1
|
Wouters C, Sachithanandham J, Akin E, Pieterse L, Fall A, Truong TT, Bard JD, Yee R, Sullivan DJ, Mostafa HH, Pekosz A. SARS-CoV-2 Variants from Long-Term, Persistently Infected Immunocompromised Patients Have Altered Syncytia Formation, Temperature-Dependent Replication, and Serum Neutralizing Antibody Escape. Viruses 2024; 16:1436. [PMID: 39339912 PMCID: PMC11437501 DOI: 10.3390/v16091436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 09/01/2024] [Accepted: 09/02/2024] [Indexed: 09/30/2024] Open
Abstract
SARS-CoV-2 infection of immunocompromised individuals often leads to prolonged detection of viral RNA and infectious virus in nasal specimens, presumably due to the lack of induction of an appropriate adaptive immune response. Mutations identified in virus sequences obtained from persistently infected patients bear signatures of immune evasion and have some overlap with sequences present in variants of concern. We characterized virus isolates obtained greater than 100 days after the initial COVID-19 diagnosis from two COVID-19 patients undergoing immunosuppressive cancer therapy, wand compared them to an isolate from the start of the infection. Isolates from an individual who never mounted an antibody response specific to SARS-CoV-2 despite the administration of convalescent plasma showed slight reductions in plaque size and some showed temperature-dependent replication attenuation on human nasal epithelial cell culture compared to the virus that initiated infection. An isolate from another patient-who did mount a SARS-CoV-2 IgM response-showed temperature-dependent changes in plaque size as well as increased syncytia formation and escape from serum-neutralizing antibodies. Our results indicate that not all virus isolates from immunocompromised COVID-19 patients display clear signs of phenotypic change, but increased attention should be paid to monitoring virus evolution in this patient population.
Collapse
Affiliation(s)
- Camille Wouters
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA; (C.W.)
| | - Jaiprasath Sachithanandham
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA; (C.W.)
| | - Elgin Akin
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA; (C.W.)
| | - Lisa Pieterse
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA; (C.W.)
| | - Amary Fall
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Thao T. Truong
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
- Department of Pathology and Laboratory Medicine, Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA
| | - Jennifer Dien Bard
- Department of Pathology and Laboratory Medicine, Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA
- Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Rebecca Yee
- Department of Pathology and Laboratory Medicine, Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA
- Department of Pathology, The George Washington University School of Medicine and Health Sciences, Washington, DC 20052, USA
| | - David J. Sullivan
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA; (C.W.)
| | - Heba H. Mostafa
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Andrew Pekosz
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA; (C.W.)
| |
Collapse
|
2
|
Griffin EF, Tompkins SM. Fitness Determinants of Influenza A Viruses. Viruses 2023; 15:1959. [PMID: 37766365 PMCID: PMC10535923 DOI: 10.3390/v15091959] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
Influenza A (IAV) is a major human respiratory pathogen that causes illness, hospitalizations, and mortality annually worldwide. IAV is also a zoonotic pathogen with a multitude of hosts, allowing for interspecies transmission, reassortment events, and the emergence of novel pandemics, as was seen in 2009 with the emergence of a swine-origin H1N1 (pdmH1N1) virus into humans, causing the first influenza pandemic of the 21st century. While the 2009 pandemic was considered to have high morbidity and low mortality, studies have linked the pdmH1N1 virus and its gene segments to increased disease in humans and animal models. Genetic components of the pdmH1N1 virus currently circulate in the swine population, reassorting with endemic swine viruses that co-circulate and occasionally spillover into humans. This is evidenced by the regular detection of variant swine IAVs in humans associated with state fairs and other intersections of humans and swine. Defining genetic changes that support species adaptation, virulence, and cross-species transmission, as well as mutations that enhance or attenuate these features, will improve our understanding of influenza biology. It aids in surveillance and virus risk assessment and guides the establishment of counter measures for emerging viruses. Here, we review the current understanding of the determinants of specific IAV phenotypes, focusing on the fitness, transmission, and virulence determinants that have been identified in swine IAVs and/or in relation to the 2009 pdmH1N1 virus.
