1
|
Ghosh A, Rayanki N, Joshi AR, Kulkarni OP. UPF 648, a Selective KMO Inhibitor, Attenuates Psychomotor and Cognitive Impairment in Chronic Kidney Disease. ACS Chem Neurosci 2025; 16:908-919. [PMID: 39961731 DOI: 10.1021/acschemneuro.4c00844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2025] Open
Abstract
Kynurenine-3-monooxygenase (KMO), a key enzyme in the kynurenine pathway (KP) of tryptophan metabolism, converts kynurenine into the neurotoxic intermediate quinolinic acid (QA). QA, an N-methyl-d-aspartate (NMDA) receptor agonist, increases glutamate release and inhibits its reuptake, resulting in excitotoxic cell death in the hippocampus and striatum. Plasma metabolomics study exhibited KP metabolites as the most altered pathway in patients with chronic kidney disease (CKD). Recently, QA was linked to the kidney-brain axis as one of the major neurotoxins responsible for cognitive impairment in advanced CKD stages. Various preclinical models are being tested to explore different intermediates of KP that can be targeted to ameliorate the central nervous system (CNS) complications of CKD. In this study, an adenine-induced CKD model was developed in C57BL/6 mice, where UPF 648, a selective KMO inhibitor, was administered to observe the changes in KP metabolites in the hippocampus. Treatment with UPF 648 did not alter kidney function or morphology in CKD. KMO inhibition led to decreased plasma QA levels and reduced levels of pro-inflammatory cytokine interleukin-1-β (IL-1β). UPF 648 treatment in CKD ameliorated the characteristic symptoms of motor dysfunction, anxiety, depression, and hippocampus-dependent memory. Important markers for neuronal survival and plasticity through the brain-derived neurotrophic factor (BDNF)-tropomyosin receptor kinase B (TRKB)-cAMP-responsive element binding protein 1 (CREB1) pathway were upregulated in the hippocampus after KMO inhibition. In conclusion, KMO inhibition can be an exciting target to attenuate the neuropsychiatric burden of advanced stages in CKD.
Collapse
Affiliation(s)
- Aparajita Ghosh
- Metabolic Disorders and Neuroscience Research Lab, Department of Pharmacy, Birla Institute of Technology & Science, Pilani, Hyderabad Campus, Telangana 500078, India
| | - Neeraja Rayanki
- Metabolic Disorders and Neuroscience Research Lab, Department of Pharmacy, Birla Institute of Technology & Science, Pilani, Hyderabad Campus, Telangana 500078, India
| | - Abhijeet R Joshi
- Metabolic Disorders and Neuroscience Research Lab, Department of Pharmacy, Birla Institute of Technology & Science, Pilani, Hyderabad Campus, Telangana 500078, India
| | - Onkar P Kulkarni
- Metabolic Disorders and Neuroscience Research Lab, Department of Pharmacy, Birla Institute of Technology & Science, Pilani, Hyderabad Campus, Telangana 500078, India
| |
Collapse
|
2
|
Saliba A, Debnath S, Tamayo I, Lee HJ, Ragi N, Das F, Montellano R, Tumova J, Maddox M, Trevino E, Singh P, Fastenau C, Maity S, Zhang G, Hejazi L, Venkatachalam MA, O’Connor JC, Fongang B, Hopp SC, Bieniek KF, Lechleiter JD, Sharma K. Quinolinic acid potentially links kidney injury to brain toxicity. JCI Insight 2025; 10:e180229. [PMID: 39946208 PMCID: PMC11949017 DOI: 10.1172/jci.insight.180229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 02/12/2025] [Indexed: 02/19/2025] Open
Abstract
Kidney dysfunction often leads to neurological impairment, yet the complex kidney-brain relationship remains elusive. We employed spatial and bulk metabolomics to investigate a mouse model of rapid kidney failure induced by mouse double minute 2 (Mdm2) conditional deletion in the kidney tubules to interrogate kidney and brain metabolism. Pathway enrichment analysis of a focused plasma metabolomics panel pinpointed tryptophan metabolism as the most altered pathway with kidney failure. Spatial metabolomics showed toxic tryptophan metabolites in the kidneys and brains, revealing a connection between advanced kidney disease and accelerated kynurenine degradation. In particular, the excitotoxic metabolite quinolinic acid was localized in ependymal cells in the setting of kidney failure. These findings were associated with brain inflammation and cell death. Separate mouse models of ischemia-induced acute kidney injury and adenine-induced chronic kidney disease also exhibited systemic inflammation and accumulating toxic tryptophan metabolites. Patients with advanced chronic kidney disease (stage 3b-4 and stage 5) similarly demonstrated elevated plasma kynurenine metabolites, and quinolinic acid was uniquely correlated with fatigue and reduced quality of life. Overall, our study identifies the kynurenine pathway as a bridge between kidney decline, systemic inflammation, and brain toxicity, offering potential avenues for diagnosis and treatment of neurological issues in kidney disease.
Collapse
Affiliation(s)
- Afaf Saliba
- Center for Precision Medicine and
- Division of Nephrology, Department of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Subrata Debnath
- Center for Precision Medicine and
- Division of Nephrology, Department of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Ian Tamayo
- Center for Precision Medicine and
- Division of Nephrology, Department of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Hak Joo Lee
- Center for Precision Medicine and
- Division of Nephrology, Department of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Nagarjunachary Ragi
- Center for Precision Medicine and
- Division of Nephrology, Department of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Falguni Das
- Center for Precision Medicine and
- Division of Nephrology, Department of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Richard Montellano
- Center for Precision Medicine and
- Division of Nephrology, Department of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Jana Tumova
- Center for Precision Medicine and
- Division of Nephrology, Department of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
- Department of Physiology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | | | - Esmeralda Trevino
- Center for Precision Medicine and
- Division of Nephrology, Department of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Pragya Singh
- Center for Precision Medicine and
- Division of Nephrology, Department of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Caitlyn Fastenau
- Department of Pharmacology
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, and
| | - Soumya Maity
- Center for Precision Medicine and
- Division of Nephrology, Department of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Guanshi Zhang
- Center for Precision Medicine and
- Division of Nephrology, Department of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Leila Hejazi
- Center for Precision Medicine and
- Division of Nephrology, Department of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Manjeri A. Venkatachalam
- Center for Precision Medicine and
- Department of Pathology and Laboratory Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Jason C. O’Connor
- Department of Pharmacology
- South Texas Veterans Health Care System, Audie L. Murphy VA Hospital, San Antonio, Texas, USA
| | - Bernard Fongang
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, and
- Department of Biochemistry and Structural Biology
- Department of Population Health Sciences, and
| | - Sarah C. Hopp
- Department of Pharmacology
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, and
| | - Kevin F. Bieniek
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, and
| | - James D. Lechleiter
- Center for Precision Medicine and
- Department of Cell Systems and Anatomy, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Kumar Sharma
- Center for Precision Medicine and
- Division of Nephrology, Department of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| |
Collapse
|
3
|
Wu Y, Gu D, Li J, Li J, Hou G. Role of the gut microbiota in cefoperazone/sulbactam-induced epilepsy in mice with chronic renal failure. Ren Fail 2024; 46:2371551. [PMID: 38938213 PMCID: PMC11216236 DOI: 10.1080/0886022x.2024.2371551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 06/18/2024] [Indexed: 06/29/2024] Open
Abstract
OBJECTIVES The mechanism of cefoperazone/sulbactam-induced epilepsy in chronic kidney disease (CKD) patients is not yet clear. We hypothesized that cefoperazone/sulbactam-induced epilepsy could be based on two main factors: neurotoxicity caused by drug accumulation after renal failure and an abnormal gut microbiota (GM). METHODS A chronic renal failure (CRF) model in mice was established, and then different doses of cefoperazone/sulbactam were injected to induce epilepsy in mice. Normal mouse feces for fecal microbiota transplantation (FMT) were collected. We observed the changes in feces, mental state, and activity of each group of mice. After killing, we collected kidneys and colon for H&E staining. We collected mouse feces for the 16S RNA sequencing of bacteria. RESULTS All CRF mice injected with different concentrations of cefoperazone/sulbactam experienced grade-V seizures and eventually died, whereas normal control mice did not. However, after FMT intervention, the time of epilepsy onset and death in mice was delayed. Early FMT intervention resulted in more mice surviving (p = .0359). Moreover, the villi in the mucosal of group-CS layer fell off, goblet cells missed, and crypts disappeared. The mucosal layer and submucosa were clearly separated. The morphology of intestinal tissue of the CFS and FS group was improved. After FMT, the changes of the GM were observed. CONCLUSIONS The GM may be involved in the epilepsy induced by cefoperazone/sulbactam in CRF mice. FMT can delay the onset of epilepsy in CRF mice induced by cefoperazone/sulbactam, and the earlier the intervention, the better the effect.
Collapse
Affiliation(s)
- Yulu Wu
- Department of Nephrology, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, China
| | - Donghua Gu
- Department of Pathology, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, China
| | - Jie Li
- Department of Nephrology, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, China
| | - Jing Li
- Department of Neurology, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, China
| | - Guocun Hou
- Department of Nephrology, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, China
| |
Collapse
|
4
|
Alobaidi S. Therapeutic Potential of Gum Arabic ( Acacia senegal) in Chronic Kidney Disease Management: A Narrative Review. J Clin Med 2024; 13:5778. [PMID: 39407837 PMCID: PMC11477033 DOI: 10.3390/jcm13195778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
Chronic kidney disease (CKD) poses significant health challenges globally, particularly in regions like the Middle East. This review evaluates the potential efficacy and safety of Gum Arabic (Acacia senegal), a traditional remedy, in managing CKD. A comprehensive literature review was conducted using databases including PubMed and Scopus, focusing on the biochemical, physiological, and therapeutic impacts of Gum Arabic on renal health. Gum Arabic has demonstrated antioxidative and anti-inflammatory properties that may benefit renal function, as shown in animal studies. Clinical trials suggest improvements in renal biomarkers, though these are limited by scope and methodology. While promising, the clinical application of Gum Arabic requires cautious interpretation due to gaps in understanding its mechanisms of action. Gum Arabic shows potential as an adjunct treatment for CKD, reflecting both traditional use and preliminary scientific evidence. Future research should focus on its long-term efficacy, safety, and underlying biochemical pathways to better guide its therapeutic use.
Collapse
Affiliation(s)
- Sami Alobaidi
- Department of Internal Medicine, University of Jeddah, Jeddah 21493, Saudi Arabia
| |
Collapse
|
5
|
Commey KL, Enaka A, Nakamura R, Yamamoto A, Tsukigawa K, Nishi K, Otagiri M, Yamasaki K. 7-Phenylheptanoic Acid-Hydroxypropyl β-Cyclodextrin Complex Slows the Progression of Renal Failure in Adenine-Induced Chronic Kidney Disease Mice. Toxins (Basel) 2024; 16:316. [PMID: 39057956 PMCID: PMC11281668 DOI: 10.3390/toxins16070316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/27/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
The characteristic accumulation of circulating uremic toxins, such as indoxyl sulfate (IS), in chronic kidney disease (CKD) further exacerbates the disease progression. The gut microbiota, particularly gut bacterial-specific enzymes, represents a selective and attractive target for suppressing uremic toxin production and slowing the progression of renal failure. This study investigates the role of 4-phenylbutyrate (PB) and structurally related compounds, which are speculated to possess renoprotective properties in suppressing IS production and slowing or reversing renal failure in CKD. In vitro enzyme kinetic studies showed that 7-phenylheptanoic acid (PH), a PB homologue, suppresses the tryptophan indole lyase (TIL)-catalyzed decomposition of tryptophan to indole, the precursor of IS. A hydroxypropyl β-cyclodextrin (HPβCD) inclusion complex formulation of PH was prepared to enhance its biopharmaceutical properties and to facilitate in vivo evaluation. Prophylactic oral administration of the PH-HPβCD complex formulation reduced circulating IS and attenuated the deterioration of renal function and tubulointerstitial fibrosis in adenine-induced CKD mice. Additionally, treatment of moderately advanced adenine-induced CKD mice with the formulation ameliorated renal failure, although tissue fibrosis was not improved. These findings suggest that PH-HPβCD can slow the progression of renal failure and may have implications for preventing or managing CKD, particularly in early-stage disease.
Collapse
Affiliation(s)
- Kindness Lomotey Commey
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Kumamoto 860-0082, Japan; (K.L.C.); (A.E.); (R.N.); (A.Y.); (K.T.); (K.N.); (M.O.)
- DDS Research Institute, Sojo University, 4-22-1 Ikeda, Kumamoto 860-0082, Japan
| | - Airi Enaka
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Kumamoto 860-0082, Japan; (K.L.C.); (A.E.); (R.N.); (A.Y.); (K.T.); (K.N.); (M.O.)
| | - Ryota Nakamura
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Kumamoto 860-0082, Japan; (K.L.C.); (A.E.); (R.N.); (A.Y.); (K.T.); (K.N.); (M.O.)
| | - Asami Yamamoto
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Kumamoto 860-0082, Japan; (K.L.C.); (A.E.); (R.N.); (A.Y.); (K.T.); (K.N.); (M.O.)
| | - Kenji Tsukigawa
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Kumamoto 860-0082, Japan; (K.L.C.); (A.E.); (R.N.); (A.Y.); (K.T.); (K.N.); (M.O.)
- DDS Research Institute, Sojo University, 4-22-1 Ikeda, Kumamoto 860-0082, Japan
| | - Koji Nishi
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Kumamoto 860-0082, Japan; (K.L.C.); (A.E.); (R.N.); (A.Y.); (K.T.); (K.N.); (M.O.)
- DDS Research Institute, Sojo University, 4-22-1 Ikeda, Kumamoto 860-0082, Japan
| | - Masaki Otagiri
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Kumamoto 860-0082, Japan; (K.L.C.); (A.E.); (R.N.); (A.Y.); (K.T.); (K.N.); (M.O.)
- DDS Research Institute, Sojo University, 4-22-1 Ikeda, Kumamoto 860-0082, Japan
| | - Keishi Yamasaki
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Kumamoto 860-0082, Japan; (K.L.C.); (A.E.); (R.N.); (A.Y.); (K.T.); (K.N.); (M.O.)
- DDS Research Institute, Sojo University, 4-22-1 Ikeda, Kumamoto 860-0082, Japan
| |
Collapse
|
6
|
Panditrao Lahane G, Dhar A. Renoprotective effect of Nesfatin-1 in Adenine-Induced Chronic kidney Disease: An in vitro and in vivo study. Biochem Pharmacol 2024; 225:116284. [PMID: 38750903 DOI: 10.1016/j.bcp.2024.116284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/10/2024] [Accepted: 05/11/2024] [Indexed: 05/19/2024]
Abstract
Chronic Kidney Disease (CKD) presents a significant global health challenge with limited treatment options. Nesfatin-1, an anorexigenic peptide, has demonstrated antioxidant, anti-inflammatory, and anti-apoptotic properties in various diseases. However, the role of nesfatin-1 in CKD remains unclear. This study investigates the potential renoprotective effects of nesfatin-1 in adenine-induced CKD mice and in NRK-52E renal epithelial cells. Male C57BL/6J mice and NRK-52E renal epithelial cells were administered adenine to induce CKD. Various aspects of renal function, histopathology, oxidative stress, inflammation, apoptosis, and renal interstitial fibrosis were assessed and downstream pathways were investigated. Adenine-fed mice exhibited reduced nesfatin-1 expression and increased markers of kidney damage, including elevated blood urea nitrogen (BUN), serum creatinine, and histological abnormalities, reactive oxygen species (ROS), inflammation, apoptosis, and fibrosis. Treatment with nesfatin-1 in adenine induced mice significantly reversed these changes. Nesfatin-1 also lowered calcium levels and the expression of inflammatory markers, including IL-1β, IL-6, TNF-α, and Nf-kB. Furthermore, nesfatin-1 reduced the expression of apoptotic markers (Caspase-3, Caspase-1, Bax/Bcl2 ratio) and restored the balance of Bcl2 and MMP. Lastly, nesfatin-1 attenuated fibrotic markers (Tgf-β, Smad2/3,4, type IV collagen, α-SMA) in both adenine-induced CKD mice and NRK-52E cells. In conclusion, our results suggest that nesfatin-1 may enhance kidney function in adenine-induced CKD mice and NRK-52E cells. The renoprotective effects of nesfatin-1 are likely associated with its antioxidant, anti-inflammatory, anti-apoptotic, and anti-fibrotic properties.
