1
|
Abhyankar MM, Xu F, Chavez D, Goodroe A, Mendoza E, Chen C, Singh DK, Varnador F, Sivananthan SJ, Kinsey R, Lykins WR, Murphy BM, Martin AR, Tomai MA, Ghosal S, Casper C, Pedersen K, Petri WA, Fox CB. Immunogenicity and safety of an Entamoeba histolytica adjuvanted protein vaccine candidate (LecA+GLA-3M-052 liposomes) in rhesus macaques. Hum Vaccin Immunother 2024; 20:2374147. [PMID: 39090779 PMCID: PMC11296537 DOI: 10.1080/21645515.2024.2374147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/20/2024] [Accepted: 06/26/2024] [Indexed: 08/04/2024] Open
Abstract
Entamoeba histolytica, the causative agent of amebiasis, is one of the top three parasitic causes of mortality worldwide. However, no vaccine exists against amebiasis. Using a lead candidate vaccine containing the LecA fragment of Gal-lectin and GLA-3M-052 liposome adjuvant, we immunized rhesus macaques via intranasal or intramuscular routes. The vaccine elicited high-avidity functional humoral responses as seen by the inhibition of amebic attachment to mammalian target cells by plasma and stool antibodies. Importantly, antigen-specific IFN-γ-secreting peripheral blood mononuclear cells (PBMCs) and IgG/IgA memory B cells (BMEM) were detected in immunized animals. Furthermore, antigen-specific antibody and cellular responses were maintained for at least 8 months after the final immunization as observed by robust LecA-specific BMEM as well as IFN-γ+ PBMC responses. Overall, both intranasal and intramuscular immunizations elicited a durable and functional response in systemic and mucosal compartments, which supports advancing the LecA+GLA-3M-052 liposome vaccine candidate to clinical testing.
Collapse
MESH Headings
- Animals
- Macaca mulatta
- Entamoeba histolytica/immunology
- Liposomes/immunology
- Liposomes/administration & dosage
- Protozoan Vaccines/immunology
- Protozoan Vaccines/administration & dosage
- Antibodies, Protozoan/blood
- Antibodies, Protozoan/immunology
- Leukocytes, Mononuclear/immunology
- Entamoebiasis/prevention & control
- Entamoebiasis/immunology
- Administration, Intranasal
- Interferon-gamma/immunology
- Interferon-gamma/metabolism
- Injections, Intramuscular
- Immunogenicity, Vaccine
- Adjuvants, Vaccine/administration & dosage
- Adjuvants, Immunologic/administration & dosage
- B-Lymphocytes/immunology
- Immunoglobulin G/blood
- Immunoglobulin G/immunology
- Immunoglobulin A/immunology
- Immunoglobulin A/blood
- Antigens, Protozoan/immunology
- Immunity, Humoral
- Immunologic Memory
- Protozoan Proteins/immunology
Collapse
Affiliation(s)
- Mayuresh M. Abhyankar
- Division of Infectious Diseases and International Health, School of Medicine, University of Virginia Health System, Charlottesville, VA, USA
| | - Feifan Xu
- Division of Infectious Diseases and International Health, School of Medicine, University of Virginia Health System, Charlottesville, VA, USA
| | - Deborah Chavez
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Anna Goodroe
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Elda Mendoza
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Christopher Chen
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Dhiraj K. Singh
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Fernando Varnador
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA
| | | | - Robert Kinsey
- Formulations, Access to Advanced Health Institute (AAHI), Seattle, WA, USA
| | - William R. Lykins
- Formulations, Access to Advanced Health Institute (AAHI), Seattle, WA, USA
| | - Brynn M. Murphy
- Department of Mechanical Engineering, University of Alberta, Edmonton, AB, Canada
| | - Andrew R. Martin
- Department of Mechanical Engineering, University of Alberta, Edmonton, AB, Canada
| | - Mark A. Tomai
- Contract Employee for 3M Healthcare, Saint Paul, MN, USA
| | - Soutik Ghosal
- Division of Biostatistics, Department of Public Health Sciences, School of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Corey Casper
- Formulations, Access to Advanced Health Institute (AAHI), Seattle, WA, USA
- Department of Medicine, University of Washington, Seattle, WA, USA
- Department of Global Health, University of Washington, Seattle, WA, USA
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Karl Pedersen
- Process Development, TechLab Inc, Blacksburg, VA, USA
| | - William A. Petri
- Division of Infectious Diseases and International Health, School of Medicine, University of Virginia Health System, Charlottesville, VA, USA
| | - Christopher B. Fox
- Formulations, Access to Advanced Health Institute (AAHI), Seattle, WA, USA
- Department of Global Health, University of Washington, Seattle, WA, USA
| |
Collapse
|
2
|
Nagode A, Vanbeselaere J, Duchêne M. Revisiting the isolation and characterisation of Entamoeba histolytica lipopeptidophosphoglycan. Parasitol Res 2024; 123:138. [PMID: 38378851 PMCID: PMC10879251 DOI: 10.1007/s00436-024-08149-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/31/2024] [Indexed: 02/22/2024]
Abstract
The parasite Entamoeba histolytica is the cause of amoebic dysentery and liver abscess in humans. On the protozoan cell surface, a variety of glycosylated molecules are involved in the interaction with the environment, such as attachment to the colonic mucus. One of these molecules is the lipopeptidophosphoglycan (LPPG), a complex surface component with antigenic properties. Its structure is only partly known, it is a glycosylphosphatidylinositol (GPI)-linked glycoprotein with a large amount of O-glycosylation. To date, the sequence of a core protein has not been identified. In this study, we further investigated this complex surface molecule aided by the availability of the monoclonal antibody EH5, which had been raised in our laboratory. We studied the extraction of LPPG in various solvent mixtures and discovered that 2-butanol saturated water was simple and superior to other solvents used in the past. The isolated LPPG was subjected to treatment with several proteases and the Ser/Thr specific cleavage agent scandium (III) trifluoromethanesulfonate (scandium triflate). The products were probed with antibody EH5 and the blots showed that the LPPG preparation was largely resistant to standard proteases, but could be cleaved by the scandium compound. These observations could point to the existence of a Ser- or Thr-rich core protein structure.
