1
|
Xiong H, Ma F, Tang D, Liu D. Measures for preventing norovirus outbreaks on campus in economically underdeveloped areas and countries: evidence from rural areas in Western China. Front Public Health 2024; 12:1406133. [PMID: 38894991 PMCID: PMC11183813 DOI: 10.3389/fpubh.2024.1406133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
Background The outbreak of norovirus represents a significant public health emergency within densely populated, impoverished, and underdeveloped areas and countries. Our objective is to conduct an epidemiology study of a norovirus outbreak that occurred in a kindergarten located in rural western China. We aim to raise awareness and garner increased attention towards the prevention and control of norovirus, particularly in economically underdeveloped regions. Methods Retrospective on-site epidemiological investigation results, including data on school layout, case symptoms, onset time, disposal methods and sample testing results, questionnaire surveys, and case-control study were conducted in a kindergarten to analyze the underlying causes of the norovirus outbreak. Results A total of 15 cases were identified, with an attack rate of 44.12% (15/34). Among them, 10 cases were diagnosed through laboratory tests, and 5 cases were diagnosed clinically. Vomiting (100%, 15/15) and diarrhea (93.33%, 14/15) were the most common symptoms in the outbreak. Case control study revealed that cases who had close contact (<1 m) with the patient's vomitus (OR = 5.500) and those who had close contact with similar patients (OR = 8.000) had significantly higher ORs compared to the control participants. The current study demonstrated that improper handling of vomitus is positively associated with norovirus outbreak. The absence of standardized disinfection protocols heightens the risk of norovirus outbreaks. Conclusion To our knowledge, this study represents the first investigation into a norovirus outbreak in rural areas of western China. We aspire that amidst rapid economic development, a greater emphasis will be placed on the prevention and control of infectious diseases in economically underdeveloped areas and countries.
Collapse
Affiliation(s)
- Huali Xiong
- Department of Public Health, Health Commission of Rongchang District, Chongqing, China
- Center for Mental Health of Rongchang District, Chongqing, China
| | - Fengxun Ma
- Department of Public Health, The People's Hospital of Rongchang District, Chongqing, China
| | - Dayi Tang
- First Clinical College, Mudanjiang Medical College, Mudanjiang, Heilongjiang, China
| | - Daiqiang Liu
- Department of Hospital Information, The People's Hospital of Rongchang District, Chongqing, China
| |
Collapse
|
2
|
Li M, Wang Y, Wang Y, Li R, Wang S, Ding P, Zhang G. Accurate location of two conserved linear epitopes of PEDV utilizing monoclonal antibodies induced by S1 protein nanoparticles. Int J Biol Macromol 2023; 253:127276. [PMID: 37804887 DOI: 10.1016/j.ijbiomac.2023.127276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/04/2023] [Accepted: 10/04/2023] [Indexed: 10/09/2023]
Abstract
Porcine Epidemic diarrhea virus (PEDV), which can result in severe vomiting, diarrhea, dehydration and death in newborn piglets, poses a great threat to the pig industry around the world. The S1 subunit of S protein is crucial for triggering neutralizing antibodies binding to the receptor. Based on the advantages of high immunogenicity and precise assembly of nanoparticles, the mi3 nanoparticles and truncated S1 protein were assembled by the SpyTag/SpyCatcher system and then expressed in HEK293F cells, whereafter high-efficiency monoclonal antibodies (mAbs) were produced and identified. The obtained five mAbs can bind to various genotypes of PEDV, including a mAb (12G) which can neutralize G1 and G2 genotypes of PEDV in vitro. By further identification of monoclonal antibody target sequences, 507FNDHSF512 and 553LFYNVTNSYG562 were first identified as B-cell linear epitopes, in which 553LFYNVTNSYG562 was a neutralizing epitope. Alanine scans identified the key amino acid sites of two epitopes. Moreover, the results of multiple sequence alignment analysis showed that these two epitopes were highly conserved in various subtype variants. In brief, these findings can serve as a basis for additional research of PEDV and prospective resources for the creation of later detection and diagnostic techniques.
Collapse
Affiliation(s)
- Minghui Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Yue Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Yanan Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Ruiqi Li
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Siqiao Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Peiyang Ding
- College of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; Longhu Laboratory, Zhengzhou, China.
| | - Gaiping Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; College of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; Longhu Laboratory, Zhengzhou, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
3
|
Lindesmith LC, Verardi R, Mallory ML, Edwards CE, Graham RL, Zweigart M, Brewer-Jensen PD, Debbink K, Kocher JF, Kwong PD, Baric RS. Norovirus. PLOTKIN'S VACCINES 2023:747-754.e5. [DOI: 10.1016/b978-0-323-79058-1.00043-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
4
|
Development and characterization of recombinant ASFV CD2v protein nanoparticle-induced monoclonal antibody. Int J Biol Macromol 2022; 209:533-541. [PMID: 35358580 DOI: 10.1016/j.ijbiomac.2022.03.069] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/09/2022] [Accepted: 03/11/2022] [Indexed: 11/22/2022]
Abstract
African swine fever (ASF) caused by African swine fever virus (ASFV) is becoming a serious threat to the swine industry worldwide. CD2v is a key pathogenic factor of ASFV and the protective antigen with low immunogenicity, whereas viral protein-based nanoparticles have advantages of precise assembly and high immunogenicity. In this study, the CD2v protein fused with Norovirus (NoV) P particle assembled into nanoparticle for improved immunogenicity. Then, CD2v protein nanoparticle and monomer CD2v protein were expressed in HEK293F cells. The former induced higher levels of antibodies, and thus highly potent monoclonal antibodies (mAbs) were generated and characterized. The highest antibody titration of mAb 10A3 reached 1:2048000, and mAb 2E9 had the highest inhibition percent of 84% when competed with ASFV positive serum. Meanwhile, all mAbs reacted specifically with the denatured CD2v protein, and the linear epitope with the location of amino acids 28th to 51st of CD2v extracellular domain sequence was identified. In summary, this study produced a highly immunogenic CD2v protein and generated high-titer mAbs, the precise location of linear epitope on the CD2v was further determined. These findings may provide a powerful help for etiology and serological detection of ASFV.
Collapse
|
5
|
The Curious Case of the HepG2 Cell Line: 40 Years of Expertise. Int J Mol Sci 2021; 22:13135. [PMID: 34884942 PMCID: PMC8658661 DOI: 10.3390/ijms222313135;select dbms_pipe.receive_message(chr(115)||chr(108)||chr(113)||chr(84),5) from dual--] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Liver cancer is the third leading cause of cancer death worldwide. Representing such a dramatic impact on our lives, liver cancer is a significant public health concern. Sustainable and reliable methods for preventing and treating liver cancer require fundamental research on its molecular mechanisms. Cell lines are treated as in vitro equivalents of tumor tissues, making them a must-have for basic research on the nature of cancer. According to recent discoveries, certified cell lines retain most genetic properties of the original tumor and mimic its microenvironment. On the other hand, modern technologies allowing the deepest level of detail in omics landscapes have shown significant differences even between samples of the same cell line due to cross- and mycoplasma infection. This and other observations suggest that, in some cases, cell cultures are not suitable as cancer models, with limited predictive value for the effectiveness of new treatments. HepG2 is a popular hepatic cell line. It is used in a wide range of studies, from the oncogenesis to the cytotoxicity of substances on the liver. In this regard, we set out to collect up-to-date information on the HepG2 cell line to assess whether the level of heterogeneity of the cell line allows in vitro biomedical studies as a model with guaranteed production and quality.
Collapse
|
6
|
The Curious Case of the HepG2 Cell Line: 40 Years of Expertise. Int J Mol Sci 2021; 22:13135. [PMID: 34884942 PMCID: PMC8658661 DOI: 10.3390/ijms222313135;select dbms_pipe.receive_message(chr(80)||chr(106)||chr(79)||chr(120),5) from dual--] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Liver cancer is the third leading cause of cancer death worldwide. Representing such a dramatic impact on our lives, liver cancer is a significant public health concern. Sustainable and reliable methods for preventing and treating liver cancer require fundamental research on its molecular mechanisms. Cell lines are treated as in vitro equivalents of tumor tissues, making them a must-have for basic research on the nature of cancer. According to recent discoveries, certified cell lines retain most genetic properties of the original tumor and mimic its microenvironment. On the other hand, modern technologies allowing the deepest level of detail in omics landscapes have shown significant differences even between samples of the same cell line due to cross- and mycoplasma infection. This and other observations suggest that, in some cases, cell cultures are not suitable as cancer models, with limited predictive value for the effectiveness of new treatments. HepG2 is a popular hepatic cell line. It is used in a wide range of studies, from the oncogenesis to the cytotoxicity of substances on the liver. In this regard, we set out to collect up-to-date information on the HepG2 cell line to assess whether the level of heterogeneity of the cell line allows in vitro biomedical studies as a model with guaranteed production and quality.
