1
|
Ambari AM, Qhabibi FR, Desandri DR, Dwiputra B, Baravia PA, Makes IK, Radi B. Unveiling the Group A Streptococcus Vaccine-Based L-Rhamnose from Backbone of Group A Carbohydrate: Current Insight Against Acute Rheumatic Fever to Reduce the Global Burden of Rheumatic Heart Disease. F1000Res 2025; 13:132. [PMID: 39959434 PMCID: PMC11829149 DOI: 10.12688/f1000research.144903.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/22/2025] [Indexed: 02/18/2025] Open
Abstract
Group A Streptococcus (GAS) is a widely distributed bacterium that is Gram-positive and serves as the primary cause of acute rheumatic fever (ARF) episodes. Rheumatic heart disease (RHD) is a sequela resulting from repeated ARF attacks which are also caused by repeated GAS infections. ARF/RHD morbidity and mortality rates are incredibly high in low- and middle-income countries. This is closely related to poor levels of sanitation which causes the enhanced incidence of GAS infections. Management of carditis in RHD cases is quite challenging, particularly in developing countries, considering that medical treatment is only palliative, while definitive treatment often requires more invasive procedures with high costs. Preventive action through vaccination against GAS infection is one of the most effective steps as a solution in reducing RHD morbidity and mortality due to curative treatments are expensive. Various developments of M-protein-based GAS vaccines have been carried out over the last few decades and have recently begun to enter the clinical stage. Nevertheless, this vaccination generates cross-reactive antibodies that might trigger ARF assaults as a result of the resemblance between the M-protein structure and proteins found in many human tissues. Consequently, the development of a vaccine utilizing L-Rhamnose derived from the poly-rhamnose backbone of Group A Carbohydrate (GAC) commenced. The L-Rhamnose-based vaccine was chosen due to the absence of the Rhamnose biosynthesis pathway in mammalian cells including humans thus this molecule is not found in any body tissue. Recent pre-clinical studies reveal that L-Rhamnose-based vaccines provide a protective effect by increasing IgG antibody titers without causing cross-reactive antibodies in test animal tissue. These findings demonstrate that the L-Rhamnose-based vaccine possesses strong immunogenicity, which effectively protects against GAS infection while maintaining a significantly higher degree of safety.
Collapse
Affiliation(s)
- Ade Meidian Ambari
- Cardiovascular Prevention and Rehabilitation Department, National Cardiovascular Center Hospital Harapan Kita, Jakarta, Jakarta, 11420, Indonesia
- Cardiology and Vascular Department, Faculty of Medicine, University of Indonesia, Jakarta, Jakarta, 10430, Indonesia
| | - Faqrizal Ria Qhabibi
- Research Assistant, National Cardiovascular Center Hospital Harapan Kita, Jakarta, Jakarta, 11420, Indonesia
| | - Dwita Rian Desandri
- Cardiovascular Prevention and Rehabilitation Department, National Cardiovascular Center Hospital Harapan Kita, Jakarta, Jakarta, 11420, Indonesia
- Cardiology and Vascular Department, Faculty of Medicine, University of Indonesia, Jakarta, Jakarta, 10430, Indonesia
| | - Bambang Dwiputra
- Cardiovascular Prevention and Rehabilitation Department, National Cardiovascular Center Hospital Harapan Kita, Jakarta, Jakarta, 11420, Indonesia
- Cardiology and Vascular Department, Faculty of Medicine, University of Indonesia, Jakarta, Jakarta, 10430, Indonesia
| | - Pirel Aulia Baravia
- Cardiovascular Prevention and Rehabilitation Department, Dr. Saiful Anwar General Hospital, Malang, East Java, 65122, Indonesia
| | - Indira Kalyana Makes
- Research Assistant, National Cardiovascular Center Hospital Harapan Kita, Jakarta, Jakarta, 11420, Indonesia
| | - Basuni Radi
- Cardiovascular Prevention and Rehabilitation Department, National Cardiovascular Center Hospital Harapan Kita, Jakarta, Jakarta, 11420, Indonesia
- Cardiology and Vascular Department, Faculty of Medicine, University of Indonesia, Jakarta, Jakarta, 10430, Indonesia
| |
Collapse
|
2
|
Finn MB, Penfound TA, Salehi S, Ogega CO, Dold C, Plante O, Dale JB. Immunogenicity of a 30-valent M protein mRNA group A Streptococcus vaccine. Vaccine 2024; 42:126205. [PMID: 39141987 DOI: 10.1016/j.vaccine.2024.126205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 07/19/2024] [Accepted: 08/02/2024] [Indexed: 08/16/2024]
Abstract
BACKGROUND Group A Streptococcus (Strep A) causes both uncomplicated and severe invasive infections, as well as the post-infection complications acute rheumatic fever and rheumatic heart disease. Despite the high global burden of disease resulting from Strep A infections, there is not a licensed vaccine. A 30-valent M protein-based vaccine has previously been shown to be immunogenic in animal models and in a Phase I clinical trial (NCT02564237). Here, we assessed the immunogenicity of a 30-valent messenger (m)RNA vaccine designed to express the same M peptide targets as the 30-valent protein vaccine and compared it with the protein vaccine. METHODS Female New Zealand white rabbits were immunized with one of four vaccine formulations (3 doses of each formulation at days 1, 28, and 56): soluble mRNA (100 μg/animal), C-terminal transmembrane mRNA (100 μg/animal), protein vaccine (400 μg/animal), or a non-translatable RNA control (100 μg/animal). Serum was collected one day prior to the first dose and on days 42 and 70. Rabbit serum samples were assayed for antibody levels against synthetic M peptides by ELISA. HL-60 opsonophagocytic killing (OPK) assays were performed to assess functional antibody levels. RESULTS Serum IgG levels were similar for the mRNA and protein vaccines. The CtTM version of the mRNA vaccine elicited slightly higher antibody levels than the mRNA designed to express soluble proteins. OPK activity was similar for the mRNA and protein vaccines, regardless of M type. CONCLUSIONS The total antibody responses and functional antibody levels elicited by the 30-valent mRNA Strep A vaccines were similar to those observed following immunization with the analogous protein vaccine. The mRNA vaccine platform provides potential advantages to protein-based vaccines including inherent adjuvant activity, increased production efficiency, lower cost, and the potential to rapidly change epitopes/peptides, all of which are important considerations related to multivalent Strep A vaccine development.
Collapse
MESH Headings
- Animals
- Female
- Rabbits
- Antibodies, Bacterial/blood
- Antibodies, Bacterial/immunology
- Antigens, Bacterial/immunology
- Antigens, Bacterial/genetics
- Bacterial Outer Membrane Proteins/immunology
- Bacterial Outer Membrane Proteins/genetics
- Carrier Proteins/immunology
- Carrier Proteins/genetics
- Immunogenicity, Vaccine
- RNA, Messenger/genetics
- RNA, Messenger/immunology
- Streptococcal Infections/prevention & control
- Streptococcal Infections/immunology
- Streptococcal Vaccines/immunology
- Streptococcal Vaccines/administration & dosage
- Streptococcal Vaccines/genetics
- Streptococcus pyogenes/immunology
- Streptococcus pyogenes/genetics
- Vaccines, Synthetic/immunology
- Vaccines, Synthetic/administration & dosage
- Clinical Trials, Phase I as Topic
Collapse
Affiliation(s)
| | - Thomas A Penfound
- Department of Medicine, University of Tennessee Health Science Center, 956 Court Ave., Memphis, TN 38163, USA
| | - Sanaz Salehi
- Department of Medicine, University of Tennessee Health Science Center, 956 Court Ave., Memphis, TN 38163, USA
| | | | | | - Obadiah Plante
- Moderna, Inc., 325 Binney St., Cambridge, MA 02142, USA.
| | - James B Dale
- Department of Medicine, University of Tennessee Health Science Center, 956 Court Ave., Memphis, TN 38163, USA.
| |
Collapse
|
3
|
Markowitz J, Shamblott M, Brohl AS, Sarnaik AA, Eroglu Z, Khushalani NI, Dukes CW, Chamizo A, Bastawrous M, Garcia ET, Dehlawi A, Chen PL, De Aquino DB, Sondak VK, Tarhini AA, Kim Y, Lawman P, Pilon-Thomas S. First-in-Human Stage III/IV Melanoma Clinical Trial of Immune Priming Agent IFx-Hu2.0. Mol Cancer Ther 2024; 23:1139-1143. [PMID: 38657233 PMCID: PMC11292317 DOI: 10.1158/1535-7163.mct-23-0652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/21/2024] [Accepted: 04/17/2024] [Indexed: 04/26/2024]
Abstract
IFx-Hu2.0 was designed to encode part of the Emm55 protein contained within a plasmid in a formulation intended for transfection into mammalian cells. IFx-Hu2.0 promotes both adaptive and innate immune responses in animal studies. Furthermore, previous studies have demonstrated safety/efficacy in equine, canine, and murine species. We present the first-in-human study of IFx-Hu2.0, administered by intralesional injection into melanoma tumors of seven patients with stage III/IV unresectable melanoma. No dose-limiting toxicities attributable to IFx-Hu2.0 were observed. Grade 1/2 injection site reactions were observed in five of seven patients. IgG and IgM responses to Emm55 peptides and known melanoma antigens were seen in the peripheral blood, suggesting that IFx-Hu2.0 acts as an individualized "in situ vaccine." Three of four patients previously refractory to anti-PD1 experienced clinical benefit upon subsequent anti-PD1-based treatment. Therefore, this approach is feasible, and clinical/correlative outcomes warrant further investigation for treating patients with metastatic melanoma with an immune priming agent.
Collapse
Affiliation(s)
- Joseph Markowitz
- Department of Cutaneous Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida.
- Department of Oncologic Sciences, University of South Florida Morsani School of Medicine, Tampa, Florida.
| | | | - Andrew S. Brohl
- Department of Cutaneous Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida.
- Department of Sarcoma Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida.
- Department of Oncologic Sciences, University of South Florida Morsani School of Medicine, Tampa, Florida.
| | - Amod A. Sarnaik
- Department of Cutaneous Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida.
- Department of Oncologic Sciences, University of South Florida Morsani School of Medicine, Tampa, Florida.
| | - Zeynep Eroglu
- Department of Cutaneous Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida.
- Department of Oncologic Sciences, University of South Florida Morsani School of Medicine, Tampa, Florida.
| | - Nikhil I. Khushalani
- Department of Cutaneous Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida.
- Department of Oncologic Sciences, University of South Florida Morsani School of Medicine, Tampa, Florida.
| | - Christopher W. Dukes
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida.
| | - Alejandra Chamizo
- Department of Cutaneous Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida.
| | | | | | | | - Pei-Ling Chen
- Department of Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida.
- Department of Oncologic Sciences, University of South Florida Morsani School of Medicine, Tampa, Florida.
| | - Deanryan B. De Aquino
- Department of Cutaneous Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida.
| | - Vernon K. Sondak
- Department of Cutaneous Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida.
- Department of Oncologic Sciences, University of South Florida Morsani School of Medicine, Tampa, Florida.
| | - Ahmad A. Tarhini
- Department of Cutaneous Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida.
- Department of Oncologic Sciences, University of South Florida Morsani School of Medicine, Tampa, Florida.
| | - Youngchul Kim
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida.
| | | | - Shari Pilon-Thomas
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida.