Collapse
Affiliation(s)
- Emily Fate Griffin
- Center for Vaccines and Immunology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
- Emory-UGA Centers of Excellence for Influenza Research and Surveillance (CEIRS), Athens, GA 30602, USA
| | - Stephen Mark Tompkins
- Center for Vaccines and Immunology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
- Emory-UGA Centers of Excellence for Influenza Research and Surveillance (CEIRS), Athens, GA 30602, USA
- Center for Influenza Disease and Emergence Response (CIDER), Athens, GA 30602, USA
| |
Collapse
|
3
|
Resnick JD, Wilson JL, Anaya E, Conte A, Li M, Zhong W, Beer MA, Pekosz A. Growth media affects susceptibility of air-lifted human nasal epithelial cell cultures to SARS-CoV2, but not Influenza A, virus infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.31.551381. [PMID: 37577692 PMCID: PMC10418194 DOI: 10.1101/2023.07.31.551381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Primary differentiated human epithelial cell cultures have been widely used by researchers to study viral fitness and virus-host interactions, especially during the COVID19 pandemic. These cultures recapitulate important characteristics of the respiratory epithelium such as diverse cell type composition, polarization, and innate immune responses. However, standardization and validation of these cultures remains an open issue. In this study, two different expansion medias were evaluated and the impact on the resulting differentiated culture was determined. Use of both Airway and Ex Plus media types resulted in high quality, consistent cultures that were able to be used for these studies. Upon histological evaluation, Airway-grown cultures were more organized and had a higher proportion of basal progenitor cells while Ex Plus- grown cultures had a higher proportion terminally differentiated cell types. In addition to having different cell type proportions and organization, the two different growth medias led to cultures with altered susceptibility to infection with SARS-CoV-2 but not Influenza A virus. RNAseq comparing cultures grown in different growth medias prior to differentiation uncovered a high degree of differentially expressed genes in cultures from the same donor. RNAseq on differentiated cultures showed less variation between growth medias but alterations in pathways that control the expression of human transmembrane proteases including TMPRSS11 and TMPRSS2 were documented. Enhanced susceptibility to SARS-CoV-2 cannot be explained by altered cell type proportions alone, rather serine protease cofactor expression also contributes to the enhanced replication of SARS-CoV-2 as inhibition with camostat affected replication of an early SARS-CoV-2 variant and a Delta, but not Omicron, variant showed difference in replication efficiency between culture types. Therefore, it is important for the research community to standardize cell culture protocols particularly when characterizing novel viruses.
Collapse
Affiliation(s)
- Jessica D Resnick
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- McKusick- Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jo L Wilson
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- Deparment of Pediatric Allergy and Immunology, Johns Hopkins Hospital, Baltimore, MD, United States
| | - Eddy Anaya
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Abigail Conte
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Maggie Li
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - William Zhong
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Michael A Beer
- McKusick- Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Andrew Pekosz
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| |
Collapse
|
4
|
Swanson NJ, Marinho P, Dziedzic A, Jedlicka A, Liu H, Fenstermacher K, Rothman R, Pekosz A. 2019-2020 H1N1 clade A5a.1 viruses have better in vitro fitness compared with the co-circulating A5a.2 clade. Sci Rep 2023; 13:10223. [PMID: 37353648 PMCID: PMC10290074 DOI: 10.1038/s41598-023-37122-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 06/15/2023] [Indexed: 06/25/2023] Open
Abstract
Surveillance for emerging human influenza virus clades is important for identifying changes in viral fitness and assessing antigenic similarity to vaccine strains. While fitness and antigenic structure are both important aspects of virus success, they are distinct characteristics and do not always change in a complementary manner. The 2019-2020 Northern Hemisphere influenza season saw the emergence of two H1N1 clades: A5a.1 and A5a.2. While several studies indicated that A5a.2 showed similar or even increased antigenic drift compared with A5a.1, the A5a.1 clade was still the predominant circulating clade that season. Clinical isolates of representative viruses from these clades were collected in Baltimore, Maryland during the 2019-2020 season and multiple assays were performed to compare both antigenic drift and viral fitness between clades. Neutralization assays performed on serum from healthcare workers pre- and post-vaccination during the 2019-2020 season show a comparable drop in neutralizing titers against both A5a.1 and A5a.2 viruses compared with the vaccine strain, indicating that A5a.1 did not have antigenic advantages over A5a.2 that would explain its predominance in this population. Plaque assays were performed to investigate fitness differences, and the A5a.2 virus produced significantly smaller plaques compared with viruses from A5a.1 or the parental A5a clade. To assess viral replication, low MOI growth curves were performed on both MDCK-SIAT and primary differentiated human nasal epithelial cell cultures. In both cell cultures, A5a.2 yielded significantly reduced viral titers at multiple timepoints post-infection compared with A5a.1 or A5a. Receptor binding was then investigated through glycan array experiments which showed a reduction in receptor binding diversity for A5a.2, with fewer glycans bound and a higher percentage of total binding attributable to the top three highest bound glycans. Together these data indicate that the A5a.2 clade had a reduction in viral fitness, including reductions in receptor binding, that may have contributed to the limited prevalence observed after emergence.
