1
|
Wang Y, Ye M, Zhang F, Freeman ZT, Yu H, Ye X, He Y. Ontology-based taxonomical analysis of experimentally verified natural and laboratory human coronavirus hosts and its implication for COVID-19 virus origination and transmission. PLoS One 2024; 19:e0295541. [PMID: 38252647 PMCID: PMC10802970 DOI: 10.1371/journal.pone.0295541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 11/26/2023] [Indexed: 01/24/2024] Open
Abstract
To fully understand COVID-19, it is critical to study all possible hosts of SARS-CoV-2 (the pathogen of COVID-19). In this work, we collected, annotated, and performed ontology-based taxonomical analysis of all the reported and verified hosts for all human coronaviruses including SARS-CoV, MERS-CoV, SARS-CoV-2, HCoV-229E, HCoV-NL63, HCoV-OC43, and HCoV-HKU1. A total of 37 natural hosts and 19 laboratory animal hosts of human coronaviruses were identified based on experimental evidence. Our analysis found that all the verified susceptible natural and laboratory animals belong to therian mammals. Specifically, these 37 natural therian hosts include one wildlife marsupial mammal (i.e., Virginia opossum) and 36 Eutheria mammals (a.k.a. placental mammals). The 19 laboratory animal hosts are also classified as therian mammals. The mouse models with genetically modified human ACE2 or DPP4 were more susceptible to virulent human coronaviruses with clear symptoms, suggesting the critical role of ACE2 and DPP4 to coronavirus virulence. Coronaviruses became more virulent and adaptive in the mouse hosts after a series of viral passages in the mice, providing clue to the possible coronavirus origination. The Huanan Seafood Wholesale Market animals identified early in the COVID-19 outbreak were also systematically analyzed as possible COVID-19 hosts. To support knowledge standardization and query, the annotated host knowledge was modeled and represented in the Coronavirus Infectious Disease Ontology (CIDO). Based on our and others' findings, we further propose a MOVIE model (i.e., Multiple-Organism viral Variations and Immune Evasion) to address how viral variations in therian animal hosts and the host immune evasion might have led to dynamic COVID-19 pandemic outcomes.
Collapse
Affiliation(s)
- Yang Wang
- Guizhou University School of Medicine, Guiyang, Guizhou, China
- Department of Respiratory and Critical Care Medicine, Guizhou Provincial People’s Hospital and NHC Key Laboratory of Immunological Diseases, People’s Hospital of Guizhou University, Guiyang, Guizhou, China
- Unit for Laboratory Animal Medicine, University of Michigan Medical School, Ann Arbor, MI, United States of America
| | - Muhui Ye
- Chinese University of Hong Kong (Shenzhen), Shenzhen, Guangdong, China
| | - Fengwei Zhang
- Guizhou University School of Medicine, Guiyang, Guizhou, China
| | - Zachary Thomas Freeman
- Unit for Laboratory Animal Medicine, University of Michigan Medical School, Ann Arbor, MI, United States of America
| | - Hong Yu
- Guizhou University School of Medicine, Guiyang, Guizhou, China
- Department of Respiratory and Critical Care Medicine, Guizhou Provincial People’s Hospital and NHC Key Laboratory of Immunological Diseases, People’s Hospital of Guizhou University, Guiyang, Guizhou, China
| | - Xianwei Ye
- Guizhou University School of Medicine, Guiyang, Guizhou, China
- Department of Respiratory and Critical Care Medicine, Guizhou Provincial People’s Hospital and NHC Key Laboratory of Immunological Diseases, People’s Hospital of Guizhou University, Guiyang, Guizhou, China
| | - Yongqun He
- Unit for Laboratory Animal Medicine, University of Michigan Medical School, Ann Arbor, MI, United States of America
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, United States of America
- Center for Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI, United States of America
| |
Collapse
|
2
|
Zeng R, Pan W, Lin Y, Liang M, Fu J, Weng S, He J, Guo C. A Safe and Efficient Double-Gene-Deleted Live Attenuated Immersion Vaccine to Prevent the Disease Caused by the Infectious Spleen and Kidney Necrosis Virus. J Virol 2023; 97:e0085723. [PMID: 37382530 PMCID: PMC10373555 DOI: 10.1128/jvi.00857-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 06/09/2023] [Indexed: 06/30/2023] Open
Abstract
Infectious diseases seriously threaten sustainable aquaculture development, resulting in more than $10 billion in economic losses annually. Immersion vaccines are emerging as the key technology for aquatic disease prevention and control. Here, a safe and efficacious candidate immersion vaccine strain (Δorf103r/tk) of infectious spleen and kidney necrosis virus (ISKNV), in which the orf103r and tk genes were knocked out by homologous recombination, is described. Δorf103r/tk was severely attenuated in mandarin fish (Siniperca chuatsi), inducing mild histological lesions, a mortality rate of only 3%, and eliminated within 21 days. A single Δorf103r/tk immersion-administered dose provided long-lasting protection rates over 95% against lethal ISKNV challenge. Δorf103r/tk also robustly stimulated the innate and adaptive immune responses. For example, interferon expression was significantly upregulated, and the production of specific neutralizing antibodies against ISKNV was markedly induced postimmunization. This work provides proof-of-principle evidence for orf103r- and tk-deficient ISKNV for immersion vaccine development to prevent ISKNV disease in aquaculture production. IMPORTANCE Global aquaculture production reached a record of 122.6 million tons in 2020, with a total value of 281.5 billion U.S. dollars (USD). However, approximately 10% of farmed aquatic animal production is lost due to various infectious diseases, resulting in more than 10 billion USD of economic waste every year. Therefore, the development of vaccines to prevent and control aquatic infectious diseases is of great significance. Infectious spleen and kidney necrosis virus (ISKNV) infection occurs in more than 50 species of freshwater and marine fish and has caused great economic losses to the mandarin fish farming industry in China during the past few decades. Thus, it is listed as a certifiable disease by the World Organization for Animal Health (OIE). Herein, a safe and efficient double-gene-deleted live attenuated immersion vaccine against ISKNV was developed, providing an example for the development of aquatic gene-deleted live attenuated immersion vaccine.