Collapse
Affiliation(s)
- Anna Nagode
- Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | | | - Michael Duchêne
- Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
3
|
da Silva MB, Fernandes AMS, da Silva ES, Urrego JR, Santiago LF, Garcés LFS, Portela RD, Pacheco LGC, Briza P, Ferreira F, Pinheiro CS, Alcantara-Neves NM. Proteomics and immunoblotting analyses reveal antigens that optimize the immunodiagnosis of the infection by Toxocara spp. Transbound Emerg Dis 2022; 69:e2994-e3006. [PMID: 35801561 DOI: 10.1111/tbed.14650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 06/11/2022] [Accepted: 06/21/2022] [Indexed: 12/01/2022]
Abstract
BACKGROUND Toxocariasis is an infection caused by the round worms Toxocara canis and Toxocara cati. It occurs worldwide though it is more prevalent in developing countries. For the diagnosis of toxocariasis, the most used method is the indirect enzyme-linked immunosorbent assay (indirect ELISA), based on the detection of specific antibodies using the excreted/secreted products from T. canis larvae (TES) as antigens, but it cross-reacts with several helminth infections. For this reason, there is a need to investigate species-specific immunoreactive proteins, which can be used for the development of a more sensitive and specific diagnosis. OBJECTIVE To investigate immunoreactive protein candidates to be used for the development of a more sensitive and specific diagnosis of Toxocara spp. infection in humans. METHODS We have used immunoblotting and mass spectrometry to select four Toxocara canis immunoreactive proteins that were recombinantly expressed in bacteria and evaluated as potential new diagnostic antigens (rMUC3, rTES 26, rTES32 and rCTL4). The recognition of these recombinant proteins by total serum IgG and IgG4 was assayed using the purified proteins in an isolated manner or in combination. RESULTS The IgG ELISAs performed with individual recombinant antigens reached values of sensitivity and specificity that ranged from 91.7% to 97.3% and 94.0% to 97.9%, respectively. Among the analyses, the IgG4 immunoassay was proven to be more effective, revealing a sensitivity that ranged from 88.8% to 98.3% and a specificity of 97.8% to 97.9%. The IgG4 ELISA was shown to be more effective and presented no cross-reactivity when using combinations of the rTES 26 and rCTL4 recombinant proteins. The combination of these two molecules achieved 100% sensitivity and specificity. CONCLUSIONS The use of only two recombinant proteins can contribute to improve the current panorama of toxocariasis immunodiagnosis for, with a better optimization and reduced cost. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
| | | | | | - Juan Ricardo Urrego
- Department of Pharmaceutical Sciences, University of Cartagena, Cartagena, Colombia
| | | | | | - Ricardo Dias Portela
- Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, Bahia, Brazil
| | - Luis G C Pacheco
- Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, Bahia, Brazil
| | - Peter Briza
- Department of Biosciences, University of Salzburg, Salzburg, Austria
| | - Fátima Ferreira
- Department of Biosciences, University of Salzburg, Salzburg, Austria
| | - Carina Silva Pinheiro
- Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, Bahia, Brazil
| | | |
Collapse
|
4
|
Abhyankar MM, Orr MT, Kinsey R, Sivananthan S, Nafziger AJ, Oakland DN, Young MK, Farr L, Uddin MJ, Leslie JL, Burgess SL, Liang H, De Lima I, Larson E, Guderian JA, Lin S, Kahn A, Ghosh P, Reed S, Tomai MA, Pedersen K, Petri WA, Fox CB. Optimizing a Multi-Component Intranasal Entamoeba Histolytica Vaccine Formulation Using a Design of Experiments Strategy. Front Immunol 2021; 12:683157. [PMID: 34248966 PMCID: PMC8268010 DOI: 10.3389/fimmu.2021.683157] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 06/07/2021] [Indexed: 11/24/2022] Open
Abstract
Amebiasis is a neglected tropical disease caused by Entamoeba histolytica. Although the disease burden varies geographically, amebiasis is estimated to account for some 55,000 deaths and millions of infections globally per year. Children and travelers are among the groups with the greatest risk of infection. There are currently no licensed vaccines for prevention of amebiasis, although key immune correlates for protection have been proposed from observational studies in humans. We previously described the development of a liposomal adjuvant formulation containing two synthetic TLR ligands (GLA and 3M-052) that enhanced antigen-specific fecal IgA, serum IgG2a, a mixed IFNγ and IL-17A cytokine profile from splenocytes, and protective efficacy following intranasal administration with the LecA antigen. By applying a statistical design of experiments (DOE) and desirability function approach, we now describe the optimization of the dose of each vaccine formulation component (LecA, GLA, 3M-052, and liposome) as well as the excipient composition (acyl chain length and saturation; PEGylated lipid:phospholipid ratio; and presence of antioxidant, tonicity, or viscosity agents) to maximize desired immunogenicity characteristics while maintaining physicochemical stability. This DOE/desirability index approach led to the identification of a lead candidate composition that demonstrated immune response durability and protective efficacy in the mouse model, as well as an assessment of the impact of each active vaccine formulation component on protection. Thus, we demonstrate that both GLA and 3M-052 are required for statistically significant protective efficacy. We also show that immunogenicity and efficacy results differ in female vs male mice, and the differences appear to be at least partly associated with adjuvant formulation composition.
