1
|
Chen Y, Luo G, Song F, Wang X, Zhang S, Ge S, Li T, Zhang J, Xia N. Truncated rotavirus VP4 proteins induce stronger protective immunity compared to P2 - VP8 in animal models. Antiviral Res 2025; 238:106156. [PMID: 40194664 DOI: 10.1016/j.antiviral.2025.106156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 03/17/2025] [Accepted: 04/05/2025] [Indexed: 04/09/2025]
Abstract
Group A rotavirus (RVA) is the primary causative agent of acute gastroenteritis (AGE) in children under five years of age, resulting in over 120,000 deaths annually. In previous studies, we identified truncated VP4∗ as a potentially more promising vaccine candidate compared to VP8∗ and VP5∗. This study aimed to compare the immunogenicity and protective efficacy of VP4∗ and P2-VP8, the most advanced recombinant rotavirus vaccine undergoing phase 3 clinical trial in various animal models, including mice, guinea pigs, rabbits, and piglets. The results indicated that the binding antibodies and neutralizing antibodies induced by VP4∗ were significantly higher levels compared to P2-VP8. Immunization with VP4∗ provided 100 % protection for mice against challenges with EDIM and LLR strains. Additionally, we were intrigued to discover that the VP4∗ antibody not only inhibited virus adsorption but also prevented the virus from entering cells following pre-adsorption. In summary, VP4∗ demonstrates greater immunogenicity and protective efficacy compared to P2-VP8, making it a more promising candidate antigen for recombinant rotavirus vaccines.
Collapse
MESH Headings
- Animals
- Rotavirus Infections/prevention & control
- Rotavirus Infections/immunology
- Rotavirus Infections/virology
- Capsid Proteins/immunology
- Capsid Proteins/genetics
- Rotavirus Vaccines/immunology
- Rotavirus Vaccines/administration & dosage
- Rotavirus Vaccines/genetics
- Antibodies, Viral/blood
- Antibodies, Viral/immunology
- Rotavirus/immunology
- Rotavirus/genetics
- Mice
- Antibodies, Neutralizing/blood
- Antibodies, Neutralizing/immunology
- Disease Models, Animal
- Rabbits
- Guinea Pigs
- Swine
- Vaccines, Synthetic/immunology
- Vaccines, Synthetic/administration & dosage
- Immunogenicity, Vaccine
- Mice, Inbred BALB C
- Antigens, Viral/immunology
- Antigens, Viral/genetics
- Female
Collapse
Affiliation(s)
- Yaling Chen
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University. Xiamen, 361102, China; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, the Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen, 361102, China
| | - Guoxing Luo
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University. Xiamen, 361102, China; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, the Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen, 361102, China; Novel Product R&D Department, Xiamen Innovax Biotech Co., Ltd., Xiamen, 361022, Fujian, China
| | - Feibo Song
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, the Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen, 361102, China
| | - Xuechun Wang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University. Xiamen, 361102, China; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, the Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen, 361102, China
| | - Shiyin Zhang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University. Xiamen, 361102, China; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, the Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen, 361102, China
| | - Shengxiang Ge
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University. Xiamen, 361102, China; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, the Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen, 361102, China.
| | - Tingdong Li
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University. Xiamen, 361102, China; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, the Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen, 361102, China.
| | - Jun Zhang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University. Xiamen, 361102, China; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, the Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen, 361102, China
| | - Ningshao Xia
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University. Xiamen, 361102, China; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, the Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen, 361102, China
| |
Collapse
|
2
|
Jung HG, Jeong S, Kang MJ, Hong I, Park YS, Ko E, Kim JO, Choi DY. Molecular Design of Encapsulin Protein Nanoparticles to Display Rotavirus Antigens for Enhancing Immunogenicity. Vaccines (Basel) 2024; 12:1020. [PMID: 39340050 PMCID: PMC11435836 DOI: 10.3390/vaccines12091020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/03/2024] [Accepted: 09/05/2024] [Indexed: 09/30/2024] Open
Abstract
Rotavirus considerably threatens global health, particularly for children <5 years. Current, licensed oral attenuated vaccine formulations have limitations including insufficient efficacy in children in low- and middle-income countries, warranting urgent development of novel vaccines with improved efficacy and safety profiles. Herein, we present a novel approach utilizing an encapsulin (ENC) nanoparticle (NP)-based non-replicating rotavirus vaccine. ENC, originating from bacteria, offers a self-assembling scaffold that displays rotavirus VP8* antigens on its surface. To enhance the correct folding and soluble expression of monomeric antigens and their subsequent assembly into NP, we adopted an RNA-interacting domain (RID) of mammalian transfer RNA synthetase as an expression tag fused to the N-terminus of the ENC-VP8* fusion protein. Using the RID-ENC-VP8* tripartite modular design, insertion of linkers of appropriate length and sequence and the universal T cell epitope P2 remarkably improved the production yield and immunogenicity. Cleavage of the RID rendered a homogenous assembly of ENC-P2-VP8* into protein NPs. Immunization with ENC-P2-VP8* induced markedly higher levels of VP8*-specific antibodies and virus neutralization titers in mice than those induced by P2-VP8* without ENC. Altogether, these results highlight the potential of the designed ENC NP-based rotavirus vaccine as an effective strategy against rotavirus disease to address global health challenges.
Collapse
Affiliation(s)
| | - Seonghun Jeong
- Molecular Immunology, Science Unit, International Vaccine Institute, Seoul 08826, Republic of Korea; (S.J.); (M.-J.K.); (I.H.); (Y.-S.P.); (E.K.)
| | - Min-Ji Kang
- Molecular Immunology, Science Unit, International Vaccine Institute, Seoul 08826, Republic of Korea; (S.J.); (M.-J.K.); (I.H.); (Y.-S.P.); (E.K.)
| | - Ingi Hong
- Molecular Immunology, Science Unit, International Vaccine Institute, Seoul 08826, Republic of Korea; (S.J.); (M.-J.K.); (I.H.); (Y.-S.P.); (E.K.)
| | - Young-Shin Park
- Molecular Immunology, Science Unit, International Vaccine Institute, Seoul 08826, Republic of Korea; (S.J.); (M.-J.K.); (I.H.); (Y.-S.P.); (E.K.)
| | - Eunbyeol Ko
- Molecular Immunology, Science Unit, International Vaccine Institute, Seoul 08826, Republic of Korea; (S.J.); (M.-J.K.); (I.H.); (Y.-S.P.); (E.K.)
| | - Jae-Ouk Kim
- Molecular Immunology, Science Unit, International Vaccine Institute, Seoul 08826, Republic of Korea; (S.J.); (M.-J.K.); (I.H.); (Y.-S.P.); (E.K.)
| | | |
Collapse
|
3
|
Zhu X, Wang X, Liu T, Zhang D, Jin T. Design of multi-epitope vaccine against porcine rotavirus using computational biology and molecular dynamics simulation approaches. Virol J 2024; 21:160. [PMID: 39039549 PMCID: PMC11264426 DOI: 10.1186/s12985-024-02440-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 07/16/2024] [Indexed: 07/24/2024] Open
Abstract
Porcine Rotavirus (PoRV) is a significant pathogen affecting swine-rearing regions globally, presenting a substantial threat to the economic development of the livestock sector. At present, no specific pharmaceuticals are available for this disease, and treatment options remain exceedingly limited. This study seeks to design a multi-epitope peptide vaccine for PoRV employing bioinformatics approaches to robustly activate T-cell and B-cell immune responses. Two antigenic proteins, VP7 and VP8*, were selected from PoRV, and potential immunogenic T-cell and B-cell epitopes were predicted using immunoinformatic tools. These epitopes were further screened according to non-toxicity, antigenicity, non-allergenicity, and immunogenicity criteria. The selected epitopes were linked with linkers to form a novel multi-epitope vaccine construct, with the PADRE sequence (AKFVAAWTLKAAA) and RS09 peptide attached at the N-terminus of the designed peptide chain to enhance the vaccine's antigenicity. Protein-protein docking of the vaccine constructs with toll-like receptors (TLR3 and TLR4) was conducted using computational methods, with the lowest energy docking results selected as the optimal predictive model. Subsequently, molecular dynamics (MD) simulation methods were employed to assess the stability of the protein vaccine constructs and TLR3 and TLR4 receptors. The results indicated that the vaccine-TLR3 and vaccine-TLR4 docking models remained stable throughout the simulation period. Additionally, the C-IMMSIM tool was utilized to determine the immunogenic triggering capability of the vaccine protein, demonstrating that the constructed vaccine protein could induce both cell-mediated and humoral immune responses, thereby playing a role in eliciting host immune responses. In conclusion, this study successfully constructed a multi-epitope vaccine against PoRV and validated the stability and efficacy of the vaccine through computational analysis. However, as the study is purely computational, experimental evaluation is required to validate the safety and immunogenicity of the newly constructed vaccine protein.
