1
|
Jamal A, Aldreiwish AD, Banawas SS, Alqurashi YE, Kamal MA, Ahmad F. The paths toward immunotherapy of esophageal cancer: An overview of clinical trials. Int Immunopharmacol 2025; 151:114261. [PMID: 40015204 DOI: 10.1016/j.intimp.2025.114261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/26/2025] [Accepted: 02/06/2025] [Indexed: 03/01/2025]
Abstract
As the seventh-leading contributor to global cancer-related deaths, esophageal cancer (EC) is one of the most challenging types of cancer. Despite advancements in conventional therapies, including surgery, chemotherapy, and radiotherapy, the five-year survival rate remains low, underscoring the need for the development of more efficacious treatment approaches. Immunotherapy has emerged as a promising treatment approach, offering new hope for EC patients. This review provides an in-depth examination of the latest immunotherapeutic strategies for EC, focusing on immune checkpoint inhibitors, adoptive cell therapy, cancer vaccines, and oncolytic virotherapy. We critically analyze the current clinical data to highlight the progress and pitfalls of each immunotherapeutic approach for EC. Additionally, we explore the potential for combination therapies, which could overcome the resistance often seen with monotherapies. Finally, we discuss the limitations of current treatments and outline key areas for future research to improve patient outcomes and survival.
Collapse
Affiliation(s)
- Azfar Jamal
- Department of Biology, College of Science Al-Zulfi, Majmaah University, Al-Majmaah 11952, Saudi Arabia; Health and Basic Science Research Centre, Majmaah University, Al-Majmaah 11952, Saudi Arabia.
| | - Allolo D Aldreiwish
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah 11952, Saudi Arabia
| | - Saeed S Banawas
- Health and Basic Science Research Centre, Majmaah University, Al-Majmaah 11952, Saudi Arabia; Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah 11952, Saudi Arabia
| | - Yaser E Alqurashi
- Department of Biology, College of Science Al-Zulfi, Majmaah University, Al-Majmaah 11952, Saudi Arabia
| | - Mohammad Azhar Kamal
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| | - Fuzail Ahmad
- Respiratory Care Department, College of Applied Sciences, Almaarefa University, Diriya, Riyadh 13713, Saudi Arabia
| |
Collapse
|
2
|
Knafler G, Ho AL, Moore KN, Pollack SM, Navenot JM, Sanderson JP. Melanoma-associated antigen A4: A cancer/testis antigen as a target for adoptive T-cell receptor T-cell therapy. Cancer Treat Rev 2025; 134:102891. [PMID: 39970827 DOI: 10.1016/j.ctrv.2025.102891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 01/24/2025] [Accepted: 01/25/2025] [Indexed: 02/21/2025]
Abstract
T-cell receptor (TCR) T-cell therapies are adoptive cell therapies in which patient cells are engineered to express TCRs targeting specific cancer antigens and infused back into the patient. Since TCR recognition depends on antigen presentation by the human leukocyte antigen system, TCRs can respond to intracellular antigens. Cancer/testis antigens (CTAs) are a large family of proteins, many of which are only expressed in cancerous tissue and immune-privileged germline sites. Melanoma-associated antigen A4 (MAGE-A4) is an intracellular CTA expressed in healthy testis and placenta, and in a range of cancers, including esophageal, head and neck, gastric, ovarian, colorectal, lung, endometrial, cervical, bladder, breast and prostate cancers; soft tissue sarcomas; urothelial and hepatocellular carcinomas; osteosarcoma; and melanoma. This expression pattern, along with the immunogenicity and potential role in tumorigenesis of MAGE-A4 make it a prime target for TCR T-cell therapy. We outline the preclinical and clinical development of TCR T-cell therapies targeting CTAs for treatment of solid tumors, highlighting the need for extensive preclinical characterization of putative off-target, and potential on-target but off-tumor, effects. We identified ten clinical trials assessing TCR T-cell therapies targeting MAGE-A4. Overall, manageable safety profiles and signals of efficacy have been observed, especially in patients with advanced synovial sarcoma, myxoid/round cell liposarcoma, ovarian, head and neck, and urothelial cancers, with one TCR T-cell therapy approved by the US Food and Drug Administration in August 2024. We also review the limitations, and strategies to enhance efficacy and improve safety, of these therapies, and summarize related immunotherapies targeting MAGE-A4.
Collapse
Affiliation(s)
| | - Alan L Ho
- Department of Medicine, Memorial Sloan Kettering Cancer Center, and Weill Medical College of Cornell University New York NY USA
| | - Kathleen N Moore
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center Oklahoma City OK USA
| | - Seth M Pollack
- Lurie Cancer Center, Department of Medicine, Northwestern University Feinberg School of Medicine Chicago IL USA
| | | | | |
Collapse
|
3
|
Armstrong D, Chang CY, Hong MJ, Green L, Shen Y, Hudson W, Mauk KE, Song LZ, Jammi S, Casal B, Burns B, Creighton CJ, Carisey A, Zhang XHF, McKenna NJ, Kang SW, Lee HS, Decker W, Corry DB, Kheradmand F. MAGE-A4 induces non-small cell lung cancer and tumor-promoting plasma cell accumulation. SCIENCE ADVANCES 2025; 11:eads4227. [PMID: 39937892 PMCID: PMC11817953 DOI: 10.1126/sciadv.ads4227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 01/10/2025] [Indexed: 02/14/2025]
Abstract
Adaptive immunity is critical in eliminating tumors, but cancer-intrinsic factors can subvert this function. Melanoma antigen-A4 (MAGE-A4), a cancer-testis antigen, is expressed in solid tumors and correlates with poor survival, but its role in tumorigenesis and antitumor immunity remains unclear. We found that expression of MAGE-A4 was highly associated with the loss of PTEN, a tumor suppressor, in human non-small cell lung cancers (NSCLC). Here, we show that constitutive expression of human MAGE-A4 with Pten loss in mouse airway epithelia results in metastatic adenocarcinoma. Tumors showed distinct enrichment in IgA+ CD138+ CXCR4+ plasma cells (PCs) and increased expression of CXCL12 in endothelial cells. Consistently, human NSCLC expressing MAGE-A4 showed increased CD138+ IgA+ PCs surrounding tumors. Abrogation of PCs decreased tumor burden, increased activated T cell infiltration, and reduced CD163+CD206+ macrophages in the MAGE-A4-induced lung tumors. These findings suggest MAGE-A4 promotes NSCLC tumorigenesis, in part, through the recruitment and retention of IgA+ PCs in the lungs.
Collapse
Affiliation(s)
- Dominique Armstrong
- Translation Biology and Molecular Medicine Program, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Cheng-Yen Chang
- Translation Biology and Molecular Medicine Program, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Monica J. Hong
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Linda Green
- Department of Pathology, Michael E. DeBakey VA, Houston, TX 77030, USA
| | - Yichao Shen
- Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - William Hudson
- Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Kelsey E. Mauk
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Li-Zhen Song
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sheetal Jammi
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Benjamin Casal
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Brianna Burns
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Chad J. Creighton
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Alexandre Carisey
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
- William T Shearer Center for Human Immunobiology, Texas Children’s Hospital, Houston, TX 77030, USA
| | - Xiang H.-F. Zhang
- Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Neil J. McKenna
- Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sung Wook Kang
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Hyun-Sung Lee
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA
| | - William Decker
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | - David B. Corry
- Translation Biology and Molecular Medicine Program, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
- Center for Translational Research in Inflammatory Diseases, Michael E. DeBakey VA, Houston, TX 77030, USA
- Biology of Inflammation Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Farrah Kheradmand
- Translation Biology and Molecular Medicine Program, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
- Center for Translational Research in Inflammatory Diseases, Michael E. DeBakey VA, Houston, TX 77030, USA
- Biology of Inflammation Center, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
4
|
Zhu W, Yi Q, Chen Z, Wang J, Zhong K, Ouyang X, Yang K, Jiang B, Zhong J, Zhong J. Exploring the role and mechanisms of MAGEA4 in tumorigenesis, regulation, and immunotherapy. Mol Med 2025; 31:43. [PMID: 39905312 PMCID: PMC11796067 DOI: 10.1186/s10020-025-01079-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 01/13/2025] [Indexed: 02/06/2025] Open
Abstract
MAGEA4 is a member of the Melanoma-Associated Antigen (MAGE) family, characterized by high expression in various tumor tissues but low expression in normal tissues, with the exception of testis and placenta. Its expression is associated with poor prognosis in cancer. This review summarizes the mechanisms of action, regulatory functions, and immunotherapeutic applications of MAGEA4 in cancer.MAGEA4 promotes tumor initiation and progression through multiple pathways, including ubiquitination and degradation of the tumor suppressor P53, regulation of cell cycle and apoptosis, modulation of DNA damage repair, and enhancement of cancer cell survival. By forming a complex with TRIM28, MAGEA4 accelerates tumor development via P53 degradation. Factors such as TWIST1 and BORIS can upregulate MAGEA4 expression. MAGEA4 interacts with proteins including Miz-1, p53, and RAD18, participating in gene transcription regulation and DNA damage repair. By stabilizing RAD18, MAGEA4 facilitates the recruitment of Y-family DNA polymerases, enabling cells to continue replication under DNA damage conditions and thus supporting cancer cell survival. MAGEA4-based TCR-T cell therapy and cancer vaccines show clinical potential. This article comprehensively reviews the structure and function of MAGEA4, as well as recent research progress in solid tumors, providing a theoretical foundation for the clinical translation of MAGEA4 and its application in immunotherapy.
Collapse
Affiliation(s)
- Weijian Zhu
- Gannan Medical University, Ganzhou, Jiangxi, China
| | - Qiang Yi
- Gannan Medical University, Ganzhou, Jiangxi, China
| | - Zheng Chen
- Gannan Medical University, Ganzhou, Jiangxi, China
| | - Jiaqi Wang
- Gannan Medical University, Ganzhou, Jiangxi, China
| | - Kui Zhong
- Gannan Medical University, Ganzhou, Jiangxi, China
| | | | - Kuan Yang
- Gannan Medical University, Ganzhou, Jiangxi, China
| | - Bowei Jiang
- Gannan Medical University, Ganzhou, Jiangxi, China
| | | | - Jinghua Zhong
- Department of Oncology, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China.
| |
Collapse
|
5
|
Chandora K, Chandora A, Saeed A, Cavalcante L. Adoptive T Cell Therapy Targeting MAGE-A4. Cancers (Basel) 2025; 17:413. [PMID: 39941782 PMCID: PMC11815873 DOI: 10.3390/cancers17030413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 01/20/2025] [Accepted: 01/22/2025] [Indexed: 02/16/2025] Open
Abstract
MAGE A4 (Melanoma Antigen Gene A4) is a cancer testis antigen (CTA) that is expressed normally in germline cells (testis/embryonic tissues) but absent in somatic cells. The MAGE A4 CTA is expressed in a variety of tumor types, like synovial sarcoma, ovarian cancer and non-small cell lung cancer. Having its expression profile limited to germline cells has made MAGE A4 a sought-after immunotherapeutic target in certain malignancies. In this review, we focus on MAGE-A4's function and expression, current clinical trials involving targeted immunotherapy approaches, and challenges and opportunities facing MAGE-A4's targeted therapeutics.
Collapse
Affiliation(s)
- Kapil Chandora
- Morehouse School of Medicine, 720 Westview Dr, Atlanta, GA 30310, USA; (K.C.)
| | - Akshay Chandora
- Morehouse School of Medicine, 720 Westview Dr, Atlanta, GA 30310, USA; (K.C.)
| | - Anwaar Saeed
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15232, USA;
| | - Ludimila Cavalcante
- Division of Hematology and Oncology, University of Virginia Comprehensive Cancer Center, Charlottesville, VA 22903, USA
| |
Collapse
|
6
|
Yang M, Lin W, Huang J, Mannucci A, Luo H. Novel immunotherapeutic approaches in gastric cancer. PRECISION CLINICAL MEDICINE 2024; 7:pbae020. [PMID: 39397869 PMCID: PMC11467695 DOI: 10.1093/pcmedi/pbae020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/08/2024] [Accepted: 09/08/2024] [Indexed: 10/15/2024] Open
Abstract
Gastric cancer is a malignant tumor that ranks third in cancer-related deaths worldwide. Early-stage gastric cancer can often be effectively managed through surgical resection. However, the majority of cases are diagnosed in advanced stages, where outcomes with conventional radiotherapy and chemotherapy remain unsatisfactory. Immunotherapy offers a novel approach to treating molecularly heterogeneous gastric cancer by modifying the immunosuppressive tumor microenvironment. Immune checkpoint inhibitors and adoptive cell therapy are regarded as promising modalities in cancer immunotherapy. Food and Drug Administration-approved programmed death-receptor inhibitors, such as pembrolizumab, in combination with chemotherapy, have significantly extended overall survival in gastric cancer patients and is recommended as a first-line treatment. Despite challenges in solid tumor applications, adoptive cell therapy has demonstrated efficacy against various targets in gastric cancer treatment. Among these approaches, chimeric antigen receptor-T cell therapy research is the most widely explored and chimeric antigen receptor-T cell therapy targeting claudin18.2 has shown acceptable safety and robust anti-tumor capabilities. However, these advancements primarily remain in preclinical stages and further investigation should be made to promote their clinical application. This review summarizes the latest research on immune checkpoint inhibitors and adoptive cell therapy and their limitations, as well as the role of nanoparticles in enhancing immunotherapy.
