1
|
Thiene G. Myocarditis diagnosis: From light microscope to molecular analysis and cardiac magnetic resonance. Eur Heart J Suppl 2025; 27:i61-i66. [PMID: 39980768 PMCID: PMC11836729 DOI: 10.1093/eurheartjsupp/suae106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
Abstract
Telling story of myocarditis is characterized by discoveries and inventions. The invention of the microscope opened new avenues in medicine, with the observation of myocardial inflammation by Carl Ludwig Alfred Fiedler. Rudolph Virchow discovered that cells are the elementary units. Karl Albert Ludwig Aschoff first reported rheumatic pancarditis. Gilbert Dallford found enterovirus in the faeces of children, who died suddenly in the village of Coxsackie. Werner Forssmann entered in his own right ventricle with a urologic catheter via the left radial vein. Endomyocardial biopsy, via the femoral or jugular veins, made possible to take away myocardial samples in vivo, for diagnosis of myocarditis or cardiac rejection of transplanted heart. The invention of polymerase chain reaction by Kary Mullis allowed to achieve diagnosis of concealed infections and genetically determined cardiomyopathies. Myocarditis, a significant cause of sudden death, was found to be frequently ascribed to viruses. Cytotoxicity of Coxsackievirus B was proved to consist on released protease 2, encoded by virus genome and cleaving dystrophin. RNA (Coxsackie) and DNA (adenovirus) viruses share a common receptor. Cardiac magnetic resonance revealed to be sensitive and specific in the diagnosis of myocarditis by detecting myocardial oedema. However, it is unable to establish the histotype. The onset of myocarditis may be fulminant; however, extracorporeal membrane oxygenation, invented by Robert Bartlett, allows heart rest, while replacing cardiac contractility. High rates of survival have been achieved, probably because of mild myocardial damage.
Collapse
Affiliation(s)
- Gaetano Thiene
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua Medical School, Via A. Gabelli 61, Padova 35121, Italy
| |
Collapse
|
2
|
Ren M, Abdullah SW, Pei C, Guo H, Sun S. Use of virus-like particles and nanoparticle-based vaccines for combating picornavirus infections. Vet Res 2024; 55:128. [PMID: 39350170 PMCID: PMC11443892 DOI: 10.1186/s13567-024-01383-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 08/15/2024] [Indexed: 10/04/2024] Open
Abstract
Picornaviridae are non-enveloped ssRNA viruses that cause diseases such as poliomyelitis, hand-foot-and-mouth disease (HFMD), hepatitis A, encephalitis, myocarditis, and foot-and-mouth disease (FMD). Virus-like particles (VLPs) vaccines mainly comprise particles formed through the self-assembly of viral capsid proteins (for enveloped viruses, envelope proteins are also an option). They do not contain the viral genome. On the other hand, the nanoparticles vaccine (NPs) is mainly composed of self-assembling biological proteins or nanomaterials, with viral antigens displayed on the surface. The presentation of viral antigens on these particles in a repetitive array can elicit a strong immune response in animals. VLPs and NPs can be powerful platforms for multivalent antigen presentation. This review summarises the development of virus-like particle vaccines (VLPs) and nanoparticle vaccines (NPs) against picornaviruses. By detailing the progress made in the fight against various picornaviruses such as poliovirus (PV), foot-and-mouth disease virus (FMDV), enterovirus (EV), Senecavirus A (SVA), and encephalomyocarditis virus (EMCV), we in turn highlight the significant strides made in vaccine technology. These advancements include diverse construction methods, expression systems, elicited immune responses, and the use of various adjuvants. We see promising prospects for the continued development and optimisation of VLPs and NPs vaccines. Future research should focus on enhancing these vaccines' immunogenicity, stability, and delivery methods. Moreover, expanding our understanding of the interplay between these vaccines and the immune system will be crucial. We hope these insights will inspire and guide fellow researchers in the ongoing quest to combat picornavirus infections more effectively.
Collapse
Affiliation(s)
- Mei Ren
- State Key Laboratory for Animal Disease Control and Prevention, CollegeofVeterinaryMedicine, Lanzhou UniversityLanzhou Veterinary Research InstituteChinese Academy of Agricultural Sciences, Lanzhou, 730000, China
- Gembloux Agro-Biotech, University of Liege, Gembloux, Belgium
| | - Sahibzada Waheed Abdullah
- Livestock and dairy development department peshawar, Government of Khyber Pakhtunkhwa, Peshawar, Pakistan
| | - Chenchen Pei
- State Key Laboratory for Animal Disease Control and Prevention, CollegeofVeterinaryMedicine, Lanzhou UniversityLanzhou Veterinary Research InstituteChinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Huichen Guo
- State Key Laboratory for Animal Disease Control and Prevention, CollegeofVeterinaryMedicine, Lanzhou UniversityLanzhou Veterinary Research InstituteChinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Shiqi Sun
- State Key Laboratory for Animal Disease Control and Prevention, CollegeofVeterinaryMedicine, Lanzhou UniversityLanzhou Veterinary Research InstituteChinese Academy of Agricultural Sciences, Lanzhou, 730000, China.
| |
Collapse
|
3
|
Thiene G. Storytelling of Myocarditis. Biomedicines 2024; 12:832. [PMID: 38672187 PMCID: PMC11048135 DOI: 10.3390/biomedicines12040832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/20/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
In 1900, Fiedler first reported autopsy cases with peculiar inflammation of the myocardium, which he named interstitial myocarditis. He postulated an isolated cardiac inflammation of the myocardium in the absence of multiorgan involvement and with a poor prognosis due to invisible microorganisms, which years later would have been identified as viruses. The revision of original histologic sections by Schmorl showed cases with lymphocytes and others with giant-cell inflammatory histotypes. The in vivo diagnosis of myocarditis became possible thanks to right cardiac catheterization with endomyocardial biopsy (EMB). The gold standard for diagnosis was achieved with the employment of immunohistochemistry and molecular investigation by Polymerase Chain Reaction (PCR), which allows for the detection of viruses as causal agents. Both RNA and DNA were revealed to be cardiotropic, with a common receptor (CAR). A protease, coded by coxsackie virus, disrupts the cytoskeleton and accounts for cell death. Unfortunately, vaccination, despite having been revealed to be effective in animal experiments, has not yet entered the clinical field for prevention. Cardiac Magnetic Resonance turned out to be a revolutionary tool for in vivo diagnosis through the detection of edema (inflammatory exudate). Myocarditis may be fulminant in terms of clinical presentation but not necessarily fatal. The application of ExtraCorporeal Membrane Oxygenation (ECMO) allows for relieving the overloaded native heart.
Collapse
Affiliation(s)
- Gaetano Thiene
- Department of Cardiac, Thoracic, Vascular Sciences, and Public Health, University of Padua, 35121 Padua, Italy
| |
Collapse
|
4
|
Root-Bernstein R. T-Cell Receptor Sequences Identify Combined Coxsackievirus- Streptococci Infections as Triggers for Autoimmune Myocarditis and Coxsackievirus- Clostridia Infections for Type 1 Diabetes. Int J Mol Sci 2024; 25:1797. [PMID: 38339075 PMCID: PMC10855694 DOI: 10.3390/ijms25031797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/19/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
Recent research suggests that T-cell receptor (TCR) sequences expanded during human immunodeficiency virus and SARS-CoV-2 infections unexpectedly mimic these viruses. The hypothesis tested here is that TCR sequences expanded in patients with type 1 diabetes mellitus (T1DM) and autoimmune myocarditis (AM) mimic the infectious triggers of these diseases. Indeed, TCR sequences mimicking coxsackieviruses, which are implicated as triggers of both diseases, are statistically significantly increased in both T1DM and AM patients. However, TCRs mimicking Clostridia antigens are significantly expanded in T1DM, whereas TCRs mimicking Streptococcal antigens are expanded in AM. Notably, Clostridia antigens mimic T1DM autoantigens, such as insulin and glutamic acid decarboxylase, whereas Streptococcal antigens mimic cardiac autoantigens, such as myosin and laminins. Thus, T1DM may be triggered by combined infections of coxsackieviruses with Clostridia bacteria, while AM may be triggered by coxsackieviruses with Streptococci. These TCR results are consistent with both epidemiological and clinical data and recent experimental studies of cross-reactivities of coxsackievirus, Clostridial, and Streptococcal antibodies with T1DM and AM antigens. These data provide the basis for developing novel animal models of AM and T1DM and may provide a generalizable method for revealing the etiologies of other autoimmune diseases. Theories to explain these results are explored.
