1
|
Myers ML, Conlon MT, Gallagher JR, Woolfork DD, Khorrami ND, Park WB, Stradtman-Carvalho RK, Harris AK. Analysis of polyclonal and monoclonal antibody to the influenza virus nucleoprotein in different oligomeric states. Virus Res 2025; 355:199563. [PMID: 40139568 PMCID: PMC11994974 DOI: 10.1016/j.virusres.2025.199563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 03/20/2025] [Accepted: 03/23/2025] [Indexed: 03/29/2025]
Abstract
Influenza virus nucleoprotein (NP) is one of the most conserved influenza proteins. Both NP antigen and anti-NP antibodies are used as reagents in influenza diagnostic kits, with applications in both clinical practice and influenza zoonotic surveillance programs. Despite this, studies on the biochemical basis of NP diagnostic serology and NP epitopes are not as developed as for hemagglutinin (HA), the fast-evolving antigen which has been the critical component of current influenza vaccines. Here, we characterized the NP serology of mice, ferrets, and human sera and the immunogenic effects of NP antigen presented as different structural complexes. Furthermore, we show that the classical mouse anti-NP mAb HB65 could detect NP in some commercial influenza vaccines. MAb HB65 bound a linear epitope with nanomolar affinity. Our analysis suggests that linear NP epitopes paired with their corresponding characterized detection antibodies could aid in designing and improving diagnostic technologies for influenza viruses.
Collapse
Affiliation(s)
- Mallory L Myers
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 50 South Drive, Room 6351, Bethesda, MD 20892, USA
| | - Michael T Conlon
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 50 South Drive, Room 6351, Bethesda, MD 20892, USA; Current Address: Department of Immunology, School of Medicine, University of Washington, Seattle, WA 98195, USA
| | - John R Gallagher
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 50 South Drive, Room 6351, Bethesda, MD 20892, USA
| | - De'Marcus D Woolfork
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 50 South Drive, Room 6351, Bethesda, MD 20892, USA
| | - Noah D Khorrami
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 50 South Drive, Room 6351, Bethesda, MD 20892, USA
| | - William B Park
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 50 South Drive, Room 6351, Bethesda, MD 20892, USA
| | - Regan K Stradtman-Carvalho
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 50 South Drive, Room 6351, Bethesda, MD 20892, USA
| | - Audray K Harris
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 50 South Drive, Room 6351, Bethesda, MD 20892, USA.
| |
Collapse
|
2
|
Myers ML, Conlon MT, Gallagher JR, Woolfork DD, Khorrami ND, Park WB, Stradtman-Carvalho RK, Harris AK. Analysis of polyclonal and monoclonal antibody to the influenza virus nucleoprotein in different oligomeric states. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.12.612748. [PMID: 39372734 PMCID: PMC11451747 DOI: 10.1101/2024.09.12.612748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Influenza virus nucleoprotein (NP) is one of the most conserved influenza proteins. Both NP antigen and anti-NP antibodies are used as reagents in influenza diagnostic kits, with applications in both clinical practice, and influenza zoonotic surveillance programs. Despite this, studies on the biochemical basis of NP diagnostic serology and NP epitopes are not as developed as for hemagglutinin (HA), the fast-evolving antigen which has been the critical component of current influenza vaccines. Here, we characterized the NP serology of mice, ferret, and human sera and the immunogenic effects of NP antigen presented as different structural complexes. Furthermore, we show that a classical anti-NP mouse mAb HB65 could detect NP in some commercial influenza vaccines. MAb HB65 bound a linear epitope with nanomolar affinity. Our analysis suggests that linear NP epitopes paired with their corresponding characterized detection antibodies could aid in designing and improving diagnostic technologies for influenza virus.
Collapse
Affiliation(s)
- Mallory L. Myers
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 50 South Drive, Room 6351, Bethesda, MD, USA 20892
| | - Michael T. Conlon
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 50 South Drive, Room 6351, Bethesda, MD, USA 20892
- Current Address: Department of Immunology, School of Medicine, University of Washington, Seattle, WA, USA 98195
| | - John R. Gallagher
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 50 South Drive, Room 6351, Bethesda, MD, USA 20892
| | - De’Marcus D. Woolfork
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 50 South Drive, Room 6351, Bethesda, MD, USA 20892
| | - Noah D. Khorrami
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 50 South Drive, Room 6351, Bethesda, MD, USA 20892
| | - William B. Park
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 50 South Drive, Room 6351, Bethesda, MD, USA 20892
| | - Regan K. Stradtman-Carvalho
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 50 South Drive, Room 6351, Bethesda, MD, USA 20892
| | - Audray K. Harris
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 50 South Drive, Room 6351, Bethesda, MD, USA 20892
| |
Collapse
|
3
|
Bai Z, Wan D, Lan T, Hong W, Dong H, Wei Y, Wei X. Nanoplatform Based Intranasal Vaccines: Current Progress and Clinical Challenges. ACS NANO 2024; 18:24650-24681. [PMID: 39185745 PMCID: PMC11394369 DOI: 10.1021/acsnano.3c10797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 04/01/2024] [Accepted: 04/08/2024] [Indexed: 08/27/2024]
Abstract
Multiple vaccine platforms have been employed to develop the nasal SARS-CoV-2 vaccines in preclinical studies, and the dominating pipelines are viral vectored as protein-based vaccines. Among them, several viral vectored-based vaccines have entered clinical development. Nevertheless, some unsatisfactory results were reported in these clinical studies. In the face of such urgent situations, it is imperative to rapidly develop the next-generation intranasal COVID-19 vaccine utilizing other technologies. Nanobased intranasal vaccines have emerged as an approach against respiratory infectious diseases. Harnessing the power of nanotechnology, these vaccines offer a noninvasive yet potent defense against pathogens, including the threat of COVID-19. The improvements made in vaccine mucosal delivery technologies based on nanoparticles, such as lipid nanoparticles, polymeric nanoparticles, inorganic nanoparticles etc., not only provide stability and controlled release but also enhance mucosal adhesion, effectively overcoming the limitations of conventional vaccines. Hence, in this review, we overview the evaluation of intranasal vaccine and highlight the current barriers. Next, the modern delivery systems based on nanoplatforms are summarized. The challenges in clinical application of nanoplatform based intranasal vaccine are finally discussed.
Collapse
Affiliation(s)
| | | | | | - Weiqi Hong
- Laboratory of Aging Research
and Cancer Drug Target, State Key Laboratory of Biotherapy, National
Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041, P. R. China
| | - Haohao Dong
- Laboratory of Aging Research
and Cancer Drug Target, State Key Laboratory of Biotherapy, National
Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041, P. R. China
| | - Yuquan Wei
- Laboratory of Aging Research
and Cancer Drug Target, State Key Laboratory of Biotherapy, National
Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041, P. R. China
| | - Xiawei Wei
- Laboratory of Aging Research
and Cancer Drug Target, State Key Laboratory of Biotherapy, National
Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041, P. R. China
| |
Collapse
|
4
|
Khan MT, Mahmud A, Hasan M, Azim KF, Begum MK, Rolin MH, Akter A, Mondal SI. Proteome Exploration of Legionella pneumophila To Identify Novel Therapeutics: a Hierarchical Subtractive Genomics and Reverse Vaccinology Approach. Microbiol Spectr 2022; 10:e0037322. [PMID: 35863001 PMCID: PMC9430848 DOI: 10.1128/spectrum.00373-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 06/24/2022] [Indexed: 11/20/2022] Open
Abstract
Legionella pneumophila is the causative agent of a severe type of pneumonia (lung infection) called Legionnaires' disease. It is emerging as an antibiotic-resistant strain day by day. Hence, identifying novel drug targets and vaccine candidates is essential to fight against this pathogen. Here, attempts were taken through a subtractive genomics approach on the complete proteome of L. pneumophila to address the challenges of multidrug resistance. A total of 2,930 proteins from L. pneumophila proteome were investigated through diverse subtractive proteomics approaches, e.g., identification of human nonhomologous and pathogen-specific essential proteins, druggability and "anti-target" analysis, subcellular localization prediction, human microbiome nonhomology screening, and protein-protein interaction studies to find out effective drug and vaccine targets. Only three fulfilled these criteria and were proposed as novel drug targets against L. pneumophila. Furthermore, outer membrane protein TolB was identified as a potential vaccine target with a better antigenicity score. Antigenicity and transmembrane topology screening, allergenicity and toxicity assessment, population coverage analysis, and a molecular docking approach were adopted to generate the most potent epitopes. The final vaccine was constructed by the combination of highly immunogenic epitopes, along with suitable adjuvant and linkers. The designed vaccine construct showed higher binding interaction with different major histocompatibility complex (MHC) molecules and human immune TLR-2 receptors with minimum deformability at the molecular level. The present study aids the development of novel therapeutics and vaccine candidates for efficient treatment and prevention of L. pneumophila infections. However, further wet-lab-based phenotypic and genomic investigations and in vivo trials are highly recommended to validate our prediction experimentally. IMPORTANCE Legionella pneumophila is a human pathogen distributed worldwide, causing Legionnaires' disease (LD), a severe form of pneumonia and respiratory tract infection. L. pneumophila is emerging as an antibiotic-resistant strain, and controlling LD is now difficult. Hence, developing novel drugs and vaccines against L. pneumophila is a major research priority. Here, the complete proteome of L. pneumophila was considered for subtractive genomics approaches to address the challenge of antimicrobial resistance. Our subtractive proteomics approach identified three potential drug targets that are promising for future application. Furthermore, a possible vaccine candidate, "outer membrane protein TolB," was proposed using reverse vaccinology analysis. The constructed vaccine candidate showed higher binding interaction with MHC molecules and human immune TLR-2 receptors at the molecular level. Overall, the present study aids in developing novel therapeutics and vaccine candidates for efficient treatment of the infections caused by L. pneumophila.
Collapse
Affiliation(s)
- Md Tahsin Khan
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Araf Mahmud
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Mahmudul Hasan
- Department of Pharmaceuticals and Industrial Biotechnology, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Kazi Faizul Azim
- Department of Microbial Biotechnology, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Musammat Kulsuma Begum
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Mohimenul Haque Rolin
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Arzuba Akter
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Shakhinur Islam Mondal
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| |
Collapse
|
5
|
Vandoorn E, Parys A, Chepkwony S, Chiers K, Van Reeth K. Efficacy of the NS1-truncated live attenuated influenza virus vaccine for swine against infection with viruses of major North American and European H3N2 lineages. Vaccine 2022; 40:2723-2732. [PMID: 35367071 DOI: 10.1016/j.vaccine.2022.03.051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/03/2022] [Accepted: 03/21/2022] [Indexed: 11/16/2022]
Abstract
Control of swine influenza A virus (swIAV) in North America and Europe is complicated because multiple antigenically distinct swIAV strains co-circulate in the field, and no vaccine is available that can provide broad cross-protection against all these swIAVs. In 2017, the first live attenuated influenza vaccine (LAIV) for swine was licensed in the US. The non-structural protein 1 (NS1)-truncated cluster I H3N2 strain A/swine/Texas/4199-2/98 NS1del126 (TX98 LAIV) in this vaccine provides partial cross-protection against heterologous North American cluster II and IV H3N2 swIAV strains. Its efficacy against European or more recent North American H3N2 lineages remains to be investigated. In this study, we evaluated the level of cross-protection against heterologous IAVs representative of the major H3N2 swIAV lineages in Europe and North America. TX98 LAIV prevented both nasal shedding and replication in the lungs of a North American cluster IV H3N2 swIAV for 2/4 pigs, prevented considerable nasal shedding of a North American novel human-like H3N2 swIAV for 2/4 pigs, and reduced replication of a European H3N2 swIAV in the lower respiratory tract to minimal titers for 1/3 pigs. Although TX98 LAIV elicited neutralizing antibodies against the homologous virus in serum and to a lesser extent in nose and lungs, no significant cross-reactive antibody titers against the heterologous swIAVs were detected. Partial cross-protection therefore likely relies on cellular and mucosal immune responses against conserved parts of the swIAV proteins. Since TX98 LAIV can offer partial protection against a broad range of H3N2 swIAVs, it might be a suitable priming vaccine for use in a heterologous prime-boost vaccination strategy.
Collapse
Affiliation(s)
- Elien Vandoorn
- Laboratory of Virology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Anna Parys
- Laboratory of Virology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Sharon Chepkwony
- Laboratory of Virology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Koen Chiers
- Laboratory of Veterinary Pathology, Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Kristien Van Reeth
- Laboratory of Virology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium.
| |
Collapse
|
6
|
Abstract
Live attenuated, cold-adapted influenza vaccines exhibit several desirable characteristics, including the induction of systemic, mucosal, and cell-mediated immunity resulting in breadth of protection, ease of administration, and yield. Seasonal live attenuated influenza vaccines (LAIVs) were developed in the United States and Russia and have been used in several countries. In the last decade, following the incorporation of the 2009 pandemic H1N1 strain, the performance of both LAIVs has been variable and the U.S.-backbone LAIV was less effective than the corresponding inactivated influenza vaccines. The cause appears to be reduced replicative fitness of some H1N1pdm09 viruses, indicating a need for careful selection of strains included in multivalent LAIV formulations. Assays are now being implemented to select optimal strains. An improved understanding of the determinants of replicative fitness of vaccine strains and of vaccine effectiveness of LAIVs is needed for public health systems to take full advantage of these valuable vaccines.