Collapse
Affiliation(s)
- Meng Yang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou 510060, China
| | - Wuhao Lin
- Department of Molecular Diagnostics, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Jiaqian Huang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou 510060, China
| | - Alessandro Mannucci
- Gastroenterology and Gastrointestinal Emndoscopy Unit, IRCCS San Raffaele Hospital, Vita-Salute San Raffaele University, Milan 20132, Italy
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope; Monrovia, CA 91016, USA
| | - Huiyan Luo
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou 510060, China
| |
Collapse
|
7
|
Abou Kors T, Meier M, Mühlenbruch L, Betzler AC, Oliveri F, Bens M, Thomas J, Kraus JM, Doescher J, von Witzleben A, Hofmann L, Ezic J, Huber D, Benckendorff J, Barth TFE, Greve J, Schuler PJ, Brunner C, Blackburn JM, Hoffmann TK, Ottensmeier C, Kestler HA, Rammensee HG, Walz JS, Laban S. Multi-omics analysis of overexpressed tumor-associated proteins: gene expression, immunopeptide presentation, and antibody response in oropharyngeal squamous cell carcinoma, with a focus on cancer-testis antigens. Front Immunol 2024; 15:1408173. [PMID: 39136024 PMCID: PMC11317303 DOI: 10.3389/fimmu.2024.1408173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 07/15/2024] [Indexed: 08/15/2024] Open
Abstract
Introduction The human leukocyte antigen complex (HLA) is essential for inducing specific immune responses to cancer by presenting tumor-associated peptides (TAP) to T cells. Overexpressed tumor associated antigens, mainly cancer-testis antigens (CTA), are outlined as essential targets for immunotherapy in oropharyngeal squamous cell carcinoma (OPSCC). This study assessed the degree to which presentation, gene expression, and antibody response (AR) of TAP, mainly CTA, are correlated in OPSCC patients to evaluate their potential as immunotherapy targets. Materials and methods Snap-frozen tumor (NLigand/RNA=40), healthy mucosa (NRNA=6), and healthy tonsils (NLigand=5) samples were obtained. RNA-Seq was performed using Illumina HiSeq 2500/NovaSeq 6000 and whole exome sequencing (WES) utilizing NextSeq500. HLA ligands were isolated from tumor tissue using immunoaffinity purification, UHPLC, and analyzed by tandem MS. Antibodies were measured in serum (NAb=27) utilizing the KREX™ CT262 protein array. Data analysis focused on 312 proteins (KREX™ CT262 panel + overexpressed self-proteins). Results 183 and 94 of HLA class I and II TAP were identified by comparative profiling with healthy tonsils. Genes from 26 TAP were overexpressed in tumors compared to healthy mucosa (LFC>1; FDR<0.05). Low concordance (r=0.25; p<0.0001) was found between upregulated mRNA and class I TAP. The specific mode of correlation of TAP was found to be dependent on clinical parameters. A lack of correlation was observed both between mRNA and class II TAP, as well as between class II tumor-unique TAP (TAP-U) presentation and antibody response (AR) levels. Discussion This study demonstrates that focusing exclusively on gene transcript levels fails to capture the full extent of TAP presentation in OPSCC. Furthermore, our findings reveal that although CTA are presented at relatively low levels, a few CTA TAP-U show potential as targets for immunotherapy.
Collapse
Affiliation(s)
- Tsima Abou Kors
- Department of Otorhinolaryngology and Head and Neck Surgery, Ulm University Medical Center, Ulm, Germany
| | - Matthias Meier
- Department of Otorhinolaryngology and Head and Neck Surgery, Ulm University Medical Center, Ulm, Germany
| | - Lena Mühlenbruch
- Department of Immunology, Institute for Cell Biology, Eberhard Karls University of Tübingen, Tübingen, Germany
- Department of Peptide-based Immunotherapy, Eberhard Karls University and University Hospital Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tübingen, Tübingen, Germany
- German Cancer Consortium (DKTK), Partner Site Tübingen, Tübingen, Germany
| | - Annika C. Betzler
- Department of Otorhinolaryngology and Head and Neck Surgery, Ulm University Medical Center, Ulm, Germany
- Core Facility Immune Monitoring, Ulm University Medical Center, Ulm, Germany
| | - Franziska Oliveri
- Department of Otorhinolaryngology and Head and Neck Surgery, Ulm University Medical Center, Ulm, Germany
| | - Martin Bens
- Core Facility Next Generation Sequencing, Leibniz Institute on Aging - Fritz Lipmann Institute, Jena, Germany
| | - Jaya Thomas
- Cancer Sciences Unit, University of Southampton, Faculty of Medicine, Southampton, United Kingdom
| | - Johann M. Kraus
- Institute of Medical Systems Biology, Faculty of Medicine, Ulm University, Ulm, Germany
| | - Johannes Doescher
- Department of Otorhinolaryngology and Head and Neck Surgery, Ulm University Medical Center, Ulm, Germany
- Department of Otolaryngology, Augsburg University Hospital, Augsburg, Germany
| | - Adrian von Witzleben
- Department of Otorhinolaryngology and Head and Neck Surgery, Ulm University Medical Center, Ulm, Germany
| | - Linda Hofmann
- Department of Otorhinolaryngology and Head and Neck Surgery, Ulm University Medical Center, Ulm, Germany
| | - Jasmin Ezic
- Department of Otorhinolaryngology and Head and Neck Surgery, Ulm University Medical Center, Ulm, Germany
| | - Diana Huber
- Department of Otorhinolaryngology and Head and Neck Surgery, Ulm University Medical Center, Ulm, Germany
| | | | | | - Jens Greve
- Department of Otorhinolaryngology and Head and Neck Surgery, Ulm University Medical Center, Ulm, Germany
| | - Patrick J. Schuler
- Department of Otorhinolaryngology and Head and Neck Surgery, Ulm University Medical Center, Ulm, Germany
- Surgical Oncology Ulm, i2SOUL Consortium, Ulm, Germany
| | - Cornelia Brunner
- Department of Otorhinolaryngology and Head and Neck Surgery, Ulm University Medical Center, Ulm, Germany
- Core Facility Immune Monitoring, Ulm University Medical Center, Ulm, Germany
| | - Jonathan M. Blackburn
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Thomas K. Hoffmann
- Department of Otorhinolaryngology and Head and Neck Surgery, Ulm University Medical Center, Ulm, Germany
- Surgical Oncology Ulm, i2SOUL Consortium, Ulm, Germany
| | - Christian Ottensmeier
- Institute of Systems, Molecular and Integrative Biology, Liverpool Head and Neck Center, University of Liverpool, Faculty of Medicine, Liverpool, United Kingdom
| | - Hans A. Kestler
- Institute of Medical Systems Biology, Faculty of Medicine, Ulm University, Ulm, Germany
- Surgical Oncology Ulm, i2SOUL Consortium, Ulm, Germany
| | - Hans-Georg Rammensee
- Department of Immunology, Institute for Cell Biology, Eberhard Karls University of Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tübingen, Tübingen, Germany
- German Cancer Consortium (DKTK), Partner Site Tübingen, Tübingen, Germany
| | - Juliane S. Walz
- Department of Peptide-based Immunotherapy, Eberhard Karls University and University Hospital Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tübingen, Tübingen, Germany
- German Cancer Consortium (DKTK), Partner Site Tübingen, Tübingen, Germany
- Clinical Collaboration Unit Translational Immunology, Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany
| | - Simon Laban
- Department of Otorhinolaryngology and Head and Neck Surgery, Ulm University Medical Center, Ulm, Germany
- Surgical Oncology Ulm, i2SOUL Consortium, Ulm, Germany
| |
Collapse
|
8
|
Armstrong D, Chang CY, Hong MJ, Green L, Hudson W, Shen Y, Song LZ, Jammi S, Casal B, Creighton CJ, Carisey A, Zhang XHF, McKenna NJ, Kang SW, Lee HS, Corry DB, Kheradmand F. MAGE-A4-Responsive Plasma Cells Promote Non-Small Cell Lung Cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.10.602985. [PMID: 39071307 PMCID: PMC11275715 DOI: 10.1101/2024.07.10.602985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Adaptive immunity is critical to eliminate malignant cells, while multiple tumor-intrinsic factors can alter this protective function. Melanoma antigen-A4 (MAGE-A4), a cancer-testis antigen, is expressed in several solid tumors and correlates with poor survival in non-small cell lung cancer (NSCLC), but its role in altering antitumor immunity remains unclear. We found that expression of MAGE-A4 was highly associated with the loss of PTEN , a tumor suppressor, in human NSCLC. Here we show that constitutive expression of human MAGE-A4 combined with the loss of Pten in mouse airway epithelial cells results in metastatic adenocarcinoma enriched in CD138 + CXCR4 + plasma cells, predominantly expressing IgA. Consistently, human NSCLC expressing MAGE-A4 showed increased CD138 + IgA + plasma cell density surrounding tumors. The abrogation of MAGE-A4-responsive plasma cells (MARPs) decreased tumor burden, increased T cell infiltration and activation, and reduced CD163 + CD206 + macrophages in mouse lungs. These findings suggest MAGE-A4 promotes NSCLC tumorigenesis, in part, through the recruitment and retention of IgA + MARPs in the lungs.
Collapse
|
9
|
Rana P, Singh C, Kaushik A, Saleem S, Kumar A. Recent advances in stimuli-responsive tailored nanogels for cancer therapy; from bench to personalized treatment. J Mater Chem B 2024; 12:382-412. [PMID: 38095136 DOI: 10.1039/d3tb02650g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
To improve the quality of health in a personalized manner, better control over pharmacologically relevant cargo formulation, organ-specific targeted delivery, and on-demand release of therapeutic agents is crucial. Significant work has been put into designing and developing revolutionary nanotherapeutics approaches for the effective monitoring and personalized treatment of disease. Nanogel (NG) has attracted significant interest because of its tremendous potential in cancer therapy and its environmental stimuli responsiveness. NG is considered a next-generation delivery technology due to its benefits like as size tunability, high loading, stimuli responsiveness, prolonged drug release via in situ gelling mechanisms, stability, and its potential to provide personalized therapy from the investigation of human genes and the genes in various types of cancers and its association with a selective anticancer drug. Stimuli-responsive NGs can be used as smart nanomedicines to detect and treat cancer and can be tuned as personalized medicine as well. This comprehensive review article's major objectives include the challenges of NGs' clinical translation for cancer treatment as well as its early preclinical successes and prospects.
Collapse
Affiliation(s)
- Prinsy Rana
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
- M. M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala-133207, Haryana, India
| | - Charan Singh
- Department of Pharmaceutical Sciences, School of Sciences, Hemvati Nandan Bahuguna Garhwal University (A Central University), Srinagar, Uttarakhand-246174, India
| | - Ajeet Kaushik
- NanoBiotech Lab, Department of Environmental Engineering, Florida Polytechnic University (FPU), Lakeland, FL, 33805-8531, USA
- School of Engineering, University of Petroleum and Energy Studies, Dehradun 248007, India
| | - Shakir Saleem
- Department of Public Health, College of Health Sciences, Saudi Electronic University, P. O. Box 93499, Riyadh 11673, Saudi Arabia
| | - Arun Kumar
- Department of Pharmacy, School of Health Sciences, Central University of South Bihar, Gaya-824209, India.
| |
Collapse
|
10
|
Xiao J, Huang F, Li L, Zhang L, Xie L, Liu B. Expression of four cancer-testis antigens in TNBC indicating potential universal immunotherapeutic targets. J Cancer Res Clin Oncol 2023; 149:15003-15011. [PMID: 37610673 PMCID: PMC10602960 DOI: 10.1007/s00432-023-05274-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 08/10/2023] [Indexed: 08/24/2023]
Abstract
OBJECTIVE Immunotherapy is an attractive treatment for breast cancer. Cancer-testis antigens (CTAs) are potential targets for immunotherapy for their restricted expression. Here, we investigate the expression of CTAs in breast cancer and their value for prognosis. So as to hunt for a potential panel of CTAs for universal immunotherapeutic targets. MATERIAL AND METHODS A total of 137 breast cancer tissue specimens including 51 triple-negative breast cancer (TNBC) were assessed for MAGE-A4, MAGEA1, NY-ESO-1, KK-LC-1 and PRAME expression by immunohistochemistry. The expression of PD-L1 and TILs was also calculated and correlated with the five CTAs. Clinical data were collected to evaluate the CTA's value for prognosis. Data from the K-M plotter were used as a validation cohort. RESULTS The expression of MAGE-A4, NY-ESO-1 and KK-LC-1 in TNBC was significantly higher than in non-TNBC (P = 0.012, P = 0.005, P < 0.001 respectively). 76.47% of TNBC expressed at least one of the five CTAs. Patients with positive expression of either MAGE-A4 or PRAME had a significantly extended disease-free survival (DFS). Data from the Kaplan-Meier plotter confirm our findings. CONCLUSIONS MAGE-A4, NY-ESO-1, PRAME and KK-LC-1 are overexpressed in breast cancer, especially in TNBC. Positive expression of MAGE-A4 or PARME may be associated with prolonged DFS. A panel of CTAs is attractive universal targets for immunotherapy.