Collapse
Affiliation(s)
- Ganesh Panditrao Lahane
- Department of Pharmacy, Birla Institute of Technology and Sciences (BITS) Pilani, Hyderabad Campus, Jawahar Nagar, Shameerpet, Hyderabad, Telangana 500078, India
| | - Arti Dhar
- Department of Pharmacy, Birla Institute of Technology and Sciences (BITS) Pilani, Hyderabad Campus, Jawahar Nagar, Shameerpet, Hyderabad, Telangana 500078, India.
| |
Collapse
|
7
|
Beegam S, Al-Salam S, Zaaba NE, Elzaki O, Ali BH, Nemmar A. Effects of Waterpipe Smoke Exposure on Experimentally Induced Chronic Kidney Disease in Mice. Int J Mol Sci 2024; 25:585. [PMID: 38203756 PMCID: PMC10778784 DOI: 10.3390/ijms25010585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/12/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
Tobacco smoking is an independent risk factor in the onset of kidney disease. To date, there have been no reports on the influence of waterpipe smoke (WPS) in experimentally induced chronic kidney disease (CKD) models. We studied the effects and mechanisms of actions of WPS on a mouse model of adenine-induced CKD. Mice fed either a normal diet, or an adenine-added diet and were exposed to either air or WPS (30 min/day and 5 days/week) for four consecutive weeks. Plasma creatinine, urea and indoxyl sulfate increased and creatinine clearance decreased in adenine + WPS versus either WPS or adenine + saline groups. The urinary concentrations of kidney injury molecule-1 and adiponectin and the activities of neutrophil gelatinase-associated lipocalin and N-acetyl-β-D-glucosaminidase were augmented in adenine + WPS compared with either adenine + air or WPS groups. In the kidney tissue, several markers of oxidative stress and inflammation were higher in adenine + WPS than in either adenine + air or WPS groups. Compared with the controls, WPS inhalation in mice with CKD increased DNA damage, and urinary concentration of 8-hydroxy-2-deoxyguanosine. Furthermore, the expressions of nuclear factor κB (NF-κB) and mitogen-activated protein kinases (MAPKs) (ERK and p38) were elevated in the kidneys of adenine + WPS group, compared with the controls. Likewise, the kidneys of adenine + WPS group revealed more marked histological tubular injury, chronic inflammation and interstitial fibrosis. In conclusion, WPS inhalation aggravates kidney injury, oxidative stress, inflammation, DNA damage and fibrosis in mice with adenine-induced CKD, indicating that WPS exposure intensifies CKD. These effects were associated with a mechanism involving NF-κB, ERK and p38 activations.
Collapse
Affiliation(s)
- Sumaya Beegam
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (S.B.); (N.E.Z.); (O.E.)
| | - Suhail Al-Salam
- Department of Pathology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates;
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Nur Elena Zaaba
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (S.B.); (N.E.Z.); (O.E.)
| | - Ozaz Elzaki
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (S.B.); (N.E.Z.); (O.E.)
| | | | - Abderrahim Nemmar
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (S.B.); (N.E.Z.); (O.E.)
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| |
Collapse
|
8
|
Ming WH, Luan ZL, Yao Y, Liu HC, Hu SY, Du CX, Zhang C, Zhao YH, Huang YZ, Sun XW, Qiao RF, Xu H, Guan YF, Zhang XY. Pregnane X receptor activation alleviates renal fibrosis in mice via interacting with p53 and inhibiting the Wnt7a/β-catenin signaling. Acta Pharmacol Sin 2023; 44:2075-2090. [PMID: 37344564 PMCID: PMC10545797 DOI: 10.1038/s41401-023-01113-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 05/18/2023] [Indexed: 06/23/2023]
Abstract
Renal fibrosis is a common pathological feature of chronic kidney disease (CKD) with various etiologies, which seriously affects the structure and function of the kidney. Pregnane X receptor (PXR) is a member of the nuclear receptor superfamily and plays a critical role in regulating the genes related to xenobiotic and endobiotic metabolism in mammals. Previous studies show that PXR is expressed in the kidney and has protective effect against acute kidney injury (AKI). In this study, we investigated the role of PXR in CKD. Adenine diet-induced CKD (AD) model was established in wild-type and PXR humanized (hPXR) mice, respectively, which were treated with pregnenolone-16α-carbonitrile (PCN, 50 mg/kg, twice a week for 4 weeks) or rifampicin (RIF, 10 mg·kg-1·d-1, for 4 weeks). We showed that both PCN and RIF, which activated mouse and human PXR, respectively, improved renal function and attenuated renal fibrosis in the two types of AD mice. In addition, PCN treatment also alleviated renal fibrosis in unilateral ureter obstruction (UUO) mice. On the contrary, PXR gene deficiency exacerbated renal dysfunction and fibrosis in both adenine- and UUO-induced CKD mice. We found that PCN treatment suppressed the expression of the profibrotic Wnt7a and β-catenin in AD mice and in cultured mouse renal tubular epithelial cells treated with TGFβ1 in vitro. We demonstrated that PXR was colocalized and interacted with p53 in the nuclei of tubular epithelial cells. Overexpression of p53 increased the expression of Wnt7a, β-catenin and its downstream gene fibronectin. We further revealed that p53 bound to the promoter of Wnt7a gene to increase its transcription and β-catenin activation, leading to increased expression of the downstream profibrotic genes, which was inhibited by PXR. Taken together, PXR activation alleviates renal fibrosis in mice via interacting with p53 and inhibiting the Wnt7a/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Wen-Hua Ming
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, 116044, China
- Health Science Center, East China Normal University, Shanghai, 200241, China
| | - Zhi-Lin Luan
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, 116044, China
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China
- Dalian Key Laboratory for Nuclear Receptors in Major Metabolic Diseases, Dalian, 116044, China
| | - Yao Yao
- Department of nephrology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226006, China
| | - Hang-Chi Liu
- Health Science Center, East China Normal University, Shanghai, 200241, China
| | - Shu-Yuan Hu
- Department of nephrology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226006, China
| | - Chun-Xiu Du
- Division of Nephrology, Wuhu Hospital, East China Normal University, Wuhu, 241100, China
| | - Cong Zhang
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Yi-Hang Zhao
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Ying-Zhi Huang
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Xiao-Wan Sun
- Health Science Center, East China Normal University, Shanghai, 200241, China
| | - Rong-Fang Qiao
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Hu Xu
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, 116044, China
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China
- Dalian Key Laboratory for Nuclear Receptors in Major Metabolic Diseases, Dalian, 116044, China
| | - You-Fei Guan
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, 116044, China.
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China.
- Dalian Key Laboratory for Nuclear Receptors in Major Metabolic Diseases, Dalian, 116044, China.
| | - Xiao-Yan Zhang
- Health Science Center, East China Normal University, Shanghai, 200241, China.
- Division of Nephrology, Wuhu Hospital, East China Normal University, Wuhu, 241100, China.
| |
Collapse
|
9
|
Hayeeawaema F, Muangnil P, Jiangsakul J, Tipbunjong C, Huipao N, Khuituan P. A novel model of adenine-induced chronic kidney disease-associated gastrointestinal dysfunction in mice: The gut-kidney axis. Saudi J Biol Sci 2023; 30:103660. [PMID: 37213695 PMCID: PMC10193294 DOI: 10.1016/j.sjbs.2023.103660] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 03/31/2023] [Accepted: 04/21/2023] [Indexed: 05/23/2023] Open
Abstract
Although constipation is a common complication of chronic kidney disease (CKD), there is no animal model that can be used to study the association between renal impairment and gastrointestinal function without interfering with the gastrointestinal tract of the model. Therefore, we determined whether adenine could induce CKD in association with gastrointestinal dysfunction. Six-week-old ICR mice were intraperitoneally injected with saline, 25, 50, or 75 mg adenine/kg body weight for 21 days. Blood urea nitrogen (BUN), plasma creatinine, and renal histopathology were evaluated. Defecation status was evaluated from defecation frequency and fecal water content. Colonic smooth muscle contraction was measured by the organ bath technique, and transepithelial electrical resistance (TEER) was measured using an Ussing chamber. In the 50 mg/kg treatment group, BUN and creatinine were significantly increased compared with control, and inflammatory cell infiltration, glomerular necrosis, tubular dilatation, and interstitial fibrosis were observed in renal tissues. Mice in this group also showed a significant decrease in defecation frequency, fecal water content, colonic motility index, and TEER. Overall, 50 mg/kg of adenine was the best dose to induce CKD with associated constipation and intestinal barrier impairment. Therefore, this adenine administration model can be recommended for CKD-associated gastrointestinal dysfunction research.
Collapse
Affiliation(s)
- Fittree Hayeeawaema
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Songkhla, Thailand
- Gut Biology and Microbiota Research Unit, Prince of Songkla University, Songkhla, Thailand
| | - Paradorn Muangnil
- Gut Biology and Microbiota Research Unit, Prince of Songkla University, Songkhla, Thailand
- Faculty of Veterinary Science, Prince of Songkla University, Thailand
| | | | - Chittipong Tipbunjong
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Songkhla, Thailand
- Gut Biology and Microbiota Research Unit, Prince of Songkla University, Songkhla, Thailand
| | - Nawiya Huipao
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Songkhla, Thailand
- Gut Biology and Microbiota Research Unit, Prince of Songkla University, Songkhla, Thailand
| | - Pissared Khuituan
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Songkhla, Thailand
- Gut Biology and Microbiota Research Unit, Prince of Songkla University, Songkhla, Thailand
- Corresponding author at: Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, 15 Karnjanavanich Rd., Hat Yai, Songkhla 90110, Thailand.
| |
Collapse
|
10
|
Choi J, Choi MS, Jeon J, Moon J, Lee J, Kong E, Lucia SE, Hong S, Lee JH, Lee EY, Kim P. In vivo longitudinal 920 nm two-photon intravital kidney imaging of a dynamic 2,8-DHA crystal formation and tubular deterioration in the adenine-induced chronic kidney disease mouse model. BIOMEDICAL OPTICS EXPRESS 2023; 14:1647-1658. [PMID: 37078028 PMCID: PMC10110322 DOI: 10.1364/boe.485187] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/01/2023] [Accepted: 03/20/2023] [Indexed: 05/03/2023]
Abstract
Chronic kidney disease (CKD) is one of the most common renal diseases manifested by gradual loss of kidney function with no symptoms in the early stage. The underlying mechanism in the pathogenesis of CKD with various causes such as high blood pressure, diabetes, high cholesterol, and kidney infection is not well understood. In vivo longitudinal repetitive cellular-level observation of the kidney of the CKD animal model can provide novel insights to diagnose and treat the CKD by visualizing the dynamically changing pathophysiology of CKD with its progression over time. In this study, using two-photon intravital microscopy with a single 920 nm fixed-wavelength fs-pulsed laser, we longitudinally and repetitively observed the kidney of an adenine diet-induced CKD mouse model for 30 days. Interestingly, we could successfully visualize the 2,8-dihydroxyadenine (2,8-DHA) crystal formation with a second-harmonics generation (SHG) signal and the morphological deterioration of renal tubules with autofluorescence using a single 920 nm two-photon excitation. The longitudinal in vivo two-photon imaging results of increasing 2,8-DHA crystals and decreasing tubular area ratio visualized by SHG and autofluorescence signal, respectively, were highly correlated with the CKD progression monitored by a blood test showing increased cystatin C and blood urea nitrogen (BUN) levels over time. This result suggests the potential of label-free second-harmonics generation crystal imaging as a novel optical technique for in vivo CKD progression monitoring.
Collapse
Affiliation(s)
- Jieun Choi
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- KI for Health Science and Technology (KIHST), Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Min-Sun Choi
- Department of Internal Medicine, Soonchunhyang University Cheonan Hospital, Cheonan, 31151, Republic of Korea
- BK21 Four Project, College of Medicine, Soonchunhyang University, Cheonan, 31151, Republic of Korea
| | - Jehwi Jeon
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- KI for Health Science and Technology (KIHST), Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Jieun Moon
- KI for Health Science and Technology (KIHST), Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Jingu Lee
- KI for Health Science and Technology (KIHST), Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Eunji Kong
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- KI for Health Science and Technology (KIHST), Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Stephani Edwina Lucia
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- KI for Health Science and Technology (KIHST), Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Sujung Hong
- KI for Health Science and Technology (KIHST), Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Ji-Hye Lee
- Department of Pathology, Soonchunhyang University Cheonan Hospital, Cheonan, 31151, Republic of Korea
| | - Eun Young Lee
- Department of Internal Medicine, Soonchunhyang University Cheonan Hospital, Cheonan, 31151, Republic of Korea
- BK21 Four Project, College of Medicine, Soonchunhyang University, Cheonan, 31151, Republic of Korea
- Institute of Tissue Regeneration, College of Medicine, Soonchunhyang University, Cheonan, 31151, Republic of Korea
| | - Pilhan Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- KI for Health Science and Technology (KIHST), Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| |
Collapse
|
11
|
Catalpol Attenuates Oxidative Stress and Inflammation via Mechanisms Involving Sirtuin-1 Activation and NF-κB Inhibition in Experimentally-Induced Chronic Kidney Disease. Nutrients 2023; 15:nu15010237. [PMID: 36615896 PMCID: PMC9824177 DOI: 10.3390/nu15010237] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 01/04/2023] Open
Abstract
Chronic kidney disease (CKD) is a stealthy disease, and its development is linked to mechanisms including inflammation and oxidative stress. Catalpol (CAT), an iridoid glucoside from the root of Rehmannia glutinosa, is reported to manifest anti-inflammatory, antioxidant, antiapoptotic and antifibrotic properties. Hence, we studied the possible nephroprotective effects of CAT and its mechanisms in an adenine-induced (0.2% w/w in feed for 4 weeks) murine model of CKD by administering 5 mg/kg CAT to BALB/c mice for the duration of 4 weeks except during weekends. Upon sacrifice, the kidney, plasma and urine were collected and various physiological, biochemical and histological endpoints were assessed. CAT significantly ameliorated the adenine-induced altered body and kidney weight, water intake, urine volume, and concentrations of urea and creatinine in plasma, as well as the creatinine clearance and the albumin and creatinine ratio. Moreover, CAT significantly ameliorated the effect of adenine-induced kidney injury by reducing the kidney injury molecule-1, neutrophil gelatinase-associated lipocalin, cystatin C and adiponectin. Similarly, the augmented concentrations of markers of inflammation and oxidative stress in the adenine-treated group were markedly reduced with CAT pretreatment. Furthermore, CAT prevented adenine-induced deoxyribonucleic acid damage and apoptotic activity in the kidneys. Histologically, CAT significantly reduced the formation of tubular necrosis and dilation, as well as interstitial fibrosis in the kidney. In addition to that, CAT significantly decreased the adenine-induced increase in the phosphorylated NF-κB and reversed the reduced expression of sirtuin-1 in the kidney. In conclusion, CAT exhibits salutary effects against adenine-induced CKD in mice by mitigating inflammation, oxidative stress and fibrosis via mechanisms involving sirtuin-1 activation and NF-κB inhibition. Confirmatory studies are warranted in order to consider CAT as a potent nephroprotective agent against CKD.