Collapse
Affiliation(s)
- Mayuresh M Abhyankar
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia Health System, Charlottesville, VA, United States
| | - Mark T Orr
- Infectious Disease Research Institute (IDRI), Seattle, WA, United States.,Department of Global Health, University of Washington, Seattle, WA, United States
| | - Robert Kinsey
- Infectious Disease Research Institute (IDRI), Seattle, WA, United States
| | - Sandra Sivananthan
- Infectious Disease Research Institute (IDRI), Seattle, WA, United States
| | - Andrew J Nafziger
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia Health System, Charlottesville, VA, United States
| | - David N Oakland
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia Health System, Charlottesville, VA, United States
| | - Mary K Young
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia Health System, Charlottesville, VA, United States
| | - Laura Farr
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia Health System, Charlottesville, VA, United States
| | - Md Jashim Uddin
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia Health System, Charlottesville, VA, United States
| | - Jhansi L Leslie
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia Health System, Charlottesville, VA, United States
| | - Stacey L Burgess
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia Health System, Charlottesville, VA, United States
| | - Hong Liang
- Infectious Disease Research Institute (IDRI), Seattle, WA, United States
| | - Ines De Lima
- Infectious Disease Research Institute (IDRI), Seattle, WA, United States
| | - Elise Larson
- Infectious Disease Research Institute (IDRI), Seattle, WA, United States
| | - Jeffrey A Guderian
- Infectious Disease Research Institute (IDRI), Seattle, WA, United States
| | - Susan Lin
- Infectious Disease Research Institute (IDRI), Seattle, WA, United States
| | - Aaron Kahn
- Infectious Disease Research Institute (IDRI), Seattle, WA, United States
| | - Prakash Ghosh
- Infectious Disease Research Institute (IDRI), Seattle, WA, United States
| | - Sierra Reed
- Infectious Disease Research Institute (IDRI), Seattle, WA, United States
| | - Mark A Tomai
- 3M Corporate Research Materials Laboratory, 3M Center, St Paul, MN, United States
| | | | - William A Petri
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia Health System, Charlottesville, VA, United States
| | - Christopher B Fox
- Infectious Disease Research Institute (IDRI), Seattle, WA, United States.,Department of Global Health, University of Washington, Seattle, WA, United States
| |
Collapse
|
5
|
Damalanka VC, Maddirala AR, Janetka JW. Novel approaches to glycomimetic design: development of small molecular weight lectin antagonists. Expert Opin Drug Discov 2021; 16:513-536. [PMID: 33337918 DOI: 10.1080/17460441.2021.1857721] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Introduction: The direct binding of carbohydrates or those presented on glycoproteins or glycolipids to proteins is the primary effector of many biological responses. One class of carbohydrate-binding proteins, lectins are important in all forms of life. Their functions in animals include regulating cell adhesion, glycoprotein synthesis, metabolism, and mediating immune system response while in bacteria and viruses a lectin-mediated carbohydrate-protein interaction between host cells and the pathogen initiates pathogenesis of the infection.Areas covered: In this review, the authors outline the structural and functional pathogenesis of lectins from bacteria, amoeba, and humans. Mimics of a carbohydrate are referred to as glycomimetics, which are much smaller in molecular weight and are devised to mimic the key binding interactions of the carbohydrate while also allowing additional contacts with the lectin. This article emphasizes the various approaches used over the past 10-15 years in the rational design of glycomimetic ligands.Expert opinion: Medicinal chemistry efforts enabled by X-ray structural biology have identified small-molecule glycomimetic lectin antagonists that have entered or are nearing clinical trials. A common theme in these strategies is the use of biaryl ring systems to emulate the carbohydrate interactions with the lectin.
