1
|
Mandviwala AS, Liman K, Huckriede ALW, Arankalle VA, Patil HP. Evaluation of dual pathogen recognition receptor agonists as adjuvants for respiratory syncytial virus - virus-like particles for pulmonary delivery. Front Immunol 2025; 16:1561297. [PMID: 40176816 PMCID: PMC11962540 DOI: 10.3389/fimmu.2025.1561297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 02/25/2025] [Indexed: 04/04/2025] Open
Abstract
Introduction Respiratory syncytial virus (RSV) remains a significant global health concern, particularly for infants and young children in developing countries. Despite ongoing research efforts, an effective RSV vaccine has yet to be approved for widespread use. Use of two separate pattern recognition receptor (PRR) agonists as adjuvants in vaccine formulations has shown to enhance the immune response against the antigen. The limitation with the use of two adjuvants is that they need not necessarily bind to PRRs on the same cell. This study evaluates the efficacy of two different dual PRR binding chimeric molecules CL413 (TLR2/TLR7 agonist) and CL429 (TLR2/NOD2 agonist) as adjuvants for RSV virus-like particles (VLPs) delivered via the pulmonary route in mice for induction of mucosal and systemic immunity. Methods BALB/c mice were immunized twice with the RSV-VLPs alone or adjuvanted with CL413, CL429, mixture of single PRR agonists Pam3CSK4+ L18-MDP or Pam3CSK4+ imiquimod via the pulmonary route. The mixture of single PRR agonists adjuvants was used as control for chimeric adjuvants. Immune responses were evaluated by measuring antibody levels in sera and respiratory tract; cytokine production, B and T cell responses in the lungs and spleen. Results Pulmonary immunization with CL413-adjuvanted VLPs induced robust nasal IgA responses against the RSV F and G proteins, which was not observed for the other adjuvant combinations. CL413 also enhanced serum IgG levels and promoted a balanced Th1/Th2 response, as evidenced by IgG2a/IgG1 ratios. CL413 elicited strong pro-inflammatory responses in the lungs of mice, including elevated levels of IFN-γ, TNF-α, IL-6, and IL-17A. Flow cytometry analysis revealed increased numbers of tissue-resident class-switched B cells in the lungs of mice that were immunized with VLPs adjuvanted with CL413 and CL429. CD4+ and CD8+ T cell responses were also enhanced in both lungs and spleens of mice receiving VLPs adjuvanted with chimeric molecules to various extents. Mice immunized with formalin inactivated RSV (FI-RSV), which are used as the positive control for vaccine induced pathology after RSV challenge developed alveolitis, perivascular infiltration. While all the mice receiving adjuvanted VLP formulations showed protection against lung pathology after RSV challenge. Discussion The lack of pathology, combined with the robust mucosal and systemic immune responses, suggests that pulmonary delivery of adjuvanted RSV-VLPs may provide effective protection without the risk of vaccine-enhanced disease. The study also demonstrates that the chimeric TLR2/TLR7 agonist CL413 is a promising adjuvant for RSV-VLPs to induce mucosal and systemic immune response and warrant further investigations in more advanced preclinical models.
Collapse
MESH Headings
- Animals
- Adjuvants, Immunologic/administration & dosage
- Adjuvants, Immunologic/pharmacology
- Mice
- Mice, Inbred BALB C
- Respiratory Syncytial Virus Vaccines/immunology
- Respiratory Syncytial Virus Vaccines/administration & dosage
- Respiratory Syncytial Virus Infections/immunology
- Respiratory Syncytial Virus Infections/prevention & control
- Vaccines, Virus-Like Particle/immunology
- Vaccines, Virus-Like Particle/administration & dosage
- Female
- Antibodies, Viral/blood
- Antibodies, Viral/immunology
- Lung/immunology
- Receptors, Pattern Recognition/agonists
- Humans
- Respiratory Syncytial Virus, Human/immunology
- Cytokines
- Immunity, Mucosal
- Respiratory Syncytial Viruses/immunology
Collapse
Affiliation(s)
- Ahmedali S. Mandviwala
- Department of Translational Virology, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be University), Pune, India
| | - Komal Liman
- Department of Translational Virology, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be University), Pune, India
| | - Anke L. W. Huckriede
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Vidya A. Arankalle
- Department of Translational Virology, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be University), Pune, India
| | - Harshad P. Patil
- Department of Translational Virology, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be University), Pune, India
| |
Collapse
|
2
|
Mandviwala AS, Huckriede ALW, Arankalle VA, Patil HP. Mucosal delivery of a prefusogenic-F, glycoprotein, and matrix proteins-based virus-like particle respiratory syncytial virus vaccine induces protective immunity as evidenced by challenge studies in mice. Virology 2024; 598:110194. [PMID: 39096774 DOI: 10.1016/j.virol.2024.110194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/18/2024] [Accepted: 07/28/2024] [Indexed: 08/05/2024]
Abstract
RSV infection remains a serious threat to the children all over the world, especially, in the low-middle income countries. Vaccine delivery via the mucosa holds great potential for inducing local immune responses in the respiratory tract. Previously, we reported the development of highly immunogenic RSV virus-like-particles (RSV-VLPs) based on the conformationally stable prefusogenic-F protein (preFg), glycoprotein and matrix protein. Here, to explore whether mucosal delivery of RSV-VLPs is an effective strategy to induce RSV-specific mucosal and systemic immunity, RSV-VLPs were administered via the nasal, sublingual and pulmonary routes to BALB/c mice. The results demonstrate that immunization with the VLPs via the mucosal routes induced minimal mucosal response and yet facilitated modest levels of serum IgG antibodies, enhanced T cell responses and the expression of the lung-homing marker CXCR3 on splenocytes. Immunization with VLPs via all three mucosal routes provided protection against RSV challenge with no signs of RSV induced pathology.
Collapse
Affiliation(s)
- Ahmedali S Mandviwala
- Department of Communicable Diseases, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be University), Pune, India
| | - Anke L W Huckriede
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Vidya A Arankalle
- Department of Communicable Diseases, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be University), Pune, India
| | - Harshad P Patil
- Department of Communicable Diseases, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be University), Pune, India.
| |
Collapse
|
3
|
He X, Chen X, Wang H, Du G, Sun X. Recent advances in respiratory immunization: A focus on COVID-19 vaccines. J Control Release 2023; 355:655-674. [PMID: 36787821 PMCID: PMC9937028 DOI: 10.1016/j.jconrel.2023.02.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 02/02/2023] [Accepted: 02/07/2023] [Indexed: 02/16/2023]
Abstract
The development of vaccines has always been an essential task worldwide since vaccines are regarded as powerful weapons in protecting the global population. Although the vast majority of currently authorized human vaccinations are administered intramuscularly or subcutaneously, exploring novel routes of immunization has been a prominent area of study in recent years. This is particularly relevant in the face of pandemic diseases, such as COVID-19, where respiratory immunization offers distinct advantages, such as inducing systemic and mucosal responses to prevent viral infections in both the upper and lower respiratory tracts and also leading to higher patient compliance. However, the development of respiratory vaccines confronts challenges due to the physiological barriers of the respiratory tract, with most of these vaccines still in the research and development stage. In this review, we detail the structure of the respiratory tract and the mechanisms of mucosal immunity, as well as the obstacles to respiratory vaccination. We also examine the considerations necessary in constructing a COVID-19 respiratory vaccine, including the dosage form of the vaccines, potential excipients and mucosal adjuvants, and delivery systems and devices for respiratory vaccines. Finally, we present a comprehensive overview of the COVID-19 respiratory vaccines currently under clinical investigation. We hope this review can provide valuable insights and inspiration for the future development of respiratory vaccinations.
