1
|
Hayden J, Youner ER, Rosen R, Cleveland CN, Warren DA, Mowry S, Otteson TD, Semaan M. Assessing the Impact of Vaccination Status on Meningitis Risk Post Cochlear Implantation. Otolaryngol Head Neck Surg 2025; 172:1374-1378. [PMID: 39756011 DOI: 10.1002/ohn.1115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 11/30/2024] [Accepted: 12/13/2024] [Indexed: 01/07/2025]
Abstract
OBJECTIVE To better understand the protective benefit of pneumococcal vaccines on rates of meningitis after cochlear implantation. STUDY DESIGN Retrospective large database review. SETTING Several studies have shown that cochlear implantation increases the incidence of bacterial meningitis, mostly due to pneumococcal meningitis. However, there are no studies that have demonstrated that pneumococcal vaccination is associated with a decreased risk of meningitis among cochlear implant recipients. METHODS TriNetX, an electronic medical record database, was queried for incidence of meningitis after cochlear implantation, with and without pneumococcal vaccination. RESULTS There are a total of 35,434 patients in the TriNetX database who have received a cochlear implant. Of these patients, 9803 patients (27.7%) had coding sufficient to assess their immunization status and were included in our study. Of the patients in our study, 9264 patients (93.7%) had evidence of receiving a PCV immunization, while 539 (5.5%) were found to be under vaccinated. A total of 258 patients in our study had an episode of meningitis after cochlear implantation, translating to an overall rate of 2.6%. The vaccinated group demonstrated a significantly lower incidence of meningitis (2.5%, n = 236) compared to the under-vaccinated group (4.1%, n = 22) (relative risk: 1.60; confidence interval (1.0441, 2.4586); P < .0310). CONCLUSION Our study provides evidence that pneumococcal vaccination is associated with a significantly lower rate of bacterial meningitis after cochlear implantation. Meningitis is a potentially life-threatening complication. Better adherence to pneumococcal vaccination guidelines pre- and post-CI is critical to reducing the feared risk of bacterial meningitis after cochlear implantation.
Collapse
Affiliation(s)
- Jamil Hayden
- Department of Otolaryngology-Head and Neck Surgery, University Hospitals Cleveland Medical Center/Case Western Reserve School of Medicine, Cleveland, Ohio, USA
| | - Emily R Youner
- Department of Otolaryngology-Head and Neck Surgery, University Hospitals Cleveland Medical Center/Case Western Reserve School of Medicine, Cleveland, Ohio, USA
| | - Ross Rosen
- Department of Otolaryngology-Head and Neck Surgery, University Hospitals Cleveland Medical Center/Case Western Reserve School of Medicine, Cleveland, Ohio, USA
| | - Chelsea N Cleveland
- Department of Otolaryngology-Head and Neck Surgery, University Hospitals Cleveland Medical Center/Case Western Reserve School of Medicine, Cleveland, Ohio, USA
| | - De'Andre A Warren
- Department of Otolaryngology-Head and Neck Surgery, University Hospitals Cleveland Medical Center/Case Western Reserve School of Medicine, Cleveland, Ohio, USA
| | - Sarah Mowry
- Department of Otolaryngology-Head and Neck Surgery, University Hospitals Cleveland Medical Center/Case Western Reserve School of Medicine, Cleveland, Ohio, USA
| | - Todd D Otteson
- Department of Otolaryngology-Head and Neck Surgery, University Hospitals Cleveland Medical Center/Case Western Reserve School of Medicine, Cleveland, Ohio, USA
| | - Maroun Semaan
- Department of Otolaryngology-Head and Neck Surgery, University Hospitals Cleveland Medical Center/Case Western Reserve School of Medicine, Cleveland, Ohio, USA
| |
Collapse
|
2
|
Akkoyunlu M. State of pneumococcal vaccine immunity. Hum Vaccin Immunother 2024; 20:2336358. [PMID: 38567485 PMCID: PMC10993918 DOI: 10.1080/21645515.2024.2336358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 03/26/2024] [Indexed: 04/04/2024] Open
Abstract
Like the other invasive encapsulated bacteria, Streptococcus pneumoniae is also covered with a polysaccharide structure. Infants and elderly are most vulnerable to the invasive and noninvasive diseases caused by S. pneumoniae. Although antibodies against polysaccharide capsule are efficient in eliminating S. pneumoniae, the T cell independent nature of the immune response against polysaccharide vaccines renders them weakly antigenic. The introduction of protein conjugated capsular polysaccharide vaccines helped overcome the weak immunogenicity of pneumococcal polysaccharides and decreased the incidence of pneumococcal diseases, especially in pediatric population. Conjugate vaccines elicit T cell dependent response which involve the interaction of specialized CD4+ T cells, called follicular helper T cells (Tfh) with germinal center B cells in secondary lymphoid organs. Despite their improved immunogenicity, conjugate vaccines still need to be administered three to four times in infants during the first 15 month of their life because they mount poor Tfh response. Recent studies revealed fundamental differences in the generation of Tfh cells between neonates and adults. As the portfolio of pneumococcal conjugate vaccines continues to increase, better understanding of the mechanisms of antibody development in different age groups will help in the development of pneumococcal vaccines tailored for different ages.