Collapse
|
5
|
Taghizadeh MS, Niazi A, Afsharifar A. Virus-like particles (VLPs): A promising platform for combating against Newcastle disease virus. Vaccine X 2024; 16:100440. [PMID: 38283623 PMCID: PMC10811427 DOI: 10.1016/j.jvacx.2024.100440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/11/2023] [Accepted: 01/13/2024] [Indexed: 01/30/2024] Open
Abstract
The global poultry industry plays a pivotal role in providing eggs and meat for human consumption. However, outbreaks of viral disease, especially Newcastle virus disease (NDV), within poultry farms have detrimental effects on various zootechnical parameters, such as body weight gain, feed intake, feed conversion ratio, as well as the quality of egg and meat production. Cases of vaccine failure have been reported in regions where highly pathogenic strains of NDV are prevalent. To tackle this challenge, virus-like particles (VLPs) have emerged as a potential solution. VLPs closely resemble natural viruses, offering biocompatibility and immune-stimulating properties that make them highly promising for therapeutic applications against NDV. Hence, this review emphasizes the significance of NDV and the need for effective treatments. The manuscript will contain several key aspects, starting with an exploration of the structure and properties of NDV. Subsequently, the paper will delve into the characteristics and benefits of VLPs compared to conventional drug delivery systems. A comprehensive analysis of VLPs as potential vaccine candidates targeting NDV will be presented, along with a discussion on strategies for loading cargo into these NDV-targeting VLPs. The review will also examine various expression systems utilized in the production of NDV-targeting VLPs. Additionally, the manuscript will address future prospects and challenges in the field, concluding with recommendations for further research.
Collapse
Affiliation(s)
| | - Ali Niazi
- Institute of Biotechnology, Shiraz University, Shiraz, Iran
| | - Alireza Afsharifar
- Plant Virus Research Center, School of Agriculture, Shiraz University, Shiraz, Iran
| |
Collapse
|
6
|
Gharbi J, Hadj Hassine I, Hassine M, Al-Malki M, Al-Yami A, Al-Bachir A, Ben M'hadheb M. Viral Protein VP1 Virus-like Particles (VLP) of CVB4 Induces Protective Immunity against Lethal Challenges with Diabetogenic E2 and Wild Type JBV Strains in Mice Model. Viruses 2023; 15:v15040878. [PMID: 37112858 PMCID: PMC10145976 DOI: 10.3390/v15040878] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/27/2023] [Accepted: 03/27/2023] [Indexed: 04/29/2023] Open
Abstract
Several epidemiological studies demonstrated that coxsackievirus B4 (CVB4) causes viral pancreatitis and can ultimately result in type 1 diabetes mellitus (T1D). Prevention of CVB4 infection is therefore highly desirable. There is currently no vaccine or antiviral therapeutic reagent in clinical use. VLP are structurally similar to native virus particles and therefore are far better immunogens than any other subunit vaccines. Many studies have shown the potential of capsid protein VP1 on providing protective effects from different viral strains. In this study, we contributed towards the development of a CVB4 VLP-based vaccine from the total protein VP1 of the diabetogenic CVB4E2 strain and assessed whether it could induce a protective immunity against both the wild-type CVB4JBV and the diabetogenic CVB4E2 strains in mice model. Serum samples, taken from mice immunized with VLP, were assayed in vitro for their anti-CVB4 neutralizing activity and in vivo for protective activity. We show that VLP vaccine generates robust immune responses that protect mice from lethal challenges. Results demonstrate that CVB4 VP1 capsid proteins expressed in insect cells have the intrinsic capacity to assemble into non-infectious VLP, which afforded protection from CVB4 infection to mice when used as a vaccine.
Collapse
Affiliation(s)
- Jawhar Gharbi
- Department of Biological Sciences, College of Science, King Faisal University, P.O. Box 380, Al-Ahsa 31982, Saudi Arabia
| | - Ikbel Hadj Hassine
- Research Unit UR17ES30 «Virology & Antiviral Strategies», Institute of Biotechnology, University of Monastir, Monastir 5000, Tunisia
| | - Mouna Hassine
- Research Unit UR17ES30 «Virology & Antiviral Strategies», Institute of Biotechnology, University of Monastir, Monastir 5000, Tunisia
| | - Mohammed Al-Malki
- Department of Biological Sciences, College of Science, King Faisal University, P.O. Box 380, Al-Ahsa 31982, Saudi Arabia
| | - Ameera Al-Yami
- Department of Biological Sciences, College of Science, King Faisal University, P.O. Box 380, Al-Ahsa 31982, Saudi Arabia
| | - Anwar Al-Bachir
- Department of Biological Sciences, College of Science, King Faisal University, P.O. Box 380, Al-Ahsa 31982, Saudi Arabia
| | - Manel Ben M'hadheb
- Research Unit UR17ES30 «Virology & Antiviral Strategies», Institute of Biotechnology, University of Monastir, Monastir 5000, Tunisia
| |
Collapse
|
7
|
Kyaw T, Drummond G, Bobik A, Peter K. Myocarditis: causes, mechanisms, and evolving therapies. Expert Opin Ther Targets 2023; 27:225-238. [PMID: 36946552 DOI: 10.1080/14728222.2023.2193330] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
INTRODUCTION Myocarditis is a severe lymphocyte-mediated inflammatory disorder of the heart, mostly caused by viruses and immune checkpoint inhibitors (ICIs). Recently, myocarditis as a rare adverse event of mRNA vaccines for SARS-CoV-2 has caused global attention. The clinical consequences of myocarditis can be very severe, but specific treatment options are lacking or not yet clinically proven. AREAS COVERED This paper offers a brief overview of the biology of viruses that frequently cause myocarditis, focusing on mechanisms important for viral entry and replication following host infection. Current and new potential therapeutic targets/strategies especially for viral myocarditis are reviewed systematically. In particular, the immune system in myocarditis is dissected with respect to infective viral and non-infective, ICI-induced myocarditis. EXPERT OPINION Vaccination is an excellent emerging preventative strategy for viral myocarditis, but most vaccines still require further development. Anti-viral treatments that inhibit viral replication need to be considered following viral infection in host myocardium, as lower viral load reduces inflammation severity. Understanding how the immune system continues to damage the heart even after viral clearance will define novel therapeutic targets/strategies. We propose that viral myocarditis can be best treated using a combination of antiviral agents and immunotherapies that control cytotoxic T cell activity.
Collapse
Affiliation(s)
- Tin Kyaw
- Inflammation and Cardiovascular Disease Laboratory, Baker Heart and Diabetes Institute
- Centre for Inflammatory Diseases, Monash Medical Centre, Monash University, Melbourne, Australia
- Department of Cardiometabolic Health, University of Melbourne Melbourne Australia
| | - Grant Drummond
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University Melbourne Australia
- Centre for Cardiovascular Biology and Disease Research, La Trobe University, Melbourne, Australia
| | - Alex Bobik
- Inflammation and Cardiovascular Disease Laboratory, Baker Heart and Diabetes Institute
- Centre for Inflammatory Diseases, Monash Medical Centre, Monash University, Melbourne, Australia
- Department of Cardiometabolic Health, University of Melbourne Melbourne Australia
- Centre for Cardiovascular Biology and Disease Research, La Trobe University, Melbourne, Australia
- Heart Centre, Alfred Hospital, Melbourne, Australia
| | - Karlheinz Peter
- Inflammation and Cardiovascular Disease Laboratory, Baker Heart and Diabetes Institute
- Department of Cardiometabolic Health, University of Melbourne Melbourne Australia
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University Melbourne Australia
- Heart Centre, Alfred Hospital, Melbourne, Australia
- Department of Immunology, Monash University Melbourne Australia
| |
Collapse
|
8
|
Ullah A, Waqas M, Aziz S, Rahman SU, Khan S, Khalid A, Abdalla AN, Uddin J, Halim SA, Khan A, Al-Harrasi A. Bioinformatics and immunoinformatics approach to develop potent multi-peptide vaccine for coxsackievirus B3 capable of eliciting cellular and humoral immune response. Int J Biol Macromol 2023; 239:124320. [PMID: 37004935 DOI: 10.1016/j.ijbiomac.2023.124320] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/29/2023] [Accepted: 03/30/2023] [Indexed: 04/03/2023]
Abstract
Coxsackievirus B3 (CVB3) is a viral pathogen of various human disorders with no effective preventative interventions. Herein, we aimed to design a chimeric vaccine construct for CVB3 using reverse vaccinology and immunoinformatics approaches by screening the whole viral polyprotein sequence. Firstly, screening and mapping of viral polyprotein to predict 21 immunodominant epitopes (B-cell, CD8+ and CD4+ T-cell epitopes), fused with an adjuvant (Resuscitation-promoting factor), appropriate linkers, HIV-TAT peptide, Pan DR epitope, and 6His-tag to assemble a multi-epitope vaccine construct. The chimeric construct is predicted as probable antigen, non-allergen, stable, possess encouraging physicochemical features, and indicates a broader population coverage (98 %). The tertiary structure of the constructed vaccine was predicted and refined, and its interaction with the Toll-like receptor 4 (TLR4) was investigated through molecular docking and dynamics simulation. Computational cloning of the construct was carried out in pET28a (+) plasmid to guarantee the higher expression of the vaccine protein. Lastly, in silico immune simulation foreseen that humoral and cellular immune responses would be elicited in response to the administration of such a potent chimeric construct. Thus, the design constructed could vaccinate against CVB3 infection and various CVB serotypes. However, further in vitro/in vivo research must assess its safety and effectiveness.