Collapse
Affiliation(s)
- Xiyue He
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xiaoyan Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Hairui Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Guangsheng Du
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xun Sun
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
4
|
Gosavi M, Patil HP. Evaluation of monophosphoryl lipid A as an adjuvanted for inactivated chikungunya virus. Vaccine 2022; 40:5060-5068. [PMID: 35871870 DOI: 10.1016/j.vaccine.2022.07.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/14/2022] [Accepted: 07/14/2022] [Indexed: 11/19/2022]
Abstract
Currently there is no clinically approved chikungunya virus (CHIKV) vaccine for immunization. Though definite need is felt, long disappearance of CHIKV has been a concern. Inactivated CHIKV (I-CHIKV) is an attractive antigen to develop effective vaccines within a short period of time. However, highly purified inactivated CHIKV do not contain necessary triggers for induction of robust antibody response. Monophosphoryl lipid A (MPLA) is a TLR4 ligand which is expressed on immune cells and is known to enhance immune response. Additionally, route of delivery also plays a critical role in modulating the immune response. Thus, antigen, adjuvant and route of delivery might modulate immune response if combined. Therefore in this study, we explored the immunogenicity of inactivated CHIKV-MPLA combination in mice after administration by intradermal or intramuscular route. Long term immune response study was also conducted by varying the antigen concentration and keeping the adjuvant concentration constant. Our study showed that the CHIKV-MPLA combination induced higher binding antibodies as well as neutralizing antibody titers as compared to unadjuvanted CHIKV. No difference in antibody titers was observed after delivery by either of the routes. However, difference in IFNγ and IL4 profiles was observed when a supernatant from stimulated splenocytes was analyzed. Taken together, these data show that both routes could be used for administration of the I-CHIKV-MPLA combination.
Collapse
Affiliation(s)
- Mrunal Gosavi
- Department of Communicable Diseases, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be University), Katraj-Dhankawadi, Pune-411043, India
| | - Harshad P Patil
- Department of Communicable Diseases, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be University), Katraj-Dhankawadi, Pune-411043, India.
| |
Collapse
|
5
|
Xu H, Cai L, Hufnagel S, Cui Z. Intranasal vaccine: Factors to consider in research and development. Int J Pharm 2021; 609:121180. [PMID: 34637935 DOI: 10.1016/j.ijpharm.2021.121180] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 10/04/2021] [Accepted: 10/07/2021] [Indexed: 01/01/2023]
Abstract
Most existing vaccines for human use are administered by needle-based injection. Administering vaccines needle-free intranasally has numerous advantages over by needle-based injection, but there are only a few intranasal vaccines that are currently approved for human use, and all of them are live attenuated influenza virus vaccines. Clearly, there are immunological as well as non-immunological challenges that prevent vaccine developers from choosing the intranasal route of administration. We reviewed current approved intranasal vaccines and pipelines and described the target of intranasal vaccines, i.e. nose and lymphoid tissues in the nasal cavity. We then analyzed factors unique to intranasal vaccines that need to be considered when researching and developing new intranasal vaccines. We concluded that while the choice of vaccine formulations, mucoadhesives, mucosal and epithelial permeation enhancers, and ligands that target M-cells are important, safe and effective intranasal mucosal vaccine adjuvants are needed to successfully develop an intranasal vaccine that is not based on live-attenuated viruses or bacteria. Moreover, more effective intranasal vaccine application devices that can efficiently target a vaccine to lymphoid tissues in the nasal cavity as well as preclinical animal models that can better predict intranasal vaccine performance in clinical trials are needed to increase the success rate of intranasal vaccines in clinical trials.
Collapse
Affiliation(s)
- Haiyue Xu
- The University of Texas at Austin, College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, Austin, TX, United States
| | - Lucy Cai
- University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Stephanie Hufnagel
- The University of Texas at Austin, College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, Austin, TX, United States
| | - Zhengrong Cui
- The University of Texas at Austin, College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, Austin, TX, United States.
| |
Collapse
|
6
|
Stephens LM, Ross KA, Waldstein KA, Legge KL, McLellan JS, Narasimhan B, Varga SM. Prefusion F-Based Polyanhydride Nanovaccine Induces Both Humoral and Cell-Mediated Immunity Resulting in Long-Lasting Protection against Respiratory Syncytial Virus. THE JOURNAL OF IMMUNOLOGY 2021; 206:2122-2134. [PMID: 33827894 DOI: 10.4049/jimmunol.2100018] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 02/19/2021] [Indexed: 11/19/2022]
Abstract
Respiratory syncytial virus (RSV) is a leading cause of lower respiratory tract infection in both young children and in older adults. Despite the morbidity, mortality, and high economic burden caused by RSV worldwide, no licensed vaccine is currently available. We have developed a novel RSV vaccine composed of a prefusion-stabilized variant of the fusion (F) protein (DS-Cav1) and a CpG oligodeoxynucleotide adjuvant encapsulated within polyanhydride nanoparticles, termed RSVNanoVax. A prime-boost intranasal administration of RSVNanoVax in BALB/c mice significantly alleviated weight loss and pulmonary dysfunction in response to an RSV challenge, with protection maintained up to at least 6 mo postvaccination. In addition, vaccinated mice exhibited rapid viral clearance in the lungs as early as 2 d after RSV infection in both inbred and outbred populations. Vaccination induced tissue-resident memory CD4 and CD8 T cells in the lungs, as well as RSV F-directed neutralizing Abs. Based on the robust immune response elicited and the high level of durable protection observed, our prefusion RSV F nanovaccine is a promising new RSV vaccine candidate.
