivery Technology, Cluster BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands.
| | - Juha Mönkäre
- Division of Drug Delivery Technology, Cluster BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| |
Collapse
|
18
|
Critical Role for Skin-Derived Migratory DCs and Langerhans Cells in TFH and GC Responses after Intradermal Immunization. J Invest Dermatol 2017; 137:1905-1913. [DOI: 10.1016/j.jid.2017.04.016] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 04/03/2017] [Accepted: 04/05/2017] [Indexed: 11/20/2022]
|
19
|
Schulze K, Ebensen T, Riese P, Prochnow B, Lehr CM, Guzmán CA. New Horizons in the Development of Novel Needle-Free Immunization Strategies to Increase Vaccination Efficacy. Curr Top Microbiol Immunol 2017; 398:207-234. [PMID: 27370343 DOI: 10.1007/82_2016_495] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The young twenty-first century has already brought several medical advances, such as a functional artificial human liver created from stem cells, improved antiviral (e.g., against HIV) and cancer (e.g., against breast cancer) therapies, interventions controlling cardiovascular diseases, and development of new and optimized vaccines (e.g., HPV vaccine). However, despite this substantial progress and the achievements of the last century, humans still suffer considerably from diseases, especially from infectious diseases. Thus, almost one-fourth of all deaths worldwide are caused directly or indirectly by infectious agents. Although vaccination has led to the control of many diseases, including smallpox, diphtheria, and tetanus, emerging diseases are still not completely contained. Furthermore, pathogens such as Bordetella pertussis undergo alterations making adaptation of the respective vaccine necessary. Moreover, insufficient implementation of vaccination campaigns leads to re-emergence of diseases which were believed to be already under control (e.g., poliomyelitis). Therefore, novel vaccination strategies need to be developed in order to meet the current challenges including lack of compliance, safety issues, and logistic constraints. In this context, mucosal and transdermal approaches constitute promising noninvasive vaccination strategies able to match these demands.
Collapse
Affiliation(s)
- Kai Schulze
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany.
| | - Thomas Ebensen
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany.
| | - Peggy Riese
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| | - Blair Prochnow
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| | - Claus-Michael Lehr
- Department of Drug Delivery, Helmholtz Centre for Infection Research (HZI), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Braunschweig, Germany.,Department of Pharmacy, Helmholtz Centre for Infection Research (HZI), Saarland University, Saarbrücken, Germany
| | - Carlos A Guzmán
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| |
Collapse
|
20
|
Centlivre M, Petit M, Hutton AJ, Dufossée M, Boccara D, Mimoun M, Soria A, Combadière B. Analysis of the skin of mice humanized for the immune system. Exp Dermatol 2017; 26:963-966. [DOI: 10.1111/exd.13340] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2017] [Indexed: 11/30/2022]
Affiliation(s)
- Mireille Centlivre
- UMR_S CR7; Centre d'Immunologie et des Maladies Infectieuses- Paris (CIMI-Paris); Sorbonne Universités; UPMC University Paris 06; Paris France
- INSERM U1135; CIMI-Paris; Paris France
| | - Maxime Petit
- UMR_S CR7; Centre d'Immunologie et des Maladies Infectieuses- Paris (CIMI-Paris); Sorbonne Universités; UPMC University Paris 06; Paris France
- INSERM U1135; CIMI-Paris; Paris France
| | - Andrew J. Hutton
- UMR_S CR7; Centre d'Immunologie et des Maladies Infectieuses- Paris (CIMI-Paris); Sorbonne Universités; UPMC University Paris 06; Paris France
- INSERM U1135; CIMI-Paris; Paris France
| | - Mélody Dufossée
- UMR_S CR7; Centre d'Immunologie et des Maladies Infectieuses- Paris (CIMI-Paris); Sorbonne Universités; UPMC University Paris 06; Paris France
- INSERM U1135; CIMI-Paris; Paris France
| | - David Boccara
- UMR_S CR7; Centre d'Immunologie et des Maladies Infectieuses- Paris (CIMI-Paris); Sorbonne Universités; UPMC University Paris 06; Paris France
- INSERM U1135; CIMI-Paris; Paris France
- Service de Chirurgie Plastique, Reconstructrice, Esthétique; Centre de Brûlées; Hôpital Saint-Louis; Assistance Publique Hôpitaux de Paris (AP-HP); Paris France
| | - Maurice Mimoun
- Service de Chirurgie Plastique, Reconstructrice, Esthétique; Centre de Brûlées; Hôpital Saint-Louis; Assistance Publique Hôpitaux de Paris (AP-HP); Paris France
| | - Angèle Soria
- UMR_S CR7; Centre d'Immunologie et des Maladies Infectieuses- Paris (CIMI-Paris); Sorbonne Universités; UPMC University Paris 06; Paris France
- INSERM U1135; CIMI-Paris; Paris France
- Service de Dermatologie et Allergologie; Hôpital Tenon; Assistance Publique Hôpitaux de Paris (AP-HP); Paris France
| | - Béhazine Combadière
- UMR_S CR7; Centre d'Immunologie et des Maladies Infectieuses- Paris (CIMI-Paris); Sorbonne Universités; UPMC University Paris 06; Paris France
- INSERM U1135; CIMI-Paris; Paris France
| |
Collapse
|
21
|
Peres C, Matos AI, Conniot J, Sainz V, Zupančič E, Silva JM, Graça L, Sá Gaspar R, Préat V, Florindo HF. Poly(lactic acid)-based particulate systems are promising tools for immune modulation. Acta Biomater 2017; 48:41-57. [PMID: 27826003 DOI: 10.1016/j.actbio.2016.11.012] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Revised: 09/20/2016] [Accepted: 11/03/2016] [Indexed: 01/05/2023]
Abstract
Poly(lactic acid) (PLA) is one of the most successful and versatile polymers explored for controlled delivery of bioactive molecules. Its attractive properties of biodegradability and biocompatibility in vivo have contributed in a meaningful way to the approval of different products by the FDA and EMA for a wide range of biomedical and pharmaceutical applications, in the past two decades. This polymer has been widely used for the preparation of particles as delivery systems of several therapeutic molecules, including vaccines. These PLA vaccine carriers have shown to induce a sustained and targeted release of different bacterial, viral and tumor-associated antigens and adjuvants in vivo, triggering distinct immune responses. The present review intends to highlight and discuss the major advantages of PLA as a promising polymer for the development of potent vaccine delivery systems against pathogens and cancer. It aims to provide a critical discussion based on preclinical data to better understand the major effect of PLA-based carrier properties on their interaction with immune cells and thus their role in the modulation of host immunity. STATEMENT OF SIGNIFICANCE During the last decades, vaccination has had a great impact on global health with the control of many severe diseases. Polymeric nanosystems have emerged as promising strategies to stabilize vaccine antigens, promoting their controlled release to phagocytic cells, thus avoiding the need for multiple administrations. One of the most promising polymers are the aliphatic polyesters, which include the poly(lactic acid). This is a highly versatile biodegradable and biocompatible polymer. Products containing this polymer have already been approved for all food and some biomedical applications. Despite all favorable characteristics presented above, PLA has been less intensively discussed than other polymers, such as its copolymer PLGA, including regarding its application in vaccination and particularly in tumor immunotherapy. The present review discusses the major advantages of poly(lactic acid) for the development of potent vaccine delivery systems, providing a critical view on the main properties that determine their effect on the modulation of immune cells.