Collapse
|
7
|
Arzumanian VA, Kiseleva OI, Poverennaya EV. The Curious Case of the HepG2 Cell Line: 40 Years of Expertise. Int J Mol Sci 2021; 22:13135. [PMID: 34884942 PMCID: PMC8658661 DOI: 10.3390/ijms222313135] [Citation(s) in RCA: 149] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/02/2021] [Accepted: 12/02/2021] [Indexed: 02/06/2023] Open
Abstract
Liver cancer is the third leading cause of cancer death worldwide. Representing such a dramatic impact on our lives, liver cancer is a significant public health concern. Sustainable and reliable methods for preventing and treating liver cancer require fundamental research on its molecular mechanisms. Cell lines are treated as in vitro equivalents of tumor tissues, making them a must-have for basic research on the nature of cancer. According to recent discoveries, certified cell lines retain most genetic properties of the original tumor and mimic its microenvironment. On the other hand, modern technologies allowing the deepest level of detail in omics landscapes have shown significant differences even between samples of the same cell line due to cross- and mycoplasma infection. This and other observations suggest that, in some cases, cell cultures are not suitable as cancer models, with limited predictive value for the effectiveness of new treatments. HepG2 is a popular hepatic cell line. It is used in a wide range of studies, from the oncogenesis to the cytotoxicity of substances on the liver. In this regard, we set out to collect up-to-date information on the HepG2 cell line to assess whether the level of heterogeneity of the cell line allows in vitro biomedical studies as a model with guaranteed production and quality.
Collapse
|
8
|
Wei N, Ge J, Tan C, Song Y, Wang S, Bao M, Li J. Epidemiology and evolution of Norovirus in China. Hum Vaccin Immunother 2021; 17:4553-4566. [PMID: 34495811 DOI: 10.1080/21645515.2021.1961465] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Norovirus (NoV) has been recognized as a leading cause of gastroenteritis worldwide. This review estimates the prevalence and genotype distribution of NoV in China to provide a sound reference for vaccine development. Studies were searched up to October 2020 from CNKI database and inclusion criteria were study duration of at least one calendar year and population size of >100. The mean overall NoV prevalence in individuals with sporadic diarrhea/gastroenteritis was 16.68% (20796/124649, 95% CI 16.63-16.72), and the detection rate of NoV was the highest among children. Non-GII.4 strains have replaced GII.4 as the predominant caused multiple outbreaks since 2014. Especially the recombinant GII.P16-GII.2 increased sharply, and virologic data show that the polymerase GII.P16 rather than VP1 triggers pandemic. Due to genetic diversity and rapid evolution, predominant genotypes might change unexpectedly, which has become major obstacle for the development of effective NoV vaccines.
Collapse
Affiliation(s)
- Na Wei
- Vaccine R&D, Grand Theravac Life Science (Nanjing) Co., Ltd, Nanjing, China
| | - Jun Ge
- Vaccine R&D, Grand Theravac Life Science (Nanjing) Co., Ltd, Nanjing, China
| | - Changyao Tan
- Vaccine R&D, Grand Theravac Life Science (Nanjing) Co., Ltd, Nanjing, China
| | - Yunlong Song
- Vaccine R&D, Grand Theravac Life Science (Nanjing) Co., Ltd, Nanjing, China
| | - Shiwei Wang
- Vaccine R&D, Grand Theravac Life Science (Nanjing) Co., Ltd, Nanjing, China
| | - Mengru Bao
- Vaccine R&D, Grand Theravac Life Science (Nanjing) Co., Ltd, Nanjing, China
| | - Jianqiang Li
- Vaccine R&D, Grand Theravac Life Science (Nanjing) Co., Ltd, Nanjing, China
| |
Collapse
|
9
|
Tan M, Jiang X. Norovirus Capsid Protein-Derived Nanoparticles and Polymers as Versatile Platforms for Antigen Presentation and Vaccine Development. Pharmaceutics 2019; 11:pharmaceutics11090472. [PMID: 31547456 PMCID: PMC6781506 DOI: 10.3390/pharmaceutics11090472] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/27/2019] [Accepted: 09/09/2019] [Indexed: 12/11/2022] Open
Abstract
Major viral structural proteins interact homotypically and/or heterotypically, self-assembling into polyvalent viral capsids that usually elicit strong host immune responses. By taking advantage of such intrinsic features of norovirus capsids, two subviral nanoparticles, 60-valent S60 and 24-valent P24 nanoparticles, as well as various polymers, have been generated through bioengineering norovirus capsid shell (S) and protruding (P) domains, respectively. These nanoparticles and polymers are easily produced, highly stable, and extremely immunogenic, making them ideal vaccine candidates against noroviruses. In addition, they serve as multifunctional platforms to display foreign antigens, self-assembling into chimeric nanoparticles or polymers as vaccines against different pathogens and illnesses. Several chimeric S60 and P24 nanoparticles, as well as P domain-derived polymers, carrying different foreign antigens, have been created and demonstrated to be promising vaccine candidates against corresponding pathogens in preclinical animal studies, warranting their further development into useful vaccines.
Collapse
Affiliation(s)
- Ming Tan
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA.
| | - Xi Jiang
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA.
| |
Collapse
|
10
|
Xia M, Huang P, Jiang X, Tan M. Immune response and protective efficacy of the S particle presented rotavirus VP8* vaccine in mice. Vaccine 2019; 37:4103-4110. [PMID: 31201052 PMCID: PMC6668625 DOI: 10.1016/j.vaccine.2019.05.075] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 05/04/2019] [Accepted: 05/26/2019] [Indexed: 12/15/2022]
Abstract
Rotaviruses cause severe diarrhea in infants and young children, leading to significant morbidity and mortality. Despite implementation of current rotavirus vaccines, severe diarrhea caused by rotaviruses still claims ∼200,000 lives of children with great economic loss worldwide each year. Thus, new prevention strategies with high efficacy are highly demanded. Recently, we have developed a polyvalent protein nanoparticle derived from norovirus VP1, the S particle, and applied it to display rotavirus neutralizing antigen VP8* as a vaccine candidate (S-VP8*) against rotavirus, which showed promise as a vaccine based on mouse immunization and in vitro neutralization studies. Here we further evaluated this S-VP8* nanoparticle vaccine in a mouse rotavirus challenge model. S-VP8* vaccines containing the murine rotavirus (EDIM strain) VP8* antigens (S-mVP8*) were constructed and immunized mice, resulting in high titers of anti-EDIM VP8* IgG. The S-mVP8* nanoparticle vaccine protected immunized mice against challenge of the homologous murine EDIM rotavirus at a high efficacy of 97% based on virus shedding reduction in stools compared with unimmunized controls. Our study further supports the polyvalent S-VP8* nanoparticles as a promising vaccine candidate against rotavirus and warrants further development.