Collapse
Affiliation(s)
- Laura M Stephens
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA
| | - Kathleen A Ross
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA.,Nanovaccine Institute, Ames, IA
| | - Kody A Waldstein
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA
| | - Kevin L Legge
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA.,Nanovaccine Institute, Ames, IA.,Department of Microbiology and Immunology, University of Iowa, Iowa City, IA.,Department of Pathology, University of Iowa, Iowa City, IA; and
| | - Jason S McLellan
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX
| | - Balaji Narasimhan
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA.,Nanovaccine Institute, Ames, IA
| | - Steven M Varga
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA; .,Nanovaccine Institute, Ames, IA.,Department of Microbiology and Immunology, University of Iowa, Iowa City, IA.,Department of Pathology, University of Iowa, Iowa City, IA; and
| |
Collapse
|
7
|
Harnessing Cellular Immunity for Vaccination against Respiratory Viruses. Vaccines (Basel) 2020. [DOI: 10.3390/vaccines8040783
expr 839529059 + 832255227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Severe respiratory viral infections, such as influenza, metapneumovirus (HMPV), respiratory syncytial virus (RSV), rhinovirus (RV), and coronaviruses, including severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), cause significant mortality and morbidity worldwide. These viruses have been identified as important causative agents of acute respiratory disease in infants, the elderly, and immunocompromised individuals. Clinical signs of infection range from mild upper respiratory illness to more serious lower respiratory illness, including bronchiolitis and pneumonia. Additionally, these illnesses can have long-lasting impact on patient health well beyond resolution of the viral infection. Aside from influenza, there are currently no licensed vaccines against these viruses. However, several research groups have tested various vaccine candidates, including those that utilize attenuated virus, virus-like particles (VLPs), protein subunits, and nanoparticles, as well as recent RNA vaccines, with several of these approaches showing promise. Historically, vaccine candidates have advanced, dependent upon the ability to activate the humoral immune response, specifically leading to strong B cell responses and neutralizing antibody production. More recently, it has been recognized that the cellular immune response is also critical in proper resolution of viral infection and protection against detrimental immunopathology associated with severe disease and therefore, must also be considered when analyzing the efficacy and safety of vaccine candidates. These candidates would ideally result in robust CD4+ and CD8+ T cell responses as well as high-affinity neutralizing antibody. This review will aim to summarize established and new approaches that are being examined to harness the cellular immune response during respiratory viral vaccination.
Collapse
|
8
|
Lukacs NW, Malinczak CA. Harnessing Cellular Immunity for Vaccination against Respiratory Viruses. Vaccines (Basel) 2020; 8:783. [PMID: 33371275 PMCID: PMC7766447 DOI: 10.3390/vaccines8040783] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/13/2020] [Accepted: 12/14/2020] [Indexed: 12/12/2022] Open
Abstract
Severe respiratory viral infections, such as influenza, metapneumovirus (HMPV), respiratory syncytial virus (RSV), rhinovirus (RV), and coronaviruses, including severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), cause significant mortality and morbidity worldwide. These viruses have been identified as important causative agents of acute respiratory disease in infants, the elderly, and immunocompromised individuals. Clinical signs of infection range from mild upper respiratory illness to more serious lower respiratory illness, including bronchiolitis and pneumonia. Additionally, these illnesses can have long-lasting impact on patient health well beyond resolution of the viral infection. Aside from influenza, there are currently no licensed vaccines against these viruses. However, several research groups have tested various vaccine candidates, including those that utilize attenuated virus, virus-like particles (VLPs), protein subunits, and nanoparticles, as well as recent RNA vaccines, with several of these approaches showing promise. Historically, vaccine candidates have advanced, dependent upon the ability to activate the humoral immune response, specifically leading to strong B cell responses and neutralizing antibody production. More recently, it has been recognized that the cellular immune response is also critical in proper resolution of viral infection and protection against detrimental immunopathology associated with severe disease and therefore, must also be considered when analyzing the efficacy and safety of vaccine candidates. These candidates would ideally result in robust CD4+ and CD8+ T cell responses as well as high-affinity neutralizing antibody. This review will aim to summarize established and new approaches that are being examined to harness the cellular immune response during respiratory viral vaccination.
Collapse
Affiliation(s)
- Nicholas W. Lukacs
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA;
- Mary H. Weiser Food Allergy Center, University of Michigan, Ann Arbor, MI 48109, USA
| | | |
Collapse
|
9
|
Stephens LM, Varga SM. Nanoparticle vaccines against respiratory syncytial virus. Future Virol 2020; 15:763-778. [PMID: 33343684 PMCID: PMC7737143 DOI: 10.2217/fvl-2020-0174] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 11/11/2020] [Indexed: 12/13/2022]
Abstract
Respiratory syncytial virus (RSV) is a leading cause of respiratory disease in infants, the elderly and immunocompromised individuals. Despite the global burden, there is no licensed vaccine for RSV. Recent advances in the use of nanoparticle technology have provided new opportunities to address some of the limitations of conventional vaccines. Precise control over particle size and surface properties enhance antigen stability and prolong antigen release. Particle size can also be modified to target specific antigen-presenting cells in order to induce specific types of effector T-cell responses. Numerous nanoparticle-based vaccines are currently being evaluated for RSV including inorganic, polymeric and virus-like particle-based formulations. Here, we review the potential advantages of using different nanoparticle formulations in a vaccine for RSV, and discuss many examples of safe, and effective vaccines currently in both preclinical and clinical stages of testing.
Collapse
Affiliation(s)
- Laura M Stephens
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA 52242, USA
| | - Steven M Varga
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA 52242, USA
- Department of Microbiology & Immunology, University of Iowa, Iowa City, IA 52242, USA
- Department of Pathology, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
10
|
Xu H, Alzhrani RF, Warnken ZN, Thakkar SG, Zeng M, Smyth HDC, Williams RO, Cui Z. Immunogenicity of Antigen Adjuvanted with AS04 and Its Deposition in the Upper Respiratory Tract after Intranasal Administration. Mol Pharm 2020; 17:3259-3269. [PMID: 32787271 DOI: 10.1021/acs.molpharmaceut.0c00372] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Adjuvant system 04 (AS04) is in injectable human vaccines. AS04 contains two known adjuvants, 3-O-desacyl-4'-monophosphoryl lipid A (MPL) and insoluble aluminum salts. Data from previous studies showed that both MPL and insoluble aluminum salts have nasal mucosal vaccine adjuvant activity. The present study was designed to test the feasibility of using AS04 as an adjuvant to help nasally administered antigens to induce specific mucosal and systemic immunity as well as to evaluate the deposition of antigens in the upper respiratory tract when adjuvanted with AS04. Alhydrogel, an aluminum (oxy)hydroxide suspension, was mixed with MPL to form AS04, which was then mixed with ovalbumin (OVA) or 3× M2e-HA2, a synthetic influenza virus hemagglutinin fusion protein, as an antigen to prepare OVA/AS04 and 3× M2e-HA2/AS04 vaccines, respectively. In mice, AS04 enabled antigens, when given intranasally, to induce specific IgA response in nasal and lung mucosal secretions as well as specific IgG response in the serum samples of the immunized mice, whereas subcutaneous injection of the same vaccine induced specific antibody responses only in the serum samples but not in the mucosal secretions. Splenocytes isolated from mice intranasally immunized with the OVA/AS04 also proliferated and released cytokines (i.e., IL-4 and IFN-γ) after in vitro stimulation with the antigen. In the immunogenicity test, intranasal OVA/AS04 was not more effective than intranasal OVA/MPL at the dosing regimens tested. However, when compared to OVA/MPL, OVA/AS04 showed a different atomized droplet size distribution and more importantly a more favorable OVA deposition profile when atomized into a nasal cast that was 3-D printed based on the computer tomography scan of the nose of a child. It is concluded that AS04 has mucosal adjuvant activity when given intranasally. In addition, there is a reason to be optimistic about using AS04 as an adjuvant to target an antigen of interest to the right region of the nasal cavity in humans for immune response induction.