Collapse
Affiliation(s)
- Vishnu C Damalanka
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis USA
| | - Amarendar Reddy Maddirala
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis USA
| | - James W Janetka
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis USA
| |
Collapse
|
6
|
Comparative Pathobiology of the Intestinal Protozoan Parasites Giardia lamblia, Entamoeba histolytica, and Cryptosporidium parvum. Pathogens 2019; 8:pathogens8030116. [PMID: 31362451 PMCID: PMC6789772 DOI: 10.3390/pathogens8030116] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 07/25/2019] [Accepted: 07/25/2019] [Indexed: 02/07/2023] Open
Abstract
Protozoan parasites can infect the human intestinal tract causing serious diseases. In the following article, we focused on the three most prominent intestinal protozoan pathogens, namely, Giardia lamblia, Entamoeba histolytica, and Cryptosporidium parvum. Both C. parvum and G. lamblia colonize the duodenum, jejunum, and ileum and are the most common causative agents of persistent diarrhea (i.e., cryptosporidiosis and giardiasis). Entamoeba histolytica colonizes the colon and, unlike the two former pathogens, may invade the colon wall and disseminate to other organs, mainly the liver, thereby causing life-threatening amebiasis. Here, we present condensed information concerning the pathobiology of these three diseases.
Collapse
|
7
|
Abhyankar MM, Orr MT, Lin S, Suraju MO, Simpson A, Blust M, Pham T, Guderian JA, Tomai MA, Elvecrog J, Pedersen K, Petri WA, Fox CB. Adjuvant composition and delivery route shape immune response quality and protective efficacy of a recombinant vaccine for Entamoeba histolytica. NPJ Vaccines 2018; 3:22. [PMID: 29900011 PMCID: PMC5988657 DOI: 10.1038/s41541-018-0060-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 04/26/2018] [Accepted: 05/03/2018] [Indexed: 12/20/2022] Open
Abstract
Amebiasis caused by Entamoeba histolytica is the third leading cause of parasitic mortality globally, with some 100,000 deaths annually, primarily among young children. Protective immunity to amebiasis is associated with fecal IgA and IFN-γ in humans; however, no vaccine exists. We have previously identified recombinant LecA as a potential protective vaccine antigen. Here we describe the development of a stable, manufacturable PEGylated liposomal adjuvant formulation containing two synthetic Toll-like receptor (TLR) ligands: GLA (TLR4) and 3M-052 (TLR7/8). The liposomes stimulated production of monocyte/macrophage chemoattractants MCP-1 and Mip-1β, and Th1-associated cytokines IL-12p70 and IFN-γ from human whole blood dependent on TLR ligand composition and dose. The liposomes also demonstrated acceptable physicochemical compatibility with the recombinant LecA antigen. Whereas mice immunized with LecA and GLA-liposomes demonstrated enhanced antigen-specific fecal IgA titers, mice immunized with LecA and 3M-052-liposomes showed a stronger Th1 immune profile. Liposomes containing GLA and 3M-052 together elicited both LecA-specific fecal IgA and Th1 immune responses. Furthermore, the quality of the immune response could be modulated with modifications to the liposomal formulation based on PEG length. Compared to subcutaneous administration, the optimized liposome adjuvant composition with LecA antigen administered intranasally resulted in significantly enhanced fecal IgA, serum IgG2a, as well as systemic IFN-γ and IL-17A levels in mice. The optimized intranasal regimen provided greater than 80% protection from disease as measured by parasite antigen in the colon. This work demonstrates the physicochemical and immunological characterization of an optimized mucosal adjuvant system containing a combination of TLR ligands with complementary activities and illustrates the importance of adjuvant composition and route of delivery to enhance a multifaceted and protective immune response to amebiasis.
Collapse
Affiliation(s)
- Mayuresh M. Abhyankar
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia Health System, Charlottesville, VA USA
| | - Mark T. Orr
- IDRI, 1616 Eastlake Ave E, Seattle, WA USA
- Department of Global Health, University of Washington, Seattle, WA USA
| | - Susan Lin
- IDRI, 1616 Eastlake Ave E, Seattle, WA USA
| | - Mohammed O. Suraju
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia Health System, Charlottesville, VA USA
| | | | | | - Tiep Pham
- IDRI, 1616 Eastlake Ave E, Seattle, WA USA
| | | | - Mark A. Tomai
- 3M Drug Delivery Systems, 3M Center, 275-3E-10, St. Paul, MN USA
| | - James Elvecrog
- 3M Drug Delivery Systems, 3M Center, 275-3E-10, St. Paul, MN USA
| | | | - William A. Petri
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia Health System, Charlottesville, VA USA
| | - Christopher B. Fox
- IDRI, 1616 Eastlake Ave E, Seattle, WA USA
- Department of Global Health, University of Washington, Seattle, WA USA
| |
Collapse
|
8
|
Ngobeni R, Abhyankar MM, Jiang NM, Farr LA, Samie A, Haque R, Moonah SN. Entamoeba histolytica-Encoded Homolog of Macrophage Migration Inhibitory Factor Contributes to Mucosal Inflammation during Amebic Colitis. J Infect Dis 2017; 215:1294-1302. [PMID: 28186296 DOI: 10.1093/infdis/jix076] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 02/06/2017] [Indexed: 12/14/2022] Open
Abstract
Understanding the mechanisms by which Entamoeba histolytica drives gut inflammation is critical for the development of improved preventive and therapeutic strategies. E. histolytica encodes a homolog of the human cytokine macrophage migration inhibitory factor (MIF). Here, we investigated the role of E. histolytica MIF (EhMIF) during infection. We found that the concentration of fecal EhMIF correlated with the level of intestinal inflammation in persons with intestinal amebiasis. Mice treated with antibodies that specifically block EhMIF had reduced chemokine expression and neutrophil infiltration in the mucosa. In addition to antibody-mediated neutralization, we used a genetic approach to test the effect of EhMIF on mucosal inflammation. Mice infected with parasites overexpressing EhMIF had increased chemokine expression, neutrophil influx, and mucosal damage. Together, these results uncover a specific parasite protein that increases mucosal inflammation, expands our knowledge of host-parasite interaction during amebic colitis, and highlights a potential immunomodulatory target.