- Department of Oncologic Sciences, University of South Florida Morsani School of Medicine, Tampa, Florida.
| |
Collapse
|
4
|
Smeesters PR, de Crombrugghe G, Tsoi SK, Leclercq C, Baker C, Osowicki J, Verhoeven C, Botteaux A, Steer AC. Global Streptococcus pyogenes strain diversity, disease associations, and implications for vaccine development: a systematic review. THE LANCET. MICROBE 2024; 5:e181-e193. [PMID: 38070538 DOI: 10.1016/s2666-5247(23)00318-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 02/12/2024]
Abstract
The high strain diversity of Streptococcus pyogenes serves as a major obstacle to vaccine development against this leading global pathogen. We did a systematic review of studies in PubMed, MEDLINE, and Embase that reported the global distribution of S pyogenes emm-types and emm-clusters from Jan 1, 1990, to Feb 23, 2023. 212 datasets were included from 55 countries, encompassing 74 468 bacterial isolates belonging to 211 emm-types. Globally, an inverse correlation was observed between strain diversity and the UNDP Human Development Index (HDI; r=-0·72; p<0·0001), which remained consistent upon subanalysis by global region and site of infection. Greater strain diversity was associated with a lower HDI, suggesting the role of social determinants in diseases caused by S pyogenes. We used a population-weighted analysis to adjust for the disproportionate number of epidemiological studies from high-income countries and identified 15 key representative isolates as vaccine targets. Strong strain type associations were observed between the site of infection (invasive, skin, and throat) and several streptococcal lineages. In conclusion, the development of a truly global vaccine to reduce the immense burden of diseases caused by S pyogenes should consider the multidimensional diversity of the pathogen, including its social and environmental context, and not merely its geographical distribution.
Collapse
Affiliation(s)
- Pierre R Smeesters
- Department of Paediatrics, Brussels University Hospital, Academic Children Hospital Queen Fabiola, Université libre de Bruxelles, Brussels, Belgium; Molecular Bacteriology Laboratory, European Plotkin Institute for Vaccinology, Université Libre de Bruxelles, Brussels, Belgium; Tropical Diseases Research Group, Murdoch Children's Research Institute, Melbourne, VIC, Australia; Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia.
| | - Gabrielle de Crombrugghe
- Department of Paediatrics, Brussels University Hospital, Academic Children Hospital Queen Fabiola, Université libre de Bruxelles, Brussels, Belgium; Molecular Bacteriology Laboratory, European Plotkin Institute for Vaccinology, Université Libre de Bruxelles, Brussels, Belgium
| | - Shu Ki Tsoi
- Tropical Diseases Research Group, Murdoch Children's Research Institute, Melbourne, VIC, Australia; Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia; Infectious Diseases Unit, Royal Children's Hospital Melbourne, Melbourne, VIC, Australia
| | - Céline Leclercq
- Department of Paediatrics, Brussels University Hospital, Academic Children Hospital Queen Fabiola, Université libre de Bruxelles, Brussels, Belgium
| | - Ciara Baker
- Tropical Diseases Research Group, Murdoch Children's Research Institute, Melbourne, VIC, Australia
| | - Joshua Osowicki
- Tropical Diseases Research Group, Murdoch Children's Research Institute, Melbourne, VIC, Australia; Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia; Infectious Diseases Unit, Royal Children's Hospital Melbourne, Melbourne, VIC, Australia
| | - Caroline Verhoeven
- Laboratoire d'enseignement des Mathématiques, Université Libre de Bruxelles, Brussels, Belgium
| | - Anne Botteaux
- Molecular Bacteriology Laboratory, European Plotkin Institute for Vaccinology, Université Libre de Bruxelles, Brussels, Belgium
| | - Andrew C Steer
- Tropical Diseases Research Group, Murdoch Children's Research Institute, Melbourne, VIC, Australia; Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia; Infectious Diseases Unit, Royal Children's Hospital Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
5
|
Dale JB, Aranha MP, Penfound TA, Salehi S, Smith JC. Structure-guided design of a broadly cross-reactive multivalent group a streptococcal vaccine. Vaccine 2023; 41:5841-5847. [PMID: 37596198 PMCID: PMC10529471 DOI: 10.1016/j.vaccine.2023.08.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/09/2023] [Accepted: 08/11/2023] [Indexed: 08/20/2023]
Abstract
The M protein of group A streptococci (Strep A) is a major virulence determinant and protective antigen. The N-terminal region of the M protein is variable in sequence, defines the M/emm type, and contains epitopes that elicit opsonic antibodies that protect animals from challenge infections. Although there are >200 M types of Strep A, there is now evidence that structurally related M proteins can be grouped into clusters and that immunity may be cluster-specific in addition to M type-specific. This observation has led to recent studies of structure-based design of multivalent M peptide vaccines to select peptides predicted to cross-react with heterologous M types to improve vaccine coverage. In the current study, we have applied a refined series of peptide structural algorithms to predict immunological cross-reactivity among 117 N-terminal M peptides representing the most prevalent M types of Strep A. Based on the results of the structural analyses, in combination with global M type prevalence data, we constructed a 32-valent vaccine containing 19 cross-reactive vaccine candidates predicted to cross-react with 37 heterologous M peptides to which were added 13 type-specific M peptides. The 4-protein recombinant vaccine was immunogenic in rabbits and elicited significant levels of antibodies against 31/32 (97%) vaccine peptides and 28/37 (76%) peptides predicted to cross-react. The vaccine antisera also promoted opsonophagocytic killing of vaccine and cross-reactive M types of Strep A. Based on a recent analysis of M type prevalence of Strep A, the potential global coverage of the 32-valent vaccine is ∼90%, ranging from 68% in Africa to 95% in North America. Our results indicate the utility of structure-based design that may be applied to future studies of broadly protective M peptide vaccines.
Collapse
Affiliation(s)
- James B Dale
- Department of Medicine, Division of Infectious Diseases, University of Tennessee Health Science Center, Memphis, TN 38163, United States; Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163, United States.
| | - Michelle P Aranha
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, United States; UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory, Oak Ridge, TN 37830, United States
| | - Thomas A Penfound
- Department of Medicine, Division of Infectious Diseases, University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | - Sanaz Salehi
- Department of Medicine, Division of Infectious Diseases, University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | - Jeremy C Smith
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, United States; UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory, Oak Ridge, TN 37830, United States
| |
Collapse
|
6
|
Wang KC, Kuliyev E, Nizet V, Ghosh P. A conserved 3D pattern in a Streptococcus pyogenes M protein immunogen elicits M-type crossreactivity. J Biol Chem 2023; 299:104980. [PMID: 37390991 PMCID: PMC10400905 DOI: 10.1016/j.jbc.2023.104980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 06/14/2023] [Accepted: 06/20/2023] [Indexed: 07/02/2023] Open
Abstract
Coiled coil-forming M proteins of the widespread and potentially deadly bacterial pathogen Streptococcus pyogenes (strep A) are immunodominant targets of opsonizing antibodies. However, antigenic sequence variability of M proteins into >220 M types, as defined by their hypervariable regions (HVRs), is considered to limit M proteins as vaccine immunogens because of type specificity in the antibody response. Surprisingly, a multi-HVR immunogen in clinical vaccine trials was shown to elicit M-type crossreactivity. The basis for this crossreactivity is unknown but may be due in part to antibody recognition of a 3D pattern conserved in many M protein HVRs that confers binding to human complement C4b-binding protein (C4BP). To test this hypothesis, we investigated whether a single M protein immunogen carrying the 3D pattern would elicit crossreactivity against other M types carrying the 3D pattern. We found that a 34-amino acid sequence of S. pyogenes M2 protein bearing the 3D pattern retained full C4BP-binding capacity when fused to a coiled coil-stabilizing sequence from the protein GCN4. We show that this immunogen, called M2G, elicited cross-reactive antibodies against a number of M types that carry the 3D pattern but not against those that lack the 3D pattern. We further show that the M2G antiserum-recognized M proteins displayed natively on the strep A surface and promoted the opsonophagocytic killing of strep A strains expressing these M proteins. As C4BP binding is a conserved virulence trait of strep A, we propose that targeting the 3D pattern may prove advantageous in vaccine design.
Collapse
Affiliation(s)
- Kuei-Chen Wang
- Department of Chemistry & Biochemistry, University of California, San Diego, California, USA
| | - Eziz Kuliyev
- Department of Chemistry & Biochemistry, University of California, San Diego, California, USA
| | - Victor Nizet
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California, San Diego, California, USA
| | - Partho Ghosh
- Department of Chemistry & Biochemistry, University of California, San Diego, California, USA.
| |
Collapse
|
7
|
Muacevic A, Adler JR, Toor D, Lyngdoh V, Nongrum G, Kapoor M, Chakraborti A. Group A Streptococcus Infections: Their Mechanisms, Epidemiology, and Current Scope of Vaccines. Cureus 2022; 14:e33146. [PMID: 36721580 PMCID: PMC9884514 DOI: 10.7759/cureus.33146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/13/2022] [Indexed: 01/01/2023] Open
Abstract
Group A streptococci (GAS) are gram-positive, cocci-shaped bacteria that cause a wide variety of infections and are a cause of significant health burden, particularly in lower- and middle-income nations. The GAS genome contains a number of virulence factors such as the M-protein, hyaluronic acid, C5a peptidase, etc. Despite its significant health burden across the globe, a proper vaccine against GAS infections is not yet available. Various candidates for an effective GAS vaccine are currently being researched. These are based on various parts of the streptococcal genome. These include candidates based on the N-terminal region of the M protein, the conserved C-terminal region of the M protein, and other parts of the streptococcal genome. The development of a vaccine against GAS infections is hampered by certain challenges, such as extensive genetic heterogeneity and high protein sequence variation. This review paper sheds light on the various virulence factors of GAS, their epidemiology, the different vaccine candidates currently being researched, and the challenges associated with M-protein and non-M-protein-based vaccines. This review also sheds light on the current scenario regarding the status of vaccine development against GAS-related infections.
Collapse
|
8
|
Novel Big Data-Driven Machine Learning Models for Drug Discovery Application. Molecules 2022; 27:molecules27030594. [PMID: 35163865 PMCID: PMC8840520 DOI: 10.3390/molecules27030594] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/14/2022] [Accepted: 01/14/2022] [Indexed: 11/16/2022] Open
Abstract
Most contemporary drug discovery projects start with a ‘hit discovery’ phase where small chemicals are identified that have the capacity to interact, in a chemical sense, with a protein target involved in a given disease. To assist and accelerate this initial drug discovery process, ’virtual docking calculations’ are routinely performed, where computational models of proteins and computational models of small chemicals are evaluated for their capacities to bind together. In cutting-edge, contemporary implementations of this process, several conformations of protein targets are independently assayed in parallel ‘ensemble docking’ calculations. Some of these protein conformations, a minority of them, will be capable of binding many chemicals, while other protein conformations, the majority of them, will not be able to do so. This fact that only some of the conformations accessible to a protein will be ’selected’ by chemicals is known as ’conformational selection’ process in biology. This work describes a machine learning approach to characterize and identify the properties of protein conformations that will be selected (i.e., bind to) chemicals, and classified as potential binding drug candidates, unlike the remaining non-binding drug candidate protein conformations. This work also addresses the class imbalance problem through advanced machine learning techniques that maximize the prediction rate of potential protein molecular conformations for the test case proteins ADORA2A (Adenosine A2a Receptor) and OPRK1 (Opioid Receptor Kappa 1), and subsequently reduces the failure rates and hastens the drug discovery process.
Collapse
|
9
|
Abstract
The immune response elicited by vaccines against microorganisms makes it the most successful medical interventions against infectious diseases. Conventional vaccines have limitations in inducing immunity against many types of pathogenic microorganism. The genetic diversity of microorganisms, coupled with the high degree of sequence variability in antigenic proteins, presents a challenge to developing broadly effective conventional vaccines. Atomic-resolution structure determination is crucial for understanding antigenic protein function. Cryo-electron microscopy, nuclear magnetic resonance spectroscopy coupled with bioinformatics provide three-dimensional structure of the antigenic proteins and provide a wealth of information about the organization of individual atoms and their chemical makeup. The atomic detail information of proteins offers enormous potential to rationally engineer proteins to enhance their properties and act as effective immunogens to induce immunity. The observation that whole protein antigens are not necessarily essential for inducing immunity has led to the emergence "structural vaccinology." Structure-based vaccines are designed on the rationale that protective epitopes should be sufficient to induce immune responses and provide protection against pathogens. In 2013 we published a review on structure-based vaccines (Thomas and Luxon. Expert Rev Vaccines 12 1301-11, 2013). This review states the progress in development of structure-based vaccines since the first review.