Collapse
|
12
|
Francisco DDS, Peruzzolo CC, Moecke DP, Yamaguti WP, Kunzler DH, Paulin E. Influence of mild pulmonary congestion on diaphragmatic mobility and activities of daily living in chronic kidney disease: An experimental and clinical study. Nefrologia 2023; 43:81-90. [PMID: 36494284 DOI: 10.1016/j.nefroe.2022.11.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 12/01/2021] [Indexed: 06/12/2023] Open
Abstract
BACKGROUND Pulmonary congestion is a strong predictor of mortality and cardiovascular events in chronic kidney disease (CKD); however, the effects of the mild form on functionality have not yet been investigated. The objective of this study was to assess the influence of mild pulmonary congestion on diaphragmatic mobility (DM) and activities of daily living (ADL) in hemodialysis (HD) subjects, as well as compare ADL behavior on dialysis and non-dialysis days. In parallel, experimentally induce CKD in mice and analyze the resulting pulmonary and functional repercussions. METHODS Thirty subjects in HD underwent thoracic and abdominal ultrasonography, anthropometric assessment, lung and kidney function, respiratory muscle strength assessment and symptoms analysis. To measure ADL a triaxial accelerometer was used over seven consecutive days. Twenty male mice were randomized in Control and CKD group. Thoracic ultrasonography, TNF-α analysis in kidney and lung tissue, exploratory behavior and functionality assessments were performed. RESULTS Mild pulmonary congestion caused a 26.1% decline in DM (R2=.261; P=.004) and 20% reduction in walking time (R2=.200; P=.01), indicating decreases of 2.23mm and 1.54min, respectively, for every unit increase in lung comet-tails. Regarding ADL, subjects exhibited statistically significant differences for standing (P=.002), walking (P=.034) and active time (P=.002), and number of steps taken (P=.01) on days with and without HD. In the experimental model, CKD resulted in increased levels of TNF-α on kidneys (P=.037) and lungs (P=.02), attenuation of exploratory behavior (P=.01) and significant decrease in traveled distance (P=.034). Thoracic ultrasonography of CKD mice showed presence of B-lines. CONCLUSION The mild pulmonary congestion reduced DM and walking time in subjects undergoing HD. Individuals were less active on dialysis days. Furthermore, the experimental model implies that the presence of pulmonary congestion and inflammation may play a decisive role in the low physical and exploratory performance of CKD mice.
Collapse
Affiliation(s)
| | | | | | | | | | - Elaine Paulin
- Universidade do Estado de Santa Catarina (UDESC), Florianópolis, Santa Catarina, Brazil.
| |
Collapse
|
13
|
Polyphenol-rich açaí seed extract exhibits reno-protective and anti-fibrotic activities in renal tubular cells and mice with kidney failure. Sci Rep 2022; 12:20855. [PMID: 36460743 PMCID: PMC9718837 DOI: 10.1038/s41598-022-24420-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 11/15/2022] [Indexed: 12/05/2022] Open
Abstract
The main goal of this study was to evaluate the reno-protective effects of a phenolic-rich Açaí seed extract (ASE) in mice with kidney failure. Kidney failure was induced chemically with an adenine-rich diet (0.25% w/w for 4 weeks) in male CD1 Swiss mice. Mice were then provided daily with ASE (at a dose of ~ 350 mg/kg/day) in drinking water for 4 weeks. Adenine mice exhibited renal dysfunction evidenced by increased proteinuria, increased uremia, extensive tubular atrophy and kidney fibrosis associated with overexpression of pro-fibrotic genes (collagen 1a1, transforming growth factor β1, TGF-β1) and markers of tubular injury (such as Kidney injury molecule-1, KIM-1). ASE was able to beneficially counteract all these effects. ASE improved oxidative damage and fibrosis by decreasing carbonylated protein and MDA concentrations, as well as collagen deposition in renal tissue. ASE decreased the expression of TGF-β1 gene and the abundance of protein TGF-β1 in kidneys. It further decreased both expression and urinary excretion of tubular injury biomarkers, e.g., KIM-1 and Neutrophil gelatinase-associated lipocalin. CKD ASE-treated mice exhibited higher polyphenol content and total antioxidant capacity compared to control mice. ASE further prevented the expression of profibrotic genes in HK2 human tubular cells exposed to uremic toxins. Taken together, these findings suggest that ASE exerted potent reno-protective and anti-fibrotic effects through its antioxidant activity and the modulation of the TGF-β1 pathway.
Collapse
|
14
|
Moecke DMP, Martins GHC, Garlet TC, Bonorino KC, Luciani MG, Bion M, Dos Santos B, da Silva Gevaerd M, Filho JA, Dos Santos ARS, Vieira DSC, Dafre AL, de Camargo Hizume Kunzler D. Aerobic Exercise Attenuates Kidney Injury, Improves Physical Performance, and Increases Antioxidant Defenses in Lungs of Adenine-Induced Chronic Kidney Disease Mice. Inflammation 2022; 45:1895-1910. [PMID: 35727396 DOI: 10.1007/s10753-022-01643-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 12/30/2021] [Accepted: 01/28/2022] [Indexed: 11/05/2022]
Abstract
The association between chronic kidney disease (CKD) and pulmonary pathophysiological changes is well stablished. Nevertheless, the effects of aerobic exercise (AE) on lungs of CKD need further clarification. Thus, Swiss mice were divided in control, AE, CKD, and CKD + AE groups. CKD was induced by 0.2% adenine intake during 8 weeks (4 weeks of CKD induction and 4 weeks of AE). AE consisted in running on treadmill, at moderate intensity, 30 min/day, 5 days/week, during 4 weeks. Twenty-four hours after the last training day, functional capacity test was performed, and 48 h after the test, mice were euthanized. CKD mice showed a significant increase in urine output, serum urea, and creatinine concentrations, and decreased body weight and urine density, besides oxidative damage (p = 0.044), edema area (p < 0.001), leukocyte infiltration (p = 0.040), and collagen area in lung tissue (p = 0.004). AE resulted in an increase of distance traveled (p = 0.049) and maximum speed (p = 0.046), increased activity of catalase (p = 0.031) and glutathione peroxidase (p = 0.048) in lungs, increased levels of nitric oxide (NOx) in serum (p = 0.001) and bronchoalveolar lavage fluid (p = 0.047), and decreased kidney histological injury (p = 0.018) of CKD mice. However, AE also increased oxidative damage (p = 0.003) and did not change collagen content or perivascular edema in lungs (p > 0.05) of CKD mice. Therefore, AE attenuated kidney injury and improved antioxidants defenses in lungs. Despite no significant changes in pulmonary damage, AE significantly improved physical performance in CKD mice.
Collapse
Affiliation(s)
- Débora Melissa Petry Moecke
- Universidade Estadual de Santa Catarina (UDESC), Physical Therapy Graduate Program (PPG-Ft), Health and Sport Sciences Center (CEFID), Experimental Research Laboratory (LaPEx), R. Pascoal Simone, 358, Coqueiros, Florianópolis, ZIP Code: 88080-350, Santa Catarina, Brazil
| | - Gisele Henrique Cardoso Martins
- Laboratory of Cellular Defense (LABDEF), Universidade Federal de Santa Catarina (UFSC), Florianópolis, Santa Catarina, Brazil
| | - Thaine Cristina Garlet
- Universidade Estadual de Santa Catarina (UDESC), Physical Therapy Graduate Program (PPG-Ft), Health and Sport Sciences Center (CEFID), Experimental Research Laboratory (LaPEx), R. Pascoal Simone, 358, Coqueiros, Florianópolis, ZIP Code: 88080-350, Santa Catarina, Brazil
| | - Kelly Cattelan Bonorino
- Laboratory of Neurobiology of Pain and Inflammation (LANDI), Universidade Federal de Santa Catarina (UFSC), Florianópolis, Santa Catarina, Brazil
| | - Marilia Gabriela Luciani
- Center for Agricultural Sciences (CAV), Universidade Estadual de Santa Catarina (UDESC), Lages, Santa Catarina, Brazil
| | - Monique Bion
- Laboratory of Cellular Defense (LABDEF), Universidade Federal de Santa Catarina (UFSC), Florianópolis, Santa Catarina, Brazil
| | - Barbara Dos Santos
- Laboratory of Cellular Defense (LABDEF), Universidade Federal de Santa Catarina (UFSC), Florianópolis, Santa Catarina, Brazil
| | - Monique da Silva Gevaerd
- Universidade Estadual de Santa Catarina (UDESC), Physical Therapy Graduate Program (PPG-Ft), Health and Sport Sciences Center (CEFID), Experimental Research Laboratory (LaPEx), R. Pascoal Simone, 358, Coqueiros, Florianópolis, ZIP Code: 88080-350, Santa Catarina, Brazil
| | - Jamil Assreuy Filho
- Nitric Oxide Pharmacology Laboratory, Universidade Federal de Santa Catarina (UFSC), Florianópolis, Santa Catarina, Brazil
| | - Adair Roberto Soares Dos Santos
- Laboratory of Neurobiology of Pain and Inflammation (LANDI), Universidade Federal de Santa Catarina (UFSC), Florianópolis, Santa Catarina, Brazil
| | - Daniella Serafin Couto Vieira
- Polydoro Ernani de São Thiago University Hospital, Universidade Federal de Santa Catarina (HU/UFSC), Pathological Anatomy Service, Florianópolis, Santa Catarina, Brazil
| | - Alcir Luiz Dafre
- Laboratory of Cellular Defense (LABDEF), Universidade Federal de Santa Catarina (UFSC), Florianópolis, Santa Catarina, Brazil
| | - Deborah de Camargo Hizume Kunzler
- Universidade Estadual de Santa Catarina (UDESC), Physical Therapy Graduate Program (PPG-Ft), Health and Sport Sciences Center (CEFID), Experimental Research Laboratory (LaPEx), R. Pascoal Simone, 358, Coqueiros, Florianópolis, ZIP Code: 88080-350, Santa Catarina, Brazil.
| |
Collapse
|
15
|
Ma C, Wang X, Shao W, Zhao Q, Wei J, Liu Z, Li C. Effects of a Cordyceps militaris With Herba epimedii Complex on Chronic Renal Failure Induced by Adenine in vivo. Nat Prod Commun 2022. [DOI: 10.1177/1934578x221105373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In this paper, the relieving effects of Cordyceps militaris and Herba epimedii complex on chronic renal failure (CRF) induced by adenine were investigated. The CRF model with severe damage to kidney tissue and abnormality of physiological and biochemical indices was established by administrating Sprague Dawley male rats daily with adenine (250 mg/kg). After treatments with the complex, the levels of serum creatinine ( P < .001), urea nitrogen ( P < .001), uric acid ( P < .001), and P3+ ( P < .01) were significantly decreased, while the levels of estradiol (E2), luteinizing hormone ( P < .001), nitrite oxide ( P < .001), and Ca2+ ( P < .001) were significantly increased. The damage to kidney tissue of CRF rats was obviously ameliorated. All the treatment groups showed therapeutic effects of CRF induced by adenine. The Cordyceps militaris and Herba epimedii complex showed the best effect at the dose of 10.4 + 10.4 mg/kg/d.
Collapse
Affiliation(s)
- Changyang Ma
- National R&D Center for Edible Fungus Processing Technology, Henan University, Kaifeng, China
- Joint International Research Laboratory of Food & Medicine Resource Function of Henan Province, Kaifeng, China
| | - Xuebiao Wang
- National R&D Center for Edible Fungus Processing Technology, Henan University, Kaifeng, China
| | - Wenjing Shao
- National R&D Center for Edible Fungus Processing Technology, Henan University, Kaifeng, China
| | - Qingchun Zhao
- National R&D Center for Edible Fungus Processing Technology, Henan University, Kaifeng, China
| | - Jinfeng Wei
- National R&D Center for Edible Fungus Processing Technology, Henan University, Kaifeng, China
- Functional Food Engineering Technology Research Center of Henan Province, Kaifeng, China
- Technology & Media University of Henan Kaifeng, Kaifeng, China
| | - Zhenhua Liu
- National R&D Center for Edible Fungus Processing Technology, Henan University, Kaifeng, China
- Joint International Research Laboratory of Food & Medicine Resource Function of Henan Province, Kaifeng, China
| | - Changqin Li
- National R&D Center for Edible Fungus Processing Technology, Henan University, Kaifeng, China
- Joint International Research Laboratory of Food & Medicine Resource Function of Henan Province, Kaifeng, China
- Functional Food Engineering Technology Research Center of Henan Province, Kaifeng, China
| |
Collapse
|
16
|
Bollenbecker S, Czaya B, Gutiérrez OM, Krick S. Lung-kidney interactions and their role in chronic kidney disease-associated pulmonary diseases. Am J Physiol Lung Cell Mol Physiol 2022; 322:L625-L640. [PMID: 35272496 PMCID: PMC11684991 DOI: 10.1152/ajplung.00152.2021] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 03/01/2022] [Accepted: 03/08/2022] [Indexed: 11/22/2022] Open
Abstract
Chronic illnesses rarely present in a vacuum, devoid of other complications, and chronic kidney disease is hardly an exception. Comorbidities associated with chronic kidney disease lead to faster disease progression, expedited dialysis dependency, and a higher mortality rate. Although chronic kidney disease is most commonly accompanied by cardiovascular diseases and diabetes, there is clear cross talk between the lungs and kidneys pH balance, phosphate metabolism, and immune system regulation. Our present understanding of the exact underlying mechanisms that contribute to chronic kidney disease-related pulmonary disease is poor. This review summarizes the current research on kidney-pulmonary interorgan cross talk in the context of chronic kidney disease, highlighting various acute and chronic pulmonary diseases that lead to further complications in patient care. Treatment options for patients presenting with chronic kidney disease and lung disease are explored by assessing activated molecular pathways and the body's compensatory response mechanisms following homeostatic imbalance. Understanding the link between the lungs and kidneys will potentially improve health outcomes for patients and guide healthcare professionals to better understand how and when to treat each of the pulmonary comorbidities that can present with chronic kidney disease.
Collapse
Affiliation(s)
- Seth Bollenbecker
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Brian Czaya
- Division of Nephrology, Department of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Orlando M Gutiérrez
- Division of Nephrology, Department of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Stefanie Krick
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama
- Gregory Fleming James Cystic Fibrosis Research Center, The University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
17
|
Park MY, Le Henaff C, Sitara D. Administration of α-Klotho Does Not Rescue Renal Anemia in Mice. Front Pediatr 2022; 10:924915. [PMID: 35813388 PMCID: PMC9259788 DOI: 10.3389/fped.2022.924915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 05/27/2022] [Indexed: 12/05/2022] Open
Abstract
Renal anemia is a common complication in chronic kidney disease (CKD), associated with decreased production of erythropoietin (EPO) due to loss of kidney function, and subsequent decreased red blood cell (RBC) production. However, many other factors play a critical role in the development of renal anemia, such as iron deficiency, inflammation, and elevated fibroblast growth factor 23 (FGF23) levels. We previously reported that inhibition of FGF23 signaling rescues anemia in mice with CKD. In the present study we sought to investigate whether α-Klotho deficiency present in CKD also contributes to the development of renal anemia. To address this, we administered α-Klotho to mice with CKD induced by an adenine-rich diet. Mice were sacrificed 24 h after α-Klotho injection, and blood and organs were collected immediately post-mortem. Our data show that α-Klotho administration had no beneficial effect in mice with CKD-associated anemia as it did not increase RBC numbers and hemoglobin levels, and it did not stimulate EPO secretion. Moreover, α-Klotho did not improve iron deficiency and inflammation in CKD as it had no effect on iron levels or inflammatory markers. Interestingly, Klotho supplementation significantly reduced the number of erythroid progenitors in the bone marrow and downregulated renal Epo and Hif2α mRNA in mice fed control diet resulting in reduced circulating EPO levels in these mice. In addition, Klotho significantly decreased intestinal absorption of iron in control mice leading to reduced serum iron and transferrin saturation levels. Our findings demonstrate that α-Klotho does not have a direct role in renal anemia and that FGF23 suppresses erythropoiesis in CKD via a Klotho-independent mechanism. However, in physiological conditions α-Klotho appears to have an inhibitory effect on erythropoiesis and iron regulation.