Collapse
Affiliation(s)
- Carina Peres
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal; Louvain Drug Research Institute, Advanced Drug Delivery & Biomaterials, Université Catholique de Louvain, 1200 Brussels, Belgium; Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
| | - Ana I Matos
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | - João Conniot
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal; EPSRC Centre for Innovative Manufacturing in Emergent Macromolecular Therapies, UCL School of Pharmacy, London, UK
| | - Vanessa Sainz
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal; EPSRC Centre for Innovative Manufacturing in Emergent Macromolecular Therapies, UCL School of Pharmacy, London, UK
| | - Eva Zupančič
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | - Joana M Silva
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal; Louvain Drug Research Institute, Advanced Drug Delivery & Biomaterials, Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Luís Graça
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
| | - Rogério Sá Gaspar
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | - Véronique Préat
- Louvain Drug Research Institute, Advanced Drug Delivery & Biomaterials, Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Helena F Florindo
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal.
| |
Collapse
|
22
|
Poly(Lactic Acid) Nanoparticles Targeting α5β1 Integrin as Vaccine Delivery Vehicle, a Prospective Study. PLoS One 2016; 11:e0167663. [PMID: 27973577 PMCID: PMC5156357 DOI: 10.1371/journal.pone.0167663] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 11/17/2016] [Indexed: 12/12/2022] Open
Abstract
Biodegradable polymeric nanoparticles are vehicles of choice for drug delivery and have the ability to encapsulate and present at their surface different molecules of interest. Among these bio-nanocarriers, poly(lactic acid) (PLA) nanoparticles have been used as adjuvant and vehicle for enhanced vaccine efficacy. In order to develop an approach to efficient vaccine delivery, we developed nanoparticles to target α5β1 positive cells. We first overproduced, in bacteria, human fibronectin FNIII9/10 recombinant proteins possessing an integrin α5β1 binding site, the RGDS sequence, or a mutated form of this site. After having confirmed the integrin binding properties of these recombinant proteins in cell culture assays, we were able to formulate PLA nanoparticles with these FNIII9/10 proteins at their surface. We then confirmed, by fluorescence and confocal microscopy, an enhanced cellular uptake by α5β1+ cells of RGDS-FNIII9/10 coated PLA nanoparticles, in comparison to KGES-FNIII9/10 coated or non-coated controls. As a first vaccination approach, we prepared PLA nanoparticles co-coated with p24 (an HIV antigen), and RGDS- or KGES-FNIII9/10 proteins, followed by subcutaneous vaccine administration, in mice. Although we did not detect improvements in the apparent humoral response to p24 antigen in the serum of RGDS/p24 nanoparticle-treated mice, the presence of the FNIII proteins increased significantly the avidity index of anti-p24 antibodies compared to p24-nanoparticle-injected control mice. Future developments of this innovative targeted vaccine are discussed.
Collapse
|
23
|
Lebre F, Hearnden CH, Lavelle EC. Modulation of Immune Responses by Particulate Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:5525-5541. [PMID: 27167228 DOI: 10.1002/adma.201505395] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 01/12/2016] [Indexed: 06/05/2023]
Abstract
Many biomaterials that are in both preclinical and clinical use are particulate in nature and there is a growing appreciation that the physicochemical properties of materials have a significant impact on their efficacy. The ability of particulates to modulate adaptive immune responses has been recognized for the past century but it is only in recent decades that a mechanistic understanding of how particulates can regulate these responses has emerged. It is now clear that particulate characteristics including size, charge, shape and porosity can influence the scale and nature of both the innate and adaptive immune responses. The potential to tailor biomaterials in order to regulate the type of innate immune response induced, offers significant opportunities in terms of designing systems with increased immune-mediated efficacy.
Collapse
Affiliation(s)
- Filipa Lebre
- Adjuvant Research Group, School of Biochemistry and Immunology, Trinity Biomedical Science Institute, Trinity College Dublin, Dublin 2, D02 PN40, Ireland
- Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN) & Advanced Materials Bio-Engineering Research Centre (AMBER), Trinity College Dublin, Dublin 2, D02 PN40, Ireland
| | - Claire H Hearnden
- Adjuvant Research Group, School of Biochemistry and Immunology, Trinity Biomedical Science Institute, Trinity College Dublin, Dublin 2, D02 PN40, Ireland
| | - Ed C Lavelle
- Adjuvant Research Group, School of Biochemistry and Immunology, Trinity Biomedical Science Institute, Trinity College Dublin, Dublin 2, D02 PN40, Ireland
- Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN) & Advanced Materials Bio-Engineering Research Centre (AMBER), Trinity College Dublin, Dublin 2, D02 PN40, Ireland
| |
Collapse
|
24
|
Glass JJ, Kent SJ, De Rose R. Enhancing dendritic cell activation and HIV vaccine effectiveness through nanoparticle vaccination. Expert Rev Vaccines 2016; 15:719-29. [PMID: 26783186 DOI: 10.1586/14760584.2016.1141054] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Novel vaccination approaches are needed to prevent and control human immunodeficiency virus (HIV) infection. A growing body of literature demonstrates the potential of nanotechnology to modulate the human immune system and generate targeted, controlled immune responses. In this Review, we summarize important advances in how 'nanovaccinology' can be used to develop safe and effective vaccines for HIV. We highlight the central role of dendritic cells in the immune response to vaccination and describe how nanotechnology can be used to enhance delivery to and activation of these important antigen-presenting cells. Strategies employed to improve biodistribution are discussed, including improved lymph node delivery and mucosal penetration concepts, before detailing methods to enhance the humoral and/or cellular immune response to vaccines. We conclude with a commentary on the current state of nanovaccinology.
Collapse
Affiliation(s)
- Joshua J Glass
- a ARC Centre of Excellence in Convergent Bio-Nano Science and Technology , The University of Melbourne , Melbourne , Australia.,b Department of Microbiology and Immunology , Peter Doherty Institute for Infection and Immunity, The University of Melbourne , Melbourne , Australia
| | - Stephen J Kent
- a ARC Centre of Excellence in Convergent Bio-Nano Science and Technology , The University of Melbourne , Melbourne , Australia.,b Department of Microbiology and Immunology , Peter Doherty Institute for Infection and Immunity, The University of Melbourne , Melbourne , Australia.,c Melbourne Sexual Health Centre and Department of Infectious Diseases , Alfred Health, Central Clinical School, Monash University , Melbourne , Australia
| | - Robert De Rose
- a ARC Centre of Excellence in Convergent Bio-Nano Science and Technology , The University of Melbourne , Melbourne , Australia.,b Department of Microbiology and Immunology , Peter Doherty Institute for Infection and Immunity, The University of Melbourne , Melbourne , Australia
| |
Collapse
|
25
|
Intradermal vaccination with un-adjuvanted sub-unit vaccines triggers skin innate immunity and confers protective respiratory immunity in domestic swine. Vaccine 2016; 34:914-22. [DOI: 10.1016/j.vaccine.2015.12.058] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 12/16/2015] [Accepted: 12/24/2015] [Indexed: 11/22/2022]
|
26
|
Intradermal injection of an anti-Langerin-HIVGag fusion vaccine targets epidermal Langerhans cells in nonhuman primates and can be tracked in vivo. Eur J Immunol 2016; 46:689-700. [DOI: 10.1002/eji.201545465] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 10/20/2015] [Accepted: 12/14/2015] [Indexed: 01/08/2023]
|
27
|
Su F, Patel GB, Hu S, Chen W. Induction of mucosal immunity through systemic immunization: Phantom or reality? Hum Vaccin Immunother 2016; 12:1070-9. [PMID: 26752023 DOI: 10.1080/21645515.2015.1114195] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Generation of protective immunity at mucosal surfaces can greatly assist the host defense against pathogens which either cause disease at the mucosal epithelial barriers or enter the host through these surfaces. Although mucosal routes of immunization, such as intranasal and oral, are being intensely explored and appear promising for eliciting protective mucosal immunity in mammals, their application in clinical practice has been limited due to technical and safety related challenges. Most of the currently approved human vaccines are administered via systemic (such as intramuscular and subcutaneous) routes. Whereas these routes are acknowledged as being capable to elicit antigen-specific systemic humoral and cell-mediated immune responses, they are generally perceived as incapable of generating IgA responses or protective mucosal immunity. Nevertheless, currently licensed systemic vaccines do provide effective protection against mucosal pathogens such as influenza viruses and Streptococcus pneumoniae. However, whether systemic immunization induces protective mucosal immunity remains a controversial topic. Here we reviewed the current literature and discussed the potential of systemic routes of immunization for the induction of mucosal immunity.