Collapse
Affiliation(s)
- Jie Xiao
- Department of Oncology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Fengli Huang
- Department of Oncology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, 210008, China
| | - Lin Li
- Department of Pathology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Lianru Zhang
- Department of Oncology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Li Xie
- Department of Oncology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
| | - Baorui Liu
- Department of Oncology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
| |
Collapse
|
11
|
Fujikawa K, Saito T, Kurose K, Kojima T, Funakoshi T, Sato E, Kakimi K, Iida S, Doki Y, Oka M, Ueda R, Wada H. Integrated analysis of phase 1a and 1b randomized controlled trials; Treg-targeted cancer immunotherapy with the humanized anti-CCR4 antibody, KW-0761, for advanced solid tumors. PLoS One 2023; 18:e0291772. [PMID: 37729184 PMCID: PMC10511099 DOI: 10.1371/journal.pone.0291772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 08/03/2023] [Indexed: 09/22/2023] Open
Abstract
INTRODUCTION Regulatory T cells (Tregs) have attracted attention as a novel therapeutic target to augment the clinical efficacy of immunotherapy. We conducted phase Ia and Ib trials to examine the safety and efficacy of the anti-CCR4 antibody, KW-0761 (mogamulizumab), which may eliminate effector Tregs (eTregs). We herein overviewed the results of these trials, presented cases with a durable clinical response, and investigated factors associated with the clinical effects of KW-0761. METHODS Forty-nine patients with CCR4-negative solid cancers were enrolled in the phase Ia and Ib trials on KW-0761. An integral analysis of safety, clinical responses, prognosis, blood laboratory data, and cancer testis antigen-specific immune responses was performed. RESULTS Grade 3-4 treatment-related adverse events were reported in 21 (42.9%) out of 49 patients, all of which were manageable. A partial response and stable disease were observed in 1 and 9 patients, respectively. A durable clinical response was noted in 2 esophageal and 2 lung cancer patients. eTreg depletion in peripheral blood was confirmed in most patients, and eTreg depletion was sustained during the KW-0761 treatment. High lymphocyte levels at baseline and 2 weeks after the initiation of KW-0761 were associated with a favorable clinical outcome. CONCLUSIONS A durable clinical response was noted in some patients, and high lymphocyte levels before treatment initiation may be a biomarker for the efficacy of KW-0761. The synergistic effect of KW-0761 for depleting Tregs and other immunotherapies is expected in the future.
Collapse
Affiliation(s)
- Kaoru Fujikawa
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Takuro Saito
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Koji Kurose
- Department of Respiratory Medicine, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Takashi Kojima
- Department of Gastrointestinal Oncology, National Cancer Center Hospital East, Chiba, Japan
| | - Takeru Funakoshi
- Department of Dermatology, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Eiichi Sato
- Department of Pathology, Institute of Medical Science (Medical Research Center), Tokyo Medical University, Shinjuku-ku, Tokyo, Japan
| | - Kazuhiro Kakimi
- Department of Immunotherapeutics, The University of Tokyo Hospital, Bunkyo-Ku, Tokyo, Japan
| | - Shinsuke Iida
- Department of Hematology and Oncology, Nagoya City University Graduate School of Medical Sciences, Mizuho-cho, Mizuho-ku, Nagoya, Aichi, Japan
| | - Yuichiro Doki
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Mikio Oka
- Department of Immuno-Oncology, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Ryuzo Ueda
- Department of Immunology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hisashi Wada
- Department of Clinical Research in Tumor Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| |
Collapse
|
12
|
Saotome K, Dudgeon D, Colotti K, Moore MJ, Jones J, Zhou Y, Rafique A, Yancopoulos GD, Murphy AJ, Lin JC, Olson WC, Franklin MC. Structural analysis of cancer-relevant TCR-CD3 and peptide-MHC complexes by cryoEM. Nat Commun 2023; 14:2401. [PMID: 37100770 PMCID: PMC10132440 DOI: 10.1038/s41467-023-37532-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 03/21/2023] [Indexed: 04/28/2023] Open
Abstract
The recognition of antigenic peptide-MHC (pMHC) molecules by T-cell receptors (TCR) initiates the T-cell mediated immune response. Structural characterization is key for understanding the specificity of TCR-pMHC interactions and informing the development of therapeutics. Despite the rapid rise of single particle cryoelectron microscopy (cryoEM), x-ray crystallography has remained the preferred method for structure determination of TCR-pMHC complexes. Here, we report cryoEM structures of two distinct full-length α/β TCR-CD3 complexes bound to their pMHC ligand, the cancer-testis antigen HLA-A2/MAGEA4 (230-239). We also determined cryoEM structures of pMHCs containing MAGEA4 (230-239) peptide and the closely related MAGEA8 (232-241) peptide in the absence of TCR, which provided a structural explanation for the MAGEA4 preference displayed by the TCRs. These findings provide insights into the TCR recognition of a clinically relevant cancer antigen and demonstrate the utility of cryoEM for high-resolution structural analysis of TCR-pMHC interactions.
Collapse
Affiliation(s)
- Kei Saotome
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY, 10591, USA.
| | - Drew Dudgeon
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY, 10591, USA
| | | | | | - Jennifer Jones
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY, 10591, USA
| | - Yi Zhou
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY, 10591, USA
| | | | | | | | - John C Lin
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY, 10591, USA
| | | | | |
Collapse
|
13
|
Fuchs JR, Schulte BC, Fuchs JW, Agulnik M. Emerging targeted and cellular therapies in the treatment of advanced and metastatic synovial sarcoma. Front Oncol 2023; 13:1123464. [PMID: 36761952 PMCID: PMC9905840 DOI: 10.3389/fonc.2023.1123464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/09/2023] [Indexed: 01/26/2023] Open
Abstract
Synovial sarcoma is a soft tissue sarcoma accounting for approximately 1,000 cases per year in the United States. Currently, standard treatment of advanced and metastatic synovial sarcoma is anthracycline-based chemotherapy. While advanced synovial sarcoma is more responsive to chemotherapy compared to other soft tissue sarcomas, survival rates are poor, with a median survival time of less than 18 months. Enhanced understanding of tumor antigen expression and molecular mechanisms behind synovial sarcoma provide potential targets for treatment. Adoptive Cell Transfer using engineered T-cell receptors is in clinical trials for treatment of synovial sarcoma, specifically targeting New York esophageal squamous cell carcinoma-1 (NY-ESO-1), preferentially expressed antigen in melanoma (PRAME), and melanoma antigen-A4 (MAGE-A4). In this review, we explore the opportunities and challenges of these treatments. We also describe artificial adjuvant vector cells (aAVCs) and BRD9 inhibitors, two additional potential targets for treatment of advanced synovial sarcoma. This review demonstrates the progress that has been made in treatment of synovial sarcoma and highlights the future study and qualification needed to implement these technologies as standard of care.
Collapse
Affiliation(s)
- Joseph R. Fuchs
- Department of Medicine, McGaw Medical Center of Northwestern University, Chicago, IL, United States
| | - Brian C. Schulte
- Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Jeffrey W. Fuchs
- Department of Medicine, McGaw Medical Center of Northwestern University, Chicago, IL, United States
| | - Mark Agulnik
- Medical Oncology and Therapeutics Research, City of Hope Comprehensive Cancer Center, Duarte, CA, United States,*Correspondence: Mark Agulnik,
| |
Collapse
|
14
|
Li DD, Tang YL, Wang X. Challenges and exploration for immunotherapies targeting cold colorectal cancer. World J Gastrointest Oncol 2023; 15:55-68. [PMID: 36684057 PMCID: PMC9850757 DOI: 10.4251/wjgo.v15.i1.55] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/28/2022] [Accepted: 12/07/2022] [Indexed: 01/10/2023] Open
Abstract
In recent years, immune checkpoint inhibitors (ICIs) have made significant breakthroughs in the treatment of various tumors, greatly improving clinical efficacy. As the fifth most common antitumor treatment strategy for patients with solid tumors after surgery, chemotherapy, radiotherapy and targeted therapy, the therapeutic response to ICIs largely depends on the number and spatial distribution of effector T cells that can effectively identify and kill tumor cells, features that are also important when distinguishing malignant tumors from “cold tumors” or “hot tumors”. At present, only a small proportion of colorectal cancer (CRC) patients with deficient mismatch repair (dMMR) or who are microsatellite instability-high (MSI-H) can benefit from ICI treatments because these patients have the characteristics of a “hot tumor”, with a high tumor mutational burden (TMB) and massive immune cell infiltration, making the tumor more easily recognized by the immune system. In contrast, a majority of CRC patients with proficient MMR (pMMR) or who are microsatellite stable (MSS) have a low TMB, lack immune cell infiltration, and have almost no response to immune monotherapy; thus, these tumors are “cold”. The greatest challenge today is how to improve the immunotherapy response of “cold tumor” patients. With the development of clinical research, immunotherapies combined with other treatment strategies (such as targeted therapy, chemotherapy, and radiotherapy) have now become potentially effective clinical strategies and research hotspots. Therefore, the question of how to promote the transformation of “cold tumors” to “hot tumors” and break through the bottleneck of immunotherapy for cold tumors in CRC patients urgently requires consideration. Only by developing an in-depth understanding of the immunotherapy mechanisms of cold CRCs can we screen out the immunotherapy-dominant groups and explore the most suitable treatment options for individuals to improve therapeutic efficacy.
Collapse
Affiliation(s)
- Dan-Dan Li
- Department of Abdominal Oncology/Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Yuan-Ling Tang
- Department of Abdominal Oncology/Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Xin Wang
- Department of Abdominal Oncology/Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| |
Collapse
|
15
|
Narayanan KB, Bhaskar R, Han SS. Recent Advances in the Biomedical Applications of Functionalized Nanogels. Pharmaceutics 2022; 14:2832. [PMID: 36559325 PMCID: PMC9782855 DOI: 10.3390/pharmaceutics14122832] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Nanomaterials have been extensively used in several applications in the past few decades related to biomedicine and healthcare. Among them, nanogels (NGs) have emerged as an important nanoplatform with the properties of both hydrogels and nanoparticles for the controlled/sustained delivery of chemo drugs, nucleic acids, or other bioactive molecules for therapeutic or diagnostic purposes. In the recent past, significant research efforts have been invested in synthesizing NGs through various synthetic methodologies such as free radical polymerization, reversible addition-fragmentation chain-transfer method (RAFT) and atom transfer radical polymerization (ATRP), as well as emulsion techniques. With further polymeric functionalizations using activated esters, thiol-ene/yne processes, imines/oximes formation, cycloadditions, nucleophilic addition reactions of isocyanates, ring-opening, and multicomponent reactions were used to obtain functionalized NGs for targeted delivery of drug and other compounds. NGs are particularly intriguing for use in the areas of diagnosis, analytics, and biomedicine due to their nanodimensionality, material characteristics, physiological stability, tunable multi-functionality, and biocompatibility. Numerous NGs with a wide range of functionalities and various external/internal stimuli-responsive modalities have been possible with novel synthetic reliable methodologies. Such continuous development of innovative, intelligent materials with novel characteristics is crucial for nanomedicine for next-generation biomedical applications. This paper reviews the synthesis and various functionalization strategies of NGs with a focus on the recent advances in different biomedical applications of these surface modified/functionalized single-/dual-/multi-responsive NGs, with various active targeting moieties, in the fields of cancer theranostics, immunotherapy, antimicrobial/antiviral, antigen presentation for the vaccine, sensing, wound healing, thrombolysis, tissue engineering, and regenerative medicine.
Collapse
Affiliation(s)
- Kannan Badri Narayanan
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Republic of Korea
- Research Institute of Cell Culture, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Republic of Korea
| | - Rakesh Bhaskar
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Republic of Korea
| | - Sung Soo Han
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Republic of Korea
- Research Institute of Cell Culture, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
16
|
Farjadian F, Ghasemi S, Akbarian M, Hoseini-Ghahfarokhi M, Moghoofei M, Doroudian M. Physically stimulus-responsive nanoparticles for therapy and diagnosis. Front Chem 2022; 10:952675. [PMID: 36186605 PMCID: PMC9515617 DOI: 10.3389/fchem.2022.952675] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/02/2022] [Indexed: 11/13/2022] Open
Abstract
Nanoparticles offer numerous advantages in various fields of science, particularly in medicine. Over recent years, the use of nanoparticles in disease diagnosis and treatments has increased dramatically by the development of stimuli-responsive nano-systems, which can respond to internal or external stimuli. In the last 10 years, many preclinical studies were performed on physically triggered nano-systems to develop and optimize stable, precise, and selective therapeutic or diagnostic agents. In this regard, the systems must meet the requirements of efficacy, toxicity, pharmacokinetics, and safety before clinical investigation. Several undesired aspects need to be addressed to successfully translate these physical stimuli-responsive nano-systems, as biomaterials, into clinical practice. These have to be commonly taken into account when developing physically triggered systems; thus, also applicable for nano-systems based on nanomaterials. This review focuses on physically triggered nano-systems (PTNSs), with diagnostic or therapeutic and theranostic applications. Several types of physically triggered nano-systems based on polymeric micelles and hydrogels, mesoporous silica, and magnets are reviewed and discussed in various aspects.
