1
|
Khandelia P, Yadav S, Singh P. An overview of the BCG vaccine and its future scope. Indian J Tuberc 2023; 70 Suppl 1:S14-S23. [PMID: 38110255 DOI: 10.1016/j.ijtb.2023.05.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 05/15/2023] [Indexed: 12/20/2023]
Abstract
Despite intense elimination efforts, tuberculosis (TB) still poses a threat to world health, disproportionately affecting less developed and poorer countries. The Bacillus Calmette-Guérin (BCG) vaccine, the only anti-TB authorized vaccine can partially stop TB infection and transmission, however, its effectiveness ranges from 0 to 80%. As a result, there is an urgent need for a more potent TB vaccination given the widespread incidence of the disease. Enhancing BCG's effectiveness is also important due to the lack of other licensed vaccinations. Recently, fascinating research into BCG revaccination techniques by modulating its mode of action i.e., intravenous (IV) BCG delivery has yielded good clinical outcomes showing it still has a place in current vaccination regimens. We must thus go over the recent evidence that suggests trained immunity, and BCG vaccination techniques and describe how the vaccination confers protection against bacteria that cause both TB and non-tuberculosis. This review of the literature offers an updated summary and viewpoints on BCG-based TB immunization regimens (how it affects granulocytes at the epigenetic and hematopoietic stem cell levels which may be related to its efficacy), and also examines how the existing vaccine is being modified to be more effective, which may serve as an inspiration for future studies on the development of TB vaccines.
Collapse
Affiliation(s)
- Pallavi Khandelia
- Department of Biosciences, School of Basic and Applied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Shikha Yadav
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Pratichi Singh
- Department of Biosciences, School of Basic and Applied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India.
| |
Collapse
|
2
|
Araújo NM, Rubio IGS, Toneto NPA, Morale MG, Tamura RE. The use of adenoviral vectors in gene therapy and vaccine approaches. Genet Mol Biol 2022; 45:e20220079. [PMID: 36206378 PMCID: PMC9543183 DOI: 10.1590/1678-4685-gmb-2022-0079] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 07/12/2022] [Indexed: 11/04/2022] Open
Abstract
Adenovirus was first identified in the 1950s and since then this pathogenic group
of viruses has been explored and transformed into a genetic transfer vehicle.
Modification or deletion of few genes are necessary to transform it into a
conditionally or non-replicative vector, creating a versatile tool capable of
transducing different tissues and inducing high levels of transgene expression.
In the early years of vector development, the application in monogenic diseases
faced several hurdles, including short-term gene expression and even a fatality.
On the other hand, an adenoviral delivery strategy for treatment of cancer was
the first approved gene therapy product. There is an increasing interest in
expressing transgenes with therapeutic potential targeting the cancer hallmarks,
inhibiting metastasis, inducing cancer cell death or modulating the immune
system to attack the tumor cells. Replicative adenovirus as vaccines may be even
older and date to a few years of its discovery, application of non-replicative
adenovirus for vaccination against different microorganisms has been
investigated, but only recently, it demonstrated its full potential being one of
the leading vaccination tools for COVID-19. This is not a new vector nor a new
technology, but the result of decades of careful and intense work in this
field.
Collapse
Affiliation(s)
- Natália Meneses Araújo
- Universidade Federal de São Paulo, Laboratório de Biologia Molecular
do Câncer, São Paulo, SP, Brazil.
| | - Ileana Gabriela Sanchez Rubio
- Universidade Federal de São Paulo, Laboratório de Biologia Molecular
do Câncer, São Paulo, SP, Brazil. ,Universidade Federal de São Paulo, Departamento de Ciências
Biológicas, Diadema, SP, Brazil. ,Universidade Federal de São Paulo, Laboratório de Ciências
Moleculares da Tireóide, Diadema, SP, Brazil.
| | | | - Mirian Galliote Morale
- Universidade Federal de São Paulo, Laboratório de Biologia Molecular
do Câncer, São Paulo, SP, Brazil. ,Universidade Federal de São Paulo, Departamento de Ciências
Biológicas, Diadema, SP, Brazil. ,Universidade Federal de São Paulo, Laboratório de Ciências
Moleculares da Tireóide, Diadema, SP, Brazil.
| | - Rodrigo Esaki Tamura
- Universidade Federal de São Paulo, Laboratório de Biologia Molecular
do Câncer, São Paulo, SP, Brazil. ,Universidade Federal de São Paulo, Departamento de Ciências
Biológicas, Diadema, SP, Brazil.
| |
Collapse
|
3
|
Singh S, Saavedra-Avila NA, Tiwari S, Porcelli SA. A century of BCG vaccination: Immune mechanisms, animal models, non-traditional routes and implications for COVID-19. Front Immunol 2022; 13:959656. [PMID: 36091032 PMCID: PMC9459386 DOI: 10.3389/fimmu.2022.959656] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 08/01/2022] [Indexed: 11/21/2022] Open
Abstract
Bacillus Calmette-Guerin (BCG) has been used as a vaccine against tuberculosis since 1921 and remains the only currently approved vaccine for this infection. The recent discovery that BCG protects against initial infection, and not just against progression from latent to active disease, has significant implications for ongoing research into the immune mechanisms that are relevant to generate a solid host defense against Mycobacterium tuberculosis (Mtb). In this review, we first explore the different components of immunity that are augmented after BCG vaccination. Next, we summarize current efforts to improve the efficacy of BCG through the development of recombinant strains, heterologous prime-boost approaches and the deployment of non-traditional routes. These efforts have included the development of new recombinant BCG strains, and various strategies for expression of important antigens such as those deleted during the M. bovis attenuation process or antigens that are present only in Mtb. BCG is typically administered via the intradermal route, raising questions about whether this could account for its apparent failure to generate long-lasting immunological memory in the lungs and the inconsistent level of protection against pulmonary tuberculosis in adults. Recent years have seen a resurgence of interest in the mucosal and intravenous delivery routes as they have been shown to induce a better immune response both in the systemic and mucosal compartments. Finally, we discuss the potential benefits of the ability of BCG to confer trained immunity in a non-specific manner by broadly stimulating a host immunity resulting in a generalized survival benefit in neonates and the elderly, while potentially offering benefits for the control of new and emerging infectious diseases such as COVID-19. Given that BCG will likely continue to be widely used well into the future, it remains of critical importance to better understand the immune responses driven by it and how to leverage these for the design of improved vaccination strategies against tuberculosis.
Collapse
Affiliation(s)
- Shivani Singh
- Department of Medicine, New York University School of Medicine, New York, NY, United States
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY, United States
- Department of Medicine, Albert Einstein College of Medicine, New York, NY, United States
- *Correspondence: Shivani Singh,
| | | | - Sangeeta Tiwari
- Department of Biological Sciences and Border Biomedical Research Center, University of Texas at El Paso, Texas, United States
| | - Steven A. Porcelli
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY, United States
- Department of Medicine, Albert Einstein College of Medicine, New York, NY, United States
| |
Collapse
|
4
|
Hu Z, Lu SH, Lowrie DB, Fan XY. Research Advances for Virus-vectored Tuberculosis Vaccines and Latest Findings on Tuberculosis Vaccine Development. Front Immunol 2022; 13:895020. [PMID: 35812383 PMCID: PMC9259874 DOI: 10.3389/fimmu.2022.895020] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 05/27/2022] [Indexed: 11/13/2022] Open
Abstract
Tuberculosis (TB), caused by respiratory infection with Mycobacterium tuberculosis, remains a major global health threat. The only licensed TB vaccine, the one-hundred-year-old Bacille Calmette-Guérin has variable efficacy and often provides poor protection against adult pulmonary TB, the transmissible form of the disease. Thus, the lack of an optimal TB vaccine is one of the key barriers to TB control. Recently, the development of highly efficacious COVID-19 vaccines within one year accelerated the vaccine development process in human use, with the notable example of mRNA vaccines and adenovirus-vectored vaccines, and increased the public acceptance of the concept of the controlled human challenge model. In the TB vaccine field, recent progress also facilitated the deployment of an effective TB vaccine. In this review, we provide an update on the current virus-vectored TB vaccine pipeline and summarize the latest findings that might facilitate TB vaccine development. In detail, on the one hand, we provide a systematic literature review of the virus-vectored TB vaccines are in clinical trials, and other promising candidate vaccines at an earlier stage of development are being evaluated in preclinical animal models. These research sharply increase the likelihood of finding a more effective TB vaccine in the near future. On the other hand, we provide an update on the latest tools and concept that facilitating TB vaccine research development. We propose that a pre-requisite for successful development may be a better understanding of both the lung-resident memory T cell-mediated mucosal immunity and the trained immunity of phagocytic cells. Such knowledge could reveal novel targets and result in the innovative vaccine designs that may be needed for a quantum leap forward in vaccine efficacy. We also summarized the research on controlled human infection and ultra-low-dose aerosol infection murine models, which may provide more realistic assessments of vaccine utility at earlier stages. In addition, we believe that the success in the ongoing efforts to identify correlates of protection would be a game-changer for streamlining the triage of multiple next-generation TB vaccine candidates. Thus, with more advanced knowledge of TB vaccine research, we remain hopeful that a more effective TB vaccine will eventually be developed in the near future.
Collapse
Affiliation(s)
- Zhidong Hu
- Shanghai Public Health Clinical Center, Key Laboratory of Medical Molecular Virology of Ministry of Education (MOE)/Ministry of Health (MOH), Fudan University, Shanghai, China
- *Correspondence: Zhidong Hu, ; Xiao-Yong Fan,
| | - Shui-Hua Lu
- Shanghai Public Health Clinical Center, Key Laboratory of Medical Molecular Virology of Ministry of Education (MOE)/Ministry of Health (MOH), Fudan University, Shanghai, China
- National Medical Center for Infectious Diseases of China, Shenzhen Third People Hospital, South Science & Technology University, Shenzhen, China
| | - Douglas B. Lowrie
- National Medical Center for Infectious Diseases of China, Shenzhen Third People Hospital, South Science & Technology University, Shenzhen, China
| | - Xiao-Yong Fan
- Shanghai Public Health Clinical Center, Key Laboratory of Medical Molecular Virology of Ministry of Education (MOE)/Ministry of Health (MOH), Fudan University, Shanghai, China
- *Correspondence: Zhidong Hu, ; Xiao-Yong Fan,
| |
Collapse
|
5
|
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), is a leading cause of mortality and morbidity due to a single infectious agent. Aerosol infection with Mtb can result in a range of responses from elimination, active, incipient, subclinical, and latent Mtb infections (LTBI), depending on the host's immune response and the dose and nature of infecting bacilli. Currently, BCG is the only vaccine approved to prevent TB. Although BCG confers protection against severe forms of childhood TB, its use in adults and those with comorbid conditions, such as HIV infection, is questionable. Novel vaccines, including recombinant BCG (rBCG), were developed to improve BCG's efficacy and use as an alternative to BCG in a vulnerable population. The first-generation rBCG vaccines had different Mtb antigens and were tested as a prime, prime-boost, or immunotherapeutic intervention. The novel vaccines target one or more of the following requirements, namely prevention of infection (POI), prevention of disease (POD), prevention of recurrence (POR), and therapeutic vaccines to treat a TB disease. Several vaccine candidates currently in development are classified into four primary categories: live attenuated whole-cell vaccine, inactivated whole-cell vaccine, adjuvanted protein subunit vaccine, and viral-vectored vaccine. Each vaccine's immunogenicity, safety, and efficacy are tested in preclinical animal models and further validated through various phases of clinical trials. This chapter summarizes the various TB vaccine candidates under different clinical trial stages and promises better protection against TB.
Collapse
Affiliation(s)
- Radha Gopalaswamy
- Department of Bacteriology, ICMR-National Institute for Research in Tuberculosis, Chennai, Tamilnadu, India
| | - Selvakumar Subbian
- The Public Health Research Institute Center at New Jersey Medical School, Rutgers University, Newark, NJ, USA.
| |
Collapse
|
6
|
Khan A, Sayedahmed EE, Singh VK, Mishra A, Dorta-Estremera S, Nookala S, Canaday DH, Chen M, Wang J, Sastry KJ, Mittal SK, Jagannath C. A recombinant bovine adenoviral mucosal vaccine expressing mycobacterial antigen-85B generates robust protection against tuberculosis in mice. Cell Rep Med 2021; 2:100372. [PMID: 34467249 PMCID: PMC8385328 DOI: 10.1016/j.xcrm.2021.100372] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 02/16/2021] [Accepted: 07/19/2021] [Indexed: 02/07/2023]
Abstract
Although the BCG vaccine offers partial protection, tuberculosis remains a leading cause of infectious disease death, killing ∼1.5 million people annually. We developed mucosal vaccines expressing the autophagy-inducing peptide C5 and mycobacterial Ag85B-p25 epitope using replication-defective human adenovirus (HAdv85C5) and bovine adenovirus (BAdv85C5) vectors. BAdv85C5-infected dendritic cells (DCs) expressed a robust transcriptome of genes regulating antigen processing compared to HAdv85C5-infected DCs. BAdv85C5-infected DCs showed enhanced galectin-3/8 and autophagy-dependent in vitro Ag85B-p25 epitope presentation to CD4 T cells. BCG-vaccinated mice were intranasally boosted using HAdv85C5 or BAdv85C5 followed by infection using aerosolized Mycobacterium tuberculosis (Mtb). BAdv85C5 protected mice against tuberculosis both as a booster after BCG vaccine (>1.4-log10 reduction in Mtb lung burden) and as a single intranasal dose (>0.5-log10 reduction). Protection was associated with robust CD4 and CD8 effector (TEM), central memory (TCM), and CD103+/CD69+ lung-resident memory (TRM) T cell expansion, revealing BAdv85C5 as a promising mucosal vaccine for tuberculosis.