Collapse
Affiliation(s)
- Mustafa Akkoyunlu
- Division of Bacterial Allergenic and Parasitic Diseases, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, USA
| |
Collapse
|
3
|
Zhang J, Terreni M, Liu F, Sollogoub M, Zhang Y. Ganglioside GM3-based anticancer vaccines: Reviewing the mechanism and current strategies. Biomed Pharmacother 2024; 176:116824. [PMID: 38820973 DOI: 10.1016/j.biopha.2024.116824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/17/2024] [Accepted: 05/26/2024] [Indexed: 06/02/2024] Open
Abstract
Ganglioside GM3 is one of the most common membrane-bound glycosphingolipids. The over-expression of GM3 on tumor cells makes it defined as a tumor-associated carbohydrate antigen (TACA). The specific expression property in cancers, especially in melanoma, make it become an important target to develop anticancer vaccines or immunotherapies. However, in the manner akin to most TACAs, GM3 is an autoantigen facing with problems of low immunogenicity and easily inducing immunotolerance, which means itself only cannot elicit a powerful enough immune response to prevent or treat cancer. With a comparative understanding of the mechanisms that how immune system responses to the carbohydrate vaccines, this review summarizes the studies on the recent efforts to development GM3-based anticancer vaccines.
Collapse
Affiliation(s)
- Jiaxu Zhang
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, UMR 8232, 4 Place Jussieu, Paris 75005, France; College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Marco Terreni
- Drug Sciences Department, University of Pavia, Viale Taramelli 12, Pavia 27100, Italy
| | - Fang Liu
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, UMR 8232, 4 Place Jussieu, Paris 75005, France
| | - Matthieu Sollogoub
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, UMR 8232, 4 Place Jussieu, Paris 75005, France
| | - Yongmin Zhang
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, UMR 8232, 4 Place Jussieu, Paris 75005, France; College of Life Sciences, Northwest University, Xi'an 710069, China.
| |
Collapse
|
4
|
Singh A, Boggiano C, Eller MA, Maciel M, Marovich MA, Mehra VL, Mo AX, Singleton KL, Leitner WW. Optimizing the Immunogenicity of HIV Vaccines by Adjuvants - NIAID Workshop Report. Vaccine 2023; 41:4439-4446. [PMID: 37331838 DOI: 10.1016/j.vaccine.2023.06.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 05/11/2023] [Accepted: 06/06/2023] [Indexed: 06/20/2023]
Abstract
This report summarizes the highlights of a workshop convened by the National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), on April 4-5, 2022, to provide a discussion forum for sharing insights on the current status, key challenges, and next steps to advance the current landscape of promising adjuvants in preclinical and clinical human immunodeficiency virus (HIV) vaccine studies. A key goal was to solicit and share recommendations on scientific, regulatory, and operational guidelines for bridging the gaps in rational selection, access, and formulation of clinically relevant adjuvants for HIV vaccine candidates. The NIAID Vaccine Adjuvant Program working group remains committed to accentuate promising adjuvants and nurturing collaborations between adjuvant and HIV vaccine developers.
Collapse
Affiliation(s)
- Anjali Singh
- Division of AIDS, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - César Boggiano
- Division of AIDS, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Michael A Eller
- Division of AIDS, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Milton Maciel
- Division of AIDS, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Mary A Marovich
- Division of AIDS, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Vijay L Mehra
- Division of AIDS, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Annie X Mo
- Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Kentner L Singleton
- Division of Allergy, Immunology, and Transplantation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Wolfgang W Leitner
- Division of Allergy, Immunology, and Transplantation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
5
|
Sorieul C, Papi F, Carboni F, Pecetta S, Phogat S, Adamo R. Recent advances and future perspectives on carbohydrate-based cancer vaccines and therapeutics. Pharmacol Ther 2022; 235:108158. [PMID: 35183590 DOI: 10.1016/j.pharmthera.2022.108158] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 01/30/2022] [Accepted: 02/14/2022] [Indexed: 12/13/2022]
Abstract
Carbohydrates are abundantly expressed on the surface of both eukaryotic and prokaryotic cells, often as post translational modifications of proteins. Glycoproteins are recognized by the immune system and can trigger both innate and humoral responses. This feature has been harnessed to generate vaccines against polysaccharide-encapsulated bacteria such as Streptococcus pneumoniae, Hemophilus influenzae type b and Neisseria meningitidis. In cancer, glycosylation plays a pivotal role in malignancy development and progression. Since glycans are specifically expressed on the surface of tumor cells, they have been targeted for the discovery of anticancer preventive and therapeutic treatments, such as vaccines and monoclonal antibodies. Despite the various efforts made over the last years, resulting in a series of clinical studies, attempts of vaccination with carbohydrate-based candidates have proven unsuccessful, primarily due to the immune tolerance often associated with these glycans. New strategies are thus deployed to enhance carbohydrate-based cancer vaccines. Moreover, lessons learned from glycan immunobiology paved the way to the development of new monoclonal antibodies specifically designed to recognize cancer-bound carbohydrates and induce tumor cell killing. Herein we provide an overview of the immunological principles behind the immune response towards glycans and glycoconjugates and the approaches exploited at both preclinical and clinical level to target cancer-associated glycans for the development of vaccines and therapeutic monoclonal antibodies. We also discuss gaps and opportunities to successfully advance glycan-directed cancer therapies, which could provide patients with innovative and effective treatments.