Collapse
|
9
|
Mone K, Lasrado N, Sur M, Reddy J. Vaccines against Group B Coxsackieviruses and Their Importance. Vaccines (Basel) 2023; 11:vaccines11020274. [PMID: 36851152 PMCID: PMC9961666 DOI: 10.3390/vaccines11020274] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 02/03/2023] Open
Abstract
The group B coxsackieviruses (CVBs) exist in six serotypes (CVB1 to CVB6). Disease associations have been reported for most serotypes, and multiple serotypes can cause similar diseases. For example, CVB1, CVB3, and CVB5 are generally implicated in the causation of myocarditis, whereas CVB1 and CVB4 could accelerate the development of type 1 diabetes (T1D). Yet, no vaccines against these viruses are currently available. In this review, we have analyzed the attributes of experimentally tested vaccines and discussed their merits and demerits or limitations, as well as their impact in preventing infections, most importantly myocarditis and T1D.
Collapse
Affiliation(s)
- Kiruthiga Mone
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Ninaad Lasrado
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Meghna Sur
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Jay Reddy
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
- Correspondence: ; Tel.: +1-(402)-472-8541
| |
Collapse
|
10
|
Mejía-Méndez JL, Vazquez-Duhalt R, Hernández LR, Sánchez-Arreola E, Bach H. Virus-like Particles: Fundamentals and Biomedical Applications. Int J Mol Sci 2022; 23:8579. [PMID: 35955711 PMCID: PMC9369363 DOI: 10.3390/ijms23158579] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/25/2022] [Accepted: 07/29/2022] [Indexed: 02/04/2023] Open
Abstract
Nanotechnology is a fast-evolving field focused on fabricating nanoscale objects for industrial, cosmetic, and therapeutic applications. Virus-like particles (VLPs) are self-assembled nanoparticles whose intrinsic properties, such as heterogeneity, and highly ordered structural organization are exploited to prepare vaccines; imaging agents; construct nanobioreactors; cancer treatment approaches; or deliver drugs, genes, and enzymes. However, depending upon the intrinsic features of the native virus from which they are produced, the therapeutic performance of VLPs can vary. This review compiles the recent scientific literature about the fundamentals of VLPs with biomedical applications. We consulted different databases to present a general scenario about viruses and how VLPs are produced in eukaryotic and prokaryotic cell lines to entrap therapeutic cargo. Moreover, the structural classification, morphology, and methods to functionalize the surface of VLPs are discussed. Finally, different characterization techniques required to examine the size, charge, aggregation, and composition of VLPs are described.
Collapse
Affiliation(s)
- Jorge L. Mejía-Méndez
- Departamento de Ciencias Químico Biológicas, Universidad de las Américas Puebla, Santa Catarina Mártir s/n, Cholula 72810, Puebla, Mexico; (J.L.M.-M.); (L.R.H.); (E.S.-A.)
| | - Rafael Vazquez-Duhalt
- Centro de Nanociencias y Nanotecnología UNAM, Km 107 Carretera Tijuana-Ensenada, Ensenada 22860, Baja California, Mexico;
| | - Luis R. Hernández
- Departamento de Ciencias Químico Biológicas, Universidad de las Américas Puebla, Santa Catarina Mártir s/n, Cholula 72810, Puebla, Mexico; (J.L.M.-M.); (L.R.H.); (E.S.-A.)
| | - Eugenio Sánchez-Arreola
- Departamento de Ciencias Químico Biológicas, Universidad de las Américas Puebla, Santa Catarina Mártir s/n, Cholula 72810, Puebla, Mexico; (J.L.M.-M.); (L.R.H.); (E.S.-A.)
| | - Horacio Bach
- Department of Medicine, Division of Infectious Diseases, University of British Columbia, Vancouver, BC V6H 3Z6, Canada
| |
Collapse
|
11
|
Mt10-CVB3 Vaccine Virus Protects against CVB4 Infection by Inducing Cross-Reactive, Antigen-Specific Immune Responses. Microorganisms 2021; 9:microorganisms9112323. [PMID: 34835449 PMCID: PMC8622534 DOI: 10.3390/microorganisms9112323] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/05/2021] [Accepted: 11/06/2021] [Indexed: 12/29/2022] Open
Abstract
Group B coxsackieviruses (CVB) containing six serotypes, B1–B6, affect various organs, and multiple serotypes can induce similar diseases such as myocarditis and pancreatitis. Yet, no vaccines are currently available to prevent these infections. Translationally, the derivation of vaccines that offer protection against multiple serotypes is highly desired. In that direction, we recently reported the generation of an attenuated strain of CVB3, termed Mt10, which completely protects against both myocarditis and pancreatitis induced by the homologous wild-type CVB3 strain. Here, we report that the Mt10 vaccine can induce cross-protection against multiple CVB serotypes as demonstrated with CVB4. We note that the Mt10 vaccine could induce cross-reactive neutralizing antibodies (nABs) against both CVB1 and CVB4. In challenge studies with CVB4, the efficacy of the Mt10 vaccine was found to be 92%, as determined by histological evaluation of the heart and pancreas. Antibody responses induced in Mt10/CVB4 challenged animals indicated the persistence of cross-reactive nABs against CVB1, CVB3, and CVB4. Evaluation of antigen-specific immune responses revealed viral protein 1 (VP1)-reactive antibodies, predominantly IgG2a, IgG2b, IgG3, and IgG1. Similarly, by using major histocompatibility complex class II tetramers, we noted induction of VP1-specific CD4 T cells capable of producing multiple T cell cytokines, with interferon-γ being predominant. Finally, none of the vaccine recipients challenged with CVB4 revealed the presence of viral nucleic acid in the heart or pancreas. Taken together, our data suggest that the Mt10 vaccine can prevent infections caused by multiple CVB serotypes, paving the way for the development of monovalent CVB vaccines to prevent heart and pancreatic diseases of enteroviral origin.
Collapse
|
12
|
Sublingual Immunization with Chimeric C1q/CD40 Ligand/HIV Virus-like Particles Induces Strong Mucosal Immune Responses against HIV. Vaccines (Basel) 2021; 9:vaccines9111236. [PMID: 34835167 PMCID: PMC8618657 DOI: 10.3390/vaccines9111236] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 11/16/2022] Open
Abstract
Development of a vaccine that can elicit robust HIV specific antibody responses in the mucosal compartments is desired for effective prevention of HIV via sexual transmission. However, the current mucosal vaccines have either poor immunogenicity when administered orally or invite safety concerns when administered intranasally. Sublingual immunization has received more attention in recent years based on its efficiency in inducing systemic and mucosal immune responses in both mucosal and extra-mucosal tissues. To facilitate the transport of the immunogen across the sub-mucosal epithelial barrier, we found that CD91, the receptor of C1q, is prevalently expressed in the sublingual mucosal lining, and thus, a modified chimeric C1q surface conjugated CD40L/HIV VLP was generated. The ability of this chimeric C1q/CD40L/HIV VLP to bind, cross the epithelial layer, access and activate the sub-mucosal layer dendritic cells (DCs), and ultimately induce enhanced mucosal and systemic immune responses against HIV is evaluated in this study. We found that C1q/CD40L/HIV VLPs have enhanced binding, increased transport across the epithelial layer, and upregulate DC activation markers as compared to CD40L/HIV VLPs alone. Mice immunized with C1q/CD40L/HIV VLPs by sublingual administration showed higher levels of IgA salivary antibodies against both HIV Gag and Env than mice immunized with CD40L/HIV VLPs. Moreover, sublingual immunization with C1q/CD40L/HIV VLPs induced more Env- and Gag-specific IFN-γ producing T cells than the CD40L/HIV VLPs group. Interestingly, C1q/CD40L/HIV VLP immunization can also induce more mucosal homing T cells than that in CD40L/HIV VLP group. Our data suggest that incorporation of C1q to CD40L/HIV VLPs is a promising novel strategy and that the sublingual immunization can be a favorite immunization route for HIV mucosal vaccines.
Collapse
|
13
|
Zhang N, Zheng T, Chen Y, Zhu H, Qu Y, Zheng H, Liu H, Liu Q. Coxsackievirus B5 virus-like particle vaccine exhibits greater immunogenicity and immunoprotection than its inactivated counterpart in mice. Vaccine 2021; 39:5699-5705. [PMID: 34420787 DOI: 10.1016/j.vaccine.2021.07.095] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 07/02/2021] [Accepted: 07/31/2021] [Indexed: 10/20/2022]
Abstract
Coxsackievirus B group 5 (CVB5) represents one of the major pathogens that cause diseases such as hand, foot and mouth disease (HFMD) and aseptic meningitis et al. Currently, no specific drugs and vaccines are available, and a safe and effective CVB5 vaccine is of great value for control of the diseases. In this study, CVB5 P1 precursor and 3CD protease were co-expressed in Sf9 cells by using a baculovirus expression system. The P1 was processed by 3CD and self-assembled into CVB5 virus-like particles (VLPs). VP1 and VP3 capsid proteins of CVB5 could be detected by SDS-PAGE and Western blotting. Transmission electron microscopy revealed that the CVB5 VLPs were spherical particles with a diameter of about 30 nm, mimicking wild-type CVB5 virus. Our study showed that the total IgG and neutralizing antibodies induced by CVB5 VLPs were higher than those induced by inactivated vaccine. More importantly, the CVB5 VLPs conferred full protection to the CVB5-challenged suckling mice via passive immunity while protection efficiency of the inactivated vaccine was only 80%. The CVB5 VLPs vaccine could protect the limb muscles, brain, and heart tissues of suckling mice from CVB5-induced damage. These results demonstrated that the CVB5 VLPs vaccine possessed stronger immunogenicity and provided more robust immunoprotection than the inactivated CVB5 vaccine, suggesting that the CVB5 VLPs promise to be a CVB5 vaccine candidate in future.