Collapse
Affiliation(s)
- Arshad Khan
- Department of Pathology and Genomic Medicine, Houston Methodist Academic Institute, Houston Methodist Research Institute & Weill Cornell Medical College, Houston, TX, USA
| | - Ekramy E. Sayedahmed
- Department of Comparative Pathobiology and Purdue Institute of Inflammation, Immunology, and Infectious Disease, College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA
| | - Vipul K. Singh
- Department of Pathology and Genomic Medicine, Houston Methodist Academic Institute, Houston Methodist Research Institute & Weill Cornell Medical College, Houston, TX, USA
| | - Abhishek Mishra
- Department of Pathology and Genomic Medicine, Houston Methodist Academic Institute, Houston Methodist Research Institute & Weill Cornell Medical College, Houston, TX, USA
| | | | - Sita Nookala
- Department of Thoracic Head and Neck Medical Oncology, MD Anderson Cancer Center, Houston, TX, USA
| | - David H. Canaday
- Department of Medicine, Case Western Reserve University and Cleveland Veterans Affairs, Cleveland, OH, USA
| | - Min Chen
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
| | - Jin Wang
- Immunobiology and Transplant Science Center, Houston Methodist Research Institute, and Department of Surgery, Weill Cornell Medical College, Houston, TX, USA
| | - K. Jagannadha Sastry
- Department of Thoracic Head and Neck Medical Oncology, MD Anderson Cancer Center, Houston, TX, USA
| | - Suresh K. Mittal
- Department of Comparative Pathobiology and Purdue Institute of Inflammation, Immunology, and Infectious Disease, College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA
| | - Chinnaswamy Jagannath
- Department of Pathology and Genomic Medicine, Houston Methodist Academic Institute, Houston Methodist Research Institute & Weill Cornell Medical College, Houston, TX, USA
| |
Collapse
|
7
|
Cho T, Khatchadourian C, Nguyen H, Dara Y, Jung S, Venketaraman V. A review of the BCG vaccine and other approaches toward tuberculosis eradication. Hum Vaccin Immunother 2021; 17:2454-2470. [PMID: 33769193 PMCID: PMC8475575 DOI: 10.1080/21645515.2021.1885280] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 01/29/2021] [Indexed: 02/02/2023] Open
Abstract
Despite aggressive eradication efforts, Tuberculosis (TB) remains a global health burden, one that disproportionally affects poorer, less developed nations. The only vaccine approved for TB, the Bacillus of Calmette and Guérin (BCG) vaccine remains controversial because it's stated efficacy has been cited as anywhere from 0 to 80%. Nevertheless, there have been exciting discoveries about the mechanism of action of the BCG vaccine that suggests it has a role in immunization schedules today. We review recent data suggesting the vaccine imparts protection against both tuberculosis and non-tuberculosis pathogens via a newly discovered immune system called trained immunity. BCG's efficacy also appears to be tied to its affect on granulocytes at the epigenetic and hematopoietic stem cell levels, which we discuss in this article at length. We also write about how the different strains of the BCG vaccine elicit different immune responses, suggesting that certain BCG strains are more immunogenic than others. Finally, our review delves into how the current vaccine is being reformulated to be more efficacious, and track the development of the next generation vaccines against TB.
Collapse
Affiliation(s)
- Thomas Cho
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, USA
| | | | - Huy Nguyen
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, USA
| | - Yash Dara
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, USA
| | - Shuna Jung
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, USA
| | - Vishwanath Venketaraman
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, USA
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, USA
| |
Collapse
|
8
|
Sivakumaran D, Blatner G, Bakken R, Hokey D, Ritz C, Jenum S, Grewal HMS. A 2-Dose AERAS-402 Regimen Boosts CD8 + Polyfunctionality in HIV-Negative, BCG-Vaccinated Recipients. Front Immunol 2021; 12:673532. [PMID: 34177914 PMCID: PMC8231292 DOI: 10.3389/fimmu.2021.673532] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 05/18/2021] [Indexed: 11/20/2022] Open
Abstract
Despite the widespread use of BCG, tuberculosis (TB) remains a global threat. Existing vaccine candidates in clinical trials are designed to replace or boost BCG which does not provide satisfying long-term protection. AERAS-402 is a replication-deficient Ad35 vaccine encoding a fusion protein of the M. tuberculosis (Mtb) antigens 85A, 85B, and TB10.4. The present phase I trial assessed the safety and immunogenicity of AERAS-402 in participants living in India – a highly TB-endemic area. Healthy male participants aged 18–45 years with a negative QuantiFERON-TB Gold in-tube test (QFT) were recruited. Enrolled participants (n=12) were randomized 2:1 to receive two intramuscular injections of either AERAS-402 (3 x 1010 viral particles [vp]); (n=8) or placebo (n=4) on study days 0 and 28. Safety and immunogenicity parameters were evaluated for up to 182 days post the second injection. Immunogenicity was assessed by a flow cytometry-based intracellular cytokine staining (ICS) assay and transcriptional profiling. The latter was examined using dual-color-Reverse-Transcriptase-Multiplex-Ligation-dependent-Probe-Amplification (dc-RT MLPA) assay. AERAS-402 was well tolerated, and no vaccine-related serious adverse events were recorded. The vaccine-induced CD8+ T-cell responses were dominated by cells co-expressing IFN-γ, TNF-α, and IL-2 (“polyfunctional” cells) and were more robust than CD4+ T-cell responses. Five genes (CXCL10, GNLY, IFI35, IL1B and PTPRCv2) were differentially expressed between the AERAS-402-group and the placebo group, suggesting vaccine-induced responses. Further, compared to pre-vaccination, three genes (CLEC7A, PTPRCv1 and TAGAP) were consistently up-regulated following two doses of vaccination in the AERAS-402-group. No safety concerns were observed for AERAS-402 in healthy Indian adult males. The vaccine-induced predominantly polyfunctional CD8+ T cells in response to Ag85B, humoral immunity, and altered gene expression profiles in peripheral blood mononuclear cells (PBMCs) indicative of activation of various immunologically relevant biological pathways.
Collapse
Affiliation(s)
- Dhanasekaran Sivakumaran
- Department of Clinical Science, Bergen Integrated Diagnostic Stewardship Cluster, Faculty of Medicine, University of Bergen, Bergen, Norway.,Department of Microbiology, Haukeland University Hospital, University of Bergen, Bergen, Norway
| | - Gretta Blatner
- Biomedical Advanced Research and Development Authority (BARDA), Department of Health and Human Services, Washington, DC, United States.,Aeras Global TB Vaccine Foundation, Rockville, MD, United States
| | - Rasmus Bakken
- Department of Clinical Science, Bergen Integrated Diagnostic Stewardship Cluster, Faculty of Medicine, University of Bergen, Bergen, Norway.,Department of Microbiology, Haukeland University Hospital, University of Bergen, Bergen, Norway
| | - David Hokey
- Aeras Global TB Vaccine Foundation, Rockville, MD, United States
| | - Christian Ritz
- Department of Clinical Science, Bergen Integrated Diagnostic Stewardship Cluster, Faculty of Medicine, University of Bergen, Bergen, Norway.,Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Synne Jenum
- Department of Infectious Diseases, Oslo University Hospital, Oslo, Norway
| | - Harleen M S Grewal
- Department of Clinical Science, Bergen Integrated Diagnostic Stewardship Cluster, Faculty of Medicine, University of Bergen, Bergen, Norway.,Department of Microbiology, Haukeland University Hospital, University of Bergen, Bergen, Norway
| |
Collapse
|
9
|
Sharan R, Kaushal D. Vaccine strategies for the Mtb/HIV copandemic. NPJ Vaccines 2020; 5:95. [PMID: 33083030 PMCID: PMC7555484 DOI: 10.1038/s41541-020-00245-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 09/15/2020] [Indexed: 02/06/2023] Open
Abstract
One-third of world’s population is predicted to be infected with tuberculosis (TB). The resurgence of this deadly disease has been inflamed by comorbidity with human immunodeficiency virus (HIV). The risk of TB in people living with HIV (PLWH) is 15–22 times higher than people without HIV. Development of a single vaccine to combat both diseases is an ardent but tenable ambition. Studies have focused on the induction of specific humoral and cellular immune responses against HIV-1 following recombinant BCG (rBCG) expressing HIV-1 antigens. Recent advances in the TB vaccines led to the development of promising candidates such as MTBVAC, the BCG revaccination approach, H4:IC31, H56:IC31, M72/AS01 and more recently, intravenous (IV) BCG. Modification of these vaccine candidates against TB/HIV coinfection could reveal key correlates of protection in a representative animal model. This review discusses the (i) potential TB vaccine candidates that can be exploited for use as a dual vaccine against TB/HIV copandemic (ii) progress made in the realm of TB/HIV dual vaccine candidates in small animal model, NHP model, and human clinical trials (iii) the failures and promising targets for a successful vaccine strategy while delineating the correlates of vaccine-induced protection.
Collapse
Affiliation(s)
- Riti Sharan
- Southwest National Primate Center, Texas Biomedical Research Institute, San Antonio, TX 78227 USA
| | - Deepak Kaushal
- Southwest National Primate Center, Texas Biomedical Research Institute, San Antonio, TX 78227 USA
| |
Collapse
|
10
|
Liu SJ, Tian SC, Zhang YW, Tang T, Zeng JM, Fan XY, Wang C. Heterologous Boosting With Listeria-Based Recombinant Strains in BCG-Primed Mice Improved Protection Against Pulmonary Mycobacterial Infection. Front Immunol 2020; 11:2036. [PMID: 32983151 PMCID: PMC7492678 DOI: 10.3389/fimmu.2020.02036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 07/27/2020] [Indexed: 11/13/2022] Open
Abstract
While Baccillus Calmette-Guerin (BCG) is used worldwide, tuberculosis (TB) is still a global concern due to the poor efficacy of BCG. Novel vaccine candidates are therefore urgently required. In this study, two attenuated recombinant Listeria strains, LMΔ-msv and LIΔ-msv were constructed by deletion of actA and plcB and expression of a fusion protein consisting of T cell epitopes from four Mycobacterium tuberculosis (Mtb) antigens (Rv2460c, Rv2660c, Rv3875, and Rv3804c). The safety and immunogenicity of the two recombinant strains were evaluated in C57BL/6J mice. After intravenous immunization individually, both recombinant strains entered liver and spleen but eventually were eliminated from these organs after several days. Simultaneously, they induced antigen-specific cell-mediated immunity, indicating that the recombinant Listeria strains were immunogenic and safe in vivo. LMΔ-msv immunization induced stronger cellular immune responses than LIΔ-msv immunization, and when boosted with LIΔ-msv, antigen-specific IFN-γ CD8+ T cell responses were notably magnified. Furthermore, we evaluated the protection conferred by the vaccine candidates against mycobacterial infection via challenging the mice with 1 × 107 CFU of BCG. Especially, we tested the feasibility of application of them as heterologous BCG supplement vaccine by immunization of mice with BCG firstly, and boosted with LMΔ-msv and LIΔ-msv sequentially before challenging. Combination immune strategy (LMΔ-msv prime-LIΔ-msv boost) conferred comparable protection efficacy as BCG alone. More importantly, BCG-vaccinated mice acquired stronger resistance to Mycobacterial challenge when boosted with LMΔ-msv and LIΔ-msv sequentially. Our results inferred that heterologous immunization with Listeria-based recombinant strains boosted BCG-primed protection against pulmonary mycobacterial infection.
Collapse
Affiliation(s)
- Si-Jing Liu
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China.,Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Department of Public Health Laboratory Sciences, West China School of Public Health, Sichuan University, Chengdu, China
| | - Si-Cheng Tian
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China.,Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Department of Public Health Laboratory Sciences, West China School of Public Health, Sichuan University, Chengdu, China
| | - Yun-Wen Zhang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China.,Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Department of Public Health Laboratory Sciences, West China School of Public Health, Sichuan University, Chengdu, China
| | - Tian Tang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China.,Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Department of Public Health Laboratory Sciences, West China School of Public Health, Sichuan University, Chengdu, China
| | - Ju-Mei Zeng
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China.,Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Department of Public Health Laboratory Sciences, West China School of Public Health, Sichuan University, Chengdu, China
| | - Xiao-Yong Fan
- Shanghai Public Health Clinical Center, Key Laboratory of Medical Molecular Virology of MOE/MOH, Fudan University, Shanghai, China
| | - Chuan Wang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China.,Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Department of Public Health Laboratory Sciences, West China School of Public Health, Sichuan University, Chengdu, China
| |
Collapse
|
11
|
Sadoff J, De Paepe E, Haazen W, Omoruyi E, Bastian AR, Comeaux C, Heijnen E, Strout C, Schuitemaker H, Callendret B. Safety and Immunogenicity of the Ad26.RSV.preF Investigational Vaccine Coadministered With an Influenza Vaccine in Older Adults. J Infect Dis 2020; 223:699-708. [DOI: 10.1093/infdis/jiaa409] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 08/25/2020] [Indexed: 12/17/2022] Open
Abstract
Abstract
Background
Respiratory syncytial virus (RSV) and influenza cause significant disease burden in older adults. Overlapping RSV and influenza seasonality presents the opportunity to coadminister vaccines for both infections. This study assessed coadministration of the investigational vaccine, Ad26.RSV.preF, an adenovirus serotype 26 (Ad26) vector encoding RSV F protein stabilized in its prefusion conformation (pre-F), with a seasonal influenza vaccine in older adults.
Methods
In this phase 2a, double-blind, placebo-controlled study, 180 adults aged ≥60 years received Ad26.RSV.preF plus Fluarix on day 1 and placebo on day 29, or placebo plus Fluarix on day 1 and Ad26.RSV.preF on day 29 (control).
Results
The coadministration regimen had an acceptable tolerability profile. Reactogenicity was generally higher after Ad26.RSV.preF versus Fluarix, but symptoms were generally transient and mild or moderate. At 28 days after the first vaccination, the upper confidence intervals of the hemagglutination inhibition antibody geometric mean ratio (control/coadministration) for all influenza strains were <2, demonstrating noninferiority. Robust neutralizing and binding antibody responses to RSV A2 were observed in both groups.