Collapse
Affiliation(s)
- Kanta Subbarao
- WHO Collaborating Centre for Reference and Research on Influenza and Department of Microbiology and Immunology, University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| |
Collapse
|
7
|
Booth JS, Toapanta FR. B and T Cell Immunity in Tissues and Across the Ages. Vaccines (Basel) 2021; 9:vaccines9010024. [PMID: 33419014 PMCID: PMC7825307 DOI: 10.3390/vaccines9010024] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/23/2020] [Accepted: 01/02/2021] [Indexed: 02/06/2023] Open
Abstract
B and T cells are key components of the adaptive immune system and coordinate multiple facets of immunity including responses to infection, vaccines, allergens, and the environment. In humans, B- and T-cell immunity has been determined using primarily peripheral blood specimens. Conversely, human tissues have scarcely been studied but they host multiple adaptive immune cells capable of mounting immune responses to pathogens and participate in tissue homeostasis. Mucosal tissues, such as the intestines and respiratory track, are constantly bombarded by foreign antigens and contain tissue-resident memory T (TRM) cells that exhibit superior protective capacity to pathogens. Also, tissue-resident memory B (BRM) cells have been identified in mice but whether humans have a similar population remains to be confirmed. Moreover, the immune system evolves throughout the lifespan of humans and undergoes multiple changes in its immunobiology. Recent studies have shown that age-related changes in tissues are not necessarily reflected in peripheral blood specimens, highlighting the importance of tissue localization and subset delineation as essential determinants of functional B and T cells at different life stages. This review describes our current knowledge of the main B- and T-cell subsets in peripheral blood and tissues across age groups.
Collapse
Affiliation(s)
- Jayaum S. Booth
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD 21075, USA;
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Franklin R. Toapanta
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD 21075, USA;
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Correspondence:
| |
Collapse
|
8
|
El Sahly HM, Makedonas G, Corry D, Atmar RL, Bellamy A, Cross K, Keitel WA. An evaluation of cytokine and cellular immune responses to heterologous prime-boost vaccination with influenza A/H7N7-A/H7N9 inactivated vaccine. Hum Vaccin Immunother 2020; 16:3138-3145. [PMID: 32401699 DOI: 10.1080/21645515.2020.1750910] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
The immunologic mechanisms underlying the improved serologic responses to heterologous prime-boost avian influenza vaccination are unclear. An exploratory analysis of the immune responses following 1 dose of influenza A/H7N9 inactivated vaccine in subjects who received an influenza A/H7N7 inactivated vaccine (N = 17) 8 years earlier or who were influenza A/H7-naïve (10) was performed. Plasma IL-6 and IL-21 concentrations by ELISA, the frequency of A/H7N7-specific memory B cells and antibody secreting cells by ELISpot, the frequency of circulating T follicular helper cells and the frequency of T cells expressing IL-6 and IL-21 by flow cytometry were assessed at baseline (D1), and 8 days (D9) and 28 days (D29) after vaccination. We assessed the correlation between these measurements and the D29 serologic responses to the boost vaccine. Plasma IL-6 concentration on D9 significantly correlated with the H7N7 and H7N9 hemagglutination inhibition (HAI) antibody levels (P = .03 and 0.02 respectively); and the percentage of T cells expressing IL-21 on D9 significantly correlated with H7N9 HAI antibody seroconversion (P < .001). Significant associations with other immunologic markers were not detected. We detected an association between plasma IL-6 and intracellular IL-21 and serologic responses to heterologous prime-boost avian influenza vaccination. A clarification of the role of these and additional immunologic markers requires larger clinical trials.
Collapse
Affiliation(s)
- Hana M El Sahly
- Departments of Molecular Virology and Microbiology and Medicine, Baylor College of Medicine , Houston, TX, USA
| | | | - David Corry
- Section of Immunology Allergy and Rheumatology, Department of Medicine, Baylor College of Medicine , Houston, TX, USA
| | - Robert L Atmar
- Departments of Molecular Virology and Microbiology and Medicine, Baylor College of Medicine , Houston, TX, USA
| | | | | | - Wendy A Keitel
- Departments of Molecular Virology and Microbiology and Medicine, Baylor College of Medicine , Houston, TX, USA
| |
Collapse
|
9
|
Recombinant H7 hemagglutinin expressed in glycoengineered Pichia pastoris forms nanoparticles that protect mice from challenge with H7N9 influenza virus. Vaccine 2020; 38:7938-7948. [PMID: 33131935 DOI: 10.1016/j.vaccine.2020.10.061] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 10/15/2020] [Accepted: 10/19/2020] [Indexed: 01/10/2023]
Abstract
Cases of H7N9 human infection caused by an avian-origin H7N9 virus emerged in eastern China in 2013, leading to the urgent requirement of developing an effective vaccine to reduce its pandemic potential. In this report, the full-length recombinant H7 protein (rH7) of A/Hangzhou/1/2013 (H7N9) virus was expressed by a glycoengineered Pichia pastoris system. The rH7 protein underwent complex glycosylation modifications and polymerized to nanoparticles of 30-50 nm in diameter. Recombinant H7 (1.9 µg) elicited a > 1:40 hemagglutination inhibition titer, and 3.75 µg rH7 protected 100% of the mice in the mice challenge model with 10-fold 50% lethal dose of the A/Shanghai/2/2013 (H7N9) rat lung-adapted strain. In conclusion, rH7 produced by the glycoengineered P. pastoris can be used for vaccination against the H7N9 virus, and provides an effective platform for the rapid production of future influenza vaccines.
Collapse
|
10
|
Chepkwony S, Parys A, Vandoorn E, Chiers K, Van Reeth K. Efficacy of Heterologous Prime-Boost Vaccination with H3N2 Influenza Viruses in Pre-Immune Individuals: Studies in the Pig Model. Viruses 2020; 12:v12090968. [PMID: 32882956 PMCID: PMC7552030 DOI: 10.3390/v12090968] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 08/26/2020] [Accepted: 08/30/2020] [Indexed: 12/25/2022] Open
Abstract
In a previous study in influenza-naïve pigs, heterologous prime-boost vaccination with monovalent, adjuvanted whole inactivated vaccines (WIV) based on the European swine influenza A virus (SwIAV) strain, A/swine/Gent/172/2008 (G08), followed by the US SwIAV strain, A/swine/Pennsylvania/A01076777/2010 (PA10), was shown to induce broadly cross-reactive hemagglutination inhibition (HI) antibodies against 12 out of 15 antigenically distinct H3N2 influenza strains. Here, we used the pig model to examine the efficacy of that particular heterologous prime-boost vaccination regimen, in individuals with pre-existing infection-immunity. Pigs were first inoculated intranasally with the human H3N2 strain, A/Nanchang/933/1995. Seven weeks later, they were vaccinated intramuscularly with G08 followed by PA10 or vice versa. We examined serum antibody responses against the hemagglutinin and neuraminidase, and antibody-secreting cell (ASC) responses in peripheral blood, draining lymph nodes, and nasal mucosa (NMC), in ELISPOT assays. Vaccination induced up to 10-fold higher HI antibody titers than in naïve pigs, with broader cross-reactivity, and protection against challenge with an antigenically distant H3N2 strain. It also boosted ASC responses in lymph nodes and NMC. Our results show that intramuscular administration of WIV can lead to enhanced antibody responses and cross-reactivity in pre-immune subjects, and recall of ASC responses in lymph nodes and NMC.
Collapse
Affiliation(s)
- Sharon Chepkwony
- Laboratory of Virology, Faculty of Veterinary Medicine, Department of Virology, Parasitology and Immunology, Ghent University, 9820 Merelbeke, Belgium; (S.C.); (A.P.); (E.V.)
| | - Anna Parys
- Laboratory of Virology, Faculty of Veterinary Medicine, Department of Virology, Parasitology and Immunology, Ghent University, 9820 Merelbeke, Belgium; (S.C.); (A.P.); (E.V.)
| | - Elien Vandoorn
- Laboratory of Virology, Faculty of Veterinary Medicine, Department of Virology, Parasitology and Immunology, Ghent University, 9820 Merelbeke, Belgium; (S.C.); (A.P.); (E.V.)
| | - Koen Chiers
- Laboratory of Veterinary Pathology, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium;
| | - Kristien Van Reeth
- Laboratory of Virology, Faculty of Veterinary Medicine, Department of Virology, Parasitology and Immunology, Ghent University, 9820 Merelbeke, Belgium; (S.C.); (A.P.); (E.V.)
- Correspondence: ; Tel.: +32-92647369
| |
Collapse
|
11
|
Lopez CE, Legge KL. Influenza A Virus Vaccination: Immunity, Protection, and Recent Advances Toward A Universal Vaccine. Vaccines (Basel) 2020; 8:E434. [PMID: 32756443 PMCID: PMC7565301 DOI: 10.3390/vaccines8030434] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/28/2020] [Accepted: 07/31/2020] [Indexed: 12/19/2022] Open
Abstract
Influenza virus infections represent a serious public health threat and account for significant morbidity and mortality worldwide due to seasonal epidemics and periodic pandemics. Despite being an important countermeasure to combat influenza virus and being highly efficacious when matched to circulating influenza viruses, current preventative strategies of vaccination against influenza virus often provide incomplete protection due the continuous antigenic drift/shift of circulating strains of influenza virus. Prevention and control of influenza virus infection with vaccines is dependent on the host immune response induced by vaccination and the various vaccine platforms induce different components of the local and systemic immune response. This review focuses on the immune basis of current (inactivated influenza vaccines (IIV) and live attenuated influenza vaccines (LAIV)) as well as novel vaccine platforms against influenza virus. Particular emphasis will be placed on how each platform induces cross-protection against heterologous influenza viruses, as well as how this immunity compares to and contrasts from the "gold standard" of immunity generated by natural influenza virus infection.
Collapse
Affiliation(s)
- Christopher E. Lopez
- Department of Microbiology and Immunology University of Iowa, Iowa City, IA 52242, USA;
- Department of Pathology, University of Iowa, Iowa City, IA 52242, USA
| | - Kevin L. Legge
- Department of Microbiology and Immunology University of Iowa, Iowa City, IA 52242, USA;
- Department of Pathology, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
12
|
Rudraraju R, Mordant F, Subbarao K. How Live Attenuated Vaccines Can Inform the Development of Broadly Cross-Protective Influenza Vaccines. J Infect Dis 2020; 219:S81-S87. [PMID: 30715386 PMCID: PMC7313962 DOI: 10.1093/infdis/jiy703] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Affiliation(s)
- Rajeev Rudraraju
- Department of Microbiology and Immunology, University of Melbourne
| | | | - Kanta Subbarao
- Department of Microbiology and Immunology, University of Melbourne.,World Health Organization Collaborating Centre for Reference and Research on Influenza, Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| |
Collapse
|
13
|
Shannon I, White CL, Nayak JL. Understanding Immunity in Children Vaccinated With Live Attenuated Influenza Vaccine. J Pediatric Infect Dis Soc 2020; 9:S10-S14. [PMID: 31848606 DOI: 10.1093/jpids/piz083] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Live attenuated influenza vaccine (LAIV), or FluMist, was approved for use in the United States in 2003. This vaccine, administered intranasally, offers the advantage of stimulating immunity at the site of infection in the upper respiratory tract and, by mimicking natural infection, has the potential to elicit a multifaceted immune response. However, the development of immunity following LAIV administration requires viral replication, causing vaccine effectiveness to be impacted by both the replicative fitness of the attenuated viruses being administered and the degree of the host's preexisting immunity. In this review, we discuss the current state of knowledge regarding the mechanisms of protection elicited by LAIV in children, contrast this with immune protection that develops upon vaccination with inactivated influenza vaccines, and briefly discuss both the potential advantages as well as challenges offered by this vaccination platform.
Collapse
Affiliation(s)
- Ian Shannon
- Department of Pediatrics, Division of Infectious Diseases, University of Rochester Medical Center, Rochester, New York, USA
| | - Chantelle L White
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
| | - Jennifer L Nayak
- Department of Pediatrics, Division of Infectious Diseases, University of Rochester Medical Center, Rochester, New York, USA
| |
Collapse
|
14
|
Affiliation(s)
- Kanta Subbarao
- World Health Organization Collaborating Centre for Reference and Research on Influenza, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia.,Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| |
Collapse
|
15
|
Westerhuis B, Ten Hulscher H, Jacobi R, van Beek J, Koopmans M, Rimmelzwaan G, Meijer A, van Binnendijk R. Specific memory B cell response in humans upon infection with highly pathogenic H7N7 avian influenza virus. Sci Rep 2020; 10:3152. [PMID: 32081953 PMCID: PMC7035254 DOI: 10.1038/s41598-020-60048-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 01/27/2020] [Indexed: 11/29/2022] Open
Abstract
H7 avian influenza viruses represent a major public health concern, and worldwide outbreaks raise the risk of a potential pandemic. Understanding the memory B cell response to avian (H7) influenza virus infection in humans could provide insights in the potential key to human infection risks. We investigated an epizootic of the highly pathogenic A(H7N7) in the Netherlands, which in 2003 led to infection of 89 persons and one fatal case. Subtype-specificity of antibodies were determined for confirmed H7N7 infected individuals (cases) (n = 19), contacts of these cases (n = 21) and a comparison group controls (n = 16), by microarray, using recombinant hemagglutinin (HA)1 proteins. The frequency and specificity of memory B cells was determined by detecting subtype-specific antibodies in the culture supernatants from in vitro stimulated oligoclonal B cell cultures, from peripheral blood of cases and controls. All cases (100%) had high antibody titers specific for A(H7N7)2003 (GMT > 100), whereas H7-HA1 antigen binding was detected in 29% of contacts and 31% of controls, suggesting that some of the H7 reactivity stems from cross reactive antibodies. To unravel homotypic and heterotypic responses, the frequency and specificity of memory B cells were determined in 2 cases. Ten of 123 HA1 reactive clones isolated from the cases bound to only H7- HA1, whereas 5 bound both H7 and other HA1 antigens. We recovered at least four different epitopal reactivities, though none of the H7 reactive antibodies were able to neutralize H7 infections in vitro. Our study serologically confirms the infection with H7 avian influenza viruses, and shows that H7 infection triggers a mixture of strain -specific and cross-reactive antibodies.