Collapse
MESH Headings
- Animals
- Swine
- Molecular Dynamics Simulation
- Rotavirus/immunology
- Rotavirus/genetics
- Epitopes, T-Lymphocyte/immunology
- Epitopes, T-Lymphocyte/genetics
- Epitopes, T-Lymphocyte/chemistry
- Computational Biology
- Epitopes, B-Lymphocyte/immunology
- Epitopes, B-Lymphocyte/genetics
- Rotavirus Vaccines/immunology
- Rotavirus Vaccines/chemistry
- Rotavirus Vaccines/genetics
- Rotavirus Infections/prevention & control
- Rotavirus Infections/immunology
- Rotavirus Infections/virology
- Vaccines, Subunit/immunology
- Vaccines, Subunit/genetics
- Vaccines, Subunit/chemistry
- Antigens, Viral/immunology
- Antigens, Viral/genetics
- Antigens, Viral/chemistry
- Molecular Docking Simulation
- Swine Diseases/prevention & control
- Swine Diseases/immunology
- Swine Diseases/virology
- Capsid Proteins/immunology
- Capsid Proteins/genetics
- Capsid Proteins/chemistry
- Vaccine Development
- Immunogenicity, Vaccine
Collapse
Affiliation(s)
- Xiaochen Zhu
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, 300392, China
| | - Xinyuan Wang
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, 300392, China
| | - Tingting Liu
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, 300392, China
| | - Dongchao Zhang
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, 300392, China.
- Tianjin Engineering Technology Center of Livestock Pathogen Detection and Genetic Engineering Vaccine, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, 300392, China.
| | - Tianming Jin
- Tianjin Key Laboratory of Animal Molecular Breeding and Biotechnology, Institute of Animal Science and Veterinary, Tianjin Academy of Agricultural Sciences, Tianjin, 300381, China.
- Tianjin Engineering Technology Center of Livestock Pathogen Detection and Genetic Engineering Vaccine, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, 300392, China.
| |
Collapse
|
4
|
Granovskiy DL, Khudainazarova NS, Evtushenko EA, Ryabchevskaya EM, Kondakova OA, Arkhipenko MV, Kovrizhko MV, Kolpakova EP, Tverdokhlebova TI, Nikitin NA, Karpova OV. Novel Universal Recombinant Rotavirus A Vaccine Candidate: Evaluation of Immunological Properties. Viruses 2024; 16:438. [PMID: 38543803 PMCID: PMC10976063 DOI: 10.3390/v16030438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/04/2024] [Accepted: 03/10/2024] [Indexed: 05/23/2024] Open
Abstract
Rotavirus infection is a leading cause of severe dehydrating gastroenteritis in children under 5 years of age. Although rotavirus-associated mortality has decreased considerably because of the introduction of the worldwide rotavirus vaccination, the global burden of rotavirus-associated gastroenteritis remains high. Current vaccines have a number of disadvantages; therefore, there is a need for innovative approaches in rotavirus vaccine development. In the current study, a universal recombinant rotavirus antigen (URRA) for a novel recombinant vaccine candidate against rotavirus A was obtained and characterised. This antigen included sequences of the VP8* subunit of rotavirus spike protein VP4. For the URRA, for the first time, two approaches were implemented simultaneously-the application of a highly conserved neutralising epitope and the use of the consensus of the extended protein's fragment. The recognition of URRA by antisera to patient-derived field rotavirus isolates was proven. Plant virus-based spherical particles (SPs), a novel, effective and safe adjuvant, considerably enhanced the immunogenicity of the URRA in a mouse model. Given these facts, a URRA + SPs vaccine candidate is regarded as a prospective basis for a universal vaccine against rotavirus.
Collapse
Affiliation(s)
- Dmitriy L. Granovskiy
- Department of Virology, Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (N.S.K.); (E.A.E.); (E.M.R.); (O.A.K.); (M.V.A.); (N.A.N.); (O.V.K.)
| | - Nelli S. Khudainazarova
- Department of Virology, Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (N.S.K.); (E.A.E.); (E.M.R.); (O.A.K.); (M.V.A.); (N.A.N.); (O.V.K.)
| | - Ekaterina A. Evtushenko
- Department of Virology, Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (N.S.K.); (E.A.E.); (E.M.R.); (O.A.K.); (M.V.A.); (N.A.N.); (O.V.K.)
| | - Ekaterina M. Ryabchevskaya
- Department of Virology, Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (N.S.K.); (E.A.E.); (E.M.R.); (O.A.K.); (M.V.A.); (N.A.N.); (O.V.K.)
| | - Olga A. Kondakova
- Department of Virology, Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (N.S.K.); (E.A.E.); (E.M.R.); (O.A.K.); (M.V.A.); (N.A.N.); (O.V.K.)
| | - Marina V. Arkhipenko
- Department of Virology, Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (N.S.K.); (E.A.E.); (E.M.R.); (O.A.K.); (M.V.A.); (N.A.N.); (O.V.K.)
| | - Marina V. Kovrizhko
- Rostov Research Institute of Microbiology and Parasitology, 344010 Rostov-On-Don, Russia; (M.V.K.); (E.P.K.); (T.I.T.)
| | - Elena P. Kolpakova
- Rostov Research Institute of Microbiology and Parasitology, 344010 Rostov-On-Don, Russia; (M.V.K.); (E.P.K.); (T.I.T.)
| | - Tatyana I. Tverdokhlebova
- Rostov Research Institute of Microbiology and Parasitology, 344010 Rostov-On-Don, Russia; (M.V.K.); (E.P.K.); (T.I.T.)
| | - Nikolai A. Nikitin
- Department of Virology, Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (N.S.K.); (E.A.E.); (E.M.R.); (O.A.K.); (M.V.A.); (N.A.N.); (O.V.K.)
| | - Olga V. Karpova
- Department of Virology, Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (N.S.K.); (E.A.E.); (E.M.R.); (O.A.K.); (M.V.A.); (N.A.N.); (O.V.K.)
| |
Collapse
|
5
|
Roier S, Mangala Prasad V, McNeal MM, Lee KK, Petsch B, Rauch S. mRNA-based VP8* nanoparticle vaccines against rotavirus are highly immunogenic in rodents. NPJ Vaccines 2023; 8:190. [PMID: 38129390 PMCID: PMC10739717 DOI: 10.1038/s41541-023-00790-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023] Open
Abstract
Despite the availability of live-attenuated oral vaccines, rotavirus remains a major cause of severe childhood diarrhea worldwide. Due to the growing demand for parenteral rotavirus vaccines, we developed mRNA-based vaccine candidates targeting the viral spike protein VP8*. Our monomeric P2 (universal T cell epitope)-VP8* mRNA design is equivalent to a protein vaccine currently in clinical development, while LS (lumazine synthase)-P2-VP8* was designed to form nanoparticles. Cyro-electron microscopy and western blotting-based data presented here suggest that proteins derived from LS-P2-VP8* mRNA are secreted in vitro and self-assemble into 60-mer nanoparticles displaying VP8*. mRNA encoded VP8* was immunogenic in rodents and introduced both humoral and cellular responses. LS-P2-VP8* induced superior humoral responses to P2-VP8* in guinea pigs, both as monovalent and trivalent vaccines, with encouraging responses detected against the most prevalent P genotypes. Overall, our data provide evidence that trivalent LS-P2-VP8* represents a promising mRNA-based next-generation rotavirus vaccine candidate.