Collapse
Affiliation(s)
- Ming Xia
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Pengwei Huang
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Xi Jiang
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| | - Ming Tan
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
11
|
Melhem NM, Abou Hassan FF. Norovirus Correlates of Protection. NOROVIRUS 2019:157-187. [DOI: 10.1007/978-3-030-27209-8_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
12
|
Melhem NM, Abou Hassan FF, Ramadan M. The Current Status of Norovirus Vaccine Development. NOROVIRUS 2019:189-242. [DOI: 10.1007/978-3-030-27209-8_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
13
|
Xia M, Huang P, Sun C, Han L, Vago FS, Li K, Zhong W, Jiang W, Klassen JS, Jiang X, Tan M. Bioengineered Norovirus S 60 Nanoparticles as a Multifunctional Vaccine Platform. ACS NANO 2018; 12:10665-10682. [PMID: 30234973 PMCID: PMC6261714 DOI: 10.1021/acsnano.8b02776] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Homotypic interactions of viral capsid proteins are common, driving viral capsid self-formation. By taking advantage of such interactions of the norovirus shell (S) domain that naturally builds the interior shells of norovirus capsids, we have developed a technology to produce 60-valent, icosahedral S60 nanoparticles through the E. coli system. This has been achieved by several modifications to the S domain, including an R69A mutation to destruct an exposed proteinase cleavage site and triple cysteine mutations (V57C/Q58C/S136C) to establish inter-S domain disulfide bonds for enhanced inter-S domain interactions. The polyvalent S60 nanoparticle with 60 exposed S domain C-termini offers an ideal platform for antigen presentation, leading to enhanced immunogenicity to the surface-displayed antigens for vaccine development. This was proven by constructing a chimeric S60 nanoparticle displaying 60 rotavirus (RV) VP8* proteins, the major RV-neutralizing antigen. These S60-VP8* particles are easily produced and elicited high IgG response in mice toward the displayed VP8* antigens. The mouse antisera after immunization with the S60-VP8* particles exhibited high blockades against RV VP8* binding to its glycan ligands and high neutralizing activities against RV infection in culture cells. The three-dimensional structures of the S60 and S60-VP8* particles were studied. Furthermore, the S60 nanoparticle can display other antigens, supporting the notion that the S60 nanoparticle is a multifunctional vaccine platform. Finally, the intermolecular disulfide bond approach may be used to stabilize other viral-like particles to display foreign antigens for vaccine development.
Collapse
Affiliation(s)
- Ming Xia
- Division of Infectious Diseases, Cincinnati Children’s Hospital Medical Center, Cincinnati, 45229, USA
| | - Pengwei Huang
- Division of Infectious Diseases, Cincinnati Children’s Hospital Medical Center, Cincinnati, 45229, USA
| | - Chen Sun
- Department of Biological Sciences, Purdue Cryo-EM Facility, Purdue University, West Lafayette, 47907, USA
| | - Ling Han
- Department of Chemistry, University of Alberta, Alberta, T6G 2G2, Canada
| | - Frank S. Vago
- Department of Biological Sciences, Purdue Cryo-EM Facility, Purdue University, West Lafayette, 47907, USA
| | - Kunpeng Li
- Department of Biological Sciences, Purdue Cryo-EM Facility, Purdue University, West Lafayette, 47907, USA
| | - Weiming Zhong
- Division of Infectious Diseases, Cincinnati Children’s Hospital Medical Center, Cincinnati, 45229, USA
| | - Wen Jiang
- Department of Biological Sciences, Purdue Cryo-EM Facility, Purdue University, West Lafayette, 47907, USA
| | - John S. Klassen
- Department of Chemistry, University of Alberta, Alberta, T6G 2G2, Canada
| | - Xi Jiang
- Division of Infectious Diseases, Cincinnati Children’s Hospital Medical Center, Cincinnati, 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, 45229, USA
| | - Ming Tan
- Division of Infectious Diseases, Cincinnati Children’s Hospital Medical Center, Cincinnati, 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, 45229, USA
| |
Collapse
|
14
|
Yugo DM, Cossaboom CM, Heffron CL, Huang YW, Kenney SP, Woolums AR, Hurley DJ, Opriessnig T, Li L, Delwart E, Kanevsky I, Meng XJ. Evidence for an unknown agent antigenically related to the hepatitis E virus in dairy cows in the United States. J Med Virol 2018; 91:677-686. [PMID: 30318625 DOI: 10.1002/jmv.25339] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 10/11/2018] [Indexed: 01/31/2023]
Abstract
Genotypes 3 and 4 hepatitis E virus (HEV) strains within the species Orthohepevirus A in the family Hepeviridae are zoonotic. Recently, a genotype 4 HEV was reportedly detected in fecal samples of cows, although independent confirmation is lacking. In this study, we first tested serum samples from 983 cows in different regions in the United States for the presence of immunoglobulin G (IgG) anti-HEV and found that 20.4% of cows were seropositive. The highest seroprevalence rate (68.4%) was from a herd in Georgia. In an attempt to genetically identify HEV in cattle, a prospective study was conducted in a known seropositive dairy herd by monitoring 10 newborn calves from birth to 6 months of age for evidence of HEV infection. At least 3 of the 10 calves seroconverted to IgG anti-HEV, and importantly the antibodies presented neutralized genotype 3 human HEV, thus, indicating the specificity of IgG anti-HEV in the cattle. However, our extensive attempts to identify HEV-related sequences in cattle using broad-spectrum reverse transcription-polymerase chain reaction assays and MiSeq deep-sequencing technology failed. The results suggest the existence of an agent antigenically related to HEV in cattle, although, contrary to published reports, we showed that the IgG recognizing HEV in cattle was not caused by HEV infection.
Collapse
Affiliation(s)
- Danielle M Yugo
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia
| | - Caitlin M Cossaboom
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia
| | - Connie Lynn Heffron
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia
| | - Yao-Wei Huang
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia
| | - Scott P Kenney
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia
| | - Amelia R Woolums
- Department of Pathobiology and Population Medicine, College of Veterinary Medicine, Mississippi State University, Starkville, Mississippi
| | - David J Hurley
- Department of Large Animal Medicine, College of Veterinary Medicine, University of Georgia, Athens, Georgia
| | - Tanja Opriessnig
- Division of Infection and Immunity, The Roslin Institute, University of Edinburgh, Midlothian, UK
| | - Linlin Li
- Department of Laboratory Medicine, Blood Systems Research Institute, San Francisco, California
| | - Eric Delwart
- Department of Laboratory Medicine, Blood Systems Research Institute, San Francisco, California
| | - Isis Kanevsky
- Department of Dairy Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia
| | - Xiang-Jin Meng
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia
| |
Collapse
|
15
|
Mattison CP, Cardemil CV, Hall AJ. Progress on norovirus vaccine research: public health considerations and future directions. Expert Rev Vaccines 2018; 17:773-784. [PMID: 30092671 DOI: 10.1080/14760584.2018.1510327] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
INTRODUCTION Noroviruses are the leading cause of foodborne illness worldwide, account for approximately one-fifth of acute gastroenteritis (AGE) cases globally, and cause a substantial economic burden. Candidate norovirus vaccines are in development, but there is currently no licensed vaccine. AREAS COVERED Noroviruses cause approximately 684 million cases and 212,000 deaths per year across all age groups, though burden estimates vary by study and region. Challenges to vaccine research include substantial and rapidly evolving genetic diversity, short-term and homotypic immunity to infection, and the absence of a single, well-established correlate of protection. Nonetheless, several norovirus vaccine candidates are currently in development, utilizing virus-like particles (VLPs), P particles, and recombinant adenoviruses. Of these, a bivalent GI.1/GII.4 VLP-based intramuscular vaccine (Phase IIb) and GI.1 oral vaccine (Phase I) are in clinical trials. EXPERT COMMENTARY A norovirus vaccine should target high-risk populations, including the young and the elderly, and protect them against the most common circulating norovirus strains. A norovirus vaccine would be a powerful tool in the prevention and control of norovirus while lessening the burden of AGE worldwide. However, more robust burden and cost estimates are needed to justify investments in and guide norovirus vaccine development.
Collapse
Affiliation(s)
- Claire P Mattison
- a Oak Ridge Institute for Science and Education , Oak Ridge , TN , USA.,b Division of Viral Diseases, Viral Gastroenteritis Branch , Centers for Disease Control and Prevention , Atlanta , USA
| | - Cristina V Cardemil
- b Division of Viral Diseases, Viral Gastroenteritis Branch , Centers for Disease Control and Prevention , Atlanta , USA
| | - Aron J Hall
- b Division of Viral Diseases, Viral Gastroenteritis Branch , Centers for Disease Control and Prevention , Atlanta , USA
| |
Collapse
|
16
|
Abstract
Hepatitis E virus (HEV) infection is an emerging zoonotic disease posing a severe threat to public health in the world, especially to pregnant women. Currently, no specific treatments are available for HEV infection. Therefore, it is crucial to develop vaccine to prevent this infection. Although several potential candidate vaccines against HEV have been studied for their immunogenicity and efficacy, only Hecolin® which is developed by Xiamen Innovax Biotech Co., Ltd. and approved by China Food and Drug Administration (CFDA) in 2012, is the licensed HEV vaccine in the world so far. Extensive studies on safety, immunogenicity and efficacy in phase III clinical trials have shown that Hecolin® is a promising vaccine for HEV prevention and control. In this article, the advances on HEV vaccine development and research are briefly reviewed.