Conclusions
Coadministration of Fluarix with Ad26.RSV.preF vaccine had an acceptable safety profile and showed no evidence of interference in immune response. The results are compatible with simultaneous seasonal vaccination with both vaccines.
Clinical Trials Registration
NCT03339713.
Collapse
Affiliation(s)
- Jerald Sadoff
- Janssen Vaccines & Prevention, Leiden, the Netherlands
| | | | | | | | | | | | | | - Cynthia Strout
- Coastal Carolina Research Center, Mount Pleasant, South Carolina
| | | | | |
Collapse
|
12
|
Smith AA, Villarreal-Ramos B, Mendum TA, Williams KJ, Jones GJ, Wu H, McFadden J, Vordermeier HM, Stewart GR. Genetic screening for the protective antigenic targets of BCG vaccination. Tuberculosis (Edinb) 2020; 124:101979. [PMID: 32814303 DOI: 10.1016/j.tube.2020.101979] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/10/2020] [Accepted: 07/13/2020] [Indexed: 11/18/2022]
Abstract
Bovine tuberculosis is an important animal health problem and the predominant cause of zoonotic tuberculosis worldwide. It results in serious economic burden due to losses in productivity and the cost of control programmes. Control could be greatly improved by the introduction of an efficacious cattle vaccine but the most likely candidate, BCG, has several limitations including variable efficacy. Augmentation of BCG with a subunit vaccine booster has been shown to increase protection but the selection of antigens has hitherto been left largely to serendipity. In the present study, we take a rational approach to identify the protective antigens of BCG, selecting a BCG transposon mutant library in naïve and BCG-vaccinated cattle. Ten mutants had increased relative survival in vaccinated compared to naïve cattle, consistent with loss of protective antigen targets making the mutants less visible to the BCG immune response. The immunogenicity of three putative protective antigens, BCG_0116, BCG_0205 (YrbE1B) and BCG_1448 (PPE20) was investigated using peptide pools and PBMCs from BCG vaccinated cattle. BCG vaccination induced PBMC to release elevated levels of IP10, IL-17a and IL-10 in response to all three antigens. Taken together, the data supports the further study of these antigens for use in subunit vaccines.
Collapse
MESH Headings
- Animals
- Antigens, Bacterial/administration & dosage
- Antigens, Bacterial/genetics
- Antigens, Bacterial/immunology
- BCG Vaccine/administration & dosage
- BCG Vaccine/immunology
- Cattle
- Cytokines/immunology
- Cytokines/metabolism
- DNA Transposable Elements
- Immunogenicity, Vaccine
- Leukocytes, Mononuclear/immunology
- Leukocytes, Mononuclear/metabolism
- Leukocytes, Mononuclear/microbiology
- Mutation
- Mycobacterium tuberculosis/genetics
- Mycobacterium tuberculosis/immunology
- Tuberculosis, Bovine/immunology
- Tuberculosis, Bovine/metabolism
- Tuberculosis, Bovine/microbiology
- Tuberculosis, Bovine/prevention & control
- Vaccination/veterinary
Collapse
Affiliation(s)
- Alex A Smith
- Department of Microbial Sciences, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH, UK
| | - Bernardo Villarreal-Ramos
- Department of Bacteriology, Animal and Plant Health Agency, Weybridge, KT15 3NB, UK; Centre of Excellence for Bovine Tuberculosis, Institute for Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, Wales, SY23 3DA, UK.
| | - Tom A Mendum
- Department of Microbial Sciences, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH, UK
| | - Kerstin J Williams
- Department of Microbial Sciences, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH, UK
| | - Gareth J Jones
- Department of Bacteriology, Animal and Plant Health Agency, Weybridge, KT15 3NB, UK
| | - Huihai Wu
- Department of Microbial Sciences, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH, UK
| | - Johnjoe McFadden
- Department of Microbial Sciences, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH, UK
| | - H Martin Vordermeier
- Department of Bacteriology, Animal and Plant Health Agency, Weybridge, KT15 3NB, UK; Centre of Excellence for Bovine Tuberculosis, Institute for Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, Wales, SY23 3DA, UK.
| | - Graham R Stewart
- Department of Microbial Sciences, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH, UK.
| |
Collapse
|
13
|
Adenovectors encoding RSV-F protein induce durable and mucosal immunity in macaques after two intramuscular administrations. NPJ Vaccines 2019; 4:54. [PMID: 31885877 PMCID: PMC6925274 DOI: 10.1038/s41541-019-0150-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 11/20/2019] [Indexed: 12/20/2022] Open
Abstract
Respiratory Syncytial Virus (RSV) can cause severe respiratory disease, yet a licensed vaccine is not available. We determined the immunogenicity of two homologous and one heterologous intramuscular prime-boost vaccination regimens using replication-incompetent adenoviral vectors of human serotype 26 and 35 (Ad26 and Ad35), expressing a prototype antigen based on the wild-type fusion (F) protein of RSV strain A2 in adult, RSV-naive cynomolgus macaques. All regimens induced substantial, boostable antibody responses that recognized the F protein in pre- and postfusion conformation, neutralized multiple strains of RSV, and persisted for at least 80 weeks. Vaccination induced durable systemic RSV-F-specific T-cell responses characterized mainly by CD4+ T cells expressing Th1-type cytokines, as well as RSV-F-specific CD4+ and CD8+ T cells, IgG, and IgA in the respiratory tract. Intramuscular immunization with Ad26 and 35 vectors thus is a promising approach for the development of an optimized RSV vaccine expected to induce long-lasting humoral and cellular immune responses that distribute systemically and to mucosal sites.
Collapse
|
14
|
Tapia-Calle G, Born PA, Koutsoumpli G, Gonzalez-Rodriguez MI, Hinrichs WLJ, Huckriede ALW. A PBMC-Based System to Assess Human T Cell Responses to Influenza Vaccine Candidates In Vitro. Vaccines (Basel) 2019; 7:vaccines7040181. [PMID: 31766202 PMCID: PMC6963913 DOI: 10.3390/vaccines7040181] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/07/2019] [Accepted: 11/09/2019] [Indexed: 01/08/2023] Open
Abstract
Vaccine development is an expensive and time-consuming process that heavily relies on animal models. Yet, vaccine candidates that have previously succeeded in animal experiments often fail in clinical trials questioning the predictive value of animal models. Alternative assay systems that can add to the screening and evaluation of functional characteristics of vaccines in a human context before embarking on costly clinical trials are therefore urgently needed. In this study, we have established an in vitro system consisting of long-term cultures of unfractionated peripheral blood mononuclear cells (PBMCs) from healthy volunteers to assess (recall) T cell responses to vaccine candidates. We observed that different types of influenza vaccines (whole inactivated virus (WIV), split, and peptide vaccines) were all able to stimulate CD4 and CD8 T cell responses but to different extents in line with their reported in vivo properties. In-depth analyses of different T cell subsets revealed that the tested vaccines evoked mainly recall responses as indicated by the fact that the vast majority of the responding T cells had a memory phenotype. Furthermore, we observed vaccine-induced activation of T follicular helper cells, which are associated with the induction of humoral immune responses. Our results demonstrate the suitability of the established PBMC-based system for the in vitro evaluation of memory T cell responses to vaccines and the comparison of vaccine candidates in a human immune cell context. As such, it can help to bridge the gap between animal experiments and clinical trials and assist in the selection of promising vaccine candidates, at least for recall antigens.
Collapse
Affiliation(s)
- Gabriela Tapia-Calle
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, 9713AV Groningen, The Netherlands
| | - Philip A Born
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, 9713AV Groningen, The Netherlands
| | - Georgia Koutsoumpli
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, 9713AV Groningen, The Netherlands
| | - Martin Ignacio Gonzalez-Rodriguez
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, 9713AV Groningen, The Netherlands
| | - Wouter L J Hinrichs
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, 9713AV Groningen, The Netherlands
| | - Anke L W Huckriede
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, 9713AV Groningen, The Netherlands
| |
Collapse
|
15
|
Comparative Evaluation of the Vaccine Efficacies of Three Adenovirus-Based Vector Types in the Friend Retrovirus Infection Model. J Virol 2019; 93:JVI.01155-19. [PMID: 31375593 DOI: 10.1128/jvi.01155-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 07/30/2019] [Indexed: 12/13/2022] Open
Abstract
Adenovirus (AdV)-based vectors are popular experimental vaccine vectors, but despite their ability to induce strong immune responses, their application is impeded by widespread preexisting immunity against many AdV types that can impair or even abrogate the induction of transgene-specific immune responses. Therefore, the development of vectors based on AdV types with a low seroprevalence is important for effective AdV-based immunization in humans. We investigated the immunization efficacy of vectors based on AdV type 48 (Ad48) and Ad50 in the ovalbumin (ova) model as well as the Friend retrovirus (FV) model, which allows testing of the protective effect of vaccine-induced immunity. Using ova-encoding vectors, we found a significantly lower induction of ova-specific CD8+ T cells and antibody responses by Ad48- and Ad50-based vectors than by Ad5-based vectors. Similarly, we found a reduced induction of FV-specific CD8+ T cell responses in Ad48- and Ad50.Leader-Gag-immunized mice compared with that in Ad5-immunized mice; however, some of those mice were able to control the FV infection, and protection correlated with the level of neutralizing antibodies 10 days after FV challenge. Analyses of the AdV-specific antibodies and CD8+ T cells induced by the individual AdV types revealed a high level of cross-reactivity, and the efficacy of Ad48-based immunization was impaired in Ad5-preimmune mice. Our results show that the immunity induced by Ad48- and Ad50-based vectors is reduced compared to that induced by Ad5 and is sufficient to control FV infection in only some of the immunized mice. A high level of cross-reactivity suggests that AdV preimmunity must be considered even when applying rare AdV-based vectors.IMPORTANCE AdV-based vectors are important tools for the development of vaccines against a wide range of pathogens. While AdV vectors are generally considered safe and highly effective, their application can be severely impaired by preexisting immunity due to the widespread seroprevalence of some AdV types. The characterization of different AdV types with regard to immunogenicity and efficacy in challenge models is of great importance for the development of improved AdV-based vectors that allow for efficient immunization despite anti-AdV immunity. We show that the immunity induced by an Ad48-based vector is inferior to that induced by an Ad5-based vector but can still mediate the control of an FV infection in highly FV-susceptible mice. However, the efficacy of Ad48-based immunization was impaired in Ad5-preimmune mice. Importantly, we found cross-reactivity of both the humoral and cellular immune responses raised by the individual AdV types, suggesting that switching to a different AdV type may not be sufficient to circumvent preexisting anti-AdV immunity.
Collapse
|
16
|
Gong W, Liang Y, Wu X. The current status, challenges, and future developments of new tuberculosis vaccines. Hum Vaccin Immunother 2018; 14:1697-1716. [PMID: 29601253 DOI: 10.1080/21645515.2018.1458806] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Mycobacterium tuberculosis complex causes tuberculosis (TB), one of the top 10 causes of death worldwide. TB results in more fatalities than multi-drug resistant (MDR) HIV strain related coinfection. Vaccines play a key role in the prevention and control of infectious diseases. Unfortunately, the only licensed preventive vaccine against TB, bacilli Calmette-Guérin (BCG), is ineffective for prevention of pulmonary TB in adults. Therefore, it is very important to develop novel vaccines for TB prevention and control. This literature review provides an overview of the innate and adaptive immune response during M. tuberculosis infection, and presents current developments and challenges to novel TB vaccines. A comprehensive understanding of vaccines in preclinical and clinical studies provides extensive insight for the development of safer and more efficient vaccines, and may inspire new ideas for TB prevention and treatment.
Collapse
Affiliation(s)
- Wenping Gong
- a Army Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute for Tuberculosis Research , Haidian District, Beijing , China
| | - Yan Liang
- a Army Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute for Tuberculosis Research , Haidian District, Beijing , China
| | - Xueqiong Wu
- a Army Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute for Tuberculosis Research , Haidian District, Beijing , China
| |
Collapse
|
17
|
Callendret B, Vellinga J, Wunderlich K, Rodriguez A, Steigerwald R, Dirmeier U, Cheminay C, Volkmann A, Brasel T, Carrion R, Giavedoni LD, Patterson JL, Mire CE, Geisbert TW, Hooper JW, Weijtens M, Hartkoorn-Pasma J, Custers J, Grazia Pau M, Schuitemaker H, Zahn R. A prophylactic multivalent vaccine against different filovirus species is immunogenic and provides protection from lethal infections with Ebolavirus and Marburgvirus species in non-human primates. PLoS One 2018; 13:e0192312. [PMID: 29462200 PMCID: PMC5819775 DOI: 10.1371/journal.pone.0192312] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 01/22/2018] [Indexed: 12/11/2022] Open
Abstract
The search for a universal filovirus vaccine that provides protection against multiple filovirus species has been prompted by sporadic but highly lethal outbreaks of Ebolavirus and Marburgvirus infections. A good prophylactic vaccine should be able to provide protection to all known filovirus species and as an upside potentially protect from newly emerging virus strains. We investigated the immunogenicity and protection elicited by multivalent vaccines expressing glycoproteins (GP) from Ebola virus (EBOV), Sudan virus (SUDV), Taï Forest virus (TAFV) and Marburg virus (MARV). Immune responses against filovirus GP have been associated with protection from disease. The GP antigens were expressed by adenovirus serotypes 26 and 35 (Ad26 and Ad35) and modified Vaccinia virus Ankara (MVA) vectors, all selected for their strong immunogenicity and good safety profile. Using fully lethal NHP intramuscular challenge models, we assessed different vaccination regimens for immunogenicity and protection from filovirus disease. Heterologous multivalent Ad26-Ad35 prime-boost vaccination regimens could give full protection against MARV (range 75%-100% protection) and EBOV (range 50% to 100%) challenge, and partial protection (75%) against SUDV challenge. Heterologous multivalent Ad26-MVA prime-boost immunization gave full protection against EBOV challenge in a small cohort study. The use of such multivalent vaccines did not show overt immune interference in comparison with monovalent vaccines. Multivalent vaccines induced GP-specific antibody responses and cellular IFNγ responses to each GP expressed by the vaccine, and cross-reactivity to TAFV GP was detected in a trivalent vaccine expressing GP from EBOV, SUDV and MARV. In the EBOV challenge studies, higher humoral EBOV GP-specific immune responses (p = 0.0004) were associated with survival from EBOV challenge and less so for cellular immune responses (p = 0.0320). These results demonstrate that it is feasible to generate a multivalent filovirus vaccine that can protect against lethal infection by multiple members of the filovirus family.