Collapse
Affiliation(s)
- Renay Ngobeni
- Department of Medicine, University of Virginia Health System, Charlottesville
| | | | - Nona M Jiang
- Department of Medicine, University of Virginia Health System, Charlottesville
| | - Laura A Farr
- Department of Medicine, University of Virginia Health System, Charlottesville
| | - Amidou Samie
- Department of Microbiology, University of Venda, Limpopo Province, South Africa; and
| | - Rashidul Haque
- International Centre for Diarrheal Disease Research, Dhaka, Bangladesh
| | - Shannon N Moonah
- Department of Medicine, University of Virginia Health System, Charlottesville
| |
Collapse
|
9
|
Verma K, Datta S. Heavy subunit of cell surface Gal/GalNAc lectin (Hgl) undergoes degradation via endo-lysosomal compartments in Entamoeba histolytica. Small GTPases 2017; 10:456-465. [PMID: 28613117 DOI: 10.1080/21541248.2017.1340106] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The human gut parasite Entamoeba histolytica uses a multifunctional virulence factor, Hgl, a cell surface transmembrane receptor subunit of Gal/GalNAc lectin that contributes to adhesion, invasion, cytotoxicity and immune response in the host. At present, the physiologic importance of Hgl receptor is mostly known for pathogenicity of E. histolytica. However, the molecular mechanisms of Hgl trafficking events and their association with the intracellular membrane transport machinery are largely unknown. We used biochemical and microscopy-based assays to understand the Hgl trafficking in the amoebic trophozoites. Our results suggest that the Hgl is constitutively degraded through delivery into amoebic lysosome-like compartments. Further, we also observed that the Hgl was significantly colocalized with amoebic Rab GTPases such as EhRab5, EhRab7A, and EhRab11B. While, we detected association of Hgl with all these Rab GTPases in early vacuolar compartments, only EhRab7A remains associated with Hgl till its transport to amoebic lysosome-like compartments.
Collapse
Affiliation(s)
- Kuldeep Verma
- Department of Biological Science, Indian Institute of Science Education and Research Bhopal , Bhauri , India
| | - Sunando Datta
- Department of Biological Science, Indian Institute of Science Education and Research Bhopal , Bhauri , India
| |
Collapse
|
10
|
Abhyankar MM, Noor Z, Tomai MA, Elvecrog J, Fox CB, Petri WA. Nanoformulation of synergistic TLR ligands to enhance vaccination against Entamoeba histolytica. Vaccine 2017; 35:916-922. [PMID: 28089548 PMCID: PMC5301946 DOI: 10.1016/j.vaccine.2016.12.057] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Revised: 11/23/2016] [Accepted: 12/26/2016] [Indexed: 02/07/2023]
Abstract
Diarrheal infectious diseases represent a major cause of global morbidity and mortality. There is an urgent need for vaccines against diarrheal pathogens, especially parasites. Modern subunit vaccines rely on combining a highly purified antigen with an adjuvant to increase their efficacy. In the present study, we evaluated the ability of a nanoliposome adjuvant system to trigger a strong mucosal immune response to the Entamoeba histolytica Gal/GalNAc lectin LecA antigen. CBA/J mice were immunized with alum, emulsion or liposome based formulations containing synthetic TLR agonists. A liposome formulation containing TLR4 and TLR7/8 agonists was selected based on its ability to generate intestinal IgA, plasma IgG2a/IgG1, IFN-γ and IL-17A. Immunization with a mucosal prime followed by a parenteral boost generated a high mucosal IgA response that inhibited adherence of parasites to mammalian cells. Inclusion of the immune potentiator all-trans retinoic acid in the regimen further improved the mucosal IgA response. Immunization protected from infection with up to 55% efficacy. Our results show that a nanoliposome delivery system containing TLR agonists is a promising prospect for the development of vaccines against enteric pathogens, especially when a multifaceted immune response is desired.