Collapse
Affiliation(s)
- Fatemeh Farjadian
- Pharmaceutical Sciences Research Center, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- *Correspondence: Fatemeh Farjadian, , Soheila Ghasemi, , Mohammad Doroudian,
| | - Soheila Ghasemi
- Department of Chemistry, College of Sciences, Shiraz University, Shiraz, Iran
- *Correspondence: Fatemeh Farjadian, , Soheila Ghasemi, , Mohammad Doroudian,
| | - Mohsen Akbarian
- Department of Chemistry, National Cheng Kung University, Tainan, Taiwan
| | | | - Mohsen Moghoofei
- Department of Microbiology, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Doroudian
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
- *Correspondence: Fatemeh Farjadian, , Soheila Ghasemi, , Mohammad Doroudian,
| |
Collapse
|
17
|
Attama AA, Nnamani PO, Onokala OB, Ugwu AA, Onugwu AL. Nanogels as target drug delivery systems in cancer therapy: A review of the last decade. Front Pharmacol 2022; 13:874510. [PMID: 36160424 PMCID: PMC9493206 DOI: 10.3389/fphar.2022.874510] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 08/05/2022] [Indexed: 11/13/2022] Open
Abstract
Cancer is an important cause of morbidity and mortality worldwide, irrespective of the level of human development. Globally, it was estimated that there were 19.3 million new cases of cancer and almost 10 million deaths from cancer in 2020. The importance of prevention, early detection as well as effective cancer therapies cannot be over-emphasized. One of the important strategies in cancer therapy is targeted drug delivery to the specific tumor sites. Nanogels are among the several drug delivery systems (DDS) being explored as potential candidates for targeted drug delivery in cancer therapy. Nanogels, which are new generation, versatile DDS with the possession of dual characteristics of hydrogels and nanoparticles have shown great potential as targeted DDS in cancer therapy. Nanogels are hydrogels with a three-dimensional (3D) tunable porous structure and a particle size in the nanometre range, from 20 to 200 nm. They have been visualized as ideal DDS with enormous drug loading capacity, and high stability. Nanogels can be modified to achieve active targeting and enhance drug accumulation in disease sites. They can be designed to be stimulus-responsive, and react to internal or external stimuli such as pH, temperature, light, redox, thus resulting in the controlled release of loaded drug. This prevents drug accumulation in non-target tissues and minimizes the side effects of the drug. Drugs with severe adverse effects, short circulation half-life, and easy degradability by enzymes, such as anti-cancer drugs, and proteins, are suitable for delivery by chemically cross-linked or physically assembled nanogel systems. This systematic review summarizes the evolution of nanogels for targeted drug delivery for cancer therapy over the last decade. On-going clinical trials and recent applications of nanogels as targeted DDS for cancer therapy will be discussed in detail. The review will be concluded with discussions on safety and regulatory considerations as well as future research prospects of nanogel-targeted drug delivery for cancer therapy.
Collapse
Affiliation(s)
- Anthony A. Attama
- Drug Delivery and Nanomedicine Research Group, Department of Pharmaceutics, University of Nigeria, Nsukka, Enugu, Nigeria
- Public Health and Environmental Sustainability Research Group, Department of Pharmaceutics, University of Nigeria, Nsukka, Enugu, Nigeria
- Institute for Drug-Herbal Medicines-Excipients Research and Development, University of Nigeria, Nsukka, Enugu, Nigeria
- *Correspondence: Anthony A. Attama, ; Petra O. Nnamani,
| | - Petra O. Nnamani
- Drug Delivery and Nanomedicine Research Group, Department of Pharmaceutics, University of Nigeria, Nsukka, Enugu, Nigeria
- Public Health and Environmental Sustainability Research Group, Department of Pharmaceutics, University of Nigeria, Nsukka, Enugu, Nigeria
- *Correspondence: Anthony A. Attama, ; Petra O. Nnamani,
| | - Ozioma B. Onokala
- Drug Delivery and Nanomedicine Research Group, Department of Pharmaceutics, University of Nigeria, Nsukka, Enugu, Nigeria
| | - Agatha A. Ugwu
- Drug Delivery and Nanomedicine Research Group, Department of Pharmaceutics, University of Nigeria, Nsukka, Enugu, Nigeria
- Public Health and Environmental Sustainability Research Group, Department of Pharmaceutics, University of Nigeria, Nsukka, Enugu, Nigeria
| | - Adaeze L. Onugwu
- Drug Delivery and Nanomedicine Research Group, Department of Pharmaceutics, University of Nigeria, Nsukka, Enugu, Nigeria
| |
Collapse
|
18
|
Hashimoto K, Nishimura S, Ito T, Oka N, Kakinoki R, Akagi M. Clinicopathological assessment of cancer/testis antigens NY‑ESO‑1 and MAGE‑A4 in osteosarcoma. Eur J Histochem 2022; 66:3377. [PMID: 35736245 PMCID: PMC9251608 DOI: 10.4081/ejh.2022.3377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 06/16/2022] [Indexed: 11/23/2022] Open
Abstract
The cancer/testis antigens (CTAs), New York esophageal squamous cell carcinoma-1 (NY-ESO-1) and melanoma antigen gene (MAGE)-A4 are normally restricted to male germ cells but are aberrantly expressed in several cancers. Considering the limited information regarding their significance in osteosarcoma (OS), the purpose of this study was to determine the clinical significance of NY-ESO-1 and MAGE-A4 expression in OS. Nine patients with OS treated at Kindai University Hospital were included in the study. The median age was 27 years, and median follow-up period was 40 months. The specimens obtained at the time of biopsy were used to perform immunostaining for NY-ESO, MAGE-A4, p53, and Ki-67. The positive cell rates and positive case rates of NY-ESO, MAGE-A4, p53, and Ki-67 were calculated. The correlation between the positive cell rate of immunohistochemical markers was also calculated. The correlation between the positive cell rate of NY-ESO-1 or MAGE-A4 and tumor size or maximum standardized uptake (SUV-max) was also determined. The positive cell rates of NY-ESO-1 or MAGE-A4 in continuous disease-free (CDF) cases were also compared with those in alive with disease (AWD) or dead of disease (DOD) cases. The average positive cell rates of NY-ESO, MAGEA4, p53, and Ki-67 were 71.7%, 85.1%, 16.2%, and 14.7%, and their positive case rates were 33.3%, 100%, 44.4%, and 100%, respectively. The positivity rates of NY-ESO-1 and p53 were strongly correlated, whereas those of NY-ESO-1 and Ki-67 were moderately correlated. The MAGE-A4 and p53 positivity rates and the MAGE-A4 and Ki-67 positive cell rates were both strongly correlated. The NY-ESO-1 and MAGE-A4 positivity rates were moderately correlated. The positive correlation between the NY-ESO-1 positive cell rate and tumor size was medium, and that between the MAGE-A4 positivity rate and SUV-max was very strong. There was no significant difference in the positive cell rates of NY-ESO-1 or MAGE-A4 between CDF cases and AWD or DOD cases. Overall, our results suggest that NY-ESO-1 and MAGE-A4 may be involved in the aggressiveness of OS.
Collapse
Affiliation(s)
- Kazuhiko Hashimoto
- Department of Orthopedic Surgery, Kindai University Hospital, Osaka-Sayama City, Osaka.
| | - Shunji Nishimura
- Department of Orthopedic Surgery, Kindai University Hospital, Osaka-Sayama City, Osaka.
| | - Tomohiko Ito
- Department of Orthopedic Surgery, Kindai University Hospital, Osaka-Sayama City, Osaka.
| | - Naohiro Oka
- Department of Orthopedic Surgery, Kindai University Hospital, Osaka-Sayama City, Osaka.
| | - Ryosuke Kakinoki
- Department of Orthopedic Surgery, Kindai University Hospital, Osaka-Sayama City, Osaka.
| | - Masao Akagi
- Department of Orthopedic Surgery, Kindai University Hospital, Osaka-Sayama City, Osaka.
| |
Collapse
|
19
|
Hashimoto K, Nishimura S, Ito T, Kakinoki R, Akagi M. Immunohistochemical expression and clinicopathological assessment of PD-1, PD-L1, NY-ESO-1, and MAGE-A4 expression in highly aggressive soft tissue sarcomas. Eur J Histochem 2022; 66. [PMID: 35448937 PMCID: PMC9046686 DOI: 10.4081/ejh.2022.3393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/16/2022] [Indexed: 12/05/2022] Open
Abstract
Immunotherapy has altered the treatment paradigm for soft tissue sarcomas (STSs). Considering the limited information regarding the clinical significance of immunohistochemical markers in STS, the purpose of this study was to determine the clinical significance of programmed cell death-1 (PD-1), PD ligand-1(PD-L1), New York esophageal squamous cell carcinoma-1 (NY-ESO-1), and melanoma-associated antigen-A4 (MAGE-A4) expression in STSs. Twenty-two patients (median age, 72.5 years) with STSs treated at our hospital were included in this study. The specimens obtained at the time of biopsy were used to perform immunostaining for PD-1, PD-L1, NY-ESO, and MAGE-A4. The rates of PD-1-, PD-L1-, NY-ESO-, and MAGE-A4-positive cells and cases were calculated. The correlations among the positive cell rates of the immunohistochemical markers as well as their correlations with the histological grade, tumor size, or maximum standardized uptake (SUVmax) value were also determined. The average rates of PD-1-, PD-L1-, NY-ESO-, and MAGE-A4-positive cells were 4.39%, 28.0%, 18.2%, and 39.4%, respectively. PD-1-, PD-L1-, NY-ESO-1-, and MAGE-A4- positive cell rates showed weak to strong correlations with the SUVmax value. Thus, PD-1, PD-L1, NY-ESO, and MAGE-A4 expressions might be involved in the aggressive elements of STSs.
Collapse
Affiliation(s)
- Kazuhiko Hashimoto
- Department of Orthopedic Surgery, Kindai University Hospital, Osaka-Sayama City, Osaka.
| | - Shunji Nishimura
- Department of Orthopedic Surgery, Kindai University Hospital, Osaka-Sayama City, Osaka.
| | - Tomohiko Ito
- Department of Orthopedic Surgery, Kindai University Hospital, Osaka-Sayama City, Osaka.
| | - Ryosuke Kakinoki
- Department of Orthopedic Surgery, Kindai University Hospital, Osaka-Sayama City, Osaka.
| | - Masao Akagi
- Department of Orthopedic Surgery, Kindai University Hospital, Osaka-Sayama City, Osaka.
| |
Collapse
|
20
|
Clinicopathological Assessment of Cancer/Testis Antigens NY-ESO-1 and MAGE-A4 in Highly Aggressive Soft Tissue Sarcomas. Diagnostics (Basel) 2022; 12:diagnostics12030733. [PMID: 35328286 PMCID: PMC8946957 DOI: 10.3390/diagnostics12030733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/04/2022] [Accepted: 03/16/2022] [Indexed: 11/17/2022] Open
Abstract
We aimed to investigate the clinical significance of the expression of NY-ESO-1 and MAGE-A4 in soft tissue sarcoma (STS). Immunostaining for NY-ESO-1, MAGE-A4, and Ki67 was performed using pathological specimens harvested from 10 undifferentiated pleomorphic sarcoma (UPS), nine myxofibrosarcoma (MFS), and three malignant peripheral nerve sheath tumor (MPNST) patients treated at our hospital. We examined the correlation of NY-ESO-1 and MAGE-A4 expression levels with tumor size, histological grade, and SUVmax values. Positive cell rates of various markers were also compared between patients in remission and those who were not in remission. The rates of cases positive for NY-ESO, MAGE-A4, and Ki67 were 50%, 63.6%, and 90.9%, respectively. The average rates of cells positive for NY-ESO, MAGE-A4, and Ki67 in all STS types were 18.2%, 39.4%, and 16.8%, respectively. A positive correlation was observed between rates of cells positive for NY-ESO-1 and MAGE-A4 and between NY-ESO-1 and MAGE-A4 expression levels and clinical features. There was no significant difference in the positive cell rate of NY-ESO-1 or MAGE-A4 between remission and non-remission cases. Our results suggest that NY-ESO-1 and MAGE-A4 expression may be useful for the diagnosis and prognostication of UPS, MFS, and MPNST.
Collapse
|
21
|
Yamada K, Masuda K, Ida S, Tada H, Bando M, Abe K, Tatematsu KI, Sezutsu H, Oyama T, Chikamatsu K, Takeda S. In vitro assessment of antitumor immune responses using tumor antigen proteins produced by transgenic silkworms. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2021; 32:58. [PMID: 33999320 PMCID: PMC8128804 DOI: 10.1007/s10856-021-06526-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 04/09/2021] [Indexed: 06/12/2023]
Abstract
The evaluation of antitumor immune responses is essential for immune monitoring to predict clinical outcomes as well as treatment efficacies in cancer patients. In this study, we produced two tumor antigen (TA) proteins, melanoma antigen family A4 and wild type p53, using TG silkworm systems and evaluated anti-TA-specific immune responses by enzyme-linked immunosorbent spot assays in patients with head and neck cancer. Eleven (61.1%) of 18 patients showed significant IFN-γ production in response to at least one TA; however, the presence of TA-specific immune responses did not significantly contribute to better prognosis (overall survival, p = 0.1768; progression-free survival, p = 0.4507). Further studies will need to be performed on a larger scale to better assess the clinical significance of these systems. The production of multiple TA proteins may provide new avenues for the development of immunotherapeutic strategies to stimulate a potent and specific immune response against tumor cells as well as precise assessment of antitumor immune responses in cancer patients.