Collapse
Affiliation(s)
- Fei Su
- a Human Health Therapeutics, National Research Council Canada , Ottawa , Ontario , Canada.,b Department of Veterinary Medicine, College of Animal Sciences , Zhejiang University , Hangzhou , Zhejiang , PR China
| | - Girishchandra B Patel
- a Human Health Therapeutics, National Research Council Canada , Ottawa , Ontario , Canada
| | - Songhua Hu
- a Human Health Therapeutics, National Research Council Canada , Ottawa , Ontario , Canada
| | - Wangxue Chen
- a Human Health Therapeutics, National Research Council Canada , Ottawa , Ontario , Canada.,c Department of Biology, Brock University , St. Catharines , Ontario , Canada
| |
Collapse
|
28
|
Herath S, Le Heron A, Colloca S, Bergin P, Patterson S, Weber J, Tatoud R, Dickson G. Analysis of T cell responses to chimpanzee adenovirus vectors encoding HIV gag-pol-nef antigen. Vaccine 2015; 33:7283-7289. [PMID: 26546736 PMCID: PMC4678176 DOI: 10.1016/j.vaccine.2015.10.111] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 08/18/2015] [Accepted: 10/27/2015] [Indexed: 11/25/2022]
Abstract
Adenoviruses have been shown to be both immunogenic and efficient at presenting HIV proteins but recent trials have suggested that they may play a role in increasing the risk of HIV acquisition. This risk may be associated with the presence of pre-existing immunity to the viral vectors. Chimpanzee adenoviruses (chAd) have low seroprevalence in human populations and so reduce this risk. ChAd3 and chAd63 were used to deliver an HIV gag, pol and nef transgene. ELISpot analysis of T cell responses in mice showed that both chAd vectors were able to induce an immune response to Gag and Pol peptides but that only the chAd3 vector induced responses to Nef peptides. Although the route of injection did not influence the magnitude of immune responses to either chAd vector, the dose of vector did. Taken together these results demonstrate that chimpanzee adenoviruses are suitable vector candidates for the delivery of HIV proteins and could be used for an HIV vaccine and furthermore the chAd3 vector produces a broader response to the HIV transgene.
Collapse
Affiliation(s)
- S Herath
- School of Biological Sciences, Royal Holloway, University of London, Egham TW20 0EX, Surrey, UK
| | - A Le Heron
- School of Biological Sciences, Royal Holloway, University of London, Egham TW20 0EX, Surrey, UK
| | - S Colloca
- ReiThera Srl, Viale Citta d'Europa 679, 00144 Rome, Italy
| | - P Bergin
- Department of Immunology, Imperial College London, London, UK
| | - S Patterson
- Department of Immunology, Imperial College London, London, UK
| | - J Weber
- Department of Immunology, Imperial College London, London, UK
| | - R Tatoud
- Department of Immunology, Imperial College London, London, UK
| | - G Dickson
- School of Biological Sciences, Royal Holloway, University of London, Egham TW20 0EX, Surrey, UK.
| |
Collapse
|
29
|
Vacas-Córdoba E, Climent N, De La Mata FJ, Plana M, Gómez R, Pion M, García F, Muñoz-Fernández MÁ. Dendrimers as nonviral vectors in dendritic cell-based immunotherapies against human immunodeficiency virus: steps toward their clinical evaluation. Nanomedicine (Lond) 2015; 9:2683-702. [PMID: 25529571 DOI: 10.2217/nnm.14.172] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Although the antiretroviral therapy has led to a long-term control of HIV-1, it does not cure the disease. Therefore, several strategies are being explored to develop an effective HIV vaccine, such as the use of dendritic cells (DCs). DC-based immunotherapies bear different limitations, but one of the most critical point is the antigen loading into DCs. Nanotechnology offers new tools to overcome these constraints. Dendrimers have been proposed as carriers for targeted delivery of HIV antigens in DCs. These nanosystems can release the antigens in a controlled manner leading to a more potent specific immune response. This review focuses on the first steps for clinical development of dendrimers to assess their safety and potential use in DC-based immunotherapies against HIV.
Collapse
Affiliation(s)
- Enrique Vacas-Córdoba
- Laboratorio InmunoBiología Molecular, Sección Inmunologia, Hospital General Universitario Gregorio Marañón, Madrid, Spain; Instituto de Investigación Sanitaria del Gregorio Marañón, C/Dr. Esquerdo 46, 28007, Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Comparison of Models for Bubonic Plague Reveals Unique Pathogen Adaptations to the Dermis. Infect Immun 2015; 83:2855-61. [PMID: 25939507 DOI: 10.1128/iai.00140-15] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 04/21/2015] [Indexed: 12/24/2022] Open
Abstract
UNLABELLED Vector-borne pathogens are inoculated in the skin of mammals, most likely in the dermis. Despite this, subcutaneous (s.c.) models of infection are broadly used in many fields, including Yersinia pestis pathogenesis. We expand on a previous report where we implemented intradermal (i.d.) inoculations to study bacterial dissemination during bubonic plague and compare this model with an s.c. MODEL We found that i.d. inoculations result in faster kinetics of infection and that bacterial dose influenced mouse survival after i.d. but not s.c. inoculation. Moreover, a deletion mutant of rovA, previously shown to be moderately attenuated in the s.c. model, was severely attenuated in the i.d. MODEL Lastly, based on previous observations where a population bottleneck from the skin to lymph nodes was observed after i.d., but not after s.c., inoculations, we used the latter model as a strategy to identify an additional bottleneck in bacterial dissemination from lymph nodes to the bloodstream. Our data indicate that the more biologically relevant i.d. model of bubonic plague differs significantly from the s.c. model in multiple aspects of infection. These findings reveal adaptations of Y. pestis to the dermis and how these adaptations can define the progression of disease. They also emphasize the importance of using a relevant route of infection when addressing host-pathogen interactions.
Collapse
|
31
|
Mittal A, Schulze K, Ebensen T, Weißmann S, Hansen S, Lehr CM, Guzmán CA. Efficient nanoparticle-mediated needle-free transcutaneous vaccination via hair follicles requires adjuvantation. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2015; 11:147-54. [DOI: 10.1016/j.nano.2014.08.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 07/26/2014] [Accepted: 08/26/2014] [Indexed: 12/14/2022]
|
32
|
Vogt A, Rancan F, Ahlberg S, Nazemi B, Choe CS, Darvin ME, Hadam S, Blume-Peytavi U, Loza K, Diendorf J, Epple M, Graf C, Rühl E, Meinke MC, Lademann J. Interaction of dermatologically relevant nanoparticles with skin cells and skin. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2014; 5:2363-2373. [PMID: 25551064 PMCID: PMC4273260 DOI: 10.3762/bjnano.5.245] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Accepted: 11/14/2014] [Indexed: 06/04/2023]
Abstract
The investigation of nanoparticle interactions with tissues is complex. High levels of standardization, ideally testing of different material types in the same biological model, and combinations of sensitive imaging and detection methods are required. Here, we present our studies on nanoparticle interactions with skin, skin cells, and biological media. Silica, titanium dioxide and silver particles were chosen as representative examples for different types of skin exposure to nanomaterials, e.g., unintended environmental exposure (silica) versus intended exposure through application of sunscreen (titanium dioxide) or antiseptics (silver). Because each particle type exhibits specific physicochemical properties, we were able to apply different combinations of methods to examine skin penetration and cellular uptake, including optical microscopy, electron microscopy, X-ray microscopy on cells and tissue sections, flow cytometry of isolated skin cells as well as Raman microscopy on whole tissue blocks. In order to assess the biological relevance of such findings, cell viability and free radical production were monitored on cells and in whole tissue samples. The combination of technologies and the joint discussion of results enabled us to look at nanoparticle-skin interactions and the biological relevance of our findings from different angles.