Collapse
Affiliation(s)
- Nicholas J Swanson
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, rm W2116, Baltimore, MD, 21205, USA
| | - Paula Marinho
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, rm W2116, Baltimore, MD, 21205, USA
| | - Amanda Dziedzic
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, rm W2116, Baltimore, MD, 21205, USA
| | - Anne Jedlicka
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, rm W2116, Baltimore, MD, 21205, USA
| | - Hsuan Liu
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, rm W2116, Baltimore, MD, 21205, USA
| | - Katherine Fenstermacher
- Department of Emergency Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Richard Rothman
- Department of Emergency Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Andrew Pekosz
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, rm W2116, Baltimore, MD, 21205, USA.
- Department of Emergency Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
5
|
Resnick JD, Beer MA, Pekosz A. Early Transcriptional Responses of Human Nasal Epithelial Cells to Infection with Influenza A and SARS-CoV-2 Virus Differ and Are Influenced by Physiological Temperature. Pathogens 2023; 12:480. [PMID: 36986402 PMCID: PMC10051809 DOI: 10.3390/pathogens12030480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/08/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
Influenza A (IAV) and SARS-CoV-2 (SCV2) viruses represent an ongoing threat to public health. Both viruses target the respiratory tract, which consists of a gradient of cell types, receptor expression, and temperature. Environmental temperature has been an understudied contributor to infection susceptibility and understanding its impact on host responses to infection could help uncover new insight into severe disease risk factors. As the nasal passageways are the initial site of respiratory virus infection, in this study we investigated the effect of temperature on host responses in human nasal epithelial cells (hNECs) utilizing IAV and SCV2 in vitro infection models. We demonstrate that temperature affected SCV2, but not IAV, viral replicative fitness and that SCV2-infected cultures were slower to mount an infection-induced response, likely due to suppression by the virus. Additionally, we show that that temperature not only changed the basal transcriptomic landscape of epithelial cells, but that it also impacted the response to infection. The induction of interferon and other innate immune responses was not drastically affected by temperature, suggesting that while the baseline antiviral response at different temperatures remained consistent, there may be metabolic or signaling changes that affect how well the cultures were able to adapt to new pressures, such as infection. Finally, we show that hNECs responded differently to IAV and SCV2 infection in ways that give insight into how the virus is able to manipulate the cell to allow for replication and release. Taken together, these data give new insight into the innate immune response to respiratory infections and can assist in identifying new treatment strategies for respiratory infections.
Collapse
Affiliation(s)
- Jessica D. Resnick
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Michael A. Beer
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Andrew Pekosz
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| |
Collapse
|
6
|
Swanson NJ, Marinho P, Dziedzic A, Jedlicka A, Liu H, Fenstermacher K, Rothman R, Pekosz A. 2019-20 H1N1 clade A5a.1 viruses have better in vitro replication compared with the co-circulating A5a.2 clade. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.26.530085. [PMID: 36865250 PMCID: PMC9980287 DOI: 10.1101/2023.02.26.530085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
Surveillance for emerging human influenza virus clades is important for identifying changes in viral fitness and assessing antigenic similarity to vaccine strains. While fitness and antigenic structure are both important aspects of virus success, they are distinct characteristics and do not always change in a complementary manner. The 2019-20 Northern Hemisphere influenza season saw the emergence of two H1N1 clades: A5a.1 and A5a.2. While several studies indicated that A5a.2 showed similar or even increased antigenic drift compared with A5a.1, the A5a.1 clade was still the predominant circulating clade that season. Clinical isolates of representative viruses from these clades were collected in Baltimore, Maryland during the 2019-20 season and multiple assays were performed to compare both antigenic drift and viral fitness between clades. Neutralization assays performed on serum from healthcare workers pre- and post-vaccination during the 2019-20 season show a comparable drop in neutralizing titers against both A5a.1 and A5a.2 viruses compared with the vaccine strain, indicating that A5a.1 did not have antigenic advantages over A5a.2 that would explain its predominance in this population. Plaque assays were performed to investigate fitness differences, and the A5a.2 virus produced significantly smaller plaques compared with viruses from A5a.1 or the parental A5a clade. To assess viral replication, low MOI growth curves were performed on both MDCK-SIAT and primary differentiated human nasal epithelial cell cultures. In both cell cultures, A5a.2 yielded significantly reduced viral titers at multiple timepoints post-infection compared with A5a.1 or A5a. Receptor binding was then investigated through glycan array experiments which showed a reduction in receptor binding diversity for A5a.2, with fewer glycans bound and a higher percentage of total binding attributable to the top three highest bound glycans. Together these data indicate that the A5a.2 clade had a reduction in viral fitness, including reductions in receptor binding, that may have contributed to the limited prevalence observed after emergence.