Collapse
|
6
|
Sampah MES, Hackam DJ. Dysregulated Mucosal Immunity and Associated Pathogeneses in Preterm Neonates. Front Immunol 2020; 11:899. [PMID: 32499778 PMCID: PMC7243348 DOI: 10.3389/fimmu.2020.00899] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 04/17/2020] [Indexed: 12/12/2022] Open
Abstract
Many functions of the immune system are impaired in neonates, allowing vulnerability to serious bacterial, viral and fungal infections which would otherwise not be pathogenic to mature individuals. This vulnerability is exacerbated in compromised newborns such as premature neonates and those who have undergone surgery or who require care in an intensive care unit. Higher susceptibility of preterm neonates to infections is associated with delayed immune system maturation, with deficiencies present in both the innate and adaptive immune components. Here, we review recent insights into early life immunity, and highlight features associated with compromised newborns, given the challenges of studying neonatal immunity in compromised neonates due to the transient nature of this period of life, and logistical and ethical obstacles posed by undertaking studies newborns and infants. Finally, we highlight how the unique immunological characteristics of the premature host play key roles in the pathogenesis of diseases that are unique to this population, including necrotizing enterocolitis and the associated sequalae of lung and brain injury.
Collapse
Affiliation(s)
- Maame Efua S Sampah
- Division of Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - David J Hackam
- Division of Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
7
|
Wagner A, Weinberger B. Vaccines to Prevent Infectious Diseases in the Older Population: Immunological Challenges and Future Perspectives. Front Immunol 2020; 11:717. [PMID: 32391017 PMCID: PMC7190794 DOI: 10.3389/fimmu.2020.00717] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 03/30/2020] [Indexed: 12/15/2022] Open
Abstract
Infectious diseases are a major cause for morbidity and mortality in the older population. Demographic changes will lead to increasing numbers of older persons over the next decades. Prevention of infections becomes increasingly important to ensure healthy aging for the individual, and to alleviate the socio-economic burden for societies. Undoubtedly, vaccines are the most efficient health care measure to prevent infections. Age-associated changes of the immune system are responsible for decreased immunogenicity and clinical efficacy of most currently used vaccines in older age. Efficacy of standard influenza vaccines is only 30-50% in the older population. Several approaches, such as higher antigen dose, use of MF59 as adjuvant and intradermal administration have been implemented in order to specifically target the aged immune system. The use of a 23-valent polysaccharide vaccine against Streptococcus pneumoniae has been amended by a 13-valent conjugated pneumococcal vaccine originally developed for young children several years ago to overcome at least some of the limitations of the T cell-independent polysaccharide antigens, but still is only approximately 50% protective against pneumonia. A live-attenuated vaccine against herpes zoster, which has been available for several years, demonstrated efficacy of 51% against herpes zoster and 67% against post-herpetic neuralgia. Protection was lower in the very old and decreased several years after vaccination. Recently, a recombinant vaccine containing the viral glycoprotein gE and the novel adjuvant AS01B has been licensed. Phase III studies demonstrated efficacy against herpes zoster of approx. 90% even in the oldest age groups after administration of two doses and many countries now recommend the preferential use of this vaccine. There are still many infectious diseases causing substantial morbidity in the older population, for which no vaccines are available so far. Extensive research is ongoing to develop vaccines against novel targets with several vaccine candidates already being clinically tested, which have the potential to substantially reduce health care costs and to save many lives. In addition to the development of novel and improved vaccines, which specifically target the aged immune system, it is also important to improve uptake of the existing vaccines in order to protect the vulnerable, older population.
Collapse
Affiliation(s)
- Angelika Wagner
- Department of Pathophysiology, Infectiology, and Immunology, Institute of Specific Prophylaxis and Tropical Medicine, Medical University of Vienna, Vienna, Austria
| | - Birgit Weinberger
- Institute for Biomedical Aging Research, Universität Innsbruck, Innsbruck, Austria
| |
Collapse
|
8
|
Khatun F, Toth I, Stephenson RJ. Immunology of carbohydrate-based vaccines. Adv Drug Deliv Rev 2020; 165-166:117-126. [PMID: 32320714 DOI: 10.1016/j.addr.2020.04.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/13/2020] [Accepted: 04/17/2020] [Indexed: 11/29/2022]
Abstract
Carbohydrates are considered as promising targets for vaccine development against infectious diseases where cell surface glycan's on many infectious agents are attributed to playing an important role in pathogenesis. Understanding the relationship between carbohydrates and immune components at a molecular level is crucial for the development of well-defined vaccines. Recently, carbohydrate immunology research has been accelerated by the development of new technologies that contribute to the design of optimum antigens, synthesis of antigens and the studies of antigen-antibody interactions, and as a result, several promising carbohydrate-based vaccine candidates have been prepared in recent years. This article briefly presents the mechanistic pathways of polysaccharide, glycoconjugate, glycolipid and zwitterionic vaccines and the interplay between carbohydrate antigen and immune response.