Collapse
Affiliation(s)
- Ruoyun Zeng
- State Key Laboratory for Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
| | - Weiqiang Pan
- State Key Laboratory for Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yifan Lin
- State Key Laboratory for Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
| | - Mincong Liang
- State Key Laboratory for Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jiajie Fu
- State Key Laboratory for Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
| | - Shaoping Weng
- State Key Laboratory for Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jianguo He
- State Key Laboratory for Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
| | - Changjun Guo
- State Key Laboratory for Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, Guangdong, China
| |
Collapse
|
3
|
Rodríguez Á, Maneiro M, Lence E, Otero JM, van Raaij MJ, Thompson P, Hawkins AR, González-Bello C. Quinate-based ligands for irreversible inactivation of the bacterial virulence factor DHQ1 enzyme-A molecular insight. Front Mol Biosci 2023; 10:1111598. [PMID: 36762206 PMCID: PMC9902378 DOI: 10.3389/fmolb.2023.1111598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/10/2023] [Indexed: 01/26/2023] Open
Abstract
Irreversible inhibition of the enzyme type I dehydroquinase (DHQ1), a promising target for anti-virulence drug development, has been explored by enhancing the electrophilicity of specific positions of the ligand towards covalent lysine modification. For ligand design, we made use of the advantages offered by the intrinsic acid-base properties of the amino substituents introduced in the quinate scaffold, namely compounds 6-7 (R configuration at C3), to generate a potential leaving group, as well as the recognition pattern of the enzyme. The reactivity of the C2-C3 bond (Re face) in the scaffold was also explored using compound 8. The results of the present study show that replacement of the C3 hydroxy group of (-)-quinic acid by a hydroxyamino substituent (compound 6) provides a time-dependent irreversible inhibitor, while compound 7, in which the latter functionality was substituted by an amino group, and the introduction of an oxirane ring at C2-C3 bond, compound 8, do not allow covalent modification of the enzyme. These outcomes were supported by resolution of the crystal structures of DHQ1 from Staphylococcus aureus (Sa-DHQ1) and Salmonella typhi (St-DHQ1) chemically modified by 6 at a resolution of 1.65 and 1.90 Å, respectively, and of St-DHQ1 in the complex with 8 (1.55 Å). The combination of these structural studies with extensive molecular dynamics simulation studies allowed us to understand the molecular basis of the type of inhibition observed. This study is a good example of the importance of achieving the correct geometry between the reactive center of the ligand (electrophile) and the enzyme nucleophile (lysine residue) to allow selective covalent modification. The outcomes obtained with the hydroxyamino derivative 6 also open up new possibilities in the design of irreversible inhibitors based on the use of amino substituents.
Collapse
Affiliation(s)
- Ángela Rodríguez
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - María Maneiro
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Emilio Lence
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - José M. Otero
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Mark J. van Raaij
- Departamento de Estructura de Macromoléculas, Centro Nacional de Biotecnología (CSIC), Madrid, Spain
| | - Paul Thompson
- Newcastle University Biosciences Institute, The Medical School, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Alastair R. Hawkins
- Newcastle University Biosciences Institute, The Medical School, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Concepción González-Bello
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, Santiago de Compostela, Spain,*Correspondence: Concepción González-Bello,
| |
Collapse
|
4
|
Manuel W, Abeysinghe R, He Y, Tao C, Cui L. Identification of missing hierarchical relations in the vaccine ontology using acquired term pairs. J Biomed Semantics 2022; 13:22. [PMID: 35964149 PMCID: PMC9375092 DOI: 10.1186/s13326-022-00276-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 07/24/2022] [Indexed: 11/10/2022] Open
Abstract
Background The Vaccine Ontology (VO) is a biomedical ontology that standardizes vaccine annotation. Errors in VO will affect a multitude of applications that it is being used in. Quality assurance of VO is imperative to ensure that it provides accurate domain knowledge to these downstream tasks. Manual review to identify and fix quality issues (such as missing hierarchical is-a relations) is challenging given the complexity of the ontology. Automated approaches are highly desirable to facilitate the quality assurance of VO. Methods We developed an automated lexical approach that identifies potentially missing is-a relations in VO. First, we construct two types of VO concept-pairs: (1) linked; and (2) unlinked. Each concept-pair further derives an Acquired Term Pair (ATP) based on their lexical features. If the same ATP is obtained by a linked concept-pair and an unlinked concept-pair, this is considered to indicate a potentially missing is-a relation between the unlinked pair of concepts. Results Applying this approach on the 1.1.192 version of VO, we were able to identify 232 potentially missing is-a relations. A manual review by a VO domain expert on a random sample of 70 potentially missing is-a relations revealed that 65 of the cases were valid missing is-a relations in VO (a precision of 92.86%). Conclusions The results indicate that our approach is highly effective in identifying missing is-a relation in VO.
Collapse
Affiliation(s)
- Warren Manuel
- School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Rashmie Abeysinghe
- Department of Neurology, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Yongqun He
- Unit for Laboratory Animal Medicine, Department of Microbiology and Immunology, Center for Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Cui Tao
- School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Licong Cui
- School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, USA.