Collapse
Affiliation(s)
| | - Jort Vellinga
- Janssen Vaccines & Prevention B.V., Leiden, Netherlands
| | | | | | | | | | | | | | - Trevor Brasel
- University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Ricardo Carrion
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio, Texas, United States of America
| | - Luis D. Giavedoni
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio, Texas, United States of America
| | - Jean L. Patterson
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio, Texas, United States of America
| | - Chad E. Mire
- University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Thomas W. Geisbert
- University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Jay W. Hooper
- Virology Division, US Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, United States of America
| | - Mo Weijtens
- Janssen Vaccines & Prevention B.V., Leiden, Netherlands
| | | | | | | | | | - Roland Zahn
- Janssen Vaccines & Prevention B.V., Leiden, Netherlands
| |
Collapse
|
18
|
Karbalaei Zadeh Babaki M, Soleimanpour S, Rezaee SA. Antigen 85 complex as a powerful Mycobacterium tuberculosis immunogene: Biology, immune-pathogenicity, applications in diagnosis, and vaccine design. Microb Pathog 2017; 112:20-29. [PMID: 28942172 DOI: 10.1016/j.micpath.2017.08.040] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 08/25/2017] [Accepted: 08/30/2017] [Indexed: 01/24/2023]
Abstract
Mycobacterium tuberculosis (Mtb) is one of the most life-threatening mycobacterial species which is increasing the death rate due to emerging multi-drug resistant (MDR) strains. Concerned health authorities worldwide are interested in developing an effective vaccine to prevent the spread of Mtb. After years of research, including successful identification of many Mtb immunogenic molecules, effective therapeutic agents or a vaccine have yet to be found. However, among the identified Mtb immunogenes, antigen 85 (Ag85) complex (Ag85A, Ag85B, and Ag85C) is receiving attention from scientists as it allows bacteria to evade the host immune response by preventing formation of phagolysosomes for eradication of infection. Due to their importance, A85 molecules are being utilized as tools in diagnostic methods and in the construction of new vaccines, such as recombinant attenuated vaccines, DNA vaccines, and subunit vaccines. This paper represents a comprehensive review of studies on Mtb molecules examining pathogenicity, biochemistry, immunology, and the role of Mtb in therapeutic or vaccine research.
Collapse
Affiliation(s)
- Mohsen Karbalaei Zadeh Babaki
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Antimicrobial Resistance Research Center, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Microbiology and Virology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saman Soleimanpour
- Antimicrobial Resistance Research Center, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Microbiology and Virology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Abdolrahim Rezaee
- Antimicrobial Resistance Research Center, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Immunology Research Center, Inflammation and Inflammatory Diseases Division, Medical School, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
19
|
Dockrell HM, Smith SG. What Have We Learnt about BCG Vaccination in the Last 20 Years? Front Immunol 2017; 8:1134. [PMID: 28955344 PMCID: PMC5601272 DOI: 10.3389/fimmu.2017.01134] [Citation(s) in RCA: 185] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 08/28/2017] [Indexed: 12/18/2022] Open
Abstract
A number of new tuberculosis (TB) vaccines have been or are entering clinical trials, which include genetically modified mycobacteria, mycobacterial antigens delivered by viral vectors, or mycobacterial antigens in adjuvant. Some of these vaccines aim to replace the existing BCG vaccine but others will be given as a boosting vaccine following BCG vaccination given soon after birth. It is clear that the existing BCG vaccines provide incomplete and variable protection against pulmonary TB. This review will discuss what we have learnt over the last 20 years about how the BCG vaccine induces specific and non-specific immunity, what factors influence the immune responses induced by BCG, and progress toward identifying correlates of immunity against TB from BCG vaccination studies. There is still a lot to learn about the BCG vaccine and the insights gained can help the development of more protective vaccines.
Collapse
Affiliation(s)
- Hazel M Dockrell
- Faculty of Infectious and Tropical Diseases, Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Steven G Smith
- Faculty of Infectious and Tropical Diseases, Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, United Kingdom
| |
Collapse
|
20
|
Abstract
It is almost 100 years since the development of bacille Calmette-Guérin (BCG), the only licensed vaccine against tuberculosis (TB). While BCG does confer consistent protection against disseminated disease, there is an urgent need for a more effective vaccine against pulmonary disease. There are several indications for such an improved vaccine, including prevention of infection, prevention of disease, and a therapeutic vaccine to prevent recurrent disease. The two main approaches to TB vaccine development are developing an improved whole mycobacterial priming agent to replace BCG and/or developing a subunit booster vaccine to be administered after a BCG or BCG replacement priming vaccination. In this article we review the status of the current candidate vaccines being evaluated in clinical trials. The critical challenges to successful TB vaccine development are the uncertain predictive value of the preclinical animal models and the lack of a validated immune correlate of protection. While it is relatively simple to evaluate safety and immunogenicity in phase 1/2 studies, the evaluation of efficacy requires complex studies with large numbers of subjects and long periods of follow-up. This article reviews the potential role for human Experimental Medicine studies, in parallel with product development, to help improve the predictive value of the early-stage trials.
Collapse
|
21
|
Vujadinovic M, Wunderlich K, Callendret B, Koning M, Vermeulen M, Sanders B, van der Helm E, Gecgel A, Spek D, de Boer K, Stalknecht M, Serroyen J, Grazia Pau M, Schuitemaker H, Zahn R, Custers J, Vellinga J. Adenoviral Type 35 and 26 Vectors with a Bidirectional Expression Cassette in the E1 Region Show an Improved Genetic Stability Profile and Potent Transgene-Specific Immune Response. Hum Gene Ther 2017; 29:337-351. [PMID: 28816084 DOI: 10.1089/hum.2017.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Genetic vaccines based on replication-incompetent adenoviral (AdV) vectors are currently in clinical development. Monovalent AdV vectors express one antigen from an expression cassette placed in most cases in the E1 region. For many vaccines, inclusion of several antigens is necessary in order to raise protective immunity and/or target more than one pathogen or pathogen strain. On the basis of the current technology, a mix of several monovalent vectors can be employed. However, a mix of the standard monovalent AdV vectors may not be optimal with respect to manufacturing costs and the final dose per vector in humans. Alternatively, a variety of bivalent recombinant AdV vector approaches is described in the literature. It remains unclear whether all strategies are equally suitable for clinical development while preserving all the beneficial properties of the monovalent AdV (e.g., immunogenic potency). Therefore, a thorough assessment of different bivalent AdV strategies was performed in a head-to-head fashion compared with the monovalent benchmark. The vectors were tested for rescue efficiency, genetic stability, transgene expression, and potency to induce transgene-specific immune responses. We report that the vector expressing multiple antigens from a bidirectional expression cassette in E1 shows a better genetic stability profile and a potent transgene-specific immune response compared with the other tested bivalent vectors.
Collapse
Affiliation(s)
- Marija Vujadinovic
- Janssen Vaccines and Prevention, Janssen Pharmaceutical Companies of Johnson & Johnson , Leiden, the Netherlands
| | - Kerstin Wunderlich
- Janssen Vaccines and Prevention, Janssen Pharmaceutical Companies of Johnson & Johnson , Leiden, the Netherlands
| | - Benoit Callendret
- Janssen Vaccines and Prevention, Janssen Pharmaceutical Companies of Johnson & Johnson , Leiden, the Netherlands
| | - Marina Koning
- Janssen Vaccines and Prevention, Janssen Pharmaceutical Companies of Johnson & Johnson , Leiden, the Netherlands
| | - Mark Vermeulen
- Janssen Vaccines and Prevention, Janssen Pharmaceutical Companies of Johnson & Johnson , Leiden, the Netherlands
| | - Barbara Sanders
- Janssen Vaccines and Prevention, Janssen Pharmaceutical Companies of Johnson & Johnson , Leiden, the Netherlands
| | - Esmeralda van der Helm
- Janssen Vaccines and Prevention, Janssen Pharmaceutical Companies of Johnson & Johnson , Leiden, the Netherlands
| | - Adile Gecgel
- Janssen Vaccines and Prevention, Janssen Pharmaceutical Companies of Johnson & Johnson , Leiden, the Netherlands
| | - Dirk Spek
- Janssen Vaccines and Prevention, Janssen Pharmaceutical Companies of Johnson & Johnson , Leiden, the Netherlands
| | - Karin de Boer
- Janssen Vaccines and Prevention, Janssen Pharmaceutical Companies of Johnson & Johnson , Leiden, the Netherlands
| | - Masha Stalknecht
- Janssen Vaccines and Prevention, Janssen Pharmaceutical Companies of Johnson & Johnson , Leiden, the Netherlands
| | - Jan Serroyen
- Janssen Vaccines and Prevention, Janssen Pharmaceutical Companies of Johnson & Johnson , Leiden, the Netherlands
| | - Maria Grazia Pau
- Janssen Vaccines and Prevention, Janssen Pharmaceutical Companies of Johnson & Johnson , Leiden, the Netherlands
| | - Hanneke Schuitemaker
- Janssen Vaccines and Prevention, Janssen Pharmaceutical Companies of Johnson & Johnson , Leiden, the Netherlands
| | - Roland Zahn
- Janssen Vaccines and Prevention, Janssen Pharmaceutical Companies of Johnson & Johnson , Leiden, the Netherlands
| | - Jerome Custers
- Janssen Vaccines and Prevention, Janssen Pharmaceutical Companies of Johnson & Johnson , Leiden, the Netherlands
| | - Jort Vellinga
- Janssen Vaccines and Prevention, Janssen Pharmaceutical Companies of Johnson & Johnson , Leiden, the Netherlands
| |
Collapse
|
22
|
van Zyl-Smit RN, Esmail A, Bateman ME, Dawson R, Goldin J, van Rikxoort E, Douoguih M, Pau MG, Sadoff JC, McClain JB, Snowden MA, Benko J, Hokey DA, Rutkowski KT, Graves A, Shepherd B, Ishmukhamedov S, Kagina BMN, Abel B, Hanekom WA, Scriba TJ, Bateman ED. Safety and Immunogenicity of Adenovirus 35 Tuberculosis Vaccine Candidate in Adults with Active or Previous Tuberculosis. A Randomized Trial. Am J Respir Crit Care Med 2017; 195:1171-1180. [PMID: 28060545 DOI: 10.1164/rccm.201603-0654oc] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
RATIONALE Administration of tuberculosis (TB) vaccines in participants with previous or current pulmonary TB may have the potential for causing harmful postvaccination immunologic (Koch-type) reactions. OBJECTIVES To assess the safety and immunogenicity of three dose levels of the AERAS-402 live, replication-deficient adenovirus 35-vectored TB candidate vaccine, containing three mycobacterial antigens, in individuals with current or previous pulmonary TB. METHODS We performed a phase II randomized, placebo-controlled, double-blinded dose-escalation study in an HIV-negative adult South African cohort (n = 72) with active pulmonary TB (on treatment for 1-4 mo) or pulmonary TB treated at least 12 months before study entry and considered cured. Safety endpoints included clinical assessment, flow volume curves, diffusing capacity of the lung for carbon monoxide, pulse oximetry, chest radiograph, and high-resolution thoracic computerized tomography scans. Cytokine expression by CD4 and CD8 T cells, after stimulation with Ag85A, Ag85B, and TB10.4 peptide pools, was examined by intracellular cytokine staining. MEASUREMENTS AND MAIN RESULTS No apparent temporal or dose-related changes in clinical status (specifically acute, Koch phenomenon-like reactions), lung function, or radiology attributable to vaccine were observed. Injection site reactions were mild or moderate. Hematuria (by dipstick only) occurred in 25 (41%) of 61 AERAS-402 recipients and 3 (27%) of 11 placebo recipients, although no gross hematuria was reported. AERAS-402 induced robust CD8+ and moderate CD4+ T-cell responses, mainly to Ag85B in both vaccine groups. CONCLUSIONS Administration of the AERAS-402 candidate TB vaccine to participants with current or previous pulmonary TB induced a robust immune response and is not associated with clinically significant pulmonary complications. Clinical trial registered with www.clinicaltrials.gov (NCT 02414828) and in the South African National Clinical Trials Register ( www.sanctr.gov.za DOH 27-0808-2060).
