1
|
Medina-Gudiño J, López-Vidal Y, Pardo-Tovar JA, Velázquez-Salinas L, Basurto-Alcántara FJ. Detection of avian, murine, bovine, shrew, and bat coronaviruses in wild mammals from Mexico. Virol J 2025; 22:122. [PMID: 40287753 PMCID: PMC12034150 DOI: 10.1186/s12985-025-02724-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 04/03/2025] [Indexed: 04/29/2025] Open
Abstract
Coronaviruses infect a wide range of animal and human hosts. Some human coronaviruses, such as SARS-CoV, MERS-CoV, and SARS-CoV-2, originated in animals, with bats often serving as ancestral hosts. This study analyzed samples from wild animals in three Mexican states, using an RT-PCR assay targeting the RdRp gene to detect and genotype coronaviruses, assessing their potential role as reservoirs. Phylogenetic analysis was conducted to determine the genetic relationships of the identified coronaviruses. Gammacoronavirus RNA was identified in fallow deer, llamas, spider monkeys, and mouflons; Betacoronavirus RNA in mouflons and dwarf goats; and Alphacoronavirus RNA in dwarf goats and ponies. The detected viral sequences exhibited high nucleotide identity with known coronaviruses, including Avian coronavirus (Gammacoronavirus), Murine coronavirus (Betacoronavirus), Betacoronavirus 1 (Betacoronavirus), Wénchéng shrew coronavirus (unclassified Alphacoronavirus), and Bat coronavirus HKU10 (Alphacoronavirus). These findings represent the first report of Avian coronavirus, Murine coronavirus, Wénchéng shrew coronavirus, and Bat coronavirus HKU10 in these species, as well as the first detection of Avian coronavirus in llamas, spider monkeys, and mouflons. This study provides valuable insights into the potential role of wildlife as coronavirus reservoirs, highlighting the importance of monitoring these viruses to mitigate future zoonotic transmission risks.
Collapse
Affiliation(s)
- Jocelyn Medina-Gudiño
- Departamento de Microbiología e Inmunología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de Mexico, México
| | - Yolanda López-Vidal
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de Mexico, México
| | - J Adolfo Pardo-Tovar
- Departamento de Microbiología e Inmunología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de Mexico, México
| | - Lauro Velázquez-Salinas
- Foreign Animal Disease Research Unit, Plum Island Animal Disease Center, United States Department of Agriculture-Agricultural Research Service, Greenport, NY, USA
| | - Francisco Javier Basurto-Alcántara
- Departamento de Microbiología e Inmunología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de Mexico, México.
| |
Collapse
|
2
|
Elgioushy MM, Hassan W, Abdullah SM, Elsheikh HEM, Emam MH. Bovine Coronavirus in diarrheic pre-weaned calves in Egypt: prevalence, risk factors, and the associated biochemical alterations. Trop Anim Health Prod 2025; 57:112. [PMID: 40072713 PMCID: PMC11903644 DOI: 10.1007/s11250-025-04331-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Accepted: 02/18/2025] [Indexed: 03/14/2025]
Abstract
Bovine coronavirus (BCoV) is a common viral enteric pathogen responsible for diarrhea in newborn calves. Despite its economic significance, there is limited research on this virus in Egypt. This study aimed to detect the prevalence of BCoV, the associated risk factors, and the biochemical changes during infection. A cross-sectional study included 196 pre-weaned diarrheic calves chosen randomly from 16 farms. Fecal samples were obtained from these diarrheic calves, and a questionnaire was administered to investigate the positivity of BCoV and the potential risk factors. Moreover, blood samples were collected to evaluate the biochemical changes in the infected calves. Logistic regression models were used to assess the strength of the risk factors associated with bovine coronavirus. The prevalence of BCoV among pre-weaned diarrheic calves was 11.22%. The final multivariate analysis revealed that the infection of BCoV was 3.8, 5.96, and 3.2 times higher in males, age ≥ 15 days, and winter season than in female calves, age < 15 days, and other seasons, respectively. The acute phase proteins and the inflammatory biomarkers were changed in infected calves compared to healthy ones. The results indicated that calf age, gender, and exposure to cold temperatures were potential risk factors for BCoV infection. Conversely, no evidence was found to support the hypothesis that BCoV prevalence is linked to locality or ground type. Moreover, the observed biochemical changes in calves with BCoV could assist in the early diagnosis of the infection and provide valuable insights for evaluating prognosis.