Collapse
Affiliation(s)
- Ning Zhang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Tianpeng Zheng
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Yongbei Chen
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Hanyu Zhu
- College of Biotechnology, Guilin Medical University, Guilin, Guangxi, China
| | - Ying Qu
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China; College of Pharmacy, Guilin Medical University, Guilin, Guangxi, China
| | - Huanying Zheng
- Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, Guangdong, China
| | - Hongbo Liu
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China; Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, Guilin, Guangxi, China.
| | - Qiliang Liu
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China; College of Biotechnology, Guilin Medical University, Guilin, Guangxi, China.
| |
Collapse
|
14
|
Attenuated strain of CVB3 with a mutation in the CAR-interacting region protects against both myocarditis and pancreatitis. Sci Rep 2021; 11:12432. [PMID: 34127684 PMCID: PMC8203608 DOI: 10.1038/s41598-021-90434-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 05/06/2021] [Indexed: 12/28/2022] Open
Abstract
Coxsackievirus B3 (CVB3), is commonly implicated in myocarditis, which can lead to dilated cardiomyopathy, in addition to causing acute pancreatitis and meningitis. Yet, no vaccines are currently available to prevent this infection. Here, we describe the derivation of a live attenuated vaccine virus, termed mutant (Mt) 10, encoding a single amino acid substitution H790A within the viral protein 1, that prevents CVB3 infection in mice and protects from both myocarditis and pancreatitis in challenge studies. We noted that animals vaccinated with Mt 10 developed virus-neutralizing antibodies, predominantly containing IgG2a and IgG2b, and to a lesser extent IgG3 and IgG1. Furthermore, by using major histocompatibility complex class II dextramers and tetramers, we demonstrated that Mt 10 induces antigen-specific T cell responses that preferentially produce interferon-γ. Finally, neither vaccine recipients nor those challenged with the wild-type virus revealed evidence of autoimmunity or cardiac injury as determined by T cell response to cardiac myosin and measurement of circulating cardiac troponin I levels, respectively. Together, our data suggest that Mt 10 is a vaccine candidate that prevents CVB3 infection through the induction of neutralizing antibodies and antigen-specific T cell responses, the two critical components needed for complete protection against virus infections in vaccine studies.
Collapse
|
15
|
Hankaniemi MM, Baikoghli MA, Stone VM, Xing L, Väätäinen O, Soppela S, Sioofy-Khojine A, Saarinen NVV, Ou T, Anson B, Hyöty H, Marjomäki V, Flodström-Tullberg M, Cheng RH, Hytönen VP, Laitinen OH. Structural Insight into CVB3-VLP Non-Adjuvanted Vaccine. Microorganisms 2020; 8:microorganisms8091287. [PMID: 32846899 PMCID: PMC7565060 DOI: 10.3390/microorganisms8091287] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 07/23/2020] [Accepted: 07/23/2020] [Indexed: 12/23/2022] Open
Abstract
Coxsackievirus B (CVB) enteroviruses are common pathogens that can cause acute and chronic myocarditis, dilated cardiomyopathy, aseptic meningitis, and they are hypothesized to be a causal factor in type 1 diabetes. The licensed enterovirus vaccines and those currently in clinical development are traditional inactivated or live attenuated vaccines. Even though these vaccines work well in the prevention of enterovirus diseases, new vaccine technologies, like virus-like particles (VLPs), can offer important advantages in the manufacturing and epitope engineering. We have previously produced VLPs for CVB3 and CVB1 in insect cells. Here, we describe the production of CVB3-VLPs with enhanced production yield and purity using an improved purification method consisting of tangential flow filtration and ion exchange chromatography, which is compatible with industrial scale production. We also resolved the CVB3-VLP structure by Cryo-Electron Microscopy imaging and single particle reconstruction. The VLP diameter is 30.9 nm on average, and it is similar to Coxsackievirus A VLPs and the expanded enterovirus cell-entry intermediate (the 135s particle), which is ~2 nm larger than the mature virion. High neutralizing and total IgG antibody levels, the latter being a predominantly Th2 type (IgG1) phenotype, were detected in C57BL/6J mice immunized with non-adjuvanted CVB3-VLP vaccine. The structural and immunogenic data presented here indicate the potential of this improved methodology to produce highly immunogenic enterovirus VLP-vaccines in the future.
Collapse
Affiliation(s)
- Minna M. Hankaniemi
- Faculty of Medicine and Life Sciences, Tampere University, FI-33014 Tampere, Finland; (O.V.); (S.S.); (A.S.-K.); (N.V.V.S.); (H.H.); (O.H.L.)
- Correspondence: (M.M.H.); (V.P.H.); Tel.: +358-504176882 (M.M.H.); +358-401901517 (V.P.H.)
| | - Mo A. Baikoghli
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA; (M.A.B.); (L.X.); (T.O.); (B.A.); (R.H.C.)
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, P.O. Box 20, University of Helsinki, 00014 Helsinki, Finland
| | - Virginia M. Stone
- The Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital Huddinge, SE-141 52 Stockholm, Sweden; (V.M.S.); (M.F.-T.)
| | - Li Xing
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA; (M.A.B.); (L.X.); (T.O.); (B.A.); (R.H.C.)
| | - Outi Väätäinen
- Faculty of Medicine and Life Sciences, Tampere University, FI-33014 Tampere, Finland; (O.V.); (S.S.); (A.S.-K.); (N.V.V.S.); (H.H.); (O.H.L.)
| | - Saana Soppela
- Faculty of Medicine and Life Sciences, Tampere University, FI-33014 Tampere, Finland; (O.V.); (S.S.); (A.S.-K.); (N.V.V.S.); (H.H.); (O.H.L.)
| | - Amirbabak Sioofy-Khojine
- Faculty of Medicine and Life Sciences, Tampere University, FI-33014 Tampere, Finland; (O.V.); (S.S.); (A.S.-K.); (N.V.V.S.); (H.H.); (O.H.L.)
| | - Niila V. V. Saarinen
- Faculty of Medicine and Life Sciences, Tampere University, FI-33014 Tampere, Finland; (O.V.); (S.S.); (A.S.-K.); (N.V.V.S.); (H.H.); (O.H.L.)
| | - Tingwei Ou
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA; (M.A.B.); (L.X.); (T.O.); (B.A.); (R.H.C.)
| | - Brandon Anson
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA; (M.A.B.); (L.X.); (T.O.); (B.A.); (R.H.C.)
| | - Heikki Hyöty
- Faculty of Medicine and Life Sciences, Tampere University, FI-33014 Tampere, Finland; (O.V.); (S.S.); (A.S.-K.); (N.V.V.S.); (H.H.); (O.H.L.)
- Fimlab Laboratories, FI-33520 Tampere, Finland
| | - Varpu Marjomäki
- Department of Biological and Environmental Science/Nanoscience Center, University of Jyväskylä, P.O. Box 35, FI-40014 Jyväskylä, Finland;
| | - Malin Flodström-Tullberg
- The Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital Huddinge, SE-141 52 Stockholm, Sweden; (V.M.S.); (M.F.-T.)
| | - R. Holland Cheng
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA; (M.A.B.); (L.X.); (T.O.); (B.A.); (R.H.C.)
| | - Vesa P. Hytönen
- Faculty of Medicine and Life Sciences, Tampere University, FI-33014 Tampere, Finland; (O.V.); (S.S.); (A.S.-K.); (N.V.V.S.); (H.H.); (O.H.L.)
- Fimlab Laboratories, FI-33520 Tampere, Finland
- Correspondence: (M.M.H.); (V.P.H.); Tel.: +358-504176882 (M.M.H.); +358-401901517 (V.P.H.)
| | - Olli H. Laitinen
- Faculty of Medicine and Life Sciences, Tampere University, FI-33014 Tampere, Finland; (O.V.); (S.S.); (A.S.-K.); (N.V.V.S.); (H.H.); (O.H.L.)
| |
Collapse
|
16
|
Stone VM, Hankaniemi MM, Laitinen OH, Sioofy-Khojine AB, Lin A, Diaz Lozano IM, Mazur MA, Marjomäki V, Loré K, Hyöty H, Hytönen VP, Flodström-Tullberg M. A hexavalent Coxsackievirus B vaccine is highly immunogenic and has a strong protective capacity in mice and nonhuman primates. SCIENCE ADVANCES 2020; 6:eaaz2433. [PMID: 32494709 PMCID: PMC7202868 DOI: 10.1126/sciadv.aaz2433] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 02/10/2020] [Indexed: 06/11/2023]
Abstract
Coxsackievirus B (CVB) enteroviruses are common human pathogens known to cause severe diseases including myocarditis, chronic dilated cardiomyopathy, and aseptic meningitis. CVBs are also hypothesized to be a causal factor in type 1 diabetes. Vaccines against CVBs are not currently available, and here we describe the generation and preclinical testing of a novel hexavalent vaccine targeting the six known CVB serotypes. We show that the vaccine has an excellent safety profile in murine models and nonhuman primates and that it induces strong neutralizing antibody responses to the six serotypes in both species without an adjuvant. We also demonstrate that the vaccine provides immunity against acute CVB infections in mice, including CVB infections known to cause virus-induced myocarditis. In addition, it blocks CVB-induced diabetes in a genetically permissive mouse model. Our preclinical proof-of-concept studies demonstrate the successful generation of a promising hexavalent CVB vaccine with high immunogenicity capable of preventing CVB-induced diseases.