Collapse
Affiliation(s)
- Sunil Thomas
- Lankenau Institute for Medical Research, Wynnewood, PA, USA.
| | - Ann Abraham
- Lankenau Institute for Medical Research, Wynnewood, PA, USA
| |
Collapse
|
10
|
Azuar A, Shibu MA, Adilbish N, Marasini N, Hung H, Yang J, Luo Y, Khalil ZG, Capon RJ, Hussein WM, Toth I, Skwarczynski M. Poly(hydrophobic amino acid) Conjugates for the Delivery of Multiepitope Vaccine against Group A Streptococcus. Bioconjug Chem 2021; 32:2307-2317. [PMID: 34379392 DOI: 10.1021/acs.bioconjchem.1c00333] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Peptide-based vaccines are composed of small, defined, antigenic peptide epitopes. They are designed to induce well-controlled immune responses. Multiple epitopes are often employed in these vaccines to cover strain variability of a pathogen. However, peptide epitopes cannot stimulate adequate immune responses on their own and require an adjuvant (immune stimulant) and/or delivery system. Here, we designed and synthesized a multiepitope vaccine candidate against Group A Streptococcus (GAS) composed of several B-cell epitopes (J8, PL1, and 88/30) derived from GAS M-protein, universal PADRE T-helper cell epitope, and a polyleucine self-adjuvanting unit. The vaccine components were conjugated together (using mercapto-maleimide and azide-alkyne Huisgen cycloaddition reactions) or delivered as a mixture. The conjugated multiepitope vaccine candidate self-assembled into small nanoparticles and chain-like aggregated nanoparticles (CLANs) that were able to induce the production of J8-, PL1-, and 88/30-specific antibodies in mice. The multiepitope conjugate and the physical mixture of conjugates bearing the individual epitopes produced similar nanoparticles and induced comparable immune responses. Hence, simple physical mixing can replace complex chemical conjugation to produce multiepitope nanoparticles with equivalent morphology and immunological efficacy. This greatly simplifies vaccine production.
Collapse
Affiliation(s)
- Armira Azuar
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Mohini A Shibu
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Nomin Adilbish
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Nirmal Marasini
- School of Biomedical Sciences, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Hong Hung
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Jieru Yang
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Yacheng Luo
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Zeinab G Khalil
- Institute of Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Robert J Capon
- Institute of Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Waleed M Hussein
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Istvan Toth
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland 4072, Australia
- Institute of Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
- School of Pharmacy, The University of Queensland, Woolloongabba, Queensland 4102, Australia
| | - Mariusz Skwarczynski
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland 4072, Australia
| |
Collapse
|
11
|
Aranha MP, Penfound TA, Salehi S, Botteaux A, Smeesters P, Dale JB, Smith JC. Design of Broadly Cross-Reactive M Protein-Based Group A Streptococcal Vaccines. THE JOURNAL OF IMMUNOLOGY 2021; 207:1138-1149. [PMID: 34341168 DOI: 10.4049/jimmunol.2100286] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/13/2021] [Indexed: 11/19/2022]
Abstract
Group A streptococcal infections are a significant cause of global morbidity and mortality. A leading vaccine candidate is the surface M protein, a major virulence determinant and protective Ag. One obstacle to the development of M protein-based vaccines is the >200 different M types defined by the N-terminal sequences that contain protective epitopes. Despite sequence variability, M proteins share coiled-coil structural motifs that bind host proteins required for virulence. In this study, we exploit this potential Achilles heel of conserved structure to predict cross-reactive M peptides that could serve as broadly protective vaccine Ags. Combining sequences with structural predictions, six heterologous M peptides in a sequence-related cluster were predicted to elicit cross-reactive Abs with the remaining five nonvaccine M types in the cluster. The six-valent vaccine elicited Abs in rabbits that reacted with all 11 M peptides in the cluster and functional opsonic Abs against vaccine and nonvaccine M types in the cluster. We next immunized mice with four sequence-unrelated M peptides predicted to contain different coiled-coil propensities and tested the antisera for cross-reactivity against 41 heterologous M peptides. Based on these results, we developed an improved algorithm to select cross-reactive peptide pairs using additional parameters of coiled-coil length and propensity. The revised algorithm accurately predicted cross-reactive Ab binding, improving the Matthews correlation coefficient from 0.42 to 0.74. These results form the basis for selecting the minimum number of N-terminal M peptides to include in potentially broadly efficacious multivalent vaccines that could impact the overall global burden of group A streptococcal diseases.
Collapse
Affiliation(s)
- Michelle P Aranha
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN; .,Center for Molecular Biophysics, Oak Ridge National Laboratory, Oak Ridge, TN
| | - Thomas A Penfound
- Department of Medicine, Division of Infectious Diseases, University of Tennessee Health Science Center, Memphis, TN
| | - Sanaz Salehi
- Department of Medicine, Division of Infectious Diseases, University of Tennessee Health Science Center, Memphis, TN
| | - Anne Botteaux
- Molecular Bacteriology Laboratory, Free University of Brussels, Brussels, Belgium
| | - Pierre Smeesters
- Molecular Bacteriology Laboratory, Free University of Brussels, Brussels, Belgium.,Academic Children's Hospital Queen Fabiola, Free University of Brussels, Brussels, Belgium; and.,Centre for International Child Health, University of Melbourne, Melbourne, Victoria, Australia
| | - James B Dale
- Department of Medicine, Division of Infectious Diseases, University of Tennessee Health Science Center, Memphis, TN;
| | - Jeremy C Smith
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN; .,Center for Molecular Biophysics, Oak Ridge National Laboratory, Oak Ridge, TN
| |
Collapse
|
12
|
Lewnard JA, Whittles LK, Rick AM, Martin JM. Naturally Acquired Protection Against Upper Respiratory Symptoms Involving Group A Streptococcus in a Longitudinal Cohort Study. Clin Infect Dis 2021; 71:e244-e254. [PMID: 31955205 DOI: 10.1093/cid/ciaa044] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 01/15/2020] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Pharyngitis due to group A Streptococcus (GAS) represents a major cause of outpatient visits and antibiotic use in the United States. A leading vaccine candidate targets 30 of the > 200 emm types of GAS. We aimed to assess natural protection conferred by GAS against respiratory symptoms. METHODS In a 5-year study among school-aged children in Pittsburgh, Pennsylvania, pharyngeal cultures were obtained from children at 2-week intervals, and active surveillance was conducted for respiratory illnesses. We assessed protection via the relative odds of previous detection of homologous strains (defined by field-inversion gel electrophoresis banding pattern), emm types, and emm clusters at visits where GAS was detected with symptoms, vs visits where GAS was detected without symptoms. We used a cluster bootstrap of children to adjust estimates for repeated sampling. RESULTS At visits where previously detected GAS emm types were identified, we estimated 81.8% (95% confidence interval [CI], 67.1%-91.7%) protection against typical pharyngitis symptoms among children reacquiring the same strain, and 94.5% (95% CI, 83.5%-98.6%) protection among children acquiring a distinct strain. We estimated 77.1% (95% CI, 33.7%-96.3%) protection against typical symptoms among children acquiring partially heterologous emm types belonging to a previously detected emm cluster. Protection was evident after both symptomatic and asymptomatic detections of GAS. We did not identify strong evidence of protection against atypical respiratory symptoms. CONCLUSIONS Within a 5-year longitudinal study, previous detection of GAS emm types was associated with protection against typical symptoms when homologous strains were subsequently detected. Naturally acquired protection against partially heterologous types suggests that emm type-based vaccines may have broader strain coverage than what has been previously assumed.
Collapse
Affiliation(s)
- Joseph A Lewnard
- Division of Epidemiology, School of Public Health, University of California, Berkeley, Berkeley, California, USA.,Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, California, USA.,Center for Computational Biology, College of Engineering, University of California, Berkeley, Berkeley, California, USA
| | - Lilith K Whittles
- Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, United Kingdom.,Medical Research Council Centre for Global Infectious Disease Analysis, School of Public Health, Imperial College London, London, United Kingdom.,National Institute for Health Research Health Protection Research Unit in Modelling Methodology, School of Public Health, Imperial College London, London, United Kingdom
| | - Anne-Marie Rick
- Department of Pediatrics, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Pediatrics, University of Pittsburgh Medical Center Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Judith M Martin
- Department of Pediatrics, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Pediatrics, University of Pittsburgh Medical Center Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
13
|
Abstract
PURPOSE OF REVIEW There is a global need for well tolerated, effective, and affordable vaccines to prevent group A streptococcal infections and their most serious complications. The aim of this review is to highlight the recent progress in the identification of promising vaccine antigens and new approaches to vaccine design that address the complexities of group A streptococcal pathogenesis and epidemiology. RECENT FINDINGS Combination vaccines containing multiple shared, cross-protective antigens have proven efficacious in mouse and nonhuman primate models of infection. The development of complex multivalent M protein-based vaccines is continuing and several have progressed through early-stage human clinical trials. Formulations of vaccines containing universal T-cell epitopes, toll-like receptor agonists, and other adjuvants more potent than alum have been shown to enhance protective immunogenicity. Although the group A streptococcal vaccine antigen landscape is populated with a number of potential candidates, the clinical development of vaccines has been impeded by a number of factors. There are now concerted global efforts to raise awareness about the need for group A streptococcal vaccines and to support progress toward eventual commercialization and licensure. SUMMARY Preclinical antigen discovery, vaccine formulation, and efficacy studies in animal models have progressed significantly in recent years. There is now a need to move promising candidates through the clinical development pathway to establish their efficacy in preventing group A streptococcal infections and their complications.
Collapse
|
14
|
Spencer JA, Penfound T, Salehi S, Aranha MP, Wade LE, Agarwal R, Smith JC, Dale JB, Baudry J. Cross-reactive immunogenicity of group A streptococcal vaccines designed using a recurrent neural network to identify conserved M protein linear epitopes. Vaccine 2021; 39:1773-1779. [PMID: 33642159 DOI: 10.1016/j.vaccine.2021.01.075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 01/27/2021] [Accepted: 01/30/2021] [Indexed: 12/27/2022]
Abstract
The M protein of group A streptococci (Strep A) is a major virulence determinant and protective antigen. The N-terminal sequence of the protein defines the more than 200 M types of Strep A and also contains epitopes that elicit opsonic antibodies, some of which cross-react with heterologous M types. Current efforts to develop broadly protective M protein-based vaccines are directed at identifying potential cross-protective epitopes located in the N-terminal regions of cluster-related M proteins for use as vaccine antigens. In this study, we have used a comprehensive approach using the recurrent neural network ABCpred and IEDB epitope conservancy analysis tools to predict 16 residue linear B-cell epitopes from 117 clinically relevant M types of Strep A (~88% of global Strep A infections). To examine the immunogenicity of these epitope-based vaccines, nine peptides that together shared ≥60% sequence identity with 37 heterologous M proteins were incorporated into two recombinant hybrid protein vaccines, in which the epitopes were repeated 2 or 3 times, respectively. The combined immune responses of immunized rabbits showed that the vaccines elicited significant levels of antibodies against all nine vaccine epitopes present in homologous N-terminal 1-50 amino acid synthetic M peptides, as well as cross-reactive antibodies against 16 of 37 heterologous M peptides predicted to contain similar epitopes. The epitope-specificity of the cross-reactive antibodies was confirmed by ELISA inhibition assays and functional opsonic activity was assayed in HL-60-based bactericidal assays. The results provide important information for the future design of broadly protective M protein-based Strep A vaccines.