Collapse
Affiliation(s)
- Farjana Khatun
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; East West University, Dhaka, 1212, Bangladesh
| | - Istvan Toth
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; School of Pharmacy, The University of Queensland, Woolloongabba, QLD 4102, Australia; Institute for Molecular Biosciences, The University of Queensland, Woolloongabba, QLD 4072, Australia.
| | - Rachel J Stephenson
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia.
| |
Collapse
|
9
|
RNA gene profile variation in peripheral blood mononuclear cells from rhesus macaques immunized with Hib conjugate vaccine, Hib capsular polysaccharide and TT carrier protein. BMC Immunol 2018; 19:4. [PMID: 29368591 PMCID: PMC5784715 DOI: 10.1186/s12865-018-0240-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 01/12/2018] [Indexed: 11/11/2022] Open
Abstract
Background The Haemophilus influenzae type b (Hib) conjugate vaccine has been widely used in children to prevent invasive Hib disease because of its strong immunogenicity and antibody response induction relative to the capsular polysaccharide (CPS) antigen. The data from vaccine studies suggest that the conjugate vaccine contains carrier proteins that enhance and/or regulate the antigen’s immunogenicity, but the mechanism of this enhancement remains unclear. Methods To explore the immunological role of the conjugate vaccine, we compared the immune responses and gene profiles of rhesus macaques after immunization with CPS, carrier protein tetanus toxoid (TT) or conjugate vaccine. Results A distinct immune response was induced by the Hib conjugate vaccine but not by CPS or carrier protein TT. The genes that were dynamically regulated in conjunction with the macaque immune responses to the conjugate vaccine were investigated. Conclusions We propose that these genes are involved in the induction of specific immunity that is characterized by the appearance and maintenance of antibodies against Hib. Electronic supplementary material The online version of this article (10.1186/s12865-018-0240-5) contains supplementary material, which is available to authorized users.
Collapse
|
10
|
Dowling DJ, Scott EA, Scheid A, Bergelson I, Joshi S, Pietrasanta C, Brightman S, Sanchez-Schmitz G, Van Haren SD, Ninković J, Kats D, Guiducci C, de Titta A, Bonner DK, Hirosue S, Swartz MA, Hubbell JA, Levy O. Toll-like receptor 8 agonist nanoparticles mimic immunomodulating effects of the live BCG vaccine and enhance neonatal innate and adaptive immune responses. J Allergy Clin Immunol 2017; 140:1339-1350. [PMID: 28343701 PMCID: PMC5667586 DOI: 10.1016/j.jaci.2016.12.985] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 11/15/2016] [Accepted: 12/07/2016] [Indexed: 12/22/2022]
Abstract
Background Newborns display distinct immune responses, leaving them vulnerable to infections and impairing immunization. Targeting newborn dendritic cells (DCs), which integrate vaccine signals into adaptive immune responses, might enable development of age-specific vaccine formulations to overcome suboptimal immunization. Objective Small-molecule imidazoquinoline Toll-like receptor (TLR) 8 agonists robustly activate newborn DCs but can result in reactogenicity when delivered in soluble form. We used rational engineering and age- and species-specific modeling to construct and characterize polymer nanocarriers encapsulating a TLR8 agonist, allowing direct intracellular release after selective uptake by DCs. Methods Chemically similar but morphologically distinct nanocarriers comprised of amphiphilic block copolymers were engineered for targeted uptake by murine DCs in vivo, and a range of TLR8 agonist–encapsulating polymersome formulations were then synthesized. Novel 96-well in vitro assays using neonatal human monocyte-derived DCs and humanized TLR8 mouse bone marrow–derived DCs enabled benchmarking of the TLR8 agonist–encapsulating polymersome formulations against conventional adjuvants and licensed vaccines, including live attenuated BCG vaccine. Immunogenicity of the TLR8 agonist adjuvanted antigen 85B (Ag85B)/peptide 25–loaded BCG-mimicking nanoparticle formulation was evaluated in vivo by using humanized TLR8 neonatal mice. Results Although alum-adjuvanted vaccines induced modest costimulatory molecule expression, limited TH-polarizing cytokine production, and significant cell death, BCG induced a robust adult-like maturation profile of neonatal DCs. Remarkably, TLR8 agonist polymersomes induced not only newborn DC maturation profiles similar to those induced by BCG but also stronger IL-12p70 production. On subcutaneous injection to neonatal mice, the TLR8 agonist–adjuvanted Ag85B peptide 25 formulation was comparable with BCG in inducing Ag85B-specific CD4+ T-cell numbers. Conclusion TLR8 agonist–encapsulating polymersomes hold substantial potential for early-life immunization against intracellular pathogens. Overall, our study represents a novel approach for rational design of early-life vaccines.
Collapse
Affiliation(s)
- David J Dowling
- Department of Medicine, Division of Infectious Diseases, Boston Children's Hospital, Boston, Mass; Harvard Medical School, Boston, Mass.
| | - Evan A Scott
- Department of Biomedical Engineering, Northwestern University, Evanston, Ill.