| |
Collapse
|
5
|
|
6
|
Berke K, Sun P, Ong E, Sanati N, Huffman A, Brunson T, Loney F, Ostrow J, Racz R, Zhao B, Xiang Z, Masci AM, Zheng J, Wu G, He Y. VaximmutorDB: A Web-Based Vaccine Immune Factor Database and Its Application for Understanding Vaccine-Induced Immune Mechanisms. Front Immunol 2021; 12:639491. [PMID: 33777032 PMCID: PMC7994782 DOI: 10.3389/fimmu.2021.639491] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 02/18/2021] [Indexed: 01/07/2023] Open
Abstract
Vaccines stimulate various immune factors critical to protective immune responses. However, a comprehensive picture of vaccine-induced immune factors and pathways have not been systematically collected and analyzed. To address this issue, we developed VaximmutorDB, a web-based database system of vaccine immune factors (abbreviated as “vaximmutors”) manually curated from peer-reviewed articles. VaximmutorDB currently stores 1,740 vaccine immune factors from 13 host species (e.g., human, mouse, and pig). These vaximmutors were induced by 154 vaccines for 46 pathogens. Top 10 vaximmutors include three antibodies (IgG, IgG2a and IgG1), Th1 immune factors (IFN-γ and IL-2), Th2 immune factors (IL-4 and IL-6), TNF-α, CASP-1, and TLR8. Many enriched host processes (e.g., stimulatory C-type lectin receptor signaling pathway, SRP-dependent cotranslational protein targeting to membrane) and cellular components (e.g., extracellular exosome, nucleoplasm) by all the vaximmutors were identified. Using influenza as a model, live attenuated and killed inactivated influenza vaccines stimulate many shared pathways such as signaling of many interleukins (including IL-1, IL-4, IL-6, IL-13, IL-20, and IL-27), interferon signaling, MARK1 activation, and neutrophil degranulation. However, they also present their unique response patterns. While live attenuated influenza vaccine FluMist induced significant signal transduction responses, killed inactivated influenza vaccine Fluarix induced significant metabolism of protein responses. Two different Yellow Fever vaccine (YF-Vax) studies resulted in overlapping gene lists; however, they shared more portions of pathways than gene lists. Interestingly, live attenuated YF-Vax simulates significant metabolism of protein responses, which was similar to the pattern induced by killed inactivated Fluarix. A user-friendly web interface was generated to access, browse and search the VaximmutorDB database information. As the first web-based database of vaccine immune factors, VaximmutorDB provides systematical collection, standardization, storage, and analysis of experimentally verified vaccine immune factors, supporting better understanding of protective vaccine immunity.
Collapse
Affiliation(s)
- Kimberly Berke
- College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, MI, United States.,Central Michigan College of Medicine, Mt. Pleasant, MI, United States
| | - Peter Sun
- College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, MI, United States
| | - Edison Ong
- Department of Computational Medicine and Biology, University of Michigan, Ann Arbor, MI, United States
| | - Nasim Sanati
- Department of Medical Informatics and Clinical Epidemiology, Oregon Health and Science University, Portland, OR, United States
| | - Anthony Huffman
- Department of Computational Medicine and Biology, University of Michigan, Ann Arbor, MI, United States
| | - Timothy Brunson
- Department of Medical Informatics and Clinical Epidemiology, Oregon Health and Science University, Portland, OR, United States
| | - Fred Loney
- Department of Medical Informatics and Clinical Epidemiology, Oregon Health and Science University, Portland, OR, United States
| | - Joseph Ostrow
- College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, MI, United States
| | - Rebecca Racz
- College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, MI, United States
| | - Bin Zhao
- College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, MI, United States
| | - Zuoshuang Xiang
- College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, MI, United States
| | - Anna Maria Masci
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC, United States
| | - Jie Zheng
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | - Guanming Wu
- Department of Medical Informatics and Clinical Epidemiology, Oregon Health and Science University, Portland, OR, United States
| | - Yongqun He
- Unit for Laboratory Animal Medicine, University of Michigan Medical School, Ann Arbor, MI, United States.,Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, United States.,Center for Computational Medicine and Biology, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
7
|
Xie J, Zi W, Li Z, He Y. Ontology-based Precision Vaccinology for Deep Mechanism Understanding and Precision Vaccine Development. Curr Pharm Des 2021; 27:900-910. [PMID: 33238868 PMCID: PMC12067353 DOI: 10.2174/1381612826666201125112131] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 10/08/2020] [Indexed: 11/22/2022]
Abstract
Vaccination is one of the most important innovations in human history. It has also become a hot research area in a new application - the development of new vaccines against non-infectious diseases such as cancers. However, effective and safe vaccines still do not exist for many diseases, and where vaccines exist, their protective immune mechanisms are often unclear. Although licensed vaccines are generally safe, various adverse events, and sometimes severe adverse events, still exist for a small population. Precision medicine tailors medical intervention to the personal characteristics of individual patients or sub-populations of individuals with similar immunity-related characteristics. Precision vaccinology is a new strategy that applies precision medicine to the development, administration, and post-administration analysis of vaccines. Several conditions contribute to make this the right time to embark on the development of precision vaccinology. First, the increased level of research in vaccinology has generated voluminous "big data" repositories of vaccinology data. Secondly, new technologies such as multi-omics and immunoinformatics bring new methods for investigating vaccines and immunology. Finally, the advent of AI and machine learning software now makes possible the marriage of Big Data to the development of new vaccines in ways not possible before. However, something is missing in this marriage, and that is a common language that facilitates the correlation, analysis, and reporting nomenclature for the field of vaccinology. Solving this bioinformatics problem is the domain of applied biomedical ontology. Ontology in the informatics field is human- and machine-interpretable representation of entities and the relations among entities in a specific domain. The Vaccine Ontology (VO) and Ontology of Vaccine Adverse Events (OVAE) have been developed to support the standard representation of vaccines, vaccine components, vaccinations, host responses, and vaccine adverse events. Many other biomedical ontologies have also been developed and can be applied in vaccine research. Here, we review the current status of precision vaccinology and how ontological development will enhance this field, and propose an ontology-based precision vaccinology strategy to support precision vaccine research and development.