Collapse
Affiliation(s)
- Magdy M Elgioushy
- Department of Animal Medicine, Division of Internal Medicine, Faculty of Veterinary Medicine, Aswan University, Aswan, 37916, Egypt
| | - Wafaa Hassan
- Department of Animal Medicine, Division of Internal Medicine, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44511, Egypt
| | - Shimaa M Abdullah
- Department of Animal Medicine, Division of Internal Medicine, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44511, Egypt
| | - Hend E M Elsheikh
- Department of Animal Medicine, Division of Infectious Diseases, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44511, Egypt
| | - Mahmoud H Emam
- Department of Animal Medicine, Division of Internal Medicine, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44511, Egypt.
| |
Collapse
|
3
|
van den Hurk S, Regmi G, Naikare HK, Velayudhan BT. Advances in Laboratory Diagnosis of Coronavirus Infections in Cattle. Pathogens 2024; 13:524. [PMID: 39057751 PMCID: PMC11279749 DOI: 10.3390/pathogens13070524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 07/28/2024] Open
Abstract
Coronaviruses cause infections in humans and diverse species of animals and birds with a global distribution. Bovine coronavirus (BCoV) produces predominantly two forms of disease in cattle: a respiratory form and a gastrointestinal form. All age groups of cattle are affected by the respiratory form of coronavirus, whereas the gastroenteric form causes neonatal diarrhea or calf scours in young cattle and winter dysentery in adult cattle. The tremendous impacts of bovine respiratory disease and the associated losses are well-documented and underscore the importance of this pathogen. Beyond this, studies have demonstrated significant impacts on milk production associated with outbreaks of winter dysentery, with up to a 30% decrease in milk yield. In North America, BCoV was identified for the first time in 1972, and it continues to be a significant economic concern for the cattle industry. A number of conventional and molecular diagnostic assays are available for the detection of BCoV from clinical samples. Conventional assays for BCoV detection include virus isolation, which is challenging from clinical samples, electron microscopy, fluorescent antibody assays, and various immunoassays. Molecular tests are mainly based on nucleic acid detection and predominantly include conventional and real-time polymerase chain reaction (PCR) assays. Isothermal amplification assays and genome sequencing have gained increased interest in recent years for the detection, characterization, and identification of BCoV. It is believed that isothermal amplification assays, such as loop-mediated isothermal amplification and recombinase polymerase amplification, among others, could aid the development of barn-side point-of-care tests for BCoV. The present study reviewed the literature on coronavirus infections in cattle from the last three and a half decades and presents information mainly on the current and advancing diagnostics in addition to epidemiology, clinical presentations, and the impact of the disease on the cattle industry.
Collapse
Affiliation(s)
- Shaun van den Hurk
- Athens Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA;
| | - Girija Regmi
- Tifton Veterinary Diagnostic and Investigational Laboratory, College of Veterinary Medicine, University of Georgia, Tifton, GA 30602, USA;
| | - Hemant K. Naikare
- University of Minnesota Veterinary Diagnostic Laboratory, Saint Paul, MN 55108, USA;
| | - Binu T. Velayudhan
- Athens Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA;
| |
Collapse
|
4
|
David D, Asiku J, Storm N, Lapin K, Berkowitz A, Kovtunenko A, Edery N, King R, Sol A. Identification, Isolation, and Molecular Characterization of Betacoronavirus in Oryx leucoryx. Microbiol Spectr 2023; 11:e0484822. [PMID: 37428095 PMCID: PMC10433975 DOI: 10.1128/spectrum.04848-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 06/08/2023] [Indexed: 07/11/2023] Open
Abstract
Coronaviruses (CoVs) are enveloped viruses with a large RNA genome (26 to 32 kb) and are classified into four genera: Alphacoronavirus, Betacoronavirus, Gammacoronavirus, and Deltacoronavirus. CoV infections cause respiratory, enteric, and neurologic disorders in mammalian and avian species. In 2019, Oryx leucoryx animals suffered from severe hemorrhagic diarrhea and high morbidity rates. Upon initial diagnosis, we found that the infected animals were positive for coronavirus by pancoronavirus reverse transcriptase RT-PCR. Next, we detected the presence of CoV particles in these samples by electron microscopy and immunohistochemistry. CoV was isolated and propagated on the HRT-18G cell line, and its full genome was sequenced. Full-genome characterization and amino acid comparisons of this viral agent demonstrated that this virus is an evolutionarily distinct Betacoronavirus belonging to the subgenus Embecovirus and the Betacoronavirus 1 species. Furthermore, we found that it is most similar to the subspecies dromedary camel coronavirus HKU23 by phylogenetic analysis. Here, we present the first report of isolation and characterization of Betacoronavirus associated with enteric disease in Oryx leucoryx. IMPORTANCE CoVs cause enteric and respiratory infections in humans and animal hosts. The ability of CoVs to cross interspecies barriers is well recognized, as emphasized by the ongoing pandemic of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The identification of novel CoV strains and surveillance of CoVs in both humans and animals are relevant and important to global health. In this study, we isolated and characterized a newly identified Betacoronavirus that causes enteric disease in a wild animal, Oryx leucoryx (the Arabian oryx). This work is the first report describing CoV infection in Oryx leucoryx and provides insights into its origin.