Collapse
Affiliation(s)
- Nicholas J Swanson
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Paula Marinho
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Amanda Dziedzic
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Anne Jedlicka
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Hsuan Liu
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Katherine Fenstermacher
- Department of Emergency Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Richard Rothman
- Department of Emergency Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Andrew Pekosz
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- Department of Emergency Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
7
|
Canaday LM, Resnick JD, Liu H, Powell H, McCoy AM, Nguyen D, Pekosz A. HA and M2 sequences alter the replication of 2013-16 H1 live attenuated influenza vaccine infection in human nasal epithelial cell cultures. Vaccine 2022; 40:4544-4553. [PMID: 35718589 DOI: 10.1016/j.vaccine.2022.05.088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 05/30/2022] [Accepted: 05/31/2022] [Indexed: 10/18/2022]
Abstract
From 2013 to 2016, the H1N1 component of live, attenuated influenza vaccine (LAIV) performed very poorly in contrast to the inactivated influenza vaccine. We utilized a primary, differentiated human nasal epithelial cell (hNEC) culture system to assess the replication differences between isogenic LAIVs containing the HA segment from either A/Bolivia/559/2013 (rBol), which showed poor vaccine efficacy, and A/Slovenia/2903/2015 (rSlov), which had reasonable vaccine efficacy. There were minimal differences in infectious virus production in Madin-Darby Canine Kidney (MDCK) cells, but the rSlov LAIV showed markedly improved replication in hNEC cultures at both 32 °C and 37 °C, demonstrating that the HA segment alone could impact LAIV replication in physiologically relevant systems. The rSlov-infected hNEC cultures showed stronger production of interferon and proinflammatory chemokines which might also be contributing to the increased overall vaccine effectiveness through enhanced recruitment and activation of immune cells. An M2-S86A mutation had no positive effects on H1 LAIV replication in hNEC cultures, in contrast to the increased infectious virus production seen in an H3 LAIV. No obvious defects in viral RNA packaging were detected, suggesting that HA function, rather than defective particle production, may be driving the differential infectious virus production in hNEC cultures. Overall, we have shown that not all H1 HA segments can be successfully used in LAIV, and this phenotype cannot be fully explained by segment incompatibilities. Physiologically relevant temperatures and primary cell cultures should be used to demonstrate that candidate LAIVs can replicate efficiently, which is a necessary property for effective vaccines.
Collapse
Affiliation(s)
- Laura M Canaday
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Jessica D Resnick
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA; McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Hsuan Liu
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Harrison Powell
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Alyssa M McCoy
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Dat Nguyen
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Andrew Pekosz
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| |
Collapse
|
8
|
Powell H, Liu H, Pekosz A. Changes in sialic acid binding associated with egg adaptation decrease live attenuated influenza virus replication in human nasal epithelial cell cultures. Vaccine 2021; 39:3225-3235. [PMID: 33985852 PMCID: PMC8184632 DOI: 10.1016/j.vaccine.2021.04.057] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 04/11/2021] [Accepted: 04/28/2021] [Indexed: 11/26/2022]
Abstract
Live Attenuated Influenza Virus (LAIV) is administered to and replicates in the sinonasal epithelium. Candidate LAIV vaccine strains are selected based on their ability to replicate to a high titer in embryonated hen's eggs, a process that can lead to mutations which alter the receptor binding and antigenic structure of the hemagglutinin (HA) protein. In the 2012-2013 northern hemisphere vaccine, the H3N2 HA vaccine strain contained three amino acid changes - H156Q, G186V and S219Y - which altered HA antigenic structure and thus presumably decreased vaccine efficacy. To determine if these mutations also altered LAIV replication, reabcombinant viruses were created that encoded the wild-type (WT) parental HA of A/Victoria/361/2011 (WT HA LAIV), the egg adapted HA (EA HA LAIV) from the A/Victoria/361/2011 vaccine strain and an HA protein with additional amino acid changes to promote α2,3 sialic acid binding (2,3 EA HA LAIV). The WT HA LAIV bound α2,6 sialic compared to the EA HA LAIV and 2,3 EA HA LAIV which both demonstrated an increased preference for α2,3 sialic acid. On MDCKs, the WT HA and EA HA LAIVs showed similar replication at 32 °C but at 37 °C the EA HA LAIV replicated to lower infectious virus titers. The 2,3 EA HA LAIV replicated poorly at both temperatures. This replication phenotype was similar on human nasal epithelial cell (hNEC) cultures, however the WT HA LAIV induced the highest amount of IFN-λ and infected more nasal epithelial cells compared to the other viruses. Together, these data indicate that egg adaption mutations in the HA protein that confer preferential α2,3 sialic acid binding may adversely affect LAIV replication and contribute to reduced vaccine efficacy.