Collapse
Affiliation(s)
- Jiangan Xie
- Chongqing Engineering Research Center of Medical Electronics and Information Technology, School of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Wenrui Zi
- Chongqing Engineering Research Center of Medical Electronics and Information Technology, School of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Zhangyong Li
- Chongqing Engineering Research Center of Medical Electronics and Information Technology, School of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Yongqun He
- Unit of Laboratory Animal Medicine, Development of Microbiology and Immunology, Center of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
8
|
Lence E, Maneiro M, Sanz‐Gaitero M, Raaij MJ, Thompson P, Hawkins AR, González‐Bello C. Self‐Immolation of a Bacterial Dehydratase Enzyme by its Epoxide Product. Chemistry 2020; 26:8035-8044. [DOI: 10.1002/chem.202000759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Indexed: 11/09/2022]
Affiliation(s)
- Emilio Lence
- Centro Singular de Investigación en Química Biolóxica e, Materiais Moleculares (CiQUS)Departamento de Química OrgánicaUniversidade de Santiago de Compostela Jenaro de la Fuente s/n 15782 Santiago de Compostela Spain
| | - María Maneiro
- Centro Singular de Investigación en Química Biolóxica e, Materiais Moleculares (CiQUS)Departamento de Química OrgánicaUniversidade de Santiago de Compostela Jenaro de la Fuente s/n 15782 Santiago de Compostela Spain
| | - Marta Sanz‐Gaitero
- Departamento de Estructura de MacromoléculasCentro Nacional de Biotecnología (CSIC) Campus Cantoblanco 28049 Madrid Spain
| | - Mark J. Raaij
- Departamento de Estructura de MacromoléculasCentro Nacional de Biotecnología (CSIC) Campus Cantoblanco 28049 Madrid Spain
| | - Paul Thompson
- Newcastle University Biosciences InstituteThe Medical SchoolNewcastle University Framlington Place Newcastle upon Tyne NE2 4HH UK
| | - Alastair R. Hawkins
- Newcastle University Biosciences InstituteThe Medical SchoolNewcastle University Framlington Place Newcastle upon Tyne NE2 4HH UK
| | - Concepción González‐Bello
- Centro Singular de Investigación en Química Biolóxica e, Materiais Moleculares (CiQUS)Departamento de Química OrgánicaUniversidade de Santiago de Compostela Jenaro de la Fuente s/n 15782 Santiago de Compostela Spain
| |
Collapse
|
9
|
Wang Y, Wang D, Wang X, Tao H, Feng E, Zhu L, Pan C, Wang B, Liu C, Liu X, Wang H. Highly Efficient Genome Engineering in Bacillus anthracis and Bacillus cereus Using the CRISPR/Cas9 System. Front Microbiol 2019; 10:1932. [PMID: 31551942 PMCID: PMC6736576 DOI: 10.3389/fmicb.2019.01932] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 08/06/2019] [Indexed: 12/19/2022] Open
Abstract
Genome editing is an effective tool for the functional examination of bacterial genes and for live attenuated vaccine construction. Here, we report a method to edit the genomic DNA of Bacillus anthracis and Bacillus cereus using the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas)9 system. Using two prophages in B. anthracis as targets, large-fragment deletion mutants were achieved with rates of 100 or 20%. In B. cereus, we successfully introduced precise point mutations into plcR, with phenotypic assays showing that the resulting mutants lost hemolytic and phospholipase enzyme activities similar to B. anthracis, which is a natural plcR mutant. Our study indicates that CRISPR/Cas9 is a powerful genetic tool for genome editing in the Bacillus cereus group, and can efficiently modify target genes without the need for residual foreign DNA such as antibiotic selection markers. This system could be developed for use in the generation of marker-free live anthrax vaccines or for safer construction of microbiological candidate-based recombinant B. cereus.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Chunjie Liu
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
| | - Xiankai Liu
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
| | - Hengliang Wang
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
| |
Collapse
|
10
|
Parthasarathy A, Cross PJ, Dobson RCJ, Adams LE, Savka MA, Hudson AO. A Three-Ring Circus: Metabolism of the Three Proteogenic Aromatic Amino Acids and Their Role in the Health of Plants and Animals. Front Mol Biosci 2018; 5:29. [PMID: 29682508 PMCID: PMC5897657 DOI: 10.3389/fmolb.2018.00029] [Citation(s) in RCA: 193] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 03/21/2018] [Indexed: 12/19/2022] Open
Abstract
Tyrosine, phenylalanine and tryptophan are the three aromatic amino acids (AAA) involved in protein synthesis. These amino acids and their metabolism are linked to the synthesis of a variety of secondary metabolites, a subset of which are involved in numerous anabolic pathways responsible for the synthesis of pigment compounds, plant hormones and biological polymers, to name a few. In addition, these metabolites derived from the AAA pathways mediate the transmission of nervous signals, quench reactive oxygen species in the brain, and are involved in the vast palette of animal coloration among others pathways. The AAA and metabolites derived from them also have integral roles in the health of both plants and animals. This review delineates the de novo biosynthesis of the AAA by microbes and plants, and the branching out of AAA metabolism into major secondary metabolic pathways in plants such as the phenylpropanoid pathway. Organisms that do not possess the enzymatic machinery for the de novo synthesis of AAA must obtain these primary metabolites from their diet. Therefore, the metabolism of AAA by the host animal and the resident microflora are important for the health of all animals. In addition, the AAA metabolite-mediated host-pathogen interactions in general, as well as potential beneficial and harmful AAA-derived compounds produced by gut bacteria are discussed. Apart from the AAA biosynthetic pathways in plants and microbes such as the shikimate pathway and the tryptophan pathway, this review also deals with AAA catabolism in plants, AAA degradation via the monoamine and kynurenine pathways in animals, and AAA catabolism via the 3-aryllactate and kynurenine pathways in animal-associated microbes. Emphasis will be placed on structural and functional aspects of several key AAA-related enzymes, such as shikimate synthase, chorismate mutase, anthranilate synthase, tryptophan synthase, tyrosine aminotransferase, dopachrome tautomerase, radical dehydratase, and type III CoA-transferase. The past development and current potential for interventions including the development of herbicides and antibiotics that target key enzymes in AAA-related pathways, as well as AAA-linked secondary metabolism leading to antimicrobials are also discussed.