Collapse
Affiliation(s)
- V. M. Stone
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - M. M. Hankaniemi
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - O. H. Laitinen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | | | - A. Lin
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - I. M. Diaz Lozano
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - M. A. Mazur
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - V. Marjomäki
- Department of Biological and Environmental Science/Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - K. Loré
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - H. Hyöty
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Fimlab Laboratories, Tampere, Finland
| | - V. P. Hytönen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Fimlab Laboratories, Tampere, Finland
| | - M. Flodström-Tullberg
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| |
Collapse
|
17
|
Hassine IH, Gharbi J, Hamrita B, Almalki MA, Rodríguez JF, Ben M'hadheb M. Characterization of Coxsackievirus B4 virus-like particles VLP produced by the recombinant baculovirus-insect cell system expressing the major capsid protein. Mol Biol Rep 2020; 47:2835-2843. [PMID: 32240468 DOI: 10.1007/s11033-020-05333-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 02/18/2020] [Indexed: 01/17/2023]
Abstract
Coxsackievirus B4 (CV-B4) is suspected to be an environmental factor that has the intrinsic capacity to damage the pancreatic beta cells and therefore causes insulitis and type 1 diabetes (T1D). Although vaccination against CV-B4 could reduce the incidence of this chronic auto-immune disease, there is currently no therapeutic reagent or vaccine in clinical use. By the employment of the Bac-to-Bac® vector system to express the major viral capsid protein, we contributed towards the development of a CV-B4 vaccine by producing CV-B4 virus-like particles (VLPs) from recombinant baculovirus in infected insect cells. In fact Western blot and Immunofluorescence analysis detected the viral protein 1 (VP1) in the cells resulting from the construction of a recombinant bacmid DNA carrying the key immunogenic protein then transfected in the insect cells. Sucrose gradient ultracentrifugation fractions of the infected cell lysates contained the recombinant protein and the electron microscopy demonstrated the presence of VLPs in these sucrose fractions. This study clearly shows for the first time the expression of CVB4 VP1 structure protein alone can form VLPs in the baculovirus-infected insect cell keeping conserved both characteristics and morphology.
Collapse
Affiliation(s)
- Ikbel Hadj Hassine
- Unité de Recherche UR17ES30 "Génomique, Biotechnologie et Stratégies Antivirales", Institut Supérieur de Biotechnologie, Université de Monastir, BP74, Avenue Tahar Hadded, 5000, Monastir, Tunisia.,Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología-CSIC, Cantoblanco, 28049, Madrid, Spain
| | - Jawhar Gharbi
- Unité de Recherche UR17ES30 "Génomique, Biotechnologie et Stratégies Antivirales", Institut Supérieur de Biotechnologie, Université de Monastir, BP74, Avenue Tahar Hadded, 5000, Monastir, Tunisia. .,Department of Biological Sciences, College of Science, King Faisal University, P.O. Box 380, Al-Ahsa, 31982, Saudi Arabia.
| | - Bechr Hamrita
- Unité de Recherche UR17ES30 "Génomique, Biotechnologie et Stratégies Antivirales", Institut Supérieur de Biotechnologie, Université de Monastir, BP74, Avenue Tahar Hadded, 5000, Monastir, Tunisia
| | - Mohammed A Almalki
- Department of Biological Sciences, College of Science, King Faisal University, P.O. Box 380, Al-Ahsa, 31982, Saudi Arabia
| | - José Francisco Rodríguez
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología-CSIC, Cantoblanco, 28049, Madrid, Spain
| | - Manel Ben M'hadheb
- Unité de Recherche UR17ES30 "Génomique, Biotechnologie et Stratégies Antivirales", Institut Supérieur de Biotechnologie, Université de Monastir, BP74, Avenue Tahar Hadded, 5000, Monastir, Tunisia
| |
Collapse
|
18
|
Formalin treatment increases the stability and immunogenicity of coxsackievirus B1 VLP vaccine. Antiviral Res 2019; 171:104595. [PMID: 31491431 DOI: 10.1016/j.antiviral.2019.104595] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 08/29/2019] [Accepted: 09/02/2019] [Indexed: 12/17/2022]
Abstract
Type B Coxsackieviruses (CVBs) are a common cause of acute and chronic myocarditis, dilated cardiomyopathy and aseptic meningitis. However, no CVB-vaccines are available for human use. We have previously produced virus-like particles (VLPs) for CVB3 with a baculovirus-insect cell production system. Here we have explored the potential of a VLP-based vaccine targeting CVB1 and describe the production of CVB1-VLPs with a scalable VLP purification method. The developed purification method consisting of tangential flow filtration and ion exchange chromatography is compatible with industrial scale production. CVB1-VLP vaccine was treated with UV-C or formalin to study whether stability and immunogenicity was affected. Untreated, UV treated and formalin treated VLPs remained morphologically intact for 12 months at 4 °C. Formalin treatment increased, whereas UV treatment decreased the thermostability of the VLP-vaccine. High neutralising and total IgG antibody levels, the latter predominantly of a Th2 type (IgG1) phenotype, were detected in female BALB/c mice immunised with non-adjuvanted, untreated CVB1-VLP vaccine. The immunogenicity of the differently treated CVB1-VLPs (non-adjuvanted) were compared in C57BL/6 J mice and animals vaccinated with formalin treated CVB1-VLPs mounted the strongest neutralising and, CVB1-specific IgG and IgG1 antibody responses. This study demonstrates that formalin treatment increases the stability and immunogenicity of CVB1-VLP vaccine and may offer a universal tool for the stabilisation of VLPs in the production of more efficient vaccines.
Collapse
|
19
|
Zanatta A, Carturan E, Rizzo S, Basso C, Thiene G. Story telling of myocarditis. Int J Cardiol 2019; 294:61-64. [PMID: 31378380 DOI: 10.1016/j.ijcard.2019.07.046] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 06/21/2019] [Accepted: 07/15/2019] [Indexed: 10/26/2022]
Abstract
Myocarditis was discovered as heart disease at autopsy with the use of microscope. In 1900, with the name of acute interstitial myocarditis, Carl Ludwig Alfred Fiedler first reported the history of a sudden cardiac heart failure, in the absence of coronary, valve, pericardial disease or classical specific infections with multiorgan involvement. He postulated a peculiar isolated acute inflammation of the myocardium with poor prognosis due to invisible microorganisms, which years later would have been identified as viruses. Subsequent revision of Fiedler original histologic slides by Schmorl showed cases with either lymphocytic or giant cell infiltrates. The in vivo diagnosis became possible with the right heart catheterism and endomyocardial biopsy. Employment of immunohistochemistry and molecular techniques improved the diagnosis and etiology identification. The mechanism of myocyte injury by coxsackie virus was identified in protease 2A coded by the virus and disrupting the dystrophin in the cytoskeleton. Both RNA and DNA viruses may be cardiotropic, and coxsackie and adenovirus share a common receptor (CAR). Unfortunately, vaccination is not yet available. Cardiac Magnetic Resonance is a revolutionary diagnostic tool by detecting edema, of myocardial inflammation. However endomyocardial biopsy remains the gold standard for etiological and histotype diagnosis, with limited sensitivity due to sampling error. Viral lymphocytic fulminant myocarditis may not be fatal and the employment of mechanical assistant device - ECMO in acute phase for temporary support may be lifesaving with good prognosis.