Collapse
Affiliation(s)
| | - Vidya Mangala Prasad
- Department of Medicinal Chemistry, University of Washington, Seattle, WA, USA
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | - Monica M McNeal
- Department of Pediatrics, University of Cincinnati College of Medicine, Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Kelly K Lee
- Department of Medicinal Chemistry, University of Washington, Seattle, WA, USA
| | | | | |
Collapse
|
6
|
Gilfillan D, Vilander AC, Pan M, Goh YJ, O’Flaherty S, Feng N, Fox BE, Lang C, Greenberg HB, Abdo Z, Barrangou R, Dean GA. Lactobacillus acidophilus Expressing Murine Rotavirus VP8 and Mucosal Adjuvants Induce Virus-Specific Immune Responses. Vaccines (Basel) 2023; 11:1774. [PMID: 38140179 PMCID: PMC10747613 DOI: 10.3390/vaccines11121774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/14/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023] Open
Abstract
Rotavirus diarrhea-associated illness remains a major cause of global death in children under five, attributable in part to discrepancies in vaccine performance between high- and low-middle-income countries. Next-generation probiotic vaccines could help bridge this efficacy gap. We developed a novel recombinant Lactobacillus acidophilus (rLA) vaccine expressing rotavirus antigens of the VP8* domain from the rotavirus EDIM VP4 capsid protein along with the adjuvants FimH and FliC. The upp-based counterselective gene-replacement system was used to chromosomally integrate FimH, VP8Pep (10 amino acid epitope), and VP8-1 (206 amino acid protein) into the L. acidophilus genome, with FliC expressed from a plasmid. VP8 antigen and adjuvant expression were confirmed by flow cytometry and Western blot. Rotavirus naïve adult BALB/cJ mice were orally immunized followed by murine rotavirus strain ECWT viral challenge. Antirotavirus serum IgG and antigen-specific antibody-secreting cell responses were detected in rLA-vaccinated mice. A day after the oral rotavirus challenge, fecal antigen shedding was significantly decreased in the rLA group. These results indicate that novel rLA constructs expressing VP8 can be successfully constructed and used to generate modest homotypic protection from rotavirus challenge in an adult murine model, indicating the potential for a probiotic next-generation vaccine construct against human rotavirus.
Collapse
Affiliation(s)
- Darby Gilfillan
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA; (D.G.); (A.C.V.); (B.E.F.); (C.L.); (Z.A.)
| | - Allison C. Vilander
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA; (D.G.); (A.C.V.); (B.E.F.); (C.L.); (Z.A.)
| | - Meichen Pan
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC 27695, USA; (M.P.); (Y.J.G.); (S.O.); (R.B.)
| | - Yong Jun Goh
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC 27695, USA; (M.P.); (Y.J.G.); (S.O.); (R.B.)
| | - Sarah O’Flaherty
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC 27695, USA; (M.P.); (Y.J.G.); (S.O.); (R.B.)
| | - Ningguo Feng
- Departments of Medicine and Microbiology and Immunology, School of Medicine, Stanford University, Stanford, CA 94305, USA (H.B.G.)
- VA Palo Alto Health Care System, Department of Veterans Affairs, Palo Alto, CA 94304, USA
| | - Bridget E. Fox
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA; (D.G.); (A.C.V.); (B.E.F.); (C.L.); (Z.A.)
| | - Callie Lang
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA; (D.G.); (A.C.V.); (B.E.F.); (C.L.); (Z.A.)
| | - Harry B. Greenberg
- Departments of Medicine and Microbiology and Immunology, School of Medicine, Stanford University, Stanford, CA 94305, USA (H.B.G.)
- VA Palo Alto Health Care System, Department of Veterans Affairs, Palo Alto, CA 94304, USA
| | - Zaid Abdo
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA; (D.G.); (A.C.V.); (B.E.F.); (C.L.); (Z.A.)
| | - Rodolphe Barrangou
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC 27695, USA; (M.P.); (Y.J.G.); (S.O.); (R.B.)
| | - Gregg A. Dean
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA; (D.G.); (A.C.V.); (B.E.F.); (C.L.); (Z.A.)
| |
Collapse
|
7
|
Latifi T, Jalilvand S, Golsaz-Shirazi F, Arashkia A, Kachooei A, Afchangi A, Zafarian S, Roohvand F, Shoja Z. Characterization and immunogenicity of a novel chimeric hepatitis B core-virus like particles (cVLPs) carrying rotavirus VP8*protein in mice model. Virology 2023; 588:109903. [PMID: 37832344 DOI: 10.1016/j.virol.2023.109903] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/23/2023] [Accepted: 10/02/2023] [Indexed: 10/15/2023]
Abstract
Given the efficacy and safety issues of the WHO for approved/prequalified live attenuated rotavirus (RV) vaccines, studies on alternative non-replicating modals and proper RV antigens are actively undertaken. Herein, we report the novel chimeric hepatitis B core-virus like particles (VLPs) carrying RV VP8*26-231 protein of a P [8] strain (cVLPVP8*), as a parenteral VLP RV vaccine candidate. SDS-PAGE and Western blotting analyses indicated the expected size of the E. coli-derived HBc-VP8* protein that self-assembled to cVLPVP8* particles. Immunization in mice indicated development of higher levels of IgG and IgA as well as higher IgG1/IgG2a ratios by cVLPVP8* vaccination compared to the VP8* alone. Assessment of neutralizing antibodies (nAbs) indicated development of heterotypic nAbs with cross-reactivity to a heterotypic RV strain by cVLPVP8* immunization compared to VP8* alone. The observed anti-VP8* cross-reactivity might indicate the possibility of developing a Pan-genomic RVA vaccine based on the cVLPVP8* formulation that deserves further challenge studies.
Collapse
Affiliation(s)
- Tayebeh Latifi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran; Department of Virology, Pasteur Institute of Iran, Tehran, Iran
| | - Somayeh Jalilvand
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Forough Golsaz-Shirazi
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Arash Arashkia
- Department of Virology, Pasteur Institute of Iran, Tehran, Iran; Research Center for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Tehran, Iran
| | - Atefeh Kachooei
- Department of Virology, Pasteur Institute of Iran, Tehran, Iran; Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Atefeh Afchangi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran; Department of Virology, Pasteur Institute of Iran, Tehran, Iran
| | - Saman Zafarian
- Department of Virology, Pasteur Institute of Iran, Tehran, Iran; Department of Microbial Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | - Farzin Roohvand
- Department of Virology, Pasteur Institute of Iran, Tehran, Iran
| | - Zabihollah Shoja
- Department of Virology, Pasteur Institute of Iran, Tehran, Iran; Research Center for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
8
|
Luo G, Zeng Y, Yang H, Li Y, Yang L, Li C, Song F, Zhang S, Li T, Ge S, Zhang J, Xia N. Bivalent rotavirus VP4∗ stimulates protective antibodies against common genotypes of human rotaviruses. iScience 2022; 25:105099. [PMID: 36185383 PMCID: PMC9519587 DOI: 10.1016/j.isci.2022.105099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 07/18/2022] [Accepted: 09/04/2022] [Indexed: 12/01/2022] Open
Abstract
Non-replicating rotavirus vaccines are an alternative strategy to improve the efficacy and safety of rotavirus vaccines. The spike protein VP4, which could be enzymatically cleaved into VP8∗ and VP5∗, is an ideal target for the development of recombinant rotavirus vaccine. In our previous studies, we demonstrated that the truncated VP4 (aa26-476, VP4∗) could be a more viable vaccine candidate compared to VP8∗ and VP5∗. Here, to develop a human rotavirus vaccine, the VP4∗ proteins of P[4], P[6], and P[8] genotype rotaviruses were expressed. All VP4∗ proteins can stimulate high levels of neutralizing antibodies in both guinea pigs and rabbits when formulated in aluminum adjuvant. Furthermore, bivalent VP4∗-based vaccine (P[8] + P[6]-VP4∗) can stimulate high levels of neutralizing antibodies against various genotypes of rotavirus with no significant difference as compared to the trivalent vaccines. Therefore, bivalent VP4∗ has the potential to be a viable rotavirus vaccine candidate for further development. Purified rotavirus VP4∗ proteins form homogenic and stable trimers VP4∗ stimulated high levels of homotypic and heterotypic neutralizing antibodies The immunogenicity of different genotype VP4∗ is not influenced by each other Bivalent VP4∗ (P[8]+P[6]) stimulated protective immunity against most prevalent rotaviruses
Collapse
|
9
|
Zeng Y, Song F, Luo G, Yang H, Li C, Liu W, Li T, Zhang S, Wang Y, Huang C, Ge S, Zhang J, Xia N. Generation and characterization of mouse monoclonal antibodies against the VP4 protein of group A human rotaviruses. Antiviral Res 2022; 207:105407. [PMID: 36152816 DOI: 10.1016/j.antiviral.2022.105407] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 08/29/2022] [Accepted: 09/01/2022] [Indexed: 12/01/2022]
Abstract
Human rotaviruses (RVs) are the leading cause of severe diarrhea in infants and young children worldwide. Among the structural proteins, as a spike protein, rotavirus VP4 plays a key role in both viral attachment and penetration. Currently, studies on monoclonal antibodies (mAbs) against VP4 are limited. In this study, mice were immunized with truncated VP4* to produce murine mAbs. In total, 50 mAbs were produced and characterized. Twenty-four mAbs were genotype-specific and 20 mAbs recognized the common VP4 epitopes shared by P[8], P[4], and P[6] viruses. Thirty-five of the 50 mAbs were neutralizing mAbs, among which nine mAbs could neutralize all three P-genotype RVs, and 10 neutralizing mAbs exhibited conformational sensitivity. Ten mAbs recognized dominant neutralizing epitopes, including the broadly neutralizing mAb 9C4 recognized conformational epitope. Further investigation shows that S376 and S464 are key amino acids for 9C4 binding, however, the exact binding sites of 9C4 remain to be fully defined. Overall, this panel of mAbs has demonstrated utility as immunodiagnostic and research reagents, and could potentially serve as crucial tools for exploring the neutralizing mechanisms and quality control of VP4* protein-based RV subunit vaccines. Further evaluation of cross-neutralizing mAbs could not only improve the understanding of the heterotypic protection conferred by RV vaccines, but also facilitate the development of broadly protective RV vaccines.