Collapse
Affiliation(s)
- Anutthaman Parthasarathy
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, NY, United States
| | - Penelope J. Cross
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Renwick C. J. Dobson
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, Australia
| | - Lily E. Adams
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, NY, United States
| | - Michael A. Savka
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, NY, United States
| | - André O. Hudson
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, NY, United States
| |
Collapse
|
11
|
Haçarız O, Sayers GP. Genererating a core cluster of Fasciola hepatica virulence and immunomodulation-related genes using a comparative in silico approach. Res Vet Sci 2018; 117:271-276. [DOI: 10.1016/j.rvsc.2017.12.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Revised: 12/20/2017] [Accepted: 12/27/2017] [Indexed: 01/24/2023]
|
12
|
Hur J, Özgür A, He Y. Ontology-based literature mining of E. coli vaccine-associated gene interaction networks. J Biomed Semantics 2017; 8:12. [PMID: 28288685 PMCID: PMC5348867 DOI: 10.1186/s13326-017-0122-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Accepted: 03/03/2017] [Indexed: 12/21/2022] Open
Abstract
Background Pathogenic Escherichia coli infections cause various diseases in humans and many animal species. However, with extensive E. coli vaccine research, we are still unable to fully protect ourselves against E. coli infections. To more rational development of effective and safe E. coli vaccine, it is important to better understand E. coli vaccine-associated gene interaction networks. Methods In this study, we first extended the Vaccine Ontology (VO) to semantically represent various E. coli vaccines and genes used in the vaccine development. We also normalized E. coli gene names compiled from the annotations of various E. coli strains using a pan-genome-based annotation strategy. The Interaction Network Ontology (INO) includes a hierarchy of various interaction-related keywords useful for literature mining. Using VO, INO, and normalized E. coli gene names, we applied an ontology-based SciMiner literature mining strategy to mine all PubMed abstracts and retrieve E. coli vaccine-associated E. coli gene interactions. Four centrality metrics (i.e., degree, eigenvector, closeness, and betweenness) were calculated for identifying highly ranked genes and interaction types. Results Using vaccine-related PubMed abstracts, our study identified 11,350 sentences that contain 88 unique INO interactions types and 1,781 unique E. coli genes. Each sentence contained at least one interaction type and two unique E. coli genes. An E. coli gene interaction network of genes and INO interaction types was created. From this big network, a sub-network consisting of 5 E. coli vaccine genes, including carA, carB, fimH, fepA, and vat, and 62 other E. coli genes, and 25 INO interaction types was identified. While many interaction types represent direct interactions between two indicated genes, our study has also shown that many of these retrieved interaction types are indirect in that the two genes participated in the specified interaction process in a required but indirect process. Our centrality analysis of these gene interaction networks identified top ranked E. coli genes and 6 INO interaction types (e.g., regulation and gene expression). Conclusions Vaccine-related E. coli gene-gene interaction network was constructed using ontology-based literature mining strategy, which identified important E. coli vaccine genes and their interactions with other genes through specific interaction types. Electronic supplementary material The online version of this article (doi:10.1186/s13326-017-0122-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Junguk Hur
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, 58202, USA.
| | - Arzucan Özgür
- Department of Computer Engineering, Bogazici University, Istanbul, 34342, Turkey
| | - Yongqun He
- Department of Microbiology and Immunology, Unit for Laboratory Animal Medicine, University of Michigan Medical School, Ann Arbor, MI, 48109, USA. .,Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA. .,Center for Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA. .,Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
13
|
He Y, Ong E, Xie J. Integrative representations and analyses of vaccine-induced intended protective immunity and unintended adverse events using ontology-based and theory-guided approaches. ACTA ACUST UNITED AC 2016; 1:37-39. [PMID: 27868103 DOI: 10.15761/gvi.1000110] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yongqun He
- University of Michigan Medical School, USA
| | - Edison Ong
- University of Michigan Medical School, USA
| | | |
Collapse
|
14
|
Bakour S, Sankar SA, Rathored J, Biagini P, Raoult D, Fournier PE. Identification of virulence factors and antibiotic resistance markers using bacterial genomics. Future Microbiol 2016; 11:455-66. [PMID: 26974504 DOI: 10.2217/fmb.15.149] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In recent years, the number of multidrug-resistant bacteria has increased rapidly and several epidemics were signaled in different regions of the world. Faced with this situation that presents a major global public health concern, the development and the use of new and rapid technologies is more than urgent. The use of the next-generation sequencing platforms by microbiologists and infectious disease specialists has allowed great progress in the medical field. Here, we review the usefulness of whole-genome sequencing for the detection of virulence and antibiotic resistance associated genes.