Collapse
Affiliation(s)
- Mayuresh M Abhyankar
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, VA 22908, United States.
| | - Zannatun Noor
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, VA 22908, United States
| | - Mark A Tomai
- 3M Drug Delivery Systems, 3M Center, 275-3E-10, St Paul, MN 55144, USA
| | - James Elvecrog
- 3M Drug Delivery Systems, 3M Center, 275-3E-10, St Paul, MN 55144, USA
| | - Christopher B Fox
- IDRI, Seattle, WA, USA; Department of Global Health, University of Washington, Seattle, WA 98104, USA
| | - William A Petri
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, VA 22908, United States.
| |
Collapse
|
11
|
Garcia LS. Protozoa. Infect Dis (Lond) 2017. [DOI: 10.1016/b978-0-7020-6285-8.00191-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
12
|
Singh RS, Walia AK, Kanwar JR, Kennedy JF. Amoebiasis vaccine development: A snapshot on E. histolytica with emphasis on perspectives of Gal/GalNAc lectin. Int J Biol Macromol 2016; 91:258-68. [DOI: 10.1016/j.ijbiomac.2016.05.043] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 05/10/2016] [Accepted: 05/11/2016] [Indexed: 01/10/2023]
|
13
|
Yang HJ, Zhang JY, Wei C, Yang LY, Zuo QF, Zhuang Y, Feng YJ, Srinivas S, Zeng H, Zou QM. Immunisation With Immunodominant Linear B Cell Epitopes Vaccine of Manganese Transport Protein C Confers Protection against Staphylococcus aureus Infection. PLoS One 2016; 11:e0149638. [PMID: 26895191 PMCID: PMC4764517 DOI: 10.1371/journal.pone.0149638] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 02/03/2016] [Indexed: 12/15/2022] Open
Abstract
Vaccination strategies for Staphylococcus aureus, particularly methicillin-resistant S. aureus (MRSA) infections have attracted much research attention. Recent efforts have been made to select manganese transport protein C, or manganese binding surface lipoprotein C (MntC), which is a metal ion associated with pathogen nutrition uptake, as potential candidates for an S. aureus vaccine. Although protective humoral immune responses to MntC are well-characterised, much less is known about detailed MntC-specific B cell epitope mapping and particularly epitope vaccines, which are less-time consuming and more convenient. In this study, we generated a recombinant protein rMntC which induced strong antibody response when used for immunisation with CFA/IFA adjuvant. On the basis of the results, linear B cell epitopes within MntC were finely mapped using a series of overlapping synthetic peptides. Further studies indicate that MntC113-136, MntC209-232, and MntC263-286 might be the original linear B-cell immune dominant epitope of MntC, furthermore, three-dimensional (3-d) crystal structure results indicate that the three immunodominant epitopes were displayed on the surface of the MntC antigen. On the basis of immunodominant MntC113-136, MntC209-232, and MntC263-286 peptides, the epitope vaccine for S. aureus induces a high antibody level which is biased to TH2 and provides effective immune protection and strong opsonophagocytic killing activity in vitro against MRSA infection. In summary, the study provides strong proof of the optimisation of MRSA B cell epitope vaccine designs and their use, which was based on the MntC antigen in the development of an MRSA vaccine.
Collapse
Affiliation(s)
- Hui-Jie Yang
- National Engineering Research Centre for Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing 400038, PR China
| | - Jin-Yong Zhang
- National Engineering Research Centre for Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing 400038, PR China
| | - Chao Wei
- National Engineering Research Centre for Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing 400038, PR China
| | - Liu-Yang Yang
- National Engineering Research Centre for Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing 400038, PR China
| | - Qian-Fei Zuo
- National Engineering Research Centre for Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing 400038, PR China
| | - Yuan Zhuang
- National Engineering Research Centre for Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing 400038, PR China
| | - You-Jun Feng
- School of Basic Medical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, PR China
| | - Swaminath Srinivas
- Department of Biochemistry, University of Illinois, Urbana, IL, 61801, United States of America
| | - Hao Zeng
- National Engineering Research Centre for Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing 400038, PR China
- * E-mail: (HZ); (QMZ)
| | - Quan-Ming Zou
- National Engineering Research Centre for Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing 400038, PR China
- * E-mail: (HZ); (QMZ)
| |
Collapse
|
14
|
Min X, Feng M, Guan Y, Man S, Fu Y, Cheng X, Tachibana H. Evaluation of the C-Terminal Fragment of Entamoeba histolytica Gal/GalNAc Lectin Intermediate Subunit as a Vaccine Candidate against Amebic Liver Abscess. PLoS Negl Trop Dis 2016; 10:e0004419. [PMID: 26824828 PMCID: PMC4732598 DOI: 10.1371/journal.pntd.0004419] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Accepted: 01/11/2016] [Indexed: 12/29/2022] Open
Abstract