| | - Annette Scheid
- Department of Medicine, Division of Infectious Diseases, Boston Children's Hospital, Boston, Mass; Harvard Medical School, Boston, Mass; Division of Newborn Medicine, Floating Hospital for Children, Tufts Medical Center, Boston, Mass; Precision Vaccine Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, Mass
| | - Ilana Bergelson
- Department of Medicine, Division of Infectious Diseases, Boston Children's Hospital, Boston, Mass
| | - Sweta Joshi
- Department of Medicine, Division of Infectious Diseases, Boston Children's Hospital, Boston, Mass; Precision Vaccine Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, Mass
| | - Carlo Pietrasanta
- Department of Medicine, Division of Infectious Diseases, Boston Children's Hospital, Boston, Mass; Harvard Medical School, Boston, Mass; Neonatal Intensive Care Unit, Department of Clinical Sciences and Community Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy; Precision Vaccine Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, Mass
| | - Spencer Brightman
- Department of Medicine, Division of Infectious Diseases, Boston Children's Hospital, Boston, Mass; Precision Vaccine Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, Mass
| | - Guzman Sanchez-Schmitz
- Department of Medicine, Division of Infectious Diseases, Boston Children's Hospital, Boston, Mass; Harvard Medical School, Boston, Mass; Precision Vaccine Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, Mass
| | - Simon D Van Haren
- Department of Medicine, Division of Infectious Diseases, Boston Children's Hospital, Boston, Mass; Harvard Medical School, Boston, Mass; Precision Vaccine Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, Mass
| | - Jana Ninković
- Department of Medicine, Division of Infectious Diseases, Boston Children's Hospital, Boston, Mass; Harvard Medical School, Boston, Mass
| | - Dina Kats
- Department of Biomedical Engineering, Northwestern University, Evanston, Ill
| | | | - Alexandre de Titta
- Institute of Bioengineering, School of Life Sciences and School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Daniel K Bonner
- Institute of Bioengineering, School of Life Sciences and School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Sachiko Hirosue
- Institute of Bioengineering, School of Life Sciences and School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Melody A Swartz
- Institute of Bioengineering, School of Life Sciences and School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland; Institute for Molecular Engineering, University of Chicago, Chicago, Ill
| | - Jeffrey A Hubbell
- Institute of Bioengineering, School of Life Sciences and School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland; Institute for Molecular Engineering, University of Chicago, Chicago, Ill
| | - Ofer Levy
- Department of Medicine, Division of Infectious Diseases, Boston Children's Hospital, Boston, Mass; Harvard Medical School, Boston, Mass; Precision Vaccine Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, Mass.
| |
Collapse
|
11
|
Dowling DJ, van Haren SD, Scheid A, Bergelson I, Kim D, Mancuso CJ, Foppen W, Ozonoff A, Fresh L, Theriot TB, Lackner AA, Fichorova RN, Smirnov D, Vasilakos JP, Beaurline JM, Tomai MA, Midkiff CC, Alvarez X, Blanchard JL, Gilbert MH, Aye PP, Levy O. TLR7/8 adjuvant overcomes newborn hyporesponsiveness to pneumococcal conjugate vaccine at birth. JCI Insight 2017; 2:e91020. [PMID: 28352660 DOI: 10.1172/jci.insight.91020] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Infection is the most common cause of mortality in early life, and immunization is the most promising biomedical intervention to reduce this burden. However, newborns fail to respond optimally to most vaccines. Adjuvantation is a key approach to enhancing vaccine immunogenicity, but responses of human newborn leukocytes to most candidate adjuvants, including most TLR agonists, are functionally distinct. Herein, we demonstrate that 3M-052 is a locally acting lipidated imidazoquinoline TLR7/8 agonist adjuvant in mice, which, when properly formulated, can induce robust Th1 cytokine production by human newborn leukocytes in vitro, both alone and in synergy with the alum-adjuvanted pneumococcal conjugate vaccine 13 (PCV13). When admixed with PCV13 and administered i.m. on the first day of life to rhesus macaques, 3M-052 dramatically enhanced generation of Th1 CRM-197-specific neonatal CD4+ cells, activation of newborn and infant Streptococcus pneumoniae polysaccharide-specific (PnPS-specific) B cells as well as serotype-specific antibody titers, and opsonophagocytic killing. Remarkably, a single dose at birth of PCV13 plus 0.1 mg/kg 3M-052 induced PnPS-specific IgG responses that were approximately 10-100 times greater than a single birth dose of PCV13 alone, rapidly exceeding the serologic correlate of protection, as early as 28 days of life. This potent immunization strategy, potentially effective with one birth dose, could represent a new paradigm in early life vaccine development.