Collapse
Affiliation(s)
| | - Elisa Carturan
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua, Italy
| | - Stefania Rizzo
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua, Italy
| | - Cristina Basso
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua, Italy
| | - Gaetano Thiene
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua, Italy.
| |
Collapse
|
20
|
Wang L, Xie W, Zhang L, Li D, Yu H, Xiong J, Peng J, Qiu J, Sheng H, He X, Zhang K. CVB3 Nonstructural 2A Protein Modulates SREBP1a Signaling via the MEK/ERK Pathway. J Virol 2018; 92:e01060-18. [PMID: 30258014 PMCID: PMC6258932 DOI: 10.1128/jvi.01060-18] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 09/10/2018] [Indexed: 01/11/2023] Open
Abstract
Coxsackievirus B3 (CVB3) is the predominant pathogen of viral myocarditis. In our previous study, we found that CVB3 caused abnormal lipid accumulation in host cells. However, the underlying mechanisms by which CVB3 disrupts and exploits the host lipid metabolism are not well understood. Sterol regulatory element binding protein 1 (SREBP1) is the major transcriptional factor in lipogenic genes expression. In this study, we demonstrated that CVB3 infection and nonstructural 2A protein upregulated and activated SREBP1a at the transcriptional level. Deletion analysis of SREBP1a promoter revealed that two regions, -1821/-1490 and -312/+217, in this promoter were both required for its activation by 2A. These promoter regions possessed several binding motifs for transcription factor SP1. Next, we used SP1-specific small interfering RNAs (siRNAs) to confirm that SP1 might be the essential factor in SREBP1a upregulation by 2A. Furthermore, we showed that MEK/ERK pathway was involved in the activation of SREBP1a by 2A and that blocking this signaling pathway with the specific inhibitor U0126 attenuated SREBP1a activation and lipid accumulation by 2A. Finally, we showed that inhibition of SREBP1 with siRNAs attenuated lipid accumulation induced by CVB3 infection and reduced virus replication. Moreover, inhibition of the MEK/ERK pathway also led to reduction of SREBP1a activation, lipid accumulation, and virus replication during CVB3 infection. Taken together, these data demonstrate that CVB3 nonstructural 2A protein activates SREBP1a at the transcription level through a mechanism involving MEK/ERK signaling pathway and SP1 transcription factor, which promotes cellular lipid accumulation and benefits virus replication.IMPORTANCE Coxsackievirus B3 (CVB3) infection is the leading cause of viral myocarditis, but effective vaccines and antiviral therapies against CVB3 infection are still lacking. It is important to understand the precise interactions between host and virus for the rational design of effective therapies. During infection, CVB3 disrupts and exploits host lipid metabolism to promote excessive lipid accumulation, which benefits virus replication. SREBP1 is the master regulator of cellular lipid metabolism. Here, we report that one of the viral nonstructural proteins, 2A, upregulates and activates SREBP1a. Furthermore, we find that inhibition of SREBP1 decreases CVB3 virus replication. These results reveal the regulation of SREBP1a expression by 2A and the roles of SREBP1 in lipid accumulation and viral replication during CVB3 infection. Our findings provide a new insight into CVB3 host interactions and inform a potential novel therapeutic target for this important pathogen.
Collapse
Affiliation(s)
- Lei Wang
- Central Laboratory, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
- The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wei Xie
- Central Laboratory, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
- The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Le Zhang
- Central Laboratory, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Defeng Li
- Central Laboratory, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Hua Yu
- Central Laboratory, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Junzhi Xiong
- Central Laboratory, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jin Peng
- Central Laboratory, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jing Qiu
- Central Laboratory, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Halei Sheng
- Central Laboratory, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Xiaomei He
- Central Laboratory, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Kebin Zhang
- Central Laboratory, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| |
Collapse
|
21
|
Fang CY, Liu CC. Recent development of enterovirus A vaccine candidates for the prevention of hand, foot, and mouth disease. Expert Rev Vaccines 2018; 17:819-831. [PMID: 30095317 DOI: 10.1080/14760584.2018.1510326] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
INTRODUCTION Hand, foot, and mouth disease (HFMD) is a childhood illness commonly caused by enterovirus A. Enterovirus A71 (EV-A71) and coxsackievirus A16 (CV-A16) are the most commonly identified viruses associated with HFMD. Recently, outbreaks caused by different enterovirus A including CV-A6 and CV-A10 are increasing. Being available now to protect against EV-A71 infection, inactivated EV-A71 vaccines cannot prevent coxsackievirus infections, thus limiting their general application in controlling HFMD. Multivalent HFMD vaccines are suggested to have broad cross-neutralizing responses against these emerging enteroviruses. AREAS COVERED We discuss the recent development of enterovirus A vaccines including the inactivated whole-virion vaccine and virus-like particle vaccine candidates and review the information of neutralization epitopes of these viruses. EXPERT COMMENTARY Evaluation of the efficacy and safety of the coxsackievirus vaccine and the multivalent HFMD vaccine candidates in clinical trials is urgently required. Epitopic analysis showed that common immunodominant sites exist across these enteroviruses. However, variations of amino acid residues in these regions limit the induction of cross-neutralization antibodies, and therefore, a multivalent HFMD vaccine is required for broad protection against HFMD. With the inclusion of major circulating viruses in the development of multivalent HFMD vaccines, an increase in the success in HFMD control is anticipated.
Collapse
Affiliation(s)
- Chih-Yeu Fang
- a Department of Pathology, Wan Fang Hospital , Taipei Medical University , Taipei , Taiwan
| | - Chia-Chyi Liu
- b National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes , Zhunan Town , Taiwan
| |
Collapse
|
22
|
Qi X, Xiong S. Intein-mediated backbone cyclization of VP1 protein enhanced protection of CVB3-induced viral myocarditis. Sci Rep 2017; 7:41485. [PMID: 28148910 PMCID: PMC5288654 DOI: 10.1038/srep41485] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 12/21/2016] [Indexed: 01/27/2023] Open
Abstract
CVB3 is a common human pathogen to be highly lethal to newborns and causes viral myocarditis and pancreatitis in adults. However, there is no vaccine available for clinical use. CVB3 capsid protein VP1 is an immunodominant structural protein, containing several B- and T-cell epitopes. However, immunization of mice with VP1 protein is ineffective. Cyclization of peptide is commonly used to improve their in vivo stability and biological activity. Here, we designed and synthesizd cyclic VP1 protein by using engineered split Rma DnaB intein and the cyclization efficiency was 100% in E. coli. As a result, the cyclic VP1 was significantly more stable against irreversible aggregation upon heating and against carboxypeptidase in vitro and the degradation rate was more slowly in vivo. Compared with linear VP1, immunization mice with circular VP1 significantly increased CVB3-specific serum IgG level and augmented CVB3-specific cellular immune responses, consequently afforded better protection against CVB3-induced viral myocarditis. The cyclic VP1 may be a novel candidate protein vaccine for preventing CVB3 infection and similar approaches could be employed to a variety of protein vaccines to enhance their protection effect.
Collapse
Affiliation(s)
- Xingmei Qi
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Sidong Xiong
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| |
Collapse
|
23
|
Gao F, Bian LL, Mao QY, Chen P, Yao X, Li JX, Zhu FC, Liang ZL. An epidemic of coxsackievirus B3 infection in infants and children in Jiangsu Province, China: a prospective cohort study. Arch Virol 2016; 161:1945-7. [PMID: 27020571 DOI: 10.1007/s00705-016-2842-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 03/20/2016] [Indexed: 12/29/2022]
Abstract
To investigate the epidemiological data on coxsackievirus B3 (CVB3) infection and its incidence in infants and children, a prospective cohort study was carried out from 2012 to 2014 in Jiangsu Province, China. According to the results of seropositive rates and NTAb titers of CVB3, an epidemic of CVB3 infection was found, and a dynamic change in CVB3 neutralizing antibody was also observed. One case was recorded with CVB3-associated hand, foot and mouth disease (HFMD), and the isolates belonged to the CVB3 D2 subtype. Our data help us to better understand the epidemic characteristics of CVB3 infection in infants and children.
Collapse
Affiliation(s)
- Fan Gao
- National Institutes for Food and Drug Control, No. 2, Tiantan Xili, Beijing, 100050, People's Republic of China
| | - Lian-Lian Bian
- National Institutes for Food and Drug Control, No. 2, Tiantan Xili, Beijing, 100050, People's Republic of China
| | - Qun-Ying Mao
- National Institutes for Food and Drug Control, No. 2, Tiantan Xili, Beijing, 100050, People's Republic of China
| | - Pan Chen
- National Institutes for Food and Drug Control, No. 2, Tiantan Xili, Beijing, 100050, People's Republic of China
| | - Xin Yao
- National Institutes for Food and Drug Control, No. 2, Tiantan Xili, Beijing, 100050, People's Republic of China
| | - Jing-Xin Li
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, People's Republic of China
| | - Feng-Cai Zhu
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, People's Republic of China
| | - Zheng-Lun Liang
- National Institutes for Food and Drug Control, No. 2, Tiantan Xili, Beijing, 100050, People's Republic of China.
| |
Collapse
|
24
|
Lin SY, Chiu HY, Chiang BL, Hu YC. Development of EV71 virus-like particle purification processes. Vaccine 2015; 33:5966-73. [DOI: 10.1016/j.vaccine.2015.04.077] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Revised: 04/11/2015] [Accepted: 04/16/2015] [Indexed: 12/20/2022]
|
25
|
Xie W, Wang L, Dai Q, Yu H, He X, Xiong J, Sheng H, Zhang D, Xin R, Qi Y, Hu F, Guo S, Zhang K. Activation of AMPK restricts coxsackievirus B3 replication by inhibiting lipid accumulation. J Mol Cell Cardiol 2015; 85:155-67. [PMID: 26055448 DOI: 10.1016/j.yjmcc.2015.05.021] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Revised: 05/06/2015] [Accepted: 05/27/2015] [Indexed: 01/06/2023]
Abstract
Coxsackievirus B3 (CVB3) is the major pathogen of human viral myocarditis. CVB3 has been found to manipulate and modify the cellular lipid metabolism for viral replication. The cellular AMP-activated protein kinase (AMPK) is a key regulator of multiple metabolic pathways, including lipid metabolism. Here we explore the potential roles AMPK plays in CVB3 infection. We found that AMPK is activated by the viral replication during CVB3 infection in Hela cells and primary myocardial cells. RNA interference mediated inhibition of AMPK could increase the CVB3 replication in cells, indicating that AMPK contributed to restricting the viral replication. Next, we showed that CVB3 replication could be inhibited by several different pharmacological AMPK activators including metformin, A769662 and AICAR. And the constitutively active AMPK mutant (CA-AMPK) could also inhibit the CVB3 replication. Furthermore, we found that CVB3 infection increased the cellular lipid levels and showed that the AMPK agonist AICAR both restricted CVB3 replication and reduced lipid accumulation through inhibiting the lipid synthesis associated gene expression. We further found that CVB3 infection would also induce AMPK activated in vivo. The AMPK agonist metformin, which has been widely used in diabetes therapy, could decrease the viral replication and further protect the mice from myocardial histological and functional changes in CVB3 induced myocarditis, and improve the survival rate of infected mice. Lastly, it was demonstrated that the AICAR-mediated restriction of viral replication could be rescued partially by exogenous palmitate, the first product of fatty acid biosynthesis, demonstrating that AMPK activation restricted CVB3 infection through its inhibition of lipid synthesis. Taken together, these data in the present study suggest a model in which AMPK is activated by CVB3 infection and restricts viral replication by inhibiting the cellular lipid accumulation, and inform a potential novel therapeutic strategy for CVB3-associated diseases.