Collapse
Affiliation(s)
- Min Young Park
- Department of Molecular Pathobiology, NYU College of Dentistry, New York, NY, United States
| | - Carole Le Henaff
- Department of Molecular Pathobiology, NYU College of Dentistry, New York, NY, United States
| | - Despina Sitara
- Department of Molecular Pathobiology, NYU College of Dentistry, New York, NY, United States.,Medicine, NYU School of Medicine, New York, NY, United States
| |
Collapse
|
18
|
Influence of mild pulmonary congestion on diaphragmatic mobility and activities of daily living in chronic kidney disease: An experimental and clinical study. Nefrologia 2021. [DOI: 10.1016/j.nefro.2021.12.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
19
|
Walker JA, Richards S, Whelan SA, Yoo SB, Russell TL, Arinze N, Lotfollahzadeh S, Napoleon MA, Belghasem M, Lee N, Dember LM, Ravid K, Chitalia VC. Indoleamine 2,3-dioxygenase-1, a Novel Therapeutic Target for Post-Vascular Injury Thrombosis in CKD. J Am Soc Nephrol 2021; 32:2834-2850. [PMID: 34716244 PMCID: PMC8806102 DOI: 10.1681/asn.2020091310] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 08/16/2021] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND CKD, characterized by retained uremic solutes, is a strong and independent risk factor for thrombosis after vascular procedures . Urem ic solutes such as indoxyl sulfate (IS) and kynurenine (Kyn) mediate prothrombotic effect through tissue factor (TF). IS and Kyn biogenesis depends on multiple enzymes, with therapeutic implications unexplored. We examined the role of indoleamine 2,3-dioxygenase-1 (IDO-1), a rate-limiting enzyme of kynurenine biogenesis, in CKD-associated thrombosis after vascular injury. METHODS IDO-1 expression in mice and human vessels was examined. IDO-1-/- mice, IDO-1 inhibitors, an adenine-induced CKD, and carotid artery injury models were used. RESULTS Both global IDO-1-/- CKD mice and IDO-1 inhibitor in wild-type CKD mice showed reduced blood Kyn levels, TF expression in their arteries, and thrombogenicity compared with respective controls. Several advanced IDO-1 inhibitors downregulated TF expression in primary human aortic vascular smooth muscle cells specifically in response to uremic serum. Further mechanistic probing of arteries from an IS-specific mouse model, and CKD mice, showed upregulation of IDO-1 protein, which was due to inhibition of its polyubiquitination and degradation by IS in vascular smooth muscle cells. In two cohorts of patients with advanced CKD, blood IDO-1 activity was significantly higher in sera of study participants who subsequently developed thrombosis after endovascular interventions or vascular surgery. CONCLUSION Leveraging genetic and pharmacologic manipulation in experimental models and data from human studies implicate IS as an inducer of IDO-1 and a perpetuator of the thrombotic milieu and supports IDO-1 as an antithrombotic target in CKD.
Collapse
MESH Headings
- Animals
- Aorta
- Carotid Artery Injuries/complications
- Carotid Artery Thrombosis/etiology
- Carotid Artery Thrombosis/prevention & control
- Culture Media/pharmacology
- Enzyme Induction/drug effects
- Feedback, Physiological
- Female
- HEK293 Cells
- Humans
- Indican/physiology
- Indoleamine-Pyrrole 2,3,-Dioxygenase/antagonists & inhibitors
- Indoleamine-Pyrrole 2,3,-Dioxygenase/blood
- Indoleamine-Pyrrole 2,3,-Dioxygenase/deficiency
- Indoleamine-Pyrrole 2,3,-Dioxygenase/genetics
- Kynurenine/blood
- Kynurenine/physiology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Molecular Targeted Therapy
- Myocytes, Smooth Muscle/drug effects
- Postoperative Complications/blood
- Postoperative Complications/enzymology
- Postoperative Complications/etiology
- Postoperative Complications/prevention & control
- Renal Insufficiency, Chronic/drug therapy
- Renal Insufficiency, Chronic/enzymology
- Thromboplastin/metabolism
- Thrombosis/blood
- Thrombosis/enzymology
- Thrombosis/etiology
- Thrombosis/prevention & control
- Tryptophan/metabolism
- Uremia/blood
- Vascular Surgical Procedures/adverse effects
Collapse
Affiliation(s)
- Joshua A Walker
- Renal Section, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
- Whitaker Cardiovascular Institute, Boston University, Boston, Massachusetts
| | - Sean Richards
- Renal Section, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Stephen A Whelan
- Chemical Instrumentation Center, Boston University, Boston, Massachusetts
| | - Sung Bok Yoo
- Renal Section, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Teresa L Russell
- Renal Section, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Nkiruka Arinze
- Department of Surgery, Boston University School of Medicine, Boston, Massachusetts
| | - Saran Lotfollahzadeh
- Renal Section, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Marc A Napoleon
- Renal Section, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Mostafa Belghasem
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Norman Lee
- Chemical Instrumentation Center, Boston University, Boston, Massachusetts
| | - Laura M Dember
- Renal-Electrolyte and Hypertension Division, Center for Clinical Epidemiology and Biostatistics, Philadelphia, Pennsylvania
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Katya Ravid
- Whitaker Cardiovascular Institute, Boston University, Boston, Massachusetts
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Vipul C Chitalia
- Renal Section, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
- Veteran Affairs Boston Healthcare System, Boston, Massachusetts
- Institute of Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts
| |
Collapse
|
20
|
Za’abi MA, Ali BH, Al Suleimani Y, Adham SA, Ali H, Manoj P, Ashique M, Nemmar A. The Effect of Metformin in Diabetic and Non-Diabetic Rats with Experimentally-Induced Chronic Kidney Disease. Biomolecules 2021; 11:biom11060814. [PMID: 34070807 PMCID: PMC8227500 DOI: 10.3390/biom11060814] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/17/2021] [Accepted: 05/25/2021] [Indexed: 12/26/2022] Open
Abstract
This work aimed to investigate whether treatment with the antidiabetic drug metformin would affect adenine-induced chronic kidney disease (CKD) in non-diabetic rats and rats with streptozotocin (STZ)-induced diabetes. Rats were randomly divided into eight groups, and given either normal feed, or feed mixed with adenine (0.25% w/w, for five weeks) to induce CKD. Some of these groups were also simultaneously treated orally with metformin (200 mg/kg/day). Rats given adenine showed the typical signs of CKD that included detrimental changes in several physiological and traditional and novel biochemical biomarkers in plasma urine and kidney homogenates such as albumin/creatinine ratio, N-acetyl-beta-D-glucosaminidase, neutrophil gelatinase-associated lipocalin, 8-isoprostane, adiponectin, cystatin C, as well as plasma urea, creatinine, uric acid, indoxyl sulfate, calcium, and phosphorus. Several indices of inflammation and oxidative stress, and renal nuclear factor-κB and nuclear factor erythroid 2-related factor 2 levels were also measured. Histopathologically, adenine caused renal tubular necrosis and fibrosis. The activation of the intracellular mitogen-activated protein kinase signaling pathway was inhibited in the groups that received metformin and STZ together, with or without adenine induced-CKD. Induction of diabetes worsened most of the actions induced by adenine. Metformin significantly ameliorated the renal actions induced by adenine and STZ when these were given singly, and more so when given together. The results suggest that metformin can be a useful drug in attenuating the progression of CKD in both diabetic and non-diabetic rats.
Collapse
Affiliation(s)
- Mohammed Al Za’abi
- Department of Pharmacology and Clinical Pharmacy, College of Medicine and Health Sciences, Sultan Qaboos University, Khoud 123, Oman; (M.A.Z.); (B.H.A.); (Y.A.S.); (P.M.); (M.A.)
| | - Badreldin H. Ali
- Department of Pharmacology and Clinical Pharmacy, College of Medicine and Health Sciences, Sultan Qaboos University, Khoud 123, Oman; (M.A.Z.); (B.H.A.); (Y.A.S.); (P.M.); (M.A.)
| | - Yousuf Al Suleimani
- Department of Pharmacology and Clinical Pharmacy, College of Medicine and Health Sciences, Sultan Qaboos University, Khoud 123, Oman; (M.A.Z.); (B.H.A.); (Y.A.S.); (P.M.); (M.A.)
| | - Sirin A. Adham
- Department of Biology, College of Science, Sultan Qaboos University, Muscat 123, Oman;
| | - Haytham Ali
- Department of Animal and Veterinary Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Muscat 123, Oman;
| | - Priyadarsini Manoj
- Department of Pharmacology and Clinical Pharmacy, College of Medicine and Health Sciences, Sultan Qaboos University, Khoud 123, Oman; (M.A.Z.); (B.H.A.); (Y.A.S.); (P.M.); (M.A.)
| | - Mohammed Ashique
- Department of Pharmacology and Clinical Pharmacy, College of Medicine and Health Sciences, Sultan Qaboos University, Khoud 123, Oman; (M.A.Z.); (B.H.A.); (Y.A.S.); (P.M.); (M.A.)
| | - Abderrahim Nemmar
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
- Correspondence:
| |
Collapse
|
21
|
Chou LF, Chen TW, Yang HY, Tian YC, Chang MY, Hung CC, Hsu SH, Tsai CY, Ko YC, Yang CW. Transcriptomic signatures of exacerbated progression in leptospirosis subclinical chronic kidney disease with secondary nephrotoxic injury. Am J Physiol Renal Physiol 2021; 320:F1001-F1018. [PMID: 33779314 DOI: 10.1152/ajprenal.00640.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
High-incidence regions of leptospirosis caused by Leptospira spp. coincide with chronic kidney disease. This study investigated whether asymptomatic leptospirosis is an emerging culprit that predisposes to progressive chronic kidney disease when superimposed on secondary nephrotoxic injury. Kidney histology/function and whole transcriptomic profiles were evaluated for Leptospira-infected C57/BL6 mice with adenine-induced kidney injury. The extent of tubulointerstitial kidney lesions and expression of inflammation/fibrosis genes in infected mice with low-dose (0.1%) adenine, particularly in high-dose (0.2%) adenine-fed superimposed on Leptospira-infected mice, were significantly increased compared with mice following infection or adenine diet alone, and the findings are consistent with renal transcriptome analysis. Pathway enrichment findings showed that integrin-β- and fibronectin-encoding genes had distinct expression within the integrin-linked kinase-signaling pathway, which were upregulated in 0.2% adenine-fed Leptospira-infected mice but not in 0.2% adenine-fed mice, indicating that background subclinical Leptospiral infection indeed enhanced subsequent secondary nephrotoxic kidney injury and potential pathogenic molecules associated with secondary nephrotoxic leptospirosis. Comparative analysis of gene expression patterns with unilateral ureteric obstruction-induced mouse renal fibrosis and patients with chronic kidney disease showed that differentially expressed orthologous genes such as hemoglobin-α2, PDZ-binding kinase, and DNA topoisomerase II-α were identified in infected mice fed with low-dose and high-dose adenine, respectively, revealing differentially expressed signatures identical to those found in the datasets and may serve as markers of aggravated kidney progression. This study indicates that background subclinical leptospirosis, when subjected to various degrees of subsequent secondary nephrotoxic injury, may predispose to exacerbated fibrosis, mimicking the pathophysiological process of progressive chronic kidney disease.NEW & NOTEWORTHY Leptospira-infected mice followed by secondary nephrotoxic injury exacerbated immune/inflammatory responses and renal fibrosis. Comparison with the murine model revealed candidates involved in the progression of renal fibrosis in chronic kidney disease (CKD). Comparative transcriptome study suggests that secondary nephrotoxic injury in Leptospira-infected mice recapitulates the gene expression signatures found in CKD patients. This study indicates that secondary nephrotoxic injury may exacerbate CKD in chronic Leptospira infection implicating in the progression of CKD of unknown etiology.
Collapse
Affiliation(s)
- Li-Fang Chou
- Kidney Research Center and Department of Nephrology, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Ting-Wen Chen
- Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan.,Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan.,Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Huang-Yu Yang
- Kidney Research Center and Department of Nephrology, Chang Gung Memorial Hospital, Linkou, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ya-Chung Tian
- Kidney Research Center and Department of Nephrology, Chang Gung Memorial Hospital, Linkou, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ming-Yang Chang
- Kidney Research Center and Department of Nephrology, Chang Gung Memorial Hospital, Linkou, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Cheng-Chieh Hung
- Kidney Research Center and Department of Nephrology, Chang Gung Memorial Hospital, Linkou, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Shen-Hsing Hsu
- Kidney Research Center and Department of Nephrology, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Chung-Ying Tsai
- Kidney Research Center and Department of Nephrology, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Yi-Ching Ko
- Kidney Research Center and Department of Nephrology, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Chih-Wei Yang
- Kidney Research Center and Department of Nephrology, Chang Gung Memorial Hospital, Linkou, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
22
|
Mu F, Zhou X, Fan F, Chen Z, Shi G. A fluorescence biosensor for therapeutic drug monitoring of vancomycin using in vivo microdialysis. Anal Chim Acta 2021; 1151:338250. [DOI: 10.1016/j.aca.2021.338250] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 12/26/2022]
|
23
|
Al-Asmakh M, Sohail MU, Al-Jamal O, Shoair BM, Al-Baniali AY, Bouabidi S, Nasr S, Bawadi H. The Effects of Gum Acacia on the Composition of the Gut Microbiome and Plasma Levels of Short-Chain Fatty Acids in a Rat Model of Chronic Kidney Disease. Front Pharmacol 2021; 11:569402. [PMID: 33628167 PMCID: PMC7898900 DOI: 10.3389/fphar.2020.569402] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 10/21/2020] [Indexed: 01/07/2023] Open
Abstract
Chronic kidney disease (CKD) may be fatal for its victims and is an important long-term public health problem. The complicated medical procedures and diet restrictions to which patients with CKD are subjected alter the gut microbiome in an adverse manner, favoring over-accumulation of proteolytic bacteria that produce ammonia and other toxic substances. The present study aimed to investigate the effect of GA on 1) the composition of the gut microbiome and 2) on plasma levels of short-chain fatty acids. Male Wister rats were divided into four groups (six each) and treated for 4 weeks based on the following: control, dietary adenine (0.75%, w/w) to induce CKD, GA in the drinking water (15%, w/v), and both adenine and GA. At the end of the treatment period, plasma, urine, and fecal samples were collected for determination of several biochemical indicators of renal function and plasma levels of short-chain fatty acids (SCFAs) as well as characterization of the gut microbiome. Dietary adenine induced the typical signs of CKD, i.e., loss of body weight and impairment of renal function, while GA alleviated these effects. The intestine of the rats with CKD contained an elevated abundance of pathogenic Proteobacteria, Actinobacteria, and Verrucomicrobia but lowered proportions of Lactobacillaceae belonging to the Firmicutes phylum. Plasma levels of propionate and butyrate were lowered by dietary adenine and restored by GA. A negative association (Spearman's p-value ≤ 0.01, r ≤ 0.5) was observed between Firmicutes and plasma creatinine, urea, urine N-acetyl-beta-D-glucosaminidase (NAG) and albumin. Phylum Proteobacteria on the other hand was positively associated with these markers while Phylum Bacteroidetes was positively associated with plasma SCFAs. In conclusion, the adverse changes in the composition of the gut microbiome, plasma levels of SCFAs, and biochemical indicators of renal function observed in the rats with CKD induced by dietary adenine were mitigated by GA. These findings are indicative of a link between uremia and the composition of the microbiome in connection with this disease. Dietary administration of GA to patients with CKD may improve their renal function via modulating the composition of their microbiome-a finding that certainly warrants further investigation.