Collapse
Affiliation(s)
- Jay A Spencer
- Department of Biological Sciences, The University of Alabama in Huntsville, Huntsville, AL 35899, United States
| | - Tom Penfound
- Department of Medicine, Division of Infectious Diseases, University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | - Sanaz Salehi
- Department of Medicine, Division of Infectious Diseases, University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | - Michelle P Aranha
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, United States; UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory, Oak Ridge, TN 37830, United States
| | - Lauren E Wade
- Department of Medicine, Division of Infectious Diseases, University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | - Rupesh Agarwal
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, United States; UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory, Oak Ridge, TN 37830, United States
| | - Jeremy C Smith
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, United States; UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory, Oak Ridge, TN 37830, United States
| | - James B Dale
- Department of Medicine, Division of Infectious Diseases, University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | - Jerome Baudry
- Department of Biological Sciences, The University of Alabama in Huntsville, Huntsville, AL 35899, United States.
| |
Collapse
|
15
|
Cornax I, Zulk J, Olson J, Fulde M, Nizet V, Patras KA. Novel Models of Streptococcus canis Colonization and Disease Reveal Modest Contributions of M-Like (SCM) Protein. Microorganisms 2021; 9:microorganisms9010183. [PMID: 33467030 PMCID: PMC7829700 DOI: 10.3390/microorganisms9010183] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 01/14/2021] [Indexed: 12/16/2022] Open
Abstract
Streptococcus canis is a common colonizing bacterium of the urogenital tract of cats and dogs that can also cause invasive disease in these animal populations and in humans. Although the virulence mechanisms of S. canis are not well-characterized, an M-like protein, SCM, has recently identified been as a potential virulence factor. SCM is a surface-associated protein that binds to host plasminogen and IgGs suggesting its possible importance in host-pathogen interactions. In this study, we developed in vitro and ex vivo blood component models and murine models of S. canis vaginal colonization, systemic infection, and dermal infection to compare the virulence potential of the zoonotic S. canis vaginal isolate G361 and its isogenic SCM-deficient mutant (G361∆scm). We found that while S. canis establishes vaginal colonization and causes invasive disease in vivo, the contribution of the SCM protein to virulence phenotypes in these models is modest. We conclude that SCM is dispensable for invasive disease in murine models and for resistance to human blood components ex vivo, but may contribute to mucosal persistence, highlighting a potential contribution to the recently appreciated genetic diversity of SCM across strains and hosts.
Collapse
Affiliation(s)
- Ingrid Cornax
- Department of Pediatrics, UC San Diego, La Jolla, CA 92093, USA; (I.C.); (J.O.); (V.N.)
| | - Jacob Zulk
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA;
| | - Joshua Olson
- Department of Pediatrics, UC San Diego, La Jolla, CA 92093, USA; (I.C.); (J.O.); (V.N.)
| | - Marcus Fulde
- Institute of Microbiology and Epizootics, Centre of Infection Medicine, Freie Universität Berlin, 14163 Berlin, Germany;
| | - Victor Nizet
- Department of Pediatrics, UC San Diego, La Jolla, CA 92093, USA; (I.C.); (J.O.); (V.N.)
- Skaggs School of Pharmacy and Pharmaceutical Sciences, UC San Diego, La Jolla, CA 92093, USA
| | - Kathryn A Patras
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA;
- Correspondence:
| |
Collapse
|
16
|
Acharya A, Agarwal R, Baker M, Baudry J, Bhowmik D, Boehm S, Byler KG, Chen S, Coates L, Cooper C, Demerdash O, Daidone I, Eblen J, Ellingson S, Forli S, Glaser J, Gumbart JC, Gunnels J, Hernandez O, Irle S, Kneller D, Kovalevsky A, Larkin J, Lawrence T, LeGrand S, Liu SH, Mitchell J, Park G, Parks J, Pavlova A, Petridis L, Poole D, Pouchard L, Ramanathan A, Rogers D, Santos-Martins D, Scheinberg A, Sedova A, Shen Y, Smith J, Smith M, Soto C, Tsaris A, Thavappiragasam M, Tillack A, Vermaas J, Vuong V, Yin J, Yoo S, Zahran M, Zanetti-Polzi L. Supercomputer-Based Ensemble Docking Drug Discovery Pipeline with Application to Covid-19. J Chem Inf Model 2020; 60:5832-5852. [PMID: 33326239 PMCID: PMC7754786 DOI: 10.1021/acs.jcim.0c01010] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Indexed: 01/18/2023]
Abstract
We present a supercomputer-driven pipeline for in silico drug discovery using enhanced sampling molecular dynamics (MD) and ensemble docking. Ensemble docking makes use of MD results by docking compound databases into representative protein binding-site conformations, thus taking into account the dynamic properties of the binding sites. We also describe preliminary results obtained for 24 systems involving eight proteins of the proteome of SARS-CoV-2. The MD involves temperature replica exchange enhanced sampling, making use of massively parallel supercomputing to quickly sample the configurational space of protein drug targets. Using the Summit supercomputer at the Oak Ridge National Laboratory, more than 1 ms of enhanced sampling MD can be generated per day. We have ensemble docked repurposing databases to 10 configurations of each of the 24 SARS-CoV-2 systems using AutoDock Vina. Comparison to experiment demonstrates remarkably high hit rates for the top scoring tranches of compounds identified by our ensemble approach. We also demonstrate that, using Autodock-GPU on Summit, it is possible to perform exhaustive docking of one billion compounds in under 24 h. Finally, we discuss preliminary results and planned improvements to the pipeline, including the use of quantum mechanical (QM), machine learning, and artificial intelligence (AI) methods to cluster MD trajectories and rescore docking poses.
Collapse
Affiliation(s)
- A. Acharya
- School of Physics, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - R. Agarwal
- UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory, TN, 37830, USA
- The University of Tennessee, Knoxville. Department of Biochemistry & Cellular and Molecular Biology, 309 Ken and Blaire Mossman Bldg. 1311 Cumberland Avenue Knoxville, TN, 37996, USA
- Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN, 37996, USA
| | - M. Baker
- Computer Science and Mathematics Division, Oak Ridge National Lab, Oak Ridge, TN 37830, USA
| | - J. Baudry
- The University of Alabama in Huntsville, Department of Biological Sciences. 301 Sparkman Drive, Huntsville, AL 35899, USA
| | - D. Bhowmik
- Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - S. Boehm
- Computer Science and Mathematics Division, Oak Ridge National Lab, Oak Ridge, TN 37830, USA
| | - K. G. Byler
- The University of Alabama in Huntsville, Department of Biological Sciences. 301 Sparkman Drive, Huntsville, AL 35899, USA
| | - S.Y. Chen
- Computational Science Initiative, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - L. Coates
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - C.J. Cooper
- UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory, TN, 37830, USA
- Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN, 37996, USA
| | - O. Demerdash
- Biosciences Division, Oak Ridge National Lab, Oak Ridge, TN 37830, USA
| | - I. Daidone
- Department of Physical and Chemical Sciences, University of L’Aquila, I-67010 L’Aquila, Italy
| | - J.D. Eblen
- UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory, TN, 37830, USA
- The University of Tennessee, Knoxville. Department of Biochemistry & Cellular and Molecular Biology, 309 Ken and Blaire Mossman Bldg. 1311 Cumberland Avenue Knoxville, TN, 37996, USA
| | - S. Ellingson
- University of Kentucky, Division of Biomedical Informatics, College of Medicine, UK Medical Center MN 150, Lexington KY, 40536, USA
| | - S. Forli
- Scripps Research, La Jolla, CA, 92037, USA
| | - J. Glaser
- National Center for Computational Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - J. C. Gumbart
- School of Physics, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - J. Gunnels
- HPC Engineering, Amazon Web Services, Seattle, WA 98121, USA
| | - O. Hernandez
- Computer Science and Mathematics Division, Oak Ridge National Lab, Oak Ridge, TN 37830, USA
| | - S. Irle
- Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, TN 37996, USA
| | - D.W. Kneller
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - A. Kovalevsky
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - J. Larkin
- NVIDIA Corporation, Santa Clara, CA 95051, USA
| | - T.J. Lawrence
- Biosciences Division, Oak Ridge National Lab, Oak Ridge, TN 37830, USA
| | - S. LeGrand
- NVIDIA Corporation, Santa Clara, CA 95051, USA
| | - S.-H. Liu
- UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory, TN, 37830, USA
- The University of Tennessee, Knoxville. Department of Biochemistry & Cellular and Molecular Biology, 309 Ken and Blaire Mossman Bldg. 1311 Cumberland Avenue Knoxville, TN, 37996, USA
| | - J.C. Mitchell
- Biosciences Division, Oak Ridge National Lab, Oak Ridge, TN 37830, USA
| | - G. Park
- Computational Science Initiative, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - J.M. Parks
- UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory, TN, 37830, USA
- The University of Tennessee, Knoxville. Department of Biochemistry & Cellular and Molecular Biology, 309 Ken and Blaire Mossman Bldg. 1311 Cumberland Avenue Knoxville, TN, 37996, USA
- Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN, 37996, USA
| | - A. Pavlova
- School of Physics, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - L. Petridis
- UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory, TN, 37830, USA
- The University of Tennessee, Knoxville. Department of Biochemistry & Cellular and Molecular Biology, 309 Ken and Blaire Mossman Bldg. 1311 Cumberland Avenue Knoxville, TN, 37996, USA
| | - D. Poole
- NVIDIA Corporation, Santa Clara, CA 95051, USA
| | - L. Pouchard
- Computational Science Initiative, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - A. Ramanathan
- Data Science and Learning Division, Argonne National Lab, Lemont, IL 60439, USA
| | - D. Rogers
- National Center for Computational Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | | | | | - A. Sedova
- Biosciences Division, Oak Ridge National Lab, Oak Ridge, TN 37830, USA
| | - Y. Shen
- UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory, TN, 37830, USA
- The University of Tennessee, Knoxville. Department of Biochemistry & Cellular and Molecular Biology, 309 Ken and Blaire Mossman Bldg. 1311 Cumberland Avenue Knoxville, TN, 37996, USA
- Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN, 37996, USA
| | - J.C. Smith
- UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory, TN, 37830, USA
- The University of Tennessee, Knoxville. Department of Biochemistry & Cellular and Molecular Biology, 309 Ken and Blaire Mossman Bldg. 1311 Cumberland Avenue Knoxville, TN, 37996, USA
| | - M.D. Smith
- UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory, TN, 37830, USA
- The University of Tennessee, Knoxville. Department of Biochemistry & Cellular and Molecular Biology, 309 Ken and Blaire Mossman Bldg. 1311 Cumberland Avenue Knoxville, TN, 37996, USA
| | - C. Soto
- Computational Science Initiative, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - A. Tsaris
- National Center for Computational Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | | | | | - J.V. Vermaas
- National Center for Computational Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - V.Q. Vuong
- Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, TN 37996, USA
| | - J. Yin
- National Center for Computational Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - S. Yoo
- Computational Science Initiative, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - M. Zahran
- Department of Biological Sciences, New York City College of Technology, The City University of New York (CUNY), Brooklyn, NY 11201, USA
| | | |
Collapse
|
17
|
Boukthir S, Moullec S, Cariou ME, Meygret A, Morcet J, Faili A, Kayal S. A prospective survey of Streptococcus pyogenes infections in French Brittany from 2009 to 2017: Comprehensive dynamic of new emergent emm genotypes. PLoS One 2020; 15:e0244063. [PMID: 33332468 PMCID: PMC7746304 DOI: 10.1371/journal.pone.0244063] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 12/02/2020] [Indexed: 12/15/2022] Open
Abstract
Streptococcus pyogenes or group A Streptococcus (GAS) causes diseases ranging from uncomplicated pharyngitis to life-threatening infections. It has complex epidemiology driven by the diversity, the temporal and geographical fluctuations of the circulating strains. Despite the global burden of GAS diseases, there is currently no available vaccination strategy against GAS infections. This study, based on a longitudinal population survey, aimed to understand the dynamic of GAS emm types and to give leads to better recognition of underlying mechanisms for the emergence of successful clones. From 2009 to 2017, we conducted a systematic culture-based diagnosis of GAS infections in a French Brittany population with a prospective recovery of clinical data. The epidemiological analysis was performed using emm typing combined with the structural and functional cluster-typing system for all the recovered strains. Risk factors for the invasiveness, identified by univariate analysis, were computed in a multiple logistic regression analysis, and the only independent risk factor remaining in the model was the age (OR for the entire range [CI95%] = 6.35 [3.63, 11.10]; p<0.0001). Among the 61 different emm types identified, the most prevalent were emm28 (16%), emm89 (15%), emm1 (14%), and emm4 (8%), which accounted for more than 50% of circulating strains. During the study period, five genotypes identified as emm44, 66, 75, 83, 87 emerged successively and belonged to clusters D4, E2, E3, and E6 that were different from those gathering “Prevalent” emm types (clusters A-C3 to 5, E1 and E4). We previously reported significant genetic modifications for emm44, 66, 83 and 75 types resulting possibly from a short adaptive evolution. Herein we additionally observed that the emergence of a new genotype could occur in a susceptible population having specific risk factors or probably lacking a naturally-acquired cluster-specific immune cross-protection. Among emergent emm types, emm75 and emm87 tend to become prevalent with a stable annual incidence and the risk of a clonal expansion have to be considered.