Background Entamoeba histolytica is an intestinal protozoan parasite that causes amoebiasis, including amebic dysentery and liver abscesses. E. histolytica invades host tissues by adhering onto cells and phagocytosing them depending on the adaptation and expression of pathogenic factors, including Gal/GalNAc lectin. We have previously reported that E. histolytica possesses multiple CXXC sequence motifs, with the intermediate subunit of Gal/GalNAc lectin (i.e., Igl) as a key factor affecting the amoeba's pathogenicity. The present work showed the effect of immunization with recombinant Igl on amebic liver abscess formation and the corresponding immunological properties. Methodology/Principal Findings A prokaryotic expression system was used to prepare the full-length Igl and the N-terminal, middle, and C-terminal fragments (C-Igl) of Igl. Vaccine efficacy was assessed by challenging hamsters with an intrahepatic injection of E. histolytica trophozoites. Hamsters intramuscularly immunized with full-length Igl and C-Igl were found to be 92% and 96% immune to liver abscess formation, respectively. Immune-response evaluation revealed that C-Igl can generate significant humoral immune responses, with high levels of antibodies in sera from immunized hamsters inhibiting 80% of trophozoites adherence to mammalian cells and inducing 80% more complement-mediated lysis of trophozoites compared with the control. C-Igl was further assessed for its cellular response by cytokine-gene qPCR analysis. The productions of IL-4 (8.4-fold) and IL-10 (2-fold) in the spleen cells of immunized hamsters were enhanced after in vitro stimulation. IL-4 expression was also supported by increased programmed cell death 1 ligand 1 gene. Conclusions/Significance Immunobiochemical characterization strongly suggests the potential of recombinant Igl, especially the C-terminal fragment, as a vaccine candidate against amoebiasis. Moreover, protection through Th2-cell participation enabled effective humoral immunity against amebic liver abscesses. Amebiasis, a neglected tropical disease caused by the protozoan parasite Entamoeba histolytica, is the second leading cause of death from protozoan diseases. Vaccination is considered as an effective strategy against amebiasis; however, clinical vaccines have yet to be developed. We previously reported that the intermediate subunit of Gal/GalNAc lectin (Igl) of E. histolytica is a key factor related to the adherence and cytotoxicity of this parasite to host cells. This study focused on the immune efficacy and immunological characterization of recombinant Igl and its fragments. Highly effective protection was observed in the hamsters immunized intramuscularly with the C-terminal fragment of Igl (C-Igl). C-Igl was further assessed to determine the immunological basis of protection. The immunized hamsters generated high levels of specific antibodies; these hamsters also showed an enhanced complementary-mediated lysis. The spleen cells from the immunized hamsters produced the cytokines IL-4, IL-10, and programmed cell death 1 ligand 1 after these cells were stimulated by C-Igl in vitro. These results demonstrate that recombinant Igl, particularly the C-terminal fragment, is a candidate vaccine for amebiasis. Nevertheless, further studies on Igl should be conducted to explore the preliminary steps of the development of vaccines for human amebiasis.
Collapse
Affiliation(s)
- Xiangyang Min
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Meng Feng
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai, China
- Department of Infectious Diseases, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Yue Guan
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Suqin Man
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yongfeng Fu
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai, China
- Department of Infectious Diseases, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Xunjia Cheng
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai, China
- Department of Infectious Diseases, Tokai University School of Medicine, Isehara, Kanagawa, Japan
- * E-mail: (XC); (HT)
| | - Hiroshi Tachibana
- Department of Infectious Diseases, Tokai University School of Medicine, Isehara, Kanagawa, Japan
- * E-mail: (XC); (HT)
| |
Collapse
|
15
|
|
16
|
Watanabe K, Petri WA. Molecular biology research to benefit patients with Entamoeba histolytica infection. Mol Microbiol 2015; 98:208-17. [PMID: 26173474 DOI: 10.1111/mmi.13131] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/13/2015] [Indexed: 12/28/2022]
Abstract
The development of molecular microbiology has made it possible for us to deepen our understanding of the pathogenesis of amebiasis. Research using the trophozoite form of Entamoeba histolytica has clearly shown us the importance of the interface between the parasite and host cells in vitro. Immuno-pathogenesis after excystation was similarly well advanced by the use of a novel murine model of amebic colitis. However, it is still challenging to apply these findings to clinical and epidemiological settings. This is mainly because of the lack of a complete infection animal model of amebiasis by oral-fecal infection. Moreover, in vitro experiments have predominantly been performed using the same axenic cultured strain HM-1: IMSS isolated about 50 years ago, whereas highly diverse strains are prevalent all over the world. Translational research informed by clinical observations has the greatest potential for the development of effective interventions. Here, we highlight discoveries of the experiments designed from cohort observation and discuss remaining problems to be solved.