Collapse
Affiliation(s)
- Harrison Powell
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, United States
| | - Hsuan Liu
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, United States
| | - Andrew Pekosz
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, United States.
| |
Collapse
|
9
|
Baldo A, Leunda A, Willemarck N, Pauwels K. Environmental Risk Assessment of Recombinant Viral Vector Vaccines against SARS-Cov-2. Vaccines (Basel) 2021; 9:453. [PMID: 34063733 PMCID: PMC8147846 DOI: 10.3390/vaccines9050453] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/23/2021] [Accepted: 05/01/2021] [Indexed: 12/19/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the coronavirus disease 2019 (COVID-19) pandemic. Over the past months, considerable efforts have been put into developing effective and safe drugs and vaccines against SARS-CoV-2. Various platforms are being used for the development of COVID-19 vaccine candidates: recombinant viral vectors, protein-based vaccines, nucleic acid-based vaccines, and inactivated/attenuated virus. Recombinant viral vector vaccine candidates represent a significant part of those vaccine candidates in clinical development, with two already authorised for use in the European Union and one currently under rolling review by the European Medicines Agency (EMA). Since recombinant viral vector vaccine candidates are considered as genetically modified organisms (GMOs), their regulatory oversight includes besides an assessment of their quality, safety and efficacy, also an environmental risk assessment (ERA). The present article highlights the main characteristics of recombinant viral vector vaccine (candidates) against SARS-CoV-2 in the pipeline and discusses their features from an environmental risk point of view.
Collapse
Affiliation(s)
- Aline Baldo
- Sciensano, Service Biosafety and Biotechnology, Rue Juliette Wytsmanstraat 14, B-1050 Brussels, Belgium; (A.L.); (N.W.); (K.P.)
| | | | | | | |
Collapse
|
10
|
Luczo JM, Bousse T, Johnson SK, Jones CA, Pearce N, Neiswanger CA, Wang MX, Miller EA, Petrovsky N, Wentworth DE, Bronshtein V, Papania M, Tompkins SM. Intranasal powder live attenuated influenza vaccine is thermostable, immunogenic, and protective against homologous challenge in ferrets. NPJ Vaccines 2021; 6:59. [PMID: 33883559 PMCID: PMC8060263 DOI: 10.1038/s41541-021-00320-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 03/10/2021] [Indexed: 02/06/2023] Open
Abstract
Influenza viruses cause annual seasonal epidemics and sporadic pandemics; vaccination is the most effective countermeasure. Intranasal live attenuated influenza vaccines (LAIVs) are needle-free, mimic the natural route of infection, and elicit robust immunity. However, some LAIVs require reconstitution and cold-chain requirements restrict storage and distribution of all influenza vaccines. We generated a dry-powder, thermostable LAIV (T-LAIV) using Preservation by Vaporization technology and assessed the stability, immunogenicity, and efficacy of T-LAIV alone or combined with delta inulin adjuvant (Advax™) in ferrets. Stability assays demonstrated minimal loss of T-LAIV titer when stored at 25 °C for 1 year. Vaccination of ferrets with T-LAIV alone or with delta inulin adjuvant elicited mucosal antibody and robust serum HI responses in ferrets, and was protective against homologous challenge. These results suggest that the Preservation by Vaporization-generated dry-powder vaccines could be distributed without refrigeration and administered without reconstitution or injection. Given these significant advantages for vaccine distribution and delivery, further research is warranted.
Collapse
Affiliation(s)
- Jasmina M Luczo
- Center for Vaccines and Immunology, University of Georgia, Athens, Georgia, USA
- Emory-UGA Centers of Excellence for Influenza Research and Surveillance (CEIRS), Athens, Georgia, 30602, USA
| | - Tatiana Bousse
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Scott K Johnson
- Center for Vaccines and Immunology, University of Georgia, Athens, Georgia, USA
| | - Cheryl A Jones
- Center for Vaccines and Immunology, University of Georgia, Athens, Georgia, USA
| | - Nicholas Pearce
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Carlie A Neiswanger
- Center for Vaccines and Immunology, University of Georgia, Athens, Georgia, USA
| | - Min-Xuan Wang
- Universal Stabilization Technologies, Inc., San Diego, California, USA
| | - Erin A Miller
- Universal Stabilization Technologies, Inc., San Diego, California, USA
| | - Nikolai Petrovsky
- College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
- Vaxine Pty Ltd, Warradale, South Australia, Australia
| | - David E Wentworth
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Victor Bronshtein
- Universal Stabilization Technologies, Inc., San Diego, California, USA
| | - Mark Papania
- Global Immunization Division, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Stephen M Tompkins
- Center for Vaccines and Immunology, University of Georgia, Athens, Georgia, USA.