Collapse
Affiliation(s)
- Kanae Yamada
- Faculty of Science and Technology, Division of Molecular Science, Gunma University, Kiryu, Gunma, 376-8515, Japan
| | - Kei Masuda
- Department of Pathology, Gunma University Graduate School of Medicine, Maebashi, Gunma, 371-8511, Japan
| | - Shota Ida
- Department of Otolaryngology-Head and Neck Surgery, Gunma University Graduate School of Medicine, Maebashi, Gunma, 371-8511, Japan
| | - Hiroe Tada
- Department of Otolaryngology-Head and Neck Surgery, Gunma University Graduate School of Medicine, Maebashi, Gunma, 371-8511, Japan
| | - Minori Bando
- Faculty of Science and Technology, Division of Molecular Science, Gunma University, Kiryu, Gunma, 376-8515, Japan
| | - Kanako Abe
- Faculty of Science and Technology, Division of Molecular Science, Gunma University, Kiryu, Gunma, 376-8515, Japan
| | - Ken-Ichiro Tatematsu
- Transgenic Silkworm Research Unit, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, 305-8634, Japan
| | - Hideki Sezutsu
- Transgenic Silkworm Research Unit, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, 305-8634, Japan
| | - Tetsunari Oyama
- Department of Pathology, Gunma University Graduate School of Medicine, Maebashi, Gunma, 371-8511, Japan
| | - Kazuaki Chikamatsu
- Department of Otolaryngology-Head and Neck Surgery, Gunma University Graduate School of Medicine, Maebashi, Gunma, 371-8511, Japan.
| | - Shigeki Takeda
- Faculty of Science and Technology, Division of Molecular Science, Gunma University, Kiryu, Gunma, 376-8515, Japan.
| |
Collapse
|
22
|
Lonie JM, Barbour AP, Dolcetti R. Understanding the immuno-biology of oesophageal adenocarcinoma: Towards improved therapeutic approaches. Cancer Treat Rev 2021; 98:102219. [PMID: 33993033 DOI: 10.1016/j.ctrv.2021.102219] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 04/30/2021] [Accepted: 05/05/2021] [Indexed: 12/12/2022]
Abstract
With an incidence that is constantly rising, oesophageal adenocarcinoma (OAC) is becoming an increasing health burden worldwide. Although significant advances in treatment regimens have improved patient outcomes, survival rates for this deadly cancer remain unsatisfactory. This highlights the need to improve current therapeutic approaches and develop novel therapeutic strategies for treating OAC patients. The advent of immunotherapy has revolutionised treatment across a range of malignancies, however outcomes in OAC show modest results. The inherent resistance of OAC to treatment reflects the complex genomic landscape of this cancer, which displays a lack of ubiquitous driver mutations and large-scale genomic alterations along with high tumour and immune heterogeneity. Research into the immune landscape of OAC is limited, and elucidation of the mechanisms surrounding the immune responses to this complex cancer will result in improved therapeutic approaches. This review explores what is known about the immuno-biology of OAC and explores promising therapeutic avenues that may improve responses to immunotherapeutic regimens.
Collapse
Affiliation(s)
- James M Lonie
- The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Queensland, Australia.
| | - Andrew P Barbour
- The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Queensland, Australia; Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Riccardo Dolcetti
- The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Queensland, Australia; Sir Peter MacCallum Cancer Centre, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
23
|
González-Urías A, Manzanares-Guevara LA, Licea-Claveríe Á, Ochoa-Terán A, Licea-Navarro AF, Bernaldez-Sarabia J, Zapata-González I. Stimuli responsive nanogels with intrinsic fluorescence: Promising nanovehicles for controlled drug delivery and cell internalization detection in diverse cancer cell lines. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2020.110200] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
24
|
Proteomic signatures of 16 major types of human cancer reveal universal and cancer-type-specific proteins for the identification of potential therapeutic targets. J Hematol Oncol 2020; 13:170. [PMID: 33287876 PMCID: PMC7720039 DOI: 10.1186/s13045-020-01013-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 11/26/2020] [Indexed: 11/10/2022] Open
Abstract
Background Proteomic characterization of cancers is essential for a comprehensive understanding of key molecular aberrations. However, proteomic profiling of a large cohort of cancer tissues is often limited by the conventional approaches. Methods We present a proteomic landscape of 16 major types of human cancer, based on the analysis of 126 treatment-naïve primary tumor tissues, 94 tumor-matched normal adjacent tissues, and 12 normal tissues, using mass spectrometry-based data-independent acquisition approach.
Results In our study, a total of 8527 proteins were mapped to brain, head and neck, breast, lung (both small cell and non-small cell lung cancers), esophagus, stomach, pancreas, liver, colon, kidney, bladder, prostate, uterus and ovary cancers, including 2458 tissue-enriched proteins. Our DIA-based proteomic approach has characterized major human cancers and identified universally expressed proteins as well as tissue-type-specific and cancer-type-specific proteins. In addition, 1139 therapeutic targetable proteins and 21 cancer/testis (CT) antigens were observed. Conclusions Our discoveries not only advance our understanding of human cancers, but also have implications for the design of future large-scale cancer proteomic studies to assist the development of diagnostic and/or therapeutic targets in multiple cancers.
Collapse
|
25
|
Preman NK, Barki RR, Vijayan A, Sanjeeva SG, Johnson RP. Recent developments in stimuli-responsive polymer nanogels for drug delivery and diagnostics: A review. Eur J Pharm Biopharm 2020; 157:121-153. [PMID: 33091554 DOI: 10.1016/j.ejpb.2020.10.009] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/28/2020] [Accepted: 10/13/2020] [Indexed: 02/06/2023]
|
26
|
Nanoparticles guided drug delivery and imaging in gastric cancer. Semin Cancer Biol 2020; 69:69-76. [PMID: 31954835 DOI: 10.1016/j.semcancer.2020.01.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 01/06/2020] [Accepted: 01/13/2020] [Indexed: 01/06/2023]
Abstract
Gastric cancer represents a deadly malignancy worldwide, yet current therapeutic regimens remain ineffective. Nanoparticle (NP) -based solutions could allow the design of novel therapeutic methods to eliminate this fatal disease. NPs typically carry out a significant role in multifunctional, multimodal imaging, and drug delivery carriers. In the recent decade, they have emerged as candidate approaches for the design of novel treatment strategies. Tumor nanotherapeutics characteristically possess various distinct advantages compared to conventional anti-cancer medications, which suffer from nonspecific bio-distribution, low solubility, and poor bioavailability. In this review, we will discuss the application of NPs in diagnosis and controlled drug delivery in gastric cancer (GC). We will focus on various NPs-based strategies employed against GC.
Collapse
|
27
|
Bae J, Parayath N, Ma W, Amiji M, Munshi N, Anderson KC. BCMA peptide-engineered nanoparticles enhance induction and function of antigen-specific CD8 + cytotoxic T lymphocytes against multiple myeloma: clinical applications. Leukemia 2020; 34:210-223. [PMID: 31427721 PMCID: PMC7297141 DOI: 10.1038/s41375-019-0540-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 04/25/2019] [Accepted: 05/14/2019] [Indexed: 12/15/2022]
Abstract
The purpose of these studies was to develop and characterize B-cell maturation antigen (BCMA)-specific peptide-encapsulated nanoparticle formulations to efficiently evoke BCMA-specific CD8+ cytotoxic T lymphocytes (CTL) with poly-functional immune activities against multiple myeloma (MM). Heteroclitic BCMA72-80 [YLMFLLRKI] peptide-encapsulated liposome or poly(lactic-co-glycolic acid) (PLGA) nanoparticles displayed uniform size distribution and increased peptide delivery to human dendritic cells, which enhanced induction of BCMA-specific CTL. Distinct from liposome-based nanoparticles, PLGA-based nanoparticles demonstrated a gradual increase in peptide uptake by antigen-presenting cells, and induced BCMA-specific CTL with higher anti-tumor activities (CD107a degranulation, CTL proliferation, and IFN-γ/IL-2/TNF-α production) against primary CD138+ tumor cells and MM cell lines. The improved functional activities were associated with increased Tetramer+/CD45RO+ memory CTL, CD28 upregulation on Tetramer+ CTL, and longer maintenance of central memory (CCR7+ CD45RO+) CTL, with the highest anti-MM activity and less differentiation into effector memory (CCR7- CD45RO+) CTL. These results provide the framework for therapeutic application of PLGA-based BCMA immunogenic peptide delivery system, rather than free peptide, to enhance the induction of BCMA-specific CTL with poly-functional Th1-specific anti-MM activities. These results demonstrate the potential clinical utility of PLGA nanotechnology-based cancer vaccine to enhance BCMA-targeted immunotherapy against myeloma.
Collapse
Affiliation(s)
- Jooeun Bae
- Dana-Farber Cancer Institute, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| | - Neha Parayath
- Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Wenxue Ma
- University of California San Diego, San Diego, CA, USA
| | | | - Nikhil Munshi
- Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Kenneth C Anderson
- Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| |
Collapse
|
28
|
Cuggino JC, Blanco ERO, Gugliotta LM, Alvarez Igarzabal CI, Calderón M. Crossing biological barriers with nanogels to improve drug delivery performance. J Control Release 2019; 307:221-246. [PMID: 31175895 DOI: 10.1016/j.jconrel.2019.06.005] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 06/03/2019] [Accepted: 06/03/2019] [Indexed: 01/04/2023]
Abstract
The current limitations in the use of nanocarriers to treat constantly evolving diseases call for the design of novel and smarter drug delivery systems (DDS). Nanogels (NGs) are three-dimensional crosslinked polymers with dimensions on the nanoscale and with a great potential for use in the biomedical field. Particular interest focuses on their application as DDS to minimize severe toxic effects and increase the therapeutic index of drugs. They have recently gained attention, since they can include responsive modalities within their structure, which enable them to excerpt a therapeutic function on demand. Their bigger sizes and controlled architecture and functionality, when compared to non-crosslinked polymers, make them particularly interesting to explore novel modalities to cross biological barriers. The present review summarizes the most significant developments of NGs as smart carriers, with focus on smart modalities to cross biological barriers such as cellular membrane, tumor stroma, mucose, skin, and blood brain barrier. We discuss the properties of each barrier and highlight the importance that the NG design has on their capability to overcome them and deliver the cargo at the site of action.
Collapse
Affiliation(s)
- Julio César Cuggino
- Instituto de Desarrollo Tecnológico para la Industria Química (INTEC), CONICET, Güemes 3450, Santa Fe 3000, Argentina; Grupo de Polímeros, Departamento de Ingeniería Química, Facultad Regional San Francisco, Universidad Tecnológica Nacional. Av. de la Universidad 501, San Francisco, 2400 Córdoba, Argentina
| | - Ernesto Rafael Osorio Blanco
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Takustr. 3, 14195 Berlin, Germany; POLYMAT and Applied Chemistry Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain
| | - Luis Marcelino Gugliotta
- Instituto de Desarrollo Tecnológico para la Industria Química (INTEC), CONICET, Güemes 3450, Santa Fe 3000, Argentina
| | - Cecilia Inés Alvarez Igarzabal
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba (UNC), IPQA-CONICET, Haya de la Torre y Medina Allende, Ciudad Universitaria, Córdoba X5000HUA, Argentina.
| | - Marcelo Calderón
- POLYMAT and Applied Chemistry Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain; IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain.
| |
Collapse
|
29
|
Kakimoto T, Matsumine A, Kageyama S, Asanuma K, Matsubara T, Nakamura T, Iino T, Ikeda H, Shiku H, Sudo A. Immunohistochemical expression and clinicopathological assessment of the cancer testis antigens NY-ESO-1 and MAGE-A4 in high-grade soft-tissue sarcoma. Oncol Lett 2019; 17:3937-3943. [PMID: 30881511 DOI: 10.3892/ol.2019.10044] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 01/31/2019] [Indexed: 12/25/2022] Open
Abstract
The aim of the present study was to explore the expression of the cancer testis antigens New York-esophageal squamous cell carcinoma (NY-ESO)-1 and melanoma-associated antigen (MAGE)-A4 in high-grade soft-tissue sarcoma and to evaluate their association with the standard clinical-pathological features of surgically treated high-grade sarcoma patients. The study included 82 patients, and NY-ESO-1 and MAGE-A4 antigen expression was analyzed immunohistochemically. The results revealed NY-ESO-1- and MAGE-A4-positive staining in 58.8 and 52.9% of synovial sarcomas, and 55.6 and 0% of myxoid liposarcomas, respectively. In patients with synovial sarcoma, NY-ESO-1 and MAGE-A4 were expressed in 7 patients, only NY-ESO-1 was expressed in 3 patients, and only MAGE-A4 was expressed in 2 patients. Univariate analysis indicated that a significantly higher MAGE-A4 expression was observed in younger patients (P<0.001) and those with synovial sarcoma (P<0.001). Multivariate analysis indicated that significantly higher NY-ESO-1 expression was observed in patients with synovial sarcoma (P<0.01) and myxoid liposarcoma (P<0.01), and significantly higher MAGE-A4 expression was observed in patients with synovial sarcoma (P<0.01). In high-grade sarcomas, the 2- and 5-year overall survival rates based on Kaplan-Meier estimates were 100 and 81.3% in the NY-ESO-1-positive group, and 69.7 and 53.0% in the NY-ESO-1-negative group, respectively (P=0.049). It was also demonstrated that either NY-ESO-1 or MAGE-A4 was positive in 70.6% of synovial sarcomas. These results indicate that NY-ESO-1 and MAGE-A4 may be useful for the diagnosis of synovial sarcoma. The independent expression of NY-ESO-1 and MAGE-A4, which may help expand the pool of candidates for molecular-targeted immunotherapy, will be beneficial for synovial sarcoma patients.