Collapse
Affiliation(s)
- Maha Al-Asmakh
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha, Qatar.,Biomedical Research Center, QU Health, Qatar University, Doha, Qatar
| | | | - Ola Al-Jamal
- Biomedical Research Center, QU Health, Qatar University, Doha, Qatar
| | - Banan Mosaad Shoair
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| | - Asmaa Yousef Al-Baniali
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| | - Salma Bouabidi
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| | - Shahd Nasr
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| | - Hiba Bawadi
- Human Nutrition Department, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
24
|
Song X, Pang H, Cui W, Zhang J, Li J, Jia L. Renoprotective effects of enzyme-hydrolyzed polysaccharides from Auricularia polytricha on adenine-induced chronic kidney diseases in mice. Biomed Pharmacother 2021; 135:111004. [PMID: 33433361 DOI: 10.1016/j.biopha.2020.111004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/04/2020] [Accepted: 11/08/2020] [Indexed: 11/30/2022] Open
Abstract
The present work was aimed to investigate the protective effects of enzymatic-hydrolyzed Auricularia polytricha polysaccharides (EnAPS) on renal functions. The characterizations were analyzed by physicochemical methods, and the renoprotections were processed in adenine-induced chronic kidney diseases (CKD) models of mice. Animal experiments exhibited that EnAPS showed superior renal-protections contributing to its antioxidant effects of increasing the enzyme activities and decreasing the lipid contents, and anti-inflammatory effects of reducing proinflammatory cytokines than A. polytricha polysaccharides (APS). Besides, the anti-apoptosis effects of EnAPS was proved by down-regulating Bax and Caspase-3 expressions and up-regulating Bcl-2 expressions by molecular biotechnology, and the anti-fibrosis effects was confirmed by histopathological observations of staining. The characterizations indicated that lower molecular weights possibly contributed to the superior renoprotective effects. These results suggested that enzymatic hydrolysis had potential effects in enhancing the bioactivities, and the polysaccharides could be used in the development of functional foods supplement against CKD.
Collapse
Affiliation(s)
- Xinling Song
- College of Food and Biological Engineering, Jimei University, Xiamen, 361021, PR China; College of Life Science, Shandong Agricultural University, Taian, 271018, PR China
| | - Hui Pang
- College of Life Science, Shandong Agricultural University, Taian, 271018, PR China
| | - Weijun Cui
- College of Life Science, Shandong Agricultural University, Taian, 271018, PR China
| | - Jianjun Zhang
- College of Life Science, Shandong Agricultural University, Taian, 271018, PR China
| | - Jian Li
- College of Food and Biological Engineering, Jimei University, Xiamen, 361021, PR China.
| | - Le Jia
- College of Life Science, Shandong Agricultural University, Taian, 271018, PR China.
| |
Collapse
|
25
|
Cardiac Inflammation, Oxidative Stress, Nrf2 Expression, and Coagulation Events in Mice with Experimental Chronic Kidney Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8845607. [PMID: 33510843 PMCID: PMC7826233 DOI: 10.1155/2021/8845607] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 12/06/2020] [Accepted: 01/04/2021] [Indexed: 12/13/2022]
Abstract
Chronic kidney disease (CKD) is known to be associated with cardiovascular dysfunction. Dietary adenine intake in mice is also known to induce CKD. However, in this experimental model, the mechanisms underlying the cardiotoxicity and coagulation disturbances are not fully understood. Here, we evaluated cardiac inflammation, oxidative stress, DNA damage, and coagulation events in mice with adenine (0.2% w/w in feed for 4 weeks)-induced CKD. Control mice were fed with normal chow for the same duration. Adenine increased water intake, urine output, relative kidney weight, the plasma concentrations of urea and creatinine, and the urinary concentrations of kidney injury molecule-1 and neutrophil gelatinase-associated lipocalin. It also decreased the body weight and creatinine clearance, and caused kidney DNA damage. Renal histological analysis showed tubular dilation and damage and neutrophilic influx. Adenine induced a significant increase in systolic blood pressure and the concentrations of troponin I, tumor necrosis factor-α, and interleukin-1β in heart homogenates. It also augmented the levels of markers of lipid peroxidation measured by malondialdehyde production and 8-isoprostane, as well as the antioxidants superoxide dismutase and catalase. Immunohistochemical analysis of the hearts showed that adenine increased the expression of nuclear factor erythroid-derived 2-like 2 by cardiomyocytes. It also caused cardiac DNA damage. Moreover, compared with the control group, adenine induced a significant increase in the number of circulating platelet and shortened the thrombotic occlusion time in pial arterioles and venules in vivo, and induced a significant reduction in the prothrombin time and activated partial thromboplastin time. In conclusion, the administration of adenine in mice induced CKD-associated cardiac inflammation, oxidative stress, Nrf2 expression, and DNA damage. It also induced prothrombotic events in vivo. Therefore, this model can be satisfactorily used to study the cardiac pathophysiological events in subjects with CKD and the effect of drug treatment thereon.
Collapse
|
26
|
Lakshmanan AP, Al Za'abi M, Ali BH, Terranegra A. The influence of the prebiotic gum acacia on the intestinal microbiome composition in rats with experimental chronic kidney disease. Biomed Pharmacother 2021; 133:110992. [PMID: 33202283 DOI: 10.1016/j.biopha.2020.110992] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/29/2020] [Accepted: 11/05/2020] [Indexed: 12/13/2022] Open
Abstract
Chronic kidney disease (CKD) is a globally common and important disease and there are evidence for a bidirectional relationship between microbiota and CKD. The aim of the study was to examine the influence of prebiotic - gum acacia (GA) on the intestinal microbiota in rats with adenine-induced CKD. Animals were randomly distributed into four equal groups (n = 6): control, adenine, GA and adenine + GA groups. CKD was induced by adenine (0.75% w/w) given in the diet daily for four weeks, and GA was administered in drinking water at a concentration of 15% w/v. The 16s rRNA analysis was performed on Illumina Miseq targeting V3-V4 region to characterize microbial composition. The abundance of Actinobacteria, Proteobacteria, Tenericutes and Verrucomicrobia bacteria was increased in adenine-induced CKD, and GA treatment successfully reversed those levels. Interestingly, alpha and beta diversity index were both reduced with GA treatment in rats with CKD. Short chain fatty acids (SCFAs) measurement and PICRUSt analysis have shown that GA treatment completely restored the depleted butyrate level and various perturbated functional pathways, respectively, in CKD rats. Taking together, our results suggest that GA supplementation has a beneficial role in treating CKD, through an increased production of butyrate, as well as its anti-inflammatory, antioxidant capacity and anti-nitrosative properties.
Collapse
Affiliation(s)
| | - Mohammed Al Za'abi
- Department of Pharmacology and Clinical Pharmacy, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - Badreldin H Ali
- Department of Pharmacology and Clinical Pharmacy, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| | | |
Collapse
|
27
|
Wang X, Yang S, Li S, Zhao L, Hao Y, Qin J, Zhang L, Zhang C, Bian W, Zuo L, Gao X, Zhu B, Lei XG, Gu Z, Cui W, Xu X, Li Z, Zhu B, Li Y, Chen S, Guo H, Zhang H, Sun J, Zhang M, Hui Y, Zhang X, Liu X, Sun B, Wang L, Qiu Q, Zhang Y, Li X, Liu W, Xue R, Wu H, Shao D, Li J, Zhou Y, Li S, Yang R, Pedersen OB, Yu Z, Ehrlich SD, Ren F. Aberrant gut microbiota alters host metabolome and impacts renal failure in humans and rodents. Gut 2020; 69:2131-2142. [PMID: 32241904 PMCID: PMC7677483 DOI: 10.1136/gutjnl-2019-319766] [Citation(s) in RCA: 291] [Impact Index Per Article: 58.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 03/02/2020] [Accepted: 03/04/2020] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Patients with renal failure suffer from symptoms caused by uraemic toxins, possibly of gut microbial origin, as deduced from studies in animals. The aim of the study is to characterise relationships between the intestinal microbiome composition, uraemic toxins and renal failure symptoms in human end-stage renal disease (ESRD). DESIGN Characterisation of gut microbiome, serum and faecal metabolome and human phenotypes in a cohort of 223 patients with ESRD and 69 healthy controls. Multidimensional data integration to reveal links between these datasets and the use of chronic kidney disease (CKD) rodent models to test the effects of intestinal microbiome on toxin accumulation and disease severity. RESULTS A group of microbial species enriched in ESRD correlates tightly to patient clinical variables and encode functions involved in toxin and secondary bile acids synthesis; the relative abundance of the microbial functions correlates with the serum or faecal concentrations of these metabolites. Microbiota from patients transplanted to renal injured germ-free mice or antibiotic-treated rats induce higher production of serum uraemic toxins and aggravated renal fibrosis and oxidative stress more than microbiota from controls. Two of the species, Eggerthella lenta and Fusobacterium nucleatum, increase uraemic toxins production and promote renal disease development in a CKD rat model. A probiotic Bifidobacterium animalis decreases abundance of these species, reduces levels of toxins and the severity of the disease in rats. CONCLUSION Aberrant gut microbiota in patients with ESRD sculpts a detrimental metabolome aggravating clinical outcomes, suggesting that the gut microbiota will be a promising target for diminishing uraemic toxicity in those patients. TRIAL REGISTRATION NUMBER This study was registered at ClinicalTrials.gov (NCT03010696).
Collapse
Affiliation(s)
- Xifan Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Songtao Yang
- Department of Nephrology, Aerospace Center Hospital, Beijing, China
| | | | - Liang Zhao
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Yanling Hao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | | | - Lian Zhang
- Department of Epidemiology, School of Oncology, Beijing University, Beijing, China
| | - Chengying Zhang
- Department of Nephrology, The Third Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Weijing Bian
- Renal Division, Beijing AnZhen Hospital, Capital Medical University, Beijing, China
| | - Li Zuo
- Department of Nephrology, Peking University People's Hospital, Beijing, China
| | - Xiu Gao
- Department of Nephrology, Peking University Shougang Hospital, Beijing, China
| | - Baoli Zhu
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Xin Gen Lei
- Department of Animal Science, Cornell University, Ithaca, New York, USA
| | - Zhenglong Gu
- Division of Nutritional Sciences, Cornell University, Ithaca, New York, USA
| | - Wei Cui
- Institute of Reproductive and Developmental Biology, Imperial College London, London, UK
| | - Xiping Xu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China,Renal Division, Nanfang Hospital, National Clinical Research Center for Kidney Disease, Southern Medical University, State Key Laboratory for Organ Failure Research, Guangzhou, Guangdong, China
| | | | - Benzhong Zhu
- Beijing Laboratory of Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Yuan Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Shangwu Chen
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Huiyuan Guo
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Hao Zhang
- Beijing Laboratory of Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Jing Sun
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ming Zhang
- School of Food and Chemical Engineering, Beijing Technology and Business University, Beijing, China
| | - Yan Hui
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Xiaolin Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Xiaoxue Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Bowen Sun
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Longjiao Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Qinglu Qiu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Yuchan Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Xingqi Li
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Weiqian Liu
- Beijing Laboratory of Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Rui Xue
- Shanghai SLAC Laboratory Animal Co., Ltd, Shanghai Laboratory Animal Center, Shanghai, China
| | - Hong Wu
- Department of Nephrology, Aerospace Center Hospital, Beijing, China
| | - DongHua Shao
- Department of Nephrology, Aerospace Center Hospital, Beijing, China
| | - Junling Li
- Department of Nephrology, Peking University Shougang Hospital, Beijing, China
| | | | | | | | - Oluf Borbye Pedersen
- Novo Nordisk Foundation Centre for Basic Metabolic Research, Faculty of Health and Medical Sciences, Kobenhavns Universitet, Kobenhavn, Denmark
| | - Zhengquan Yu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China .,State Key Laboratories for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Stanislav Dusko Ehrlich
- Metagenopolis, Université Paris-Saclay, INRAE, MGP, 78350, Jouy-en-Josas, France .,Dental Institute, King's College London, London, London, UK
| | - Fazheng Ren
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| |
Collapse
|
28
|
Mehmood A, Zhao L, Ishaq M, Zad OD, Zhao L, Wang C, Usman M, Lian Y, Xu M. Renoprotective effect of stevia residue extract on adenine-induced chronic kidney disease in mice. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.103983] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
|
29
|
Makhloufi C, Crescence L, Darbousset R, McKay N, Massy ZA, Dubois C, Panicot-Dubois L, Burtey S, Poitevin S. Assessment of Thrombotic and Bleeding Tendency in Two Mouse Models of Chronic Kidney Disease: Adenine-Diet and 5/6th Nephrectomy. TH OPEN 2020; 4:e66-e76. [PMID: 32309772 PMCID: PMC7162676 DOI: 10.1055/s-0040-1705138] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 01/27/2020] [Indexed: 12/15/2022] Open
Abstract
The coexistence of bleeding and thrombosis in patients with chronic kidney disease (CKD) is frequent and poorly understood. Mouse models are essential to understand complications of CKD and to develop new therapeutic approaches improving the health of patients. We evaluated the hemostasis in two models of renal insufficiency: adenine-diet and 5/6th nephrectomy (5/6Nx). Compared with 5/6Nx mice, mice fed with 0.25% adenine had more severe renal insufficiency and so higher levels of prothrombotic uremic toxins like indoxyl sulfate. More severe renal inflammation and fibrosis were observed in the adenine group, as demonstrated by histological and reverse transcription quantitative polymerase chain reaction experiments. Liver fibrinogen γ chain expression and level of plasma fibrinogen were increased only in adenine mice. In both CKD mouse models, tissue factor (TF) expression was increased in kidney and aorta extracts. Immunochemistry analysis of kidney sections showed that TF is localized in the vascular walls. Thrombin–antithrombin complexes were significantly increased in plasma from both adenine and 5/6Nx mice. Tail bleeding time increased significantly only in adenine mice, whereas platelet count was not significant altered. Finally, results obtained by intravital microscopy after laser-induced endothelial injury showed impaired platelet function in adenine mice and an increase in fibrin generation in 5/6Nx mice. To summarize, adenine diet causes a more severe renal insufficiency compared with 5/6Nx. The TF upregulation and the hypercoagulable state were observed in both CKD models. Bleeding tendency was observed only in the adenine model of CKD that recapitulates the whole spectrum of hemostasis abnormalities observed in advanced human CKD.