Collapse
Affiliation(s)
- Haiyue Xu
- College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Riyad F Alzhrani
- College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Zachary N Warnken
- College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Sachin G Thakkar
- College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Mingtao Zeng
- Department of Molecular and Translational Medicine, Center of Emphasis in Infectious Diseases, Texas Tech University Health Sciences Center El Paso, El Paso, Texas 79905, United States
| | - Hugh D C Smyth
- College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Robert O Williams
- College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Zhengrong Cui
- College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
11
|
Beugeling M, De Zee J, Woerdenbag HJ, Frijlink HW, Wilschut JC, Hinrichs WLJ. Respiratory syncytial virus subunit vaccines based on the viral envelope glycoproteins intended for pregnant women and the elderly. Expert Rev Vaccines 2019; 18:935-950. [PMID: 31446807 DOI: 10.1080/14760584.2019.1657013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Introduction: Respiratory syncytial virus (RSV) causes high morbidity and mortality rates among infants, young children, and the elderly worldwide. Unfortunately, a safe and effective vaccine is still unavailable. In 1966, a formalin-inactivated RSV vaccine failed and resulted in the death of two young children. This failure shifted research toward the development of subunit-based vaccines for pregnant women (to passively vaccinate infants) and the elderly. Among these subunit-based vaccines, the viral envelope glycoproteins show great potential as antigens. Areas covered: In this review, progress in the development of safe and effective subunit RSV vaccines based on the viral envelope glycoproteins and intended for pregnant women and the elderly, are reviewed and discussed. Studies published in the period 2012-2018 were included. Expert opinion: Researchers are close to bringing safe and effective subunit-based RSV vaccines to the market using the viral envelope glycoproteins as antigens. However, it remains a major challenge to elicit protective immunity, with a formulation that has sufficient (storage) stability. These issues may be overcome by using the RSV fusion protein in its pre-fusion conformation, and by formulating this protein as a dry powder. It may further be convenient to administer this powder via the pulmonary route.
Collapse
Affiliation(s)
- Max Beugeling
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen , Groningen , The Netherlands
| | - Jildou De Zee
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen , Groningen , The Netherlands
| | - Herman J Woerdenbag
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen , Groningen , The Netherlands
| | - Henderik W Frijlink
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen , Groningen , The Netherlands
| | - Jan C Wilschut
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen , Groningen , The Netherlands
| | - Wouter L J Hinrichs
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen , Groningen , The Netherlands
| |
Collapse
|
12
|
Lee Y, Lee YT, Ko EJ, Kim KH, Hwang HS, Park S, Kwon YM, Kang SM. Soluble F proteins exacerbate pulmonary histopathology after vaccination upon respiratory syncytial virus challenge but not when presented on virus-like particles. Hum Vaccin Immunother 2018; 13:2594-2605. [PMID: 28854003 DOI: 10.1080/21645515.2017.1362514] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Respiratory syncytial virus (RSV) fusion (F) protein is suggested to be a protective vaccine target although its efficacy and safety concerns remain not well understood. We investigated immunogenicity, efficacy, and safety of F proteins in a soluble form or on virus-like particle (F-VLP). F VLP preferentially elicited IgG2a antibody and T helper type 1 (Th1) immune responses whereas F protein induced IgG1 isotype and Th2 responses. Despite lung viral clearance after prime or prime-boost and then RSV challenge, F protein immune mice displayed weight loss and lung histopathology and high mucus production and eosinophils. In contrast, prime or prime-boost vaccination of F VLP induced effective protection, prevented infiltration of eosinophils and vaccine- enhanced disease after challenge. This study provides insight into developing an effective and safe RSV vaccine candidate.
Collapse
Affiliation(s)
- Youri Lee
- a Center for Inflammation, Immunity & Infection , Institute for Biomedical Sciences, Georgia State University , Atlanta , GA , USA.,b Department of Biology Institute for Biomedical Sciences , Georgia State University , Atlanta , GA , USA
| | - Young-Tae Lee
- a Center for Inflammation, Immunity & Infection , Institute for Biomedical Sciences, Georgia State University , Atlanta , GA , USA
| | - Eun-Ju Ko
- a Center for Inflammation, Immunity & Infection , Institute for Biomedical Sciences, Georgia State University , Atlanta , GA , USA
| | - Ki-Hye Kim
- a Center for Inflammation, Immunity & Infection , Institute for Biomedical Sciences, Georgia State University , Atlanta , GA , USA
| | - Hye Suk Hwang
- a Center for Inflammation, Immunity & Infection , Institute for Biomedical Sciences, Georgia State University , Atlanta , GA , USA
| | - Soojin Park
- a Center for Inflammation, Immunity & Infection , Institute for Biomedical Sciences, Georgia State University , Atlanta , GA , USA
| | - Young-Man Kwon
- a Center for Inflammation, Immunity & Infection , Institute for Biomedical Sciences, Georgia State University , Atlanta , GA , USA
| | - Sang Moo Kang
- a Center for Inflammation, Immunity & Infection , Institute for Biomedical Sciences, Georgia State University , Atlanta , GA , USA.,b Department of Biology Institute for Biomedical Sciences , Georgia State University , Atlanta , GA , USA
| |
Collapse
|
13
|
Lederhofer J, van Lent J, Bhoelan F, Karneva Z, de Haan A, Wilschut JC, Stegmann T. Development of a Virosomal RSV Vaccine Containing 3D-PHAD® Adjuvant: Formulation, Composition, and Long-Term Stability. Pharm Res 2018; 35:172. [PMID: 29971500 PMCID: PMC6061504 DOI: 10.1007/s11095-018-2453-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 06/26/2018] [Indexed: 12/12/2022]
Abstract
PURPOSE Characterization of virosomes, in late stage preclinical development as vaccines for Respiratory Syncytial Virus (RSV), with a membrane-incorporated synthetic monophosphoryl lipid A, 3D-PHAD® adjuvant. METHODS Virosomes were initially formed by contacting a lipid film containing 3D-PHAD® with viral membranes solubilized with the short chain phospholipid DCPC, followed by dialysis, later by adding solubilized 3D-PHAD to viral membranes, or to preformed virosomes from DMSO. RESULTS Virosomes formed from lipid films contained the membrane glycoproteins G and F, at similar F to G ratios but lower concentrations than in virus, and the added lipids, but only a fraction of the 3D-PHAD®. By single particle tracking (SPT), the virosome size distribution resembled that seen by cryo-electron microscopy, but dynamic light scattering showed much larger particles. These differences were caused by small virosome aggregates. Measured by SPT, virosomes were stable for 300 days. 3DPHAD ® incorporation in virosomes could be enhanced by providing the adjuvant from DCPC solubilized stock, but also by adding DMSO dissolved adjuvant to pre-formed virosomes. Virosomes with 0.1 mg/mg of 3D-PHAD®/viral protein from DMSO induced antibody titers similar to those by virosomes containing 0.2 mg/mg of DCPC-solubilized 3D-PHAD®. CONCLUSIONS Stable 3D-PHAD® adjuvanted RSV virosomes can be formulated.