Collapse
Affiliation(s)
- Richard N van Zyl-Smit
- 1 University of Cape Town Lung Institute, Division of Pulmonology, Department of Medicine
| | - Aliasgar Esmail
- 1 University of Cape Town Lung Institute, Division of Pulmonology, Department of Medicine
| | - Mary E Bateman
- 1 University of Cape Town Lung Institute, Division of Pulmonology, Department of Medicine
| | - Rodney Dawson
- 1 University of Cape Town Lung Institute, Division of Pulmonology, Department of Medicine
| | | | - Eva van Rikxoort
- 3 Department of Radiology, Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands
| | - Macaya Douoguih
- 4 Crucell Holland B.V., a Janssen Pharmaceutical company of Johnson & Johnson, Leiden, the Netherlands
| | - Maria Grazia Pau
- 4 Crucell Holland B.V., a Janssen Pharmaceutical company of Johnson & Johnson, Leiden, the Netherlands
| | - Jerald C Sadoff
- 4 Crucell Holland B.V., a Janssen Pharmaceutical company of Johnson & Johnson, Leiden, the Netherlands
| | | | | | | | | | | | | | | | | | - Benjamin M N Kagina
- 6 South African TB Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine, Division of Immunology, Department of Pathology, and.,7 Vaccines for Africa Initiative, Division of Medical Microbiology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Brian Abel
- 6 South African TB Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine, Division of Immunology, Department of Pathology, and.,8 Singapore Immunology Network, Agency for Science, Technology and Research, Singapore
| | - Willem A Hanekom
- 6 South African TB Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine, Division of Immunology, Department of Pathology, and
| | - Thomas J Scriba
- 6 South African TB Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine, Division of Immunology, Department of Pathology, and
| | - Eric D Bateman
- 1 University of Cape Town Lung Institute, Division of Pulmonology, Department of Medicine
| |
Collapse
|
23
|
Chlamydial Type III Secretion System Needle Protein Induces Protective Immunity against Chlamydia muridarum Intravaginal Infection. BIOMED RESEARCH INTERNATIONAL 2017; 2017:3865802. [PMID: 28459057 PMCID: PMC5385227 DOI: 10.1155/2017/3865802] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 02/19/2017] [Indexed: 01/04/2023]
Abstract
Chlamydia trachomatis imposes serious health problems and causes infertility. Because of asymptomatic onset, it often escapes antibiotic treatment. Therefore, vaccines offer a better option for the prevention of unwanted inflammatory sequelae. The existence of serologically distinct serovars of C. trachomatis suggests that a vaccine will need to provide protection against multiple serovars. Chlamydia spp. use a highly conserved type III secretion system (T3SS) composed of structural and effector proteins which is an essential virulence factor. In this study, we expressed the T3SS needle protein of Chlamydia muridarum, TC_0037, an ortholog of C. trachomatis CdsF, in a replication-defective adenoviral vector (AdTC_0037) and evaluated its protective efficacy in an intravaginal Chlamydia muridarum model. For better immune responses, we employed a heterologous prime-boost immunization protocol in which mice were intranasally primed with AdTC_0037 and subcutaneously boosted with recombinant TC_0037 and Toll-like receptor 4 agonist monophosphoryl lipid A mixed in a squalene nanoscale emulsion. We found that immunization with TC_0037 antigen induced specific humoral and T cell responses, decreased Chlamydia loads in the genital tract, and abrogated pathology of upper genital organs. Together, our results suggest that TC_0037, a highly conserved chlamydial T3SS protein, is a good candidate for inclusion in a Chlamydia vaccine.
Collapse
|
24
|
Crank MC, Wilson EMP, Novik L, Enama ME, Hendel CS, Gu W, Nason MC, Bailer RT, Nabel GJ, McDermott AB, Mascola JR, Koup RA, Ledgerwood JE, Graham BS, VRC012 Study Team. Safety and Immunogenicity of a rAd35-EnvA Prototype HIV-1 Vaccine in Combination with rAd5-EnvA in Healthy Adults (VRC 012). PLoS One 2016; 11:e0166393. [PMID: 27846256 PMCID: PMC5112788 DOI: 10.1371/journal.pone.0166393] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 10/24/2016] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND VRC 012 was a Phase I study of a prototype recombinant adenoviral-vector serotype-35 (rAd35) HIV vaccine, the precursor to two recently published clinical trials, HVTN 077 and 083. On the basis of prior evaluation of multiclade rAd5 HIV vaccines, Envelope A (EnvA) was selected as the standard antigen for a series of prototype HIV vaccines to compare various vaccine platforms. In addition, prior studies of rAd5-vectored vaccines suggested pre-existing human immunity may be a confounding factor in vaccine efficacy. rAd35 is less seroprevalent across human populations and was chosen for testing alone and in combination with a rAd5-EnvA vaccine in the present two-part phase I study. METHODS First, five subjects each received a single injection of 109, 1010, or 1011 particle units (PU) of rAd35-EnvA in an open-label, dose-escalation study. Next, 20 Ad5/Ad35-seronegative subjects were randomized to blinded, heterologous prime-boost schedules combining rAd5-EnvA and rAd35-EnvA with a three month interval. rAd35-EnvA was given at 1010 or 1011 PU to ten subjects each; all rAd5-EnvA injections were 1010 PU. EnvA-specific immunogenicity was assessed four weeks post-injection. Solicited reactogenicity and clinical safety were followed after each injection. RESULTS Vaccinations were well tolerated at all dosages. Antibody responses measured by ELISA were detected at 4 weeks in 30% and 50% of subjects after single doses of 1010 or 1011 PU rAd35, respectively, and in 89% after a single rAd5-EnvA 1010 PU injection. EnvA-specific IFN-γ ELISpot responses were detected at four weeks in 0%, 70%, and 50% of subjects after the respective rAd35-EnvA dosages compared to 89% of subjects after rAd5. T cell responses were higher after a single rAd5-EnvA 1010 PU injection than after a single rAd35-EnvA 1010 PU injection, and humoral responses were low after a single dose of either vector. Of those completing the vaccine schedule, 100% of rAd5-EnvA recipients and 90% of rAd35-EnvA recipients had both T cell and humoral responses after boosting with the heterologous vector. ELISpot response magnitude was similar in both regimens and comparable to a single dose of rAd5. A trend toward more robust CD8 T cell responses using rAd5-EnvA prime and rAd35-EnvA boost was observed. Humoral response magnitude was also similar after either heterologous regimen, but was several fold higher than after a single dose of rAd5. Adverse events (AEs) related to study vaccines were in general mild and limited to one episode of hematuria, Grade two. Activated partial thromboplastin time (aPTT) AEs were consistent with an in vitro effect on the laboratory assay for aPTT due to a transient induction of anti-phospholipid antibody, a phenomenon that has been reported in other adenoviral vector vaccine trials. CONCLUSIONS Limitations of the rAd vaccine vectors, including the complex interactions among pre-existing adenoviral immunity and vaccine-induced immune responses, have prompted investigators to include less seroprevalent vectors such as rAd35-EnvA in prime-boost regimens. The rAd35-EnvA vaccine described here was well tolerated and immunogenic. While it effectively primed and boosted antibody responses when given in a reciprocal prime-boost regimen with rAd5-EnvA using a three-month interval, it did not significantly improve the frequency or magnitude of T cell responses above a single dose of rAd5. The humoral and cellular immunogenicity data reported here may inform future vaccine and study design. TRIAL REGISTRATION ClinicalTrials.gov NCT00479999.
Collapse
Affiliation(s)
- Michelle C. Crank
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Eleanor M. P. Wilson
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Laura Novik
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Mary E. Enama
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Cynthia S. Hendel
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Wenjuan Gu
- Clinical Research Directorate/Clinical Monitoring Research Program, Leidos Biomedical Research, Inc., NCI Campus at Frederick, Frederick, Maryland, 21702, United States of America
| | - Martha C. Nason
- Biostatistics Research Branch, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Robert T. Bailer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Gary J. Nabel
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Adrian B. McDermott
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - John R. Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Richard A. Koup
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Julie E. Ledgerwood
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Barney S. Graham
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | | |
Collapse
|
25
|
Adenovirally-Induced Polyfunctional T Cells Do Not Necessarily Recognize the Infected Target: Lessons from a Phase I Trial of the AERAS-402 Vaccine. Sci Rep 2016; 6:36355. [PMID: 27805026 PMCID: PMC5141283 DOI: 10.1038/srep36355] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 10/13/2016] [Indexed: 11/08/2022] Open
Abstract
The development of a vaccine for Mycobacterium tuberculosis (Mtb) has been impeded by the absence of correlates of protective immunity. One correlate would be the ability of cells induced by vaccination to recognize the Mtb-infected cell. AERAS-402 is a replication-deficient serotype 35 adenovirus containing DNA expressing a fusion protein of Mtb antigens 85A, 85B and TB10.4. We undertook a phase I double-blind, randomized placebo controlled trial of vaccination with AERAS-402 following BCG. Analysis of the vaccine-induced immune response revealed strong antigen-specific polyfunctional CD4+ and CD8+ T cell responses. However, analysis of the vaccine-induced CD8+ T cells revealed that in many instances these cells did not recognize the Mtb-infected cell. Our findings highlight the measurement of vaccine-induced, polyfunctional T cells may not reflect the extent or degree to which these cells are capable of identifying the Mtb-infected cell and correspondingly, the value of detailed experimental medicine studies early in vaccine development.
Collapse
|
26
|
Safety and immunogenicity of the M72/AS01 E candidate tuberculosis vaccine in adults with tuberculosis: A phase II randomised study. Tuberculosis (Edinb) 2016; 100:118-127. [DOI: 10.1016/j.tube.2016.07.005] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 07/05/2016] [Accepted: 07/10/2016] [Indexed: 11/22/2022]
|
27
|
Zhang C, Zhou D. Adenoviral vector-based strategies against infectious disease and cancer. Hum Vaccin Immunother 2016; 12:2064-2074. [PMID: 27105067 PMCID: PMC4994731 DOI: 10.1080/21645515.2016.1165908] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Adenoviral vectors are widely employed against infectious diseases or cancers, as they can elicit specific antibody responses and T cell responses when they are armed with foreign genes as vaccine carriers, and induce apoptosis of the cancer cells when they are genetically modified for cancer therapy. In this review, we summarize the biological characteristics of adenovirus (Ad) and the latest development of Ad vector-based strategies for the prevention and control of emerging infectious diseases or cancers. Strategies to circumvent the pre-existing neutralizing antibodies which dampen the immunogenicity of Ad-based vaccines are also discussed.
Collapse
Affiliation(s)
- Chao Zhang
- a Vaccine Research Center, Key Laboratory of Molecular Virology & Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences , Shanghai , China
| | - Dongming Zhou
- a Vaccine Research Center, Key Laboratory of Molecular Virology & Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences , Shanghai , China
| |
Collapse
|
28
|
Walsh DS, Owira V, Polhemus M, Otieno L, Andagalu B, Ogutu B, Waitumbi J, Hawkridge A, Shepherd B, Pau MG, Sadoff J, Douoguih M, McClain JB. Adenovirus type 35-vectored tuberculosis vaccine has an acceptable safety and tolerability profile in healthy, BCG-vaccinated, QuantiFERON(®)-TB Gold (+) Kenyan adults without evidence of tuberculosis. Vaccine 2016; 34:2430-2436. [PMID: 27026148 DOI: 10.1016/j.vaccine.2016.03.069] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 03/08/2016] [Accepted: 03/20/2016] [Indexed: 10/22/2022]
Abstract
In a Phase 1 trial, we evaluated the safety of AERAS-402, an adenovirus 35-vectored TB vaccine candidate expressing 3 Mycobacterium tuberculosis (Mtb) immunodominant antigens, in subjects with and without latent Mtb infection. HIV-negative, BCG-vaccinated Kenyan adults without evidence of tuberculosis, 10 QuantiFERON(®)-TB Gold In-Tube test (QFT-G)(-) and 10 QFT-G(+), were randomized 4:1 to receive AERAS-402 or placebo as two doses, on Days 0 and 56, with follow up to Day 182. There were no deaths, serious adverse events or withdrawals. For 1 AERAS-402 QFT-G(-) and 1 AERAS-402 QFT-G(+) subject, there were 3 self-limiting severe AEs of injection site pain: 1 after the first vaccination and 1 after each vaccination, respectively. Two additional severe AEs considered vaccine-related were reported after the first vaccination in AERAS-402 QFT-G(+) subjects: elevated blood creatine phosphokinase and neutropenia, the latter slowly improving but remaining abnormal until study end. AERAS-402 was not detected in urine or throat cultures for any subject. In intracellular cytokine staining studies, curtailed by technical issues, we saw modest CD4+ and CD8+ T cell responses to Mtb Ag85A/b peptide pools among both QFT-G(-) and (+) subjects, with trends in the CD4+ T cells suggestive of boosting after the second vaccine dose, slightly more so in QFT-G(+) subjects. CD4+ and CD8+ responses to Mtb antigen TB10.4 were minimal. Increases in Adenovirus 35 neutralizing antibodies from screening to end of study, seen in 50% of AERAS-402 recipients, were mostly minimal. This small study confirms acceptable safety and tolerability profiles for AERAS-402, in line with other Phase 1 studies of AERAS-402, now to include QFT-G(+) subjects.
Collapse
Affiliation(s)
- Douglas S Walsh
- United States Army Medical Research Unit-Kenya (USAMRU-K), Walter Reed Project, Kisumu 40100, Kenya.
| | - Victorine Owira
- United States Army Medical Research Unit-Kenya (USAMRU-K), Walter Reed Project, Kisumu 40100, Kenya
| | - Mark Polhemus
- United States Army Medical Research Unit-Kenya (USAMRU-K), Walter Reed Project, Kisumu 40100, Kenya
| | - Lucas Otieno
- United States Army Medical Research Unit-Kenya (USAMRU-K), Walter Reed Project, Kisumu 40100, Kenya
| | - Ben Andagalu
- United States Army Medical Research Unit-Kenya (USAMRU-K), Walter Reed Project, Kisumu 40100, Kenya
| | - Bernhards Ogutu
- United States Army Medical Research Unit-Kenya (USAMRU-K), Walter Reed Project, Kisumu 40100, Kenya
| | - John Waitumbi
- United States Army Medical Research Unit-Kenya (USAMRU-K), Walter Reed Project, Kisumu 40100, Kenya
| | | | | | | | - Jerald Sadoff
- Crucell Holland B.V., 2333 CN Leiden, The Netherlands(5)
| | | | | | | |
Collapse
|
29
|
Tuberculosis vaccines--state of the art, and novel approaches to vaccine development. Int J Infect Dis 2016; 32:5-12. [PMID: 25809749 DOI: 10.1016/j.ijid.2014.11.026] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 11/21/2014] [Accepted: 11/25/2014] [Indexed: 11/20/2022] Open
Abstract
The quest for a vaccine that could have a major impact in reducing the current global burden of TB disease in humans continues to be extremely challenging. Significant gaps in our knowledge and understanding of the pathogenesis and immunology of tuberculosis continue to undermine efforts to break new ground, and traditional approaches to vaccine development have thus far met with limited success. Existing and novel candidate vaccines are being assessed in the context of their ability to impact the various stages that culminate in disease transmission and an increase in the global burden of disease. Innovative methods of vaccine administration and delivery have provided a fresh stimulus to the search for the elusive vaccine. Here we discuss the current status of preclinical vaccine development, providing insights into alternative approaches to vaccine delivery and promising candidate vaccines. The state of the art of clinical development also is reviewed.