Collapse
Affiliation(s)
- Yuanjun Zeng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, People's Republic of China
| | - Feibo Song
- The Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, People's Republic of China
| | - Guoxing Luo
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, People's Republic of China
| | - Han Yang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, People's Republic of China
| | - Cao Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, People's Republic of China
| | - Wei Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, People's Republic of China
| | - Tingdong Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, People's Republic of China.
| | - Shiyin Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, People's Republic of China
| | - Yingbin Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, People's Republic of China.
| | - Chenghao Huang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, People's Republic of China
| | - Shengxiang Ge
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, People's Republic of China.
| | - Jun Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, People's Republic of China
| | - Ningshao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, People's Republic of China; The Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, People's Republic of China
| |
Collapse
|
10
|
Li Y, Wang F, Kan R, Cao H, Tang C, Yue H, Zhang B. Genetic and immunological characterization of G9 group A porcine rotaviruses in China. Zoonoses Public Health 2022; 69:694-703. [PMID: 35608375 DOI: 10.1111/zph.12958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/18/2022] [Accepted: 04/29/2022] [Indexed: 11/28/2022]
Abstract
G9 group A rotaviruses (RVAs) are considered emerging pathogens in pigs and humans, and pigs are considered a potential host reservoir for human G9 RVAs. In this study, RVAs of two genotypes, G9P[23] and G9P[13], were successfully isolated and the genomic sequences were obtained, the genome constellation is G9-P[23]-I5-R1-C1-M1-A8-N1-T1-E1-H1 and G9-P[13]-I5-R1-C1-M1-A8-N1-T7-E1-H1 respectively. One strain which amplified from clinic faecal sample had an unique genome constellation G9-P[23]-I1-R1-C1-M1-A8-N1-T1-E1-H1. All the genomic segments of three porcine G9 RVAs were closely related to those of porcine and/or porcine-like human RVAs, demonstrating that the three viruses were porcine-human reassortant strains. To study the immunogenicity of the porcine G9 RVAs, 6-week-old female BALB/c mice were immunized with inactivated vaccines derived from porcine RVAs and then mated. The highest titres of neutralizing antibodies against G9P[23] and G9P[13] porcine RVAs (1,291 ± 35.22 and 1:232 ± 39.28 respectively) were produced in mice 7 days after the second immunization. Suckling mice born to the vaccinated dams were protected by maternal antibodies against challenge with homologous strains. Overall, our data demonstrate the occurrence of porcine-human reassortants of G9 RVAs, and extend our understanding of the immunogenicity of porcine G9 rotaviruses. They also provide a basis for the development of a porcine G9 RVA vaccine.
Collapse
Affiliation(s)
- Yu Li
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu, China
| | - Fengxuan Wang
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu, China
- Key laboratory of Ministry of Education and Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu, China
| | - Ruici Kan
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu, China
| | - Hui Cao
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu, China
| | - Cheng Tang
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu, China
- Key laboratory of Ministry of Education and Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu, China
| | - Hua Yue
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu, China
- Key laboratory of Ministry of Education and Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu, China
- Sichuan Veterinary Medicine and Drug Innovation Group of China Agricultural Research System, China, Chengdu
| | - Bin Zhang
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu, China
- Key laboratory of Ministry of Education and Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu, China
- Sichuan Veterinary Medicine and Drug Innovation Group of China Agricultural Research System, China, Chengdu
| |
Collapse
|
11
|
Li C, Luo G, Zeng Y, Song F, Yang H, Zhang S, Wang Y, Li T, Ge S, Xia N. Establishment of Sandwich ELISA for Quality Control in Rotavirus Vaccine Production. Vaccines (Basel) 2022; 10:243. [PMID: 35214701 PMCID: PMC8876306 DOI: 10.3390/vaccines10020243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/01/2022] [Accepted: 02/03/2022] [Indexed: 12/04/2022] Open
Abstract
Non-replicating rotavirus vaccines are alternative strategies that may improve the protective efficacy of rotavirus vaccines in low- and middle-income countries. The truncated spike protein VP4 (aa26-476, VP4*)was a candidate antigen for the development of recombinant rotavirus vaccines, with higher immunogenicity and protective efficacy compared to VP8* and VP5* alone. This article describes the development of three genotype-specific sandwich ELISAs for P[4], P[6], and P[8]-VP4*, which are important for quality control in rotavirus vaccine production. Our results showed that the detection systems had good specificity for the different genotype VP4* and were not influenced by the E. coli host proteins. Moreover, the detection systems play an important role in determining whether the target protein was contaminated by VP4* proteins of other genotypes. They can also detect the adsorption rate of the adjuvant to the P[4], P[6], P[8]-VP4* protein during the process development. The three detection systems will play an important role in the quality control and process development of VP4* based rotavirus vaccines and facilitate the development of recombinant rotavirus vaccines.
Collapse
Affiliation(s)
- Cao Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China; (C.L.); (G.L.); (Y.Z.); (H.Y.); (S.Z.); (Y.W.); (N.X.)
| | - Guoxing Luo
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China; (C.L.); (G.L.); (Y.Z.); (H.Y.); (S.Z.); (Y.W.); (N.X.)
| | - Yuanjun Zeng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China; (C.L.); (G.L.); (Y.Z.); (H.Y.); (S.Z.); (Y.W.); (N.X.)
| | - Feibo Song
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, Xiamen University, Xiamen 361102, China;
| | - Han Yang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China; (C.L.); (G.L.); (Y.Z.); (H.Y.); (S.Z.); (Y.W.); (N.X.)
| | - Shiyin Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China; (C.L.); (G.L.); (Y.Z.); (H.Y.); (S.Z.); (Y.W.); (N.X.)
| | - Yingbin Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China; (C.L.); (G.L.); (Y.Z.); (H.Y.); (S.Z.); (Y.W.); (N.X.)
| | - Tingdong Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China; (C.L.); (G.L.); (Y.Z.); (H.Y.); (S.Z.); (Y.W.); (N.X.)
| | - Shengxiang Ge
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China; (C.L.); (G.L.); (Y.Z.); (H.Y.); (S.Z.); (Y.W.); (N.X.)
| | - Ningshao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China; (C.L.); (G.L.); (Y.Z.); (H.Y.); (S.Z.); (Y.W.); (N.X.)