Collapse
Affiliation(s)
- Annika Vogt
- Department of Dermatology and Allergy, Charité-Universitaetsmedizin Berlin, Chariteplatz 1, 10117 Berlin, Germany
| | - Fiorenza Rancan
- Department of Dermatology and Allergy, Charité-Universitaetsmedizin Berlin, Chariteplatz 1, 10117 Berlin, Germany
| | - Sebastian Ahlberg
- Department of Dermatology and Allergy, Charité-Universitaetsmedizin Berlin, Chariteplatz 1, 10117 Berlin, Germany
| | - Berouz Nazemi
- Department of Dermatology and Allergy, Charité-Universitaetsmedizin Berlin, Chariteplatz 1, 10117 Berlin, Germany
| | - Chun Sik Choe
- Department of Dermatology and Allergy, Charité-Universitaetsmedizin Berlin, Chariteplatz 1, 10117 Berlin, Germany
- Kim Il Sung University, Ryongnam-Dong, Taesong District, Pyongyang, DPR Korea
| | - Maxim E Darvin
- Department of Dermatology and Allergy, Charité-Universitaetsmedizin Berlin, Chariteplatz 1, 10117 Berlin, Germany
| | - Sabrina Hadam
- Department of Dermatology and Allergy, Charité-Universitaetsmedizin Berlin, Chariteplatz 1, 10117 Berlin, Germany
| | - Ulrike Blume-Peytavi
- Department of Dermatology and Allergy, Charité-Universitaetsmedizin Berlin, Chariteplatz 1, 10117 Berlin, Germany
| | - Kateryna Loza
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Universitaetsstr. 5-7, 45117 Essen, Germany
| | - Jörg Diendorf
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Universitaetsstr. 5-7, 45117 Essen, Germany
| | - Matthias Epple
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Universitaetsstr. 5-7, 45117 Essen, Germany
| | - Christina Graf
- Physical and Theoretical Chemistry, Freie Universitaet Berlin, Takustr. 3, 14195 Berlin, Germany
| | - Eckart Rühl
- Physical and Theoretical Chemistry, Freie Universitaet Berlin, Takustr. 3, 14195 Berlin, Germany
| | - Martina C Meinke
- Department of Dermatology and Allergy, Charité-Universitaetsmedizin Berlin, Chariteplatz 1, 10117 Berlin, Germany
| | - Jürgen Lademann
- Department of Dermatology and Allergy, Charité-Universitaetsmedizin Berlin, Chariteplatz 1, 10117 Berlin, Germany
| |
Collapse
|
33
|
Reguzova AY, Karpenko LI, Mechetina LV, Belyakov IM. Peptide-MHC multimer-based monitoring of CD8 T-cells in HIV-1 infection and AIDS vaccine development. Expert Rev Vaccines 2014; 14:69-84. [PMID: 25373312 DOI: 10.1586/14760584.2015.962520] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The use of MHC multimers allows precise and direct detecting and analyzing of antigen-specific T-cell populations and provides new opportunities to characterize T-cell responses in humans and animals. MHC-multimers enable us to enumerate specific T-cells targeting to viral, tumor and vaccine antigens with exceptional sensitivity and specificity. In the field of HIV/SIV immunology, this technique provides valuable information about the frequencies of HIV- and SIV-specific CD8(+) cytotoxic T lymphocytes (CTLs) in different tissues and sites of infection, AIDS progression, and pathogenesis. Peptide-MHC multimer technology remains a very sensitive tool in detecting virus-specific T -cells for evaluation of the immunogenicity of vaccines against HIV-1 in preclinical trials. Moreover, it helps to understand how immune responses are formed following vaccination in the dynamics from priming point until T-cell memory is matured. Here we review a diversity of peptide-MHC class I multimer applications for fundamental immunological studies in different aspects of HIV/SIV infection and vaccine development.
Collapse
Affiliation(s)
- Alena Y Reguzova
- State Research Center of Virology and Biotechnology "Vector", Koltsovo, Novosibirsk region, 630559, Russia
| | | | | | | |
Collapse
|
34
|
Levin C, Perrin H, Combadiere B. Tailored immunity by skin antigen-presenting cells. Hum Vaccin Immunother 2014; 11:27-36. [PMID: 25483512 PMCID: PMC4514408 DOI: 10.4161/hv.34299] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 08/04/2014] [Indexed: 12/12/2022] Open
Abstract
Skin vaccination aims at targeting epidermal and dermal antigen-presenting cells (APCs), indeed many subsets of different origin endowed with various functions populate the skin. The idea that the skin could represent a particularly potent site to induce adaptive and protective immune response emerged after the success of vaccinia virus vaccination by skin scarification. Recent advances have shown that multiple subsets of APCs coexist in the skin and participate in immunity to infectious diseases. Induction of an adaptive immune response depends on the initial recognition and capture of antigens by skin APCs and their transport to lymphoid organs. Innovative strategies of vaccination have thus been developed to target skin APCs for tailored immunity, hence this review will discuss recent insights into skin APC subsets characterization and how they can shape adaptive immune responses.
Collapse
Affiliation(s)
- Clement Levin
- Sorbonne Universités; UPMC University Paris 06; UMR S CR7; Centre d’Immunologie et de Maladies Infectieuses; Paris, France
- INSERM U1135; Paris, France
| | - Helene Perrin
- Sorbonne Universités; UPMC University Paris 06; UMR S CR7; Centre d’Immunologie et de Maladies Infectieuses; Paris, France
- INSERM U1135; Paris, France
| | - Behazine Combadiere
- Sorbonne Universités; UPMC University Paris 06; UMR S CR7; Centre d’Immunologie et de Maladies Infectieuses; Paris, France
- INSERM U1135; Paris, France
| |
Collapse
|
35
|
Climent N, Munier S, Piqué N, García F, Pavot V, Primard C, Casanova V, Gatell JM, Verrier B, Gallart T. Loading dendritic cells with PLA-p24 nanoparticles or MVA expressing HIV genes induces HIV-1-specific T cell responses. Vaccine 2014; 32:6266-76. [PMID: 25240755 DOI: 10.1016/j.vaccine.2014.09.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 08/28/2014] [Accepted: 09/05/2014] [Indexed: 02/05/2023]
Abstract
Since recent data suggest that nanoparticles and modified vaccinia ankara (MVA) vectors could play a pivotal role in HIV-1 therapeutics and vaccine design, in an ex vivo model of human monocyte-derived dendritic cells (MDDCs), we compared two different loading strategies with HIV-1 vaccine vehicles, either viral or synthetic derived. We used polylactic acid (PLA) colloidal biodegradable particles, coated with HIV Gag antigens (p24), and MVA expressing Gag (rMVA-gag and rMVA-gag/trans membrane) or Tat, Nef and Rev genes (rMVA tat+rev and rMVA nef). PLA-p24 captured by MDDCs from HIV-1 individuals induced a slight degree of MDDC maturation, cytokine and chemokine secretion and migration towards a gradient of CCL19 chemokine and highly increased HIV-specific CD8(+) T-cell proliferation compared with p24 alone. After complete maturation induction of PLA-p24-pulsed MDDCs, maximal migration towards a gradient of CCL19 chemokine and induction of HIV-specific T-cell proliferation (two-fold higher for CD4(+) than CD8(+)) and cytokine secretion (IFN-γ and IL-2) in the co-culture were observed. Upon exposure to MVA-gag, MDDCs produced cytokines and chemokines and maintained their capacity to migrate to a gradient of CCL19. MDDCs infected with MVA-gag and MVA-gag trans-membrane were able to induce HIV-specific CD8(+) proliferation and secretion of IFN-γ, IL-2, IL-6 and TNF-α. We conclude that both HIV antigens loading strategies (PLA-p24 nanoparticles or MVA expressing HIV genes) induce HIV-1-specific T-cell responses, which are able to kill autologous gag-expressing cells. Thus, they are plausible candidates for the development of anti-HIV vaccines.