Collapse
Affiliation(s)
- J Lederhofer
- University Medical Centre Groningen, Department of Medical Microbiology, University of Groningen, Groningen, The Netherlands
| | - J van Lent
- Laboratory of Virology, Wageningen University, Wageningen, The Netherlands
| | - F Bhoelan
- Mymetics BV, Leiden, The Netherlands
| | - Z Karneva
- Mymetics BV, Leiden, The Netherlands
| | - A de Haan
- University Medical Centre Groningen, Department of Medical Microbiology, University of Groningen, Groningen, The Netherlands
| | | | | |
Collapse
|
14
|
Xu H, Ruwona TB, Thakkar SG, Chen Y, Zeng M, Cui Z. Nasal aluminum (oxy)hydroxide enables adsorbed antigens to induce specific systemic and mucosal immune responses. Hum Vaccin Immunother 2017; 13:2688-2694. [PMID: 28933668 DOI: 10.1080/21645515.2017.1365995] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Some insoluble aluminum salts are commonly used in injectable vaccines as adjuvants to accelerate, prolong, or enhance the antigen-specific immune responses. Data from previous studies testing the nasal mucosal vaccine adjuvant activity of aluminum salts are conflicting. The present study is designed to further assess the feasibility of using aluminum salts in injectable vaccines as nasal mucosal vaccine adjuvants. Using Alhydrogel®, the international scientific standard of aluminum (oxy)hydroxide gels, and ovalbumin or 3 × M2e-HA2, a synthetic influenza virus fusion protein, as antigens, we showed in a mouse model that when dosed intranasally Alhydrogel® enables antigens adsorbed on it to induce stronger antigen-specific immune responses in both serum samples (e.g., specific IgG) and nasal and lung mucosal secretions (i.e., specific IgA) in all immunized mice, as compared with nasal immunization with the antigens alone. Rerouting insoluble aluminum salts in injectable vaccines may represent a viable approach for (nasal) mucosal vaccine adjuvant discovery.
Collapse
Affiliation(s)
- Haiyue Xu
- a The University of Texas at Austin, College of Pharmacy , Division of Molecular Pharmaceutics and Drug Delivery , Austin , TX , USA
| | - Tinashe B Ruwona
- a The University of Texas at Austin, College of Pharmacy , Division of Molecular Pharmaceutics and Drug Delivery , Austin , TX , USA
| | - Sachin G Thakkar
- a The University of Texas at Austin, College of Pharmacy , Division of Molecular Pharmaceutics and Drug Delivery , Austin , TX , USA
| | - Yanping Chen
- b Texas Tech University Health Sciences Center El Paso , Department of Biomedical Sciences, Center of Emphasis in Infectious Diseases , El Paso , TX , USA
| | - Mingtao Zeng
- b Texas Tech University Health Sciences Center El Paso , Department of Biomedical Sciences, Center of Emphasis in Infectious Diseases , El Paso , TX , USA
| | - Zhengrong Cui
- a The University of Texas at Austin, College of Pharmacy , Division of Molecular Pharmaceutics and Drug Delivery , Austin , TX , USA.,c Inner Mongolia Medical University , Inner Mongolia Key Laboratory of Molecular Biology , Hohhot , Inner Mongolia , China
| |
Collapse
|
15
|
A Single-Dose Recombinant Parainfluenza Virus 5-Vectored Vaccine Expressing Respiratory Syncytial Virus (RSV) F or G Protein Protected Cotton Rats and African Green Monkeys from RSV Challenge. J Virol 2017; 91:JVI.00066-17. [PMID: 28298602 DOI: 10.1128/jvi.00066-17] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 03/08/2017] [Indexed: 12/21/2022] Open
Abstract
Human respiratory syncytial virus (RSV) is a common cause of severe respiratory disease among infants, immunocompromised individuals, and the elderly. No licensed vaccine is currently available. In this study, we evaluated two parainfluenza virus 5 (PIV5)-vectored vaccines expressing RSV F (PIV5/F) or G (PIV5/G) protein in the cotton rat and African green monkey models for their replication, immunogenicity, and efficacy of protection against RSV challenge. Following a single intranasal inoculation, both animal species shed the vaccine viruses for a limited time but without noticeable clinical symptoms. In cotton rats, the vaccines elicited RSV F- or G-specific serum antibodies and conferred complete lung protection against RSV challenge at doses as low as 103 PFU. Neither vaccine produced the enhanced lung pathology observed in animals immunized with formalin-inactivated RSV. In African green monkeys, vaccine-induced serum and mucosal antibody responses were readily detected, as well. PIV5/F provided nearly complete protection against RSV infection in the upper and lower respiratory tract at a dose of 106 PFU of vaccine. At the same dose levels, PIV5/G was less efficacious. Both PIV5/F and PIV5/G were also able to boost neutralization titers in RSV-preexposed African green monkeys. Overall, our data indicated that PIV5/F is a promising RSV vaccine candidate.IMPORTANCE A safe and efficacious respiratory syncytial virus (RSV) vaccine remains elusive. We tested the recombinant parainfluenza virus 5 (PIV5) vectors expressing RSV glycoproteins for their immunogenicity and protective efficacy in cotton rats and African green monkeys, which are among the best available animal models to study RSV infection. In both species, a single dose of intranasal immunization with PIV5-vectored vaccines was able to produce systemic and local immunity and to protect animals from RSV challenge. The vaccines could also boost RSV neutralization antibody titers in African green monkeys that had been infected previously. Our data suggest that PIV5-vectored vaccines could potentially protect both the pediatric and elderly populations and support continued development of the vector platform.
Collapse
|
16
|
Blom RAM, Amacker M, van Dijk RM, Moser C, Stumbles PA, Blank F, von Garnier C. Pulmonary Delivery of Virosome-Bound Antigen Enhances Antigen-Specific CD4 + T Cell Proliferation Compared to Liposome-Bound or Soluble Antigen. Front Immunol 2017; 8:359. [PMID: 28439267 PMCID: PMC5383731 DOI: 10.3389/fimmu.2017.00359] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 03/14/2017] [Indexed: 12/18/2022] Open
Abstract
Pulmonary administration of biomimetic nanoparticles loaded with antigen may represent an effective strategy to directly modulate adaptive immune responses in the respiratory tract. Depending on the design, virosomes may not only serve as biomimetic antigen carriers but are also endowed with intrinsic immune-stimulatory properties. We designed fluorescently labeled influenza-derived virosomes and liposome controls coupled to the model antigen ovalbumin to investigate uptake, phenotype changes, and antigen processing by antigen-presenting cells exposed to such particles in different respiratory tract compartments. Both virosomes and liposomes were captured by pulmonary macrophages and dendritic cells alike and induced activation in particle-bearing cells by upregulation of costimulatory markers such as CD40, CD80, CD86, PD-L1, PD-L2, and ICOS-L. Though antigen processing and accumulation of both coupled and soluble antigen was similar between virosomes and liposomes, only ovalbumin-coupled virosomes generated a strong antigen-specific CD4+ T cell proliferation. Pulmonary administrated antigen-coupled virosomes therefore effectively induced adaptive immune responses and may be utilized in novel preventive or therapeutic approaches in the respiratory tract.