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, Xiamen University, Xiamen 361102, China;
| |
Collapse
|
12
|
Rotavirus spike protein ΔVP8* as a novel carrier protein for conjugate vaccine platform with demonstrated antigenic potential for use as bivalent vaccine. Sci Rep 2021; 11:22037. [PMID: 34764353 PMCID: PMC8586335 DOI: 10.1038/s41598-021-01549-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 10/29/2021] [Indexed: 11/18/2022] Open
Abstract
Conjugate vaccine platform is a promising strategy to overcome the poor immunogenicity of bacterial polysaccharide antigens in infants and children. A carrier protein in conjugate vaccines works not only as an immune stimulator to polysaccharide, but also as an immunogen; with the latter generally not considered as a measured outcome in real world. Here, we probed the potential of a conjugate vaccine platform to induce enhanced immunogenicity of a truncated rotavirus spike protein ΔVP8*. ΔVP8* was covalently conjugated to Vi capsular polysaccharide (Vi) of Salmonella Typhi to develop a bivalent vaccine, termed Vi-ΔVP8*. Our results demonstrated that the Vi-ΔVP8* vaccine can induce specific immune responses against both antigens in immunized mice. The conjugate vaccine elicits high antibody titers and functional antibodies against S. Typhi and Rotavirus (RV) when compared to immunization with a single antigen. Together, these results indicate that Vi-ΔVP8* is a potent and immunogenic vaccine candidate, thus strengthening the potential of conjugate vaccine platform with enhanced immune responses to carrier protein, including ΔVP8*.
Collapse
|
13
|
Sun X, Li D, Duan Z. Structural Basis of Glycan Recognition of Rotavirus. Front Mol Biosci 2021; 8:658029. [PMID: 34307449 PMCID: PMC8296142 DOI: 10.3389/fmolb.2021.658029] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 06/21/2021] [Indexed: 11/13/2022] Open
Abstract
Rotavirus (RV) is an important pathogen causing acute gastroenteritis in young humans and animals. Attachment to the host receptor is a crucial step for the virus infection. The recent advances in illustrating the interactions between RV and glycans promoted our understanding of the host range and epidemiology of RVs. VP8*, the distal region of the RV outer capsid spike protein VP4, played a critical role in the glycan recognition. Group A RVs were classified into different P genotypes based on the VP4 sequences and recognized glycans in a P genotype-dependent manner. Glycans including sialic acid, gangliosides, histo-blood group antigens (HBGAs), and mucin cores have been reported to interact with RV VP8*s. The glycan binding specificities of VP8*s of different RV genotypes have been studied. Here, we mainly discussed the structural basis for the interactions between RV VP8*s and glycans, which provided molecular insights into the receptor recognition and host tropism, offering new clues to the design of RV vaccine and anti-viral agents.
Collapse
Affiliation(s)
- Xiaoman Sun
- National Health Commission Key Laboratory for Medical Virology and Viral Diseases, Beijing, China.,National Institute for Viral Disease Control and Prevention, China CDC, Beijing, China
| | - Dandi Li
- National Health Commission Key Laboratory for Medical Virology and Viral Diseases, Beijing, China.,National Institute for Viral Disease Control and Prevention, China CDC, Beijing, China
| | - Zhaojun Duan
- National Health Commission Key Laboratory for Medical Virology and Viral Diseases, Beijing, China.,National Institute for Viral Disease Control and Prevention, China CDC, Beijing, China
| |
Collapse
|
14
|
Wang JX, Chen LN, Zhang CJ, Zhou HL, Zhang YH, Zhang XJ, Hao ZY, Qiu C, Ma JC, Zhao YL, Zhong W, Tan M, Jiang X, Wang SM, Wang XY. Genetic susceptibility to rotavirus infection in Chinese children: a population-based case-control study. Hum Vaccin Immunother 2020; 17:1803-1810. [PMID: 33295824 DOI: 10.1080/21645515.2020.1835121] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Rotaviruses (RVs) are the leading cause of acute gastroenteritis in children, while histo-blood group antigens (HBGAs) are believed to be host attachment and susceptibility factors of RVs. A large case-control study nested in a population-based diarrhea surveillance targeting children <5 y of age was performed in rural Hebei province, north China. Saliva and serum samples were collected from all participants to determine HBGA phenotyping, FUT2 mutations, and RV IgG antibody titers. A logistic model was employed to assess the association between host HBGA secretor status and risk of RV infection. Among 235 RV cases and 680 non-diarrhea controls studied, 82.4% of participants were IgG positive by an average age of 77 months. Out of the 235 RV cases, 216 (91.9%) were secretors, whereas the secretor rate was 76.3% in the non-diarrhea controls, resulted in an adjusted OR of 3.0 (95%CI: 1.9-4.7, P < .0001) between the two groups. Our population-based case-control study indicated a strong association between host HBGA secretor status and risk of RV infection in Chinese children. The high prevalence of Lewis-positive secretor status strongly suggests that Chinese children may be genetically susceptible to current co-circulating RV strains, and thus, a universal childhood immunization program against RV disease should be successful in China.
Collapse
Affiliation(s)
- Jin-Xia Wang
- Key Laboratory Medical Molecular Virology, MoE/MoH, and the Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Li-Na Chen
- Key Laboratory Medical Molecular Virology, MoE/MoH, and the Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Can-Jing Zhang
- Key Laboratory Medical Molecular Virology, MoE/MoH, and the Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Hong-Lu Zhou
- Key Laboratory Medical Molecular Virology, MoE/MoH, and the Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Yan-Hong Zhang
- Department of Hepatitis, Zhengding County Center for Disease Control and Prevention, Zhengding, People's Republic of China
| | - Xin-Jiang Zhang
- Department of Hepatitis, Zhengding County Center for Disease Control and Prevention, Zhengding, People's Republic of China
| | - Zhi-Yong Hao
- Department of Hepatitis, Zhengding County Center for Disease Control and Prevention, Zhengding, People's Republic of China
| | - Chao Qiu
- Key Laboratory Medical Molecular Virology, MoE/MoH, and the Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Jing-Chen Ma
- Vaccine Clinical Research Institute,Hebei Province Center for Disease Control and Prevention, Shijiazhuang, People's Republic of China
| | - Yu-Liang Zhao
- Vaccine Clinical Research Institute,Hebei Province Center for Disease Control and Prevention, Shijiazhuang, People's Republic of China
| | - Weiming Zhong
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Ming Tan
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,University of Cincinnati, College of Medicine, Cincinnati, OH, OH, USA
| | - Xi Jiang
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,University of Cincinnati, College of Medicine, Cincinnati, OH, OH, USA
| | - Song-Mei Wang
- Laboratory of Molecular Biology, Training Center of Medical Experiments, School of Basic Medical Sciences, Fudan University, Shanghai, People's Republic of China
| | - Xuan-Yi Wang
- Key Laboratory Medical Molecular Virology, MoE/MoH, and the Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.,Children's Hospital, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
15
|
Jia YJ, Guo ZR, Ma R, Qiu DK, Zhao Z, Wang GX, Zhu B. Immune efficacy of carbon nanotubes recombinant subunit vaccine against largemouth bass ulcerative syndrome virus. FISH & SHELLFISH IMMUNOLOGY 2020; 100:317-323. [PMID: 32173450 DOI: 10.1016/j.fsi.2020.03.025] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 02/16/2020] [Accepted: 03/11/2020] [Indexed: 06/10/2023]
Abstract
Largemouth bass ulcerative syndrome virus (LBUSV) is an important virus induce the mortality of largemouth bass (Micropterus Salmoides). In this study, we reported a single-walled carbon nanotubes (SWCNTs) containing LBUSV major capsid protein (MCP) subunit vaccine (SWCNTs-MCP) which was evaluated for its protective effect on largemouth bass by immersion immunization. We found an elevation in serum antibody levels, enzyme activities, complement C3 content and immune-related genes (IgM, TGF-β, IL-1β, IL-8, TNF-α and CD4) expression, in the SWCNTs-MCP immunized groups compared with the pure MCP group. The survival rates for control group, pure MCP protein groups (40 mg L-1) and four SWCNTs-MCP groups (5 mg L-1, 10 mg L-1, 20 mg L-1 and 40 mg L-1) were 0%, 27.78%, 30.56%, 50.00%, 66.67% and 80.56%, respectively. The results suggests that with the assistance of SWCNTs, the immune protection of the SWCNTs-MCP group (40 mg L-1) increased up 52.78%-80.1% compared with pure MCP group (40 mg L-1). Our results demonstrate that the single-walled carbon nanotube subunit vaccine can be used as a new immunization method against LBUSV showing protection following challenge with LBUSV. Taken together, our results demonstrate that the single-walled carbon nanotube subunit vaccine can be used as a new method against LBUSV and have a high immune protection during the largemouth bass farm.