Collapse
Affiliation(s)
- Dan David
- Kimron Veterinary Institute, Beit Dagan, Israel
| | - Jimmy Asiku
- Kimron Veterinary Institute, Beit Dagan, Israel
- The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Nick Storm
- Kimron Veterinary Institute, Beit Dagan, Israel
| | - Katya Lapin
- Kimron Veterinary Institute, Beit Dagan, Israel
| | | | | | - Nir Edery
- Kimron Veterinary Institute, Beit Dagan, Israel
| | - Roni King
- Israel Nature and Parks Authority, Jerusalem, Israel
| | - Asaf Sol
- Kimron Veterinary Institute, Beit Dagan, Israel
| |
Collapse
|
5
|
Development of an IgY-Based Treatment to Control Bovine Coronavirus Diarrhea in Dairy Calves. Viruses 2023; 15:v15030708. [PMID: 36992417 PMCID: PMC10059803 DOI: 10.3390/v15030708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/05/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023] Open
Abstract
Bovine Coronavirus (BCoV) is a major pathogen associated with neonatal calf diarrhea. Standard practice dictates that to prevent BCoV diarrhea, dams should be immunized in the last stage of pregnancy to increase BCoV-specific antibody (Ab) titers in serum and colostrum. For the prevention to be effective, calves need to suck maternal colostrum within the first six to twelve hours of life before gut closure to ensure a good level of passive immunity. The high rate of maternal Ab transfer failure resulting from this process posed the need to develop alternative local passive immunity strategies to strengthen the prevention and treatment of BCoV diarrhea. Immunoglobulin Y technology represents a promising tool to address this gap. In this study, 200 laying hens were immunized with BCoV to obtain spray-dried egg powder enriched in specific IgY Abs to BCoV on a large production scale. To ensure batch-to-batch product consistency, a potency assay was statistically validated. With a sample size of 241, the BCoV-specific IgY ELISA showed a sensitivity and specificity of 97.7% and 98.2%, respectively. ELISA IgY Abs to BCoV correlated with virus-neutralizing Ab titers (Pearson correlation, R2 = 0.92, p < 0.001). Most importantly, a pilot efficacy study in newborn calves showed a significant delay and shorter duration of BCoV-associated diarrhea and shedding in IgY-treated colostrum-deprived calves. Calves were treated with milk supplemented with egg powder (final IgY Ab titer to BCoV ELISA = 512; VN = 32) for 14 days as a passive treatment before a challenge with BCoV and were compared to calves fed milk with no supplementation. This is the first study with proof of efficacy of a product based on egg powder manufactured at a scale that successfully prevents BCoV-associated neonatal calf diarrhea.