Collapse
Affiliation(s)
- David J Dowling
- Department of Medicine, Division of Infectious Diseases, Boston Children's Hospital, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| | - Simon D van Haren
- Department of Medicine, Division of Infectious Diseases, Boston Children's Hospital, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA.,Precision Vaccines Program, Department of Medicine, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Annette Scheid
- Department of Medicine, Division of Infectious Diseases, Boston Children's Hospital, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA.,Precision Vaccines Program, Department of Medicine, Boston Children's Hospital, Boston, Massachusetts, USA.,Division of Newborn Medicine, Tufts Medical Center, Boston, Massachusetts, USA
| | - Ilana Bergelson
- Department of Medicine, Division of Infectious Diseases, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Dhohyung Kim
- Department of Medicine, Division of Infectious Diseases, Boston Children's Hospital, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| | - Christy J Mancuso
- Department of Medicine, Division of Infectious Diseases, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Willemina Foppen
- Department of Medicine, Division of Infectious Diseases, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Al Ozonoff
- Harvard Medical School, Boston, Massachusetts, USA.,Precision Vaccines Program, Department of Medicine, Boston Children's Hospital, Boston, Massachusetts, USA.,Center for Patient Safety and Quality Research, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Lynn Fresh
- Tulane National Primate Research Center (TNPRC), Covington, Louisiana, USA
| | - Terese B Theriot
- Tulane National Primate Research Center (TNPRC), Covington, Louisiana, USA
| | - Andrew A Lackner
- Tulane National Primate Research Center (TNPRC), Covington, Louisiana, USA
| | - Raina N Fichorova
- Harvard Medical School, Boston, Massachusetts, USA.,Brigham and Women's Hospital, Boston, Massachusetts, USA
| | | | | | | | - Mark A Tomai
- 3M Drug Delivery Systems, Saint Paul, Minnesota, USA
| | - Cecily C Midkiff
- Tulane National Primate Research Center (TNPRC), Covington, Louisiana, USA
| | - Xavier Alvarez
- Tulane National Primate Research Center (TNPRC), Covington, Louisiana, USA
| | - James L Blanchard
- Tulane National Primate Research Center (TNPRC), Covington, Louisiana, USA
| | - Margaret H Gilbert
- Tulane National Primate Research Center (TNPRC), Covington, Louisiana, USA
| | - Pyone Pyone Aye
- Tulane National Primate Research Center (TNPRC), Covington, Louisiana, USA
| | - Ofer Levy
- Department of Medicine, Division of Infectious Diseases, Boston Children's Hospital, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA.,Precision Vaccines Program, Department of Medicine, Boston Children's Hospital, Boston, Massachusetts, USA
| |
Collapse
|
12
|
van Haren SD, Dowling DJ, Foppen W, Christensen D, Andersen P, Reed SG, Hershberg RM, Baden LR, Levy O. Age-Specific Adjuvant Synergy: Dual TLR7/8 and Mincle Activation of Human Newborn Dendritic Cells Enables Th1 Polarization. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2016; 197:4413-4424. [PMID: 27793997 PMCID: PMC7386828 DOI: 10.4049/jimmunol.1600282] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 09/26/2016] [Indexed: 02/07/2023]
Abstract
Due to functionally distinct cell-mediated immunity, newborns and infants are highly susceptible to infection with intracellular pathogens. Indeed, neonatal Ag-presenting dendritic cells (DCs) demonstrate impaired Th1 responses to many candidate adjuvants, including most TLR agonists (TLRAs). Combination adjuvantation systems may provide enhanced immune activation but have typically been developed without regard to the age of the target population. We posited that distinct combinations of TLRAs and C-type lectin receptor agonists may enhance Th1 responses of newborn DCs. TLRA/C-type lectin receptor agonist combinations were screened for enhancement of TNF production by human newborn and adult monocyte-derived DCs cultured in 10% autologous plasma or in newborn cord, infant, adult, and elderly whole blood. Monocyte-derived DC activation was characterized by targeted gene expression analysis, caspase-1 and NF-κB studies, cytokine multiplex and naive autologous CD4+ T cell activation. Dual activation of newborn DCs via the C-type lectin receptor, macrophage-inducible C-type lectin (trehalose-6,6-dibehenate), and TLR7/8 (R848) greatly enhanced caspase-1 and NF-κB activation, Th1 polarizing cytokine production and autologous Th1 polarization. Combined activation via TLR4 (glycopyranosyl lipid adjuvant aqueous formulation) and Dectin-1 (β-glucan peptide) acted synergistically in newborns and adults, but to a lesser extent. The degree of synergy varied dramatically with age, and was the greatest in newborns and infants with less synergy in adults and elders. Overall, combination adjuvant systems demonstrate markedly different immune activation with age, with combined DC activation via Macrophage-inducible C-type lectin and TLR7/8 representing a novel approach to enhance the efficacy of early-life vaccines.
Collapse
Affiliation(s)
- Simon D van Haren
- Division of Infectious Diseases, Department of Medicine, Boston Children's Hospital, Boston, MA 02115
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA 02115
- Harvard Medical School, Boston, MA 02115
| | - David J Dowling
- Division of Infectious Diseases, Department of Medicine, Boston Children's Hospital, Boston, MA 02115
- Harvard Medical School, Boston, MA 02115
| | - Willemina Foppen
- Division of Infectious Diseases, Department of Medicine, Boston Children's Hospital, Boston, MA 02115
- Harvard Medical School, Boston, MA 02115
| | - Dennis Christensen
- Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, DK-2300, Denmark
| | - Peter Andersen
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA 02115
- Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, DK-2300, Denmark
| | - Steven G Reed
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA 02115
- Infectious Disease Research Institute, Seattle, WA 98102
| | | | - Lindsey R Baden
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA 02115
- Division of Infectious Diseases, Brigham and Women's Hospital Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115
| | - Ofer Levy
- Division of Infectious Diseases, Department of Medicine, Boston Children's Hospital, Boston, MA 02115;
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA 02115
- Harvard Medical School, Boston, MA 02115
| |
Collapse
|
13
|
Hib Vaccines: Past, Present, and Future Perspectives. J Immunol Res 2016; 2016:7203587. [PMID: 26904695 PMCID: PMC4745871 DOI: 10.1155/2016/7203587] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Accepted: 12/24/2015] [Indexed: 12/31/2022] Open
Abstract
Haemophilus influenzae type b (Hib) causes many severe diseases, including epiglottitis, pneumonia, sepsis, and meningitis. In developed countries, the annual incidence of meningitis caused by bacteria is approximately 5–10 cases per population of 100,000. The Hib conjugate vaccine is considered protective and safe. Adjuvants, molecules that can enhance and/or regulate the fundamental immunogenicity of an antigen, comprise a wide range of diverse compounds. While earlier developments of adjuvants created effective products, there is still a need to create new generations, rationally designed based on recent discoveries in immunology, mainly in innate immunity. Many factors may play a role in the immunogenicity of Hib conjugate vaccines, such as the polysaccharides and proteins carrier used in vaccine construction, as well as the method of conjugation. A Hib conjugate vaccine has been constructed via chemical synthesis of a Hib saccharide antigen. Two models of carbohydrate-protein conjugate have been established, the single ended model (terminal amination-single method) and cross-linked lattice matrix (dual amination method). Increased knowledge in the fields of immunology, molecular biology, glycobiology, glycoimmunology, and the biology of infectious microorganisms has led to a dramatic increase in vaccine efficacy.