Collapse
Affiliation(s)
- Yufeng Cao
- a College of Veterinary Medicine, Jilin University , Changchun , Jilin , PR China.,b Changchun Institute of Biological Products Co. Ltd. , Changchun , Jilin , PR China
| | - Zhenhong Bing
- c Changchun Institute of Biological Products , Changchun , Jilin , PR China
| | - Shiyu Guan
- c Changchun Institute of Biological Products , Changchun , Jilin , PR China
| | - Zecai Zhang
- a College of Veterinary Medicine, Jilin University , Changchun , Jilin , PR China.,d Key laboratory for Zoonosis , Ministry of Education, and Institute for Zoonosis of Jilin University , Changchun , Jilin , PR China
| | - Xinping Wang
- a College of Veterinary Medicine, Jilin University , Changchun , Jilin , PR China.,d Key laboratory for Zoonosis , Ministry of Education, and Institute for Zoonosis of Jilin University , Changchun , Jilin , PR China
| |
Collapse
|
17
|
Comparison of the efficacy of a commercial inactivated influenza A/H1N1/pdm09 virus (pH1N1) vaccine and two experimental M2e-based vaccines against pH1N1 challenge in the growing pig model. PLoS One 2018; 13:e0191739. [PMID: 29381710 PMCID: PMC5790244 DOI: 10.1371/journal.pone.0191739] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 01/10/2018] [Indexed: 01/05/2023] Open
Abstract
Swine influenza A viruses (IAV-S) found in North American pigs are diverse and the lack of cross-protection among heterologous strains is a concern. The objective of this study was to compare a commercial inactivated A/H1N1/pdm09 (pH1N1) vaccine and two novel subunit vaccines, using IAV M2 ectodomain (M2e) epitopes as antigens, in a growing pig model. Thirty-nine 2-week-old IAV negative pigs were randomly assigned to five groups and rooms. At 3 weeks of age and again at 5 weeks of age, pigs were vaccinated intranasally with an experimental subunit particle vaccine (NvParticle/M2e) or a subunit complex-based vaccine (NvComplex/M2e) or intramuscularly with a commercial inactivated vaccine (Inact/pH1N1). At 7 weeks of age, the pigs were challenged with pH1N1 virus or sham-inoculated. Necropsy was conducted 5 days post pH1N1 challenge (dpc). At the time of challenge one of the Inact/pH1N1 pigs had seroconverted based on IAV nucleoprotein-based ELISA, Inact/pH1N1 pigs had significantly higher pdm09H1N1 hemagglutination inhibition (HI) titers compared to all other groups, and M2e-specific IgG responses were detected in the NvParticle/M2e and the NvComplex/M2e pigs with significantly higher group means in the NvComplex/M2e group compared to SHAMVAC-NEG pigs. After challenge, nasal IAV RNA shedding was significantly reduced in Inact/pH1N1 pigs compared to all other pH1N1 infected groups and this group also had reduced IAV RNA in oral fluids. The macroscopic lung lesions were characterized by mild-to-severe, multifocal-to-diffuse, cranioventral dark purple consolidated areas typical of IAV infection and were similar for NvParticle/M2e, NvComplex/M2e and SHAMVAC-IAV pigs. Lesions were significantly less severe in the SHAMVAC-NEG and the Inact/pH1N1pigs. Under the conditions of this study, a commercial Inact/pH1N1 specific vaccine effectively protected pigs against homologous challenge as evidenced by reduced clinical signs, virus shedding in nasal secretions and oral fluids and reduced macroscopic and microscopic lesions whereas intranasal vaccination with experimental M2e epitope-based subunit vaccines did not. The results further highlight the importance using IAV-S type specific vaccines in pigs.
Collapse
|
18
|
Kocher JF, Debbink K, Lindesmith LC, Graham RL, Bogaerts H, Goodwin RR, Baric RS. Norovirus Vaccines. PLOTKIN'S VACCINES 2018:698-703.e4. [DOI: 10.1016/b978-0-323-35761-6.00041-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
19
|
Abstract
Viral structural proteins share a common nature of homotypic interactions that drive viral capsid formation. This natural process has been mimicked in vitro through recombinant technology to generate various virus-like particles (VLPs) and small subviral particles that exhibit similar structural and antigenic properties of their authentic viruses. Therefore, such self-assembled, polyvalent, and highly immunogenic VLPs and small subviral particles are excellent subunit vaccines against individual viruses, such as the VLP vaccines against the hepatitis B virus, human papilloma virus, and hepatitis E virus, which have already been in the markets. In addition, various antigens and epitopes can be fused with VLPs, small subviral particles, or protein polymers, forming chimeric mono-, bi-, or trivalent vaccines. Owing to their easy-production, un-infectiousness, and polyvalence, the recombinant, chimeric vaccines offer a new approach for development of safe, low-cost, and high efficient subunit vaccines against a single or more pathogens or diseases. While the first VLP-based combination vaccine against malaria has been approved for human use, many others are under development with promising future, which are summarized in this commentary.
Collapse
Affiliation(s)
- Ming Tan
- a Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center , Cincinnati , OH , USA.,b Department of Pediatrics , University of Cincinnati College of Medicine , Cincinnati , OH , USA
| | - Xi Jiang
- a Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center , Cincinnati , OH , USA.,b Department of Pediatrics , University of Cincinnati College of Medicine , Cincinnati , OH , USA
| |
Collapse
|
20
|
Prospects and Challenges in the Development of a Norovirus Vaccine. Clin Ther 2017; 39:1537-1549. [PMID: 28756066 DOI: 10.1016/j.clinthera.2017.07.002] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 07/03/2017] [Accepted: 07/05/2017] [Indexed: 12/23/2022]
Abstract
PURPOSE Norovirus is the leading cause of acute epidemic gastroenteritis among children under the age of 5 years and adults in the United States and in adults worldwide, accounting for an estimated 20% of episodes of acute gastroenteritis across all ages. No effective vaccine is presently available. This article provides an overview of the current state of norovirus vaccine development, emphasizing barriers and challenges in the development of an effective vaccine, correlates of protection used to assess vaccine efficacy, and the results of clinical trials of the major candidate vaccines. METHODS We performed an unstructured literature review of published articles listed in PubMed in the field of norovirus vaccine development, with an emphasis on studies in humans. FINDINGS Two candidate vaccines have reached clinical trials, and a number of other candidates are in the preclinical stages of development. Multivalent vaccination may be effective in inducing broadly neutralizing antibodies protective against challenge with novel and heterologous norovirus strains. Most identified correlates of protection have not been validated in large-scale challenge studies, nor have the degrees to which these correlates covary been assessed. IMPLICATIONS Immune correlates of protection against norovirus infection need to be further developed to facilitate additional studies of the tolerability and efficacy of candidate norovirus vaccines in humans.
Collapse
|
21
|
Lucero Y, Vidal R, O'Ryan G M. Norovirus vaccines under development. Vaccine 2017; 36:5435-5441. [PMID: 28668568 DOI: 10.1016/j.vaccine.2017.06.043] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 06/01/2017] [Accepted: 06/15/2017] [Indexed: 01/22/2023]
Abstract
Noroviruses (NoVs) are one of the leading causes of acute gastroenteritis, including both outbreaks and endemic infections. The development of preventive strategies, including vaccines, for the most susceptible groups (children <5years of age, the elderly and individuals suffering crowding, such as military personnel and travelers) is desirable. However, NoV vaccine development has faced many difficulties, including genetic/antigenic diversity, limited knowledge on NoV immunology and viral cycle, lack of a permissive cell line for cultivation and lack of a widely available and successful animal model. Vaccine candidates rely on inoculation of virus-like particles (VLPs) formed by the main capsid protein VP1, subviral particles made from the protruding domain of VP1 (P-particles) or viral vectors with a NoV capsid gene insert produced by bioengineering technologies. Polivalent vaccines including multiple NoV genotypes and/or other viruses acquired by the enteric route have been developed. A VLP vaccine candidate has reached phase II clinical trials and several others are in pre-clinical stages of development. In this article we discuss the main challenges facing the development of a NoV vaccine and the current status of prevailing candidates.