Collapse
Affiliation(s)
- Núria Climent
- Service of Immunology, Hospital Clínic de Barcelona, Barcelona, Spain; AIDS Research Group, and Catalonian Center for HIV Vaccines (HIVACAT), Barcelona, Spain.
| | - Séverine Munier
- Institut de Biology et Chimie des Protéines, UMR5305, UCBL, 7 Passage du Vercors, 69367 Lyon Cedex 07, France
| | - Núria Piqué
- Department of Microbiology and Parasitology, Pharmacy Faculty, Universitat de Barcelona, Barcelona, Spain
| | - Felipe García
- AIDS Research Group, and Catalonian Center for HIV Vaccines (HIVACAT), Barcelona, Spain; Infectious Diseases and AIDS Unit, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Vincent Pavot
- Institut de Biology et Chimie des Protéines, UMR5305, UCBL, 7 Passage du Vercors, 69367 Lyon Cedex 07, France
| | - Charlotte Primard
- Institut de Biology et Chimie des Protéines, UMR5305, UCBL, 7 Passage du Vercors, 69367 Lyon Cedex 07, France
| | - Victor Casanova
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - José María Gatell
- AIDS Research Group, and Catalonian Center for HIV Vaccines (HIVACAT), Barcelona, Spain; Infectious Diseases and AIDS Unit, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Bernard Verrier
- Institut de Biology et Chimie des Protéines, UMR5305, UCBL, 7 Passage du Vercors, 69367 Lyon Cedex 07, France
| | - Teresa Gallart
- Service of Immunology, Hospital Clínic de Barcelona, Barcelona, Spain; AIDS Research Group, and Catalonian Center for HIV Vaccines (HIVACAT), Barcelona, Spain
| |
Collapse
|
36
|
Khan T, Heffron CL, High KP, Roberts PC. Membrane-bound IL-12 and IL-23 serve as potent mucosal adjuvants when co-presented on whole inactivated influenza vaccines. Virol J 2014; 11:78. [PMID: 24884849 PMCID: PMC4036309 DOI: 10.1186/1743-422x-11-78] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 04/23/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Potent and safe adjuvants are needed to improve the efficacy of parenteral and mucosal vaccines. Cytokines, chemokines and growth factors have all proven to be effective immunomodulatory adjuvants when administered with a variety of antigens. We have previously evaluated the efficacy of membrane-anchored interleukins (IL) such as IL-2 and IL-4 co-presented as Cytokine-bearing Influenza Vaccines (CYT-IVACs) using a mouse model of influenza challenge. FINDINGS Here, we describe studies evaluating the parenteral and mucosal adjuvanticity of membrane-bound IL-12 and IL-23 CYT-IVACs in young adult mice. Mucosal immunization using IL-12 and IL-23 bearing whole influenza virus vaccine (WIV) was more effective at eliciting virus-specific nasal IgA and reducing viral lung burden following challenge compared to control WIV vaccinated animals. Both IL-12 and IL-23 bearing WIV elicited the highest anti-viral IgA levels in serum and nasal washes. CONCLUSIONS This study highlights for the first time the mucosal adjuvant potential of IL-12 and IL-23 CYT-IVAC formulations in eliciting mucosal immune responses and reducing viral lung burden. The co-presentation of immunomodulators in direct context with viral antigen in whole inactivated viral vaccines may provide a means to significantly lower the dose of vaccine required for protection.
Collapse
Affiliation(s)
| | | | | | - Paul C Roberts
- Department of Biomedical Sciences and Pathobiology, 1981 Kraft Drive, Corporate Research Center, Virginia Tech, Blacksburg, Virginia 24061, USA.
| |
Collapse
|
37
|
de Souza RD, Batista MT, Luiz WB, Cavalcante RCM, Amorim JH, Bizerra RSP, Martins EG, de Souza Ferreira LC. Bacillus subtilis spores as vaccine adjuvants: further insights into the mechanisms of action. PLoS One 2014; 9:e87454. [PMID: 24475289 PMCID: PMC3903701 DOI: 10.1371/journal.pone.0087454] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 12/27/2013] [Indexed: 12/20/2022] Open
Abstract
Bacillus subtilis spores have received growing attention regarding potential biotechnological applications, including the use as probiotics and in vaccine formulations. B. subtilis spores have also been shown to behave as particulate vaccine adjuvants, promoting the increase of antibody responses after co-administration with antigens either admixed or adsorbed on the spore surface. In this study, we further evaluated the immune modulatory properties of B. subtilis spores using a recombinant HIV gag p24 protein as a model antigen. The adjuvant effects of B. subtilis spores were not affected by the genetic background of the mouse lineage and did not induce significant inflammatory or deleterious effects after parenteral administration. Our results demonstrated that co-administration, but not adsorption to the spore surface, enhanced the immunogenicity of that target antigen after subcutaneous administration to BALB/c and C57BL/6 mice. Spores promoted activation of antigen presenting cells as demonstrated by the upregulation of MHC and CD40 molecules and enhanced secretion of pro-inflammatory cytokines by murine dendritic cells. In addition, in vivo studies indicated a direct role of the innate immunity on the immunomodulatory properties of B. subtilis spores, as demonstrated by the lack of adjuvant effects on MyD88 and TLR2 knockout mouse strains.
Collapse
Affiliation(s)
- Renata Damásio de Souza
- Vaccine Development Laboratory, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Milene Tavares Batista
- Vaccine Development Laboratory, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Wilson Barros Luiz
- Vaccine Development Laboratory, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Jaime Henrique Amorim
- Vaccine Development Laboratory, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Raíza Sales Pereira Bizerra
- Vaccine Development Laboratory, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Eduardo Gimenes Martins
- Vaccine Development Laboratory, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Luís Carlos de Souza Ferreira
- Vaccine Development Laboratory, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
38
|
Rancan F, Blume-Peytavi U, Vogt A. Utilization of biodegradable polymeric materials as delivery agents in dermatology. Clin Cosmet Investig Dermatol 2014; 7:23-34. [PMID: 24470766 PMCID: PMC3891488 DOI: 10.2147/ccid.s39559] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Biodegradable polymeric materials are ideal carrier systems for biomedical applications. Features like controlled and sustained delivery, improved drug pharmacokinetics, reduced side effects and safe degradation make the use of these materials very attractive in a lot of medical fields, with dermatology included. A number of studies have shown that particle-based formulations can improve the skin penetration of topically applied drugs. However, for a successful translation of these promising results into a clinical application, a more rational approach is needed to take into account the different properties of diseased skin and the fate of these polymeric materials after topical application. In fact, each pathological skin condition poses different challenges and the way diseased skin interacts with polymeric carriers might be markedly different to that of healthy skin. In most inflammatory skin conditions, the skin's barrier is impaired and the local immune system is activated. A better understanding of such mechanisms has the potential to improve the efficacy of carrier-based dermatotherapy. Such knowledge would allow the informed choice of the type of polymeric carrier depending on the skin condition to be treated, the type of drug to be loaded, and the desired release kinetics. Furthermore, a better control of polymer degradation and release properties in accordance with the skin environment would improve the safety and the selectivity of drug release. This review aims at summarizing the current knowledge on how polymeric delivery systems interact with healthy and diseased skin, giving an overview of the challenges that different pathological skin conditions pose to the development of safer and more specific dermatotherapies.