Collapse
Affiliation(s)
- Sofiane Bakour
- Unité de recherche sur les maladies infectieuses et tropicales émergentes (URMITE), UM 63, CNRS 7278, IRD 198, INSERM 1095, IHU Méditerranée Infection, Faculté de Médecine et de Pharmacie, Aix-Marseille-Université, Marseille, France
| | - Senthil Alias Sankar
- Unité de recherche sur les maladies infectieuses et tropicales émergentes (URMITE), UM 63, CNRS 7278, IRD 198, INSERM 1095, IHU Méditerranée Infection, Faculté de Médecine et de Pharmacie, Aix-Marseille-Université, Marseille, France
| | - Jaishriram Rathored
- Unité de recherche sur les maladies infectieuses et tropicales émergentes (URMITE), UM 63, CNRS 7278, IRD 198, INSERM 1095, IHU Méditerranée Infection, Faculté de Médecine et de Pharmacie, Aix-Marseille-Université, Marseille, France
| | - Philippe Biagini
- UMR CNRS 7268 Equipe "Emergence et coévolution virale," Etablissement Français du Sang Alpes-Méditerranée et Aix-Marseille Université, 27 Boulevard Jean Moulin, 13005 Marseille
| | - Didier Raoult
- Unité de recherche sur les maladies infectieuses et tropicales émergentes (URMITE), UM 63, CNRS 7278, IRD 198, INSERM 1095, IHU Méditerranée Infection, Faculté de Médecine et de Pharmacie, Aix-Marseille-Université, Marseille, France
| | - Pierre-Edouard Fournier
- Unité de recherche sur les maladies infectieuses et tropicales émergentes (URMITE), UM 63, CNRS 7278, IRD 198, INSERM 1095, IHU Méditerranée Infection, Faculté de Médecine et de Pharmacie, Aix-Marseille-Université, Marseille, France
| |
Collapse
|
15
|
He Y. Ontology-based Vaccine and Drug Adverse Event Representation and Theory-guided Systematic Causal Network Analysis toward Integrative Pharmacovigilance Research. ACTA ACUST UNITED AC 2016; 2:113-128. [PMID: 27458549 DOI: 10.1007/s40495-016-0055-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Compared with controlled terminologies (e.g., MedDRA, CTCAE, and WHO-ART), the community-based Ontology of AEs (OAE) has many advantages in adverse event (AE) classifications. The OAE-derived Ontology of Vaccine AEs (OVAE) and Ontology of Drug Neuropathy AEs (ODNAE) serve as AE knowledge bases and support data integration and analysis. The Immune Response Gene Network Theory explains molecular mechanisms of vaccine-related AEs. The OneNet Theory of Life treats the whole process of a life of an organism as a single complex and dynamic network (i.e., OneNet). A new "OneNet effectiveness" tenet is proposed here to expand the OneNet theory. Derived from the OneNet theory, the author hypothesizes that one human uses one single genotype-rooted mechanism to respond to different vaccinations and drug treatments, and experimentally identified mechanisms are manifestations of the OneNet blueprint mechanism under specific conditions. The theories and ontologies interact together as semantic frameworks to support integrative pharmacovigilance research.
Collapse
Affiliation(s)
- Yongqun He
- Unit for Laboratory Animal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA. Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA. Center for Computational Medicine and Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA. Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
16
|
González-Bello C. Designing Irreversible Inhibitors-Worth the Effort? ChemMedChem 2015; 11:22-30. [DOI: 10.1002/cmdc.201500469] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Indexed: 12/29/2022]
Affiliation(s)
- Concepción González-Bello
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS); Universidade de Santiago de Compostela; calle Jenaro de la Fuente s/n Santiago de Compostela 15782 Spain
| |
Collapse
|
17
|
Specific chemical modification of bacterial type I dehydroquinase – opportunities for drug discovery. Future Med Chem 2015; 7:2371-83. [DOI: 10.4155/fmc.15.145] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Type I dehydroquinase (DHQ1) is a class I aldolase enzyme that catalyzes the reversible dehydration of 3-dehydroquinic acid to form 3-dehydroshikimic acid by multistep mechanism that involves the formation of Schiff-base species. DHQ1 is present in plants and several bacterial sources but it does not have any counterpart in human cells. It has been suggested that DHQ1 may act as a virulence factor in vivo and therefore a promising target in the search for new antivirulence agents to combat widespread antibiotic resistance. This review covers recent progress in the structure-based design and chemical modifications caused by selective irreversible inhibitors. Computational studies aimed at understanding the experimentally obtained covalent modifications and inhibitory potencies of these inhibitors are also described.
Collapse
|
18
|
González-Bello C, Tizón L, Lence E, Otero JM, van Raaij MJ, Martinez-Guitian M, Beceiro A, Thompson P, Hawkins AR. Chemical Modification of a Dehydratase Enzyme Involved in Bacterial Virulence by an Ammonium Derivative: Evidence of its Active Site Covalent Adduct. J Am Chem Soc 2015; 137:9333-43. [DOI: 10.1021/jacs.5b04080] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | | | | | | | - Mark J. van Raaij
- Departamento
de Estructura de Macromoléculas, Centro Nacional de Biotecnología (CSIC), Campus Cantoblanco, 28049 Madrid, Spain
| | - Marta Martinez-Guitian
- Servicio
de Microbiología-INIBIC, Complejo Hospitalario Universitario A Coruña (CHUAC), 15006 A Coruña, Spain
| | - Alejandro Beceiro
- Servicio
de Microbiología-INIBIC, Complejo Hospitalario Universitario A Coruña (CHUAC), 15006 A Coruña, Spain
| | - Paul Thompson
- Institute
of Cell and Molecular Biosciences, Medical School, University of Newcastle upon Tyne, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Alastair R. Hawkins
- Institute
of Cell and Molecular Biosciences, Medical School, University of Newcastle upon Tyne, Newcastle upon Tyne NE2 4HH, United Kingdom
| |
Collapse
|
19
|
Haçarız O, Akgün M, Kavak P, Yüksel B, Sağıroğlu MŞ. Comparative transcriptome profiling approach to glean virulence and immunomodulation-related genes of Fasciola hepatica. BMC Genomics 2015; 16:366. [PMID: 25956885 PMCID: PMC4429430 DOI: 10.1186/s12864-015-1539-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 04/15/2015] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Fasciola hepatica causes chronic liver disease, fasciolosis, leading to significant losses in the livestock economy and concerns for human health in many countries. The identification of F. hepatica genes involved in the parasite's virulence through modulation of host immune system is utmost important to comprehend evasion mechanisms of the parasite and develop more effective strategies against fasciolosis. In this study, to identify the parasite's putative virulence genes which are associated with host immunomodulation, we explored whole transcriptome of an adult F. hepatica using current transcriptome profiling approaches integrated with detailed in silico analyses. In brief, the comparison of the parasite transcripts with the specialised public databases containing sequence data of non-parasitic organisms (Dugesiidae species and Caenorhabditis elegans) or of numerous pathogens and investigation of the sequences in terms of nucleotide evolution (directional selection) and cytokine signaling relation were conducted. RESULTS NGS of the whole transcriptome resulted in 19,534,766 sequence reads, yielding a total of 40,260 transcripts (N₅₀ = 522 bp). A number of the parasite transcripts (n = 1,671) were predicted to be virulence-related on the basis of the exclusive homology with the pathogen-associated data, positive selection or relationship with cytokine signaling. Of these, a group of the virulence-related genes (n = 62), not previously described, were found likely to be associated with immunomodulation based on in silico functional categorisation, showing significant sequence similarities with various immune receptors (i.e. MHC I class, TGF-β receptor, toll/interleukin-1 receptor, T-cell receptor, TNF receptor, and IL-18 receptor accessory protein), cytokines (i.e. TGF-β, interleukin-4/interleukin-13 and TNF-α), cluster of differentiations (e.g. CD48 and CD147) or molecules associated with other immunomodulatory mechanisms (such as regulation of macrophage activation). Some of the genes (n = 5) appeared to be under positive selection (Ka/Ks > 1), imitating proteins associated with cytokine signaling (through sequence homologies with thrombospondin type 1, toll/interleukin-1 receptor, TGF-β receptor and CD147). CONCLUSIONS With a comparative transcriptome profiling approach, we have identified a number of potential immunomodulator genes of F. hepatica (n = 62), which are firstly described here, could be employed for the development of better strategies (including RNAi) in the battle against both zoonotically and economically important disease, fasciolosis.