- Emory-UGA Centers of Excellence for Influenza Research and Surveillance (CEIRS), Athens, Georgia, 30602, USA.
- Department of Infectious Diseases, University of Georgia, Athens, Georgia, USA.
| |
Collapse
|
11
|
Blumenkrantz DR, Mehoke T, Shaw-Saliba K, Powell H, Wohlgemuth N, Liu H, Macias E, Evans J, Lewis M, Medina R, Hardick J, Sauer LM, Dugas A, DuVal A, Lane AP, Gaydos C, Rothman R, Thielen P, Pekosz A. Identification of H3N2 NA and PB1-F2 genetic variants and their association with disease symptoms during the 2014-15 influenza season. Virus Evol 2021; 7:veab047. [PMID: 34131512 PMCID: PMC8197029 DOI: 10.1093/ve/veab047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The 2014-15 influenza season saw the emergence of an H3N2 antigenic drift variant that formed the 3C.2a HA clade. Whole viral genomes were sequenced from nasopharyngeal swabs of ninety-four patients with confirmed influenza A virus infection and primary human nasal epithelial cell cultures used to efficiently isolate H3N2 viruses. The isolates were classified by HA clade and the presence of a new set of co-selected mutations in NA (a glycosylation site, NAg+) and PB1-F2 (H75P). The NA and PB1-F2 mutations were present in a subset of clade 3C.2a viruses (NAg+F2P), which dominated during the subsequent influenza seasons. In human nasal epithelial cell cultures, a virus with the novel NAg+F2P genotype replicated less well compared with a virus with the parental genotype. Retrospective analyses of clinical data showed that NAg+F2P genotype viruses were associated with increased cough and shortness of breath in infected patients.
Collapse
Affiliation(s)
- Deena R Blumenkrantz
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health,Laurel, MD, USA
| | - Thomas Mehoke
- Research and Exploratory Development Department, Johns Hopkins Applied Physics Laboratory, Laurel, MD, USA
| | - Kathryn Shaw-Saliba
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health,Laurel, MD, USA
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Harrison Powell
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health,Laurel, MD, USA
| | - Nicholas Wohlgemuth
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health,Laurel, MD, USA
| | - Hsuan Liu
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health,Laurel, MD, USA
| | - Elizabeth Macias
- Epidemiology Laboratory Service, United States Air Force School of Aerospace Medicine, Wright-Patterson Air Force Base, OH, USA
| | - Jared Evans
- Research and Exploratory Development Department, Johns Hopkins Applied Physics Laboratory, Laurel, MD, USA
| | - Mitra Lewis
- Department of Emergency Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Rebecca Medina
- Department of Emergency Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Justin Hardick
- Department of Emergency Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lauren M Sauer
- Department of Emergency Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Andrea Dugas
- Department of Emergency Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Anna DuVal
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Andrew P Lane
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Charlotte Gaydos
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Emergency Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Richard Rothman
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Emergency Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Peter Thielen
- Research and Exploratory Development Department, Johns Hopkins Applied Physics Laboratory, Laurel, MD, USA
| | - Andrew Pekosz
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health,Laurel, MD, USA
| |
Collapse
|
12
|
Iverson E, Kaler L, Agostino EL, Song D, Duncan GA, Scull MA. Leveraging 3D Model Systems to Understand Viral Interactions with the Respiratory Mucosa. Viruses 2020; 12:E1425. [PMID: 33322395 PMCID: PMC7763686 DOI: 10.3390/v12121425] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/27/2020] [Accepted: 12/02/2020] [Indexed: 02/07/2023] Open
Abstract
Respiratory viruses remain a significant cause of morbidity and mortality in the human population, underscoring the importance of ongoing basic research into virus-host interactions. However, many critical aspects of infection are difficult, if not impossible, to probe using standard cell lines, 2D culture formats, or even animal models. In vitro systems such as airway epithelial cultures at air-liquid interface, organoids, or 'on-chip' technologies allow interrogation in human cells and recapitulate emergent properties of the airway epithelium-the primary target for respiratory virus infection. While some of these models have been used for over thirty years, ongoing advancements in both culture techniques and analytical tools continue to provide new opportunities to investigate airway epithelial biology and viral infection phenotypes in both normal and diseased host backgrounds. Here we review these models and their application to studying respiratory viruses. Furthermore, given the ability of these systems to recapitulate the extracellular microenvironment, we evaluate their potential to serve as a platform for studies specifically addressing viral interactions at the mucosal surface and detail techniques that can be employed to expand our understanding.