Collapse
Affiliation(s)
- Takuya Kakimoto
- Department of Orthopedic Surgery, Mie University Graduate School of Medicine, Mie 514-8507, Japan
| | - Akihiko Matsumine
- Department of Orthopedics and Rehabilitation Medicine, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
| | - Shinichi Kageyama
- Department of Immuno-Gene Therapy, Mie University Graduate School of Medicine, Mie 514-8507, Japan
| | - Kunihiro Asanuma
- Department of Orthopedic Surgery, Mie University Graduate School of Medicine, Mie 514-8507, Japan
| | - Takao Matsubara
- Department of Orthopedic Surgery, Mie University Graduate School of Medicine, Mie 514-8507, Japan
| | - Tomoki Nakamura
- Department of Orthopedic Surgery, Mie University Graduate School of Medicine, Mie 514-8507, Japan
| | - Takahiro Iino
- Department of Orthopedic Surgery, Mie University Graduate School of Medicine, Mie 514-8507, Japan
| | - Hiroaki Ikeda
- Department of Oncology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8523, Japan
| | - Hiroshi Shiku
- Department of Immuno-Gene Therapy, Mie University Graduate School of Medicine, Mie 514-8507, Japan
| | - Akihiro Sudo
- Department of Orthopedic Surgery, Mie University Graduate School of Medicine, Mie 514-8507, Japan
| |
Collapse
|
30
|
Eslami P, Rossi F, Fedeli S. Hybrid Nanogels: Stealth and Biocompatible Structures for Drug Delivery Applications. Pharmaceutics 2019; 11:E71. [PMID: 30736486 PMCID: PMC6409538 DOI: 10.3390/pharmaceutics11020071] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 02/02/2019] [Accepted: 02/04/2019] [Indexed: 01/12/2023] Open
Abstract
Considering nanogels, we have focused our attention on hybrid nanosystems for drug delivery and biomedical purposes. The distinctive strength of these structures is the capability to join the properties of nanosystems with the polymeric structures, where versatility is strongly demanded for biomedical applications. Alongside with the therapeutic effect, a non-secondary requirement of the nanosystem is indeed its biocompatibility. The importance to fulfill this aim is not only driven by the priority to reduce, as much as possible, the inflammatory or the immune response of the organism, but also by the need to improve circulation lifetime, biodistribution, and bioavailability of the carried drugs. In this framework, we have therefore gathered the hybrid nanogels specifically designed to increase their biocompatibility, evade the recognition by the immune system, and overcome the self-defense mechanisms present in the bloodstream of the host organism. The works have been essentially organized according to the hybrid morphologies and to the strategies adopted to fulfill these aims: Nanogels combined with nanoparticles or with liposomes, and involving polyethylene glycol chains or zwitterionic polymers.
Collapse
Affiliation(s)
- Parisa Eslami
- Laboratory of Molecular Magnetism (LaMM), Department of Chemistry "Ugo Shiff", University of Florence, via della Lastruccia 3, 50019, Sesto Fiorentino, Italy.
| | - Filippo Rossi
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, via Mancinelli 7, 20131 Milano, Italy.
| | - Stefano Fedeli
- Colorobbia Research Center (CERICOL), via Pietramarina 53, 50053 Sovigliana Vinci, Italy.
| |
Collapse
|
31
|
Ueda S, Miyahara Y, Nagata Y, Sato E, Shiraishi T, Harada N, Ikeda H, Shiku H, Kageyama S. NY-ESO-1 antigen expression and immune response are associated with poor prognosis in MAGE-A4-vaccinated patients with esophageal or head/neck squamous cell carcinoma. Oncotarget 2018; 9:35997-36011. [PMID: 30542513 PMCID: PMC6267599 DOI: 10.18632/oncotarget.26323] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 10/25/2018] [Indexed: 12/26/2022] Open
Abstract
MAGE-A4 antigen is a cancer-testis antigen that is frequently expressed in tumor tissues. Cholesteryl pullulan (CHP) is a novel antigen delivery system for cancer vaccines. This study evaluated the safety, immune responses and clinical outcomes of patients who received a CHP-MAGE-A4 vaccine. Twenty-two patients with advanced or metastatic cancer were enrolled, and were subcutaneously vaccinated with either 100 μg or 300 μg of CHP-MAGE-A4. Seven and 15 patients, respectively, were repeatedly vaccinated with 100 μg or 300 μg of CHP-MAGE-A4; patients in both groups received a median of 7 doses. No serious adverse events related to the vaccine were observed. Of 7 patients receiving the 100 μg dose, 2 (29%) showed immune responses, compared with 3 of the 14 (21%) patients who received the 300 μg dose. In total, MAGE-A4-specific antibody responses were induced in 5 of 21 (24%) patients. No differences in survival were seen between patients receiving the 100 μg and 300 μg doses, or between immune responders and non-responders. Eleven (50%) patients had pre-existing antibodies to NY-ESO-1. In 16 patients with esophageal or head/neck squamous cell carcinoma, the survival time was significantly shorter in those who had NY-ESO-1-co-expressing tumors. Patients with high pre-existing antibody responses to NY-ESO-1 displayed worse prognosis than those with no pre-existing response. Therefore, in planning clinical trials of MAGE-A4 vaccine, enrolling NY-ESO-1-expressing tumor or not would be a critical issue to be discussed. Combination vaccines of MAGE-A4 and NY-ESO-1 antigens would be one of the strategies to overcome the poor prognosis.
Collapse
Affiliation(s)
- Shugo Ueda
- Department of Gastroenterological Surgery and Oncology, Kitano Hospital, Kita-ku, Osaka 530-8480, Japan
| | - Yoshihiro Miyahara
- Department of Personalized Cancer Immunotherapy, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Yasuhiro Nagata
- Center for Comprehensive Community Care Education, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8523, Japan
| | - Eiichi Sato
- Department of Pathology, Institute of Medical Science, Tokyo Medical University, Shinjuku-ku, Tokyo 160-0023, Japan
| | - Taizo Shiraishi
- Department of Oncologic Pathology, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | | | - Hiroaki Ikeda
- Department of Oncology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8523, Japan
| | - Hiroshi Shiku
- Departments of Immuno-Gene Therapy and Personalized Cancer Immunotherapy, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Shinichi Kageyama
- Department of Immuno-Gene Therapy, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| |
Collapse
|
32
|
Zhang T, Yang R, Yang S, Guan J, Zhang D, Ma Y, Liu H. Research progress of self-assembled nanogel and hybrid hydrogel systems based on pullulan derivatives. Drug Deliv 2018; 25:278-292. [PMID: 29334800 PMCID: PMC6058595 DOI: 10.1080/10717544.2018.1425776] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 01/02/2018] [Accepted: 01/05/2018] [Indexed: 01/29/2023] Open
Abstract
Polymer nano-sized hydrogels (nanogels) as drug delivery carriers have been investigated over the last few decades. Pullulan, a nontoxic and nonimmunogenic hydrophilic polysaccharide derived from fermentation of black yeast like Aureobasidium pullulans with great biocompatibility and biodegradability, is one of the most attractive carriers for drug delivery systems. In this review, we describe the preparation, characterization, and 'switch-on/off' mechanism of typical pullulan self-assembled nanogels (self-nanogels), and then introduce the development of hybrid hydrogels that are numerous resources applied for regenerative medicine. A major section is used for biomedical applications of different nanogel systems based on modified pullulan, which exert smart stimuli-responses at ambient conditions such as charge, pH, temperature, light, and redox. Pullulan self-nanogels have found increasingly extensive application in protein delivery, tissue engineering, vaccine development, cancer therapy, and biological imaging. Functional groups are incorporated into self-nanogels and contribute to expressing desirable results such as targeting and modified release. Various molecules, especially insoluble or unstable drugs and encapsulated proteins, present improved solubility and bioavailability as well as reduced side effects when incorporated into self-nanogels. Finally, the advantages and disadvantages of pullulan self-nanogels will be analyzed accordingly, and the development of pullulan nanogel systems will be reviewed.
Collapse
Affiliation(s)
- Tao Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Ruyi Yang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Shengnan Yang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Jibin Guan
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Dong Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Yan Ma
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hongzhuo Liu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
33
|
Mimura K, Yamada L, Ujiie D, Hayase S, Tada T, Hanayama H, Thar Min AK, Shibata M, Momma T, Saze Z, Ohki S, Kono K. Immunotherapy for esophageal squamous cell carcinoma: a review. Fukushima J Med Sci 2018; 64:46-53. [PMID: 30058598 DOI: 10.5387/fms.2018-09] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Cancer vaccines and immune checkpoint inhibitors (ICI) have recently been employed as immunotherapies for esophageal squamous cell carcinoma (ESCC). Cancer vaccines for ESCC have yielded several promising results from investigator-initiated phase I and II clinical trials. Furthermore, a Randomized Controlled Trial as an adjuvant setting after curative surgery is in progress in Japan. On the other hand, ICI, anti-CTLA-4 mAb and anti-PD-1 mAb, have demonstrated tumor shrinkage and improved overall survival in patients with multiple cancer types. For ESCC, several clinical trials using anti-PD-1/anti-PD-L1 mAb are underway with several recent promising results. In this review, cancer vaccines and ICI are discussed as novel therapeutic strategies for ESCC.
Collapse
Affiliation(s)
- Kosaku Mimura
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University.,Department of Advanced Cancer Immunotherapy, Fukushima Medical University.,Department of Progressive DOHaD Research, Fukushima Medical University
| | - Leo Yamada
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University
| | - Daisuke Ujiie
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University
| | - Suguru Hayase
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University
| | - Takeshi Tada
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University
| | - Hiroyuki Hanayama
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University
| | - Aung Kyi Thar Min
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University
| | - Masahiko Shibata
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University.,Department of Advanced Cancer Immunotherapy, Fukushima Medical University
| | - Tomoyuki Momma
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University
| | - Zenichiro Saze
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University
| | - Shinji Ohki
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University
| | - Koji Kono
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University
| |
Collapse
|
34
|
Fujiwara-Kuroda A, Kato T, Abiko T, Tsuchikawa T, Kyogoku N, Ichinokawa M, Tanaka K, Noji T, Hida Y, Kaga K, Matsui Y, Ikeda H, Kageyama S, Shiku H, Hirano S. Prognostic value of MAGEA4 in primary lung cancer depends on subcellular localization and p53 status. Int J Oncol 2018; 53:713-724. [PMID: 29901069 DOI: 10.3892/ijo.2018.4425] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 05/23/2018] [Indexed: 11/05/2022] Open
Abstract
Melanoma antigen family A4 (MAGEA4), a cancer/testis antigen, is overexpressed and is thus an immunotherapy target in various malignant tumors, including non-small cell lung cancer. However, whether MAGEA4 induces or inhibits the apoptosis of lung cancer cells remains controversial, as is its prognostic significance, particularly since there is no reliable method with which to detect MAGEA4 specifically. In this study, we optimized assay conditions to detect MAGEA4 based on cells transiently transfected with MAGEA genes, and found that MAGEA4 was expressed in four of eight non-small cell lung cancer cell lines, and in 25.4% of clinical lung cancer specimens. We also found that MAGEA4 overexpression decreased apoptosis, as measured by the levels of cleaved caspase-3 in stably transfected 293F cells. Notably, patients with nuclear MAGEA4, but not p53 expression exhibited a significantly poorer survival than those expressing both nuclear MAGEA4 and p53. Indeed, multivariate analysis identified nuclear MAGEA4 as an independent prognostic factor (P=0.0042), albeit only in the absence of p53. In this study, to the best of our knowledge, we are the first to demonstrate that the function and prognostic value of MAGEA4 depends on its subcellular localization and on the p53 status.
Collapse
Affiliation(s)
- Aki Fujiwara-Kuroda
- Department of Gastroenterological Surgery II, Division of Surgery, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido 060-8638, Japan
| | - Tatsuya Kato
- Department of Cardiovascular and Thoracic Surgery, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido 060-8638, Japan
| | - Takehiro Abiko
- Department of Gastroenterological Surgery II, Division of Surgery, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido 060-8638, Japan
| | - Takahiro Tsuchikawa
- Department of Gastroenterological Surgery II, Division of Surgery, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido 060-8638, Japan
| | - Noriaki Kyogoku
- Department of Gastroenterological Surgery II, Division of Surgery, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido 060-8638, Japan
| | - Masaomi Ichinokawa
- Department of Gastroenterological Surgery II, Division of Surgery, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido 060-8638, Japan
| | - Kimitaka Tanaka
- Department of Gastroenterological Surgery II, Division of Surgery, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido 060-8638, Japan
| | - Takehiro Noji
- Department of Gastroenterological Surgery II, Division of Surgery, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido 060-8638, Japan
| | - Yasuhiro Hida
- Department of Cardiovascular and Thoracic Surgery, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido 060-8638, Japan
| | - Kichizo Kaga
- Department of Cardiovascular and Thoracic Surgery, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido 060-8638, Japan
| | - Yoshiro Matsui
- Department of Cardiovascular and Thoracic Surgery, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido 060-8638, Japan
| | - Hiroaki Ikeda
- Department of Oncology, Nagasaki University Graduate School of Biomedical Sciences, Sakamoto, Nagasaki 852-8523, Japan
| | - Shinichi Kageyama
- Department of Immuno-gene Therapy, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Hiroshi Shiku
- Department of Immuno-gene Therapy, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Satoshi Hirano
- Department of Gastroenterological Surgery II, Division of Surgery, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido 060-8638, Japan
| |
Collapse
|
35
|
Õunap K, Kurg K, Võsa L, Maiväli Ü, Teras M, Planken A, Ustav M, Kurg R. Antibody response against cancer-testis antigens MAGEA4 and MAGEA10 in patients with melanoma. Oncol Lett 2018; 16:211-218. [PMID: 29928403 PMCID: PMC6006456 DOI: 10.3892/ol.2018.8684] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 04/19/2018] [Indexed: 02/06/2023] Open
Abstract
Melanoma-associated antigen A (MAGEA) represent a class of tumor antigens that are expressed in a variety of malignant tumors, however, their expression in healthy normal tissues is restricted to germ cells of testis, fetal ovary and placenta. The restricted expression and immunogenicity of these antigens make them ideal targets for immunotherapy in human cancer. In the present study the presence of naturally occurring antibodies against two MAGEA subfamily proteins, MAGEA4 and MAGEA10, was analyzed in patients with melanoma at different stages of disease. Results indicated that the anti-MAGEA4/MAGEA10 immune response in melanoma patients was heterogeneous, with only ~8% of patients having a strong response. Comparing the number of strongly responding patients between different stages of disease revealed that the highest number of strong responses was detected among stage II melanoma patients. These findings support the model that the immune system is involved in the control of melanoma in the early stages of disease.