Collapse
Affiliation(s)
- Sarrah Boukthir
- CHU de Rennes, Service de Bactériologie-Hygiène Hospitalière, Rennes, France
- Inserm, CIC 1414, Rennes, France
- Université Rennes 1, Faculté de Médecine, Rennes, France
| | - Séverine Moullec
- Inserm, CIC 1414, Rennes, France
- Université Rennes 1, Faculté de Médecine, Rennes, France
| | | | - Alexandra Meygret
- CHU de Rennes, Service de Bactériologie-Hygiène Hospitalière, Rennes, France
- Université Rennes 1, Faculté de Médecine, Rennes, France
| | - Jeff Morcet
- CHU de Rennes, Service de Bactériologie-Hygiène Hospitalière, Rennes, France
- Inserm, CIC 1414, Rennes, France
| | - Ahmad Faili
- Inserm, CIC 1414, Rennes, France
- Université Rennes 1, Faculté de Pharmacie, Rennes, France
| | - Samer Kayal
- CHU de Rennes, Service de Bactériologie-Hygiène Hospitalière, Rennes, France
- Inserm, CIC 1414, Rennes, France
- Université Rennes 1, Faculté de Médecine, Rennes, France
- * E-mail:
| |
Collapse
|
18
|
Dooley LM, Ahmad TB, Pandey M, Good MF, Kotiw M. Rheumatic heart disease: A review of the current status of global research activity. Autoimmun Rev 2020; 20:102740. [PMID: 33333234 DOI: 10.1016/j.autrev.2020.102740] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 09/04/2020] [Indexed: 01/17/2023]
Abstract
Rheumatic heart disease (RHD) is a serious and long-term consequence of acute rheumatic fever (ARF), an autoimmune sequela of a mucosal infection by Streptococcus pyogenes (Group A Streptococcus, Strep A). The pathogenesis of ARF and RHD is complex and not fully understood but involves host and bacterial factors, molecular mimicry, and aberrant host innate and adaptive immune responses that result in loss of self-tolerance and subsequent cross-reactivity with host tissues. RHD is entirely preventable yet claims an estimated 320 000 lives annually. The major burden of disease is carried by developing nations and Indigenous populations within developed nations, including Australia. This review will focus on the epidemiology, pathogenesis and treatment of ARF and RHD in Australia, where: streptococcal pyoderma, rather than streptococcal pharyngitis, and Group C and Group G Streptococcus, have been implicated as antecedents to ARF; the rates of RHD in remote Indigenous communities are persistently among the highest in the world; government register-based programs coordinate disease screening and delivery of prophylaxis with variable success; and researchers are making significant progress in the development of a broad-spectrum vaccine against Strep A.
Collapse
Affiliation(s)
- Leanne M Dooley
- School of Health and Wellbeing, University of Southern Queensland, Toowoomba, Queensland, Australia; Institute for Life Sciences and the Environment, University of Southern Queensland, Toowoomba, Queensland, Australia.
| | - Tarek B Ahmad
- School of Health and Wellbeing, University of Southern Queensland, Toowoomba, Queensland, Australia; Institute for Life Sciences and the Environment, University of Southern Queensland, Toowoomba, Queensland, Australia.
| | - Manisha Pandey
- The Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia.
| | - Michael F Good
- The Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia.
| | - Michael Kotiw
- School of Health and Wellbeing, University of Southern Queensland, Toowoomba, Queensland, Australia; Institute for Life Sciences and the Environment, University of Southern Queensland, Toowoomba, Queensland, Australia.
| |
Collapse
|
19
|
Acharya A, Agarwal R, Baker M, Baudry J, Bhowmik D, Boehm S, Byler KG, Coates L, Chen SY, Cooper CJ, Demerdash O, Daidone I, Eblen JD, Ellingson S, Forli S, Glaser J, Gumbart JC, Gunnels J, Hernandez O, Irle S, Larkin J, Lawrence TJ, LeGrand S, Liu SH, Mitchell JC, Park G, Parks JM, Pavlova A, Petridis L, Poole D, Pouchard L, Ramanathan A, Rogers D, Santos-Martins D, Scheinberg A, Sedova A, Shen S, Smith JC, Smith MD, Soto C, Tsaris A, Thavappiragasam M, Tillack AF, Vermaas JV, Vuong VQ, Yin J, Yoo S, Zahran M, Zanetti-Polzi L. Supercomputer-Based Ensemble Docking Drug Discovery Pipeline with Application to Covid-19. CHEMRXIV : THE PREPRINT SERVER FOR CHEMISTRY 2020:12725465. [PMID: 33200117 PMCID: PMC7668744 DOI: 10.26434/chemrxiv.12725465] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Revised: 07/29/2020] [Indexed: 01/18/2023]
Abstract
We present a supercomputer-driven pipeline for in-silico drug discovery using enhanced sampling molecular dynamics (MD) and ensemble docking. We also describe preliminary results obtained for 23 systems involving eight protein targets of the proteome of SARS CoV-2. THe MD performed is temperature replica-exchange enhanced sampling, making use of the massively parallel supercomputing on the SUMMIT supercomputer at Oak Ridge National Laboratory, with which more than 1ms of enhanced sampling MD can be generated per day. We have ensemble docked repurposing databases to ten configurations of each of the 23 SARS CoV-2 systems using AutoDock Vina. We also demonstrate that using Autodock-GPU on SUMMIT, it is possible to perform exhaustive docking of one billion compounds in under 24 hours. Finally, we discuss preliminary results and planned improvements to the pipeline, including the use of quantum mechanical (QM), machine learning, and AI methods to cluster MD trajectories and rescore docking poses.
Collapse
Affiliation(s)
- A Acharya
- School of Physics, Georgia Institute of Technology, Atlanta, GA 30332
| | - R Agarwal
- UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory, TN, 37830
- The University of Tennessee, Knoxville. Department of Biochemistry & Cellular and Molecular Biology, 309 Ken and Blaire Mossman Bldg. 1311 Cumberland Avenue Knoxville, TN, 37996
- Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN, 37996
| | - M Baker
- Computer Science and Mathematics Division, Oak Ridge National Lab, Oak Ridge, TN 37830
| | - J Baudry
- The University of Alabama in Huntsville, Department of Biological Sciences. 301 Sparkman Drive, Huntsville, AL 35899
| | - D Bhowmik
- Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831
| | - S Boehm
- Computer Science and Mathematics Division, Oak Ridge National Lab, Oak Ridge, TN 37830
| | - K G Byler
- The University of Alabama in Huntsville, Department of Biological Sciences. 301 Sparkman Drive, Huntsville, AL 35899
| | - L Coates
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831
| | - S Y Chen
- Computational Science Initiative, Brookhaven National Laboratory, Upton, NY 11973
| | - C J Cooper
- UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory, TN, 37830
- Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN, 37996
| | - O Demerdash
- Biosciences Division, Oak Ridge National Lab, Oak Ridge, TN 37830
| | - I Daidone
- Department of Physical and Chemical Sciences, University of L'Aquila, I-67010 L'Aquila, Italy
| | - J D Eblen
- UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory, TN, 37830
- The University of Tennessee, Knoxville. Department of Biochemistry & Cellular and Molecular Biology, 309 Ken and Blaire Mossman Bldg. 1311 Cumberland Avenue Knoxville, TN, 37996
| | - S Ellingson
- University of Kentucky, Division of Biomedical Informatics, College of Medicine, UK Medical Center MN 150, Lexington KY, 40536
| | - S Forli
- Scripps Research, La Jolla, CA, 92037
| | - J Glaser
- National Center for Computational Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37830
| | - J C Gumbart
- School of Physics, Georgia Institute of Technology, Atlanta, GA 30332
| | - J Gunnels
- HPC Engineering, Amazon Web Services, Seattle, WA 98121
| | - O Hernandez
- Computer Science and Mathematics Division, Oak Ridge National Lab, Oak Ridge, TN 37830
| | - S Irle
- Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831
- Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, TN 37996
| | - J Larkin
- NVIDIA Corporation, Santa Clara, CA 95051
| | - T J Lawrence
- Biosciences Division, Oak Ridge National Lab, Oak Ridge, TN 37830
| | - S LeGrand
- NVIDIA Corporation, Santa Clara, CA 95051
| | - S-H Liu
- UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory, TN, 37830
- The University of Tennessee, Knoxville. Department of Biochemistry & Cellular and Molecular Biology, 309 Ken and Blaire Mossman Bldg. 1311 Cumberland Avenue Knoxville, TN, 37996
| | - J C Mitchell
- Biosciences Division, Oak Ridge National Lab, Oak Ridge, TN 37830
| | - G Park
- Computational Science Initiative, Brookhaven National Laboratory, Upton, NY 11973
| | - J M Parks
- UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory, TN, 37830
- The University of Tennessee, Knoxville. Department of Biochemistry & Cellular and Molecular Biology, 309 Ken and Blaire Mossman Bldg. 1311 Cumberland Avenue Knoxville, TN, 37996
- Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN, 37996
| | - A Pavlova
- School of Physics, Georgia Institute of Technology, Atlanta, GA 30332
| | - L Petridis
- UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory, TN, 37830
- The University of Tennessee, Knoxville. Department of Biochemistry & Cellular and Molecular Biology, 309 Ken and Blaire Mossman Bldg. 1311 Cumberland Avenue Knoxville, TN, 37996
| | - D Poole
- NVIDIA Corporation, Santa Clara, CA 95051
| | - L Pouchard
- Computational Science Initiative, Brookhaven National Laboratory, Upton, NY 11973
| | - A Ramanathan
- Data Science and Learning Division, Argonne National Lab, Lemont, IL 60439
| | - D Rogers
- National Center for Computational Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37830
| | | | | | - A Sedova
- Biosciences Division, Oak Ridge National Lab, Oak Ridge, TN 37830
| | - S Shen
- UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory, TN, 37830
- The University of Tennessee, Knoxville. Department of Biochemistry & Cellular and Molecular Biology, 309 Ken and Blaire Mossman Bldg. 1311 Cumberland Avenue Knoxville, TN, 37996
- Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN, 37996
| | - J C Smith
- UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory, TN, 37830
- The University of Tennessee, Knoxville. Department of Biochemistry & Cellular and Molecular Biology, 309 Ken and Blaire Mossman Bldg. 1311 Cumberland Avenue Knoxville, TN, 37996
| | - M D Smith
- UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory, TN, 37830
- The University of Tennessee, Knoxville. Department of Biochemistry & Cellular and Molecular Biology, 309 Ken and Blaire Mossman Bldg. 1311 Cumberland Avenue Knoxville, TN, 37996
| | - C Soto
- Computational Science Initiative, Brookhaven National Laboratory, Upton, NY 11973
| | - A Tsaris
- National Center for Computational Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37830
| | | | | | - J V Vermaas
- National Center for Computational Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37830
| | - V Q Vuong
- Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831
- Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, TN 37996
| | - J Yin
- National Center for Computational Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37830
| | - S Yoo
- Computational Science Initiative, Brookhaven National Laboratory, Upton, NY 11973
| | - M Zahran
- Department of Biological Sciences, New York City College of Technology, The City University of New York (CUNY), Brooklyn, NY 11201
| | | |
Collapse
|
20
|
Valenciano SJ, Onukwube J, Spiller MW, Thomas A, Como-Sabetti K, Schaffner W, Farley M, Petit S, Watt JP, Spina N, Harrison LH, Alden NB, Torres S, Arvay ML, Beall B, Van Beneden CA. Invasive Group A Streptococcal Infections Among People Who Inject Drugs and People Experiencing Homelessness in the United States, 2010-2017. Clin Infect Dis 2020; 73:e3718-e3726. [PMID: 32803254 DOI: 10.1093/cid/ciaa787] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 06/12/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Reported outbreaks of invasive group A Streptococcus (iGAS) infections among people who inject drugs (PWID) and people experiencing homelessness (PEH) have increased, concurrent with rising US iGAS rates. We describe epidemiology among iGAS patients with these risk factors. METHODS We analyzed iGAS infections from population-based Active Bacterial Core surveillance (ABCs) at 10 US sites from 2010 to 2017. Cases were defined as GAS isolated from a normally sterile site or from a wound in patients with necrotizing fasciitis or streptococcal toxic shock syndrome. GAS isolates were emm typed. We categorized iGAS patients into four categories: injection drug use (IDU) only, homelessness only, both, and neither. We calculated annual change in prevalence of these risk factors using log binomial regression models. We estimated national iGAS infection rates among PWID and PEH. RESULTS We identified 12 386 iGAS cases; IDU, homelessness, or both were documented in ~13%. Skin infections and acute skin breakdown were common among iGAS patients with documented IDU or homelessness. Endocarditis was 10-fold more frequent among iGAS patients with documented IDU only versus those with neither risk factor. Average percentage yearly increase in prevalence of IDU and homelessness among iGAS patients was 17.5% and 20.0%, respectively. iGAS infection rates among people with documented IDU or homelessness were ~14-fold and 17- to 80-fold higher, respectively, than among people without those risks. CONCLUSIONS IDU and homelessness likely contribute to increases in US incidence of iGAS infections. Improving management of skin breakdown and early recognition of skin infection could prevent iGAS infections in these patients.