Collapse
Affiliation(s)
- Ethan Iverson
- Department of Cell Biology and Molecular Genetics, Maryland Pathogen Research Institute, University of Maryland, College Park, MD 20742, USA; (E.I.); (E.L.A.)
| | - Logan Kaler
- Biophysics Program, University of Maryland, College Park, MD 20742, USA; (L.K.); (G.A.D.)
| | - Eva L. Agostino
- Department of Cell Biology and Molecular Genetics, Maryland Pathogen Research Institute, University of Maryland, College Park, MD 20742, USA; (E.I.); (E.L.A.)
| | - Daniel Song
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA;
| | - Gregg A. Duncan
- Biophysics Program, University of Maryland, College Park, MD 20742, USA; (L.K.); (G.A.D.)
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA;
| | - Margaret A. Scull
- Department of Cell Biology and Molecular Genetics, Maryland Pathogen Research Institute, University of Maryland, College Park, MD 20742, USA; (E.I.); (E.L.A.)
| |
Collapse
|
13
|
Powell H, Pekosz A. Neuraminidase antigenic drift of H3N2 clade 3c.2a viruses alters virus replication, enzymatic activity and inhibitory antibody binding. PLoS Pathog 2020; 16:e1008411. [PMID: 32598381 PMCID: PMC7351227 DOI: 10.1371/journal.ppat.1008411] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 07/10/2020] [Accepted: 05/11/2020] [Indexed: 11/19/2022] Open
Abstract
In the 2014-2015 influenza season a novel neuraminidase (NA) genotype was detected in global human influenza A surveillance. This novel genotype encoded an N-linked glycosylation site at position 245-247 in the NA protein from clade 3c.2a H3N2 viruses. In the years following the 2014-2015 season, this novel NA glycosylation genotype quickly dominated the human H3N2 population of viruses. To assess the effect this novel N-linked glycan has on virus fitness and antibody binding, recombinant viruses with (NA Gly+) or without (NA Gly-) the 245 NA glycan were created. Viruses with the 245 NA Gly+ genotype grew to a significantly lower infectious virus titer on primary, differentiated human nasal epithelial cells (hNEC) compared to viruses with the 245 NA Gly- genotype, but growth was similar on immortalized cells. The 245 NA Gly+ blocked human and rabbit monoclonal antibodies that target the enzymatic site from binding to their epitope. Additionally, viruses with the 245 NA Gly+ genotype had significantly lower enzymatic activity compared to viruses with the 245 NA Gly- genotype. Human monoclonal antibodies that target residues near the 245 NA glycan were less effective at inhibiting NA enzymatic activity and virus replication of viruses encoding an NA Gly+ protein compared to ones encoding NA Gly- protein. Additionally, a recombinant H6N2 virus with the 245 NA Gly+ protein was more resistant to enzymatic inhibition from convalescent serum from H3N2-infected humans compared to viruses with the 245 NA Gly- genotype. Finally, the 245 NA Gly+ protected from NA antibody mediated virus neutralization. These results suggest that while the 245 NA Gly+ decreases virus replication in hNECs and decreases enzymatic activity, the 245 NA glycan blocks the binding of monoclonal and human serum NA specific antibodies that would otherwise inhibit enzymatic activity and virus replication.
Collapse
Affiliation(s)
- Harrison Powell
- Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Andrew Pekosz
- Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| |
Collapse
|
14
|
O’Connell AK, Douam F. Humanized Mice for Live-Attenuated Vaccine Research: From Unmet Potential to New Promises. Vaccines (Basel) 2020; 8:E36. [PMID: 31973073 PMCID: PMC7157703 DOI: 10.3390/vaccines8010036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 01/11/2020] [Accepted: 01/13/2020] [Indexed: 01/24/2023] Open
Abstract
Live-attenuated vaccines (LAV) represent one of the most important medical innovations in human history. In the past three centuries, LAV have saved hundreds of millions of lives, and will continue to do so for many decades to come. Interestingly, the most successful LAVs, such as the smallpox vaccine, the measles vaccine, and the yellow fever vaccine, have been isolated and/or developed in a purely empirical manner without any understanding of the immunological mechanisms they trigger. Today, the mechanisms governing potent LAV immunogenicity and long-term induced protective immunity continue to be elusive, and therefore hamper the rational design of innovative vaccine strategies. A serious roadblock to understanding LAV-induced immunity has been the lack of suitable and cost-effective animal models that can accurately mimic human immune responses. In the last two decades, human-immune system mice (HIS mice), i.e., mice engrafted with components of the human immune system, have been instrumental in investigating the life-cycle and immune responses to multiple human-tropic pathogens. However, their use in LAV research has remained limited. Here, we discuss the strong potential of LAVs as tools to enhance our understanding of human immunity and review the past, current and future contributions of HIS mice to this endeavor.