Collapse
Affiliation(s)
- Kadri Õunap
- Institute of Technology, University of Tartu, 50411 Tartu, Estonia
| | - Kristiina Kurg
- Institute of Technology, University of Tartu, 50411 Tartu, Estonia
| | - Liisi Võsa
- Institute of Technology, University of Tartu, 50411 Tartu, Estonia
| | - Ülo Maiväli
- Institute of Technology, University of Tartu, 50411 Tartu, Estonia
| | - Marina Teras
- Melanoma Unit of The General Surgery and Oncology Surgery Centre, North Estonian Medical Centre, 13419 Tallinn, Estonia
| | - Anu Planken
- Melanoma Unit of The General Surgery and Oncology Surgery Centre, North Estonian Medical Centre, 13419 Tallinn, Estonia
| | - Mart Ustav
- Institute of Technology, University of Tartu, 50411 Tartu, Estonia
| | - Reet Kurg
- Institute of Technology, University of Tartu, 50411 Tartu, Estonia
| |
Collapse
|
36
|
Iura K, Kohashi K, Yasutake N, Ishii T, Maekawa A, Bekki H, Otsuka H, Yamada Y, Yamamoto H, Ohishi Y, Matsumoto Y, Iwamoto Y, Oda Y. Cancer-testis antigens are predominantly expressed in uterine leiomyosarcoma compared with non-uterine leiomyosarcoma. Oncol Lett 2018; 15:441-446. [PMID: 29399140 DOI: 10.3892/ol.2017.7274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 07/27/2017] [Indexed: 01/05/2023] Open
Abstract
Leiomyosarcomas account for ~24% of all adult sarcomas, and develop predominantly either in the uterus [uterine leiomyosarcoma (ULMS)] or in deep soft tissue or the retroperitoneum [non-uterine leiomyosarcoma (NULMS)]. Leiomyosarcomas are relatively chemoresistant tumors, and the prognosis of patients with leiomyosarcomas is poor. Cancer-testis (CT) antigens are considered promising immunotherapeutic targets because of their restricted expression in normal tissue, except in the testis. Little is known about the expression of CT antigens in leiomyosarcomas. In the present study, the protein expression of the CT antigens MAGE family member A (MAGEA)1, MAGEA3, MAGEA4, G antigen 7 (GAGE7) and cancer/testis antigen 1 (NY-ESO-1) in ULMS and NULMS were investigated using immunohistochemistry (IHC), and their expression profiles compared. In ULMS and NULMS, positive expression was observed in 11/32 (31%) and 1/31 (3%; MAGEA1), 15/32 (47%) and 5/31 (16%; MAGEA3), 11/32 (34%) and 3/31 (10%; MAGEA4), 23/32 (72%) and 11/31 (35%; GAGE7) and 3/32 (9%) and 0/31 (0%; NY-ESO-1), respectively. The ULMSs demonstrated significantly higher positive expression of MAGEA1 (P=0.0034), MAGEA3 (P=0.0141), MAGEA4 (P=0.0319) and GAGE7 (P=0.0054) compared with the NULMSs. The ULMSs also had significantly higher IHC scores for MAGEA1 (P=0.0023), MAGEA3 (P=0.0474), MAGEA4 (P=0.011), GAGE7 (P=0.0319) and NY-ESO-1 (P=0.0437). The results of the present study support the potential utility of MAGEA1, MAGEA3, MAGEA4 and GAGE7 in ULMS and GAGE7 in NULMS as immunotherapeutic targets.
Collapse
Affiliation(s)
- Kunio Iura
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Fukuoka 812-8581, Japan.,Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Fukuoka 812-8581, Japan
| | - Kenichi Kohashi
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Fukuoka 812-8581, Japan
| | - Nobuko Yasutake
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Fukuoka 812-8581, Japan
| | - Takeaki Ishii
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Fukuoka 812-8581, Japan.,Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Fukuoka 812-8581, Japan
| | - Akira Maekawa
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Fukuoka 812-8581, Japan.,Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Fukuoka 812-8581, Japan
| | - Hirofumi Bekki
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Fukuoka 812-8581, Japan.,Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Fukuoka 812-8581, Japan
| | - Hiroshi Otsuka
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Fukuoka 812-8581, Japan.,Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Fukuoka 812-8581, Japan
| | - Yuichi Yamada
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Fukuoka 812-8581, Japan
| | - Hidetaka Yamamoto
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Fukuoka 812-8581, Japan
| | - Yoshihiro Ohishi
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Fukuoka 812-8581, Japan
| | - Yoshihiro Matsumoto
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Fukuoka 812-8581, Japan
| | - Yukihide Iwamoto
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Fukuoka 812-8581, Japan
| | - Yoshinao Oda
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Fukuoka 812-8581, Japan
| |
Collapse
|
37
|
Motokawa Y, Kokubo M, Kuwabara N, Tatematsu KI, Sezutsu H, Takahashi H, Sakakura K, Chikamatsu K, Takeda S. Melanoma antigen family A4 protein produced by transgenic silkworms induces antitumor immune responses. Exp Ther Med 2018; 15:2512-2518. [PMID: 29563979 DOI: 10.3892/etm.2018.5703] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 03/03/2017] [Indexed: 12/13/2022] Open
Abstract
Recent clinical trials with the aim of developing tumor antigen (TA)-specific cancer vaccines against a number of malignancies have focused on the identification of TAs presented by tumor cells and recognized by T cells. In the present study, the TA melanoma antigen family A4 (MAGE-A4) protein was produced using a transgenic (TG) silkworm system. Using in vitro stimulation, it was subsequently determined whether MAGE-A4 protein induced MAGE-A4-specific T cells from peripheral blood mononuclear cells of healthy donors. TG silkworm lines expressing a MAGE-A4 gene under an upstream activating sequence (UAS) were mated with those expressing a yeast transcription activator protein (GAL4) at the middle silk glands (MSGs) and embryos that harbored both the GAL4 and UAS constructs were selected. Recombinant MAGE-A4 protein was extracted from the MSGs of TG silkworms and evaluated using SDS-PAGE and western blot analysis. It was observed that MAGE-A4 produced by the TG silkworm system successfully induced MAGE-A4-specific CD4+ T cell responses. Furthermore, MAGE-A4-specific CD4+ T cells recognized antigen-presenting cells when pulsed with a MAGE-A4+ tumor cell lysate. The present data suggests that recombinant tumor antigen production using the TG silkworm system may be a novel tool in the preparation of cancer vaccines.
Collapse
Affiliation(s)
- Yoko Motokawa
- Faculty of Science and Technology, Division of Molecular Science, Gunma University, Kiryu, Gunma 376-8515, Japan
| | - Michifumi Kokubo
- Faculty of Science and Technology, Division of Molecular Science, Gunma University, Kiryu, Gunma 376-8515, Japan
| | - Nobuo Kuwabara
- Gunma Sericultural Technology Center, Maebashi, Gunma 371-8570, Japan
| | - Ken-Ichiro Tatematsu
- Transgenic Silkworm Research Center, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki 305-8634, Japan
| | - Hideki Sezutsu
- Transgenic Silkworm Research Center, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki 305-8634, Japan
| | - Hideyuki Takahashi
- Department of Otolaryngology-Head and Neck Surgery, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Koichi Sakakura
- Department of Otolaryngology-Head and Neck Surgery, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Kazuaki Chikamatsu
- Department of Otolaryngology-Head and Neck Surgery, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Shigeki Takeda
- Faculty of Science and Technology, Division of Molecular Science, Gunma University, Kiryu, Gunma 376-8515, Japan
| |
Collapse
|
38
|
Kono K, Mimura K, Yamada R, Ujiie D, Hayase S, Tada T, Hanayama H, Min AKT, Shibata M, Momma T, Saze Z, Ohki S. Current status of cancer immunotherapy for esophageal squamous cell carcinoma. Esophagus 2018; 15:1-9. [PMID: 29892809 DOI: 10.1007/s10388-017-0596-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 11/16/2017] [Indexed: 02/03/2023]
Abstract
BACKGROUND Immunotherapy has become a promising treatment strategy for cancer. Immune checkpoint blockade with anti-CTLA4 mAb and anti-PD-1 mAb has demonstrated clear evidence of objective responses including improved overall survival and tumor shrinkage, driving renewed enthusiasm for cancer immunotherapy in multiple cancer types including esophageal squamous cell carcinoma (ESCC). There are several clinical trials using anti-PD1 mAb for ESCC in early phases and the results are currently promising. RESULTS AND CONCLUSIONS In this review, recent advances in cancer immunotherapy for ESCC are discussed with particular focus on immune checkpoint inhibitors and cancer vaccine.
Collapse
Affiliation(s)
- Koji Kono
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University, 1 Hikarigaoka, Fukushima, 960-1295, Japan.
| | - Kousaku Mimura
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University, 1 Hikarigaoka, Fukushima, 960-1295, Japan.,Department of Advanced Cancer Immunotherapy, Fukushima Medical University, Fukushima, Japan.,Department of Progressive DOHaD Research, Fukushima Medical University, Fukushima, Japan
| | - Reo Yamada
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University, 1 Hikarigaoka, Fukushima, 960-1295, Japan
| | - Daisuke Ujiie
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University, 1 Hikarigaoka, Fukushima, 960-1295, Japan
| | - Suguru Hayase
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University, 1 Hikarigaoka, Fukushima, 960-1295, Japan
| | - Takeshi Tada
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University, 1 Hikarigaoka, Fukushima, 960-1295, Japan
| | - Hiroyuki Hanayama
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University, 1 Hikarigaoka, Fukushima, 960-1295, Japan
| | - Aung Kyi Thar Min
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University, 1 Hikarigaoka, Fukushima, 960-1295, Japan
| | - Masahiko Shibata
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University, 1 Hikarigaoka, Fukushima, 960-1295, Japan.,Department of Advanced Cancer Immunotherapy, Fukushima Medical University, Fukushima, Japan
| | - Tomoyuki Momma
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University, 1 Hikarigaoka, Fukushima, 960-1295, Japan
| | - Zenichirou Saze
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University, 1 Hikarigaoka, Fukushima, 960-1295, Japan
| | - Shinji Ohki
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University, 1 Hikarigaoka, Fukushima, 960-1295, Japan
| |
Collapse
|
39
|
MAGEA4 expression in bone and soft tissue tumors: its utility as a target for immunotherapy and diagnostic marker combined with NY-ESO-1. Virchows Arch 2017; 471:383-392. [PMID: 28744588 DOI: 10.1007/s00428-017-2206-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 07/04/2017] [Accepted: 07/18/2017] [Indexed: 12/15/2022]
Abstract
Cancer-testis (CT) antigens have promise as targets for immunotherapy, because of their restricted expression in tumor or testis tissue. MAGEA4 is both a MAGE family member and a CT antigen, and has attracted attention as a potential immunotherapeutic target. We investigated MAGEA4 expression by immunohistochemistry in bone and soft tissue tumor specimens that consisted of 35 malignant or intermediate and 24 benign histological subtypes, in order to evaluate its possible utility as an immunotherapy target and its potential use as a diagnostic marker when combined with another CT antigen, NY-ESO-1. Among these tumors, MAGEA4 was detected in 82.2% of synovial sarcomas, 67.7% of myxoid liposarcomas, 43.8% of osteosarcomas, 41.4% of angiosarcomas, 24.6% of malignant peripheral nerve sheath tumors (MPNSTs), and 21.4% of chondrosarcomas. NY-ESO-1 expression was found in 88.2% of myxoid liposarcomas, 61.1% of synovial sarcomas, 31.3% of osteosarcomas, 21.4% of pleomorphic liposarcomas, 16.7% of desmoplastic small round cell tumors, and 14.3% of chondrosarcomas. Benign tumors and non-tumorous tissue, except for testis tissue, did not express MAGEA4 or NY-ESO-1. Combined use of MAGEA4 and NY-ESO-1 increased the sensitivity, specificity, positive predictive values, and negative predictive values for distinguishing synovial sarcoma from spindle cell tumors and other mimicking tumors, compared to individual use of MAGEA4 or NY-ESO-1. Our results support the immunotherapy targeting MAGEA4 or NY-ESO-1 can be an ancillary therapy in the above-mentioned tumors, and the potential utility of MAGEA4 as an ancillary diagnostic marker for synovial sarcoma combined with NY-ESO-1.