Collapse
Affiliation(s)
- Rebecca A M Blom
- Department of Pulmonary Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.,Department of Clinical Research, University of Bern, Bern, Switzerland.,Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | | | | | - Christian Moser
- Swiss Federal Institute of Intellectual Property, Bern, Switzerland
| | - Philip A Stumbles
- School of Veterinary and Life Sciences, Medical and Molecular Sciences, Murdoch University, Perth, WA, Australia.,Telethon Kids Institute, Perth, WA, Australia
| | - Fabian Blank
- Department of Pulmonary Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.,Department of Clinical Research, University of Bern, Bern, Switzerland
| | - Christophe von Garnier
- Department of Pulmonary Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.,Department of Clinical Research, University of Bern, Bern, Switzerland
| |
Collapse
|
17
|
Graham BS. Vaccines against respiratory syncytial virus: The time has finally come. Vaccine 2016; 34:3535-41. [PMID: 27182820 DOI: 10.1016/j.vaccine.2016.04.083] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Revised: 04/11/2016] [Accepted: 04/15/2016] [Indexed: 11/27/2022]
Abstract
Respiratory syncytial virus causes a significant public health burden, particularly in very young infants and the frail elderly. The legacy of enhanced RSV disease (ERD) from a whole formalin-inactivated RSV vaccine, and the complex biology of the virus and the neonate have delayed the development of effective vaccines. However, new insights into factors associated with ERD and breakthroughs in understanding the antigenic structure of the fusion (F) glycoprotein have increased optimism that vaccine development is possible. This has led to investment of time and resources by industry, regulatory authorities, governments, and nonprofit organizations to develop the infrastructure needed to make the advanced clinical development of RSV vaccine candidates a reality.
Collapse
Affiliation(s)
- Barney S Graham
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States.
| |
Collapse
|
18
|
Shah M, Anwar MA, Kim JH, Choi S. Advances in Antiviral Therapies Targeting Toll-like Receptors. Expert Opin Investig Drugs 2016; 25:437-53. [DOI: 10.1517/13543784.2016.1154040] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
19
|
Zhang Y, Qiao L, Hu X, Zhao K, Zhang Y, Chai F, Pan Z. Baculovirus vectors expressing F proteins in combination with virus-induced signaling adaptor (VISA) molecules confer protection against respiratory syncytial virus infection. Vaccine 2015; 34:252-260. [PMID: 26643933 DOI: 10.1016/j.vaccine.2015.11.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 11/04/2015] [Accepted: 11/12/2015] [Indexed: 11/16/2022]
Abstract
Baculovirus has been exploited for use as a novel vaccine vector. To investigate the feasibility and efficacy of recombinant baculoviruses (rBVs) expressing respiratory syncytial virus (RSV) fusion (F) proteins, four constructs (Bac-tF/64, Bac-CF, Bac-CF/tF64 and Bac-CF/tF64-VISA) were generated. Bac-tF64 displays the F ectodomain (tF) on the envelope of rBVs, whereas Bac-CF expresses full-length F protein in transduced mammalian cells. Bac-CF/tF64 not only displays tF on the envelope but also expresses F in cells. Bac-CF/tF64-VISA comprises Bac-CF/tF64 harboring the virus-induced signaling adaptor (VISA) gene. After administration to BALB/c mice, all four vectors elicited RSV neutralizing antibody (Ab), systemic Ab (IgG, IgG1, and IgG2a), and cytokine responses. Compared with Bac-tF64, mice inoculated with Bac-CF and Bac-CF/tF64 exhibited an increased mixed Th1/Th2 cytokine response, increased ratios of IgG2a/IgG1 antibody responses, and reduced immunopathology upon RSV challenge. Intriguingly, co-expression of VISA reduced Th2 cytokine (IL-4, IL-5, and IL-10) production induced by Bac-CF/tF64, thus relieving lung pathology upon a subsequent RSV challenge. Our results indicated that the Bac-CF/tF64 vector incorporated with the VISA molecule may provide an effective vaccine strategy for protection against RSV.
Collapse
Affiliation(s)
- Yuan Zhang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Lei Qiao
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Xiao Hu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Kang Zhao
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yanwen Zhang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Feng Chai
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Zishu Pan
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
20
|
Lin YS, Lee MY, Yang CH, Huang KS. Active targeted drug delivery for microbes using nano-carriers. Curr Top Med Chem 2015; 15:1525-31. [PMID: 25877093 PMCID: PMC4997950 DOI: 10.2174/1568026615666150414123157] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 10/29/2014] [Accepted: 12/15/2014] [Indexed: 01/12/2023]
Abstract
Although vaccines and antibiotics could kill or inhibit microbes, many infectious diseases remain difficult to treat because of acquired resistance and adverse side effects. Nano-carriers-based technology has made significant progress for a long time and is introducing a new paradigm in drug delivery. However, it still has some challenges like lack of specificity toward targeting the infectious site. Nanocarriers utilized targeting ligands on their surface called 'active target' provide the promising way to solve the problems like accelerating drug delivery to infectious areas and preventing toxicity or side-effects. In this mini review, we demonstrate the recent studies using the active targeted strategy to kill or inhibit microbes. The four common nano-carriers (e.g. liposomes, nanoparticles, dendrimers and carbon nanotubes) delivering encapsulated drugs are introduced.
Collapse
Affiliation(s)
| | | | | | - Keng-Shiang Huang
- The School of Chinese Medicine for Post-Baccalaureate, I-Shou University, Kaohsiung, Taiwan.