Collapse
Affiliation(s)
| | - Florian Douam
- Department of Microbiology, National Emerging Infectious Diseases Laboratories, Boston University School of Medicine, Boston, MA 02118, USA;
| |
Collapse
|
15
|
Biswas A, Chakrabarti AK, Dutta S. Current challenges: from the path of “original antigenic sin” towards the development of universal flu vaccines. Int Rev Immunol 2019; 39:21-36. [DOI: 10.1080/08830185.2019.1685990] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Asim Biswas
- Virology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Alok K. Chakrabarti
- Virology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Shanta Dutta
- Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| |
Collapse
|
16
|
Estrada LD, Schultz-Cherry S. Development of a Universal Influenza Vaccine. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2019; 202:392-398. [PMID: 30617121 PMCID: PMC6327971 DOI: 10.4049/jimmunol.1801054] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 08/30/2018] [Indexed: 12/17/2022]
Abstract
The severity of the 2017-18 influenza season, combined with the low efficacy for some vaccine components, highlights the need to improve our current seasonal influenza vaccine. Thus, the National Institute of Allergy and Infectious Diseases recently announced a strategic plan to improve current influenza vaccines and eventually develop a "universal" influenza vaccine. This review will highlight the many different strategies being undertaken in pursuit of this goal and the exciting advances made by the influenza community. There is no doubt that an improved influenza vaccine is on the horizon.
Collapse
Affiliation(s)
- Leonardo D Estrada
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105
| | - Stacey Schultz-Cherry
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105
| |
Collapse
|
17
|
Clemens EB, van de Sandt C, Wong SS, Wakim LM, Valkenburg SA. Harnessing the Power of T Cells: The Promising Hope for a Universal Influenza Vaccine. Vaccines (Basel) 2018; 6:vaccines6020018. [PMID: 29587436 PMCID: PMC6027237 DOI: 10.3390/vaccines6020018] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 03/21/2018] [Accepted: 03/21/2018] [Indexed: 02/07/2023] Open
Abstract
Next-generation vaccines that utilize T cells could potentially overcome the limitations of current influenza vaccines that rely on antibodies to provide narrow subtype-specific protection and are prone to antigenic mismatch with circulating strains. Evidence from animal models shows that T cells can provide heterosubtypic protection and are crucial for immune control of influenza virus infections. This has provided hope for the design of a universal vaccine able to prime against diverse influenza virus strains and subtypes. However, multiple hurdles exist for the realisation of a universal T cell vaccine. Overall primary concerns are: extrapolating human clinical studies, seeding durable effective T cell resident memory (Trm), population human leucocyte antigen (HLA) coverage, and the potential for T cell-mediated immune escape. Further comprehensive human clinical data is needed during natural infection to validate the protective role T cells play during infection in the absence of antibodies. Furthermore, fundamental questions still exist regarding the site, longevity and duration, quantity, and phenotype of T cells needed for optimal protection. Standardised experimental methods, and eventually simplified commercial assays, to assess peripheral influenza-specific T cell responses are needed for larger-scale clinical studies of T cells as a correlate of protection against influenza infection. The design and implementation of a T cell-inducing vaccine will require a consensus on the level of protection acceptable in the community, which may not provide sterilizing immunity but could protect the individual from severe disease, reduce the length of infection, and potentially reduce transmission in the community. Therefore, increasing the standard of care potentially offered by T cell vaccines should be considered in the context of pandemic preparedness and zoonotic infections, and in combination with improved antibody vaccine targeting methods. Current pandemic vaccine preparedness measures and ongoing clinical trials under-utilise T cell-inducing vaccines, reflecting the myriad questions that remain about how, when, where, and which T cells are needed to fight influenza virus infection. This review aims to bring together basic fundamentals of T cell biology with human clinical data, which need to be considered for the implementation of a universal vaccine against influenza that harnesses the power of T cells.
Collapse
Affiliation(s)
- E Bridie Clemens
- Department of Microbiology and Immunology, The University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia.
| | - Carolien van de Sandt
- Department of Microbiology and Immunology, The University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia.
| | - Sook San Wong
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| | - Linda M Wakim
- Department of Microbiology and Immunology, The University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia.
| | - Sophie A Valkenburg
- HKU Pasteur Research Pole, School of Public Health, University of Hong Kong, Hong Kong 999077, China.
| |
Collapse
|