Collapse
Affiliation(s)
- Sandra J Valenciano
- Epidemic Intelligence Service assigned to National Center for Immunization and Respiratory Diseases, Division of Bacterial Diseases, Respiratory Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Jennifer Onukwube
- Centers for Disease Control and Prevention, National Center for Immunization and Respiratory Diseases, Division of Bacterial Diseases, Respiratory Diseases Branch, Atlanta, Georgia, USA
| | - Michael W Spiller
- Centers for Disease Control and Prevention, National Center for Immunization and Respiratory Diseases, Division of Bacterial Diseases, Respiratory Diseases Branch, Atlanta, Georgia, USA
| | - Ann Thomas
- Oregon Health Authority, Portland, Oregon, USA
| | | | | | - Monica Farley
- Emory University School of Medicine and the VA Medical Center, Atlanta, Georgia, USA
| | - Susan Petit
- Connecticut Department of Public Health, Hartford, Connecticut, USA
| | - James P Watt
- California Department of Public Health, Richmond, California, USA
| | - Nancy Spina
- New York State Department of Health, Albany, New York, USA
| | - Lee H Harrison
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Nisha B Alden
- Colorado Department of Public Health and Environment, Denver, Colorado, USA
| | - Salina Torres
- New Mexico Department of Health, Santa Fe, New Mexico, USA
| | - Melissa L Arvay
- Centers for Disease Control and Prevention, National Center for Immunization and Respiratory Diseases, Division of Bacterial Diseases, Respiratory Diseases Branch, Atlanta, Georgia, USA
| | - Bernard Beall
- Centers for Disease Control and Prevention, National Center for Immunization and Respiratory Diseases, Division of Bacterial Diseases, Respiratory Diseases Branch, Atlanta, Georgia, USA
| | - Chris A Van Beneden
- Centers for Disease Control and Prevention, National Center for Immunization and Respiratory Diseases, Division of Bacterial Diseases, Respiratory Diseases Branch, Atlanta, Georgia, USA
| |
Collapse
|
21
|
The emm-Cluster Typing System. Methods Mol Biol 2020. [PMID: 32430811 DOI: 10.1007/978-1-0716-0467-0_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
emm-cluster typing system allows to classify most Streptococcus pyogenes variants into 48 different emm clusters. The system correlates nicely with the host serum binding capacities of the M proteins and has been used in epidemiological surveys, strain selection, and vaccine development. Here we describe the allocation of the emm cluster based on the emm-typing defining region.
Collapse
|
22
|
Beall B, Van Beneden C. Challenges to Vaccine Development: The Diversity of Group A Streptococcal Strains Among Varied Climates and Global Regions. J Infect Dis 2020; 221:1394-1397. [PMID: 31748778 PMCID: PMC11959450 DOI: 10.1093/infdis/jiz617] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 11/19/2019] [Indexed: 12/12/2022] Open
Affiliation(s)
- Bernard Beall
- Respiratory Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Chris Van Beneden
- Respiratory Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
23
|
Whitby PW, Morton DJ, Mussa HJ, Mirea L, Stull TL. A bacterial vaccine polypeptide protective against nontypable Haemophilus influenzae. Vaccine 2020; 38:2960-2970. [PMID: 32111525 DOI: 10.1016/j.vaccine.2020.02.054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 02/07/2020] [Accepted: 02/18/2020] [Indexed: 02/08/2023]
Abstract
Nontypeable strains of Haemophilus influenzae (NTHi) are one of the most common cause of otitis media and the most frequent infection associated with exacerbations of chronic obstructive pulmonary disease; there is currently no vaccine in the U.S. to prevent NTHi. Using bioinformatics and structural vaccinology, we previously identified several NTHi species-conserved and sequence-conserved peptides that mediate passive protection in the rat model of infection. Using these, and similar peptides, we designed Hi Poly 1, a Bacterial Vaccine Polypeptide, comprising 9 unique peptides from 6 different surface proteins. Recombinant Hi Poly 1 was purified by affinity chromatography. Forty chinchillas were immunized three times with 200 µg of Hi Poly 1 with alum adjuvant; similarly, 41 controls were immunized with adjuvant alone. The average Log2 IgG titer among immunized animals was 17.04, and IgG antibodies against each component peptide were detected. In the infant rat model, antisera from immunized chinchillas provided significant passive protection compared to PBS (p = 0.01) and pre-immune sera (p = 0.03). In the established chinchilla model of NTHi otitis media, the vaccinated group cleared infection faster than the control group as indicated by significantly decreased positive findings on video-otoscopy (p < 0.0001) and tympanometry (p = 0.0002) on day 7, and for middle ear fluid obtained by aspiration (p = 0.0001) on day 10 post-infection. Using 12 representative NTHi strains in a Live-Cell ELISA, greater antibody binding to each strain was detected with post Hi Poly 1 than the pre-immune chinchilla antisera. The data from this proof-of-principle study demonstrate the effectiveness of Hi Poly 1 against the NTHi in two relevant preclinical models of bacteremia and otitis media as well as surface antibody binding across the species. The Bacterial Vaccine Polypeptide approach to a vaccine against NTHi also serves as a paradigm for development of similar vaccines to protect against other bacteria.
Collapse
Affiliation(s)
- Paul W Whitby
- Department of Child Health, University of Arizona College of Medicine-Phoenix, United States; Phoenix Childrens Hospital, Phoenix, United States.
| | - Daniel J Morton
- Department of Child Health, University of Arizona College of Medicine-Phoenix, United States; Phoenix Childrens Hospital, Phoenix, United States
| | - Huda J Mussa
- Department of Child Health, University of Arizona College of Medicine-Phoenix, United States; Phoenix Childrens Hospital, Phoenix, United States
| | - Lucia Mirea
- Department of Child Health, University of Arizona College of Medicine-Phoenix, United States; Phoenix Childrens Hospital, Phoenix, United States
| | - Terrence L Stull
- Department of Child Health, University of Arizona College of Medicine-Phoenix, United States; Phoenix Childrens Hospital, Phoenix, United States
| |
Collapse
|
24
|
Aranha MP, Penfound TA, Spencer JA, Agarwal R, Baudry J, Dale JB, Smith JC. Structure-based group A streptococcal vaccine design: Helical wheel homology predicts antibody cross-reactivity among streptococcal M protein-derived peptides. J Biol Chem 2020; 295:3826-3836. [PMID: 32029479 DOI: 10.1074/jbc.ra119.011258] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 02/05/2020] [Indexed: 12/26/2022] Open
Abstract
Group A streptococcus (Strep A) surface M protein, an α-helical coiled-coil dimer, is a vaccine target and a major determinant of streptococcal virulence. The sequence-variable N-terminal region of the M protein defines the M type and also contains epitopes that promote opsonophagocytic killing of streptococci. Recent reports have reported considerable cross-reactivity among different M types, suggesting the prospect of identifying cross-protective epitopes that would constitute a broadly protective multivalent vaccine against Strep A isolates. Here, we have used a combination of immunological assays, structural biology, and cheminformatics to construct a recombinant M protein-based vaccine that included six Strep A M peptides that were predicted to elicit antisera that would cross-react with an additional 15 nonvaccine M types of Strep A. Rabbit antisera against this recombinant vaccine cross-reacted with 10 of the 15 nonvaccine M peptides. Two of the five nonvaccine M peptides that did not cross-react shared high sequence identity (≥50%) with the vaccine peptides, implying that high sequence identity alone was insufficient for cross-reactivity among the M peptides. Additional structural analyses revealed that the sequence identity at corresponding polar helical-wheel heptad sites between vaccine and nonvaccine peptides accurately distinguishes cross-reactive from non-cross-reactive peptides. On the basis of these observations, we developed a scoring algorithm based on the sequence identity at polar heptad sites. When applied to all epidemiologically important M types, this algorithm should enable the selection of a minimal number of M peptide-based vaccine candidates that elicit broadly protective immunity against Strep A.
Collapse
Affiliation(s)
- Michelle P Aranha
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996, United States .,University of Tennessee/Oak Ridge National Laboratory Center for Molecular Biophysics, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Thomas A Penfound
- Department of Medicine, Division of Infectious Diseases, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Jay A Spencer
- Department of Biological Sciences, University of Alabama in Huntsville, Huntsville, Alabama 35899, United States
| | - Rupesh Agarwal
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996, United States.,Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Jerome Baudry
- Department of Biological Sciences, University of Alabama in Huntsville, Huntsville, Alabama 35899, United States
| | - James B Dale
- Department of Medicine, Division of Infectious Diseases, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Jeremy C Smith
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996, United States.,University of Tennessee/Oak Ridge National Laboratory Center for Molecular Biophysics, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| |
Collapse
|
25
|
Pastural É, McNeil SA, MacKinnon-Cameron D, Ye L, Langley JM, Stewart R, Martin LH, Hurley GJ, Salehi S, Penfound TA, Halperin S, Dale JB. Safety and immunogenicity of a 30-valent M protein-based group a streptococcal vaccine in healthy adult volunteers: A randomized, controlled phase I study. Vaccine 2019; 38:1384-1392. [PMID: 31843270 DOI: 10.1016/j.vaccine.2019.12.005] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 11/26/2019] [Accepted: 12/03/2019] [Indexed: 11/25/2022]
Abstract
BACKGROUND Streptococcus pyogenes (group A Streptococcus, Strep A) is a widespread pathogen that continues to pose a significant threat to human health. The development of a Strep A vaccine remains an unmet global health need. One of the major vaccine strategies is the use of M protein, which is a primary virulence determinant and protective antigen. Multivalent recombinant M protein vaccines are being developed with N-terminal M peptides that contain opsonic epitopes but do not contain human tissue cross-reactive epitopes. METHODS We completed a Phase I trial of a recombinant 30-valent M protein-based Strep A vaccine (Strep A vaccine, StreptAnova™) comprised of four recombinant proteins containing N-terminal peptides from 30 M proteins of common pharyngitis and invasive and/or rheumatogenic serotypes, adjuvanted with aluminum hydroxide. The trial was observer-blinded and randomized in a 2:1 ratio for intramuscular administration of Strep A vaccine or an alum-based comparator in healthy adult volunteers, at 0, 30 and 180 days. Primary outcome measures were assessments of safety, including assays for antibodies that cross-reacted with host tissues, and immunogenicity assessed by ELISA with the individual vaccine peptides and by opsonophagocytic killing (OPK) assays in human blood. RESULTS Twenty-three Strep A-vaccinated participants and 13 controls completed the study. The Strep A vaccine was well-tolerated and there was no clinical evidence of autoimmunity and no laboratory evidence of tissue cross-reactive antibodies. The vaccine was immunogenic and elicited significant increases in geometric mean antibody levels to 24 of the 30 component M antigens by ELISA. Vaccine-induced OPK activity was observed against selected M types of Strep A in vaccinated participants that seroconverted to specific M peptides. CONCLUSION The Strep A vaccine was well tolerated and immunogenic in healthy adults, providing strong support for further clinical development. [ClinicalTrials.gov NCT02564237].