Collapse
Affiliation(s)
- Brenda Westerhuis
- Centre for Infectious Disease Control (Cib), National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands.,Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands
| | - Hinke Ten Hulscher
- Centre for Infectious Disease Control (Cib), National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Ronald Jacobi
- Centre for Infectious Disease Control (Cib), National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Josine van Beek
- Centre for Infectious Disease Control (Cib), National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Marion Koopmans
- Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands
| | - Guus Rimmelzwaan
- Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands.,Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine (TiHo), Hanover, Germany
| | - Adam Meijer
- Centre for Infectious Disease Control (Cib), National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Rob van Binnendijk
- Centre for Infectious Disease Control (Cib), National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands.
| |
Collapse
|
16
|
Jegaskanda S, Andrews SF, Wheatley AK, Yewdell JW, McDermott AB, Subbarao K. Hemagglutinin head-specific responses dominate over stem-specific responses following prime boost with mismatched vaccines. JCI Insight 2019; 4:129035. [PMID: 31723058 DOI: 10.1172/jci.insight.129035] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 10/09/2019] [Indexed: 11/17/2022] Open
Abstract
Broadly neutralizing Abs targeting the HA stem can provide broad protection against different influenza subtypes, raising the question of how best to elicit such Abs. We have previously demonstrated that vaccination with pandemic live-attenuated influenza vaccine (pLAIV) establishes immune memory for HA head-specific Abs. Here, we determine the extent to which matched versus mismatched LAIV-inactivated subunit vaccine (IIV) prime-boost vaccination elicits stem-specific memory B cells and Abs. We vaccinated African green monkeys with H5N1 pLAIV-pIIV or H5N1 pLAIV followed by seasonal IIV (sIIV) or with H5N1 pLAIV alone and measured Abs and HA-specific B cell responses. While we observed an increase in stem-specific memory B cells, head-specific memory B cell responses were substantially higher than stem-specific responses and were dominant even following boost with mismatched IIV. Neutralizing Abs against heterologous influenza viruses were undetectable. Head-specific B cells from draining lymph nodes exhibited germinal center markers, while stem-specific B cells found in the spleen and peripheral blood did not. Thus, although mismatched prime-boost generated a pool of stem-specific memory B cells, head-specific B cells and serum Abs substantially dominated the immune response. These findings have implications for including full-length native HA in prime-boost strategies intended to induce stem-specific Abs for universal influenza vaccination.
Collapse
Affiliation(s)
- Sinthujan Jegaskanda
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA.,Department of Microbiology and Immunology, University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | | | - Adam K Wheatley
- Department of Microbiology and Immunology, University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia.,Vaccine Research Center and
| | - Jonathan W Yewdell
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Disease, NIH, Bethesda, Maryland, USA
| | | | - Kanta Subbarao
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| |
Collapse
|
17
|
Holzer B, Morgan SB, Martini V, Sharma R, Clark B, Chiu C, Salguero FJ, Tchilian E. Immunogenicity and Protective Efficacy of Seasonal Human Live Attenuated Cold-Adapted Influenza Virus Vaccine in Pigs. Front Immunol 2019; 10:2625. [PMID: 31787986 PMCID: PMC6856147 DOI: 10.3389/fimmu.2019.02625] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 10/22/2019] [Indexed: 01/31/2023] Open
Abstract
Influenza A virus infection is a global health threat to livestock and humans, causing substantial mortality and morbidity. As both pigs and humans are readily infected with influenza viruses of similar subtype, the pig is a robust and appropriate model for investigating swine and human disease. We evaluated the efficacy of the human cold-adapted 2017–2018 quadrivalent seasonal LAIV in pigs against H1N1pdm09 challenge. LAIV immunized animals showed significantly reduced viral load in nasal swabs. There was limited replication of the H1N1 component of the vaccine in the nose, a limited response to H1N1 in the lung lymph nodes and a low H1N1 serum neutralizing titer. In contrast there was better replication of the H3N2 component of the LAIV, accompanied by a stronger response to H3N2 in the tracheobronchial lymph nodes (TBLN). Our data demonstrates that a single administration of human quadrivalent LAIV shows limited replication in the nose and induces detectable responses to the H1N1 and H3N2 components. These data suggest that pigs may be a useful model for assessing LAIV against influenza A viruses.
Collapse
Affiliation(s)
- Barbara Holzer
- Enhanced Host Responses, The Pirbright Institute, Woking, United Kingdom
| | - Sophie B Morgan
- Enhanced Host Responses, The Pirbright Institute, Woking, United Kingdom
| | - Veronica Martini
- Enhanced Host Responses, The Pirbright Institute, Woking, United Kingdom
| | - Rajni Sharma
- Enhanced Host Responses, The Pirbright Institute, Woking, United Kingdom
| | - Becky Clark
- Enhanced Host Responses, The Pirbright Institute, Woking, United Kingdom
| | - Christopher Chiu
- Department of Infectious Disease, Hammersmith Campus Imperial College London, London, United Kingdom
| | | | - Elma Tchilian
- Enhanced Host Responses, The Pirbright Institute, Woking, United Kingdom
| |
Collapse
|
18
|
Historical H1N1 Influenza Virus Imprinting Increases Vaccine Protection by Influencing the Activity and Sustained Production of Antibodies Elicited at Vaccination in Ferrets. Vaccines (Basel) 2019; 7:vaccines7040133. [PMID: 31569351 PMCID: PMC6963198 DOI: 10.3390/vaccines7040133] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 09/18/2019] [Accepted: 09/23/2019] [Indexed: 12/20/2022] Open
Abstract
Influenza virus imprinting is now understood to significantly influence the immune responses and clinical outcome of influenza virus infections that occur later in life. Due to the yearly cycling of influenza viruses, humans are imprinted with the circulating virus of their birth year and subsequently build a complex influenza virus immune history. Despite this knowledge, little is known about how the imprinting strain influences vaccine responses. To investigate the immune responses of the imprinted host to split-virion vaccination, we imprinted ferrets with a sublethal dose of the historical seasonal H1N1 strain A/USSR/90/1977. After a +60-day recovery period to build immune memory, ferrets were immunized and then challenged on Day 123. Antibody specificity and recall were investigated throughout the time course. At challenge, the imprinted vaccinated ferrets did not experience significant disease, while naïve-vaccinated ferrets had significant weight loss. Haemagglutination inhibition assays showed that imprinted ferrets had a more robust antibody response post vaccination and increased virus neutralization activity. Imprinted-vaccinated animals had increased virus-specific IgG antibodies compared to the other experimental groups, suggesting B-cell maturity and plasticity at vaccination. These results should be considered when designing the next generation of influenza vaccines.
Collapse
|
19
|
Gou X, Wu X, Shi Y, Zhang K, Huang J. A systematic review and meta-analysis of cross-reactivity of antibodies induced by H7 influenza vaccine. Hum Vaccin Immunother 2019; 16:286-294. [PMID: 31419167 PMCID: PMC7062429 DOI: 10.1080/21645515.2019.1649551] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Inoculation with vaccine is the major intervention currently used to prevent influenza infections. However, it will be a challenge to produce and implement a new vaccine when a novel highly pathogenic influenza virus emerges in humans as significant infections. H7 subtype influenza viruses have similar epitopes on hemagglutinin, which can induce cross-reactive antibodies. In this study, a meta-analysis of the cross-reactivity of antibodies induced by one H7 subtype influenza vaccine against other H7 subtypes was performed. Database search was conducted in PubMed, Cochrane Library, EMBASE, MEDLINE, Chinese Biological Medicine Database (CBM), and Wanfang. A total of 9 articles comprising 811 human subjects were included in this meta-analysis. All assessed H7 influenza vaccines induced vaccine strain-specific protective antibodies [seroconversion rate (SCR) = 0.74, 95% CI (0.65, 0.82); seroprotection rate (SPR) = 0.81, 95% CI (0.78, 0.83)]. All H7 influenza virus monovalent vaccines exhibited cross-reactivity tested by hemagglutinin inhibition test (HI), microneutralization test (MN) and immunosorbent assay (ELISA) to other H7 subtype viruses. H7N1, H7N3, H7N7, and H7N9 vaccines elicited cross-reactive antibodies against other H7 subtype influenza viruses [SCR = 0.66, 95% CI (0.50, 0.82); SPR = 0.79, 95% CI (0.67, 0.91)]. The pooled SCR (95%CI) of cross-reactivity of H7N1 and H7N3 vaccines were 0.88 (0.85, 0.91) and 0.40 (0.26, 0.54), respectively. The consolidated SPR (95%CI) of H7N1 and H7N7 vaccines were 0.89 (0.86, 0.92) and 0.93 (0.81, 1.06). All H7 vaccines induced cross-reactive antibodies against H7N9 viruses [SCR = 0.69, 95% CI (0.52, 0.86); SPR = 0.85, 95% CI (0.76, 0.94)]. H7 vaccines can be used to limit influenza infection when a new highly pathogenic H7 virus appears.
Collapse
Affiliation(s)
- Xiaoqin Gou
- Medical Laboratory, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Xiaoxue Wu
- Medical Laboratory, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yu Shi
- Medical Laboratory, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Ke Zhang
- Medical Laboratory, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Junqiong Huang
- Medical Laboratory, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| |
Collapse
|
20
|
Hasan M, Islam S, Chakraborty S, Mustafa AH, Azim KF, Joy ZF, Hossain MN, Foysal SH, Hasan MN. Contriving a chimeric polyvalent vaccine to prevent infections caused by herpes simplex virus (type-1 and type-2): an exploratory immunoinformatic approach. J Biomol Struct Dyn 2019; 38:2898-2915. [PMID: 31328668 DOI: 10.1080/07391102.2019.1647286] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Herpes simplex virus type 1 (HSV-1) and 2 (HSV-2) cause a variety of infections including oral-facial infections, genital herpes, herpes keratitis, cutaneous infection and so on. To date, FDA-approved licensed HSV vaccine is not available yet. Hence, the study was conducted to identify and characterize an effective epitope based polyvalent vaccine against both types of Herpes Simplex Virus. The selected proteins were retrieved from ViralZone and assessed to design highly antigenic epitopes by binding analyses of the peptides with MHC class-I and class-II molecules, antigenicity screening, transmembrane topology screening, allergenicity and toxicity assessment, population coverage analysis and molecular docking approach. The final vaccine was constructed by the combination of top CTL, HTL and BCL epitopes from each protein along with suitable adjuvant and linkers. Physicochemical and secondary structure analysis, disulfide engineering, molecular dynamic simulation and codon adaptation were further employed to develop a unique multi-epitope peptide vaccine. Docking analysis of the refined vaccine structure with different MHC molecules and human immune TLR-2 receptor demonstrated higher interaction. Complexed structure of the modeled vaccine and TLR-2 showed minimal deformability at molecular level. Moreover, translational potency and microbial expression of the modeled vaccine was analyzed with pET28a(+) vector for E. coli strain K12 and the vaccine constructs had no similarity with entire human proteome. The study enabled design of a novel chimeric polyvalent vaccine to confer broad range immunity against both HSV serotypes. However, further wet lab based research using model animals are highly recommended to experimentally validate our findings.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mahmudul Hasan
- Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet, Bangladesh.,Department of Pharmaceuticals and Industrial Biotechnology, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Shiful Islam
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Sourav Chakraborty
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Abu Hasnat Mustafa
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Kazi Faizul Azim
- Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet, Bangladesh.,Department of Microbial Biotechnology, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Ziaul Faruque Joy
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet, Bangladesh.,Department of Biomedical Science, University of Sheffield, Sheffield, UK
| | - Md Nazmul Hossain
- Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet, Bangladesh.,Department of Microbial Biotechnology, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Shakhawat Hossain Foysal
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Md Nazmul Hasan
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| |
Collapse
|
21
|
Palm AKE, Henry C. Remembrance of Things Past: Long-Term B Cell Memory After Infection and Vaccination. Front Immunol 2019; 10:1787. [PMID: 31417562 PMCID: PMC6685390 DOI: 10.3389/fimmu.2019.01787] [Citation(s) in RCA: 183] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 07/16/2019] [Indexed: 02/03/2023] Open
Abstract
The success of vaccines is dependent on the generation and maintenance of immunological memory. The immune system can remember previously encountered pathogens, and memory B and T cells are critical in secondary responses to infection. Studies in mice have helped to understand how different memory B cell populations are generated following antigen exposure and how affinity for the antigen is determinant to B cell fate. Additionally, such studies were fundamental in defining memory B cell niches and how B cells respond following subsequent exposure with the same antigen. On the other hand, human studies are essential to the development of better, newer vaccines but sometimes limited by the difficulty to access primary and secondary lymphoid organs. However, work using human influenza and HIV virus infection and/or immunization in particular has significantly advanced today's understanding of memory B cells. This review will focus on the generation, function, and longevity of B-cell mediated immunological memory (memory B cells and plasma cells) in response to infection and vaccination both in mice and in humans.