Collapse
Affiliation(s)
- Yi-Jun Jia
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi, 712100, China
| | - Zi-Rao Guo
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi, 712100, China
| | - Rui Ma
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi, 712100, China
| | - De-Kui Qiu
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi, 712100, China
| | - Zhao Zhao
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi, 712100, China
| | - Gao-Xue Wang
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi, 712100, China
| | - Bin Zhu
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
16
|
Guo ZR, Zhao Z, Zhang C, Jia YJ, Qiu DK, Zhu B, Wang GX. Carbon nanotubes-loaded subunit vaccine can increase protective immunity against rhabdovirus infections of largemouth bass (Micropterus Salmoides). FISH & SHELLFISH IMMUNOLOGY 2020; 99:548-554. [PMID: 32109609 DOI: 10.1016/j.fsi.2020.02.055] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 02/19/2020] [Accepted: 02/24/2020] [Indexed: 06/10/2023]
Abstract
Micropterus Salmoides rhabdovirus (MSRV), as a common aquatic animal virus, can cause lethal and epidemic diseases in the cultivation of largemouth bass. In this study, we reported a kind of immersion single-walled carbon nanotubes-loaded subunit vaccine which composited by glycoprotein (G) of MSRV, and evaluated its protective effect on largemouth bass. The results showed that a stronger immune response including serum antibody levels, enzyme activities (superoxide dismutase, acid phosphatase, alkaline phosphatase and total antioxidant capacity), complement C3 content and immune-related genes (IgM, TGF-β, IL-1β, IL-8, TNF-α, CD4) expression can be induced obviously with single-walled carbon nanotubes-glycoprotein (SWCNTs-G) groups compared with G groups when largemouth bass were vaccinated. After bath immunization with G or SWCNTs-G for 28 days, fish were challenged with a lethal dose of MSRV. The survival rates for control group (PBS), SWCNTs group (40 mg L-1), pure G protein groups (40 mg L-1) and three SWCNTs-G groups (5 mg L-1, 10 mg L-1 and 40 mg L-1) were 0%, 0%, 39.5%, 36.7%, 43.6%and 70.1%, respectively. Importantly, with the assistance of SWCNTs, the immune protective rate of the SWCNTs-G group (40 mg L-1) increased by approximately 30.6%. This study suggested that SWCNTs-G is a promising immersion subunit vaccine candidate against the death caused by MSRV.
Collapse
Affiliation(s)
- Zi-Rao Guo
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Zhao Zhao
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Chen Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Yi-Jun Jia
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - De-Kui Qiu
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Bin Zhu
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China.
| | - Gao-Xue Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|
17
|
Parenterally Administered P24-VP8* Nanoparticle Vaccine Conferred Strong Protection against Rotavirus Diarrhea and Virus Shedding in Gnotobiotic Pigs. Vaccines (Basel) 2019; 7:vaccines7040177. [PMID: 31698824 PMCID: PMC6963946 DOI: 10.3390/vaccines7040177] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 10/23/2019] [Accepted: 10/24/2019] [Indexed: 12/23/2022] Open
Abstract
Current live rotavirus vaccines are costly with increased risk of intussusception due to vaccine replication in the gut of vaccinated children. New vaccines with improved safety and cost-effectiveness are needed. In this study, we assessed the immunogenicity and protective efficacy of a novel P24-VP8* nanoparticle vaccine using the gnotobiotic (Gn) pig model of human rotavirus infection and disease. Three doses of P24-VP8* (200 μg/dose) intramuscular vaccine with Al(OH)3 adjuvant (600 μg) conferred significant protection against infection and diarrhea after challenge with virulent Wa strain rotavirus. This was indicated by the significant reduction in the mean duration of diarrhea, virus shedding in feces, and significantly lower fecal cumulative consistency scores in post-challenge day (PCD) 1-7 among vaccinated pigs compared to the mock immunized controls. The P24-VP8* vaccine was highly immunogenic in Gn pigs. It induced strong VP8*-specific serum IgG and Wa-specific virus-neutralizing antibody responses from post-inoculation day 21 to PCD 7, but did not induce serum or intestinal IgA antibody responses or a strong effector T cell response, which are consistent with the immunization route, the adjuvant used, and the nature of the non-replicating vaccine. The findings are highly translatable and thus will facilitate clinical trials of the P24-VP8* nanoparticle vaccine.
Collapse
|
18
|
Agarwal S, Sahni N, Hickey JM, Robertson GA, Sitrin R, Cryz S, Joshi SB, Volkin DB. Characterizing and Minimizing Aggregation and Particle Formation of Three Recombinant Fusion-Protein Bulk Antigens for Use in a Candidate Trivalent Rotavirus Vaccine. J Pharm Sci 2019; 109:394-406. [PMID: 31400346 PMCID: PMC6941221 DOI: 10.1016/j.xphs.2019.08.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 07/26/2019] [Accepted: 08/01/2019] [Indexed: 12/21/2022]
Abstract
In a companion paper, the structural integrity, conformational stability, and degradation mechanisms of 3 recombinant fusion-protein antigens comprising a non-replicating rotavirus (NRRV) vaccine candidate (currently being evaluated in early-stage clinical trials) are described. In this work, we focus on the aggregation propensity of the 3 NRRV antigens coupled to formulation development studies to identify common frozen bulk candidate formulations. The P2-VP8-P[8] antigen was most susceptible to shaking and freeze-thaw-induced aggregation and particle formation. Each NRRV antigen formed aggregates with structurally altered protein (with exposed apolar regions and intermolecular β-sheet) and dimers containing a non-native disulfide bond. From excipient screening studies with P2-VP8-P[8], sugars or polyols (e.g., sucrose, trehalose, mannitol, sorbitol) and various detergents (e.g., Pluronic F-68, polysorbate 20 and 80, PEG-3350) were identified as stabilizers against aggregation. By combining promising additives, candidate bulk formulations were optimized to not only minimize agitation-induced aggregation, but also particle formation due to freeze-thaw stress of P2-VP8-P[8] antigen. Owing to limited material availability, stabilization of the P2-VP8-P[4] and P2-VP8-P[6] was confirmed with the lead candidate P2-VP8-P[8] formulations. The optimization of these bulk NRRV candidate formulations is discussed in the context of subsequent drug product formulations in the presence of aluminum adjuvants.