| |
Collapse
|
21
|
Schwendener RA. Liposomes as vaccine delivery systems: a review of the recent advances. THERAPEUTIC ADVANCES IN VACCINES 2014; 2:159-82. [PMID: 25364509 DOI: 10.1177/2051013614541440] [Citation(s) in RCA: 344] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Liposomes and liposome-derived nanovesicles such as archaeosomes and virosomes have become important carrier systems in vaccine development and the interest for liposome-based vaccines has markedly increased. A key advantage of liposomes, archaeosomes and virosomes in general, and liposome-based vaccine delivery systems in particular, is their versatility and plasticity. Liposome composition and preparation can be chosen to achieve desired features such as selection of lipid, charge, size, size distribution, entrapment and location of antigens or adjuvants. Depending on the chemical properties, water-soluble antigens (proteins, peptides, nucleic acids, carbohydrates, haptens) are entrapped within the aqueous inner space of liposomes, whereas lipophilic compounds (lipopeptides, antigens, adjuvants, linker molecules) are intercalated into the lipid bilayer and antigens or adjuvants can be attached to the liposome surface either by adsorption or stable chemical linking. Coformulations containing different types of antigens or adjuvants can be combined with the parameters mentioned to tailor liposomal vaccines for individual applications. Special emphasis is given in this review to cationic adjuvant liposome vaccine formulations. Examples of vaccines made with CAF01, an adjuvant composed of the synthetic immune-stimulating mycobacterial cordfactor glycolipid trehalose dibehenate as immunomodulator and the cationic membrane forming molecule dimethyl dioctadecylammonium are presented. Other vaccines such as cationic liposome-DNA complexes (CLDCs) and other adjuvants like muramyl dipeptide, monophosphoryl lipid A and listeriolysin O are mentioned as well. The field of liposomes and liposome-based vaccines is vast. Therefore, this review concentrates on recent and relevant studies emphasizing current reports dealing with the most studied antigens and adjuvants, and pertinent examples of vaccines. Studies on liposome-based veterinary vaccines and experimental therapeutic cancer vaccines are also summarized.
Collapse
Affiliation(s)
- Reto A Schwendener
- Institute of Molecular Cancer Research, Laboratory of Liposome Research, University of Zurich, Winterthurerstrasse 190, Zurich, 8057, Switzerland
| |
Collapse
|
22
|
Gomez RS, Guisle-Marsollier I, Bohmwald K, Bueno SM, Kalergis AM. Respiratory Syncytial Virus: pathology, therapeutic drugs and prophylaxis. Immunol Lett 2014; 162:237-47. [PMID: 25268876 DOI: 10.1016/j.imlet.2014.09.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 08/21/2014] [Accepted: 09/08/2014] [Indexed: 11/16/2022]
Abstract
Human Respiratory Syncytial Virus (hRSV) is the leading cause of lower respiratory tract diseases, affecting particularly newborns and young children. This virus is able to modulate the immune response, generating a pro-inflammatory environment in the airways that causes obstruction and pulmonary alterations in the infected host. To date, no vaccines are available for human use and the first vaccine that reached clinical trials produced an enhanced hRSV-associated pathology 50 years ago, resulting in the death of two children. Currently, only two therapeutic approaches have been used to treat hRSV infection in high risk children: 1. Palivizumab, a humanized antibody against the F glycoprotein that reduces to half the number of hospitalized cases and 2. Ribavirin, which fails to have a significant therapeutic effect. A major caveat for these approaches is their high economical cost, which highlights the need of new and affordable therapeutic or prophylactic tools to treat or prevents hRSV infection. Accordingly, several efforts are in progress to understand the hRSV-associated pathology and to characterize the immune response elicited by this virus. Currently, preclinical and clinical trials are being conducted to evaluate safety and efficacy of several drugs and vaccines, which have shown promising results. In this article, we discuss the most important advances in the development of drugs and vaccines, which could eventually lead to better strategies to treat or prevent the detrimental inflammation triggered by hRSV infection.
Collapse
Affiliation(s)
- Roberto S Gomez
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Chile; INSERM U1064, Nantes, France
| | | | - Karen Bohmwald
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Chile
| | - Susan M Bueno
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Chile; INSERM U1064, Nantes, France
| | - Alexis M Kalergis
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Chile; Departamento de Reumatología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Chile; INSERM U1064, Nantes, France.
| |
Collapse
|
23
|
Patel MC, Shirey KA, Pletneva LM, Boukhvalova MS, Garzino-Demo A, Vogel SN, Blanco JC. Novel drugs targeting Toll-like receptors for antiviral therapy. Future Virol 2014; 9:811-829. [PMID: 25620999 DOI: 10.2217/fvl.14.70] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Toll-like receptors (TLRs) are sentinel receptors of the host innate immune system that recognize conserved 'pathogen-associated molecular patterns' of invading microbes, including viruses. The activation of TLRs establishes antiviral innate immune responses and coordinates the development of long-lasting adaptive immunity in order to control viral pathogenesis. However, microbe-induced damage to host tissues may release 'danger-associated molecular patterns' that also activate TLRs, leading to an overexuberant inflammatory response and, ultimately, to tissue damage. Thus, TLRs have proven to be promising targets as therapeutics for the treatment of viral infections that result in inflammatory damage or as adjuvants in order to enhance the efficacy of vaccines. Here, we explore recent advances in TLR biology with a focus on novel drugs that target TLRs (agonists and antagonists) for antiviral therapy.
Collapse
Affiliation(s)
- Mira C Patel
- Department of Microbiology & Immunology, University of Maryland, School of Medicine, Baltimore, MD 21201, USA
| | - Kari Ann Shirey
- Department of Microbiology & Immunology, University of Maryland, School of Medicine, Baltimore, MD 21201, USA
| | | | | | - Alfredo Garzino-Demo
- Department of Microbiology & Immunology, University of Maryland, School of Medicine, Baltimore, MD 21201, USA ; Institute of Human Virology, University of Maryland, School of Medicine, Baltimore, MD 21201, USA
| | - Stefanie N Vogel
- Department of Microbiology & Immunology, University of Maryland, School of Medicine, Baltimore, MD 21201, USA
| | | |
Collapse
|
24
|
Xu Y, Yuen PW, Lam JKW. Intranasal DNA Vaccine for Protection against Respiratory Infectious Diseases: The Delivery Perspectives. Pharmaceutics 2014; 6:378-415. [PMID: 25014738 PMCID: PMC4190526 DOI: 10.3390/pharmaceutics6030378] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 06/20/2014] [Accepted: 06/24/2014] [Indexed: 11/16/2022] Open
Abstract
Intranasal delivery of DNA vaccines has become a popular research area recently. It offers some distinguished advantages over parenteral and other routes of vaccine administration. Nasal mucosa as site of vaccine administration can stimulate respiratory mucosal immunity by interacting with the nasopharyngeal-associated lymphoid tissues (NALT). Different kinds of DNA vaccines are investigated to provide protection against respiratory infectious diseases including tuberculosis, coronavirus, influenza and respiratory syncytial virus (RSV) etc. DNA vaccines have several attractive development potential, such as producing cross-protection towards different virus subtypes, enabling the possibility of mass manufacture in a relatively short time and a better safety profile. The biggest obstacle to DNA vaccines is low immunogenicity. One of the approaches to enhance the efficacy of DNA vaccine is to improve DNA delivery efficiency. This review provides insight on the development of intranasal DNA vaccine for respiratory infections, with special attention paid to the strategies to improve the delivery of DNA vaccines using non-viral delivery agents.