Collapse
|
40
|
Zebularine Treatment Induces MAGE-A11 Expression and Improves CTL Cytotoxicity Using a Novel Identified HLA-A2-restricted MAGE-A11 Peptide. J Immunother 2017; 40:211-220. [DOI: 10.1097/cji.0000000000000170] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
41
|
Abstract
INTRODUCTION Esophageal cancer (EC) is the eighth most common cancer in the world, and the prognosis of EC is still poor. Although immunotherapy has been developed in melanoma and lung cancer, it is also expected to show efficacy in EC. Currently, several clinical trials are ongoing to evaluate the safety and efficacy of immunotherapies, immune checkpoint inhibitors, adoptive T cell transfer, and therapeutic cancer vaccines in EC. Areas covered: This review provides an overview and the status of immunotherapy in EC. Clinical significance of molecules related immune checkpoints, especially PD-1 and PD-L1 is presented and the designs, results and future directions of clinical trials using immunotherapy in EC are provided. Expert opinion: To bring immunotherapy to the forefront of treatment for EC, it is necessary to select patients who can obtain a high efficacy of immunotherapy and to also elucidate the correct timing for administration. Moreover, combination therapies of immunotherapy with existing chemotherapy or radiation or other immunotherapy with different mechanisms of action must be evaluated to achieve excellent outcomes in patients with EC.
Collapse
Affiliation(s)
- Tomokazu Tanaka
- a Department of Surgery , Saga University Faculty of Medicine , Saga , Japan
| | - Jun Nakamura
- a Department of Surgery , Saga University Faculty of Medicine , Saga , Japan
| | - Hirokazu Noshiro
- a Department of Surgery , Saga University Faculty of Medicine , Saga , Japan
| |
Collapse
|
42
|
Komohara Y, Ohnishi K, Takeya M. Possible functions of CD169-positive sinus macrophages in lymph nodes in anti-tumor immune responses. Cancer Sci 2017; 108:290-295. [PMID: 28002629 PMCID: PMC5378284 DOI: 10.1111/cas.13137] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 12/11/2016] [Accepted: 12/16/2016] [Indexed: 12/24/2022] Open
Abstract
The lymph node (LN) is an important immune system in which a number of antigen‐presenting cells are present that induce rapid immune responses to foreign antigens. While a great number of macrophages exist in lymph nodes, recent studies using animal models have shown that lymph node sinus macrophages are associated with the induction of anti‐tumor immunity, playing a significant role in host immune responses against tumor cells. In colorectal tumor, malignant melanoma, and endometrial tumor, it was shown that a high density of CD169‐positive macrophages in the LN sinus was a predictive factor for better clinical prognosis. The observations that the density of CD169‐positive macrophages in the LN sinus was positively associated with the density of infiltrating T or NK cells in tumor tissues, indicates the significance of CD169‐positive macrophages in anti‐tumor immune reactions of tumor patients. Moreover, antigen delivery targeting LN macrophages is also considered to be promising approach for vaccination. In this article, we have summarized the significance of CD169‐positive LN macrophages in anti‐tumor immunity.
Collapse
Affiliation(s)
- Yoshihiro Komohara
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Chuouku, Kumamoto, Japan
| | - Koji Ohnishi
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Chuouku, Kumamoto, Japan
| | - Motohiro Takeya
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Chuouku, Kumamoto, Japan
| |
Collapse
|
43
|
Abstract
Resection techniques for esophageal carcinoma continue to evolve, from endoscopic mucosal resection or endoscopic submucosal dissection for early stage disease to standard and robot-assisted minimally invasive esophagectomy as part of multimodal therapy for locally advanced disease. Though currently limited to assessing conduit perfusion and sentinel lymph nodes, embedded technology in the robotic surgical platform will likely play an expanded role during esophagectomy in the future. The use of targeted therapies, checkpoint inhibitors, engineered immune cell therapy, and cancer vaccines show promise in the treatment of systemic disease. Radiation therapy techniques are becoming increasingly sophisticated and they may play a more active role in stage IV disease in the future.
Collapse
Affiliation(s)
- Ori Wald
- Division of General Thoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, USA
| | - Brandon Smaglo
- Division of Hematology/Oncology, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Henry Mok
- Department of Radiation Oncology, Baylor College of Medicine, Houston, TX, USA
| | - Shawn S Groth
- Division of General Thoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
44
|
Grippin AJ, Sayour EJ, Mitchell DA. Translational nanoparticle engineering for cancer vaccines. Oncoimmunology 2017; 6:e1290036. [PMID: 29123947 PMCID: PMC5665077 DOI: 10.1080/2162402x.2017.1290036] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 01/23/2017] [Accepted: 01/26/2017] [Indexed: 01/03/2023] Open
Abstract
Conventional cancer treatments remain insufficient to treat many therapy-resistant tumors.1 Cancer vaccines attempt to overcome this resistance by activating the patient's immune system to eliminate tumor cells without the toxicity of systemic chemotherapy and radiation. Nanoparticles (NPs) are promising as customizable, immunostimulatory carriers to protect and deliver antigen. Although many NP vaccines have been investigated in preclinical settings, a few have advanced into clinical application, and still fewer have demonstrated clinical benefit. This review incorporates observations from NP vaccines that have been evaluated in early phase clinical trials to make recommendations for the next generation of NP-based cancer vaccines.
Collapse
Affiliation(s)
- Adam J Grippin
- Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida Brain Tumor Immunotherapy Program, McKnight Brain Institute, Department of Neurosurgery, University of Florida, Gainesville, FL, USA.,J. Crayton Pruitt Family Department of Biomedical Engineering, Biomedical Sciences Building, University of Florida, Gainesville, FL, USA
| | - Elias J Sayour
- Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida Brain Tumor Immunotherapy Program, McKnight Brain Institute, Department of Neurosurgery, University of Florida, Gainesville, FL, USA
| | - Duane A Mitchell
- Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida Brain Tumor Immunotherapy Program, McKnight Brain Institute, Department of Neurosurgery, University of Florida, Gainesville, FL, USA
| |
Collapse
|
45
|
Soni KS, Desale SS, Bronich TK. Nanogels: An overview of properties, biomedical applications and obstacles to clinical translation. J Control Release 2016; 240:109-126. [PMID: 26571000 PMCID: PMC4862943 DOI: 10.1016/j.jconrel.2015.11.009] [Citation(s) in RCA: 366] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 11/01/2015] [Accepted: 11/09/2015] [Indexed: 01/09/2023]
Abstract
Nanogels have emerged as a versatile hydrophilic platform for encapsulation of guest molecules with a capability to respond to external stimuli that can be used for a multitude of applications. These are soft materials capable of holding small molecular therapeutics, biomacromolecules, and inorganic nanoparticles within their crosslinked networks, which allows them to find applications for therapy as well as imaging of a variety of disease conditions. Their stimuli-responsive behavior can be easily controlled by selection of constituent polymer and crosslinker components to achieve a desired response at the site of action, which imparts nanogels the ability to participate actively in the intended function of the carrier system rather than being passive carriers of their cargo. These properties not only enhance the functionality of the carrier system but also help in overcoming many of the challenges associated with the delivery of cargo molecules, and this review aims to highlight the distinct and unique capabilities of nanogels as carrier systems for the delivery of an array of cargo molecules over other nanomaterials. Despite their obvious usefulness, nanogels are still not a commonplace occurrence in clinical practice. We have also made an attempt to highlight some of the major challenges that need to be overcome to advance nanogels further in the field of biomedical applications.
Collapse
Affiliation(s)
- Kruti S Soni
- Department of Pharmaceutical Sciences and Center for Drug Delivery and Nanomedicine, College of Pharmacy, University of Nebraska Medical Center, 985830 Nebraska Medical Center, Omaha, NE 68198-5830, USA
| | - Swapnil S Desale
- Department of Pharmaceutical Sciences and Center for Drug Delivery and Nanomedicine, College of Pharmacy, University of Nebraska Medical Center, 985830 Nebraska Medical Center, Omaha, NE 68198-5830, USA
| | - Tatiana K Bronich
- Department of Pharmaceutical Sciences and Center for Drug Delivery and Nanomedicine, College of Pharmacy, University of Nebraska Medical Center, 985830 Nebraska Medical Center, Omaha, NE 68198-5830, USA.
| |
Collapse
|
46
|
Biochemical and proteomic characterization of retrovirus Gag based microparticles carrying melanoma antigens. Sci Rep 2016; 6:29425. [PMID: 27403717 PMCID: PMC4941533 DOI: 10.1038/srep29425] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 06/17/2016] [Indexed: 12/22/2022] Open
Abstract
Extracellular vesicles are membraneous particles released by a variety of cells into the extracellular microenvironment. Retroviruses utilize the cellular vesiculation pathway for virus budding/assembly and the retrovirus Gag protein induces the spontaneous formation of microvesicles or virus-like particles (VLPs) when expressed in the mammalian cells. In this study, five different melanoma antigens, MAGEA4, MAGEA10, MART1, TRP1 and MCAM, were incorporated into the VLPs and their localization within the particles was determined. Our data show that the MAGEA4 and MAGEA10 proteins as well as MCAM are expressed on the surface of VLPs. The compartmentalization of exogenously expressed cancer antigens within the VLPs did not depend on the localization of the protein within the cell. Comparison of the protein content of VLPs by LC-MS/MS-based label-free quantitative proteomics showed that VLPs carrying different cancer antigens are very similar to each other, but differ to some extent from VLPs without recombinant antigen. We suggest that retrovirus Gag based virus-like particles carrying recombinant antigens have a potential to be used in cancer immunotherapy.
Collapse
|
47
|
Jackie Oh S, Han S, Lee W, Lockhart AC. Emerging immunotherapy for the treatment of esophageal cancer. Expert Opin Investig Drugs 2016; 25:667-77. [DOI: 10.1517/13543784.2016.1163336] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
48
|
Miyauchi K, Tsuchikawa T, Wada M, Abiko T, Kyogoku N, Shichinohe T, Miyahara Y, Kageyama S, Ikeda H, Shiku H, Hirano S. Clinical relevance of antigen spreading pattern induced by CHP-MAGE-A4 cancer vaccination. Immunotherapy 2016; 8:527-40. [PMID: 26888315 DOI: 10.2217/imt-2016-0007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
AIM To investigate the antigen spreading pattern in the CHP-MAGE-A4-vaccinated patients and analyze the clinical relevance of antigen spreading pattern as a surrogate marker of patient survival. MATERIALS & METHODS 12 patients who had been injected with 300 μg of CHP-MAGE-A4 and 0.5 Klinische Einheit of OK-432 in more than five vaccinations were analyzed. RESULTS Increases in the anti-MAGE-A4-specific antibody response were observed in eight patients (66.7%), compared with six patients (50%) for anti-NY-ESO-1 and five patients (41.7%) for anti-MAGE-A3 after five vaccinations. We identified frequent antigen spreading following MAGE-A4 vaccinations without associations with the clinical response or patient prognosis. CONCLUSION Antigen spreading pattern might reflect tumor shrinkage as a response to treatment and treatment history (clinical trial registration number: UMIN000001999).
Collapse
Affiliation(s)
- Kengo Miyauchi
- Department of Gastroenterological Surgery II, Division of Surgery, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido, Japan
| | - Takahiro Tsuchikawa
- Department of Gastroenterological Surgery II, Division of Surgery, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido, Japan
| | - Masataka Wada
- Department of Gastroenterological Surgery II, Division of Surgery, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido, Japan
| | - Takehiro Abiko
- Department of Gastroenterological Surgery II, Division of Surgery, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido, Japan
| | - Noriaki Kyogoku
- Department of Gastroenterological Surgery II, Division of Surgery, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido, Japan
| | - Toshiaki Shichinohe
- Department of Gastroenterological Surgery II, Division of Surgery, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido, Japan
| | - Yoshihiro Miyahara
- Department of Immuno-Gene Therapy, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Shinichi Kageyama
- Department of Immuno-Gene Therapy, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Hiroaki Ikeda
- Department of Immuno-Gene Therapy, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Hiroshi Shiku
- Department of Immuno-Gene Therapy, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Satoshi Hirano
- Department of Gastroenterological Surgery II, Division of Surgery, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido, Japan
| |
Collapse
|
49
|
Qiao YM, Zhang Y. Immunotherapy for esophageal cancer: Current studies and future perspectives. Shijie Huaren Xiaohua Zazhi 2016; 24:4739. [DOI: 10.11569/wcjd.v24.i36.4739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
50
|
Tahara Y, Akiyoshi K. Current advances in self-assembled nanogel delivery systems for immunotherapy. Adv Drug Deliv Rev 2015; 95:65-76. [PMID: 26482187 DOI: 10.1016/j.addr.2015.10.004] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 09/17/2015] [Accepted: 10/09/2015] [Indexed: 10/24/2022]
Abstract
Since nanogels (nanometer-sized gels) were developed two decades ago, they were utilized as carriers of innovative drug delivery systems. In particular, immunological drug delivery via self-assembled nanogels (self-nanogels) owing to their nanometer size and molecular chaperon-like ability to encapsulate large biomolecules is one of the most well studied and successful applications of nanogels. In the present review, we focus on self-nanogel applications as immunological drug delivery systems for cancer vaccines, cytokine delivery, nasal vaccines, and nucleic acid delivery, including several clinical trials. Cancer vaccines were the first practical application of self-nanogels as vehicles for drug delivery. After successful pre-clinical studies, phase I clinical trials were conducted, and it was found that vaccines consisting of self-nanogels could be administered repeatedly to humans without serious adverse effects, and self-nanogel vaccines induced antigen-specific cellular and humoral immunity. Cytokine delivery via self-nanogels led to the sustained release of IL-12, suppressed tumor growth, and increased Th1-type immune responses. Cationic self-nanogels were effective in penetrating the nasal mucosa and resulted in successful nasal vaccines in mice and nonhuman primates. Cationic self-nanogels were also used for the intracellular delivery of proteins and nucleic acids, and were successfully used to knockdown tumor growth factor expression using short interfering RNA with the immunological effect. These studies suggest that self-nanogels are currently one of the most unique and attractive immunological drug delivery systems and are edging closer to practical use.
Collapse
|