Collapse
Affiliation(s)
- Wei Xie
- Central Laboratory, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Lei Wang
- Central Laboratory, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Qian Dai
- Central Laboratory, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Hua Yu
- Central Laboratory, Xinqiao Hospital, Third Military Medical University, Chongqing, China; Department of Microbiology, College of Basic Medical Sciences, Third Military Medical University, Chongqing, China
| | - Xiaomei He
- Central Laboratory, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Junzhi Xiong
- Central Laboratory, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Halei Sheng
- Central Laboratory, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Di Zhang
- Central Laboratory, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Rong Xin
- Central Laboratory, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Yajuan Qi
- Division of Molecular Cardiology, Department of Medicine, College of Medicine, Texas A&M University Health Science Center, Temple, TX, USA
| | - Fuquan Hu
- Department of Microbiology, College of Basic Medical Sciences, Third Military Medical University, Chongqing, China
| | - Shaodong Guo
- Division of Molecular Cardiology, Department of Medicine, College of Medicine, Texas A&M University Health Science Center, Temple, TX, USA.
| | - Kebin Zhang
- Central Laboratory, Xinqiao Hospital, Third Military Medical University, Chongqing, China.
| |
Collapse
|
26
|
Klein M, Chong P. Is a multivalent hand, foot, and mouth disease vaccine feasible? Hum Vaccin Immunother 2015; 11:2688-704. [PMID: 26009802 DOI: 10.1080/21645515.2015.1049780] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Enterovirus A infections are the primary cause of hand, foot and mouth disease (HFMD) in infants and young children. Although enterovirus 71 (EV-A71) and coxsackievirus A16 (CV-A16) are the predominant causes of HFMD epidemics worldwide, EV-A71 has emerged as a major neurovirulent virus responsible for severe neurological complications and fatal outcomes. HFMD is a serious health threat and economic burden across the Asia-Pacific region. Inactivated EV-A71 vaccines have elicited protection against EV-A71 but not against CV-A16 infections in large efficacy trials. The current development of a bivalent inactivated EV-A71/CV-A16 vaccine is the next step toward that of multivalent HFMD vaccines. These vaccines should ultimately include other prevalent pathogenic coxsackieviruses A (CV-A6 and CV-A10), coxsackieviruses B (B3 and B5) and echovirus 30 that often co-circulate during HFMD epidemics and can cause severe HFMD, aseptic meningitis and acute viral myocarditis. The prospect and challenges for the development of such multivalent vaccines are discussed.
Collapse
Affiliation(s)
| | - Pele Chong
- b Vaccine R&D Center; National Health Research Institutes ; Zhunan Town, Miaoli County , Taiwan.,c Graduate Institute of Immunology; China Medical University ; Taichung , Taiwan
| |
Collapse
|
27
|
|
28
|
Massilamany C, Gangaplara A, Reddy J. Intricacies of cardiac damage in coxsackievirus B3 infection: implications for therapy. Int J Cardiol 2014; 177:330-339. [PMID: 25449464 DOI: 10.1016/j.ijcard.2014.09.136] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 08/27/2014] [Accepted: 09/15/2014] [Indexed: 02/06/2023]
Abstract
Heart disease is the leading cause of death in humans, and myocarditis is one predominant cause of heart failure in young adults. Patients affected with myocarditis can develop dilated cardiomyopathy (DCM), a common reason for heart transplantation, which to date is the only viable option for combatting DCM. Myocarditis/DCM patients show antibodies to coxsackievirus B (CVB)3 and cardiac antigens, suggesting a role for CVB-mediated autoimmunity in the disease pathogenesis; however, a direct causal link remains to be determined clinically. Experimentally, myocarditis can be induced in susceptible strains of mice using the human isolates of CVB3, and the disease pathogenesis of postinfectious myocarditis resembles that of human disease, making the observations made in animals relevant to humans. In this review, we discuss the complex nature of CVB3-induced myocarditis as it relates to the damage caused by both the virus and the host's response to infection. Based on recent data we obtained in the mouse model of CVB3 infection, we provide evidence to suggest that CVB3 infection accompanies the generation of cardiac myosin-specific CD4 T cells that can transfer the disease to naïve recipients. The therapeutic implications of these observations are also discussed.
Collapse
Affiliation(s)
| | - Arunakumar Gangaplara
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of health, Bethesda, MD
| | - Jay Reddy
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583
| |
Collapse
|
29
|
Lin SY, Chung YC, Hu YC. Update on baculovirus as an expression and/or delivery vehicle for vaccine antigens. Expert Rev Vaccines 2014; 13:1501-21. [DOI: 10.1586/14760584.2014.951637] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
30
|
Chimeric influenza-virus-like particles containing the porcine reproductive and respiratory syndrome virus GP5 protein and the influenza virus HA and M1 proteins. Arch Virol 2014; 159:3043-51. [PMID: 25064513 PMCID: PMC7086999 DOI: 10.1007/s00705-014-2178-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 07/11/2014] [Indexed: 12/03/2022]
Abstract
Both porcine reproductive and respiratory syndrome and swine influenza are acute, highly contagious swine diseases. These diseases pose severe threats for the swine industry and cause heavy economic losses worldwide. In this study, we have developed a chimeric virus-like particle (VLP) vaccine candidate for porcine reproductive and respiratory syndrome virus (PRRSV) and H3N2 influenza virus and investigated its immunogenicity in mice. The HA and M1 proteins from the H3N2 influenza virus and the PRRSV GP5 protein fused to the cytoplasmic and transmembrane domains of the NA protein were both incorporated into the chimeric VLPs. Analysis of the immune responses showed that the chimeric VLPs elicited serum antibodies specific for both PRRSV GP5 and the H3N2 HA protein, and they stimulated cellular immune responses compared to the responses to equivalent amounts of inactivated viruses. Taken together, the results suggested that the chimeric VLP vaccine represents a potential strategy for the development of a safe and effective vaccine to control PRRSV and H3N2 influenza virus.
Collapse
|
31
|
Tan M, Jiang X. Subviral particle as vaccine and vaccine platform. Curr Opin Virol 2014; 6:24-33. [PMID: 24662314 PMCID: PMC4072748 DOI: 10.1016/j.coviro.2014.02.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 02/28/2014] [Accepted: 02/28/2014] [Indexed: 01/01/2023]
Abstract
Recombinant subvirual particles retain similar antigenic features of their authentic viral capsids and thus have been applied as nonreplicating subunit vaccines against viral infection and illness. Additionally, the self-assembled, polyvalent subviral particles are excellent platforms to display foreign antigens for immune enhancement for vaccine development. These subviral particle-based vaccines are noninfectious and thus safer than the conventional live attenuated and inactivated vaccines. While several VLP vaccines are available in the markets, numerous others, including dual vaccines against more than one pathogen, are under clinical or preclinical development. This article provides an update of these efforts.
Collapse
Affiliation(s)
- Ming Tan
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States.
| | - Xi Jiang
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
32
|
Wu F, Fan X, Yue Y, Xiong S, Dong C. A vesicular stomatitis virus-based mucosal vaccine promotes dendritic cell maturation and elicits preferable immune response against coxsackievirus B3 induced viral myocarditis. Vaccine 2014; 32:3917-26. [PMID: 24874923 PMCID: PMC7115516 DOI: 10.1016/j.vaccine.2014.05.052] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 05/07/2014] [Accepted: 05/15/2014] [Indexed: 12/14/2022]
Abstract
Recombinant vesicular stomatitis virus (VSV) is widely used as a vaccine platform. However, the capacity of VSV-based vaccines to induce mucosal immunity has not been fully investigated. In the present study, a recombinant VSV expressing coxsackievirus B3 (CVB3) major immunogen VP1 has been generated and the immune protection elicited by VSV-VP1 was evaluated. We demonstrated that intranasal delivery of VSV-VP1 can induce a potent antigen-specific mucosal immune response as well as a systemic immune response, particularly the induction of polyfunctional T cells. Importantly, mice immunized with VSV-VP1 were better protected against CVB3-induced viral myocarditis than those receiving a chitosan-formulated DNA vaccine. Increased dendritic cell (DC) maturation in the mesenteric lymph node (MLN) was observed in the mice vaccinated with VSV-VP1, which could be a potential mechanism for the protective immune response. These findings support VSV as a viral delivery vector that can induce robust mucosal immunity that should be considered for further vaccine development.