Collapse
Affiliation(s)
- Anna-Karin E Palm
- Section of Rheumatology, Department of Medicine, University of Chicago, Chicago, IL, United States
| | - Carole Henry
- Section of Rheumatology, Department of Medicine, University of Chicago, Chicago, IL, United States
| |
Collapse
|
22
|
El Sahly HM, Atmar RL, Patel SM, Bellamy A, Liu L, Hong W, Zhu H, Guan Y, Keitel WA. Safety and immunogenicity of an 8 year interval heterologous prime-boost influenza A/H7N7-H7N9 vaccination. Vaccine 2019; 37:2561-2568. [PMID: 30955980 PMCID: PMC6519114 DOI: 10.1016/j.vaccine.2019.03.071] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 03/27/2019] [Accepted: 03/28/2019] [Indexed: 02/05/2023]
Abstract
BACKGROUND Influenza A/H7N9 viruses are undergoing antigenic drift since their emergence in 2013, and vaccination strategies are needed for pandemic preparedness. Two doses of adjuvanted monovalent inactivated influenza A/H7N9 vaccine (IIV1 A/H7N9) are needed for optimal serological responses. However, administering 2 doses in a pandemic setting might be challenging. We evaluated the immunogenicity of "boosting" with IIV1 A/H7N9 in subjects "primed" 8 years previously with IIV1 A/H7N7. METHODS We administered 1 booster dose containing 45 mcg of IIV1 A/H7N9 hemagglutinin to 17 recipients of 2 prior doses of IIV1 A/H7N7, and to 10 influenza A/H7-naïve subjects. We tested their post-boosting sera for antibodies (Ab) against homologous influenza A/H7N9 using a hemagglutination inhibition assay; and compared their Ab titers to those in stored sera from recipients of AS03-adjuvanted IIV1 A/H7N9 against 9 strains of influenza A/H7N9 viruses. RESULTS The percentage of subjects with Ab titers ≥40 on Days 9 and 29 post boosting, respectively, was 65% and 41% in primed subjects and 10% and 0% in unprimed subjects. The Ab titers in recipients of AS03-adjuvanted IIV1 A/H7N9 were higher than those in the prime-boost group against a panel of influenza A/H7N9 viruses, except for 2 highly pathogenic strains. CONCLUSIONS Priming with IIV1 A/H7 results in serological responses following a delayed boost with 1 dose of unadjuvanted IIV1 A/H7N9, despite lack of antibody response after the prime. Optimizing prime-boost approaches would benefit pandemic preparedness. ClinicalTrials.gov identifier: NCT02586792.
Collapse
Affiliation(s)
- Hana M El Sahly
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States.
| | - Robert L Atmar
- Section of Infectious Diseases, Department of Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Shital M Patel
- Section of Infectious Diseases, Department of Medicine, Baylor College of Medicine, Houston, TX, United States
| | | | - Liwei Liu
- Joint Institute of Virology (Shantou University-The University of Hong Kong), Shantou University Medical College, Shantou, Guangdong, China
| | - Wenshan Hong
- Joint Institute of Virology (Shantou University-The University of Hong Kong), Shantou University Medical College, Shantou, Guangdong, China
| | - Huachen Zhu
- Joint Institute of Virology (Shantou University-The University of Hong Kong), Shantou University Medical College, Shantou, Guangdong, China
| | - Yi Guan
- Joint Institute of Virology (Shantou University-The University of Hong Kong), Shantou University Medical College, Shantou, Guangdong, China; State Key Laboratory of Emerging Infectious Diseases, School of Public Health, The University of Hong Kong, Hong Kong, China
| | - Wendy A Keitel
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
23
|
Zhang Y, Xu C, Zhang H, Liu GD, Xue C, Cao Y. Targeting Hemagglutinin: Approaches for Broad Protection against the Influenza A Virus. Viruses 2019; 11:v11050405. [PMID: 31052339 PMCID: PMC6563292 DOI: 10.3390/v11050405] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 04/26/2019] [Accepted: 04/27/2019] [Indexed: 12/13/2022] Open
Abstract
Influenza A viruses are dynamically epidemic and genetically diverse. Due to the antigenic drift and shift of the virus, seasonal vaccines are required to be reformulated annually to match with current circulating strains. However, the mismatch between vaccinal strains and circulating strains occurs frequently, resulting in the low efficacy of seasonal vaccines. Therefore, several “universal” vaccine candidates based on the structure and function of the hemagglutinin (HA) protein have been developed to meet the requirement of a broad protection against homo-/heterosubtypic challenges. Here, we review recent novel constructs and discuss several important findings regarding the broad protective efficacy of HA-based universal vaccines.
Collapse
Affiliation(s)
- Yun Zhang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Cong Xu
- Research Center of Agricultural of Dongguan City, Dongguan 523086, China.
| | - Hao Zhang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - George Dacai Liu
- Firstline Biopharmaceuticals Corporation, 12,050 167th PL NE, Redmond, WA 98052, USA.
| | - Chunyi Xue
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Yongchang Cao
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
24
|
Hasan M, Ghosh PP, Azim KF, Mukta S, Abir RA, Nahar J, Hasan Khan MM. Reverse vaccinology approach to design a novel multi-epitope subunit vaccine against avian influenza A (H7N9) virus. Microb Pathog 2019; 130:19-37. [PMID: 30822457 DOI: 10.1016/j.micpath.2019.02.023] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 02/20/2019] [Accepted: 02/21/2019] [Indexed: 12/18/2022]
Abstract
H7N9, a novel strain of avian origin influenza was the first recorded incidence where a human was transited by a N9 type influenza virus. Effective vaccination against influenza A (H7N9) is a major concern, since it has emerged as a life threatening viral pathogen. Here, an in silico reverse vaccinology strategy was adopted to design a unique chimeric subunit vaccine against avian influenza A (H7N9). Induction of humoral and cell-mediated immunity is the prime concerned characteristics for a peptide vaccine candidate, hence both T cell and B cell immunity of viral proteins were screened. Antigenicity testing, transmembrane topology screening, allergenicity and toxicity assessment, population coverage analysis and molecular docking approach were adopted to generate the most antigenic epitopes of avian influenza A (H7N9) proteome. Further, a novel subunit vaccine was designed by the combination of highly immunogenic epitopes along with suitable adjuvant and linkers. Physicochemical properties and secondary structure of the designed vaccine were assessed to ensure its thermostability, h ydrophilicity, theoretical PI and structural behavior. Homology modeling, refinement and validation of the designed vaccine allowed to construct a three dimensional structure of the predicted vaccine, further employed to molecular docking analysis with different MHC molecules and human immune TLR8 receptor present on lymphocyte cells. Moreover, disulfide engineering was employed to lessen the high mobility region of the designed vaccine in order to extend its stability. Furthermore, we investigated the molecular dynamic simulation of the modeled subunit vaccine and TLR8 complexed molecule to strengthen our prediction. Finally, the suggested vaccine was reverse transcribed and adapted for E. coli strain K12 prior to insertion within pET28a(+) vector for checking translational potency and microbial expression.
Collapse
Affiliation(s)
- Mahmudul Hasan
- Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet, 3100, Bangladesh; Department of Pharmaceuticals and Industrial Biotechnology, Sylhet Agricultural University, Sylhet, 3100, Bangladesh.
| | - Progga Paromita Ghosh
- Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet, 3100, Bangladesh
| | - Kazi Faizul Azim
- Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet, 3100, Bangladesh
| | - Shamsunnahar Mukta
- Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet, 3100, Bangladesh; Department of Plant and Environmental Biotechnology, Sylhet Agricultural University, Sylhet, 3100, Bangladesh
| | - Ruhshan Ahmed Abir
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
| | - Jannatun Nahar
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
| | - Mohammad Mehedi Hasan Khan
- Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet, 3100, Bangladesh; Department of Biochemistry and Chemistry, Sylhet Agricultural University, Sylhet, 3100, Bangladesh
| |
Collapse
|
25
|
Koutsakos M, Kedzierska K, Subbarao K. Immune Responses to Avian Influenza Viruses. THE JOURNAL OF IMMUNOLOGY 2019; 202:382-391. [DOI: 10.4049/jimmunol.1801070] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 09/24/2018] [Indexed: 12/26/2022]
|
26
|
Fox A, Quinn KM, Subbarao K. Extending the Breadth of Influenza Vaccines: Status and Prospects for a Universal Vaccine. Drugs 2018; 78:1297-1308. [PMID: 30088204 DOI: 10.1007/s40265-018-0958-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Despite the widespread use of seasonal influenza vaccines, there is urgent need for a universal influenza vaccine to provide broad, long-term protection. A number of factors underpin this urgency, including threats posed by zoonotic and pandemic influenza A viruses, suboptimal effectiveness of seasonal influenza vaccines, and concerns surrounding the effects of annual vaccination. In this article, we discuss approaches that are being investigated to increase influenza vaccine breadth, which are near-term, readily achievable approaches to increase the range of strains recognized within a subtype, or longer-term more challenging approaches to produce a truly universal influenza vaccine. Adjuvanted and neuraminidase-optimized vaccines are emerging as the most feasible and promising approaches to extend protection to cover a broader range of strains within a subtype. The goal of developing a universal vaccine has also been advanced with the design of immunogenic influenza HA-stem constructs that induce broadly neutralizing antibodies. However, these constructs are not yet sufficiently immunogenic to induce lasting universal immunity in humans. Advances in understanding how T cells mediate protection, and how viruses are packaged, have facilitated the rationale design and delivery of replication-incompetent virus vaccines that induce broad protection mediated by lung-resident memory T cells. While the lack of clear mechanistic correlates of protection, other than haemagglutination-inhibiting antibodies, remains an impediment to further advancing novel influenza vaccines, the pressing need for such a vaccine is supporting development of highly innovative and effective strategies.
Collapse
Affiliation(s)
- Annette Fox
- WHO Collaborating Centre for Reference and Research on Influenza, and the Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth Street, Melbourne, VIC, Australia
| | - Kylie M Quinn
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Kanta Subbarao
- WHO Collaborating Centre for Reference and Research on Influenza, and the Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth Street, Melbourne, VIC, Australia.
| |
Collapse
|
27
|
Nucleoside-modified mRNA immunization elicits influenza virus hemagglutinin stalk-specific antibodies. Nat Commun 2018; 9:3361. [PMID: 30135514 PMCID: PMC6105651 DOI: 10.1038/s41467-018-05482-0] [Citation(s) in RCA: 205] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 06/13/2018] [Indexed: 01/02/2023] Open
Abstract
Currently available influenza virus vaccines have inadequate effectiveness and are reformulated annually due to viral antigenic drift. Thus, development of a vaccine that confers long-term protective immunity against antigenically distant influenza virus strains is urgently needed. The highly conserved influenza virus hemagglutinin (HA) stalk represents one of the potential targets of broadly protective/universal influenza virus vaccines. Here, we evaluate a potent broadly protective influenza virus vaccine candidate that uses nucleoside-modified and purified mRNA encoding full-length influenza virus HA formulated in lipid nanoparticles (LNPs). We demonstrate that immunization with HA mRNA-LNPs induces antibody responses against the HA stalk domain of influenza virus in mice, rabbits, and ferrets. The HA stalk-specific antibody response is associated with protection from homologous, heterologous, and heterosubtypic influenza virus infection in mice.
Collapse
|
28
|
Topham DJ, Nguyen P, Sangster MY. Pandemic influenza vaccines: what they have taught us about B cell immunology. Curr Opin Immunol 2018; 53:203-208. [PMID: 29957457 DOI: 10.1016/j.coi.2018.06.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 06/05/2018] [Accepted: 06/06/2018] [Indexed: 10/28/2022]
Abstract
The emergence of avian influenza viruses stimulated pandemic concerns and efforts to develop protective vaccines. Studies of the immune responses to experimental vaccines for pandemic influenza have taught us lessons about human immunity to influenza in general that can be applied to seasonal, pandemic, and even universal vaccine responses. For example, the concepts of targeting the hemagglutinin stalk and elicitation of stalk reactive antibodies grew out of studies of the 2009 pandemic H1N1 vaccines. More recently, the phenomenon of imprinting, the influence of early life exposure to influenza modifying responses to the viruses or vaccines later in life, has been reinforced through the study of potential pandemic influenza virus vaccines such as H7N9. These studies have also revealed potential strategies to improve responses to novel influenza strains and produce more broadly cross-reactive B cell and antibody responses. These concepts are discussed in detail in this review.
Collapse
Affiliation(s)
- David J Topham
- New York Influenza Center of Excellence, David H. Smith Center for Vaccine Biology & Immunology, University of Rochester Medical Center, 601 Elmwood Avenue, Box 609, Rochester, NY 14642, USA.
| | - Phuong Nguyen
- New York Influenza Center of Excellence, David H. Smith Center for Vaccine Biology & Immunology, University of Rochester Medical Center, 601 Elmwood Avenue, Box 609, Rochester, NY 14642, USA
| | - Mark Y Sangster
- New York Influenza Center of Excellence, David H. Smith Center for Vaccine Biology & Immunology, University of Rochester Medical Center, 601 Elmwood Avenue, Box 609, Rochester, NY 14642, USA
| |
Collapse
|
29
|
Gallagher JR, McCraw DM, Torian U, Gulati NM, Myers ML, Conlon MT, Harris AK. Characterization of Hemagglutinin Antigens on Influenza Virus and within Vaccines Using Electron Microscopy. Vaccines (Basel) 2018; 6:E31. [PMID: 29799445 PMCID: PMC6027289 DOI: 10.3390/vaccines6020031] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 05/11/2018] [Accepted: 05/21/2018] [Indexed: 01/08/2023] Open
Abstract
Influenza viruses affect millions of people worldwide on an annual basis. Although vaccines are available, influenza still causes significant human mortality and morbidity. Vaccines target the major influenza surface glycoprotein hemagglutinin (HA). However, circulating HA subtypes undergo continual variation in their dominant epitopes, requiring vaccines to be updated annually. A goal of next-generation influenza vaccine research is to produce broader protective immunity against the different types, subtypes, and strains of influenza viruses. One emerging strategy is to focus the immune response away from variable epitopes, and instead target the conserved stem region of HA. To increase the display and immunogenicity of the HA stem, nanoparticles are being developed to display epitopes in a controlled spatial arrangement to improve immunogenicity and elicit protective immune responses. Engineering of these nanoparticles requires structure-guided design to optimize the fidelity and valency of antigen presentation. Here, we review electron microscopy applied to study the 3D structures of influenza viruses and different vaccine antigens. Structure-guided information from electron microscopy should be integrated into pipelines for the development of both more efficacious seasonal and universal influenza vaccine antigens. The lessons learned from influenza vaccine electron microscopic research could aid in the development of novel vaccines for other pathogens.