Collapse
|
30
|
A Phase I, Open-Label Trial, Evaluating the Safety and Immunogenicity of Candidate Tuberculosis Vaccines AERAS-402 and MVA85A, Administered by Prime-Boost Regime in BCG-Vaccinated Healthy Adults. PLoS One 2015; 10:e0141687. [PMID: 26529238 PMCID: PMC4631471 DOI: 10.1371/journal.pone.0141687] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Accepted: 10/07/2015] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND MVA85A and AERAS-402 are two clinically advanced viral vectored TB vaccine candidates expressing Mycobacterium tuberculosis antigens designed to boost BCG-induced immunity. Clinical trials with candidate malaria vaccines have demonstrated that adenoviral vector based priming immunisation, followed by MVA vector boost, induced high levels of immunity. We present the safety and immunogenicity results of the first clinical trial to evaluate this immunisation strategy in TB. METHODS In this phase 1, open-label trial, 40 healthy previously BCG-vaccinated participants were enrolled into three treatment groups and vaccinated with 1 or 2 doses of AERAS-402 followed by MVA85A; or 3 doses of AERAS-402. RESULTS Most related adverse events (AEs) were mild and there were no vaccine related serious AEs. Boosting AERAS-402 with MVA85A significantly increased Ag85A-specific T-cell responses from day of vaccination. Two priming doses of AERAS-402 followed by MVA85A boost, resulted in a significantly higher AUC post-peak Ag85A response compared to three doses of AERAS-402 and historical data with MVA85A vaccination alone. The frequency of CD8+ T-cells producing IFN-γ, TNF-α and IL-2 was highest in the group receiving two priming doses of AERAS-402 followed by MVA85A. CONCLUSIONS Vaccination with AERAS-402 followed by MVA85A was safe and increased the durability of antigen specific T-cell responses and the frequency and polyfunctionality of CD8+ T-cells, which may be important in protection against TB. Further clinical trials with adenoviral prime-MVA85A boost regimens are merited to optimise vaccination intervals, dose and route of immunisation and to evaluate this strategy in the target population in TB high burden countries. TRIAL REGISTRATION ClinicalTrials.gov NCT01683773.
Collapse
|
31
|
Kumar G, Sharma N, Gupta P, Joshi B, Gupta UD, Cevc G, Chopra A. Improved protection against tuberculosis after boosting the BCG-primed mice with subunit Ag 85a delivered through intact skin with deformable vesicles. Eur J Pharm Sci 2015; 82:11-20. [PMID: 26522817 DOI: 10.1016/j.ejps.2015.10.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 10/18/2015] [Accepted: 10/26/2015] [Indexed: 10/22/2022]
Abstract
To improve vaccination against tuberculosis (TBC) with Bacillus Calmette-Guerin (BCG), we introduce novel, non-invasive, secondary immunisations relying on epicutaneous (e.c.) applications of the TBC subunit antigen, Ag 85a, associated with deformable carrier vesicles. Immuno-boosting with such antigen-vesicles recruits more CD11c positive cells into the draining murine lymph nodes, and typically stimulates, especially the proximal, immune cells more than immunogen injections. Non-invasive antigen application also protects mice better against an infection with TBC. Subcutaneous injections of vesicular Ag 85a into BCG-primed mice mainly yield IgG1 and IgG2a, indicative of a mixed Th1 and Th2 response. Conversely, transcutaneous immuno-boosts of such mice with a deformable vesicle-Ag 85a combination mainly generate serum IgA and IgG2a, indicative of an IgA facilitated, Th1-mediated, immune response. The Ag 85a specific antibody titres are generally low, but T lymphocytes also proliferate in the immunised mice. The new, partially non-invasive, vaccination method lowers the burden of pulmonary infection with M. tuberculosis. In mice immunised with Ag85a associated with deformable vesicles we measured 116× (e.c.) to 51× (s.c.) lower colony forming units number in spleen and 9× (e.c.) to 3× (s.c.) lower such number in lungs.
Collapse
Affiliation(s)
- Gavish Kumar
- Dayalbagh Educational Institute, Dayalbagh, Agra 282 005, India
| | - Neha Sharma
- Dayalbagh Educational Institute, Dayalbagh, Agra 282 005, India
| | - Pushpa Gupta
- National JALMA Institute for Leprosy & Other Mycobacterial Diseases, Tajganj, Agra, India
| | - Beenu Joshi
- National JALMA Institute for Leprosy & Other Mycobacterial Diseases, Tajganj, Agra, India
| | - Umesh Datta Gupta
- National JALMA Institute for Leprosy & Other Mycobacterial Diseases, Tajganj, Agra, India
| | - Gregor Cevc
- The Advanced Treatments Institute, Tassilostr. 3, D-82131 Gauting, Germany, E. U
| | - Amla Chopra
- Dayalbagh Educational Institute, Dayalbagh, Agra 282 005, India.
| |
Collapse
|
32
|
Meng C, Wan T, Xu Z, Liu Y, Shan F, Sun L, Yin Y, Chen X, Jiao X. Screening putative antigens as stimulators in the Mycobacterium bovis interferon-gamma release assay for cattle. Vet Immunol Immunopathol 2015; 168:111-7. [PMID: 26375813 DOI: 10.1016/j.vetimm.2015.09.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 09/02/2015] [Accepted: 09/03/2015] [Indexed: 01/12/2023]
Abstract
Bovine tuberculosis (BTB) represents not only a significant economic concern, but also an important public health problem. Currently, interferon-gamma (IFN-γ) release assays (IGRAs) are widely used as an adjunct to the tuberculin test (TST) for the diagnosis of BTB. A great number of international studies have demonstrated that the sensitivity of the IFN-γ assay, which uses purified protein derivatives (PPDs) as diagnostic reagents, is superior to that of the TST. However, there are concerns about its specificity, largely because of the cross reactivity of common antigens shared by pathogenic and non-pathogenic mycobacterial species. The use of pathogen-specific antigens theoretically offers the most effective way to improve the specificity of IGRAs. In this study, we evaluated the potential utility of 13 purified recombinant putative antigens, which are highly specific to the Mycobacterium tuberculosis complex, as diagnostic reagents in IGRAs. A CFP-10-ESAT-6 fusion protein (abbreviated CE) displayed the greatest potential, whereas four region of difference 2 (RD2) antigens, especially Rv1985c were identified as potential candidate antigens, and can be included in an IGRA cocktail, together with CE as stimulators in the IFN-γ release assay for the diagnosis of BTB.
Collapse
Affiliation(s)
- Chuang Meng
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Ting Wan
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Zhengzhong Xu
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Yan Liu
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Fa Shan
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Lin Sun
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Yuelan Yin
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Xiang Chen
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China.
| | - Xinan Jiao
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
33
|
Hokey DA, Wachholder R, Darrah PA, Bolton DL, Barouch DH, Hill K, Dheenadhayalan V, Schwander S, Godin CS, Douoguih M, Pau MG, Seder RA, Roederer M, Sadoff JC, Sizemore D. A nonhuman primate toxicology and immunogenicity study evaluating aerosol delivery of AERAS-402/Ad35 vaccine: Evidence for transient t cell responses in peripheral blood and robust sustained responses in the lungs. Hum Vaccin Immunother 2015; 10:2199-210. [PMID: 25424923 DOI: 10.4161/hv.29108] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Bacille Calmette-Guérin (BCG), the only licensed vaccine for the prevention of tuberculosis (TB), provides only limited protection against certain forms of Mycobacterium tuberculosis (Mtb) infection. While infection with Mtb can be treated with antibiotics, the therapy is expensive, toxic, and requires several months for treatment. In addition, the emergence of drug resistant strains limits the impact of antibiotics and underlines the importance of developing a more effective vaccine to control this disease. Given that pulmonary TB is the most common form of the disease, a vaccine capable of inducing lung-resident immunity may be advantageous for combating this infection. New advances in pulmonary delivery make this route of vaccination feasible and affordable. Here, we evaluate the safety and immunogenicity of an aerosolized Ad35-based vaccine, AERAS-402, delivered to the lungs in nonhuman primates as part of a GLP acute and chronic toxicology and safety study. In this study, animals received three high doses (1 x 10(11) vp) of AERAS-402 by inhalation via a nebulizer at 1-week intervals. Aerosol delivery of AERAS-402 resulted in an increase in relative lung weights as well as microscopic findings in the lungs, mediastinal lymph nodes, bronchus-associated lymphatic tissue, and the naso-oropharynx that were consistent with the induction of an immune response during the acute phase. These findings resolved by the chronic phase and were considered to be non-adverse. Furthermore, we observed transient vaccine-specific immune responses in the peripheral blood as well as sustained high-level polyfunctional CD4(+) and CD8(+) T cell responses in the bronchoalveolar lavage fluid of vaccinated nonhuman primates. The data suggest that pulmonary delivery of Ad35-based vaccines can be safe and can induce potent lung-resident immunity.
Collapse
|
34
|
Delogu G, Provvedi R, Sali M, Manganelli R. Mycobacterium tuberculosis virulence: insights and impact on vaccine development. Future Microbiol 2015; 10:1177-94. [PMID: 26119086 DOI: 10.2217/fmb.15.26] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The existing TB vaccine, the attenuated Mycobacterium bovis strain BCG, is effective in protecting infants from severe forms of the disease, while its efficacy in protecting adults from pulmonary TB is poor. In the last two decades, a renewed interest in TB resulted in the development of several candidate vaccines that are now entering clinical trials. However, most of these vaccines are based on a common rationale and aim to induce a strong T-cell response against Mycobacterium tuberculosis. Recent advancements in the understanding of M. tuberculosis virulence determinants and associated pathogenic strategies are opening a new and broader view of the complex interaction between this remarkable pathogen and the human host, providing insights at molecular level that could lead to a new rationale for the design of novel antitubercular vaccines. A vaccination strategy that simultaneously targets different steps in TB pathogenesis may result in improved protection and reduced TB transmission.
Collapse
Affiliation(s)
- Giovanni Delogu
- Institute of Microbiology, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168, Rome, Italy
| | - Roberta Provvedi
- Department of Molecular Medicine, University of Padova, Via Aristide Gabelli 63, 35121, Padova, Italy
| | - Michela Sali
- Institute of Microbiology, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168, Rome, Italy
| | - Riccardo Manganelli
- Department of Molecular Medicine, University of Padova, Via Aristide Gabelli 63, 35121, Padova, Italy
| |
Collapse
|
35
|
Tameris M, Hokey DA, Nduba V, Sacarlal J, Laher F, Kiringa G, Gondo K, Lazarus EM, Gray GE, Nachman S, Mahomed H, Downing K, Abel B, Scriba TJ, McClain JB, Pau MG, Hendriks J, Dheenadhayalan V, Ishmukhamedov S, Luabeya AKK, Geldenhuys H, Shepherd B, Blatner G, Cardenas V, Walker R, Hanekom WA, Sadoff J, Douoguih M, Barker L, Hatherill M. A double-blind, randomised, placebo-controlled, dose-finding trial of the novel tuberculosis vaccine AERAS-402, an adenovirus-vectored fusion protein, in healthy, BCG-vaccinated infants. Vaccine 2015; 33:2944-54. [PMID: 25936724 PMCID: PMC6698638 DOI: 10.1016/j.vaccine.2015.03.070] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 03/18/2015] [Accepted: 03/23/2015] [Indexed: 11/22/2022]
Abstract
BACKGROUND Several novel tuberculosis vaccines are currently in clinical trials, including AERAS-402, an adenovector encoding a fusion protein of Mycobacterium tuberculosis antigens 85A, 85B, and TB10.4. A multicentred trial of AERAS-402 safety and immunogenicity in healthy infants was conducted in three countries in sub-Saharan Africa, using an adaptive design. METHODS In a double-blind, randomised, placebo-controlled, dose-finding trial, we enrolled BCG-vaccinated, HIV-uninfected infants aged 16-26 weeks. Infants in the safety/dose-finding phase received two doses of AERAS-402 across three dose levels, or placebo, intramuscularly on days 0 and 28. Infants in the expanded safety phase received three doses of the highest dose level, with the 3rd dose at day 280. Follow up for safety and immunogenicity was for up to two years. RESULTS We enrolled 206 infants (52 placebo and 154 AERAS-402 recipients) into the dose-finding phase and 281 (141 placebo and 140 AERAS-402 recipients) into the expanded safety phase. Safety data were acceptable across all dose levels. No vaccine-related deaths were recorded. A single serious adverse event of tachypnoea was deemed related to study vaccine. Antibodies directed largely against Ag85A and Ag85B were detected. Low magnitude CD4+ and CD8+ polyfunctional T cell responses were observed at all dose levels. The addition of a third dose of AERAS-402 at the highest dose level did not increase frequency or magnitude of antibody or CD8+ T cell responses. CONCLUSIONS AERAS-402 has an acceptable safety profile in infants and was well tolerated at all dose levels. Response rate was lower than previously seen in BCG vaccinated adults, and frequency and magnitude of antigen-specific T cells were not increased by a third dose of vaccine.