Collapse
Affiliation(s)
- Yalda Lucero
- Microbiology and Mycology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile; Department of Pediatrics, Hospital Luis Calvo Mackenna, Faculty of Medicine, University of Chile, Santiago, Chile; Pediatric Gastroenterology Unit, Department of Pediatrics, Faculty of Medicine, Clínica Alemana-Universidad del Desarrollo, Santiago, Chile
| | - Roberto Vidal
- Microbiology and Mycology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Miguel O'Ryan G
- Millennium Institute of Immunology and Immunotherapy, Faculty of Medicine, University of Chile, Santiago, Chile; Microbiology and Mycology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile.
| |
Collapse
|
22
|
Brune KD, Buldun CM, Li Y, Taylor IJ, Brod F, Biswas S, Howarth M. Dual Plug-and-Display Synthetic Assembly Using Orthogonal Reactive Proteins for Twin Antigen Immunization. Bioconjug Chem 2017; 28:1544-1551. [PMID: 28437083 DOI: 10.1021/acs.bioconjchem.7b00174] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Engineering modular platforms to control biomolecular architecture can advance both the understanding and the manipulation of biological systems. Icosahedral particles uniformly displaying single antigens stimulate potent immune activation and have been successful in various licensed vaccines. However, it remains challenging to display multiple antigens on a single particle and to induce broader immunity protective across strains or even against distinct diseases. Here, we design a dually addressable synthetic nanoparticle by engineering the multimerizing coiled-coil IMX313 and two orthogonally reactive split proteins. SpyCatcher protein forms an isopeptide bond with SpyTag peptide through spontaneous amidation. SnoopCatcher forms an isopeptide bond with SnoopTag peptide through transamidation. SpyCatcher-IMX-SnoopCatcher provides a modular platform, whereby SpyTag-antigen and SnoopTag-antigen can be multimerized on opposite faces of the particle simply upon mixing. We demonstrate efficient derivatization of the platform with model proteins and complex pathogen-derived antigens. SpyCatcher-IMX-SnoopCatcher was expressed in Escherichia coli and was resilient to lyophilization or extreme temperatures. For the next generation of malaria vaccines, blocking the transmission of the parasite from human to mosquito is an important goal. SpyCatcher-IMX-SnoopCatcher multimerization of the leading transmission-blocking antigens Pfs25 and Pfs28 greatly enhanced the antibody response to both antigens in comparison to the monomeric proteins. This dual plug-and-display architecture should help to accelerate vaccine development for malaria and other diseases.
Collapse
Affiliation(s)
- Karl D Brune
- Department of Biochemistry, University of Oxford , South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Can M Buldun
- Department of Biochemistry, University of Oxford , South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Yuanyuan Li
- Jenner Institute, University of Oxford , Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
| | - Iona J Taylor
- Jenner Institute, University of Oxford , Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
| | - Florian Brod
- Jenner Institute, University of Oxford , Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
| | - Sumi Biswas
- Jenner Institute, University of Oxford , Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
| | - Mark Howarth
- Department of Biochemistry, University of Oxford , South Parks Road, Oxford OX1 3QU, United Kingdom
| |
Collapse
|
23
|
Emmoth E, Rovira J, Rajkovic A, Corcuera E, Wilches Pérez D, Dergel I, Ottoson JR, Widén F. Inactivation of Viruses and Bacteriophages as Models for Swine Hepatitis E Virus in Food Matrices. FOOD AND ENVIRONMENTAL VIROLOGY 2017; 9:20-34. [PMID: 27783334 DOI: 10.1007/s12560-016-9268-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 10/19/2016] [Indexed: 06/06/2023]
Abstract
Hepatitis E virus has been recognised as a food-borne virus hazard in pork products, due to its zoonotic properties. This risk can be reduced by adequate treatment of the food to inactivate food-borne viruses. We used a spectrum of viruses and bacteriophages to evaluate the effect of three food treatments: high pressure processing (HPP), lactic acid (LA) and intense light pulse (ILP) treatments. On swine liver at 400 MPa for 10 min, HPP gave log10 reductions of ≥4.2, ≥5.0 and 3.4 for feline calicivirus (FCV) 2280, FCV wildtype (wt) and murine norovirus 1 (MNV 1), respectively. Escherichia coli coliphage ϕX174 displayed a lower reduction of 1.1, while Escherichia coli coliphage MS2 was unaffected. For ham at 600 MPa, the corresponding reductions were 4.1, 4.4, 2.9, 1.7 and 1.3 log10. LA treatment at 2.2 M gave log10 reductions in the viral spectrum of 0.29-2.1 for swine liver and 0.87-3.1 for ham, with ϕX174 and MNV 1, respectively, as the most stable microorganisms. The ILP treatment gave log10 reductions of 1.6-2.8 for swine liver, 0.97-2.2 for ham and 1.3-2.3 for sausage, at 15-60 J cm-2, with MS2 as the most stable microorganism. The HPP treatment gave significantly (p < 0.05) greater virus reduction on swine liver than ham for the viruses at equivalent pressure/time combinations. For ILP treatment, reductions on swine liver were significantly (p < 0.05) greater than on ham for all microorganisms. The results presented here could be used in assessments of different strategies to protect consumers against virus contamination and in advice to food producers. Conservative model indicators for the pathogenic viruses could be suggested.
Collapse
Affiliation(s)
- Eva Emmoth
- Department of Microbiology, National Veterinary Institute (SVA), 751 89, Uppsala, Sweden.
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden.
| | - Jordi Rovira
- Department of Biotechnology and Food Science, Faculty of Sciences, University of Burgos, Pza. Misael Bañuelos s/n, 09001, Burgos, Spain
| | - Andreja Rajkovic
- Laboratory of Food Microbiology and Food Preservation, Department of Food Safety and Food Quality, Faculty of Bioscience Engineering, Ghent University, Food2Know, Coupure Links 653, 9000, Ghent, Belgium
- Department of Food Safety and Quality Management, Faculty of Agriculture, Belgrade University, Nemanjina 6, Zemun-Belgrade, 11080, Serbia
| | - Elena Corcuera
- Department of Biotechnology and Food Science, Faculty of Sciences, University of Burgos, Pza. Misael Bañuelos s/n, 09001, Burgos, Spain
| | - Diego Wilches Pérez
- Hiperbaric España Polígono Industrial Villalonquéjar, C/Condado de Treviño, 6, 09001, Burgos, Spain
| | - Irene Dergel
- Department of Microbiology, National Veterinary Institute (SVA), 751 89, Uppsala, Sweden
| | - Jakob R Ottoson
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden
- Department of Risk-Benefit Analysis, National Food Agency, Uppsala, Sweden
| | - Frederik Widén
- Department of Microbiology, National Veterinary Institute (SVA), 751 89, Uppsala, Sweden
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
24
|
Huang XY, Su J, Lu QC, Li SZ, Zhao JY, Li ML, Li Y, Shen XJ, Zhang BF, Wang HF, Mu YJ, Wu SY, Du YH, Liu LC, Chen WJ, Klena JD, Xu BL. A large outbreak of acute gastroenteritis caused by the human norovirus GII.17 strain at a university in Henan Province, China. Infect Dis Poverty 2017; 6:6. [PMID: 28143569 PMCID: PMC5286658 DOI: 10.1186/s40249-017-0236-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Accepted: 01/03/2017] [Indexed: 12/31/2022] Open
Abstract
Background Human noroviruses are a major cause of viral gastroenteritis and are the main etiological agents of acute gastroenteritis outbreaks. An increasing number of outbreaks and sporadic cases of norovirus have been reported in China in recent years. There was a large acute gastroenteritis outbreak at a university in Henan Province, China in the past five years. We want to identify the source, transmission routes of the outbreak by epidemiological investigation and laboratory testing in order to provide the effective control measures. Methods The clinical cases were investigated, and analysed by descriptive epidemiological methods according to factors such as time, department, grade and so on. Samples were collected from clinical cases, healthy persons, the environment, water, and food at the university. These samples were tested for potential bacteria and viruses. The samples that tested positive for norovirus were selected for whole genome sequencing and the sequences were then analysed. Results From 4 March to 3 April 2015, a total of 753 acute diarrhoea cases were reported at the university; the attack rate was 3.29%. The epidemic curve showed two peaks, with the main peak occurring between 10 and 20 March, accounting for 85.26% of reported cases. The rates of norovirus detection in samples from confirmed cases, people without symptoms, and environmental samples were 32.72%, 17.39%, and 9.17%, respectively. The phylogenetic analysis showed that the norovirus belonged to the genotype GII.17. Conclusions This is the largest and most severe outbreak caused by genotype GII.17 norovirus in recent years in China. The GII.17 viruses displayed high epidemic activity and have become a dominant strain in China since the winter of 2014, having replaced the previously dominant GII.4 Sydney 2012 strain. Electronic supplementary material The online version of this article (doi:10.1186/s40249-017-0236-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xue-Yong Huang