Collapse
Affiliation(s)
- John R Gallagher
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 50 South Drive, Room 6351, Bethesda, MD 20892, USA.
| | - Dustin M McCraw
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 50 South Drive, Room 6351, Bethesda, MD 20892, USA.
| | - Udana Torian
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 50 South Drive, Room 6351, Bethesda, MD 20892, USA.
| | - Neetu M Gulati
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 50 South Drive, Room 6351, Bethesda, MD 20892, USA.
| | - Mallory L Myers
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 50 South Drive, Room 6351, Bethesda, MD 20892, USA.
| | - Michael T Conlon
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 50 South Drive, Room 6351, Bethesda, MD 20892, USA.
| | - Audray K Harris
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 50 South Drive, Room 6351, Bethesda, MD 20892, USA.
| |
Collapse
|
30
|
Intranasal Live Influenza Vaccine Priming Elicits Localized B Cell Responses in Mediastinal Lymph Nodes. J Virol 2018; 92:JVI.01970-17. [PMID: 29444938 DOI: 10.1128/jvi.01970-17] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 01/26/2018] [Indexed: 01/05/2023] Open
Abstract
Pandemic live attenuated influenza vaccines (pLAIV) prime subjects for a robust neutralizing antibody response upon subsequent administration of a pandemic inactivated subunit vaccine (pISV). However, a difference was not detected in H5-specific memory B cells in the peripheral blood between pLAIV-primed and unprimed subjects prior to pISV boost. To investigate the mechanism underlying pLAIV priming, we vaccinated groups of 12 African green monkeys (AGMs) with H5N1 pISV or pLAIV alone or H5N1 pLAIV followed by pISV and examined immunity systemically and in local draining lymph nodes (LN). The AGM model recapitulated the serologic observations from clinical studies. Interestingly, H5N1 pLAIV induced robust germinal center B cell responses in the mediastinal LN (MLN). Subsequent boosting with H5N1 pISV drove increases in H5-specific B cells in the axillary LN, spleen, and circulation in H5N1 pLAIV-primed animals. Thus, H5N1 pLAIV primes localized B cell responses in the MLN that are recalled systemically following pISV boost. These data provide mechanistic insights for the generation of robust humoral responses via prime-boost vaccination.IMPORTANCE We have previously shown that pandemic live attenuated influenza vaccines (pLAIV) prime for a rapid and robust antibody response on subsequent administration of inactivated subunit vaccine (pISV). This is observed even in individuals who had undetectable antibody (Ab) responses following the initial vaccination. To define the mechanistic basis of pLAIV priming, we turned to a nonhuman primate model and performed a detailed analysis of B cell responses in systemic and local lymphoid tissues following prime-boost vaccination with pLAIV and pISV. We show that the nonhuman primate model recapitulates the serologic observations from clinical studies. Further, we found that pLAIVs induced robust germinal center B cell responses in the mediastinal lymph node. Subsequent boosting with pISV in pLAIV-primed animals resulted in detection of B cells in the axillary lymph nodes, spleen, and peripheral blood. We demonstrate that intranasally administered pLAIV elicits a highly localized germinal center B cell response in the mediastinal lymph node that is rapidly recalled following pISV boost into germinal center reactions at numerous distant immune sites.
Collapse
|
31
|
Meseda CA, Atukorale V, Soto J, Eichelberger MC, Gao J, Wang W, Weiss CD, Weir JP. Immunogenicity and Protection Against Influenza H7N3 in Mice by Modified Vaccinia Virus Ankara Vectors Expressing Influenza Virus Hemagglutinin or Neuraminidase. Sci Rep 2018; 8:5364. [PMID: 29599502 PMCID: PMC5876369 DOI: 10.1038/s41598-018-23712-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 03/14/2018] [Indexed: 12/18/2022] Open
Abstract
Influenza subtypes such as H7 have pandemic potential since they are able to infect humans with severe consequences, as evidenced by the ongoing H7N9 infections in China that began in 2013. The diversity of H7 viruses calls for a broadly cross-protective vaccine for protection. We describe the construction of recombinant modified vaccinia virus Ankara (MVA) vectors expressing the hemagglutinin (HA) or neuraminidase (NA) from three H7 viruses representing both Eurasian and North American H7 lineages – A/mallard/Netherlands/12/2000 (H7N3), A/Canada/rv444/2004 (H7N3), and A/Shanghai/02/2013 (H7N9). These vectors were evaluated for immunogenicity and protective efficacy against H7N3 virus in a murine model of intranasal challenge. High levels of H7-, N3-, and N9-specific antibodies, including neutralizing antibodies, were induced by the MVA-HA and MVA-NA vectors. Mice vaccinated with MVA vectors expressing any of the H7 antigens were protected, suggesting cross-protection among H7 viruses. In addition, MVA vectors expressing N3 but not N9 elicited protection against H7N3 virus challenge. Similar outcomes were obtained when immune sera from MVA vector-immunized mice were passively transferred to naïve mice prior to challenge with the H7N3 virus. The results support the further development of an MVA vector platform as a candidate vaccine for influenza strains with pandemic potential.
Collapse
Affiliation(s)
- Clement A Meseda
- Laboratory of DNA Viruses, Center for Biologics Evaluations and Research, Food and Drug Administration, 10903 New Hampshire Ave, Silver Spring, MD, 20993, USA
| | - Vajini Atukorale
- Laboratory of DNA Viruses, Center for Biologics Evaluations and Research, Food and Drug Administration, 10903 New Hampshire Ave, Silver Spring, MD, 20993, USA
| | - Jackeline Soto
- Laboratory of DNA Viruses, Center for Biologics Evaluations and Research, Food and Drug Administration, 10903 New Hampshire Ave, Silver Spring, MD, 20993, USA
| | - Maryna C Eichelberger
- Laboratory of Respiratory Viral Diseases, Center for Biologics Evaluations and Research, Food and Drug Administration, 10903 New Hampshire Ave, Silver Spring, MD, 20993, USA
| | - Jin Gao
- Laboratory of Respiratory Viral Diseases, Center for Biologics Evaluations and Research, Food and Drug Administration, 10903 New Hampshire Ave, Silver Spring, MD, 20993, USA
| | - Wei Wang
- Laboratory of Immunoregulation, Division of Viral Products, Center for Biologics Evaluations and Research, Food and Drug Administration, 10903 New Hampshire Ave, Silver Spring, MD, 20993, USA
| | - Carol D Weiss
- Laboratory of Immunoregulation, Division of Viral Products, Center for Biologics Evaluations and Research, Food and Drug Administration, 10903 New Hampshire Ave, Silver Spring, MD, 20993, USA
| | - Jerry P Weir
- Laboratory of DNA Viruses, Center for Biologics Evaluations and Research, Food and Drug Administration, 10903 New Hampshire Ave, Silver Spring, MD, 20993, USA.
| |
Collapse
|
32
|
Vaccination with a Recombinant H7 Hemagglutinin-Based Influenza Virus Vaccine Induces Broadly Reactive Antibodies in Humans. mSphere 2017; 2:mSphere00502-17. [PMID: 29242836 PMCID: PMC5729220 DOI: 10.1128/msphere.00502-17] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 11/22/2017] [Indexed: 11/21/2022] Open
Abstract
Zoonotic infections with high case fatality rates caused by avian H7N9 influenza viruses have been reported since early 2013 in China. Since then, the fifth wave of the H7N9 epidemic emerged in China, resulting in higher numbers of laboratory-confirmed cases than in previous years. Recently, H7N9 has started to antigenically drift and split into two new lineages, the Pearl River Delta and Yangtze River Delta clades, which do not match stockpiled H7 vaccines well. Humans are immunologically naive to these subtypes, and an H7N9 strain that acquires the capability of efficient human-to-human transmission poses a credible pandemic threat. Other characteristics of H7N9 are raising concerns as well, like its ability to bind to receptors in the human upper respiratory tract, the recent emergence of highly pathogenic variants, and the ability to quickly gain resistance to neuraminidase inhibitors. Therefore, developing and testing H7N9 vaccines constitutes a priority for pandemic preparedness. Human influenza virus infections with avian subtype H7N9 viruses are a major public health concern and have encouraged the development of effective H7 prepandemic vaccines. In this study, baseline and postvaccination serum samples of individuals aged 18 years and older who received a recombinant H7 hemagglutinin vaccine with and without an oil-in-water emulsion (SE) adjuvant were analyzed using a panel of serological assays. While only a small proportion of individuals seroconverted to H7N9 as measured by the conventional hemagglutination inhibition assay, our data show strong induction of anti-H7 hemagglutinin antibodies as measured by an enzyme-linked immunosorbent assay (ELISA). In addition, cross-reactive antibodies against phylogenetically distant group 2 hemagglutinins were induced, presumably targeting the conserved stalk domain of the hemagglutinin. Further analysis confirmed an induction of stalk-specific antibodies, suggesting that epitopes outside the classical antigenic sites are targeted by this vaccine in the context of preexisting immunity to related H3 hemagglutinin. Antibodies induced by H7 vaccination also showed functional activity in antibody-dependent cell-mediated cytotoxicity reporter assays and microneutralization assays. Additionally, our data show that sera from hemagglutination inhibition seroconverters conferred protection in a passive serum transfer experiment against lethal H7N9 virus challenge in mice. Interestingly, sera from hemagglutination inhibition nonseroconverters also conferred partial protection in the lethal animal challenge model. In conclusion, while recombinant H7 vaccination fails to induce measurable levels of hemagglutination-inhibiting antibodies in most subjects, this vaccination regime induces homosubtypic and heterosubtypic cross-reactive binding antibodies that are functional and partly protective in a murine passive transfer challenge model. IMPORTANCE Zoonotic infections with high case fatality rates caused by avian H7N9 influenza viruses have been reported since early 2013 in China. Since then, the fifth wave of the H7N9 epidemic emerged in China, resulting in higher numbers of laboratory-confirmed cases than in previous years. Recently, H7N9 has started to antigenically drift and split into two new lineages, the Pearl River Delta and Yangtze River Delta clades, which do not match stockpiled H7 vaccines well. Humans are immunologically naive to these subtypes, and an H7N9 strain that acquires the capability of efficient human-to-human transmission poses a credible pandemic threat. Other characteristics of H7N9 are raising concerns as well, like its ability to bind to receptors in the human upper respiratory tract, the recent emergence of highly pathogenic variants, and the ability to quickly gain resistance to neuraminidase inhibitors. Therefore, developing and testing H7N9 vaccines constitutes a priority for pandemic preparedness.
Collapse
|
33
|
Stadlbauer D, Nachbagauer R, Meade P, Krammer F. Universal influenza virus vaccines: what can we learn from the human immune response following exposure to H7 subtype viruses? Front Med 2017; 11:471-479. [PMID: 29159597 DOI: 10.1007/s11684-017-0602-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 10/23/2017] [Indexed: 01/01/2023]
Abstract
Several universal influenza virus vaccine candidates based on eliciting antibodies against the hemagglutinin stalk domain are in development. Typically, these vaccines induce responses that target group 1 or group 2 hemagglutinins with little to no cross-group reactivity and protection. Similarly, the majority of human anti-stalk monoclonal antibodies that have been isolated are directed against group 1 or group 2 hemagglutinins with very few that bind to hemagglutinins of both groups. Here we review what is known about the human humoral immune response to vaccination and infection with H7 subtype influenza viruses on a polyclonal and monoclonal level. It seems that unlike vaccination with H5 hemagglutinin, which induces antibody responses mostly restricted to the group 1 stalk domain, H7 exposure induces both group 2 and cross-group antibody responses. A better understanding of this phenomenon and the underlying mechanisms might help to develop future universal influenza virus vaccine candidates.
Collapse
Affiliation(s)
- Daniel Stadlbauer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10024, USA
- Department of Biotechnology, University of Natural Resources and Life Sciences, 1190, Vienna, Austria
| | - Raffael Nachbagauer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10024, USA
| | - Philip Meade
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10024, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10024, USA
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10024, USA.
| |
Collapse
|
34
|
Kiseleva I, Larionova N, Rudenko L. Live Attenuated Reassortant Vaccines Based on A/Leningrad/134/17/57 Master Donor Virus Against H5 Avian Influenza. Open Microbiol J 2017; 11:316-329. [PMID: 29290844 PMCID: PMC5737031 DOI: 10.2174/1874285801711010316] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 11/01/2017] [Accepted: 11/15/2017] [Indexed: 01/24/2023] Open
Abstract
Background: The H5N1 avian influenza was first recognized in humans in Hong Kong 20 years ago. Current enzootic spread of highly pathogenic H5N1 virus among wild and domestic poultry and a number of severe human respiratory diseases caused by this pathogen have stimulated necessity of development of potentially pandemic influenza vaccines. Discussion: In the past few years, significant research was conducted on how to prevent H5N1 influenza. Live, attenuated cold–adapted reassortant influenza vaccine (LAIV) is considered as one of the most promising candidates for pandemic and prepandemic vaccines. LAIV has proven to be safe and efficacious; pandemic LAIV might be more effective than inactivated vaccine in providing broader immune response. Conclusion: This review covers development of LAIVs against potential avian “pandemic” H5N1 subtype based on cold–adapted A/Leningrad/134/17/57 (H2N2) master donor virus backbone, and their preclinical and clinical studies.