Collapse
Affiliation(s)
- Fiorenza Rancan
- Clinical Research Center for Hair and Skin Science, Department of Dermatology and Allergy, Charité - Universitätsmedizin Berlin, Germany
| | - Ulrike Blume-Peytavi
- Clinical Research Center for Hair and Skin Science, Department of Dermatology and Allergy, Charité - Universitätsmedizin Berlin, Germany
| | - Annika Vogt
- Clinical Research Center for Hair and Skin Science, Department of Dermatology and Allergy, Charité - Universitätsmedizin Berlin, Germany
| |
Collapse
|
39
|
Rancan F, Amselgruber S, Hadam S, Munier S, Pavot V, Verrier B, Hackbarth S, Combadiere B, Blume-Peytavi U, Vogt A. Particle-based transcutaneous administration of HIV-1 p24 protein to human skin explants and targeting of epidermal antigen presenting cells. J Control Release 2013; 176:115-22. [PMID: 24384300 DOI: 10.1016/j.jconrel.2013.12.022] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 12/02/2013] [Accepted: 12/20/2013] [Indexed: 12/11/2022]
Abstract
Transcutaneous immunization is a promising vaccination strategy for the treatment of infectious diseases and cancer. In this study, we investigate the combination of cyanoacrylate skin surface stripping (CSSS) and particle-based antigen delivery to target the HIV-1 p24 protein to skin antigen presenting cells (APC). The CSSS treatment pre-activates skin APC and opens hair follicles, where protein-loaded particles accumulate and allow for sustained delivery of the loaded antigen to perifollicular APC. We found that poly-lactic acid (PLA) and polystyrene (PS) particles targeted the adsorbed HIV-1 p24 protein to the hair follicles. Small amounts of PS and PLA particles were found to translocate to the epidermis and be internalized by skin cells, whereas most of the particles aggregated in the hair follicle canal, where they released the loaded antigen. The p24 protein diffused to the epidermis and dermis and was detected in skin cells, especially in Langerhans cells and dermal dendritic cells. Furthermore, the combination of CSSS and particle-based delivery resulted in activation and maturation of Langerhans cells (HLA-DR, CD80 and CD83). We conclude that particle-based antigen delivery across partially disrupted skin barrier is a feasible and effective approach to needle-free transcutaneous vaccination.
Collapse
Affiliation(s)
- Fiorenza Rancan
- Clinical Research Center for Hair and Skin Science, Department of Dermatology and Allergy, Charité-Universitätsmedizin Berlin, Berlin, Germany.
| | - Sarah Amselgruber
- Clinical Research Center for Hair and Skin Science, Department of Dermatology and Allergy, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Sabrina Hadam
- Clinical Research Center for Hair and Skin Science, Department of Dermatology and Allergy, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Sevérine Munier
- Institut de Biologie et Chimie des Protéines UMR 5305, CNRS/Université de Lyon, France
| | - Vincent Pavot
- Institut de Biologie et Chimie des Protéines UMR 5305, CNRS/Université de Lyon, France
| | - Bernard Verrier
- Institut de Biologie et Chimie des Protéines UMR 5305, CNRS/Université de Lyon, France
| | | | - Behazine Combadiere
- Laboratory of Immunity and Infection, Université Pierre et Marie Curie (UPMC University Paris 06), Paris Cedex 13, France
| | - Ulrike Blume-Peytavi
- Clinical Research Center for Hair and Skin Science, Department of Dermatology and Allergy, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Annika Vogt
- Clinical Research Center for Hair and Skin Science, Department of Dermatology and Allergy, Charité-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
40
|
Mastelic B, Garçon N, Del Giudice G, Golding H, Gruber M, Neels P, Fritzell B. Predictive markers of safety and immunogenicity of adjuvanted vaccines. Biologicals 2013; 41:458-68. [PMID: 24071553 DOI: 10.1016/j.biologicals.2013.08.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 08/29/2013] [Accepted: 08/31/2013] [Indexed: 01/08/2023] Open
Abstract
Vaccination represents one of the greatest public health triumphs; in part due to the effect of adjuvants that have been included in vaccine preparations to boost the immune responses through different mechanisms. Although a variety of novel adjuvants have been under development, only a limited number have been approved by regulatory authorities for human vaccines. This report reflects the conclusions of a group of scientists from academia, regulatory agencies and industry who attended a conference on the current state of the art in the adjuvant field. Held at the U.S. Pharmacopeial Convention (USP) in Rockville, Maryland, USA, from 18 to 19 April 2013 and organized by the International Association for Biologicals (IABS), the conference focused particularly on the future development of effective adjuvants and adjuvanted vaccines and on overcoming major hurdles, such as safety and immunogenicity assessment, as well as regulatory scrutiny. More information on the conference output can be found on the IABS website, http://www.iabs.org/.
Collapse
Affiliation(s)
- Beatris Mastelic
- WHO Center for Vaccinology and Neonatal Immunology, University of Geneva, CMU, 1 rue Michel-Servet, 1211 Geneva 4, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
41
|
Rochereau N, Drocourt D, Perouzel E, Pavot V, Redelinghuys P, Brown GD, Tiraby G, Roblin X, Verrier B, Genin C, Corthésy B, Paul S. Dectin-1 is essential for reverse transcytosis of glycosylated SIgA-antigen complexes by intestinal M cells. PLoS Biol 2013; 11:e1001658. [PMID: 24068891 PMCID: PMC3775721 DOI: 10.1371/journal.pbio.1001658] [Citation(s) in RCA: 134] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 08/08/2013] [Indexed: 01/27/2023] Open
Abstract
This work reports the long-awaited identification of Dectin-1 and Siglec-5 as the M cell co-receptors that mediate the reverse transcytosis of secretory IgA molecules to mount a gut immune response. Intestinal microfold (M) cells possess a high transcytosis capacity and are able to transport a broad range of materials including particulate antigens, soluble macromolecules, and pathogens from the intestinal lumen to inductive sites of the mucosal immune system. M cells are also the primary pathway for delivery of secretory IgA (SIgA) to the gut-associated lymphoid tissue. However, although the consequences of SIgA uptake by M cells are now well known and described, the mechanisms whereby SIgA is selectively bound and taken up remain poorly understood. Here we first demonstrate that both the Cα1 region and glycosylation, more particularly sialic acid residues, are involved in M cell–mediated reverse transcytosis. Second, we found that SIgA is taken up by M cells via the Dectin-1 receptor, with the possible involvement of Siglec-5 acting as a co-receptor. Third, we establish that transcytosed SIgA is taken up by mucosal CX3CR1+ dendritic cells (DCs) via the DC-SIGN receptor. Fourth, we show that mucosal and systemic antibody responses against the HIV p24-SIgA complexes administered orally is strictly dependent on the expression of Dectin-1. Having deciphered the mechanisms leading to specific targeting of SIgA-based Ag complexes paves the way to the use of such a vehicle for mucosal vaccination against various infectious diseases. Secretory IgA (SIgA) antibodies are secreted into the gut lumen and are considered to be a first line of defense in protecting the intestinal epithelium from gut pathogens. SIgA patrol the mucus and are usually known to help immune tolerance via entrapping dietary antigens and microorganisms and other mechanisms. SIgA, in complex with its antigens, can also be taken back up by the intestinal epithelium in a process known as reverse transcytosis. SIgA can thereby promote the uptake and delivery of antigens from the intestinal lumen to the Gut-Associated Lymphoid Tissues (GALT), influencing inflammatory responses. This reverse transcytosis of SIgA is mediated by specialized epithelial M cells. Because M cells possess the ability to take up antigens and are therefore important to the local immune system, they are a key target for the specific delivery of novel mucosal vaccines against various diseases. M cell receptors that take up the SIgA-antigen complexes, which serve as mucosal vaccine vehicles, represent an important aspect of this vaccine strategy. The identification of SIgA receptor(s) on the surface of M cells has, however, remained elusive for more than a decade. In this study, we now identify Dectin-1 and Siglec-5 as the key receptors for M cell–mediated reverse transcytosis of SIgA complexes. We further find that the glycosylation modification, and particularly sialylation, of SIgA is required for its uptake by M cells. We show that, when administered orally in complex with SIgA, the HIV p24 antigen is taken up in a strictly Dectin-1-dependent manner to stimulate a mucosal and systemic antibody response. These findings are considered important for understanding gut immunity.