Collapse
Affiliation(s)
- Yingying Xu
- Department of Pharmacology & Pharmacy, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, 21 Sassoon Road, Hong Kong, China.
| | - Pak-Wai Yuen
- Department of Pharmacology & Pharmacy, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, 21 Sassoon Road, Hong Kong, China.
| | - Jenny Ka-Wing Lam
- Department of Pharmacology & Pharmacy, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, 21 Sassoon Road, Hong Kong, China.
| |
Collapse
|
25
|
Jorquera PA, Oakley KE, Tripp RA. Advances in and the potential of vaccines for respiratory syncytial virus. Expert Rev Respir Med 2014; 7:411-27. [PMID: 23964629 DOI: 10.1586/17476348.2013.814409] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Respiratory syncytial virus (RSV) is the leading cause of serious lower respiratory track illness causing bronchiolitis and some mortality in infants and the elderly. Despite decades of research there is no licensed RSV vaccine. To enable the development of RSV vaccines, several major obstacles must be overcome including immature and waning immunity to RSV infection, the capacity of RSV to evade immunity and the failure of RSV infection to induce robust enduring immunity. Since the failure of the formalin-inactivated RSV vaccine trial, more cautious and deliberate progress has been made toward RSV vaccine development using a variety of experimental approaches. The scientific rational and the state of development of these approaches are reviewed in this article.
Collapse
Affiliation(s)
- Patricia A Jorquera
- College of Veterinary Medicine, Department of Infectious Disease, Animal Health Research Center, 111 Carlton Street, University of Georgia, Athens, GA 30602, USA
| | | | | |
Collapse
|
26
|
Blanco JCG, Boukhvalova MS, Pletneva LM, Shirey KA, Vogel SN. A recombinant anchorless respiratory syncytial virus (RSV) fusion (F) protein/monophosphoryl lipid A (MPL) vaccine protects against RSV-induced replication and lung pathology. Vaccine 2014; 32:1495-500. [PMID: 24252693 PMCID: PMC3947896 DOI: 10.1016/j.vaccine.2013.11.032] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 10/18/2013] [Accepted: 11/06/2013] [Indexed: 11/30/2022]
Abstract
We previously demonstrated that the severe cytokine storm and pathology associated with RSV infection following intramuscular vaccination of cotton rats with FI-RSV Lot 100 could be completely abolished by formulating the vaccine with the mild TLR4 agonist and adjuvant, monophosphoryl lipid A (MPL). Despite this significant improvement, the vaccine failed to blunt viral replication in the lungs. Since MPL is a weak TLR4 agonist, we hypothesized that its adjuvant activity was mediated by modulating the innate immune response of respiratory tract resident macrophages. Therefore, we developed a new vaccine preparation with purified, baculovirus expressed, partially purified, anchorless RSV F protein formulated with synthetic MPL that was administered to cotton rats intranasally, followed by an intradermal boost. This novel formulation and heterologous "prime/boost" route of administration resulted in decreased viral titers compared to that seen in animals vaccinated with F protein alone. Furthermore, animals vaccinated by this route showed no evidence of enhanced lung pathology upon RSV infection. This indicates that MPL acts as an immune modulator that protects the host from vaccine-enhanced pathology, and reduces RSV replication in the lower respiratory tract when administered by a heterologous prime/boost immunization regimen.
Collapse
Affiliation(s)
| | | | | | - Kari Ann Shirey
- Department of Microbiology and Immunology, University of Maryland, Baltimore, MD 21201, United States
| | - Stefanie N Vogel
- Department of Microbiology and Immunology, University of Maryland, Baltimore, MD 21201, United States
| |
Collapse
|
27
|
Senchi K, Matsunaga S, Hasegawa H, Kimura H, Ryo A. Development of oligomannose-coated liposome-based nasal vaccine against human parainfluenza virus type 3. Front Microbiol 2013; 4:346. [PMID: 24324462 PMCID: PMC3840497 DOI: 10.3389/fmicb.2013.00346] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 10/30/2013] [Indexed: 12/11/2022] Open
Abstract
Human parainfluenza viruses (HPIVs) are the etiologic agents of lower respiratory infections and pneumonia in infants, young children and immunocompromised hosts. The overarching goal for the prevention of HPIV infection is the development of an effective vaccine against HPIVs. In the present study, we investigated the effectiveness of oligomannose-coated liposomes (OMLs) as an antigen-delivery system in combination with a synthetic double-stranded RNA analog for the induction of mucosal and systematic immunity against HPIV3. Full-length hemagglutinin-neuraminidase (HN) protein was synthesized using the wheat germ cell-free protein production system and then encapsulated into OML to serve as the antigen. Intranasal administration of the HN-filling OML (OML-HN) with the synthetic double-stranded RNA adjuvant, polyriboinosinic-polyribocytidylic acid [poly(I:C)] generated significant viral-specific systemic and mucosal immune responses as evidenced by the prominent induction of serum IgG and nasal wash IgA, respectively. On the other hand, no significant immune responses were observed in mice immunized with OML-HN without the adjuvant. Furthermore, serum from mice immunized with OML-HN plus poly(I:C) significantly suppressed viral infection in cell culture model. Our results provide the first evidence that intranasal co-administration of OML-encapsulated HN with the poly(I:C) adjuvant augments the viral-specific immunity against HPIV3.
Collapse
Affiliation(s)
- Kyosuke Senchi
- Department of Microbiology, Yokohama City University School of Medicine, Yokohama, Kanagawa Japan
| | | | | | | | | |
Collapse
|
28
|
Evaluation of monophosphoryl lipid A as adjuvant for pulmonary delivered influenza vaccine. J Control Release 2013; 174:51-62. [PMID: 24269505 DOI: 10.1016/j.jconrel.2013.11.013] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2013] [Revised: 11/12/2013] [Accepted: 11/12/2013] [Indexed: 01/22/2023]
Abstract
Prophylaxis against influenza could be improved by the development of a stable, easy to deliver, potent mucosal vaccine. In this study, we spray-freeze-dried (SFD) whole inactivated virus influenza vaccine (WIV) alone or supplemented with monophosphoryl lipid A (MPLA) using inulin as a lyoprotectant. Physical characterization revealed that the SFD powder consisted of highly porous particles with a size distribution suitable for pulmonary administration. The receptor-binding properties of WIV and the immunostimulatory properties of MPLA were preserved after spray-freeze-drying as indicated by unchanged hemagglutination titers and a retained ability of the vaccine to activate NFkB after incubation with a reporter cell line, respectively. Pulmonary vaccination of mice with MPLA-adjuvanted liquid or powder WIV resulted in induction of higher mucosal and systemic antibody concentrations than vaccination with non-adjuvanted formulations. When exposed to influenza virus, mice immunized with MPLA-adjuvanted pulmonary vaccine showed similar protection in terms of reduction in lung virus titers and prevention of weight loss as mice immunized intramuscularly with subunit vaccine. Characterization of the antibody response revealed a balanced IgG2a-to-IgG1 profile along with induction of both memory IgA- and IgG-producing B cells in mice immunized with MPLA-adjuvanted vaccine. These studies suggest that the mucosal and systemic immune responses to pulmonary delivered influenza vaccines can be significantly enhanced by using MPLA as adjuvant. MPLA-adjuvanted SFD vaccine was particularly effective implying that delivery of adjuvanted vaccine powder to the lungs can be an attractive way of immunization against influenza.
Collapse
|