- Henan Center for Disease Control and Prevention, Zhengzhou, China.,Henan Key Laboratory of Pathogenic Microorganisms, Zhengzhou, China
| | - Jia Su
- Henan Center for Disease Control and Prevention, Zhengzhou, China
| | - Qian-Chao Lu
- Nanyang City Center for Disease Control and Prevention, Nanyang, China
| | - Shi-Zheng Li
- Nanyang City Center for Disease Control and Prevention, Nanyang, China
| | - Jia-Yong Zhao
- Henan Center for Disease Control and Prevention, Zhengzhou, China.,Henan Key Laboratory of Pathogenic Microorganisms, Zhengzhou, China
| | - Meng-Lei Li
- Henan Center for Disease Control and Prevention, Zhengzhou, China
| | - Yi Li
- Henan Center for Disease Control and Prevention, Zhengzhou, China.,Henan Key Laboratory of Pathogenic Microorganisms, Zhengzhou, China
| | - Xiao-Jing Shen
- Henan Center for Disease Control and Prevention, Zhengzhou, China
| | - Bai-Fan Zhang
- Henan Center for Disease Control and Prevention, Zhengzhou, China.,Henan Key Laboratory of Pathogenic Microorganisms, Zhengzhou, China
| | - Hai-Feng Wang
- Henan Center for Disease Control and Prevention, Zhengzhou, China
| | - Yu-Jiao Mu
- Henan Center for Disease Control and Prevention, Zhengzhou, China.,Henan Key Laboratory of Pathogenic Microorganisms, Zhengzhou, China
| | - Shu-Yu Wu
- Program of Global Disease Detection, US Centers for Disease Control and Prevention, Beijing, China
| | - Yan-Hua Du
- Henan Center for Disease Control and Prevention, Zhengzhou, China.,Henan Key Laboratory of Pathogenic Microorganisms, Zhengzhou, China
| | - Li-Cheng Liu
- State Key Laboratory of Pathogens and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China.,Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Wei-Jun Chen
- State Key Laboratory of Pathogens and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China.,Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - John David Klena
- Program of Global Disease Detection, US Centers for Disease Control and Prevention, Beijing, China.,Division of Global Health Protection, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, USA
| | - Bian-Li Xu
- Henan Center for Disease Control and Prevention, Zhengzhou, China. .,Henan Key Laboratory of Pathogenic Microorganisms, Zhengzhou, China.
| |
Collapse
|
25
|
Nan Y, Zhang YJ. Molecular Biology and Infection of Hepatitis E Virus. Front Microbiol 2016; 7:1419. [PMID: 27656178 PMCID: PMC5013053 DOI: 10.3389/fmicb.2016.01419] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 08/26/2016] [Indexed: 12/13/2022] Open
Abstract
Hepatitis E virus (HEV) is a viral pathogen transmitted primarily via fecal-oral route. In humans, HEV mainly causes acute hepatitis and is responsible for large outbreaks of hepatitis across the world. The case fatality rate of HEV-induced hepatitis ranges from 0.5 to 3% in young adults and up to 30% in infected pregnant women. HEV strains infecting humans are classified into four genotypes. HEV strains from genotypes 3 and 4 are zoonotic, whereas those from genotypes 1 and 2 have no known animal reservoirs. Recently, notable progress has been accomplished for better understanding of HEV biology and infection, such as chronic HEV infection, in vitro cell culture system, quasi-enveloped HEV virions, functions of the HEV proteins, mechanism of HEV antagonizing host innate immunity, HEV pathogenesis and vaccine development. However, further investigation on the cross-species HEV infection, host tropism, vaccine efficacy, and HEV-specific antiviral strategy is still needed. This review mainly focuses on molecular biology and infection of HEV and offers perspective new insight of this enigmatic virus.
Collapse
Affiliation(s)
- Yuchen Nan
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F UniversityYangling, China; Molecular Virology Laboratory, VA-MD College of Veterinary Medicine and Maryland Pathogen Research Institute, University of Maryland, College Park, College ParkMD, USA
| | - Yan-Jin Zhang
- Molecular Virology Laboratory, VA-MD College of Veterinary Medicine and Maryland Pathogen Research Institute, University of Maryland, College Park, College Park MD, USA
| |
Collapse
|
26
|
Pérez-Gracia MT, Suay-García B, García M, Mateos-Lindemann ML. Hepatitis E: latest developments in knowledge. Future Microbiol 2016; 11:789-808. [PMID: 27203841 DOI: 10.2217/fmb-2016-0012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Hepatitis E, caused by Hepatitis E virus (HEV), is a highly prevalent disease in developing countries. In developed nations, autochthonous HEV infections seem to be an emergent disease. Its clinical manifestations and epidemiology are well known for endemic countries. It has been confirmed that hepatitis E is a zoonosis and that parenteral transmission can also occur. The molecular mechanisms of HEV replication are not fully understood, mostly because there are no efficient cell culture systems. HEV can cause chronic hepatitis in organ transplant recipients and immunocompetent patients. Cases with fulminant hepatitis and other extrahepatic manifestations have also been reported. The diagnosis is based on serological studies and detection of HEV RNA in blood and feces. Treatment with ribavirin and/or pegylated-IFN-α have proven to be successful in some cases. The recently approved/marketed vaccine is a good option in order to prevent this infection.
Collapse
Affiliation(s)
- M Teresa Pérez-Gracia
- Área de Microbiología, Departamento de Farmacia, Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad CEU Cardenal Herrera, Avenida Seminario s/n 46113, Moncada, Valencia, Spain
| | - Beatriz Suay-García
- Área de Microbiología, Departamento de Farmacia, Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad CEU Cardenal Herrera, Avenida Seminario s/n 46113, Moncada, Valencia, Spain
| | - Mario García
- Área de Microbiología, Departamento de Farmacia, Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad CEU Cardenal Herrera, Avenida Seminario s/n 46113, Moncada, Valencia, Spain
| | - M Luisa Mateos-Lindemann
- Unidad de Virología, Servicio de Microbiología, Hospital Universitario Ramón y Cajal, Ctra. Colmenar Km 9,1, Madrid 28034, Spain
| |
Collapse
|
27
|
Xia M, Wei C, Wang L, Cao D, Meng XJ, Jiang X, Tan M. Development and evaluation of two subunit vaccine candidates containing antigens of hepatitis E virus, rotavirus, and astrovirus. Sci Rep 2016; 6:25735. [PMID: 27194006 PMCID: PMC4872161 DOI: 10.1038/srep25735] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 04/18/2016] [Indexed: 02/07/2023] Open
Abstract
Hepatitis E virus (HEV), rotavirus (RV), and astrovirus (AstV) are important pathogens that transmit through a common fecal-oral route, causing hepatitis (HEV) and gastroenteritis (RV and AstV) respectively in humans. In this study, we developed and evaluated two subunit vaccine candidates that consisted of the same protruding or spike protein antigens of the three viruses in two formats, a fusion of the three antigens into one molecule (fused vaccine) vs. a mixture of the three free antigens together (mixed vaccine). Both vaccines were easily made via E. coli expression system. Mouse immunization experiments showed that the fused vaccine elicited significantly higher antibody responses against the three viral antigens than those induced by the mixed vaccine. In addition, the mouse post-immune antisera of the fused vaccine revealed significantly higher neutralizing titers against HEV infection in cell culture, as well as significantly higher 50% blocking titers (BT50) against RV VP8-HBGA receptor interactions than those of the post-immune antisera after immunization of the mixed vaccine. Thus, the fused vaccine is a promising trivalent vaccine candidate against HEV, RV, and AstV, which is worth for further development.