Collapse
Affiliation(s)
- Irina Kiseleva
- Institute of Experimental Medicine; St Petersburg, Russia.,Saint Petersburg State University, St Petersburg, Russia
| | | | - Larisa Rudenko
- Institute of Experimental Medicine; St Petersburg, Russia
| |
Collapse
|
35
|
A universal influenza virus vaccine candidate confers protection against pandemic H1N1 infection in preclinical ferret studies. NPJ Vaccines 2017; 2:26. [PMID: 29263881 PMCID: PMC5627297 DOI: 10.1038/s41541-017-0026-4] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 06/30/2017] [Accepted: 07/03/2017] [Indexed: 11/08/2022] Open
Abstract
Influenza viruses evade human adaptive immune responses due to continuing antigenic changes. This makes it necessary to re-formulate and re-administer current seasonal influenza vaccines on an annual basis. Our pan-influenza vaccination approach attempts to redirect antibody responses from the variable, immuno-dominant hemagglutinin head towards the conserved—but immuno-subdominant—hemagglutinin stalk. The strategy utilizes sequential immunization with chimeric hemagglutinin-based vaccines expressing exotic head domains, and a conserved hemagglutinin stalk. We compared a live-attenuated influenza virus prime followed by an inactivated split-virus boost to two doses of split-virus vaccines and assessed the impact of adjuvant on protection against challenge with pandemic H1N1 virus in ferrets. All tested immunization regimens successfully induced broadly cross-reactive antibody responses. The combined live-attenuated/split virus vaccination conferred superior protection against pandemic H1N1 infection compared to two doses of split-virus vaccination. Our data support advancement of this chimeric hemagglutinin-based vaccine approach to clinical trials in humans. A vaccine against influenza targets non-varying parts of surface proteins to overcome the virus’ attempt at evading detection. Influenza viruses possess rapidly shifting surface proteins, effectively camouflaging themselves. These changes are making it difficult for vaccines to elicit reliable antibody responses against the threat. A team of researchers led by Florian Krammer and Randy A. Albrecht, of the United States’ Icahn School of Medicine at Mount Sinai, now describes a vaccine regimen that repeatedly targets a conserved component of the virus’ surface, prompting a broadly protective immune response. The conserved domains of the viral surface proteins are traditionally a more difficult target for vaccines as the immune systems of vaccinees have a preference for the varying domains. The team’s data, generated from ferret experiments, supports an investigation into the efficacy of this approach in humans.
Collapse
|
36
|
Advancing new vaccines against pandemic influenza in low-resource countries. Vaccine 2017; 35:5397-5402. [DOI: 10.1016/j.vaccine.2017.03.094] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 03/19/2017] [Accepted: 03/31/2017] [Indexed: 11/23/2022]
|
37
|
Duehr J, Wohlbold TJ, Oestereich L, Chromikova V, Amanat F, Rajendran M, Gomez-Medina S, Mena I, tenOever BR, García-Sastre A, Basler CF, Munoz-Fontela C, Krammer F. Novel Cross-Reactive Monoclonal Antibodies against Ebolavirus Glycoproteins Show Protection in a Murine Challenge Model. J Virol 2017; 91:e00652-17. [PMID: 28592526 PMCID: PMC5533894 DOI: 10.1128/jvi.00652-17] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 05/28/2017] [Indexed: 11/20/2022] Open
Abstract
Out of an estimated 31,100 cases since their discovery in 1976, ebolaviruses have caused approximately 13,000 deaths. The vast majority (∼11,000) of these occurred during the 2013-2016 West African epidemic. Three out of five species in the genus are known to cause Ebola Virus Disease in humans. Several monoclonal antibodies against the ebolavirus glycoprotein are currently in development as therapeutics. However, there is still a paucity of monoclonal antibodies that can cross-react between the glycoproteins of different ebolavirus species, and the mechanism of these monoclonal antibody therapeutics is still not understood in detail. Here, we generated a panel of eight murine monoclonal antibodies (MAbs) utilizing a prime-boost vaccination regimen with a Zaire ebolavirus glycoprotein expression plasmid followed by infection with a vesicular stomatitis virus expressing the Zaire ebolavirus glycoprotein. We tested the binding breadth of the resulting monoclonal antibodies using a set of recombinant surface glycoproteins from Reston, Taï Forest, Bundibugyo, Zaire, Sudan, and Marburg viruses and found two antibodies that showed pan-ebolavirus binding. An in vivo Stat2-/- mouse model was utilized to test the ability of these MAbs to protect from infection with a vesicular stomatitis virus expressing the Zaire ebolavirus glycoprotein. Several of our antibodies, including the broadly binding ones, protected mice from mortality despite lacking neutralization capability in vitro, suggesting their protection may be mediated by Fc-FcR interactions. Indeed, three antibodies displayed cellular phagocytosis and/or antibody-dependent cell-mediated cytotoxicity in vitro Our antibodies, specifically the two identified cross-reactive monoclonal antibodies (KL-2E5 and KL-2H7), might add to the understanding of anti-ebolavirus humoral immunity.IMPORTANCE This study describes the generation of a panel of novel anti-ebolavirus glycoprotein monoclonal antibodies, including two antibodies with broad cross-reactivity to all known ebolavirus species. The antibodies were raised using a heterologous DNA-viral vector prime-boost regimen, resulting in a high proportion of cross-reactive antibodies (25%). Similar vaccination regimens have been used successfully to induce broad protection against influenza viruses in humans, and our limited data indicate that this might be a useful strategy for filovirus vaccines as well. Several of our antibodies showed protective efficacy when tested in a novel murine challenge model and may be developed into future therapeutics.
Collapse
Affiliation(s)
- James Duehr
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Teddy John Wohlbold
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lisa Oestereich
- Department of Virology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Veronika Chromikova
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Fatima Amanat
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Madhusudan Rajendran
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sergio Gomez-Medina
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Ignacio Mena
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Benjamin R tenOever
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Christopher F Basler
- Center for Microbial Pathogenesis, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia, USA
| | - Cesar Munoz-Fontela
- Department of Virology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
38
|
Development of Clade-Specific and Broadly Reactive Live Attenuated Influenza Virus Vaccines against Rapidly Evolving H5 Subtype Viruses. J Virol 2017; 91:JVI.00547-17. [PMID: 28490598 DOI: 10.1128/jvi.00547-17] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 05/03/2017] [Indexed: 11/20/2022] Open
Abstract
We have developed pandemic live attenuated influenza vaccines (pLAIVs) against clade 1 H5N1 viruses on an Ann Arbor cold-adapted (ca) backbone that induced long-term immune memory. In 2015, many human infections caused by a new clade (clade 2.2.1.1) of goose/Guangdong (gs/GD) lineage H5N1 viruses were reported in Egypt, which prompted updating of the H5N1 pLAIV. We explored two strategies to generate suitable pLAIVs. The first approach was to modify the hemagglutinin gene of a highly pathogenic wild-type (wt) clade 2.2.1.1 virus, A/Egypt/N03434/2009 (Egy/09) (H5N1), with its unmodified neuraminidase (NA) gene; this virus was designated Egy/09 ca The second approach was to select a low-pathogenicity avian influenza H5 virus that elicited antibodies that cross-reacted with a broad range of H5 viruses, including the Egypt H5N1 viruses, and contained a novel NA subtype for humans. We selected the low-pathogenicity A/duck/Hokkaido/69/2000 (H5N3) (dk/Hok/00) virus for this purpose. Both candidate vaccines were attenuated and immunogenic in ferrets, inducing antibodies that neutralized homologous and heterologous H5 viruses with different degrees of cross-reactivity; Egy/09 ca vaccine antisera were more specific for the gs/GD lineage viruses but did not neutralize recent North American isolates (clade 2.3.4.4), whereas antisera from dk/Hok/69 ca-vaccinated ferrets cross-reacted with clade 2.3.4.4 and 2.2.1 viruses but not clade 1 or 2.1 viruses. When vaccinated ferrets were challenged with homologous and heterologous H5 viruses, challenge virus replication was reduced in the respiratory tract. Thus, the two H5 pLAIV candidates are suitable for clinical development to protect humans from infection with different clades of H5 viruses.IMPORTANCE In response to the continuing evolution of H5N1 avian influenza viruses and human infections, new candidate H5 live attenuated vaccines were developed by using two different approaches: one targeted a specific circulating strain in Egypt, and the other was based on a virus that elicits broadly cross-reactive antibodies against a wide range of H5 viruses. Both candidate vaccines were immunogenic and exhibited protective efficacy in ferrets. Our study permits a comparison of the two approaches, and the data support the further development of both vaccine viruses to optimally prepare for the further spread of clade 2.2.1 or 2.3.4.4 viruses.
Collapse
|
39
|
An avian influenza H7 DNA priming vaccine is safe and immunogenic in a randomized phase I clinical trial. NPJ Vaccines 2017; 2:15. [PMID: 29263871 PMCID: PMC5627236 DOI: 10.1038/s41541-017-0016-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 04/12/2017] [Accepted: 04/24/2017] [Indexed: 11/18/2022] Open
Abstract
A novel avian influenza subtype, A/H7N9, emerged in 2013 and represents a public health threat with pandemic potential. We have previously shown that DNA vaccine priming increases the magnitude and quality of antibody responses to H5N1 monovalent inactivated boost. We now report the safety and immunogenicity of a H7 DNA-H7N9 monovalent inactivated vaccine prime-boost regimen. In this Phase 1, open label, randomized clinical trial, we evaluated three H7N9 vaccination regimens in healthy adults, with a prime-boost interval of 16 weeks. Group 1 received H7 DNA vaccine prime and H7N9 monovalent inactivated vaccine boost. Group 2 received H7 DNA and H7N9 monovalent inactivated vaccine as a prime and H7N9 monovalent inactivated vaccine as a boost. Group 3 received H7N9 monovalent inactivated vaccine in a homologous prime-boost regimen. Overall, 30 individuals between 20 to 60 years old enrolled and 28 completed both vaccinations. All injections were well tolerated with no serious adverse events. 2 weeks post-boost, 50% of Group 1 and 33% of Group 2 achieved a HAI titer ≥1:40 compared with 11% of Group 3. Also, at least a fourfold increase in neutralizing antibody responses was seen in 90% of Group 1, 100% of Group 2, and 78% of Group 3 subjects. Peak neutralizing antibody geometric mean titers were significantly greater for Group 1 (GMT = 440.61, p < 0.05) and Group 2 (GMT = 331, p = 0.02) when compared with Group 3 (GMT = 86.11). A novel H7 DNA vaccine was safe, well-tolerated, and immunogenic when boosted with H7N9 monovalent inactivated vaccine, while priming for higher HAI and neutralizing antibody titers than H7N9 monovalent inactivated vaccine alone. A vaccine candidate to treat a deadly subtype of avian influenza was shown to induce protective antibodies in initial clinical trials. As of March 2017, avian influenza strain A/H7N9 has killed 497 people since 2013, with 1349 confirmed cases. Julie Ledgerwood and her team from the United States’ National Institutes of Health in collaboration with colleagues at the Centers for Disease Control and Prevention tested their two-stage vaccine protocol in humans, showing it to be effective and safe. The vaccine consists of an initial injection of viral DNA, which ‘primes’ the immune system to the pathogen, followed by a follow-up injection of an inactivated purified viral protein, which further boosts the host’s production of protective antibodies. The study shows the viability of this vaccine regimen and suggests further investigation into its appropriateness for treating avian influenza in humans.
Collapse
|
40
|
Isakova-Sivak I, Rudenko L. Tackling a novel lethal virus: a focus on H7N9 vaccine development. Expert Rev Vaccines 2017; 16:1-13. [PMID: 28532182 DOI: 10.1080/14760584.2017.1333907] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
INTRODUCTION Avian-origin H7N9 influenza viruses first detected in humans in China in 2013 continue to cause severe human infections with a mortality rate close to 40%. These viruses are acknowledged as the subtype most likely to cause the next influenza pandemic. Areas covered: Here we review published data on the development of H7N9 influenza vaccine candidates and their evaluation in preclinical and clinical trials identified on PubMed database with the term 'H7N9 influenza vaccine'. In addition, a search with the same term was done on ClinicalTrials.gov to find ongoing clinical trials with H7N9 vaccines. Expert commentary: Influenza vaccines are the most powerful tool for protecting the human population from influenza infections, both seasonal and pandemic. During the past four years, a large number of promising H7N9 influenza vaccine candidates have been generated using traditional and advanced gene engineering techniques. In addition, with the support of WHO's GAP program, influenza vaccine production capacities have been established in a number of vulnerable low- and middle-income countries with a high population density, allowing the countries to be independent of vaccine supply from high-income countries. Overall, it is believed that the world is now well prepared for a possible H7N9 influenza pandemic.