Collapse
Affiliation(s)
- M Tameris
- South African Tuberculosis Vaccine Initiative (SATVI), Department of Paediatrics and Child Health and Institute of Infectious Disease & Molecular Medicine, University of Cape Town, Cape Town, South Africa.
| | | | | | - J Sacarlal
- Centro de Investigação em Saúde de Manhiça (CISM), Manhiça, Mozambique; Faculty of Medicine, Universidade Eduardo Mondlane, Maputo, Mozambique
| | - F Laher
- Perinatal HIV Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | | | - K Gondo
- Centro de Investigação em Saúde de Manhiça (CISM), Manhiça, Mozambique
| | - E M Lazarus
- Perinatal HIV Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - G E Gray
- Perinatal HIV Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - S Nachman
- State University of New York at Stony Brook, Stony Brook, NY, USA
| | - H Mahomed
- South African Tuberculosis Vaccine Initiative (SATVI), Department of Paediatrics and Child Health and Institute of Infectious Disease & Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - K Downing
- South African Tuberculosis Vaccine Initiative (SATVI), Department of Paediatrics and Child Health and Institute of Infectious Disease & Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - B Abel
- South African Tuberculosis Vaccine Initiative (SATVI), Department of Paediatrics and Child Health and Institute of Infectious Disease & Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - T J Scriba
- South African Tuberculosis Vaccine Initiative (SATVI), Department of Paediatrics and Child Health and Institute of Infectious Disease & Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | | | - M G Pau
- Crucell Holland BV, Archimedesweg 4-6, 2333 CN Leiden, The Netherlands
| | - J Hendriks
- Crucell Holland BV, Archimedesweg 4-6, 2333 CN Leiden, The Netherlands
| | | | | | - A K K Luabeya
- South African Tuberculosis Vaccine Initiative (SATVI), Department of Paediatrics and Child Health and Institute of Infectious Disease & Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - H Geldenhuys
- South African Tuberculosis Vaccine Initiative (SATVI), Department of Paediatrics and Child Health and Institute of Infectious Disease & Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | | | | | | | | | - W A Hanekom
- South African Tuberculosis Vaccine Initiative (SATVI), Department of Paediatrics and Child Health and Institute of Infectious Disease & Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - J Sadoff
- Crucell Holland BV, Archimedesweg 4-6, 2333 CN Leiden, The Netherlands
| | - M Douoguih
- Crucell Holland BV, Archimedesweg 4-6, 2333 CN Leiden, The Netherlands
| | | | - M Hatherill
- South African Tuberculosis Vaccine Initiative (SATVI), Department of Paediatrics and Child Health and Institute of Infectious Disease & Molecular Medicine, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
36
|
Fuchs JD, Bart PA, Frahm N, Morgan C, Gilbert PB, Kochar N, DeRosa SC, Tomaras GD, Wagner TM, Baden LR, Koblin BA, Rouphael NG, Kalams SA, Keefer MC, Goepfert PA, Sobieszczyk ME, Mayer KH, Swann E, Liao HX, Haynes BF, Graham BS, McElrath MJ. Safety and Immunogenicity of a Recombinant Adenovirus Serotype 35-Vectored HIV-1 Vaccine in Adenovirus Serotype 5 Seronegative and Seropositive Individuals. ACTA ACUST UNITED AC 2015; 6. [PMID: 26587311 DOI: 10.4172/2155-6113.1000461] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND Recombinant adenovirus serotype 5 (rAd5)-vectored HIV-1 vaccines have not prevented HIV-1 infection or disease and pre-existing Ad5 neutralizing antibodies may limit the clinical utility of Ad5 vectors globally. Using a rare Ad serotype vector, such as Ad35, may circumvent these issues, but there are few data on the safety and immunogenicity of rAd35 directly compared to rAd5 following human vaccination. METHODS HVTN 077 randomized 192 healthy, HIV-uninfected participants into one of four HIV-1 vaccine/placebo groups: rAd35/rAd5, DNA/rAd5, and DNA/rAd35 in Ad5-seronegative persons; and DNA/rAd35 in Ad5-seropositive persons. All vaccines encoded the HIV-1 EnvA antigen. Antibody and T-cell responses were measured 4 weeks post boost immunization. RESULTS All vaccines were generally well tolerated and similarly immunogenic. As compared to rAd5, rAd35 was equally potent in boosting HIV-1-specific humoral and cellular immunity and responses were not significantly attenuated in those with baseline Ad5 seropositivity. Like DNA, rAd35 efficiently primed rAd5 boosting. All vaccine regimens tested elicited cross-clade antibody responses, including Env V1/V2-specific IgG responses. CONCLUSIONS Vaccine antigen delivery by rAd35 is well-tolerated and immunogenic as a prime to rAd5 immunization and as a boost to prior DNA immunization with the homologous insert. Further development of rAd35-vectored prime-boost vaccine regimens is warranted.
Collapse
Affiliation(s)
- Jonathan D Fuchs
- Population Health Division, San Francisco Department of Public Health, San Francisco, CA, USA ; Department of Medicine, University of California, San Francisco, San Francisco, USA
| | | | - Nicole Frahm
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Cecilia Morgan
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Peter B Gilbert
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Nidhi Kochar
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Stephen C DeRosa
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | | | - Theresa M Wagner
- Population Health Division, San Francisco Department of Public Health, San Francisco, CA, USA
| | - Lindsey R Baden
- Division of Infectious Disease, Brigham and Women's Hospital, Boston, MA, USA
| | - Beryl A Koblin
- Laboratory of Infectious Disease Prevention, New York Blood Center, New York, NY, USA
| | - Nadine G Rouphael
- The Hope Clinic, Division of Infectious Diseases, Emory University, Atlanta, GA, USA
| | - Spyros A Kalams
- Infectious Diseases Division, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Michael C Keefer
- University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Paul A Goepfert
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Magdalena E Sobieszczyk
- Division of Infectious Diseases, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Kenneth H Mayer
- Fenway Health and the Division of Infectious Diseases, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, USA
| | - Edith Swann
- Division of AIDS, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Hua-Xin Liao
- Human Vaccine Institute, Duke University, Durham, NC, USA
| | | | - Barney S Graham
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - M Juliana McElrath
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | | |
Collapse
|
37
|
Li W, Li M, Deng G, Zhao L, Liu X, Wang Y. Prime-boost vaccination with Bacillus Calmette Guerin and a recombinant adenovirus co-expressing CFP10, ESAT6, Ag85A and Ag85B of Mycobacterium tuberculosis induces robust antigen-specific immune responses in mice. Mol Med Rep 2015; 12:3073-80. [PMID: 25962477 DOI: 10.3892/mmr.2015.3770] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 03/23/2015] [Indexed: 11/06/2022] Open
Abstract
Tuberculosis (TB) remains to be a prevalent health issue worldwide. At present, Mycobacterium bovis Bacillus Calmette Guerin (BCG) is the singular anti-TB vaccine available for the prevention of disease in humans; however, this vaccine only provides limited protection against Mycobacterium tuberculosis (Mtb) infection. Therefore, the development of alternative vaccines and strategies for increasing the efficacy of vaccination against TB are urgently required. The present study aimed to evaluate the ability of a recombinant adenoviral vector (Ad5-CEAB) co-expressing 10-kDa culture filtrate protein, 6-kDa early-secreted antigenic target, antigen 85 (Ag85)A and Ag85B of Mtb to boost immune responses following primary vaccination with BCG in mice. The mice were first subcutaneously primed with BCG and boosted with two doses of Ad5-CEAB via an intranasal route. The immunological effects of Ad5-CEAB boosted mice primed with BCG were then evaluated using a series of immunological indexes. The results demonstrated that the prime-boost strategy induced a potent antigen-specific immune response, which was primarily characterized by an enhanced T cell response and increased production of cytokines, including interferon-γ, tumor necrosis factor-α and interleukin-2, in mice. In addition, this vaccination strategy was demonstrated to have an elevated humoral response with increased concentrations of antigen-specific bronchoalveolar lavage secretory immunoglobulin (Ig)A and serum IgG in mice compared with those primed with BCG alone. These data suggested that the regimen of subcutaneous BCG prime and mucosal Ad5-CEAB boost was a novel strategy for inducing a broad range of antigen-specific immune responses to Mtb antigens in vivo, which may provide a promising strategy for further development of adenoviral-based vaccine against Mtb infection.
Collapse
Affiliation(s)
- Wu Li
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in Western China, College of Life Science, Ningxia University, Ningxia 750021, P.R. China
| | - Min Li
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in Western China, College of Life Science, Ningxia University, Ningxia 750021, P.R. China
| | - Guangcun Deng
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in Western China, College of Life Science, Ningxia University, Ningxia 750021, P.R. China
| | - Liping Zhao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| | - Xiaoming Liu
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in Western China, College of Life Science, Ningxia University, Ningxia 750021, P.R. China
| | - Yujiong Wang
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in Western China, College of Life Science, Ningxia University, Ningxia 750021, P.R. China
| |
Collapse
|
38
|
Churchyard GJ, Snowden MA, Hokey D, Dheenadhayalan V, McClain JB, Douoguih M, Pau MG, Sadoff J, Landry B. The safety and immunogenicity of an adenovirus type 35-vectored TB vaccine in HIV-infected, BCG-vaccinated adults with CD4(+) T cell counts >350 cells/mm(3). Vaccine 2015; 33:1890-6. [PMID: 25698492 DOI: 10.1016/j.vaccine.2015.02.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Revised: 12/09/2014] [Accepted: 02/03/2015] [Indexed: 11/19/2022]
Abstract
BACKGROUND The safety and immunogenicity of a replication deficient adenovirus serotype 35 tuberculosis (TB) vaccine containing gene inserts for Antigens (Ag) 85A, Ag85B and TB10.4 (AERAS-402/AD35.TB-S) was evaluated in previously BCG vaccinated, HIV-infected South African adults with baseline CD4 counts >350 cells/mm(3). METHODS Subjects were randomized (1:1) to receive two doses of either intramuscular AERAS-402/AD35.TB-S or placebo at month 0 and at month 1. Participants were monitored for adverse events 28 days after each vaccination and for serious adverse events over 12 months. CD4(+) and CD8(+) T-cell and antibody responses to vaccine antigens were evaluated post first and second vaccination. RESULTS 26 subjects were randomly assigned to receive AERAS-402/AD35.TB-S (N=13) or placebo (N=13). The mean age was 29.0 years, all were Black-African, 88.5% were female, 46.2% were QuantiFERON Test (QFT) positive at baseline, and the median CD4 count was 559.5 cells/mm(3), all similar by treatment group. All subjects received their first vaccination and 24 subjects received their second vaccination. Injection site reactions and some systemic reactions were reported more commonly in the AERAS-402/AD35.TB-S versus placebo recipients. AERAS-402/AD35.TB-S did not appear to influence CD4 counts and HIV-1 viral load over the course of study follow-up. AERAS-402/AD35.TB-S induced a mixed CD4(+) T-cell and CD8(+) T-cell responses to Ag85B. The CD4(+) T-cell responses peaked to Ag85A and Ag85B 14 days after the second vaccination and had declined by Day 182. AERAS-402/AD35.TB-S predominantly induced CD4(+) T-cells expressing three (IFN-γ, TNF, IL-2) or two (IL-2 and TNF) cytokines, two weeks after the last vaccination, which did not differ by baseline Quantiferon test status. AERAS-402/AD35.TB-S induced strong Ag85A and Ag85B specific antibody responses, particularly after the second vaccination. CONCLUSION AERAS-402/AD35.TB-S was well tolerated, safe and induced predominantly polyfunctional CD4(+) and CD8(+) T-cell responses to vaccine.
Collapse
Affiliation(s)
- Gavin John Churchyard
- Aurum Institute, Johannesburg, South Africa; School of Public Health, University of Witwatersrand, Johannesburg, South Africa.
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
Pulmonary TB remains a leading global health issue, but the current Bacille Calmette-Guérin (BCG) vaccine fails to control it effectively. Much effort has gone into developing safe and effective boost vaccine candidates for use after the BCG prime vaccination. To date, almost all the lead candidates are being evaluated clinically via a parenteral route. Abundant experimental evidence suggests that parenteral boosting with a virus-based vaccine is much less effective than respiratory mucosal boosting, because the former fails to activate a type of T cell capable of rapidly transmigrating into the airway luminal space in the early phase of the Mycobacterium tuberculosis infection. The next few years will determine whether parenteral boosting with some of the lead vaccine candidates, particularly the protein-based vaccines, improves protection in humans over that by BCG. Much effort is needed to develop respiratory mucosal boost vaccines and to identify the reliable immune protective correlates in humans.
Collapse
Affiliation(s)
- Zhou Xing
- McMaster Immunology Research Centre, Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada.
| | - Mangalakumari Jeyanathan
- McMaster Immunology Research Centre, Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Fiona Smaill
- McMaster Immunology Research Centre, Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
40
|
Abstract
PURPOSE OF REVIEW Tuberculosis (TB) remains a major health threat that will only be defeated by a combination of better drugs, diagnostics and vaccines. The only licensed TB vaccine, bacille Calmette-Guérin (BCG), protects against extrapulmonary TB in infants. RECENT FINDINGS Novel vaccine candidates that could protect against pulmonary TB either in TB naïve or in latent TB-infected healthy individuals have been developed and are currently being assessed in clinical trials. Subunit booster vaccines are either based on viral vectors expressing TB-specific antigens or on TB-protein antigens in adjuvants. Subunit vaccines are administered on top of BCG. Replacement vaccines for BCG are recombinant viable BCG or Mycobacterium tuberculosis. Several candidates are undergoing, or will soon start, phase IIb assessment for efficacy. The first vaccine candidate, MVA85A, to complete a phase IIb trial, unfortunately failed to show protection against TB in infants. Therapeutic vaccines composed of killed mycobacterial preparations target patients with complicated TB in adjunct to drug treatment. SUMMARY With increasing numbers of TB vaccine candidates in clinical trials, financial, regulatory and infrastructural issues arise, which would be best tackled by a global strategy. In addition, selection of the most promising vaccine candidates for further clinical development gains increasing importance.