Collapse
|
14
|
Ganapathi L, Van Haren S, Dowling DJ, Bergelson I, Shukla NM, Malladi SS, Balakrishna R, Tanji H, Ohto U, Shimizu T, David SA, Levy O. The Imidazoquinoline Toll-Like Receptor-7/8 Agonist Hybrid-2 Potently Induces Cytokine Production by Human Newborn and Adult Leukocytes. PLoS One 2015; 10:e0134640. [PMID: 26274907 PMCID: PMC4537157 DOI: 10.1371/journal.pone.0134640] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 07/11/2015] [Indexed: 11/30/2022] Open
Abstract
Background Newborns and young infants are at higher risk for infections than adults, and manifest suboptimal vaccine responses, motivating a search for novel immunomodulators and/or vaccine adjuvants effective in early life. In contrast to most TLR agonists (TLRA), TLR8 agonists such as imidazoquinolines (IMQs) induce adult-level Th1-polarizing cytokine production from human neonatal cord blood monocytes and are candidate early life adjuvants. We assessed whether TLR8-activating IMQ congeners may differ in potency and efficacy in inducing neonatal cytokine production in vitro, comparing the novel TLR7/8-activating IMQ analogues Hybrid-2, Meta-amine, and Para-amine to the benchmark IMQ resiquimod (R848). Methods TLRA-induced NF-κB activation was measured in TLR-transfected HEK cells. Cytokine production in human newborn cord and adult peripheral blood and in monocyte-derived dendritic cell cultures were measured by ELISA and multiplex assays. X-ray crystallography characterized the interaction of human TLR8 with Hybrid-2. Results Hybrid-2 selectively activated both TLR7 and 8 and was more potent than R848 in inducing adult-like levels of TNF-α, and IL-1β. Consistent with its relatively high in vitro activity, crystallographic studies suggest that absence in Hybrid-2 of an ether oxygen of the C2-ethoxymethyl substituent, which can engage in unfavorable electrostatic and/or dipolar interactions with the carbonyl oxygen of Gly572 in human TLR8, may confer greater efficacy and potency compared to R848. Conclusions Hybrid-2 is a selective and potent TLR7/8 agonist that is a candidate adjuvant for early life immunization.
Collapse
Affiliation(s)
- Lakshmi Ganapathi
- Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, United States of America
- Harvard Medical School, Boston, MA, United States of America
| | - Simon Van Haren
- Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, United States of America
- Harvard Medical School, Boston, MA, United States of America
| | - David J. Dowling
- Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, United States of America
- Harvard Medical School, Boston, MA, United States of America
| | - Ilana Bergelson
- Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, United States of America
| | - Nikunj M. Shukla
- Department of Medicinal Chemistry, University of Kansas, Lawrence, KS, United States of America
| | - Subbalakshmi S. Malladi
- Department of Medicinal Chemistry, University of Kansas, Lawrence, KS, United States of America
| | - Rajalakshmi Balakrishna
- Department of Medicinal Chemistry, University of Kansas, Lawrence, KS, United States of America
| | - Hiromi Tanji
- Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan
| | - Umeharu Ohto
- Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan
| | - Toshiyuki Shimizu
- Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan
| | - Sunil A. David
- Department of Medicinal Chemistry, University of Kansas, Lawrence, KS, United States of America
| | - Ofer Levy
- Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, United States of America
- Harvard Medical School, Boston, MA, United States of America
- * E-mail:
| |
Collapse
|
15
|
Toniolo C, Balducci E, Romano MR, Proietti D, Ferlenghi I, Grandi G, Berti F, Ros IMY, Janulczyk R. Streptococcus agalactiae capsule polymer length and attachment is determined by the proteins CpsABCD. J Biol Chem 2015; 290:9521-32. [PMID: 25666613 DOI: 10.1074/jbc.m114.631499] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Indexed: 11/06/2022] Open
Abstract
The production of capsular polysaccharides (CPS) or secreted exopolysaccharides is ubiquitous in bacteria, and the Wzy pathway constitutes a prototypical mechanism to produce these structures. Despite the differences in polysaccharide composition among species, a group of proteins involved in this pathway is well conserved. Streptococcus agalactiae (group B Streptococcus; GBS) produces a CPS that represents the main virulence factor of the bacterium and is a prime target in current vaccine development. We used this human pathogen to investigate the roles and potential interdependencies of the conserved proteins CpsABCD encoded in the cps operon, by developing knock-out and functional mutant strains. The mutant strains were examined for CPS quantity, size, and attachment to the cell surface as well as CpsD phosphorylation. We observed that CpsB, -C, and -D compose a phosphoregulatory system where the CpsD autokinase phosphorylates its C-terminal tyrosines in a CpsC-dependent manner. These Tyr residues are also the target of the cognate CpsB phosphatase. An interaction between CpsD and CpsC was observed, and the phosphorylation state of CpsD influenced the subsequent action of CpsC. The CpsC extracellular domain appeared necessary for the production of high molecular weight polysaccharides by influencing CpsA-mediated attachment of the CPS to the bacterial cell surface. In conclusion, although having no impact on cps transcription or the synthesis of the basal repeating unit, we suggest that these proteins are fine-tuning the last steps of CPS biosynthesis (i.e. the balance between polymerization and attachment to the cell wall).