Collapse
Affiliation(s)
- Irina Isakova-Sivak
- a Department of Virology , Institute of Experimental Medicine , Saint Petersburg , Russia
| | - Larisa Rudenko
- a Department of Virology , Institute of Experimental Medicine , Saint Petersburg , Russia
| |
Collapse
|
41
|
Madan A, Ferguson M, Sheldon E, Segall N, Chu L, Toma A, Rheault P, Friel D, Soni J, Li P, Innis BL, Schuind A. Immunogenicity and safety of an AS03-adjuvanted H7N1 vaccine in healthy adults: A phase I/II, observer-blind, randomized, controlled trial. Vaccine 2017; 35:1431-1439. [PMID: 28187952 DOI: 10.1016/j.vaccine.2017.01.054] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 01/19/2017] [Accepted: 01/20/2017] [Indexed: 11/27/2022]
Abstract
BACKGROUND H7 influenza strains have pandemic potential. AS03-adjuvanted H7N1 A/mallard/Netherlands/12/2000 split-virion vaccine formulations were evaluated as model H7-subtype vaccine and tested after H7N9 emerged in China, and caused severe human disease with high mortality. METHODS In this phase I/II, observer-blind, randomized trial in US and Canada, 420 healthy adults (21-64years) were randomized to receive 1 of 4 H7N1 vaccine formulations (3.75 or 7.5μg hemagglutinin adjuvanted with either AS03A or AS03B), 15μg unadjuvanted H7N1 hemagglutinin, or saline placebo, given as 2-dose series. Immunogenicity was assessed using hemagglutination-inhibition (HI) and microneutralization (MN) assays, at day 42 (21days post-dose 2), month 6, and month 12 (HI only) for the per-protocol cohorts (398, 379 and 368 participants, respectively). Safety is reported up to month 12. RESULTS Beneficial AS03 adjuvant effect was demonstrated. Committee for Medical Products for Human Use, and Center for Biologics Evaluation and Research (CBER) criteria were met for all adjuvanted formulations at day 42 (H7N1 HI assay); seroprotection (SPR) and seroconversion rates (SCR) were 88.5-94.8%, mean geometric increase (MGI) 19.2-34.9, and geometric mean titers (GMT) 98.3-180.7. Unadjuvanted H7N1 vaccine did not meet CBER criteria. In adjuvanted groups, antibody titers decreased over time; month 12 SPRs and GMTs were low (2.0-18.8% and 8.1-12.2). MN antibodies showed similar kinetics, with titers persisting at higher range than HI at month 6. All adjuvanted groups showed cross-reactivity against H7N9, with HI responses similar to H7N1. The most frequent solicited symptom in adjuvanted groups was injection site pain (71.2-86.7%); grade 3 solicited symptoms were infrequent. Nine participants reported 17 serious adverse events; none were considered causally related to vaccination. CONCLUSIONS Adjuvanted H7N1 vaccine formulations had an acceptable safety profile and induced an antibody response after 2 doses with cross-reactivity to H7N9. ClinicalTrials.gov: NCT01934127.
Collapse
Affiliation(s)
- Anuradha Madan
- GSK, 1250 South Collegeville Road, Collegeville, PA 19426, USA.
| | - Murdo Ferguson
- Colchester Research Group, 68 Robie Street, Truro, Nova Scotia B2N 1L2, Canada
| | - Eric Sheldon
- Miami Research Associates, 6141 Sunset Drive Suite 501, Miami 33143, USA
| | - Nathan Segall
- Clinical Research Atlanta, 175 Country Club Dr. Ste A, Stockbridge 30281, USA
| | - Laurence Chu
- Benchmark Research, 1015 East 32nd Street, Suite 309, Austin, TX 78705, USA
| | - Azhar Toma
- Manna Research, 2291 Kipling Avenue Suite 117B, Toronto, Ontario M9W 4L6, Canada.
| | - Paul Rheault
- Medicor Research Inc, 202-1280 Lasalle Blvd, Sudbury, Ontario P3E 1H5, Canada
| | | | - Jyoti Soni
- GSK Pharmaceuticals Ltd., 5 Embassy Links, SRT Road, Bangalore, India
| | - Ping Li
- GSK, 2301 Renaissance Blvd, King of Prussia, PA 19406-2772, USA.
| | - Bruce L Innis
- GSK, 14200 Shady Grove Road, Rockville, MD 20850, USA
| | - Anne Schuind
- GSK, 2301 Renaissance Blvd, King of Prussia, PA 19406-2772, USA
| |
Collapse
|
42
|
Levine MZ, Martin JM, Gross FL, Jefferson S, Cole KS, Archibald CA, Nowalk MP, Susick M, Moehling K, Spencer S, Chung JR, Flannery B, Zimmerman RK. Neutralizing Antibody Responses to Antigenically Drifted Influenza A(H3N2) Viruses among Children and Adolescents following 2014-2015 Inactivated and Live Attenuated Influenza Vaccination. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2016; 23:831-839. [PMID: 27558294 PMCID: PMC5051070 DOI: 10.1128/cvi.00297-16] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 08/16/2016] [Indexed: 01/05/2023]
Abstract
Human influenza A(H3N2) viruses that predominated during the moderately severe 2014-2015 influenza season differed antigenically from the vaccine component, resulting in reduced vaccine effectiveness (VE). To examine antibody responses to 2014-2015 inactivated influenza vaccine (IIV) and live-attenuated influenza vaccine (LAIV) among children and adolescents, we collected sera before and after vaccination from 150 children aged 3 to 17 years enrolled at health care facilities. Hemagglutination inhibition (HI) assays were used to assess the antibody responses to vaccine strains. We evaluated cross-reactive antibody responses against two representative A(H3N2) viruses that had antigenically drifted from the A(H3N2) vaccine component using microneutralization (MN) assays. Postvaccination antibody titers to drifted A(H3N2) viruses were higher following receipt of IIV (MN geometric mean titers [GMTs], 63 to 68; 38 to 45% achieved seroconversion) versus LAIV (MN GMT, 22; only 3 to 5% achieved seroconversion). In 9- to 17-year-olds, the highest MN titers were observed among IIV-vaccinated individuals who had received LAIV in the previous season. Among all IIV recipients aged 3 to 17 years, the strongest predictor of antibody responses to the drifted viruses was the prevaccination titers to the vaccine strain. The results of our study suggest that in an antigenically drifted influenza season, vaccination still induced cross-reactive antibody responses to drifted circulating A(H3N2) viruses, although higher antibody titers may be required for protection. Antibody responses to drifted A(H3N2) viruses following vaccination were influenced by multiple factors, including vaccine type and preexisting immunity from prior exposure.
Collapse
MESH Headings
- Adolescent
- Antibodies, Neutralizing/blood
- Antibodies, Neutralizing/immunology
- Antibodies, Viral/blood
- Antigenic Variation
- Antigens, Viral/immunology
- Child
- Child, Preschool
- Cross Reactions
- Female
- Hemagglutination Inhibition Tests
- Humans
- Influenza A Virus, H3N2 Subtype/immunology
- Influenza B virus/immunology
- Influenza Vaccines/administration & dosage
- Influenza Vaccines/immunology
- Influenza, Human/epidemiology
- Influenza, Human/immunology
- Influenza, Human/prevention & control
- Male
- Seasons
- Vaccines, Attenuated/administration & dosage
- Vaccines, Attenuated/immunology
- Vaccines, Inactivated/administration & dosage
- Vaccines, Inactivated/immunology
Collapse
Affiliation(s)
- Min Z Levine
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Judith M Martin
- Department of Pediatrics, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania, USA
| | - F Liaini Gross
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia, USA Battelle, Atlanta, Georgia, USA
| | - Stacie Jefferson
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Kelly Stefano Cole
- Department of Immunology, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania, USA Center for Vaccine Research, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Crystal Ann Archibald
- Center for Vaccine Research, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania, USA Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Mary Patricia Nowalk
- Department of Family Medicine, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Michael Susick
- Department of Family Medicine, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Krissy Moehling
- Department of Family Medicine, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Sarah Spencer
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia, USA Atlanta Research and Education Foundation, Atlanta, Georgia, USA
| | - Jessie R Chung
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia, USA Atlanta Research and Education Foundation, Atlanta, Georgia, USA
| | - Brendan Flannery
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Richard K Zimmerman
- Center for Vaccine Research, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania, USA Department of Family Medicine, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania, USA Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
43
|
Antigenic Fingerprinting of Antibody Response in Humans following Exposure to Highly Pathogenic H7N7 Avian Influenza Virus: Evidence for Anti-PA-X Antibodies. J Virol 2016; 90:9383-93. [PMID: 27512055 DOI: 10.1128/jvi.01408-16] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 08/01/2016] [Indexed: 12/18/2022] Open
Abstract
UNLABELLED Infections with H7 highly pathogenic avian influenza (HPAI) viruses remain a major public health concern. Adaptation of low-pathogenic H7N7 to highly pathogenic H7N7 in Europe in 2015 raised further alarm for a potential pandemic. An in-depth understanding of antibody responses to HPAI H7 virus following infection in humans could provide important insight into virus gene expression as well as define key protective and serodiagnostic targets. Here we used whole-genome gene fragment phage display libraries (GFPDLs) expressing peptides of 15 to 350 amino acids across the complete genome of the HPAI H7N7 A/Netherlands/33/03 virus. The hemagglutinin (HA) antibody epitope repertoires of 15 H7N7-exposed humans identified clear differences between individuals with no hemagglutination inhibition (HI) titers (<1:10) and those with HI titers of >1:40. Several potentially protective H7N7 epitopes close to the HA receptor binding domain (RBD) and neuraminidase (NA) catalytic site were identified. Surface plasmon resonance (SPR) analysis identified a strong correlation between HA1 (but not HA2) binding antibodies and H7N7 HI titers. A proportion of HA1 binding in plasma was contributed by IgA antibodies. Antibodies against the N7 neuraminidase were less frequent but targeted sites close to the sialic acid binding site. Importantly, we identified strong antibody reactivity against PA-X, a putative virulence factor, in most H7N7-exposed individuals, providing the first evidence for in vivo expression of PA-X and its recognition by the immune system during human influenza A virus infection. This knowledge can help inform the development and selection of the most effective countermeasures for prophylactic as well as therapeutic treatments of HPAI H7N7 avian influenza virus. IMPORTANCE An outbreak of pathogenic H7N7 virus occurred in poultry farms in The Netherlands in 2003. Severe outcome included conjunctivitis, influenza-like illness, and one lethal infection. In this study, we investigated convalescent-phase sera from H7N7-exposed individuals by using a whole-genome phage display library (H7N7-GFPDL) to explore the complete repertoire of post-H7N7-exposure antibodies. PA-X is a recently identified influenza virus virulence protein generated by ribosomal frameshifting in segment 3 of influenza virus coding for PA. However, PA-X expression during influenza virus infection in humans is unknown. We identified strong antibody reactivity against PA-X in most H7N7-exposed individuals (but not in unexposed adults), providing the first evidence for in vivo expression of PA-X and its recognition by the immune system during human infection with pathogenic H7N7 avian influenza virus.
Collapse
|
44
|
Henry Dunand CJ, Leon PE, Huang M, Choi A, Chromikova V, Ho IY, Tan GS, Cruz J, Hirsh A, Zheng NY, Mullarkey CE, Ennis FA, Terajima M, Treanor JJ, Topham DJ, Subbarao K, Palese P, Krammer F, Wilson PC. Both Neutralizing and Non-Neutralizing Human H7N9 Influenza Vaccine-Induced Monoclonal Antibodies Confer Protection. Cell Host Microbe 2016; 19:800-13. [PMID: 27281570 PMCID: PMC4901526 DOI: 10.1016/j.chom.2016.05.014] [Citation(s) in RCA: 221] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 03/04/2016] [Accepted: 04/27/2016] [Indexed: 10/21/2022]
Abstract
Pathogenic H7N9 avian influenza viruses continue to represent a public health concern, and several candidate vaccines are currently being developed. It is vital to assess if protective antibodies are induced following vaccination and to characterize the diversity of epitopes targeted. Here we characterized the binding and functional properties of twelve H7-reactive human antibodies induced by a candidate A/Anhui/1/2013 (H7N9) vaccine. Both neutralizing and non-neutralizing antibodies protected mice in vivo during passive transfer challenge experiments. Mapping the H7 hemagglutinin antigenic sites by generating escape mutant variants against the neutralizing antibodies identified unique epitopes on the head and stalk domains. Further, the broadly cross-reactive non-neutralizing antibodies generated in this study were protective through Fc-mediated effector cell recruitment. These findings reveal important properties of vaccine-induced antibodies and provide a better understanding of the human monoclonal antibody response to influenza in the context of vaccines.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/biosynthesis
- Antibodies, Monoclonal/immunology
- Antibodies, Neutralizing/immunology
- Antibodies, Viral/immunology
- Antigens, Viral/immunology
- Disease Models, Animal
- Dogs
- Female
- HEK293 Cells
- Hemagglutinin Glycoproteins, Influenza Virus/immunology
- Humans
- Influenza A Virus, H7N9 Subtype/immunology
- Influenza Vaccines/immunology
- Influenza Vaccines/pharmacology
- Influenza, Human/immunology
- Influenza, Human/prevention & control
- Influenza, Human/virology
- Madin Darby Canine Kidney Cells
- Mice
- Mice, Inbred BALB C
- Orthomyxoviridae Infections/immunology
- Orthomyxoviridae Infections/prevention & control
- Orthomyxoviridae Infections/virology
Collapse
Affiliation(s)
- Carole J Henry Dunand
- The Department of Medicine, Section of Rheumatology, The Knapp Center for Lupus and Immunology Research, The University of Chicago, Chicago, IL 60637, USA
| | - Paul E Leon
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Min Huang
- The Department of Medicine, Section of Rheumatology, The Knapp Center for Lupus and Immunology Research, The University of Chicago, Chicago, IL 60637, USA
| | - Angela Choi
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Veronika Chromikova
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Irvin Y Ho
- The Department of Medicine, Section of Rheumatology, The Knapp Center for Lupus and Immunology Research, The University of Chicago, Chicago, IL 60637, USA
| | - Gene S Tan
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - John Cruz
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Ariana Hirsh
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Nai-Ying Zheng
- The Department of Medicine, Section of Rheumatology, The Knapp Center for Lupus and Immunology Research, The University of Chicago, Chicago, IL 60637, USA
| | - Caitlin E Mullarkey
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Francis A Ennis
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Masanori Terajima
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - John J Treanor
- Division of Infectious Disease, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - David J Topham
- Center for Vaccine Biology & Immunology, Department of Microbiology & Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Kanta Subbarao
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD 20852, USA
| | - Peter Palese
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Patrick C Wilson
- The Department of Medicine, Section of Rheumatology, The Knapp Center for Lupus and Immunology Research, The University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
45
|
Neu KE, Henry Dunand CJ, Wilson PC. Heads, stalks and everything else: how can antibodies eradicate influenza as a human disease? Curr Opin Immunol 2016; 42:48-55. [PMID: 27268395 DOI: 10.1016/j.coi.2016.05.012] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Accepted: 05/20/2016] [Indexed: 11/19/2022]
Abstract
Current seasonal influenza virus vaccines are effective against infection but they have to be reformulated on a regular basis to counter antigenic variations. The majority of the antibodies induced in response to seasonal vaccination are strain-specific. However, antibodies targeting conserved epitopes on the hemagglutinin protein have been identified and they offer broad protection. Most of these antibodies bind the hemagglutinin stalk domain and are generated from preexisting memory B cells. Broadly protective stalk-biased responses induced by antigenically divergent influenza strains, in concert with prior immunity, are sufficient to eradicate seasonally circulating strains. Future vaccine trials should aim to harness and maintain such a response with the realistic goal of developing a universal influenza vaccine.