Collapse
MESH Headings
- Animals
- Antigen-Antibody Complex/immunology
- Antigen-Antibody Complex/metabolism
- Antigens, CD/metabolism
- Antigens, Differentiation, Myelomonocytic/metabolism
- CHO Cells
- CX3C Chemokine Receptor 1
- Caco-2 Cells
- Cell Adhesion Molecules/metabolism
- Cell Line
- Cricetulus
- Dendritic Cells/immunology
- Dendritic Cells/metabolism
- Glycosylation
- HIV Core Protein p24/immunology
- HeLa Cells
- Humans
- Immunoglobulin A/immunology
- Immunoglobulin A, Secretory/immunology
- Intestinal Mucosa/cytology
- Intestinal Mucosa/immunology
- Intestinal Mucosa/metabolism
- Intestines/cytology
- Lectins/metabolism
- Lectins, C-Type/biosynthesis
- Lectins, C-Type/metabolism
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- N-Acetylneuraminic Acid/chemistry
- Receptors, Cell Surface/metabolism
- Receptors, Chemokine/metabolism
- Transcytosis/immunology
Collapse
Affiliation(s)
- Nicolas Rochereau
- GIMAP/EA3064, INSERM CIE3 Vaccinology, Université de Lyon, Saint-Etienne, France
| | | | | | - Vincent Pavot
- Institut de Biologie et Chimie des Protéines, FRE3310/CNRS, Université de Lyon, France
| | - Pierre Redelinghuys
- Section of Infection and Immunity, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Gordon D. Brown
- Section of Infection and Immunity, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | | | - Xavier Roblin
- GIMAP/EA3064, INSERM CIE3 Vaccinology, Université de Lyon, Saint-Etienne, France
| | - Bernard Verrier
- Institut de Biologie et Chimie des Protéines, FRE3310/CNRS, Université de Lyon, France
| | - Christian Genin
- GIMAP/EA3064, INSERM CIE3 Vaccinology, Université de Lyon, Saint-Etienne, France
| | - Blaise Corthésy
- R&D Laboratory of the Division of Immunology and Allergy, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Stéphane Paul
- GIMAP/EA3064, INSERM CIE3 Vaccinology, Université de Lyon, Saint-Etienne, France
- * E-mail:
| |
Collapse
|
42
|
Launay O, Surenaud M, Desaint C, Ben Hamouda N, Pialoux G, Bonnet B, Poizot-Martin I, Gonzales G, Cuzin L, Bourgault-Villada I, Lévy Y, Choppin J, Durier C. Long-term CD4(+) and CD8(+) T-cell responses induced in HIV-uninfected volunteers following intradermal or intramuscular administration of an HIV-lipopeptide vaccine (ANRS VAC16). Vaccine 2013; 31:4406-15. [PMID: 23850610 DOI: 10.1016/j.vaccine.2013.06.102] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Revised: 05/31/2013] [Accepted: 06/27/2013] [Indexed: 12/22/2022]
Abstract
BACKGROUND We have shown that the intradermal (ID) administration of an HIV-1 lipopeptide candidate vaccine (LIPO-4) is well tolerated in healthy volunteers, with one fifth the IM dose delivered by this route inducing HIV-1-specific CD8(+) T-cell responses of a magnitude and quality similar to those achieved by IM administration. In this long-term follow-up, we aimed to investigate the sustainability and epitopic breadth of the immune responses induced. METHODS In a prospective multicentre trial, 68 healthy volunteers were randomised to receive, at weeks 0, 4 and 12, either a 0.5 ml IM (500 μg of each lipopeptide; 35 volunteers) dose or a 0.1 ml ID (100 μg of each lipopeptide; 33 volunteers) dose of the LIPO-4 vaccine, in the deltoid region of the non-dominant arm. All 68 volunteers received the first two vaccinations, and 44 volunteers in the ID group and 22 in the IM group received the third. We describe here the long-term CD8(+) and CD4(+) T-cell immune responses, up to 48 weeks after the first immunisation. RESULTS Response frequency was highest at week 14 for CD4(+) T cells, at 85% (28/33) for the IM group and 61% (20/33) for the ID group (p=0.027), and at week 48 for CD8(+) T cells, at 36% (12/33) for the ID group and 31% (11/35) for the IM group (p=0.67). Response rates tended to be lower for volunteers receiving the third vaccination boost, whether IM or ID. Finally, we also observed a striking change in the specificity of the CD8(+) T-cell responses induced shortly (2 weeks) or several months (48 weeks) after LIPO-4 vaccination. CONCLUSION Lipopeptide vaccines elicited sustainable CD4(+) and CD8(+) T-cell responses, following IM or ID administration. CD8(+) T-cell responses had shifted and expanded to different epitopes after one year of follow-up. These results should facilitate the design of the next generation of prime-boost trials with repeated doses of lipopeptide vaccines.
Collapse
Affiliation(s)
- Odile Launay
- Université Paris Descartes, Faculté de Médecine, Inserm, CIC BT505, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Cochin, CIC de Vaccinologie Cochin-Pasteur, 27 rue du Faubourg Saint-Jacques, 75014 Paris, France.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Mittal A, Raber AS, Schaefer UF, Weissmann S, Ebensen T, Schulze K, Guzmán CA, Lehr CM, Hansen S. Non-invasive delivery of nanoparticles to hair follicles: A perspective for transcutaneous immunization. Vaccine 2013; 31:3442-51. [DOI: 10.1016/j.vaccine.2012.12.048] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Revised: 11/23/2012] [Accepted: 12/18/2012] [Indexed: 10/27/2022]
|
44
|
Li N, Peng LH, Chen X, Zhang TY, Shao GF, Liang WQ, Gao JQ. Antigen-loaded nanocarriers enhance the migration of stimulated Langerhans cells to draining lymph nodes and induce effective transcutaneous immunization. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2013; 10:215-23. [PMID: 23792655 DOI: 10.1016/j.nano.2013.06.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 05/31/2013] [Accepted: 06/11/2013] [Indexed: 10/26/2022]
Abstract
UNLABELLED This study aims to investigate the efficacy of chitosan nanoparticles (CS-NPs) as a vehicle for transcutaneous antigen delivery in anti-tumor therapy. Ovalbumin (OVA) or gp100 (melanocyte-associated antigen gp100 protein)-loaded CS-sodium tripolyphosphate (TPP)-grafted NPs were prepared by crosslinking low-molecular-weight CS with TPP. Compared with the FITC-OVA solution, the encapsulated fluorescein isothiocyanate (FITC)-OVA-loaded NPs expressed much stronger cellular uptake ability in vitro and higher ability to migrate to lymph nodes in vivo. After transcutaneous administration, OVA-loaded NPs, with imiquimod as an adjuvant, increased the anti-OVA immunoglobulin G titer to levels similar to those induced by the OVA solution. The gp100-loaded NPs promoted the survival of tumor-bearing mice. These results provided evidence of CS-NPs as promising carriers for transcutaneous vaccine delivery, partly contributing to the increased uptake of NPs by skin antigen-presenting cells as well as their enhanced migration to the surrounding lymph nodes. FROM THE CLINICAL EDITOR In this study the efficacy of chitosan nanoparticle based vehicles for transcutaneous antigen delivery is investigated in anti-tumor therapy. Authors demonstrate that such nanoparticles may be efficient carriers partly due to their increased uptake by antigen-presenting cells in the skin and their enhanced migration to surrounding lymph nodes.