Collapse
Affiliation(s)
- Sanjeev Agarwal
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, 2030 Becker Drive, Lawrence, Kansas 66047
| | - Neha Sahni
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, 2030 Becker Drive, Lawrence, Kansas 66047
| | - John M Hickey
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, 2030 Becker Drive, Lawrence, Kansas 66047
| | - George A Robertson
- The Center for Vaccine Innovation and Access, PATH, 455 Massachusetts Avenue NW Suite 1000, Washington, District of Columbia 20001
| | - Robert Sitrin
- The Center for Vaccine Innovation and Access, PATH, 455 Massachusetts Avenue NW Suite 1000, Washington, District of Columbia 20001
| | - Stanley Cryz
- The Center for Vaccine Innovation and Access, PATH, 455 Massachusetts Avenue NW Suite 1000, Washington, District of Columbia 20001
| | - Sangeeta B Joshi
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, 2030 Becker Drive, Lawrence, Kansas 66047
| | - David B Volkin
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, 2030 Becker Drive, Lawrence, Kansas 66047.
| |
Collapse
|
19
|
Lemieux M, Lorbetskie B, Luebbert C, Walrond L, Li C, Li X, Cyr T, Sauvé S, Johnston M, Farnsworth A. The differential effect of sub-micron level HA aggregates on influenza potency assays. Vaccine 2019; 37:5276-5287. [DOI: 10.1016/j.vaccine.2019.07.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 07/09/2019] [Accepted: 07/13/2019] [Indexed: 10/26/2022]
|
20
|
Zhou Y, Qiao H, Yin N, Chen L, Xie Y, Wu J, Du J, Lin X, Wang Y, Liu Y, Yi S, Zhang G, Sun M, He Z, Li H. Immune and cytokine/chemokine responses of PBMCs in rotavirus‐infected rhesus infants and their significance in viral pathogenesis. J Med Virol 2019; 91:1448-1469. [DOI: 10.1002/jmv.25460] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 01/17/2019] [Accepted: 02/01/2019] [Indexed: 12/23/2022]
Affiliation(s)
- Yan Zhou
- Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on severe Infectious Disease Kunming China
| | - Hongtu Qiao
- Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on severe Infectious Disease Kunming China
| | - Na Yin
- Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on severe Infectious Disease Kunming China
| | - Linlin Chen
- Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on severe Infectious Disease Kunming China
| | - Yuping Xie
- Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on severe Infectious Disease Kunming China
| | - Jinyuan Wu
- Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on severe Infectious Disease Kunming China
| | - Jing Du
- Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on severe Infectious Disease Kunming China
| | - Xiaochen Lin
- Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on severe Infectious Disease Kunming China
| | - Yi Wang
- Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on severe Infectious Disease Kunming China
| | - Yang Liu
- Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on severe Infectious Disease Kunming China
| | - Shan Yi
- Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on severe Infectious Disease Kunming China
| | - Guangming Zhang
- Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on severe Infectious Disease Kunming China
| | - Maosheng Sun
- Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on severe Infectious Disease Kunming China
| | - Zhanlong He
- Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on severe Infectious Disease Kunming China
| | - Hongjun Li
- Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on severe Infectious Disease Kunming China
| |
Collapse
|
21
|
Khametova KM, Alekseev KP, Yuzhakov AG, Kostina LV, Raev SA, Musienko MI, Mukhin AN, Aliper TI, Vorkunova GK, Grebennikova TV. EVALUATION OF THE MOLECULAR-BIOLOGICAL PROPERTIES OF HUMAN ROTAVIRUS A STRAIN WA. ACTA ACUST UNITED AC 2019; 64:16-22. [DOI: 10.18821/0507-4088-2019-64-1-16-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 10/31/2018] [Indexed: 01/19/2023]
Abstract
Introduction. Rоtaviruses are amоng the leading causes of severe diarrhea in children all over the Wоrld. Vaccination is considered to be the mоst effective way to cоntrоl the disease. Currently available vaccines for prevention of rоtavirus infection are based on live attenuated rotavirus strains human оr animal origin. Objectives and purposes. The aim of this investigation was to study the biological and genetic properties of an actual epidemic human rotavirus A (RVA) strain Wa G1P[8] genotype. Material and methods. RVA Wa reproduction in a monolayer continuous cell lines, purification and concentration of RVA antigen, PAAG electrophoresis and Western-Blot, electrophoresis of viral genomic RNA segments, sequencing. Results. Human RVA G1P[8] Wa strain biological and molecular genetic properties were assessed in the process of the adaptation to MARC145 continuous cell line. Cell cultured RVA antigen was purified, concentrated and then characterized by the method of PAAG electrophoresis and immunoblot. To verify RVA Wa genome identity, electrophoresis of viral genomic RNA segments was performed. The lack of accumulation of changes in the RVA Wa genome during adaptation to various cell cultures and during serial passages was demonstrated by sequencing fragments of the viral genome. Conclusion. RVA Wa strain is stable, it possesses high biological activity: it has been successfully adapted to the MARC145 cell line and RVA Wa virus titer after the adaptation reached 7,5-7,7 lg TCID50/ml. The identity of the cultivated RVA to the original strain Wa G1P[8] was confirmed.
Collapse
Affiliation(s)
- K. M. Khametova
- Ivanovsky Virology Institute, «National Research Center for Epidemiology and Microbiology named after the honorary academician NF. Gamaleya»
| | - K. P. Alekseev
- Ivanovsky Virology Institute, «National Research Center for Epidemiology and Microbiology named after the honorary academician NF. Gamaleya»
| | - A. G. Yuzhakov
- Ivanovsky Virology Institute, «National Research Center for Epidemiology and Microbiology named after the honorary academician NF. Gamaleya»
| | - L. V. Kostina
- Ivanovsky Virology Institute, «National Research Center for Epidemiology and Microbiology named after the honorary academician NF. Gamaleya»
| | - S. A. Raev
- Ivanovsky Virology Institute, «National Research Center for Epidemiology and Microbiology named after the honorary academician NF. Gamaleya»
| | - M. I. Musienko
- Ivanovsky Virology Institute, «National Research Center for Epidemiology and Microbiology named after the honorary academician NF. Gamaleya»
| | - A. N. Mukhin
- Ivanovsky Virology Institute, «National Research Center for Epidemiology and Microbiology named after the honorary academician NF. Gamaleya»
| | - T. I. Aliper
- Ivanovsky Virology Institute, «National Research Center for Epidemiology and Microbiology named after the honorary academician NF. Gamaleya»
| | - G. K. Vorkunova
- Ivanovsky Virology Institute, «National Research Center for Epidemiology and Microbiology named after the honorary academician NF. Gamaleya»
| | - T. V. Grebennikova
- Ivanovsky Virology Institute, «National Research Center for Epidemiology and Microbiology named after the honorary academician NF. Gamaleya»; Peoples Frendship University of Russia (RUDN)
| |
Collapse
|
22
|
Mohanty E, Dehury B, Satapathy AK, Dwibedi B. Design and testing of a highly conserved human rotavirus VP8* immunogenic peptide with potential for vaccine development. J Biotechnol 2018; 281:48-60. [PMID: 29886031 DOI: 10.1016/j.jbiotec.2018.06.306] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 05/25/2018] [Accepted: 06/06/2018] [Indexed: 12/11/2022]
Abstract
Rotavirus infection of young children particularly below five years of age resulting in severe diarhoea, is the cause of a large number of infant deaths all over the world, more so in developing countries like India. Vaccines developed against this infection in the last two decades have shown mixed results with some of them leading to complications. Oral vaccines have not been very effective in India. Significant diversity has been found in circulating virus strains in India. Development of a vaccine against diverse genetic variants of the different strains would go a long way in reducing the incidence of infection in developing countries. Success of such a vaccine would depend to a large extent on the antigenic peptide to be used in antibody production. The non-glycosylated protein VP4 on the surface capsid of the virus is important in rota viral immunogenicity and the major antigenic site(s) responsible for neutralization of the virus via VP4 is in the VP8* subunit of VP4. It is necessary that the peptide should be very specific and a peptide sequence which would stimulate both the T and B immunogenic cells would provide maximum protection against the virus. Advanced computational techniques and existing databases of sequences of the VP4 protein of rotavirus help in identification of such specific sequences. Using an in silico approach we have identified a highly conserved VP8* subunit of the VP4 surface protein of rotavirus which shows both T and B cell processivity and is also non-allergenic. This sub-unit could be used in in vivo models for induction of antibodies.