Collapse
Affiliation(s)
- Chiara Toniolo
- From Novartis Vaccines and Diagnostics, Research Center, Via Fiorentina 1, 53100 Siena, Italy
| | - Evita Balducci
- From Novartis Vaccines and Diagnostics, Research Center, Via Fiorentina 1, 53100 Siena, Italy
| | - Maria Rosaria Romano
- From Novartis Vaccines and Diagnostics, Research Center, Via Fiorentina 1, 53100 Siena, Italy
| | - Daniela Proietti
- From Novartis Vaccines and Diagnostics, Research Center, Via Fiorentina 1, 53100 Siena, Italy
| | - Ilaria Ferlenghi
- From Novartis Vaccines and Diagnostics, Research Center, Via Fiorentina 1, 53100 Siena, Italy
| | - Guido Grandi
- From Novartis Vaccines and Diagnostics, Research Center, Via Fiorentina 1, 53100 Siena, Italy
| | - Francesco Berti
- From Novartis Vaccines and Diagnostics, Research Center, Via Fiorentina 1, 53100 Siena, Italy
| | | | - Robert Janulczyk
- From Novartis Vaccines and Diagnostics, Research Center, Via Fiorentina 1, 53100 Siena, Italy
| |
Collapse
|
16
|
Ravi G, Venkatesh YP. Recognition of flavin mononucleotide, Haemophilus influenzae type b and its capsular polysaccharide vaccines by antibodies specific to D-ribitol-5-phosphate. Glycoconj J 2014; 31:573-85. [PMID: 25108762 DOI: 10.1007/s10719-014-9539-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 07/22/2014] [Accepted: 07/22/2014] [Indexed: 11/25/2022]
Abstract
D-Ribitol-5-phosphate (Rbt-5-P) is an important metabolite in the pentose phosphate pathway and an integral part of bacterial cell wall polysaccharides, specifically as polyribosyl ribitol phosphate (PRP) in Haemophilus influenzae type b (Hib). The major objective of this study was to investigate whether an antibody specific to Rbt-5-P can recognize the PRP of Hib. D-Ribose-5-phosphate was reacted with proteins in the presence of sodium cyanoborohydride to obtain Rbt-5-P epitopes; 120 h reaction resulted in conjugation of ~30 and ~17 moles of Rbt-5-P/mole of BSA and OVA, respectively, based on decrease in amino groups, MALDI-TOF analyses, an increase in apparent molecular weight (SDS-PAGE) and glycoprotein staining. Immunization of rabbits with Rbt-5-P-BSA conjugate generated antibodies to Rbt-5-P as demonstrated by dot immunoblot and non-competitive ELISA. Homogeneous Rbt-5-P-specific antibody was purified from Rbt-5-P-BSA antiserum subjected to caprylic acid precipitation followed by hapten-affinity chromatography; its affinity constant is 7.1 × 10(8) M(-1). Rbt-5-P antibody showed 100 % specificity to Rbt-5-P, ~230 %, 10 % and 3.4 % cross-reactivity to FMN, riboflavin and FAD, respectively; the antibody showed ~4 % cross-reactivity to D-ribitol and <3 % to other sugars/sugar alcohols. Rbt-5-P-specific antibody recognized Hib conjugate vaccines containing PRP which was inhibited specifically by Rbt-5-P, and also detected Hib cell-surface capsular polysaccharides by immunofluorescence. In conclusion, Rbt-5-P-protein conjugate used as an immunogen elicited antibodies binding to an epitope also present in PRP and Hib bacteria. Rbt-5-P-specific antibody has potential applications in the detection and quantification of free/bound Rbt-5-P and FMN as well as immunological recognition of Hib bacteria and its capsular polysaccharide.
Collapse
Affiliation(s)
- G Ravi
- Department of Biochemistry and Nutrition, CSIR-Central Food Technological Research Institute (CFTRI), 'Chaluvamba Vilas', KRS Road, Mysore, 570020, Karnataka State, India
| | | |
Collapse
|
17
|
Dowling DJ, Levy O. Ontogeny of early life immunity. Trends Immunol 2014; 35:299-310. [PMID: 24880460 DOI: 10.1016/j.it.2014.04.007] [Citation(s) in RCA: 271] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 04/29/2014] [Accepted: 04/30/2014] [Indexed: 12/18/2022]
Abstract
The human immune system comprises cellular and molecular components designed to coordinately prevent infection while avoiding potentially harmful inflammation and autoimmunity. Immunity varies with age, reflecting unique age-dependent challenges including fetal gestation, the neonatal phase, and infancy. Here, we review novel mechanistic insights into early life immunity, with an emphasis on emerging models of human immune ontogeny, which may inform age-specific translational development of novel anti-infectives, immunomodulators, and vaccines.
Collapse
Affiliation(s)
- David J Dowling
- Department of Medicine, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Ofer Levy
- Department of Medicine, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA.
| |
Collapse
|