Collapse
Affiliation(s)
- Fei Wu
- Soochow University, Jiangsu Key Laboratory of Infection and Immunity Institutes of Biology and Medical Science, Suzhou 215123, China
| | - Xingjuan Fan
- Soochow University, Jiangsu Key Laboratory of Infection and Immunity Institutes of Biology and Medical Science, Suzhou 215123, China
| | - Yan Yue
- Soochow University, Jiangsu Key Laboratory of Infection and Immunity Institutes of Biology and Medical Science, Suzhou 215123, China
| | - Sidong Xiong
- Soochow University, Jiangsu Key Laboratory of Infection and Immunity Institutes of Biology and Medical Science, Suzhou 215123, China.
| | - Chunsheng Dong
- Soochow University, Jiangsu Key Laboratory of Infection and Immunity Institutes of Biology and Medical Science, Suzhou 215123, China.
| |
Collapse
|
33
|
Interspecies differences in virus uptake versus cardiac function of the coxsackievirus and adenovirus receptor. J Virol 2014; 88:7345-56. [PMID: 24741103 DOI: 10.1128/jvi.00104-14] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
UNLABELLED The coxsackievirus and adenovirus receptor (CAR) is a cell contact protein with an important role in virus uptake. Its extracellular immunoglobulin domains mediate the binding to coxsackievirus and adenovirus as well as homophilic and heterophilic interactions between cells. The cytoplasmic tail links CAR to the cytoskeleton and intracellular signaling cascades. In the heart, CAR is crucial for embryonic development, electrophysiology, and coxsackievirus B infection. Noncardiac functions are less well understood, in part due to the lack of suitable animal models. Here, we generated a transgenic mouse that rescued the otherwise embryonic-lethal CAR knockout (KO) phenotype by expressing chicken CAR exclusively in the heart. Using this rescue model, we addressed interspecies differences in coxsackievirus uptake and noncardiac functions of CAR. Survival of the noncardiac CAR KO (ncKO) mouse indicates an essential role for CAR in the developing heart but not in other tissues. In adult animals, cardiac activity was normal, suggesting that chicken CAR can replace the physiological functions of mouse CAR in the cardiomyocyte. However, chicken CAR did not mediate virus entry in vivo, so that hearts expressing chicken instead of mouse CAR were protected from infection and myocarditis. Comparison of sequence homology and modeling of the D1 domain indicate differences between mammalian and chicken CAR that relate to the sites important for virus binding but not those involved in homodimerization. Thus, CAR-directed anticoxsackievirus therapy with only minor adverse effects in noncardiac tissue could be further improved by selectively targeting the virus-host interaction while maintaining cardiac function. IMPORTANCE Coxsackievirus B3 (CVB3) is one of the most common human pathogens causing myocarditis. Its receptor, the coxsackievirus and adenovirus receptor (CAR), not only mediates virus uptake but also relates to cytoskeletal organization and intracellular signaling. Animals without CAR die prenatally with major cardiac malformations. In the adult heart, CAR is important for virus entry and electrical conduction, but its nonmuscle functions are largely unknown. Here, we show that chicken CAR expression exclusively in the heart can rescue the otherwise embryonic-lethal CAR knockout phenotype but does not support CVB3 infection of adult cardiomyocytes. Our findings have implications for the evolution of virus-host versus physiological interactions involving CAR and could help to improve future coxsackievirus-directed therapies inhibiting virus replication while maintaining CAR's cellular functions.
Collapse
|
34
|
Coxsackievirus B3 VLPs purified by ion exchange chromatography elicit strong immune responses in mice. Antiviral Res 2014; 104:93-101. [DOI: 10.1016/j.antiviral.2014.01.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 12/20/2013] [Accepted: 01/20/2014] [Indexed: 01/29/2023]
|
35
|
Dong H, Guo HC, Sun SQ. Virus-like particles in picornavirus vaccine development. Appl Microbiol Biotechnol 2014; 98:4321-9. [PMID: 24647496 DOI: 10.1007/s00253-014-5639-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 02/20/2014] [Accepted: 02/23/2014] [Indexed: 12/19/2022]
Abstract
Virus-like particles (VLP), which are similar to natural virus particles but do not contain viral genes, have brought about significant breakthroughs in many research fields because of their unique advantages. The ordered repeating epitopes of VLP can induce immunity responses similar to those prompted by natural viral infection; thus, VLP vaccines are regarded as candidate alternatives to whole-virus vaccines. As picornavirus has serious impacts on human and animal health, the development of efficient and safe vaccines is a key endeavor in preventing virus infections. The characteristics of picornavirus capsid proteins allow the development of VLP vaccines. This paper investigates research scenarios and progress on picornavirus VLP vaccines with the aim of providing a reference for researchers focusing on virology and vaccinology.
Collapse
Affiliation(s)
- Hu Dong
- State Key Laboratory of Veterinary Etiological Biology, OIE/National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou, 730046, People's Republic of China
| | | | | |
Collapse
|
36
|
Mucosal immunization with high-mobility group box 1 in chitosan enhances DNA vaccine-induced protection against coxsackievirus B3-induced myocarditis. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2013; 20:1743-51. [PMID: 24027262 DOI: 10.1128/cvi.00466-13] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Coxsackievirus B3 (CVB3), a small single-stranded RNA virus, belongs to the Picornaviridae family. Its infection is the most common cause of myocarditis, with no vaccine available. Gastrointestinal mucosa is the major entry port for CVB3; therefore, the induction of local immunity in mucosal tissues may help control initial viral infections and alleviate subsequent myocardial injury. Here we evaluated the ability of high-mobility group box 1 (HMGB1) encapsulated in chitosan particles to enhance the mucosal immune responses induced by the CVB3-specific mucosal DNA vaccine chitosan-pVP1. Mice were intranasally coimmunized with 4 doses of chitosan-pHMGB1 and chitosan-pVP1 plasmids, at 2-week intervals, and were challenged with CVB3 4 weeks after the last immunization. Compared with chitosan-pVP1 immunization alone, coimmunization with chitosan-pHMGB1 significantly (P < 0.05) enhanced CVB3-specific fecal secretory IgA levels and promoted mucosal T cell immune responses. In accordance, reduced severity of myocarditis was observed in coimmunized mice, as evidenced by significantly (P < 0.05) reduced viral loads, decreased myocardial injury, and increased survival rates. Flow cytometric analysis indicated that HMGB1 enhanced dendritic cell (DC) recruitment to mesenteric lymph nodes and promoted DC maturation, which might partly account for its mucosal adjuvant effect. This strategy may represent a promising approach to candidate vaccines against CVB3-induced myocarditis.
Collapse
|
37
|
Li Z, Yue Y, Xiong S. Distinct Th17 inductions contribute to the gender bias in CVB3-induced myocarditis. Cardiovasc Pathol 2013; 22:373-82. [PMID: 23523188 DOI: 10.1016/j.carpath.2013.02.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 01/27/2013] [Accepted: 02/12/2013] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Viral myocarditis is often caused by coxsackievirus B3 (CVB3) infection and occurs more frequently in males. So far, the mechanisms for this sex difference are not fully elucidated. As a new proinflammatory T cell population, Th17 cells are required for the development of CVB3-induced myocarditis, but their impact on the gender bias in viral myocarditis is still unknown. METHODS Male and female mice were intraperitoneally infected with CVB3; 7 days later, the frequency of splenic Th17 cells and the expression of associated cytokines and transcriptional factors were compared. Meanwhile, the impact of sex hormones on Th17 cell differentiation post CVB3 infection was also evaluated. RESULTS In infected male mice, Th17 cell frequency was remarkably increased and significantly higher than that in female mice. Accordingly, the expression of associated cytokines and transcriptional factors was also obviously augmented in males. When neutralizing interleukin-17 by monoclonal antibody, the male prevalence of myocarditis was obviously abolished, further confirming the effect of Th17 cells on gender bias in viral myocarditis. It was also found that estradiol significantly inhibited the Th17 differentiation post CVB3 infection both in vitro and in vivo. However, testosterone showed no such effects. CONCLUSIONS Th17 cells were predominantly induced in CVB3-infected males than females as the inhibitory effect of estrogen on Th17 differentiation and played an important role in the sex differences in the sensitivity to CVB3-induced myocarditis. This study may help us understand the role of Th17 cells in viral myocarditis and facilitate the development of corresponding therapeutic strategies.
Collapse
Affiliation(s)
- Zhenping Li
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, P.R. China
| | | | | |
Collapse
|
38
|
Pushko P, Pumpens P, Grens E. Development of Virus-Like Particle Technology from Small Highly Symmetric to Large Complex Virus-Like Particle Structures. Intervirology 2013; 56:141-65. [DOI: 10.1159/000346773] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|