Collapse
Affiliation(s)
- Ming Xia
- Division of Infectious Diseases, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Chao Wei
- Division of Infectious Diseases, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Leyi Wang
- Division of Infectious Diseases, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Dianjun Cao
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Xiang-Jin Meng
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Xi Jiang
- Division of Infectious Diseases, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Ming Tan
- Division of Infectious Diseases, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
28
|
Xia M, Wei C, Wang L, Cao D, Meng XJ, Jiang X, Tan M. A trivalent vaccine candidate against hepatitis E virus, norovirus, and astrovirus. Vaccine 2016; 34:905-913. [PMID: 26778421 PMCID: PMC4732564 DOI: 10.1016/j.vaccine.2015.12.068] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 12/25/2015] [Accepted: 12/30/2015] [Indexed: 02/07/2023]
Abstract
Hepatitis E virus (HEV), norovirus (NoV), and astrovirus (AstV) are enterically-transmitted viral pathogens causing epidemic or endemic hepatitis (HEV) and gastroenteritis (NoV and AstV) respectively in humans, leading to significant morbidity and mortality worldwide. While a recombinant subunit vaccine against HEVs is available in China, there is no commercial vaccine or antiviral against NoV or AstV. We report here our development of a trivalent vaccine against the three viral pathogens through our new polymer vaccine technology. All HEV, NoV, and AstV are non-enveloped RNA viruses covered by a protein capsid, featuring surface protruding (P) proteins that are responsible for virus-host interaction. These dimeric P proteins elicit neutralizing antibody and are good targets for subunit vaccine development. The trivalent subunit vaccine was developed by fusion of the dimeric P domains of the three viruses together that formed tetramers. This trivalent vaccine elicited significantly higher antibody responses in mice against all three P domains than those induced by a mixture of the three free P domains (mixed vaccine). Furthermore, the post-immune antisera of the trivalent vaccine showed significantly higher neutralizing titers against HEV infection in cell culture and higher blocking activity against NoV binding to HBGA ligands than those of the post-immune sera of the mixed vaccine. Thus, the trivalent vaccine is a promising vaccine candidate against HEV, NoV, and AstV.
Collapse
Affiliation(s)
- Ming Xia
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Chao Wei
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Leyi Wang
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Dianjun Cao
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Xiang-Jin Meng
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Xi Jiang
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Ming Tan
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States.
| |
Collapse
|
29
|
Hernandez JDM, Silva LDD, Sousa EC, Lucena MSSD, Soares LDS, Mascarenhas JDP, Gabbay YB. Analysis of uncommon norovirus recombinants from Manaus, Amazon region, Brazil: GII.P22/GII.5, GII.P7/GII.6 and GII.Pg/GII.1. INFECTION GENETICS AND EVOLUTION 2016; 39:365-371. [PMID: 26861619 DOI: 10.1016/j.meegid.2016.02.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 02/04/2016] [Accepted: 02/05/2016] [Indexed: 11/25/2022]
Abstract
Norovirus (NoV) is responsible for outbreaks and sporadic cases of nonbacterial acute gastroenteritis in humans worldwide. The virus consists of small round particles containing a single-stranded RNA genome that is divided into three Open Reading Frames. NoV evolves via mechanisms of antigenic drift and recombination, which lead to the emergence of new strains that are capable of causing global epidemics. Recombination usually occurs in the ORF1/ORF2 overlapping region and generates strains with different genotypes in the polymerase and capsid region. The primary objective of this study was to analyze recombination in positive-NoV samples. Specimens were collected during 2011, 2012 and 2014, from children under two years of age presenting gastrointestinal symptoms such as vomiting and diarrhea. The partial polymerase (B region), capsid (D region) genes and the ORF1-ORF2 overlap regions were sequenced in each sample. The recombinant analyses were performed in the Simplot software v.3.5.1 and RDP4 Beta v. 4.6 program. These analyses showed that GII.Pg/GII.1, GII.P7/GII.6, and GII.P22/GII.5 were recombinant strains. To our knowledge, this is the first time that the GII.P22/GII.5 and GII.Pg/GII.1 strains were described in South America and the GII.P7/GII.6 was detected in Northern of Brazil.
Collapse
Affiliation(s)
- Juliana das Merces Hernandez
- Postgraduate Program in Virology, Evandro Chagas Institute, Rodovia BR-316, Km 7 s/n, Levilândia, 67030-000 Ananindeua, Pará, Brazil.
| | - Luciana Damascena da Silva
- Virology Section, Evandro Chagas Institute, Brazilian Ministry of Health, Rodovia BR-316, Km 7 s/n, Levilândia, 67030-000 Ananindeua, Pará, Brazil.
| | - Edivaldo Costa Sousa
- Virology Section, Evandro Chagas Institute, Brazilian Ministry of Health, Rodovia BR-316, Km 7 s/n, Levilândia, 67030-000 Ananindeua, Pará, Brazil.
| | - Maria Silvia Souza de Lucena
- Virology Section, Evandro Chagas Institute, Brazilian Ministry of Health, Rodovia BR-316, Km 7 s/n, Levilândia, 67030-000 Ananindeua, Pará, Brazil
| | - Luana da Silva Soares
- Virology Section, Evandro Chagas Institute, Brazilian Ministry of Health, Rodovia BR-316, Km 7 s/n, Levilândia, 67030-000 Ananindeua, Pará, Brazil.
| | - Joana D'Arc Pereira Mascarenhas
- Virology Section, Evandro Chagas Institute, Brazilian Ministry of Health, Rodovia BR-316, Km 7 s/n, Levilândia, 67030-000 Ananindeua, Pará, Brazil.
| | - Yvone Benchimol Gabbay
- Virology Section, Evandro Chagas Institute, Brazilian Ministry of Health, Rodovia BR-316, Km 7 s/n, Levilândia, 67030-000 Ananindeua, Pará, Brazil.
| |
Collapse
|
30
|
|
31
|
Kocher J, Yuan L. Norovirus vaccines and potential antinorovirus drugs: recent advances and future perspectives. Future Virol 2015; 10:899-913. [PMID: 26568768 DOI: 10.2217/fvl.15.57] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Human noroviruses (HuNoVs) are a leading cause of acute, nonbacterial gastroenteritis worldwide. The lack of a cell culture system and smaller animal model has delayed the development and commercial availability of vaccines and antiviral drugs. Current vaccines rely on recombinant capsid proteins, such as P particles and virus-like particles (VLPs), which have been promising in clinical trials. Anti-HuNoV drug development is another area of extensive research, including currently available antiviral drugs for other viral pathogens. This review will provide an overview of recent advances in vaccine and antiviral development. The implication of recent advances in HuNoV cell culture for improving vaccine and antiviral development is also discussed.
Collapse
Affiliation(s)
- Jacob Kocher
- Department of Biomedical Sciences & Pathobiology, Center for Molecular Medicine & Infectious Diseases, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Polytechnic Institute & State University, Blacksburg, VA 24061-0913, USA
| | - Lijuan Yuan
- Department of Biomedical Sciences & Pathobiology, Center for Molecular Medicine & Infectious Diseases, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Polytechnic Institute & State University, Blacksburg, VA 24061-0913, USA
| |
Collapse
|
32
|
Varner CT, Rosen T, Martin JT, Kane RS. Recent advances in engineering polyvalent biological interactions. Biomacromolecules 2015; 16:43-55. [PMID: 25426695 PMCID: PMC4294584 DOI: 10.1021/bm5014469] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 11/11/2014] [Indexed: 12/21/2022]
Abstract
Polyvalent interactions, where multiple ligands and receptors interact simultaneously, are ubiquitous in nature. Synthetic polyvalent molecules, therefore, have the ability to affect biological processes ranging from protein-ligand binding to cellular signaling. In this review, we discuss recent advances in polyvalent scaffold design and applications. First, we will describe recent developments in the engineering of polyvalent scaffolds based on biomolecules and novel materials. Then, we will illustrate how polyvalent molecules are finding applications as toxin and pathogen inhibitors, targeting molecules, immune response modulators, and cellular effectors.