Collapse
Affiliation(s)
- Karlynn E Neu
- Committee on Immunology, The University of Chicago, Chicago, IL 60637, USA
| | - Carole J Henry Dunand
- The Department of Medicine, Section of Rheumatology, The Knapp Center for Lupus and Immunology Research, The University of Chicago, Chicago, IL 60637, USA.
| | - Patrick C Wilson
- Committee on Immunology, The University of Chicago, Chicago, IL 60637, USA; The Department of Medicine, Section of Rheumatology, The Knapp Center for Lupus and Immunology Research, The University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
46
|
Wright PF, Hoen AG, Ilyushina NA, Brown EP, Ackerman ME, Wieland-Alter W, Connor RI, Jegaskanda S, Rosenberg-Hasson Y, Haynes BC, Luke CJ, Subbarao K, Treanor JJ. Correlates of Immunity to Influenza as Determined by Challenge of Children with Live, Attenuated Influenza Vaccine. Open Forum Infect Dis 2016; 3:ofw108. [PMID: 27419180 PMCID: PMC4943547 DOI: 10.1093/ofid/ofw108] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 05/16/2016] [Indexed: 01/10/2023] Open
Abstract
Background. The efficacy of live, attenuated live attenuated influenza vaccine(LAIV) and inactivated influenza vaccine(IIV) is poorly explained by either single or composite immune responses to vaccination. Protective biomarkers were therefore studied in response to LAIV or IIV followed by LAIV challenge in children. Methods. Serum and mucosal responses to LAIV or IIV were analyzed using immunologic assays to assess both quantitative and functional responses. Cytokines and chemokines were measured in nasal washes collected before vaccination, on days 2, 4, and 7 after initial LAIV, and again after LAIV challenge using a 63-multiplex Luminex panel. Results. Patterns of immunity induced by LAIV and IIV were significantly different. Serum responses induced by IIV, including hemagglutination inhibition, did not correlate with detection or quantitation of LAIV on subsequent challenge. Modalities that induced sterilizing immunity seen after LAIV challenge could not be defined by any measurements of mucosal or serum antibodies induced by the initial LAIV immunization. No single cytokine or chemokine was predictive of protection. Conclusions. The mechanism of protective immunity observed after LAIV could not be defined, and traditional measurements of immunity to IIV did not correlate with protection against an LAIV challenge.
Collapse
Affiliation(s)
| | | | | | - Eric P Brown
- Thayer School of Engineering, Dartmouth College , Hanover, New Hampshire
| | | | | | - Ruth I Connor
- Microbiology and Immunology , Geisel School of Medicine at Dartmouth , Lebanon
| | - Sinthujan Jegaskanda
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health , Bethesda, Maryland
| | - Yael Rosenberg-Hasson
- Human Immune Monitoring Center, Institute for Immunity , Transplantation and Infection, Stanford University , Palo Alto, California
| | | | - Catherine J Luke
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health , Bethesda, Maryland
| | - Kanta Subbarao
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health , Bethesda, Maryland
| | - John J Treanor
- Department of Medicine , University of Rochester , New York
| |
Collapse
|
47
|
de Jonge J, Isakova-Sivak I, van Dijken H, Spijkers S, Mouthaan J, de Jong R, Smolonogina T, Roholl P, Rudenko L. H7N9 Live Attenuated Influenza Vaccine Is Highly Immunogenic, Prevents Virus Replication, and Protects Against Severe Bronchopneumonia in Ferrets. Mol Ther 2016; 24:991-1002. [PMID: 26796670 PMCID: PMC4881767 DOI: 10.1038/mt.2016.23] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 12/22/2015] [Indexed: 12/19/2022] Open
Abstract
Avian influenza viruses continue to cross the species barrier, and if such viruses become transmissible among humans, it would pose a great threat to public health. Since its emergence in China in 2013, H7N9 has caused considerable morbidity and mortality. In the absence of a universal influenza vaccine, preparedness includes development of subtype-specific vaccines. In this study, we developed and evaluated in ferrets an intranasal live attenuated influenza vaccine (LAIV) against H7N9 based on the A/Leningrad/134/17/57 (H2N2) cold-adapted master donor virus. We demonstrate that the LAIV is attenuated and safe in ferrets and induces high hemagglutination- and neuraminidase-inhibiting and virus-neutralizing titers. The antibodies against hemagglutinin were also cross-reactive with divergent H7 strains. To assess efficacy, we used an intratracheal challenge ferret model in which an acute severe viral pneumonia is induced that closely resembles viral pneumonia observed in severe human cases. A single- and two-dose strategy provided complete protection against severe pneumonia and prevented virus replication. The protective effect of the two-dose strategy appeared better than the single dose only on the microscopic level in the lungs. We observed, however, an increased lymphocytic infiltration after challenge in single-vaccinated animals and hypothesize that this a side effect of the model.
Collapse
Affiliation(s)
- Jørgen de Jonge
- Centre for Infectious Disease Control, National Institute of Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Irina Isakova-Sivak
- Department of Virology, Institute of Experimental Medicine, Saint Petersburg, Russia
| | - Harry van Dijken
- Centre for Infectious Disease Control, National Institute of Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Sanne Spijkers
- Centre for Infectious Disease Control, National Institute of Public Health and the Environment (RIVM), Bilthoven, the Netherlands
- Current address: BioNovion, Oss, the Netherlands
| | - Justin Mouthaan
- Centre for Infectious Disease Control, National Institute of Public Health and the Environment (RIVM), Bilthoven, the Netherlands
- Current address: Genmab, Utrecht, the Netherlands
| | - Rineke de Jong
- Department of Virology, Central Veterinary Institute of Wageningen UR, Lelystad, the Netherlands
| | - Tatiana Smolonogina
- Department of Virology, Institute of Experimental Medicine, Saint Petersburg, Russia
| | - Paul Roholl
- Microscope Consultancy, Weesp, the Netherlands
| | - Larisa Rudenko
- Department of Virology, Institute of Experimental Medicine, Saint Petersburg, Russia
| |
Collapse
|
48
|
Tan GS, Leon PE, Albrecht RA, Margine I, Hirsh A, Bahl J, Krammer F. Broadly-Reactive Neutralizing and Non-neutralizing Antibodies Directed against the H7 Influenza Virus Hemagglutinin Reveal Divergent Mechanisms of Protection. PLoS Pathog 2016; 12:e1005578. [PMID: 27081859 PMCID: PMC4833315 DOI: 10.1371/journal.ppat.1005578] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Accepted: 03/24/2016] [Indexed: 11/21/2022] Open
Abstract
In the early spring of 2013, Chinese health authorities reported several cases of H7N9 influenza virus infections in humans. Since then the virus has established itself at the human-animal interface in Eastern China and continues to cause several hundred infections annually. In order to characterize the antibody response to the H7N9 virus we generated several mouse monoclonal antibodies against the hemagglutinin of the A/Shanghai/1/13 (H7N9) virus. Of particular note are two monoclonal antibodies, 1B2 and 1H5, that show broad reactivity to divergent H7 hemagglutinins. Monoclonal antibody 1B2 binds to viruses of the Eurasian and North American H7 lineages and monoclonal antibody 1H5 reacts broadly to virus isolates of the Eurasian lineage. Interestingly, 1B2 shows broad hemagglutination inhibiting and neutralizing activity, while 1H5 fails to inhibit hemagglutination and demonstrates no neutralizing activity in vitro. However, both monoclonal antibodies were highly protective in an in vivo passive transfer challenge model in mice, even at low doses. Experiments using mutant antibodies that lack the ability for Fc/Fc-receptor and Fc/complement interactions suggest that the protection provided by mAb 1H5 is, at least in part, mediated by the Fc-fragment of the mAb. These findings highlight that a protective response to a pathogen may not only be due to neutralizing antibodies, but can also be the result of highly efficacious non-neutralizing antibodies not readily detected by classical in vitro neutralization or hemagglutination inhibition assays. This is of interest because H7 influenza virus vaccines induce only low hemagglutination inhibiting antibody titers while eliciting robust antibody titers as measured by ELISA. Our data suggest that these binding but non-neutralizing antibodies contribute to protection in vivo.
Collapse
Affiliation(s)
- Gene S. Tan
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Paul E. Leon
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Randy A. Albrecht
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Irina Margine
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Ariana Hirsh
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Justin Bahl
- School of Public Health, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| |
Collapse
|
49
|
Sobhanie M, Matsuoka Y, Jegaskanda S, Fitzgerald T, Mallory R, Chen Z, Luke C, Treanor J, Subbarao K. Evaluation of the Safety and Immunogenicity of a Candidate Pandemic Live Attenuated Influenza Vaccine (pLAIV) Against Influenza A(H7N9). J Infect Dis 2016; 213:922-9. [PMID: 26655841 PMCID: PMC4760421 DOI: 10.1093/infdis/jiv526] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 10/30/2015] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND We evaluated a candidate A/Anhui/2013(H7N9) pandemic live attenuated influenza vaccine (pLAIV) in healthy adults, and assessed the ability of 1 or 2 doses to induce immune memory. METHODS Healthy subjects in 2 age groups (18-49 years and 50-70 years) with undetectable hemagglutination-inhibiting (HAI) antibody to H7N9 were enrolled. Younger subjects received either 1 or 2 intranasal doses of 10(7.0) fluorescent focus units of A/Anhui/1/2013 pLAIV, while older subjects received a single dose. All subjects received a single 30-µg dose of unadjuvanted, antigenically matched A/Shanghai2/2013(H7N9) pandemic inactivated influenza vaccine (pIIV) 12 weeks after their first dose of pLAIV. RESULTS Both vaccines were well tolerated. Serum HAI antibody responses were detected in 0 of 32 younger subjects and 1 of 17 older subjects after 1 dose of pLAIV and in 2 of 16 younger subjects after a second dose. Strong serum antibody responses were detected after a single subsequent dose of pIIV that was broadly reactive against H7 influenza viruses. CONCLUSIONS An A(H7N9) pLAIV candidate was safe in both age groups. Priming with pLAIV resulted in responses to subsequent pIIV that exceeded those seen in naive subjects in previous reports. The A(H7N9) pLAIV induces strong immune memory that can be demonstrated by exposure to subsequent antigenic challenge. CLINICAL TRIALS REGISTRATION NCT01995695 and NCT02274545.
Collapse
Affiliation(s)
- Mahdee Sobhanie
- Department of Medicine, University of Rochester Medical Center,New York
| | - Yumiko Matsuoka
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda
| | - Sinthujan Jegaskanda
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, Victoria, Australia
| | | | | | | | - Catherine Luke
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda
| | - John Treanor
- Department of Medicine, University of Rochester Medical Center,New York
| | - Kanta Subbarao
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda
| |
Collapse
|
50
|
Krammer F. Novel universal influenza virus vaccine approaches. Curr Opin Virol 2016; 17:95-103. [PMID: 26927813 DOI: 10.1016/j.coviro.2016.02.002] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Revised: 02/03/2016] [Accepted: 02/06/2016] [Indexed: 10/24/2022]
Abstract
Seasonal influenza virus vaccines have to be re-formulated and re-administered on an annual basis due to antigenic drift of the influenza virus surface glycoproteins. In addition, seasonal vaccines show limited efficacy against novel pandemic influenza virus strains, and producing tailored vaccines for these strains in a timely manner is challenging. Several novel broadly protective vaccine candidates targeting the conserved stalk domain of the viral hemagglutinin have been developed. Here we review these novel constructs and discuss several important findings and considerations regarding the protective efficacy of stalk-based vaccines.
Collapse
Affiliation(s)
- Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|