Collapse
Affiliation(s)
| | - Lydie Crescence
- Aix Marseille Univ, INSERM 1263, INRAE, C2VN, Marseille, France
| | - Roxane Darbousset
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States
| | - Nathalie McKay
- Aix Marseille Univ, INSERM 1263, INRAE, C2VN, Marseille, France
| | - Ziad A Massy
- Centre for Research in Epidemiology and Population Health (CESP), University Paris-Saclay, Villejuif, France.,Department of Nephrology, Ambroise Paré University Hospital, Boulogne Billancourt/Paris, France
| | | | | | - Stéphane Burtey
- Aix Marseille Univ, INSERM 1263, INRAE, C2VN, Marseille, France.,Centre de Néphrologie et Transplantation Rénale, APHM, Marseille, France
| | | |
Collapse
|
30
|
Gum Arabic ( Acacia Senegal) Augmented Total Antioxidant Capacity and Reduced C-Reactive Protein among Haemodialysis Patients in Phase II Trial. Int J Nephrol 2020; 2020:7214673. [PMID: 32328307 PMCID: PMC7171621 DOI: 10.1155/2020/7214673] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/27/2020] [Accepted: 02/27/2020] [Indexed: 01/09/2023] Open
Abstract
Background Oxidative processes might increase in patients with end-stage renal disease (ESRD) according to the current literature. Oxidative stress (OS) is a risk factor of atherosclerosis and cardiovascular complications, which are major causes of mortality among ESRD patients. Haemodialysis (HD) is life-saving procedure, nevertheless it is an active chronic inflammatory status that could augment cardiovascular disease and increase mortality. Gum Arabic (GA) has been claimed to act as an antioxidant and anti-inflammatory agent in experimental studies and clinical trials. Therefore, we assumed GA supplementation among haemodialysis patients would reduce oxidative stress and consequently reduce the state of chronic inflammatory activation associated with haemodialysis. Methods Forty end-stage renal failure (ESRF) patients aged 18–80 years who were on regular haemodialysis in Arif Renal Center, Omdurman, Sudan, were recruited. All recruited patients met the inclusion criteria and signed informed consent prior to enrolment. The patients received 30 g/day of GA for 12 weeks. C-reactive protein (CRP) and complete blood count (CBC) were measured as baseline and monthly. Total antioxidant capacity (TAC) and oxidative stress marker malondialdehyde (MDA) levels were measured before and after GA intake. Ethical approval from the National Medicines and Poisons Board was obtained. Results Gum Arabic significantly augmented total antioxidant capacity level (P < 0.001) (95% CI, 0.408–0.625) and also attenuated oxidative marker MDA and C-reactive protein (P < 0.001). Conclusions GA has revealed potent antioxidative and anti-inflammatory properties in haemodialysis patients. Oral digestion of GA (30 g/day) decreased oxidative stress and inflammatory markers among haemodialysis patients. Trial registration. ClinicalTrials.gov Identifier: NCT03214692, registered 11 July 2017 (prospective registration).
Collapse
|
31
|
Female AhR Knockout Mice Develop a Minor Renal Insufficiency in an Adenine-Diet Model of Chronic Kidney Disease. Int J Mol Sci 2020; 21:ijms21072483. [PMID: 32260098 PMCID: PMC7177716 DOI: 10.3390/ijms21072483] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 03/31/2020] [Accepted: 04/01/2020] [Indexed: 12/16/2022] Open
Abstract
Cardiovascular complications observed in chronic kidney disease (CKD) are associated with aryl hydrocarbon receptor (AhR) activation by tryptophan-derived uremic toxins-mainly indoxyl sulfate (IS). AhR is a ligand-activated transcription factor originally characterized as a receptor of xenobiotics involved in detoxification. The aim of this study was to determine the role of AhR in a CKD mouse model based on an adenine diet. Wild-type (WT) and AhR-/- mice were fed by alternating an adenine-enriched diet and a regular diet for 6 weeks. Our results showed an increased mortality rate of AhR-/- males. AhR-/- females survived and developed a less severe renal insufficiency that WT mice, reflected by urea, creatinine, and IS measurement in serum. The protective effect was related to a decrease of pro-inflammatory and pro-fibrotic gene expression, an attenuation of tubular injury, and a decrease of 2,8-dihydroxyadenine crystal deposition in the kidneys of AhR-/- mice. These mice expressed low levels of xanthine dehydrogenase, which oxidizes adenine into 2,8-dihydroxyadenine, and low levels of the IS metabolism enzymes. In conclusion, the CKD model of adenine diet is not suitable for AhR knockout mice when studying the role of this transcription factor in cardiovascular complications, as observed in human CKD.
Collapse
|
32
|
Nemmar A, Beegam S, Yuvaraju P, Yasin J, Ali BH, Adeghate E. Nose-Only Water-Pipe Smoke Exposure in Mice Elicits Renal Histopathological Alterations, Inflammation, Oxidative Stress, DNA Damage, and Apoptosis. Front Physiol 2020; 11:46. [PMID: 32116758 PMCID: PMC7026484 DOI: 10.3389/fphys.2020.00046] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 01/21/2020] [Indexed: 12/11/2022] Open
Abstract
The prevalence of water-pipe tobacco smoking is increasing worldwide, and is relatively high among youth and young adults. Exposure to water-pipe smoke (WPS) has been reported to affect various systems including the respiratory, cardiovascular and reproductive systems. However, the impact of WPS exposure on the kidney has received only scant attention. Here, we assessed the effect of nose-only WPS exposure for one or four consecutive weeks on renal histology, inflammation, oxidative stress, DNA damage, and apoptosis. The duration of the session was 30 min/day and 5 days/week. Control mice were exposed to air. Light and electron microcopy analysis revealed that the WPS exposure (especially at 4-week time point) caused degeneration of the endothelial cells of the glomerular capillaries and vacuolar degenerations of the proximal convoluted tubules. WPS exposure also significantly decreased the creatinine clearance, and significantly increased proteinuria and urinary kidney injury molecule-1 (KIM-1) concentration. Kidney lipid peroxidation, reactive oxygen species, and oxidized glutathione were significantly increased. WPS exposure also affected the concentration of reduced glutathione and the activity of catalase. Likewise, renal concentrations of interleukin (IL)-6, IL-1β and KIM-1 were augmented by WPS exposure. Moreover, WPS caused DNA damage as evaluated by comet assay, and increased the expression of cleaved caspase-3 and cytochrome C in the kidney. We conclude that exposure of mice to WPS caused renal histopathological alterations, inflammation, oxidative stress, DNA damage, and apoptosis. If the latter findings could be substantiated by controlled human studies, it would be an additional cause for disquiet about an established public health concern.
Collapse
Affiliation(s)
- Abderrahim Nemmar
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates.,Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Sumaya Beegam
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Priya Yuvaraju
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Javed Yasin
- Department of Internal Medicine, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Badreldin H Ali
- Department of Pharmacology and Clinical Pharmacy, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - Ernest Adeghate
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
33
|
Ghelani H, Razmovski-Naumovski V, Chang D, Nammi S. Chronic treatment of curcumin improves hepatic lipid metabolism and alleviates the renal damage in adenine-induced chronic kidney disease in Sprague-Dawley rats. BMC Nephrol 2019; 20:431. [PMID: 31752737 PMCID: PMC6873446 DOI: 10.1186/s12882-019-1621-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 11/08/2019] [Indexed: 12/17/2022] Open
Abstract
Background Chronic kidney disease (CKD), including nephrotic syndrome, is a major cause of cardiovascular morbidity and mortality. The literature indicates that CKD is associated with profound lipid disorders due to the dysregulation of lipoprotein metabolism which progresses kidney disease. The objective of this study is to evaluate the protective effects of curcumin on dyslipidaemia associated with adenine-induced chronic kidney disease in rats. Methods Male SD rats (n = 29) were divided into 5 groups for 24 days: normal control (n = 5, normal diet), CKD control (n = 6, 0.75% w/w adenine-supplemented diet), CUR 50 (n = 6, 50 mg/kg/day curcumin + 0.75% w/w adenine-supplemented diet), CUR 100 (n = 6, 100 mg/kg/day curcumin + 0.75% w/w adenine-supplemented diet), and CUR 150 (n = 6, 150 mg/kg/day curcumin + 0.75% w/w adenine-supplemented diet). The serum and tissue lipid profile, as well as the kidney function test, were measured using commercial diagnostic kits. Results The marked rise in total cholesterol, low-density lipoprotein (LDL) cholesterol, very low-density lipoprotein (VLDL) cholesterol, triglycerides and free fatty acids in serum, as well as hepatic cholesterol, triglyceride and free fatty acids of CKD control rats were significantly protected by curcumin co-treatment (at the dose of 50, 100 and 150 mg/kg). Furthermore, curcumin significantly increased the serum high-density lipoprotein (HDL) cholesterol compared to the CKD control rats but did not attenuate the CKD-induced weight retardation. Mathematical computational analysis revealed that curcumin significantly reduced indicators for the risk of atherosclerotic lesions (atherogenic index) and coronary atherogenesis (coronary risk index). In addition, curcumin improved kidney function as shown by the reduction in proteinuria and improvement in creatinine clearance. Conclusion The results provide new scientific evidence for the use of curcumin in CKD-associated dyslipidaemia and substantiates the traditional use of curcumin in preventing kidney damage.
Collapse
Affiliation(s)
- Hardik Ghelani
- School of Science and Health, Western Sydney University, Sydney, NSW, 2751, Australia.,NICM Health Research Institute, Western Sydney University, Sydney, NSW, 2751, Australia
| | - Valentina Razmovski-Naumovski
- School of Science and Health, Western Sydney University, Sydney, NSW, 2751, Australia.,NICM Health Research Institute, Western Sydney University, Sydney, NSW, 2751, Australia.,South Western Sydney Clinical School School of Medicine, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Dennis Chang
- School of Science and Health, Western Sydney University, Sydney, NSW, 2751, Australia.,NICM Health Research Institute, Western Sydney University, Sydney, NSW, 2751, Australia
| | - Srinivas Nammi
- School of Science and Health, Western Sydney University, Sydney, NSW, 2751, Australia. .,NICM Health Research Institute, Western Sydney University, Sydney, NSW, 2751, Australia.
| |
Collapse
|
34
|
Elnour AAM, Mirghani MES, Kabbashi NA, Alam MZ, Musa KH. Active Fractions of Methanol Crude Obtained from Acacia seyal gum: Antioxidant Capacity, using FTIR Analysis. BORNEO JOURNAL OF PHARMACY 2019. [DOI: 10.33084/bjop.v2i2.915] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The present study is on Acacia seyal gum (ASG), which is an exudate from Talha tree. It provides a rich source of polyphenolics compounds that are used traditionally in folk medicine. The study aims to determine the antioxidant capacity (AC) and functional groups of ASG and Prebio-T-commercial (PTC) samples. The methanol crude extracts of both ASG and PTC have fractioned into chloroform (CHF), hexane (HF), acetone (AF) and methanol (MF) using solvent-solvent portion. Both ferric reducing antioxidant power (FRAP), and cupric reducing antioxidant capacity (CUPRAC) assays for each fraction examined. Crude methanol extracts (CME) and its active compositions also analysed carefully using Fourier Transform Infrared Spectroscopy (FTIR) technique. The findings presented a wide variety of functional groups provided by the FTIR spectra (eights bands approximately. Regarding cupric reducing antioxidant capacity (CUPRAC), the methanol crude extracts values are 888.6�4.57 mg TE/100g extract, for PTC as compared to 474.3� 2.23 mg TE/100g of extract for ASG. However, both methanol and acetone fractions revealed significantly (p = 0.05) high FRAP values ranged between 599.8�7.5 and 741.8�5.8 mg TE/100g fraction; for PTC and ASG, respectively. While CUPRAC showed insignificant (p = 0.05) same values 356.1�2.62 mg TE/100g of fraction; for MF of both PTC and ASG respectively. Therefore, in this study, methanolic fractions (MFs) are found to be more effective than acetone fractions (AFs), except for CHF and HF. Finally, the antioxidant activity of the active fraction has provided some evidence regarding its functional groups which may have used in traditional medicine.
Collapse
|
35
|
Saikia R, Choudhury S, Borah A, Mazumder MK. Ameliorative effects of Garcinia pedunculata fruit extract on adenine-induced chronic kidney disease in mice, and the role of Garcinol: relevance to hyperuricemia and urolithiasis. ADVANCES IN TRADITIONAL MEDICINE 2019. [DOI: 10.1007/s13596-019-00402-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
36
|
Andres-Hernando A, Lanaspa MA, Kuwabara M, Orlicky DJ, Cicerchi C, Bales E, Garcia GE, Roncal-Jimenez CA, Sato Y, Johnson RJ. Obesity causes renal mitochondrial dysfunction and energy imbalance and accelerates chronic kidney disease in mice. Am J Physiol Renal Physiol 2019; 317:F941-F948. [PMID: 31411075 DOI: 10.1152/ajprenal.00203.2019] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Obesity and metabolic syndrome are well-known risk factors for chronic kidney disease (CKD); however, less is known about the mechanism(s) by which metabolic syndrome might accelerate kidney disease. We hypothesized that metabolic syndrome should accelerate the development of kidney disease and that it might be associated with alterations in energy metabolism. We studied the pound mouse (which develops early metabolic syndrome due to a leptin receptor deletion) and wild-type littermates and compared the level of renal injury and muscle wasting after equivalent injury with oral adenine. Renal function, histology, and biochemical analyses were performed. The presence of metabolic syndrome was associated with earlier development of renal disease (12 mo) and earlier mortality in pound mice compared with controls. After administration of adenine, kidney disease was worse in pound mice, and this was associated with greater tubular injury with a decrease in kidney mitochondria, lower tissue ATP levels, and worse oxidative stress. Pound mice with similar levels of renal function as adenine-treated wild-type mice also showed worse sarcopenia, with lower tissue ATP and intracellular phosphate levels. In summary, our data demonstrate that obesity and metabolic syndrome accelerate the progression of CKD and worsen CKD-dependent sarcopenia. Both conditions are associated with renal alterations in energy metabolism and lower tissue ATP levels secondary to mitochondrial dysfunction and reduced mitochondrial number.
Collapse
Affiliation(s)
- Ana Andres-Hernando
- Division of Renal Diseases, Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, Colorado, and Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Denver, Colorado
| | - Miguel A Lanaspa
- Division of Renal Diseases, Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, Colorado, and Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Denver, Colorado
| | - Masanari Kuwabara
- Division of Renal Diseases, Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, Colorado, and Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Denver, Colorado.,Toranomon Hospital, Department of Cardiology, Tokyo, Japan
| | - David J Orlicky
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Christina Cicerchi
- Division of Renal Diseases, Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, Colorado, and Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Denver, Colorado
| | - Elise Bales
- Division of Reproductive Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Gabriela E Garcia
- Division of Renal Diseases, Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, Colorado, and Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Denver, Colorado
| | - Carlos A Roncal-Jimenez
- Division of Renal Diseases, Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, Colorado, and Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Denver, Colorado
| | - Yuka Sato
- Division of Renal Diseases, Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, Colorado, and Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Denver, Colorado
| | - Richard J Johnson
- Division of Renal Diseases, Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, Colorado, and Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Denver, Colorado
| |
Collapse
|
37
|
Myung J, Wu MY, Lee CY, Rahim AR, Truong VH, Wu D, Piggins HD, Wu MS. The Kidney Clock Contributes to Timekeeping by the Master Circadian Clock. Int J Mol Sci 2019; 20:ijms20112765. [PMID: 31195684 PMCID: PMC6600447 DOI: 10.3390/ijms20112765] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 06/01/2019] [Accepted: 06/03/2019] [Indexed: 01/11/2023] Open
Abstract
The kidney harbors one of the strongest circadian clocks in the body. Kidney failure has long been known to cause circadian sleep disturbances. Using an adenine-induced model of chronic kidney disease (CKD) in mice, we probe the possibility that such sleep disturbances originate from aberrant circadian rhythms in kidney. Under the CKD condition, mice developed unstable behavioral circadian rhythms. When observed in isolation in vitro, the pacing of the master clock, the suprachiasmatic nucleus (SCN), remained uncompromised, while the kidney clock became a less robust circadian oscillator with a longer period. We find this analogous to the silencing of a strong slave clock in the brain, the choroid plexus, which alters the pacing of the SCN. We propose that the kidney also contributes to overall circadian timekeeping at the whole-body level, through bottom-up feedback in the hierarchical structure of the mammalian circadian clocks.