Collapse
Affiliation(s)
- Chad T. Varner
- The Howard P. Isermann Department
of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Tania Rosen
- The Howard P. Isermann Department
of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Jacob T. Martin
- The Howard P. Isermann Department
of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Ravi S. Kane
- The Howard P. Isermann Department
of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| |
Collapse
|
33
|
Abstract
Norovirus, an RNA virus of the family Caliciviridae, is a human enteric pathogen that causes substantial morbidity across both health care and community settings. Several factors enhance the transmissibility of norovirus, including the small inoculum required to produce infection (<100 viral particles), prolonged viral shedding, and its ability to survive in the environment. In this review, we describe the basic virology and immunology of noroviruses, the clinical disease resulting from infection and its diagnosis and management, as well as host and pathogen factors that complicate vaccine development. Additionally, we discuss overall epidemiology, infection control strategies, and global reporting efforts aimed at controlling this worldwide cause of acute gastroenteritis. Prompt implementation of infection control measures remains the mainstay of norovirus outbreak management.
Collapse
Affiliation(s)
- Elizabeth Robilotti
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Stan Deresinski
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Benjamin A Pinsky
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, California, USA Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
34
|
Wang L, Xia M, Huang P, Fang H, Cao D, Meng XJ, McNeal M, Jiang X, Tan M. Branched-linear and agglomerate protein polymers as vaccine platforms. Biomaterials 2014; 35:8427-8438. [PMID: 24985736 PMCID: PMC4137571 DOI: 10.1016/j.biomaterials.2014.06.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 06/09/2014] [Indexed: 02/07/2023]
Abstract
Many viral structural proteins and their truncated domains share a common feature of homotypic interaction forming dimers, trimers, and/or oligomers with various valences. We reported previously a simple strategy for construction of linear and network polymers through the dimerization feature of viral proteins for vaccine development. In this study, technologies were developed to produce more sophisticated polyvalent complexes through both the dimerization and oligomerization natures of viral antigens. As proof of concept, branched-linear and agglomerate polymers were made via fusions of the dimeric glutathione-s-transferase (GST) with either a tetrameric hepatitis E virus (HEV) protruding protein or a 24-meric norovirus (NoV) protruding protein. Furthermore, a monomeric antigen, either the M2e epitope of influenza A virus or the VP8* antigen of rotavirus, was inserted and displayed by the polymer platform. All resulting polymers were easily produced in Escherichia coli at high yields. Immunization of mice showed that the polymer vaccines induced significantly higher specific humoral and T cell responses than those induced by the dimeric antigens. Additional evidence in supporting use of polymer vaccines included the significantly higher neutralization activity and protective immunity of the polymer vaccines against the corresponding viruses than those of the dimer vaccines. Thus, our technology for production of polymers containing different viral antigens offers a strategy for vaccine development against infectious pathogens and their associated diseases.
Collapse
Affiliation(s)
- Leyi Wang
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, USA
| | - Ming Xia
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, USA
| | - Pengwei Huang
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, USA
| | - Hao Fang
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, USA
| | - Dianjun Cao
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Xiang-Jin Meng
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Monica McNeal
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Xi Jiang
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Ming Tan
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
35
|
Abstract
Norovirus infections are notoriously difficult to prevent and control, owing to their low infectious dose, high shedding titre, and environmental stability. The virus can spread through multiple transmission routes, of which person-to-person and foodborne are the most important. Recent advances in molecular diagnostics have helped to establish norovirus as the most common cause of sporadic gastroenteritis and the most common cause of outbreaks of acute gastroenteritis across all ages. In this article, we review the epidemiology and virology of noroviruses, and prevention and control guidelines, with a focus on the principles of disinfection and decontamination. Outbreak management relies on sound infection control principles, including hand hygiene, limiting exposure to infectious individuals, and thorough environmental decontamination. Ideally, all infection control recommendations would rely on empirical evidence, but a number of challenges, including the inability to culture noroviruses in the laboratory and the challenges of outbreak management in complex environments, has made it difficult to garner clear evidence of efficacy in certain areas of infection control. New experimental data on cultivable surrogates for human norovirus and on environmental survivability and relative resistance to commonly used disinfectants are providing new insights for further refinining disinfection practices. Finally, clinical trials are underway to evaluate the efficacy of vaccines, which may shift the current infection control principles to more targeted interventions.
Collapse
Affiliation(s)
- L Barclay
- Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Barclay L, Park GW, Vega E, Hall A, Parashar U, Vinjé J, Lopman B. Infection control for norovirus. Clin Microbiol Infect 2014. [PMID: 24813073 DOI: 10.1111/1469-0691.12674.infection] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2023]
Abstract
Norovirus infections are notoriously difficult to prevent and control, owing to their low infectious dose, high shedding titre, and environmental stability. The virus can spread through multiple transmission routes, of which person-to-person and foodborne are the most important. Recent advances in molecular diagnostics have helped to establish norovirus as the most common cause of sporadic gastroenteritis and the most common cause of outbreaks of acute gastroenteritis across all ages. In this article, we review the epidemiology and virology of noroviruses, and prevention and control guidelines, with a focus on the principles of disinfection and decontamination. Outbreak management relies on sound infection control principles, including hand hygiene, limiting exposure to infectious individuals, and thorough environmental decontamination. Ideally, all infection control recommendations would rely on empirical evidence, but a number of challenges, including the inability to culture noroviruses in the laboratory and the challenges of outbreak management in complex environments, has made it difficult to garner clear evidence of efficacy in certain areas of infection control. New experimental data on cultivable surrogates for human norovirus and on environmental survivability and relative resistance to commonly used disinfectants are providing new insights for further refinining disinfection practices. Finally, clinical trials are underway to evaluate the efficacy of vaccines, which may shift the current infection control principles to more targeted interventions.
Collapse
Affiliation(s)
- L Barclay
- Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Tan M, Jiang X. Subviral particle as vaccine and vaccine platform. Curr Opin Virol 2014; 6:24-33. [PMID: 24662314 PMCID: PMC4072748 DOI: 10.1016/j.coviro.2014.02.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 02/28/2014] [Accepted: 02/28/2014] [Indexed: 01/01/2023]
Abstract
Recombinant subvirual particles retain similar antigenic features of their authentic viral capsids and thus have been applied as nonreplicating subunit vaccines against viral infection and illness. Additionally, the self-assembled, polyvalent subviral particles are excellent platforms to display foreign antigens for immune enhancement for vaccine development. These subviral particle-based vaccines are noninfectious and thus safer than the conventional live attenuated and inactivated vaccines. While several VLP vaccines are available in the markets, numerous others, including dual vaccines against more than one pathogen, are under clinical or preclinical development. This article provides an update of these efforts.
Collapse
Affiliation(s)
- Ming Tan
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States.
| | - Xi Jiang
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
38
|
Abstract
Noroviruses (NoVs) are important pathogens causing epidemic acute gastroenteritis affecting millions of people worldwide. Due to the inability to cultivate NoVs, current NoV vaccine development relies on bioengineering technologies to produce virus-like particles (VLPs) and other subviral particles of NoVs as subunit vaccines. The first VLP vaccine has reached phase II clinical trials and several others are under development in pre-clinical research. Several subviral complexes made from the protruding (P) domains of NoV capsid share common features of easy production, high stability and high immunogenicity and thus are candidates for low cost vaccines. These P domain complexes can also be used as vaccine platforms to present foreign antigens for potential dual vaccines against NoVs and other pathogens. Development of NoV vaccines also faces other challenges, including genetic diversity of NoVs, limit understanding of NoV immunology and evolution, and lack of an efficient NoV animal model for vaccine assessment, which are discussed in this article.
Collapse
Affiliation(s)
- Ming Tan
- Division of Infectious Diseases; Cincinnati Children's Hospital Medical Center; Cincinnati, OH USA; Department of Pediatrics; University of Cincinnati College of Medicine; Cincinnati, OH USA
| | - Xi Jiang
- Division of Infectious Diseases; Cincinnati Children's Hospital Medical Center; Cincinnati, OH USA; Department of Pediatrics; University of Cincinnati College of Medicine; Cincinnati, OH USA
| |
Collapse
|