Collapse
Affiliation(s)
- Ni Li
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China; The Affiliated Lihuili Hospital, Ningbo University School of Medicine, Ningbo, China
| | - Li-Hua Peng
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.
| | - Xi Chen
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Tian-Yuan Zhang
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Guo-Feng Shao
- The Affiliated Lihuili Hospital, Ningbo University School of Medicine, Ningbo, China
| | - Wen-Quan Liang
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Jian-Qing Gao
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China; The Novel Transdermal Research Center of Jiangsu Province, Changzhou, China.
| |
Collapse
|
45
|
A review of nanotechnological approaches for the prophylaxis of HIV/AIDS. Biomaterials 2013; 34:6202-28. [PMID: 23726227 DOI: 10.1016/j.biomaterials.2013.05.012] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2013] [Accepted: 05/06/2013] [Indexed: 01/06/2023]
Abstract
Successful treatment and control of HIV/AIDS is one of the biggest challenges of 21st century. More than 33 million individuals are infected with HIV worldwide and more than 2 million new cases of HIV infection have been reported. The situation demands development of effective prevention strategies to control the pandemic of AIDS. Due to lack of availability of an effective HIV vaccine, antiretroviral drugs and nucleic acid therapeutics like siRNA have been explored for HIV prophylaxis. Clinical trials shave shown that antiretroviral drugs, tenofovir and emtricitabine can offer some degree of HIV prevention. However, complete prevention of HIV infection has not been achieved yet. Nanotechnology has brought a paradigm shift in the diagnosis, treatment and prevention of many diseases. The current review discusses potential of various nanocarriers such as dendrimers, polymeric nanoparticles, liposomes, lipid nanocarriers, drug nanocrystals, inorganic nanocarriers and nanofibers in improving efficacy of various modalities available for HIV prophylaxis.
Collapse
|
46
|
Matthews K, Chung NPY, Klasse PJ, Moutaftsi M, Carter D, Salazar AM, Reed SG, Sanders RW, Moore JP. Clinical adjuvant combinations stimulate potent B-cell responses in vitro by activating dermal dendritic cells. PLoS One 2013; 8:e63785. [PMID: 23700434 PMCID: PMC3659025 DOI: 10.1371/journal.pone.0063785] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 04/05/2013] [Indexed: 12/21/2022] Open
Abstract
CD14+ dermal DCs (CD14+ DDCs) have a natural capacity to activate naïve B-cells. Targeting CD14+ DDCs is therefore a rational approach for vaccination strategies aimed at improving humoral responses towards poorly immunogenic antigens, for example, HIV-1 envelope glycoproteins (Env). Here, we show that two clinically relevant TLR ligand combinations, Hiltonol plus Resiquimod and Glucopyranosyl lipid A plus Resiquimod, potently activate CD14+ DDCs, as shown by enhanced expression of multiple cytokines (IL-6, IL-10, IL-12p40 and TNF-α). Furthermore, the responses of CD14+ DDCs to these TLR ligands were not compromised by the presence of HIV-1 gp120, which can drive immunosuppressive effects in vitro and in vivo. The above TLR ligand pairs were better than the individual agents at boosting the inherent capacity of CD14+ DDCs to induce naïve B-cells to proliferate and differentiate into CD27+ CD38+ B-cells that secrete high levels of immunoglobulins. CD14+ DDCs stimulated by these TLR ligand combinations also promoted the differentiation of Th1 (IFN-γ-secreting), but not Th17, CD4+ T-cells. These observations may help to identify adjuvant strategies aimed at inducing better antibody responses to vaccine antigens, including, but not limited to HIV-1 Env.
Collapse
Affiliation(s)
- Katie Matthews
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, United States of America
| | - Nancy P. Y. Chung
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, United States of America
| | - Per Johan Klasse
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, United States of America
| | - Magda Moutaftsi
- HIV Vaccine Initiative at Bill and Melinda Gates Foundation, Seattle, Washington, United States of America
| | - Darrick Carter
- Infectious Diseases Research Institute (IDRI), Seattle, Washington, United States of America
| | | | - Steven G. Reed
- Infectious Diseases Research Institute (IDRI), Seattle, Washington, United States of America
| | - Rogier W. Sanders
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, United States of America
- Laboratory for Experimental Virology, Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - John P. Moore
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
47
|
Pavot V, Rochereau N, Primard C, Genin C, Perouzel E, Lioux T, Paul S, Verrier B. Encapsulation of Nod1 and Nod2 receptor ligands into poly(lactic acid) nanoparticles potentiates their immune properties. J Control Release 2013; 167:60-7. [DOI: 10.1016/j.jconrel.2013.01.015] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 01/09/2013] [Accepted: 01/10/2013] [Indexed: 01/01/2023]
|
48
|
Matthews K, Chung NPY, Klasse PJ, Moore JP, Sanders RW. Potent induction of antibody-secreting B cells by human dermal-derived CD14+ dendritic cells triggered by dual TLR ligation. THE JOURNAL OF IMMUNOLOGY 2012; 189:5729-44. [PMID: 23162132 DOI: 10.4049/jimmunol.1200601] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Targeting CD14(+) dermal-derived dendritic cells (DDCs) is a rational approach for vaccination strategies aimed at improving humoral immune responses, because of their natural ability to stimulate naive B cells. In this study, we show that CD14(+) DDCs express mRNA for TLRs 1-9, but respond differentially to single or paired TLR ligands. Compared to single ligands, some combinations were particularly effective at activating CD14(+) DDCs, as shown by enhanced expression of B cell stimulatory cytokines (IL-6, IL-10, and TNF-α) and more pronounced phenotypic maturation. These combinations were resiquimod (R-848) plus polyinosinic-polycytidylic acid [Poly(I:C)], R-848 plus LPS, Pam3CSK4 plus Poly(I:C), and LPS plus Poly(I:C). We also found that selected TLR ligand pairs [R-848 plus either LPS or Poly(I:C)] were superior to individual agents at boosting the inherent capacity of CD14(+) DDCs to induce naive B cells to proliferate and differentiate into CD27(+) CD38(+) B cells that secrete high levels of IgG and IgA. When treated with the same TLR ligand combinations, CD14(+) DDCs also promoted the differentiation of Th1 (IFN-γ-secreting) CD4(+) T cells, but not of Th2 or Th17 CD4(+) T cells. These observations may help to identify adjuvant strategies aimed at inducing protective immune responses to various pathogens, including but not limited to HIV-1.
Collapse
Affiliation(s)
- Katie Matthews
- Department of Microbiology and Immunology, Weill Cornell Medical College, Cornell University, New York, NY 10021, USA
| | | | | | | | | |
Collapse
|
49
|
Nasal and skin delivery of IC31(®)-adjuvanted recombinant HSV-2 gD protein confers protection against genital herpes. Vaccine 2012; 30:4361-8. [PMID: 22682292 DOI: 10.1016/j.vaccine.2012.02.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Revised: 12/28/2011] [Accepted: 02/06/2012] [Indexed: 11/21/2022]
Abstract
Genital herpes caused by herpes simplex virus type 2 (HSV-2) remains the leading cause of genital ulcers worldwide. Given the disappointing results of the recent genital herpes vaccine trials in humans, development of novel vaccine strategies capable of eliciting protective mucosal and systemic immune responses to HSV-2 is urgently required. Here we tested the ability of the adjuvant IC31(®) in combination with HSV-2 glycoprotein D (gD) used through intranasal (i.n.), intradermal (i.d.), or subcutaneous (s.c.) immunization routes for induction of protective immunity against genital herpes infection in C57BL/6 mice. Immunization with gD plus IC31(®) through all three routes of immunization developed elevated gD-specific serum antibody responses with HSV-2 neutralizing activity. Whereas the skin routes promoted the induction of a mixed IgG2c/IgG1 isotype profile, the i.n. route only elicited IgG1 antibodies. All immunization routes were able to induce gD-specific IgG antibody responses in the vaginas of mice immunized with IC31(®)-adjuvanted gD. Although specific lymphoproliferative responses were observed in splenocytes from mice of most groups vaccinated with IC31(®)-adjuvanted gD, only i.d. immunization resulted in a significant splenic IFN-γ response. Further, immunization with gD plus IC31(®) conferred 80-100% protection against an otherwise lethal vaginal HSV-2 challenge with amelioration of viral replication and disease severity in the vagina. These results warrant further exploration of IC31(®) for induction of protective immunity against genital herpes and other sexually transmitted infections.
Collapse
|