Collapse
Affiliation(s)
- Jihwan Myung
- Graduate Institute of Mind, Brain and Consciousness, Taipei Medical University, Taipei 11031, Taiwan.
- Brain and Consciousness Research Center, Taipei Medical University-Shuang Ho Hospital, New Taipei City 23561, Taiwan.
- Laboratory of Braintime, Taipei Medical University, Taipei 11031 & Shuang Ho Hospital, New Taipei City 23561, Taiwan.
- Computational Neuroscience Unit, Okinawa Institute of Science and Technology, Okinawa 904-0495, Japan.
| | - Mei-Yi Wu
- Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, Taipei 11031, Taiwan.
- Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei 10672, Taiwan.
| | - Chun-Ya Lee
- Laboratory of Braintime, Taipei Medical University, Taipei 11031 & Shuang Ho Hospital, New Taipei City 23561, Taiwan.
- Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, Taipei 11031, Taiwan.
| | - Amalia Ridla Rahim
- Graduate Institute of Mind, Brain and Consciousness, Taipei Medical University, Taipei 11031, Taiwan.
- Brain and Consciousness Research Center, Taipei Medical University-Shuang Ho Hospital, New Taipei City 23561, Taiwan.
- Laboratory of Braintime, Taipei Medical University, Taipei 11031 & Shuang Ho Hospital, New Taipei City 23561, Taiwan.
| | - Vuong Hung Truong
- Graduate Institute of Mind, Brain and Consciousness, Taipei Medical University, Taipei 11031, Taiwan.
- Brain and Consciousness Research Center, Taipei Medical University-Shuang Ho Hospital, New Taipei City 23561, Taiwan.
- Laboratory of Braintime, Taipei Medical University, Taipei 11031 & Shuang Ho Hospital, New Taipei City 23561, Taiwan.
| | - Dean Wu
- Department of Neurology, Shuang Ho Hospital, New Taipei City 23561, Taiwan.
- Department of Neurology, Taipei Medical University, Taipei 11031, Taiwan.
| | - Hugh David Piggins
- School of Physiology, Pharmacology, and Neuroscience, Faculty of Life Sciences, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, UK.
| | - Mai-Szu Wu
- Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, Taipei 11031, Taiwan.
- Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.
| |
Collapse
|
38
|
Belghasem ME, A'amar O, Roth D, Walker J, Arinze N, Richards SM, Francis JM, Salant DJ, Chitalia VC, Bigio IJ. Towards minimally-invasive, quantitative assessment of chronic kidney disease using optical spectroscopy. Sci Rep 2019; 9:7168. [PMID: 31073168 PMCID: PMC6509114 DOI: 10.1038/s41598-019-43684-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 04/25/2019] [Indexed: 01/01/2023] Open
Abstract
The universal pathologic features implicated in the progression of chronic kidney disease (CKD) are interstitial fibrosis and tubular atrophy (IFTA). Current methods of estimating IFTA are slow, labor-intensive and fraught with variability and sampling error, and are not quantitative. As such, there is pressing clinical need for a less-invasive and faster method that can quantitatively assess the degree of IFTA. We propose a minimally-invasive optical method to assess the macro-architecture of kidney tissue, as an objective, quantitative assessment of IFTA, as an indicator of the degree of kidney disease. The method of elastic-scattering spectroscopy (ESS) measures backscattered light over the spectral range 320-900 nm and is highly sensitive to micromorphological changes in tissues. Using two discrete mouse models of CKD, we observed spectral trends of increased scattering intensity in the near-UV to short-visible region (350-450 nm), relative to longer wavelengths, for fibrotic kidneys compared to normal kidney, with a quasi-linear correlation between the ESS changes and the histopathology-determined degree of IFTA. These results suggest the potential of ESS as an objective, quantitative and faster assessment of IFTA for the management of CKD patients and in the allocation of organs for kidney transplantation.
Collapse
Affiliation(s)
- Mostafa E Belghasem
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Ousama A'amar
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Daniel Roth
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Joshua Walker
- Renal Section, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Nkiruka Arinze
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA, USA
- Department of Surgery, Boston University School of Medicine, Boston, MA, USA
| | - Sean M Richards
- Renal Section, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Jean M Francis
- Renal Section, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - David J Salant
- Renal Section, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Vipul C Chitalia
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA, USA
- Renal Section, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
- Veterans Administration Boston Healthcare system, Boston, MA, USA
| | - Irving J Bigio
- Department of Biomedical Engineering, Boston University, Boston, MA, USA.
- Department of Electrical & Computer Engineering, Boston University, Boston, MA, USA.
| |
Collapse
|
39
|
Waterpipe Smoke Exposure Triggers Lung Injury and Functional Decline in Mice: Protective Effect of Gum Arabic. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:8526083. [PMID: 31178975 PMCID: PMC6501418 DOI: 10.1155/2019/8526083] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 01/08/2019] [Accepted: 03/04/2019] [Indexed: 12/12/2022]
Abstract
The prevalence of waterpipe (shisha) tobacco smoking has recently seen a substantial increase worldwide and is becoming a public health problem. Both human and animal studies have established that waterpipe smoke (WPS) increases airway reactivity and inflammation. Gum Arabic (GA) is a prebiotic agent that possesses antioxidant and anti-inflammatory properties. However, its effects on lung toxicity induced by WPS exposure are unknown. Thus, the aim of this study was to investigate the possible salutary effects and underlying mechanisms of GA on WPS-induced pulmonary pathophysiologic effects. C57BL/6 mice were exposed to air or WPS (30 minutes/day for one month) with or without GA treatment in drinking water (15%, w/v). Exposure to WPS induced an influx of neutrophil polymorphs in the peribronchiolar and interstitial spaces and an increase of tumor necrosis factor-α and 8-isoprostane, a marker of lipid peroxidation, concentrations in lung homogenates. The latter effects were significantly mitigated by GA treatment. Likewise, the lung DNA damage induced by WPS exposure was prevented by GA administration. Western blot analysis of the lung showed that GA inhibited nuclear factor kappa-B (NF-κB) expression caused by WPS and augmented that of nuclear factor erythroid 2-related factor 2 (Nrf2). Similarly, immunohistochemical analysis of bronchial epithelial cells and alveolar cells showed a parallel and significant increase in the nuclear expression of Nrf2 and cytoplasmic expression of glutathione in mice treated with GA and exposed to WPS. Moreover, GA administration has significantly prevented airway hyperreactivity to methacholine induced by WPS. We conclude that GA administration significantly declined the physiological, histological, biochemical, and molecular indices of lung toxicity caused by WPS exposure, indicating its beneficial respiratory impact. Considering that GA is a safe agent with health benefits in humans, our data suggest its potential usage in waterpipe smokers.
Collapse
|
40
|
Li S, Andoh T, Zhang Q, Uta D, Kuraishi Y. β2-Microglobulin, interleukin-31, and arachidonic acid metabolites (leukotriene B4 and thromboxane A2) are involved in chronic renal failure-associated itch-associated responses in mice. Eur J Pharmacol 2019; 847:19-25. [DOI: 10.1016/j.ejphar.2019.01.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 12/26/2018] [Accepted: 01/14/2019] [Indexed: 12/20/2022]
|
41
|
Mazumder MK, Paul R, Bhattacharya P, Borah A. Neurological sequel of chronic kidney disease: From diminished Acetylcholinesterase activity to mitochondrial dysfunctions, oxidative stress and inflammation in mice brain. Sci Rep 2019; 9:3097. [PMID: 30816118 PMCID: PMC6395638 DOI: 10.1038/s41598-018-37935-3] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 12/14/2018] [Indexed: 12/27/2022] Open
Abstract
With increasing prevalence, chronic kidney disease (CKD) has become a global health problem. Due to the retention of uremic toxins, electrolytes and water, and the resultant metabolic disturbances, CKD affects several organs, including the nervous system. Thus, CKD patients suffer from several neurological complications, including dementia, cognitive impairment, motor abnormalities, depression, and mood and sleep disturbances. However, the mechanisms underlying the neurological complications are least elucidated. We have recently reported a highly reproducible mice model of CKD induced by high adenine diet, which exhibited psychomotor behavioral abnormalities and blood-brain barrier disruption. In the present study, using the mice model, we have investigated psycho-motor and cognitive behaviour, and the neurochemical and histopathological alterations in brain relevant to the observed behavioural abnormalities. The results demonstrate global loss of Acetylcholinesterase activity, and decrease in neuronal arborisation and dendritic spine density in discrete brain regions, of the CKD mice. Oxidative stress, inflammation, and mitochondrial dysfunctions were found in specific brain regions of the mice, which have been regarded as the underlying causes of the observed neurochemical and histopathological alterations. Thus, the present study is of immense importance, and has therapeutic implications in the management of CKD-associated neurological complications.
Collapse
Affiliation(s)
- Muhammed Khairujjaman Mazumder
- Cellular and Molecular Neurobiology Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar - 788011, Assam, India
| | - Rajib Paul
- Cellular and Molecular Neurobiology Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar - 788011, Assam, India.,Department of Zoology, Pandit Deendayal Upadhyaya Adarsha Mahavidyalaya (PDUAM), Eraligool-788723, Karimganj, Assam, India
| | - Pallab Bhattacharya
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar - 382355, Gujarat, India
| | - Anupom Borah
- Cellular and Molecular Neurobiology Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar - 788011, Assam, India.
| |
Collapse
|
42
|
Nemmar A, Al-Salam S, Beegam S, Yuvaraju P, Ali BH. Gum Arabic Ameliorates Impaired Coagulation and Cardiotoxicity Induced by Water-Pipe Smoke Exposure in Mice. Front Physiol 2019; 10:53. [PMID: 30858803 PMCID: PMC6397852 DOI: 10.3389/fphys.2019.00053] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 01/17/2019] [Indexed: 12/21/2022] Open
Abstract
Water-pipe smoking (WPS) is prevalent in the East and elsewhere. WPS exposure is known to induce thrombosis and cardiovascular toxicity involving inflammation and oxidative stress. Here, we have investigated the effect of Gum Arabic (GA), a prebiotic with anti-oxidant, anti-inflammatory and cytoprotective properties, on WPS exposure (30 min/day for 1 month) on coagulation and cardiac homeostasis, and their possible underlying mechanisms in mice. Animals received either GA in drinking water (15%, w/v) or water only for the entire duration of study. GA significantly mitigated thrombosis in pial microvessels in vivo, platelet aggregation in vitro, and the shortening of prothrombin time induced by WPS exposure. The increase in plasma concentrations of fibrinogen, plasminogen activator inhibitor-1 and markers of lipid peroxidation, 8-isoprostane and malondialdehyde, induced by WPS were significantly reduced by GA administration. Moreover, WPS exposure induced a significant increase in systolic blood pressure and the concentrations of the pro-inflammatory cytokines tumor necrosis factor-α and interleukin 1β in heart homogenates. GA significantly alleviated these effects, and prevented the decrease of reduced glutathione, catalase and total nitric oxide levels in heart homogenates. Immunohistochemical analysis of the hearts showed that WPS exposure increased nuclear factor erythroid-derived 2-like 2 (Nrf2) expressions by cardiac myocytes and endothelial cells, and these effects were potentiated by the combination of GA and WPS. WPS also increased DNA damage and cleaved caspase 3, and GA administration prevented these effects. Our data, obtained in experimental murine model of WPS exposure, show that GA ameliorates WPS-induced coagulation and cardiovascular inflammation, oxidative stress, DNA damage and apoptosis, through a mechanism involving Nrf2 activation.
Collapse
Affiliation(s)
- Abderrahim Nemmar
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Suhail Al-Salam
- Department of Pathology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Sumaya Beegam
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Priya Yuvaraju
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Badreldin H Ali
- Department of Pharmacology and Clinical Pharmacy, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| |
Collapse
|
43
|
Ali BH, Al Za'abi M, Adham SA, Al Suleimani Y, Karaca T, Manoj P, Al Kalbani J, Yasin J, Nemmar A. The effect of sildenafil on rats with adenine-Induced chronic kidney disease. Biomed Pharmacother 2018; 108:391-402. [PMID: 30236848 DOI: 10.1016/j.biopha.2018.09.061] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 08/30/2018] [Accepted: 09/11/2018] [Indexed: 02/07/2023] Open
Abstract
The erectile dysfunction drug sildenafil has cardiopulmonary protective actions, and a nephroprotective action in cisplatin and ischemia-reperfusion-induced acute kidney injury. Here, we assessed its possible ameliorative action in a model of chronic kidney disease (CKD) using adenine feeding. Eight groups of rats were treated with saline (controls), adenine (0.25% w/w in feed daily for 5 weeks), and oral sildenafil (0.1, 0.5 or 2.5 mg/kg), either alone, or concomitantly with adenine. Urine was collected 24 h after the end of the treatments from all rats and blood pressure measured, followed by collection of blood and kidneys for the measurement of several functional, biochemical and histopathological parameters. Adenine treatment reduced body weight, creatinine renal clearance, and increased water intake and urine output, as well as the plasma concentrations of urea and creatinine, neutrophil gelatinase-associated lipocalin, and N-acetyl-β-D-glucosaminidase activity, and albumin in urine. Adenine also increased the concentrations of the uremic toxins indoxyl sulfate, uric acid and phosphate, and a number of proteins and inflammatory cytokines, and decreased that of several anti - oxidant indices. Renal histopathological markers of damage (inflammation and fibrosis) were significantly increased by adenine. Sildenafil, given simultaneously with adenine, induced a dose - dependent improvements in most of the above parameters, suggesting its possible use as adjunct treatment for CKD in humans.
Collapse
Affiliation(s)
- Badreldin H Ali
- Department of Pharmacology and Clinical Pharmacy, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - Mohammed Al Za'abi
- Department of Pharmacology and Clinical Pharmacy, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman.
| | - Sirin A Adham
- Department of Biology, College of Science, Sultan Qaboos University, Muscat, Oman
| | - Yousuf Al Suleimani
- Department of Pharmacology and Clinical Pharmacy, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - Turan Karaca
- Department of Histology-Embryology, Faculty of Medicine, University of Trakya, Balkan Campus, 22030, Edirne, Turkey
| | - Priyadarsini Manoj
- Department of Pharmacology and Clinical Pharmacy, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - Jamila Al Kalbani
- Department of Pharmacology and Clinical Pharmacy, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - Javid Yasin
- Department of Medicine, College of Medicine and Health Sciences, United Arab Emirates University, PO Box 17666, Al Ain, United Arab Emirates
| | - Abderrahim Nemmar
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, PO Box 17666, Al Ain, United Arab Emirates
| |
Collapse
|
44
|
Diwan V, Brown L, Gobe GC. Adenine-induced chronic kidney disease in rats. Nephrology (Carlton) 2018; 23:5-11. [PMID: 29030945 DOI: 10.1111/nep.13180] [Citation(s) in RCA: 155] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2017] [Indexed: 12/24/2022]
Abstract
Many animal models have been developed to study the causes and treatments of chronic kidney disease (CKD) in humans, an insidious disease resulting from kidney injury and characterized by persistent functional decline for more than 3 months, with or without evidence of structural deficit. The eventual outcome of CKD may be end-stage kidney disease (ESKD), where patients need dialysis or transplantation to survive. Cardiovascular disease is accelerated in patients with CKD and contributes to increased mortality, with the relationship between CKD and cardiovascular disease being bi-directional. Most animal models do not mimic the complexity of the human disease as many do not develop CKD-associated cardiovascular disease. The adenine diet model of CKD in rodents is an exception. The original adenine diet model produced rapid-onset kidney disease with extensive tubulointerstitial fibrosis, tubular atrophy, crystal formation and marked vessel calcification. Since then, lower adenine intake in rats has been found to induce slowly progressive kidney damage and cardiovascular disease. These chronic adenine diet models allow the characterization of relatively stable kidney and cardiovascular disease, similar to CKD in humans. In addition, interventions for reversal can be tested. Here the key features of the adenine diet model of CKD are noted, along with some limitations of other available models. In summary, the data presented here support the use of chronic low-dose adenine diet in rats as an easy and effective model for understanding human CKD, especially the links with cardiovascular disease, and developing potential therapeutic interventions.