Collapse
Affiliation(s)
- Élodie Pastural
- Pan-Provincial Vaccine Enterprise Inc. (PREVENT), Saskatoon, Saskatchewan, Canada
| | - Shelly A McNeil
- Canadian Center for Vaccinology, Dalhousie University, IWK Health Centre, Nova Scotia Health Authority, Halifax, Nova Scotia, Canada; Division of Infectious Diseases, Department of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada.
| | - Donna MacKinnon-Cameron
- Canadian Center for Vaccinology, Dalhousie University, IWK Health Centre, Nova Scotia Health Authority, Halifax, Nova Scotia, Canada
| | - Lingyun Ye
- Canadian Center for Vaccinology, Dalhousie University, IWK Health Centre, Nova Scotia Health Authority, Halifax, Nova Scotia, Canada
| | - Joanne M Langley
- Canadian Center for Vaccinology, Dalhousie University, IWK Health Centre, Nova Scotia Health Authority, Halifax, Nova Scotia, Canada; Division of Infectious Diseases, Department of Pediatrics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Robert Stewart
- Division of Cardiology, Department of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Luis H Martin
- Pan-Provincial Vaccine Enterprise Inc. (PREVENT), Saskatoon, Saskatchewan, Canada
| | - Gregory J Hurley
- Division of Infectious Diseases, Department of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Sanaz Salehi
- Division of Infectious Diseases, Department of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Thomas A Penfound
- Division of Infectious Diseases, Department of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Scott Halperin
- Canadian Center for Vaccinology, Dalhousie University, IWK Health Centre, Nova Scotia Health Authority, Halifax, Nova Scotia, Canada; Division of Infectious Diseases, Department of Pediatrics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - James B Dale
- Division of Infectious Diseases, Department of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
26
|
Group A Streptococcus infections in children: from virulence to clinical management. Curr Opin Infect Dis 2019; 31:224-230. [PMID: 29601325 DOI: 10.1097/qco.0000000000000452] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
PURPOSE OF REVIEW Recent findings have open new perspectives on group A Streptococcus (GAS) virulence understanding with special focus on the carrier stage and new hopes for an efficient vaccine against this important pathogen. RECENT FINDINGS Understanding of carriage state, transmission and role of virulence factors in invasive infections have been recently active research fields questioning the link between carriage and infections and highlighting the potential to prevent invasive diseases. New roles for already well known virulence factors, such as Streptolysin O, M protein or NAD(+)-glycohydrolase have been discovered. Immunological studies have also shown diversity in both clinical and immunological responses toward various GAS antigens raising questions, and hopes, for the development of an efficient global vaccine candidate. SUMMARY A greater understanding of GAS virulence strategies, and their associated clinical manifestations, may be obtained by shifting our research scope toward virulence determinant interactions and cooperation rather than focusing on individual virulence factor or specific strain characterization only.
Collapse
|
27
|
Azuar A, Jin W, Mukaida S, Hussein WM, Toth I, Skwarczynski M. Recent Advances in the Development of Peptide Vaccines and Their Delivery Systems Against Group A Streptococcus. Vaccines (Basel) 2019; 7:E58. [PMID: 31266253 PMCID: PMC6789462 DOI: 10.3390/vaccines7030058] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 06/21/2019] [Accepted: 06/25/2019] [Indexed: 02/07/2023] Open
Abstract
Group A Streptococcus (GAS) infection can cause a variety of diseases in humans, ranging from common sore throats and skin infections, to more invasive diseases and life-threatening post-infectious diseases, such as rheumatic fever and rheumatic heart disease. Although research has been ongoing since 1923, vaccines against GAS are still not available to the public. Traditional approaches taken to develop vaccines for GAS failed due to poor efficacy and safety. Fortunately, headway has been made and modern subunit vaccines that administer minimal bacterial components provide an opportunity to finally overcome previous hurdles in GAS vaccine development. This review details the major antigens and strategies used for GAS vaccine development. The combination of antigen selection, peptide epitope modification and delivery systems have resulted in the discovery of promising peptide vaccines against GAS; these are currently in preclinical and clinical studies.
Collapse
Affiliation(s)
- Armira Azuar
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Wanli Jin
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Saori Mukaida
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Waleed M Hussein
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Helwan University, Helwan, Cairo 11795, Egypt
| | - Istvan Toth
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia
- School of Pharmacy, Woolloongabba, The University of Queensland, QLD 4072, Australia
- Institute of Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Mariusz Skwarczynski
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia.
| |
Collapse
|
28
|
Kim S, Lee S, Park H, Kim S. Predominance of emm4 and antibiotic resistance of Streptococcus pyogenes in acute pharyngitis in a southern region of Korea. J Med Microbiol 2019; 68:1053-1058. [PMID: 31169483 DOI: 10.1099/jmm.0.001005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Streptococcus pyogenes is the most common cause of bacterial pharyngitis. Genotyping of emm is useful for molecular epidemiological survey of S. pyogenes. Antibiotic resistance data are needed for empirical treatments. METHODS In total, 358 children in Changwon, Korea who had pharyngitis symptoms were subjected to throat cultures to isolate S. pyogenes in 2017. emm genotyping was performed by direct sequencing. An antibiotic susceptibility test was performed using the disk diffusion method for erythromycin (ERY), clindamycin (CLI), tetracycline (TET) and ofloxacin (OFX). Screening for macrolide resistance phenotype and its determinants was performed for the ERY-resistant strains. RESULTS A total of 190 strains (53.1 %) of S. pyogenes were isolated from 358 children. The most frequent emm genotype was emm4 (53.2 %), followed by emm89 (12.6 %), emm28 (11.6 %) and emm1 (10 %). Antibiotic resistance rates to ERY, CLI, TET and OFX were 3.2 %, 2.6 %, 1.1 % and 2.6%, respectively. There were five isolates of the cMLSB phenotype having the ermB gene and one M phenotype harbouring the mefA gene. CONCLUSIONS The distribution of emm genotypes was quite different from those previously reported in Korea. emm4 accounted for more than 50 % of the genotypes. Macrolide resistance rates remained very low, but five of six ERY-resistant strains displayed the cMLSB phenotype.
Collapse
Affiliation(s)
- Seungwook Kim
- Department of Convergence of Medical Science, Gyeongsang National University Graduate School, Jinju, Republic of Korea
| | - Seungjun Lee
- Department of Laboratory Medicine, Gyeongsang National University Changwon Hospital, Changwon, Republic of Korea
| | - Hyunwoong Park
- Department of Laboratory Medicine, Seoul National University Boramae Medical Center, Seoul, Republic of Korea
| | - Sunjoo Kim
- Department of Laboratory Medicine, Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju, Republic of Korea
| |
Collapse
|
29
|
Khakzad H, Malmström J, Malmström L. Greedy de novo motif discovery to construct motif repositories for bacterial proteomes. BMC Bioinformatics 2019; 20:141. [PMID: 30999854 PMCID: PMC6471678 DOI: 10.1186/s12859-019-2686-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Bacterial surfaces are complex systems, constructed from membranes, peptidoglycan and, importantly, proteins. The proteins play crucial roles as critical regulators of how the bacterium interacts with and survive in its environment. A full catalog of the motifs in protein families and their relative conservation grade is a prerequisite to target the protein-protein interaction that bacterial surface protein makes to host proteins. RESULTS In this paper, we propose a greedy approach to identify conserved motifs in large sequence families iteratively. Each iteration discovers a motif de novo and masks all occurrences of that motif. Remaining unmasked sequences are subjected to the next round of motif detection until no more significant motifs can be found. We demonstrate the utility of the method through the construction of a proteome-wide motif repository for Group A Streptococcus (GAS), a significant human pathogen. GAS produce numerous surface proteins that interact with over 100 human plasma proteins, helping the bacteria to evade the host immune response. We used the repository to find that proteins part of the bacterial surface has motif architectures that differ from intracellular proteins. CONCLUSIONS We elucidate that the M protein, a coiled-coil homodimer that extends over 500 A from the cell wall, has a motif architecture that differs between various GAS strains. As the M protein is known to bind a variety of different plasma proteins, the results indicate that the different motif architectures are responsible for the quantitative differences of plasma proteins that various strains bind. The speed and applicability of the method enable its application to all major human pathogens.
Collapse
Affiliation(s)
- Hamed Khakzad
- Faculty of Science, Institute for Computational Science, University of Zurich, 429 Winterthurerstrasse, 190, Zurich, CH-8057 Switzerland
- Service and Support 430 for Science IT (S3IT), University of Zurich, Winterthurerstrasse, 190, Zurich, CH-8057 431 Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Johan Malmström
- Division of Infection Medicine, Department of Clinical 432 Sciences, Lund University, Tornavagen, 10, Lund, SE-22184 Sweden
| | - Lars Malmström
- Faculty of Science, Institute for Computational Science, University of Zurich, 429 Winterthurerstrasse, 190, Zurich, CH-8057 Switzerland
- Service and Support 430 for Science IT (S3IT), University of Zurich, Winterthurerstrasse, 190, Zurich, CH-8057 431 Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
- Division of Infection Medicine, Department of Clinical 432 Sciences, Lund University, Tornavagen, 10, Lund, SE-22184 Sweden
| |
Collapse
|
30
|
Bessen DE, Smeesters PR, Beall BW. Molecular Epidemiology, Ecology, and Evolution of Group A Streptococci. Microbiol Spectr 2018; 6:10.1128/microbiolspec.cpp3-0009-2018. [PMID: 30191802 PMCID: PMC11633622 DOI: 10.1128/microbiolspec.cpp3-0009-2018] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Indexed: 12/27/2022] Open
Abstract
The clinico-epidemiological features of diseases caused by group A streptococci (GAS) is presented through the lens of the ecology, population genetics, and evolution of the organism. The serological targets of three typing schemes (M, T, SOF) are themselves GAS cell surface proteins that have a myriad of virulence functions and a diverse array of structural forms. Horizontal gene transfer expands the GAS antigenic cell surface repertoire by generating numerous combinations of M, T, and SOF antigens. However, horizontal gene transfer of the serotype determinant genes is not unconstrained, and therein lies a genetic organization that may signify adaptations to a narrow ecological niche, such as the primary tissue reservoirs of the human host. Adaptations may be further shaped by selection pressures such as herd immunity. Understanding the molecular evolution of GAS on multiple levels-short, intermediate, and long term-sheds insight on mechanisms of host-pathogen interactions, the emergence and spread of new clones, rational vaccine design, and public health interventions.
Collapse
Affiliation(s)
- Debra E Bessen
- Department of Microbiology and Immunology, New York Medical College, Valhalla, NY 10595
| | - Pierre R Smeesters
- Department of Pediatrics, Queen Fabiola Children's University Hospital, and Molecular Bacteriology Laboratory, Université Libre de Bruxelles, Brussels, 1020, Belgium
| | - Bernard W Beall
- National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333
| |
Collapse
|
31
|
Ozberk V, Pandey M, Good MF. Contribution of cryptic epitopes in designing a group A streptococcal vaccine. Hum Vaccin Immunother 2018; 14:2034-2052. [PMID: 29873591 PMCID: PMC6150013 DOI: 10.1080/21645515.2018.1462427] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
A successful vaccine needs to target multiple strains of an organism. Streptococcus pyogenes is an organism that utilizes antigenic strain variation as a successful defence mechanism to circumvent the host immune response. Despite numerous efforts, there is currently no vaccine available for this organism. Here we review and discuss the significant obstacles to vaccine development, with a focus on how cryptic epitopes may provide a strategy to circumvent the obstacles of antigenic variation.