Collapse
Affiliation(s)
- Orçun Haçarız
- TÜBİTAK Marmara Research Center, Genetic Engineering and Biotechnology Institute, P.O. Box 21, 41470, Gebze, Kocaeli, Turkey.
| | - Mete Akgün
- TÜBİTAK Marmara Research Center, Information Technologies Institute, Gebze, Kocaeli, Turkey.
| | - Pınar Kavak
- TÜBİTAK Marmara Research Center, Information Technologies Institute, Gebze, Kocaeli, Turkey.
| | - Bayram Yüksel
- TÜBİTAK Marmara Research Center, Genetic Engineering and Biotechnology Institute, P.O. Box 21, 41470, Gebze, Kocaeli, Turkey.
| | - Mahmut Şamil Sağıroğlu
- TÜBİTAK Marmara Research Center, Information Technologies Institute, Gebze, Kocaeli, Turkey.
| |
Collapse
|
20
|
Tizón L, Maneiro M, Peón A, Otero JM, Lence E, Poza S, van Raaij MJ, Thompson P, Hawkins AR, González-Bello C. Irreversible covalent modification of type I dehydroquinase with a stable Schiff base. Org Biomol Chem 2015; 13:706-16. [DOI: 10.1039/c4ob01782j] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Structural and computational studies carried out with two epoxides provide insight into the irreversible inhibition of type I dehydroquinase.
Collapse
Affiliation(s)
- Lorena Tizón
- Centro Singular de Investigación en Química Biológica y Materiales Moleculares (CIQUS)
- Universidad de Santiago de Compostela
- 15782 Santiago de Compostela
- Spain
| | - María Maneiro
- Centro Singular de Investigación en Química Biológica y Materiales Moleculares (CIQUS)
- Universidad de Santiago de Compostela
- 15782 Santiago de Compostela
- Spain
| | - Antonio Peón
- Centro Singular de Investigación en Química Biológica y Materiales Moleculares (CIQUS)
- Universidad de Santiago de Compostela
- 15782 Santiago de Compostela
- Spain
| | - José M. Otero
- Departamento de Bioquímica y Biología Molecular and CIQUS
- Universidad de Santiago de Compostela
- 15782 Santiago de Compostela
- Spain
| | - Emilio Lence
- Centro Singular de Investigación en Química Biológica y Materiales Moleculares (CIQUS)
- Universidad de Santiago de Compostela
- 15782 Santiago de Compostela
- Spain
| | - Sergio Poza
- Centro Singular de Investigación en Química Biológica y Materiales Moleculares (CIQUS)
- Universidad de Santiago de Compostela
- 15782 Santiago de Compostela
- Spain
| | - Mark J. van Raaij
- Departamento de Estructura de Macromoléculas
- Centro Nacional de Biotecnología (CSIC)
- 28049 Madrid
- Spain
| | - Paul Thompson
- Institute of Cell and Molecular Biosciences
- Medical School
- University of Newcastle upon Tyne
- Newcastle upon Tyne NE2 4HH
- UK
| | - Alastair R. Hawkins
- Institute of Cell and Molecular Biosciences
- Medical School
- University of Newcastle upon Tyne
- Newcastle upon Tyne NE2 4HH
- UK
| | - Concepción González-Bello
- Centro Singular de Investigación en Química Biológica y Materiales Moleculares (CIQUS)
- Universidad de Santiago de Compostela
- 15782 Santiago de Compostela
- Spain
| |
Collapse
|
21
|
Racz R, Li X, Patel M, Xiang Z, He Y. DNAVaxDB: the first web-based DNA vaccine database and its data analysis. BMC Bioinformatics 2014; 15 Suppl 4:S2. [PMID: 25104313 PMCID: PMC4094999 DOI: 10.1186/1471-2105-15-s4-s2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Since the first DNA vaccine studies were done in the 1990s, thousands more studies have followed. Here we report the development and analysis of DNAVaxDB (http://www.violinet.org/dnavaxdb), the first publically available web-based DNA vaccine database that curates, stores, and analyzes experimentally verified DNA vaccines, DNA vaccine plasmid vectors, and protective antigens used in DNA vaccines. All data in DNAVaxDB are annotated from reliable resources, particularly peer-reviewed articles. Among over 140 DNA vaccine plasmids, some plasmids were more frequently used in one type of pathogen than others; for example, pCMVi-UB for G- bacterial DNA vaccines, and pCAGGS for viral DNA vaccines. Presently, over 400 DNA vaccines containing over 370 protective antigens from over 90 infectious and non-infectious diseases have been curated in DNAVaxDB. While extracellular and bacterial cell surface proteins and adhesin proteins were frequently used for DNA vaccine development, the majority of protective antigens used in Chlamydophila DNA vaccines are localized to the inner portion of the cell. The DNA vaccine priming, other vaccine boosting vaccination regimen has been widely used to induce protection against infection of different pathogens such as HIV. Parasitic and cancer DNA vaccines were also systematically analyzed. User-friendly web query and visualization interfaces are available in DNAVaxDB for interactive data search. To support data exchange, the information of DNA vaccines, plasmids, and protective antigens is stored in the Vaccine Ontology (VO). DNAVaxDB is targeted to become a timely and vital source of DNA vaccines and related data and facilitate advanced DNA vaccine research and development.