Collapse
Affiliation(s)
- Vishal Diwan
- UQ Diamantina Institute, Translational Research Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - Lindsay Brown
- School of Health and Wellbeing, The University of Southern Queensland, Toowoomba, Queensland, Australia
| | - Glenda C Gobe
- UQ Diamantina Institute, Translational Research Institute, The University of Queensland, Brisbane, Queensland, Australia.,NHMRC Centre for Research Excellence, Centre for Chronic Disease, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
45
|
Rahman A, Yamazaki D, Sufiun A, Kitada K, Hitomi H, Nakano D, Nishiyama A. A novel approach to adenine-induced chronic kidney disease associated anemia in rodents. PLoS One 2018; 13:e0192531. [PMID: 29415057 PMCID: PMC5802942 DOI: 10.1371/journal.pone.0192531] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 01/25/2018] [Indexed: 12/20/2022] Open
Abstract
To date, good experimental animal models of renal anemia are not available. Therefore, the purpose of this study was to establish a novel approach to induce chronic kidney disease (CKD) with severe anemia by oral administration of adenine in rodents. Adenine was administered to 6-week-old male C57BL/6 mice (25 and 50 mg/kg body weight) by oral gavage daily for 28 days. Serum creatinine and BUN as well as hematocrit, hemoglobin (Hb) and plasma erythropoietin (EPO) levels were monitored to assess renal function and anemia, respectively. Adenine at 25 mg/kg for 28 days slightly increased plasma creatinine levels, but did not induce anemia. In contrast, 50 mg/kg of adenine daily for 28 days showed severe renal dysfunction (plasma creatinine 1.9 ± 0.10 mg/dL) and anemia (hematocrit 36.5 ± 1.0% and EPO 28 ± 2.4 pg/mL) as compared with vehicle-treated mice (0.4 ± 0.02 mg/dL, 49.6 ± 1.6% and 61 ± 4.0 pg/mL, respectively). At the end of experiment, level of Hb also significantly reduced in 50 mg/kg adenine administration group. Remarkable histological changes of kidney tissues characterized by interstitial fibrosis and cystic appearance in tubules were observed in 50 mg/kg of adenine treatment group. These results have demonstrated that oral dosing with adenine at 50 mg/kg for 28 days is suitable to induce a stable anemia associated with CKD in mice.
Collapse
Affiliation(s)
- Asadur Rahman
- Department of Pharmacology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Daisuke Yamazaki
- Department of Pharmacology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Abu Sufiun
- Department of Pharmacology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Kento Kitada
- Department of Pharmacology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Hirofumi Hitomi
- Department of Pharmacology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Daisuke Nakano
- Department of Pharmacology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Akira Nishiyama
- Department of Pharmacology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| |
Collapse
|
46
|
Nemmar A, Karaca T, Beegam S, Yuvaraju P, Yasin J, Ali BH. Lung Oxidative Stress, DNA Damage, Apoptosis, and Fibrosis in Adenine-Induced Chronic Kidney Disease in Mice. Front Physiol 2017; 8:896. [PMID: 29218013 PMCID: PMC5703828 DOI: 10.3389/fphys.2017.00896] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 10/24/2017] [Indexed: 12/11/2022] Open
Abstract
It is well-established that there is a crosstalk between the lung and the kidney, and several studies have reported association between chronic kidney disease (CKD) and pulmonary pathophysiological changes. Experimentally, CKD can be caused in mice by dietary intake of adenine. Nevertheless, the consequence of such intervention on the lung received only scant attention. Here, we assessed the pulmonary effects of adenine (0.2% w/w in feed for 4 weeks)-induced CKD in mice by assessing various physiological histological and biochemical endpoints. Adenine treatment induced a significant increase in urine output, urea and creatinine concentrations, and it decreased the body weight and creatinine clearance. It also increased proteinuria and the urinary levels of kidney injury molecule-1 and neutrophil gelatinase-associated lipocalin. Compared with control group, the histopathological evaluation of lungs from adenine-treated mice showed polymorphonuclear leukocytes infiltration in alveolar and bronchial walls, injury, and fibrosis. Moreover, adenine caused a significant increase in lung lipid peroxidation and reactive oxygen species and decreased the antioxidant catalase. Adenine also induced DNA damage assessed by COMET assay. Similarly, adenine caused apoptosis in the lung characterized by a significant increase of cleaved caspase-3. Moreover, adenine induced a significant increase in the expression of nuclear factor erythroid 2–related factor 2 (Nrf2) in the lung. We conclude that administration of adenine in mice induced CKD is accompanied by lung oxidative stress, DNA damage, apoptosis, and Nrf2 expression and fibrosis.
Collapse
Affiliation(s)
- Abderrahim Nemmar
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Turan Karaca
- Department of Histology and Embryology, Faculty of Medicine, Trakya University, Edirne, Turkey
| | - Sumaya Beegam
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Priya Yuvaraju
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Javed Yasin
- Department of Internal Medicine, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Badreldin H Ali
- Department of Pharmacology and Clinical Pharmacy, College of Medicine & Health Sciences, Sultan Qaboos University, Muscat, Oman
| |
Collapse
|
47
|
Ohata K, Kamijo-Ikemori A, Sugaya T, Hibi C, Nakamura T, Murase T, Oikawa T, Hoshino S, Katayama K, Asano J, Kimura K, Shibagaki Y. Renoprotective effect of the xanthine oxidoreductase inhibitor Topiroxostat under decreased angiotensin II type 1 a receptor expression. Eur J Pharmacol 2017; 815:88-97. [PMID: 28888756 DOI: 10.1016/j.ejphar.2017.09.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 09/02/2017] [Accepted: 09/04/2017] [Indexed: 01/13/2023]
Abstract
The aim of this study was to confirm the renoprotective effect of xanthine oxidoreductase (XOR) inhibitor, topiroxostat, compared with another XOR inhibitor, febuxostat, under decreased angiotensin II type 1a (AT1a) receptor expression in the model of renal injury caused by adenine. To evaluate the degree of tubular damage using urinary liver-type fatty acid-binding protein (L-FABP) under decreased AT1a expression, we used AT1a receptor knockdown hetero and human L-FABP chromosomal transgenic (Tg) mice (AT1a+/-L-FABP+/-). Male AT1a+/-L-FABP+/- mice were divided into two groups: the adenine diet group (n = 40) was given a diet containing only 0.2% w/w adenine, and the normal diet group (n = 5) was given a normal diet. When renal dysfunction was confirmed in the adenine diet group 4 weeks after starting the diet, the adenine diet group was further divided into five groups. The adenine diet group (n = 8) was continuously given only the adenine diet. Each group receiving high-dose (3mg/kg) or low-dose (1mg/kg) topiroxostat (Topiroxostat-H group, n = 8, Topiroxostat-L group, n = 8) or febuxostat (Febuxostat-H group, n = 8, Febuxostat-L group, n = 8) was given the adenine diet including the drug for another 4 weeks. The levels of renal XOR, renal dysfunction, urinary L-FABP, tubulointerstitial damage, hypoxia, and oxidative stress were decreased or attenuated after treatment with topiroxostat or febuxostat compared with the adenine diet group. Furthermore, antioxidant capacity was maintained owing to these treatments. In conclusion, topiroxostat and febuxostat attenuated renal damage under decreased AT1a expression in the adenine-induced renal injury model.
Collapse
Affiliation(s)
- Keiichi Ohata
- Division of Nephrology and Hypertension, Department of Internal Medicine, St. Marianna University School of Medicine, Kanagawa, Japan; CMIC Holdings Company, Limited, Tokyo, Japan
| | - Atsuko Kamijo-Ikemori
- Division of Nephrology and Hypertension, Department of Internal Medicine, St. Marianna University School of Medicine, Kanagawa, Japan; Department of Anatomy, St. Marianna University School of Medicine, Kanagawa, Japan.
| | - Takeshi Sugaya
- Division of Nephrology and Hypertension, Department of Internal Medicine, St. Marianna University School of Medicine, Kanagawa, Japan; CMIC Holdings Company, Limited, Tokyo, Japan
| | - Chihiro Hibi
- Biopharmaceutical Study Group, Pharmaceutical Research Laboratories, Sanwa Kagaku Kenkyusho Company, Limited, Mie, Japan
| | - Takashi Nakamura
- Biopharmaceutical Study Group, Pharmaceutical Research Laboratories, Sanwa Kagaku Kenkyusho Company, Limited, Mie, Japan
| | - Takayo Murase
- Radioisotope and Chemical Analysis Center, Laboratory Management Department, Sanwa Kagaku Kenkyusho Company, Limited, Mie, Japan
| | | | - Seiko Hoshino
- Department of Anatomy, St. Marianna University School of Medicine, Kanagawa, Japan
| | - Kimie Katayama
- Division of Nephrology and Hypertension, Department of Internal Medicine, St. Marianna University School of Medicine, Kanagawa, Japan
| | - Junko Asano
- Division of Nephrology and Hypertension, Department of Internal Medicine, St. Marianna University School of Medicine, Kanagawa, Japan
| | | | - Yugo Shibagaki
- Division of Nephrology and Hypertension, Department of Internal Medicine, St. Marianna University School of Medicine, Kanagawa, Japan
| |
Collapse
|
48
|
Zhang CY, Zhu JY, Ye Y, Zhang M, Zhang LJ, Wang SJ, Song YN, Zhang H. Erhuang Formula ameliorates renal damage in adenine-induced chronic renal failure rats via inhibiting inflammatory and fibrotic responses. Biomed Pharmacother 2017; 95:520-528. [PMID: 28866419 DOI: 10.1016/j.biopha.2017.08.115] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 08/22/2017] [Accepted: 08/24/2017] [Indexed: 12/21/2022] Open
Abstract
AIMS The present study aimed to evaluate the protective effects of Erhuang Formula (EHF) and explore its pharmacological mechanisms on adenine-induced chronic renal failure (CRF). MATERIALS AND METHODS The compounds in EHF were analyzed by HPLC/MS. Adenine-induced CRF rats were administrated by EHF. The effects were evaluated by renal function examination and histology staining. Immunostaining of some proteins related cell adhesion was performedin renal tissues, including E-cadherin, β-catenin, fibronectin and laminin. The qRT-PCR was carried out determination of gene expression related inflammation and fibrosis including NF-κB, TNF-α, TGF-β1, α-SMA and osteopontin (OPN). RESULTS Ten compounds in EHF were identified including liquiritigenin, farnesene, vaccarin, pachymic acid, cycloastragenol, astilbin, 3,5,6,7,8,3',4'-heptemthoxyflavone, physcion, emodin and curzerene. Abnormal renal function and histology had significant improvements by EHF treatment. The protein expression of β-catenin, fibronectin and laminin were significantly increased and the protein expression of E-cadherin significantly decreased in CRF groups. However, these protein expressions were restored to normal levels in EHF group. Furthermore, low expression of PPARγ and high expression of NF-κB, TNF-α, TGF-β1, α-SMA and OPN were substantially restored by EHF treatment in a dose-dependent manner. CONCLUSIONS EHF ameliorated renal damage in adenine-induced CRF rats, and the mechanisms might involve in the inhibition of inflammatory and fibrotic responses and the regulation of PPARγ, NF-κB and TGF-β signaling pathways.
Collapse
Affiliation(s)
- Chun-Yan Zhang
- Central Laboratory, Seventh People's Hospital of Shanghai University of TCM, 358 Datong Road, Pudong, Shanghai, 200137, China
| | - Jian-Yong Zhu
- Central Laboratory, Seventh People's Hospital of Shanghai University of TCM, 358 Datong Road, Pudong, Shanghai, 200137, China
| | - Ying Ye
- Central Laboratory, Seventh People's Hospital of Shanghai University of TCM, 358 Datong Road, Pudong, Shanghai, 200137, China
| | - Miao Zhang
- Central Laboratory, Seventh People's Hospital of Shanghai University of TCM, 358 Datong Road, Pudong, Shanghai, 200137, China
| | - Li-Jun Zhang
- Central Laboratory, Seventh People's Hospital of Shanghai University of TCM, 358 Datong Road, Pudong, Shanghai, 200137, China
| | - Su-Juan Wang
- Central Laboratory, Seventh People's Hospital of Shanghai University of TCM, 358 Datong Road, Pudong, Shanghai, 200137, China
| | - Ya-Nan Song
- Central Laboratory, Seventh People's Hospital of Shanghai University of TCM, 358 Datong Road, Pudong, Shanghai, 200137, China.
| | - Hong Zhang
- Central Laboratory, Seventh People's Hospital of Shanghai University of TCM, 358 Datong Road, Pudong, Shanghai, 200137, China.
| |
Collapse
|
49
|
Development of a novel chronic kidney disease mouse model to evaluate the progression of hyperphosphatemia and associated mineral bone disease. Sci Rep 2017; 7:2233. [PMID: 28533541 PMCID: PMC5440375 DOI: 10.1038/s41598-017-02351-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 04/07/2017] [Indexed: 12/02/2022] Open
Abstract
Medial arterial calcification (MAC) and renal osteodystrophy are complications of mineral bone disease (MBD) associated with chronic kidney disease (CKD). Our aim was to develop a novel mouse model to investigate the clinical course of CKD-MBD. Eight-week-old C57BL/6 J male mice were assigned to the following groups: the control group, fed a standard chow for 6 or 12 weeks; the CKD-normal phosphorus (NP) group, fed a chow containing 0.2% adenine, with normal (0.8%) phosphorus, for 6 or 12 weeks; and the CKD-high phosphorus (HP) group, fed 6 weeks with the 0.2% adenine/0.8% phosphorus diet, followed by a chow with 1.8% phosphorus for 2 weeks, 4 weeks or 6 weeks. Serum phosphorus was significantly increased in the CKD-HP group, and associated with MAC formation; the volume of calcification increased with longer exposure to the high phosphorus feed. MAC was associated with upregulated expression of runt-related transcription factor 2, alkaline phosphatase, and osteopontin, indicative of osteoblastic trans-differentiation of vascular smooth muscle cells. A significant mineral density depletion of cortical bone was observed. We describe the feasibility of developing a model of CKD-MBD and provide findings of a direct association between elevated serum phosphorus and the formation of MAC and renal osteodystrophy.
Collapse
|
50
|
Sharma A, Thakur R, Lingaraju MC, Kumar D, Mathesh K, Telang AG, Singh TU, Kumar D. Betulinic acid attenuates renal fibrosis in rat chronic kidney disease model. Biomed Pharmacother 2017; 89:796-804. [DOI: 10.1016/j.biopha.2017.01.181] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 01/26/2017] [Accepted: 01/31/2017] [Indexed: 12/20/2022] Open
|