Collapse
Affiliation(s)
- Koji Watanabe
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, USA.,AIDS Clinical Center, National Center for Global Health and Medicine, Tokyo, Japan
| | - William A Petri
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
17
|
Chatterjee A, Ratner DM, Ryan CM, Johnson PJ, O’Keefe BR, Secor WE, Anderson DJ, Robbins PW, Samuelson J. Anti-Retroviral Lectins Have Modest Effects on Adherence of Trichomonas vaginalis to Epithelial Cells In Vitro and on Recovery of Tritrichomonas foetus in a Mouse Vaginal Model. PLoS One 2015; 10:e0135340. [PMID: 26252012 PMCID: PMC4529277 DOI: 10.1371/journal.pone.0135340] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 07/21/2015] [Indexed: 11/24/2022] Open
Abstract
Trichomonas vaginalis causes vaginitis and increases the risk of HIV transmission by heterosexual sex, while Tritrichomonas foetus causes premature abortion in cattle. Our goals were to determine the effects, if any, of anti-retroviral lectins, which are designed to prevent heterosexual transmission of HIV, on adherence of Trichomonas to ectocervical cells and on Tritrichomonas infections in a mouse model. We show that Trichomonas Asn-linked glycans (N-glycans), like those of HIV, bind the mannose-binding lectin (MBL) that is part of the innate immune system. N-glycans of Trichomonas and Tritrichomonas bind anti-retroviral lectins (cyanovirin-N and griffithsin) and the 2G12 monoclonal antibody, each of which binds HIV N-glycans. Binding of cyanovirin-N appears to be independent of susceptibility to metronidazole, the major drug used to treat Trichomonas. Anti-retroviral lectins, MBL, and galectin-1 cause Trichomonas to self-aggregate and precipitate. The anti-retroviral lectins also increase adherence of ricin-resistant mutants, which are less adherent than parent cells, to ectocervical cell monolayers and to organotypic EpiVaginal tissue cells. Topical application of either anti-retroviral lectins or yeast N-glycans decreases by 40 to 70% the recovery of Tritrichomonas from the mouse vagina. These results, which are explained by a few simple models, suggest that the anti-retroviral lectins have a modest potential for preventing or treating human infections with Trichomonas.
Collapse
Affiliation(s)
- Aparajita Chatterjee
- Department of Molecular and Cell Biology, Boston University Goldman School of Dental Medicine, Boston, Massachusetts, United States of America
| | - Daniel M. Ratner
- Department of Molecular and Cell Biology, Boston University Goldman School of Dental Medicine, Boston, Massachusetts, United States of America
| | - Christopher M. Ryan
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Patricia J. Johnson
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Barry R. O’Keefe
- Molecular Targets Laboratory, Center for Cancer Research, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - W. Evan Secor
- Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Deborah J. Anderson
- Department of Obstetrics and Gynecology, Boston Medical Center, Boston, Massachusetts, United States of America
| | - Phillips W. Robbins
- Department of Molecular and Cell Biology, Boston University Goldman School of Dental Medicine, Boston, Massachusetts, United States of America
| | - John Samuelson
- Department of Molecular and Cell Biology, Boston University Goldman School of Dental Medicine, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
18
|
Ralston KS. Chew on this: amoebic trogocytosis and host cell killing by Entamoeba histolytica. Trends Parasitol 2015; 31:442-52. [PMID: 26070402 DOI: 10.1016/j.pt.2015.05.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 05/04/2015] [Accepted: 05/05/2015] [Indexed: 01/23/2023]
Abstract
Entamoeba histolytica was named 'histolytica' (from histo-, 'tissue'; lytic-, 'dissolving') for its ability to destroy host tissues. Direct killing of host cells by the amoebae is likely to be the driving factor that underlies tissue destruction, but the mechanism was unclear. We recently showed that, after attaching to host cells, amoebae bite off and ingest distinct host cell fragments, and that this contributes to cell killing. We review this process, termed 'amoebic trogocytosis' (trogo-, 'nibble'), and how this process interplays with phagocytosis, or whole cell ingestion, in this organism. 'Nibbling' processes have been described in other microbes and in multicellular organisms. The discovery of amoebic trogocytosis in E. histolytica may also shed light on an evolutionarily conserved process for intercellular exchange.
Collapse
Affiliation(s)
- Katherine S Ralston
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA 95616, USA.
| |
Collapse
|
19
|
Analysis of the isomerase and chaperone-like activities of an amebic PDI (EhPDI). BIOMED RESEARCH INTERNATIONAL 2015; 2015:286972. [PMID: 25695056 PMCID: PMC4324885 DOI: 10.1155/2015/286972] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Revised: 11/20/2014] [Accepted: 11/24/2014] [Indexed: 12/20/2022]
Abstract
Protein disulfide isomerases (PDI) are eukaryotic oxidoreductases that catalyze the formation and rearrangement of disulfide bonds during folding of substrate proteins. Structurally, PDI enzymes share as a common feature the presence of at least one active thioredoxin-like domain. PDI enzymes are also involved in holding, refolding, and degradation of unfolded or misfolded proteins during stressful conditions. The EhPDI enzyme (a 38 kDa polypeptide with two active thioredoxin-like domains) has been used as a model to gain insights into protein folding and disulfide bond formation in E. histolytica. Here, we performed a functional complementation assay, using a ΔdsbC mutant of E. coli, to test whether EhPDI exhibits isomerase activity in vivo. Our preliminary results showed that EhPDI exhibits isomerase activity; however, further mutagenic analysis revealed significant differences in the functional role of each thioredoxin-like domain. Additional studies confirmed that EhPDI protects heat-labile enzymes against thermal inactivation, extending our knowledge about its chaperone-like activity. The characterization of EhPDI, as an oxidative folding catalyst with chaperone-like function, represents the initial step to dissect the molecular mechanisms involved in protein folding in E. histolytica.
Collapse
|