Collapse
Affiliation(s)
- Rebecca Racz
- Unit for Laboratory Animal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA
| | - Xinna Li
- Unit for Laboratory Animal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Mukti Patel
- College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, MI 48109, USA
| | - Zuoshuang Xiang
- Unit for Laboratory Animal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Yongqun He
- Unit for Laboratory Animal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Center for Computational Medicine and Biology, University of Michigan, Ann Arbor, MI 48109, USA
- Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
22
|
He Y, Racz R, Sayers S, Lin Y, Todd T, Hur J, Li X, Patel M, Zhao B, Chung M, Ostrow J, Sylora A, Dungarani P, Ulysse G, Kochhar K, Vidri B, Strait K, Jourdian GW, Xiang Z. Updates on the web-based VIOLIN vaccine database and analysis system. Nucleic Acids Res 2013; 42:D1124-32. [PMID: 24259431 PMCID: PMC3964998 DOI: 10.1093/nar/gkt1133] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The integrative Vaccine Investigation and Online Information Network (VIOLIN) vaccine research database and analysis system (http://www.violinet.org) curates, stores, analyses and integrates various vaccine-associated research data. Since its first publication in NAR in 2008, significant updates have been made. Starting from 211 vaccines annotated at the end of 2007, VIOLIN now includes over 3240 vaccines for 192 infectious diseases and eight noninfectious diseases (e.g. cancers and allergies). Under the umbrella of VIOLIN, >10 relatively independent programs are developed. For example, Protegen stores over 800 protective antigens experimentally proven valid for vaccine development. VirmugenDB annotated over 200 'virmugens', a term coined by us to represent those virulence factor genes that can be mutated to generate successful live attenuated vaccines. Specific patterns were identified from the genes collected in Protegen and VirmugenDB. VIOLIN also includes Vaxign, the first web-based vaccine candidate prediction program based on reverse vaccinology. VIOLIN collects and analyzes different vaccine components including vaccine adjuvants (Vaxjo) and DNA vaccine plasmids (DNAVaxDB). VIOLIN includes licensed human vaccines (Huvax) and veterinary vaccines (Vevax). The Vaccine Ontology is applied to standardize and integrate various data in VIOLIN. VIOLIN also hosts the Ontology of Vaccine Adverse Events (OVAE) that logically represents adverse events associated with licensed human vaccines.
Collapse
Affiliation(s)
- Yongqun He
- Unit for Laboratory Animal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA, Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA, Center for Computational Medicine and Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA, Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA, Division of Comparative Medicine, University of South Florida, Tampa, FL 33612, USA, Department of Neurology, University of Michigan, 48109, Ann Arbor, MI, USA, College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, MI 48109, USA, Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA and Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
de Vries SPW, Eleveld MJ, Hermans PWM, Bootsma HJ. Characterization of the molecular interplay between Moraxella catarrhalis and human respiratory tract epithelial cells. PLoS One 2013; 8:e72193. [PMID: 23936538 PMCID: PMC3735583 DOI: 10.1371/journal.pone.0072193] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 07/05/2013] [Indexed: 12/31/2022] Open
Abstract
Moraxella catarrhalis is a mucosal pathogen that causes childhood otitis media and exacerbations of chronic obstructive pulmonary disease in adults. During the course of infection, M. catarrhalis needs to adhere to epithelial cells of different host niches such as the nasopharynx and lungs, and consequently, efficient adhesion to epithelial cells is considered an important virulence trait of M. catarrhalis. By using Tn-seq, a genome-wide negative selection screenings technology, we identified 15 genes potentially required for adherence of M. catarrhalis BBH18 to pharyngeal epithelial Detroit 562 and lung epithelial A549 cells. Validation with directed deletion mutants confirmed the importance of aroA (3-phosphoshikimate 1-carboxyvinyl-transferase), ecnAB (entericidin EcnAB), lgt1 (glucosyltransferase), and MCR_1483 (outer membrane lipoprotein) for cellular adherence, with ΔMCR_1483 being most severely attenuated in adherence to both cell lines. Expression profiling of M. catarrhalis BBH18 during adherence to Detroit 562 cells showed increased expression of 34 genes in cell-attached versus planktonic bacteria, among which ABC transporters for molybdate and sulfate, while reduced expression of 16 genes was observed. Notably, neither the newly identified genes affecting adhesion nor known adhesion genes were differentially expressed during adhesion, but appeared to be constitutively expressed at a high level. Profiling of the transcriptional response of Detroit 562 cells upon adherence of M. catarrhalis BBH18 showed induction of a panel of pro-inflammatory genes as well as genes involved in the prevention of damage of the epithelial barrier. In conclusion, this study provides new insight into the molecular interplay between M. catarrhalis and host epithelial cells during the process of adherence.
Collapse
Affiliation(s)
- Stefan P. W. de Vries
- Laboratory of Pediatric Infectious Diseases, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Marc J. Eleveld
- Laboratory of Pediatric Infectious Diseases, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Peter W. M. Hermans
- Laboratory of Pediatric Infectious Diseases, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Hester J. Bootsma
- Laboratory of Pediatric Infectious Diseases, Radboud University Medical Centre, Nijmegen, The Netherlands
- * E-mail:
| |
Collapse
|