Collapse
Affiliation(s)
- Eileena Mohanty
- All India institute of medical sciences, Bhubaneshwar, 751019, Odisha, India.
| | - Budheswar Dehury
- Biomedical Informatics Centre, Regional Medical Research Centre, Indian Council of Medical Research, Bhubaneswar, 751023, Odisha, India.
| | - Ashok Kumar Satapathy
- Immunology Laboratory, Regional Medical Research Centre, Indian Council of Medical Research, Bhubaneswar, 751023, Odisha, India.
| | - Bhagirathi Dwibedi
- All India institute of medical sciences, Bhubaneshwar, 751019, Odisha, India.
| |
Collapse
|
23
|
Li Y, Xue M, Yu L, Luo G, Yang H, Jia L, Zeng Y, Li T, Ge S, Xia N. Expression and characterization of a novel truncated rotavirus VP4 for the development of a recombinant rotavirus vaccine. Vaccine 2018; 36:2086-2092. [DOI: 10.1016/j.vaccine.2018.03.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 02/27/2018] [Accepted: 03/05/2018] [Indexed: 12/28/2022]
|
24
|
Jiang X, Liu Y, Tan M. Histo-blood group antigens as receptors for rotavirus, new understanding on rotavirus epidemiology and vaccine strategy. Emerg Microbes Infect 2017; 6:e22. [PMID: 28400594 PMCID: PMC5457676 DOI: 10.1038/emi.2017.30] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 03/16/2017] [Accepted: 03/20/2017] [Indexed: 12/11/2022]
Abstract
The success of the two rotavirus (RV) vaccines (Rotarix and RotaTeq) in many countries endorses a live attenuated vaccine approach against RVs. However, the lower efficacies of both vaccines in many low- and middle-income countries indicate a need to improve the current RV vaccines. The recent discovery that RVs recognize histo-blood group antigens (HBGAs) as potential receptors has significantly advanced our understanding of RV diversity, evolution and epidemiology, providing important new insights into the performances of current RV vaccines in different populations and emphasizing a P-type-based vaccine approach. New understanding of RV diversity and evolution also raises a fundamental question about the ‘Jennerian' approach, which needs to be addressed for future development of live attenuated RV vaccines. Alternative approaches to develop safer and more cost-effective subunit vaccines against RVs are also discussed.
Collapse
Affiliation(s)
- Xi Jiang
- Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Yang Liu
- Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Ming Tan
- Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| |
Collapse
|
25
|
Xue M, Yu L, Jia L, Li Y, Zeng Y, Li T, Ge S, Xia N. Immunogenicity and protective efficacy of rotavirus VP8* fused to cholera toxin B subunit in a mouse model. Hum Vaccin Immunother 2016; 12:2959-2968. [PMID: 27435429 PMCID: PMC5137547 DOI: 10.1080/21645515.2016.1204501] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 06/09/2016] [Accepted: 06/17/2016] [Indexed: 12/25/2022] Open
Abstract
In attempts to develop recombinant subunit vaccines against rotavirus disease, it was previously shown that the N-terminal truncated VP8* protein, VP8-1 (aa26-231), is a good vaccine candidate when used for immunization in combination with Freund's adjuvant. However, this protein stimulated only weak immune response when aluminum hydroxide was used as an adjuvant. In this study, the nontoxic B subunit of cholera toxin (CTB) was employed as intra-molecular adjuvant to improve the immunogenicity of VP8-1. Both, the N-terminal and C-terminal fusion proteins, were purified to homogeneity, at which stage they formed pentamers, and showed significantly higher immunogenicity and protective efficacy than a VP8-1/aluminum hydroxide mixture in a mouse model. Compared to VP8-1-CTB, CTB-VP8-1 showed higher binding activity to both, GM1 and the conformation sensitive neutralizing monoclonal antibodies specific to VP8. More importantly, CTB-VP8-1 elicited higher titers of neutralizing antibodies and conferred higher protective efficacy than VP8-1-CTB. Therefore, the protein CTB-VP8-1, with enhanced immunogenicity and immunoprotectivity, could be considered as a viable candidate for further development of an alternative, replication-incompetent, parenterally administered vaccine against rotavirus disease.
Collapse
MESH Headings
- Adjuvants, Immunologic/genetics
- Adjuvants, Immunologic/metabolism
- Animals
- Antibodies, Neutralizing/blood
- Antibodies, Viral/blood
- Cholera Toxin/genetics
- Cholera Toxin/metabolism
- Disease Models, Animal
- Mice, Inbred BALB C
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/immunology
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/immunology
- Recombinant Fusion Proteins/metabolism
- Rotavirus Infections/prevention & control
- Rotavirus Vaccines/administration & dosage
- Rotavirus Vaccines/genetics
- Rotavirus Vaccines/immunology
- Vaccines, Subunit/administration & dosage
- Vaccines, Subunit/genetics
- Vaccines, Subunit/immunology
- Vaccines, Synthetic/administration & dosage
- Vaccines, Synthetic/genetics
- Vaccines, Synthetic/immunology
- Viral Nonstructural Proteins/genetics
- Viral Nonstructural Proteins/immunology
Collapse
Affiliation(s)
- Miaoge Xue
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science and School of Public Health, Xiamen University, Xiamen, China
| | - Linqi Yu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science and School of Public Health, Xiamen University, Xiamen, China
| | - Lianzhi Jia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science and School of Public Health, Xiamen University, Xiamen, China
| | - Yijian Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science and School of Public Health, Xiamen University, Xiamen, China
| | - Yuanjun Zeng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science and School of Public Health, Xiamen University, Xiamen, China
| | - Tingdong Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science and School of Public Health, Xiamen University, Xiamen, China
| | - Shengxiang Ge
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science and School of Public Health, Xiamen University, Xiamen, China
| | - Ningshao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science and School of Public Health, Xiamen University, Xiamen, China
| |
Collapse
|
26
|
Tekewe A, Fan Y, Tan E, Middelberg APJ, Lua LHL. Integrated molecular and bioprocess engineering for bacterially produced immunogenic modular virus-like particle vaccine displaying 18 kDa rotavirus antigen. Biotechnol Bioeng 2016; 114:397-406. [PMID: 27497268 DOI: 10.1002/bit.26068] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Revised: 07/04/2016] [Accepted: 08/02/2016] [Indexed: 01/04/2023]
Abstract
A high global burden of rotavirus disease and the unresolved challenges with the marketed rotavirus vaccines, particularly in the developing world, have ignited efforts to develop virus-like particle (VLP) vaccines for rotavirus. While rotavirus-like particles comprising multiple viral proteins can be difficult to process, modular VLPs presenting rotavirus antigenic modules are promising alternatives in reducing process complexity and cost. In this study, integrated molecular and bioprocess engineering approaches were used to simplify the production of modular murine polyomavirus capsomeres and VLPs presenting a rotavirus 18 kDa VP8* antigen. A single construct was generated for dual expression of non-tagged murine polyomavirus capsid protein VP1 and modular VP1 inserted with VP8*, for co-expression in Escherichia coli. Co-expressed proteins assembled into pentameric capsomeres in E. coli. A selective salting-out precipitation and a polishing size exclusion chromatography step allowed the recovery of stable modular capsomeres from cell lysates at high purity, and modular capsomeres were successfully translated into modular VLPs when assembled in vitro. Immunogenicity study in mice showed that modular capsomeres and VLPs induced high levels of VP8*-specific antibodies. Our results demonstrate that a multipronged synthetic biology approach combining molecular and bioprocess engineering enabled simple and low-cost production of highly immunogenic modular capsomeres and VLPs presenting conformational VP8* antigenic modules. This strategy potentially provides a cost-effective production route for modular capsomere and VLP vaccines against rotavirus, highly suitable to manufacturing economics for the developing world. Biotechnol. Bioeng. 2017;114: 397-406. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Alemu Tekewe
- Australian Institute for Bioengineering and Nanotechnoloy, The University of Queensland, St Lucia, Queensland, Australia
| | - Yuanyuan Fan
- Protein Expression Facility, The University of Queensland, St Lucia, Queensland, 4072, Australia
| | - Emilyn Tan
- Protein Expression Facility, The University of Queensland, St Lucia, Queensland, 4072, Australia
| | - Anton P J Middelberg
- Australian Institute for Bioengineering and Nanotechnoloy, The University of Queensland, St Lucia, Queensland, Australia
| | - Linda H L Lua
- Protein Expression Facility, The University of Queensland, St Lucia, Queensland, 4072, Australia
| |
Collapse
|