Collapse
Affiliation(s)
- Victoria Ozberk
- a Griffith University, Institute for Glycomics , Gold Coast Campus, Queensland , Australia
| | - Manisha Pandey
- a Griffith University, Institute for Glycomics , Gold Coast Campus, Queensland , Australia
| | - Michael F Good
- a Griffith University, Institute for Glycomics , Gold Coast Campus, Queensland , Australia
| |
Collapse
|
32
|
WHO/IVI global stakeholder consultation on group A Streptococcus vaccine development: Report from a meeting held on 12–13 December 2016. Vaccine 2018; 36:3397-3405. [DOI: 10.1016/j.vaccine.2018.02.068] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 02/02/2018] [Accepted: 02/16/2018] [Indexed: 12/21/2022]
|
33
|
Wozniak A, Scioscia N, García PC, Dale JB, Paillavil BA, Legarraga P, Salazar-Echegarai FJ, Bueno SM, Kalergis AM. Protective immunity induced by an intranasal multivalent vaccine comprising 10 Lactococcus lactis strains expressing highly prevalent M-protein antigens derived from Group A Streptococcus. Microbiol Immunol 2018; 62:395-404. [PMID: 29704396 PMCID: PMC6013395 DOI: 10.1111/1348-0421.12595] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 04/13/2018] [Accepted: 04/19/2018] [Indexed: 11/28/2022]
Abstract
Streptococcus pyogenes (group A Streptococcus) causes diseases ranging from mild pharyngitis to severe invasive infections. The N-terminal fragment of streptococcal M protein elicits protective antibodies and is an attractive vaccine target. However, this N- terminal fragment is hypervariable: there are more than 200 different M types. In this study, an intranasal live bacterial vaccine comprising 10 strains of Lactococcus lactis, each expressing one N-terminal fragment of M protein, has been developed. Live bacterial-vectored vaccines cost less to manufacture because the processes involved are less complex than those required for production of protein subunit vaccines. Moreover, intranasal administration does not require syringes or specialized personnel. Evaluation of individual vaccine types (M1, M2, M3, M4, M6, M9, M12, M22, M28 and M77) showed that most of them protected mice against challenge with virulent S. pyogenes. All 10 strains combined in a 10-valent vaccine (M×10) induced serum and bronchoalveolar lavage IgG titers that ranged from three- to 10-fold those of unimmunized mice. After intranasal challenge with M28 streptococci, survival of M×10-immunized mice was significantly higher than that of unimmunized mice. In contrast, when mice were challenged with M75 streptococci, survival of M×10-immunized mice did not differ significantly from that of unimmunized mice. Mx-10 immunized mice had significantly less S. pyogenes in oropharyngeal washes and developed less severe disease symptoms after challenge than did unimmunized mice. Our L. lactis-based vaccine may provide an alternative solution to development of broadly protective group A streptococcal vaccines.
Collapse
MESH Headings
- Administration, Intranasal/methods
- Animals
- Antibodies, Bacterial/blood
- Antigens, Bacterial/classification
- Antigens, Bacterial/immunology
- Antigens, Bacterial/metabolism
- Bacterial Outer Membrane Proteins/classification
- Bacterial Outer Membrane Proteins/immunology
- Bacterial Outer Membrane Proteins/metabolism
- Body Weight
- Carrier Proteins/classification
- Carrier Proteins/immunology
- Carrier Proteins/metabolism
- Disease Models, Animal
- Female
- Immunity
- Immunization
- Immunoglobulin G/blood
- Lactococcus lactis/immunology
- Lactococcus lactis/pathogenicity
- Mice
- Mice, Inbred BALB C
- Streptococcal Infections/immunology
- Streptococcal Infections/microbiology
- Streptococcal Infections/prevention & control
- Streptococcal Vaccines/administration & dosage
- Streptococcal Vaccines/immunology
- Streptococcus pyogenes/immunology
- Treatment Outcome
- Vaccination/methods
- Vaccines, Attenuated/administration & dosage
- Vaccines, Attenuated/immunology
- Vaccines, Synthetic/administration & dosage
- Vaccines, Synthetic/immunology
Collapse
Affiliation(s)
- Aniela Wozniak
- Laboratorio de Microbiología, Departamento de Laboratorios Clínicos, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - Natalia Scioscia
- Laboratorio de Microbiología, Departamento de Laboratorios Clínicos, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - Patricia C. García
- Laboratorio de Microbiología, Departamento de Laboratorios Clínicos, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - James B. Dale
- Department of Medicine, University of Tennessee Health Science Center and the Department of Veterans Affairs Medical Center, Memphis, Tennessee, TN 38163, USA
| | - Braulio A. Paillavil
- Laboratorio de Microbiología, Departamento de Laboratorios Clínicos, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - Paulette Legarraga
- Laboratorio de Microbiología, Departamento de Laboratorios Clínicos, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - Francisco J. Salazar-Echegarai
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Susan M. Bueno
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexis M. Kalergis
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago 8331010, Chile
| |
Collapse
|
34
|
Frost HR, Laho D, Sanderson-Smith ML, Licciardi P, Donath S, Curtis N, Kado J, Dale JB, Steer AC, Smeesters PR. Immune Cross-Opsonization Within emm Clusters Following Group A Streptococcus Skin Infection: Broadening the Scope of Type-Specific Immunity. Clin Infect Dis 2018; 65:1523-1531. [PMID: 29020160 PMCID: PMC7263703 DOI: 10.1093/cid/cix599] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 07/06/2017] [Indexed: 12/13/2022] Open
Abstract
Background Group AStreptococcus (GAS) skin infections are particularly prevalent in developing nations. The GAS M protein, by which strains are differentiated into >220 differentemm types, is immunogenic and elicits protective antibodies. A major obstacle for vaccine development has been the traditional understanding that immunity following infection is restricted to a singleemm type. However, recent evidence has led to the hypothesis of immune cross-reactivity betweenemm types. Methods We investigated the human serological response to GAS impetigo in Fijian schoolchildren, focusing on 3 majoremm clusters (E4, E6, and D4). Pre- and postinfection sera were assayed by enzyme-linked immunosorbent assay with N-terminal M peptides and bactericidal assays using the infecting-type strain,emm cluster–related strains, and nonrelated strains. Results Twenty of the 53 paired sera demonstrated a ≥4-fold increase in antibody titer against the infecting type. When tested against all cluster-related M peptides, we found that 9 of 17 (53%) paired sera had a ≥4-fold increase in antibody titer to cluster-related strains as well. When grouped by cluster, the mean change to cluster-relatedemm types in E4 and E6 was >4-fold (5.9-fold and 19.5-fold, respectively) but for D4 was 3.8-fold. The 17 paired sera were tested in bactericidal assays against selected cluster-related and nonrelated strains. While the responses were highly variable, numerous instances of cross-reactive killing were observed. Conclusions These data demonstrate that M type–specific and cross-reactive immune responses occur following skin infection. The cross-reactive immune responses frequently align withemm clusters, raising new opportunities to design multivalent vaccines with broad coverage.
Collapse
Affiliation(s)
- Hannah R Frost
- Group A Streptococcus Research Group, Murdoch Childrens Research Institute, Melbourne, Australia.,Molecular Bacteriology Laboratory
| | - Delphine Laho
- Group A Streptococcus Research Group, Murdoch Childrens Research Institute, Melbourne, Australia.,Department of Pediatrics, Academic Children Hospital Queen Fabiola, Université Libre de Bruxelles, Brussels, Belgium
| | - Martina L Sanderson-Smith
- Illawarra Health and Medical Research Institute and School of Biological Sciences, University of Wollongong
| | - Paul Licciardi
- Pneumococcal Research Group, Murdoch Childrens Research Institute, Melbourne.,Department of Paediatrics, University of Melbourne, Royal Children's Hospital Melbourne, Parkville, Australia
| | - Susan Donath
- Department of Paediatrics, University of Melbourne, Royal Children's Hospital Melbourne, Parkville, Australia
| | - Nigel Curtis
- Department of Paediatrics, University of Melbourne, Royal Children's Hospital Melbourne, Parkville, Australia
| | - Joseph Kado
- Department of Paediatrics, Colonial War Memorial Hospital.,College of Medicine, Nursing and Health Sciences, Fiji National University.,Fiji Rheumatic Heart Disease Control Program, Suva, Fiji
| | - James B Dale
- Medicine.,Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center.,Department of Veterans Affairs Medical Center, Memphis, Tennessee
| | - Andrew C Steer
- Group A Streptococcus Research Group, Murdoch Childrens Research Institute, Melbourne, Australia.,Department of Paediatrics, University of Melbourne, Royal Children's Hospital Melbourne, Parkville, Australia.,Centre for International Child Health, University of Melbourne, Australia
| | - Pierre R Smeesters
- Group A Streptococcus Research Group, Murdoch Childrens Research Institute, Melbourne, Australia.,Molecular Bacteriology Laboratory.,Department of Pediatrics, Academic Children Hospital Queen Fabiola, Université Libre de Bruxelles, Brussels, Belgium.,Centre for International Child Health, University of Melbourne, Australia
| |
Collapse
|
35
|
Raynes JM, Young PG, Proft T, Williamson DA, Baker EN, Moreland NJ. Protein adhesins as vaccine antigens for Group A Streptococcus. Pathog Dis 2018; 76:4919728. [DOI: 10.1093/femspd/fty016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 03/01/2018] [Indexed: 12/20/2022] Open
Affiliation(s)
- J M Raynes
- School of Medical Sciences, The University of Auckland, 85 Park Road, Auckland 1023, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3A Symonds Street, Auckland 1010, New Zealand
| | - P G Young
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3A Symonds Street, Auckland 1010, New Zealand
- School of Biological Sciences, University of Auckland, 5 Symonds Street, Auckland 1010, New Zealand
| | - T Proft
- School of Medical Sciences, The University of Auckland, 85 Park Road, Auckland 1023, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3A Symonds Street, Auckland 1010, New Zealand
| | - D A Williamson
- Microbiological Diagnostic Unit Public Health Laboratory, Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria 3000, Australia
| | - E N Baker
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3A Symonds Street, Auckland 1010, New Zealand
- School of Biological Sciences, University of Auckland, 5 Symonds Street, Auckland 1010, New Zealand
| | - N J Moreland
- School of Medical Sciences, The University of Auckland, 85 Park Road, Auckland 1023, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3A Symonds Street, Auckland 1010, New Zealand
| |
Collapse
|
36
|
Shocking superantigens promote establishment of bacterial infection. Proc Natl Acad Sci U S A 2017; 114:10000-10002. [PMID: 28900005 DOI: 10.1073/pnas.1713451114] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
37
|
Ghosh P. Variation, Indispensability, and Masking in the M protein. Trends Microbiol 2017; 26:132-144. [PMID: 28867148 DOI: 10.1016/j.tim.2017.08.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 07/26/2017] [Accepted: 08/08/2017] [Indexed: 11/17/2022]
Abstract
The M protein is the major surface-associated virulence factor of group A Streptococcus (GAS) and an antigenically variable target of host immunity. How selection pressures to escape immune recognition, maintain indispensable functions, and mask vulnerabilities have shaped the sequences of the >220M protein types is unclear. Recent experiments have shed light on this question by showing that, hidden within the antigenic variability of many M protein types, are sequence patterns conserved for recruiting human C4b-binding protein (C4BP). Other host factors may be recruited in a similar manner by conserved but hidden sequence patterns in the M protein. The identification of such patterns may be applicable to the development of a GAS vaccine.
Collapse
Affiliation(s)
- Partho Ghosh
- Department of Chemistry & Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
38
|
Brahmadathan N. Molecular Biology of Group A Streptococcus and its Implications in Vaccine Strategies. Indian J Med Microbiol 2017; 35:176-183. [DOI: 10.4103/ijmm.ijmm_17_16] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|