Collapse
|
41
|
Appaiahgari MB, Vrati S. Adenoviruses as gene/vaccine delivery vectors: promises and pitfalls. Expert Opin Biol Ther 2014; 15:337-51. [DOI: 10.1517/14712598.2015.993374] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
42
|
Li W, Deng G, Li M, Zeng J, Zhao L, Liu X, Wang Y. A recombinant adenovirus expressing CFP10, ESAT6, Ag85A and Ag85B of Mycobacterium tuberculosis elicits strong antigen-specific immune responses in mice. Mol Immunol 2014; 62:86-95. [DOI: 10.1016/j.molimm.2014.06.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 05/28/2014] [Accepted: 06/08/2014] [Indexed: 01/03/2023]
|
43
|
Principi N, Esposito S. The present and future of tuberculosis vaccinations. Tuberculosis (Edinb) 2014; 95:6-13. [PMID: 25458613 DOI: 10.1016/j.tube.2014.10.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 10/13/2014] [Indexed: 12/21/2022]
Abstract
The clinical, social, and economic burden of tuberculosis (TB) remains high worldwide, thereby highlighting the importance of TB prevention. The bacilli Calmette-Guérin (BCG) vaccine that is currently available can protect younger children but is less effective in adults, the major source of TB transmission. In addition, the emergence of drug-resistant Mycobacterium tuberculosis (Mtb) strains and the high prevalence of HIV infection have significantly complicated TB prognosis and treatment. Together, these data highlight the need for new and more effective vaccines. Recently, several vaccines containing multiple antigens, including some of those specific for dormant Mtb strains, have been developed. These vaccines appear to be the best approach for satisfactory Mtb prevention. However, until a new vaccine is proven more effective and safe than BCG, BCG should remain part of the immunization schedules for neonates and children at risk for TB as a fundamental prophylactic measure.
Collapse
Affiliation(s)
- Nicola Principi
- Pediatric Highly Intensive Care Unit, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Susanna Esposito
- Pediatric Highly Intensive Care Unit, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy.
| |
Collapse
|
44
|
The novel tuberculosis vaccine, AERAS-402, is safe in healthy infants previously vaccinated with BCG, and induces dose-dependent CD4 and CD8T cell responses. Vaccine 2014; 32:5908-17. [DOI: 10.1016/j.vaccine.2014.09.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 08/29/2014] [Accepted: 09/01/2014] [Indexed: 12/17/2022]
|
45
|
Diogo GR, Reljic R. Development of a new tuberculosis vaccine: is there value in the mucosal approach? Immunotherapy 2014; 6:1001-13. [DOI: 10.2217/imt.14.62] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
TB is a global health problem, killing 1.5 million people every year. The only currently available vaccine, Mycobacterium bovis BCG, is effective against severe childhood forms, but it demonstrates a variable efficacy against the pulmonary form of TB in adults. Many of these adult TB cases result from the reactivation of an initially controlled, latent Mycobacterium tuberculosis infection. Effective prophylactic vaccination remains the key long-term strategy for combating TB. Continued belief in reaching this goal requires unrelenting innovation in the formulation and delivery of candidate vaccines. It is also based on the assumption, that the failure of recent human vaccine trials could have been due to a suboptimal vaccine design and delivery, and therefore should not erode the key principle that a TB vaccine is an attainable target. This report gives a brief overview of the mucosal immune system in the context of M. tuberculosis infection, and focuses on the most recent advances in the field of mucosal TB vaccine development, with a specific emphasis on subunit TB vaccines.
Collapse
Affiliation(s)
- Gil Reynolds Diogo
- St George's Hospital, Institute of Infection & Immunity, St George's University of London, London, SW17 0RE, UK
| | - Rajko Reljic
- St George's Hospital, Institute of Infection & Immunity, St George's University of London, London, SW17 0RE, UK
| |
Collapse
|
46
|
Darrah PA, Bolton DL, Lackner AA, Kaushal D, Aye PP, Mehra S, Blanchard JL, Didier PJ, Roy CJ, Rao SS, Hokey DA, Scanga CA, Sizemore DR, Sadoff JC, Roederer M, Seder RA. Aerosol vaccination with AERAS-402 elicits robust cellular immune responses in the lungs of rhesus macaques but fails to protect against high-dose Mycobacterium tuberculosis challenge. THE JOURNAL OF IMMUNOLOGY 2014; 193:1799-811. [PMID: 25024382 DOI: 10.4049/jimmunol.1400676] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Development of a vaccine against pulmonary tuberculosis may require immunization strategies that induce a high frequency of Ag-specific CD4 and CD8 T cells in the lung. The nonhuman primate model is essential for testing such approaches because it has predictive value for how vaccines elicit responses in humans. In this study, we used an aerosol vaccination strategy to administer AERAS-402, a replication-defective recombinant adenovirus (rAd) type 35 expressing Mycobacterium tuberculosis Ags Ag85A, Ag85B, and TB10.4, in bacillus Calmette-Guérin (BCG)-primed or unprimed rhesus macaques. Immunization with BCG generated low purified protein derivative-specific CD4 T cell responses in blood and bronchoalveolar lavage. In contrast, aerosolized AERAS-402 alone or following BCG induced potent and stable Ag85A/b-specific CD4 and CD8 effector T cells in bronchoalveolar lavage that largely produced IFN-γ, as well as TNF and IL-2. Such responses induced by BCG, AERAS-402, or both failed to confer overall protection following challenge with 275 CFUs M. tuberculosis Erdman, although vaccine-induced responses associated with reduced pathology were observed in some animals. Anamnestic T cell responses to Ag85A/b were not detected in blood of immunized animals after challenge. Overall, our data suggest that a high M. tuberculosis challenge dose may be a critical factor in limiting vaccine efficacy in this model. However, the ability of aerosol rAd immunization to generate potent cellular immunity in the lung suggests that using different or more immunogens, alternative rAd serotypes with enhanced immunogenicity, and a physiological challenge dose may achieve protection against M. tuberculosis.
Collapse
Affiliation(s)
- Patricia A Darrah
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Diane L Bolton
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Andrew A Lackner
- Tulane National Primate Research Center, Covington, LA 70433; and
| | - Deepak Kaushal
- Tulane National Primate Research Center, Covington, LA 70433; and
| | - Pyone Pyone Aye
- Tulane National Primate Research Center, Covington, LA 70433; and
| | - Smriti Mehra
- Tulane National Primate Research Center, Covington, LA 70433; and
| | | | - Peter J Didier
- Tulane National Primate Research Center, Covington, LA 70433; and
| | - Chad J Roy
- Tulane National Primate Research Center, Covington, LA 70433; and
| | - Srinivas S Rao
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | | | | | | | | | - Mario Roederer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Robert A Seder
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892;
| |
Collapse
|
47
|
Smaill F, Xing Z. Human type 5 adenovirus-based tuberculosis vaccine: is the respiratory route of delivery the future? Expert Rev Vaccines 2014; 13:927-30. [PMID: 24935214 DOI: 10.1586/14760584.2014.929947] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Despite progress in managing TB, there were 8.6 million new cases in 2012. To control TB will require a more effective vaccine than BCG, new drugs and better diagnostic tests. Recombinant replication-defective adenoviruses expressing foreign DNA have been studied as vaccines. We developed and evaluated a recombinant replication-deficient human Ad5 vector expressing Ag85A (Ad5Ag85A) as a TB vaccine in animal models and a Phase I human study. Animal models of Ad5Ag85A show markedly improved protection over BCG alone and immunization via the respiratory route provides the best type of protection. In humans, intramuscular vaccination was safe; Ad5Ag85A was immunogenic and stimulated polyfunctional T cell responses, more potently in previously BCG-vaccinated volunteers. Pre-existing Ad5 antibodies did not dampen the response. Given its potency, Ad5-based TB vaccines are well-positioned to be delivered to the respiratory tract, induce local lung immunity to control TB, and inform innovative approaches to new TB vaccination strategies.
Collapse
Affiliation(s)
- Fiona Smaill
- Department of Pathology and Molecular Medicine, McMaster University, Room 4012-MDCL, 1280 Main Street West, Hamilton, Ontario Canada
| | | |
Collapse
|
48
|
Leunda A, Baldo A, Goossens M, Huygen K, Herman P, Romano M. Novel GMO-Based Vaccines against Tuberculosis: State of the Art and Biosafety Considerations. Vaccines (Basel) 2014; 2:463-99. [PMID: 26344627 PMCID: PMC4494264 DOI: 10.3390/vaccines2020463] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 04/24/2014] [Accepted: 05/06/2014] [Indexed: 12/13/2022] Open
Abstract
Novel efficient vaccines are needed to control tuberculosis (TB), a major cause of morbidity and mortality worldwide. Several TB vaccine candidates are currently in clinical and preclinical development. They fall into two categories, the one of candidates designed as a replacement of the Bacille Calmette Guérin (BCG) to be administered to infants and the one of sub-unit vaccines designed as booster vaccines. The latter are designed as vaccines that will be administered to individuals already vaccinated with BCG (or in the future with a BCG replacement vaccine). In this review we provide up to date information on novel tuberculosis (TB) vaccines in development focusing on the risk assessment of candidates composed of genetically modified organisms (GMO) which are currently evaluated in clinical trials. Indeed, these vaccines administered to volunteers raise biosafety concerns with respect to human health and the environment that need to be assessed and managed.
Collapse
Affiliation(s)
- Amaya Leunda
- Biosafety and Biotechnology Unit, Scientific Institute of Public Health, 14 Juliette Wytsman Street, Brussels 1050, Belgium.
| | - Aline Baldo
- Biosafety and Biotechnology Unit, Scientific Institute of Public Health, 14 Juliette Wytsman Street, Brussels 1050, Belgium.
| | - Martine Goossens
- Biosafety and Biotechnology Unit, Scientific Institute of Public Health, 14 Juliette Wytsman Street, Brussels 1050, Belgium.
| | - Kris Huygen
- Immunology Unit, Scientific Institute of Public Health, 642 Engeland Street, Brussels 1180, Belgium.
| | - Philippe Herman
- Biosafety and Biotechnology Unit, Scientific Institute of Public Health, 14 Juliette Wytsman Street, Brussels 1050, Belgium.
| | - Marta Romano
- Immunology Unit, Scientific Institute of Public Health, 642 Engeland Street, Brussels 1180, Belgium.
| |
Collapse
|
49
|
Marinova D, Gonzalo-Asensio J, Aguilo N, Martin C. Recent developments in tuberculosis vaccines. Expert Rev Vaccines 2014; 12:1431-48. [PMID: 24195481 DOI: 10.1586/14760584.2013.856765] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Substantial efforts have been made over the past decade to develop vaccines against tuberculosis. We review recent developments in tuberculosis vaccines in the global portfolio, including those designed for use in a prophylactic setting, either alone or as boosts to Bacille Calmette-Guérin, and therapeutic vaccines designed to improve chemotherapy. While there is no doubt that progress is still being made, there are limitations to our animal model screening processes, which are further amplified by the lack of understanding of the immunological responses involved and the precise type of long-lived immunity that new vaccines need to induce. The challenge ahead is to optimize the planning for advanced clinical trials in poor endemic settings, which could be greatly facilitated by identifying correlates of protection.
Collapse
Affiliation(s)
- Dessislava Marinova
- Grupo de Genética de Micobacterias, Dpto. Microbiología, Medicina Preventiva y Salud Pública, Universidad de Zaragoza, C/ Domingo Miral s/n, 50009 Zaragoza, Spain
| | | | | | | |
Collapse
|
50
|
Lindenstrøm T, Aagaard C, Christensen D, Agger EM, Andersen P. High-frequency vaccine-induced CD8⁺ T cells specific for an epitope naturally processed during infection with Mycobacterium tuberculosis do not confer protection. Eur J Immunol 2014; 44:1699-709. [PMID: 24677089 DOI: 10.1002/eji.201344358] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 02/03/2014] [Accepted: 02/11/2014] [Indexed: 12/26/2022]
Abstract
Relatively few MHC class I epitopes have been identified from Mycobacterium tuberculosis, but during the late stage of infection, CD8(+) T-cell responses to these epitopes are often primed at an extraordinary high frequency. Although clearly available for recognition during infection, their role in resistance to mycobacterial infections still remain unclear. As an alternative to DNA and viral vaccination platforms, we have exploited a novel CD8(+) T-cell-inducing adjuvant, cationic adjuvant formulation 05 (dimethyldioctadecylammonium/trehalose dibehenate/poly (inositic:cytidylic) acid), to prime high-frequency CD8 responses to the immunodominant H2-K(b) -restricted IMYNYPAM epitope contained in the vaccine Ag tuberculosis (TB)10.4/Rv0288/ESX-H (where ESX is mycobacterial type VII secretion system). We report that the amino acid C-terminal to this minimal epitope plays a decisive role in proteasomal cleavage and epitope priming. The primary structure of TB10.4 is suboptimal for proteasomal processing of the epitope and amino acid substitutions in the flanking region markedly increased epitope-specific CD8(+) T-cell responses. One of the optimized sequences was contained in the closely related TB10.3/Rv3019c/ESX-R Ag and when recombinantly expressed and administered in the cationic adjuvant formulation 05 adjuvant, this Ag promoted very high CD8(+) T-cell responses. This abundant T-cell response was functionally active but provided no protection against challenge, suggesting that CD8(+) T cells play a limited role in protection against M. tuberculosis in the mouse model.
Collapse
Affiliation(s)
- Thomas Lindenstrøm
- Department of Infectious Disease Immunology, Statens Serum Institut, Denmark
| | | | | | | | | |
Collapse
|