Collapse
|
6
|
Glotov AG, Nefedchenko AV, Yuzhakov AG, Koteneva SV, Glotova TI, Komina AK, Krasnikov NY. [Genetic diversity of Siberian bovine coronavirus isolates (Coronaviridae: Coronavirinae: Betacoronavirus-1: Bovine-Like coronaviruses)]. Vopr Virusol 2023; 67:465-474. [PMID: 37264836 DOI: 10.36233/0507-4088-141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Indexed: 06/03/2023]
Abstract
INTRODUCTION Bovine coronaviruses (BCoVs) are causative agents of diarrhea, respiratory diseases in calves and winter cow dysentery. The study of genetic diversity of these viruses is topical issue. The purpose of the research is studying the genetic diversity of BCoV isolates circulating among dairy cattle in Siberia. MATERIALS AND METHODS Specimens used in this study were collected from animals that died or was forcedly slaughtered before the start of the study. The target for amplification were nucleotide sequences of S and N gene regions. RESULTS Based on the results of RT-PCR testing, virus genome was present in 16.3% of samples from calves with diarrheal syndrome and in 9.9% with respiratory syndrome. The nucleotide sequences of S gene region were determined for 18 isolates, and N gene sequences - for 12 isolates. Based on S gene, isolates were divided into two clades each containing two subclades. First subclade of first clade (European line) included 11 isolates. Second one included classic strains Quebec and Mebus, strains from Europe, USA and Korea, but none of sequences from this study belonged to this subclade. 6 isolates belonged to first subclade of second clade (American-Asian line). Second subclade (mixed line) included one isolate. N gene sequences formed two clades, one of them included two subclades. First subclade included 3 isolates (American-Asian line), and second subclade (mixed) included one isolate. Second clade (mixed) included 8 sequences. No differences in phylogenetic grouping between intestinal and respiratory isolates, as well as according to their geographic origin were identified. CONCLUSION The studied population of BCoV isolates is heterogeneous. Nucleotide sequence analysis is a useful tool for studying molecular epidemiology of BCoV. It can be beneficial for choice of vaccines to be used in a particular geographic region.
Collapse
Affiliation(s)
- A G Glotov
- Siberian Federal Scientific Centre of Agro-Biotechnologies of the Russian Academy of Science
| | - A V Nefedchenko
- Siberian Federal Scientific Centre of Agro-Biotechnologies of the Russian Academy of Science
| | - A G Yuzhakov
- Federal Scientific Center All-Russian Research Institute of Experimental Veterinary named after K.I. Scriabin and Ya.R. Kovalenko of the Russian Academy of Sciences
| | - S V Koteneva
- Siberian Federal Scientific Centre of Agro-Biotechnologies of the Russian Academy of Science
| | - T I Glotova
- Siberian Federal Scientific Centre of Agro-Biotechnologies of the Russian Academy of Science
| | - A K Komina
- Federal Scientific Center All-Russian Research Institute of Experimental Veterinary named after K.I. Scriabin and Ya.R. Kovalenko of the Russian Academy of Sciences
| | - N Y Krasnikov
- Federal Scientific Center All-Russian Research Institute of Experimental Veterinary named after K.I. Scriabin and Ya.R. Kovalenko of the Russian Academy of Sciences
| |
Collapse
|
7
|
Frucchi APS, Dall Agnol AM, Bronkhorst DE, Beuttemmuller EA, Alfieri AA, Alfieri AF. Bovine Coronavirus Co-infection and Molecular Characterization in Dairy Calves With or Without Clinical Respiratory Disease. Front Vet Sci 2022; 9:895492. [PMID: 35692294 PMCID: PMC9174899 DOI: 10.3389/fvets.2022.895492] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 04/25/2022] [Indexed: 12/11/2022] Open
Abstract
Bovine respiratory disease (BRD) is considered a major cause of morbidity and mortality in young calves and is caused by a range of infectious agents, including viruses and bacteria. This study aimed to determine the frequency of viral and bacterial pathogens detected in calves with BRD from high-production dairy cattle herds and to perform the molecular characterization of N and S1 genes in identified bovine coronavirus (BCoV) strains. Nasal swabs were collected from 166 heifer calves, namely, 85 symptomatic and 81 asymptomatic calves aged between 5 and 90 days, from 10 dairy cattle herds. Nasal swabs were evaluated using molecular techniques for the identification of viruses (BCoV, bovine alphaherpesvirus 1, bovine viral diarrhea virus, bovine parainfluenza virus 3, and bovine respiratory syncytial virus) and bacteria (Pasteurella multocida, Mannheimia haemolytica, Histophilus somni, and Mycoplasma bovis). In addition, five and two BCoV-positive samples were submitted to N and S1 gene amplification and nucleotide sequencing, respectively. The frequency of diagnosis of BCoV was higher (56%, 93/166) than the frequency of P. multocida (39.8%, 66/166) and M. haemolytica (33.1%, 55/166). The three microorganisms were identified in the calves of symptomatic and asymptomatic heifer calve groups. All other pathogens included in the analyses were negative. In the phylogenetic analysis of the S1 gene, the Brazilian strains formed a new branch, suggesting a new genotype, called # 15; from the N gene, the strains identified here belonged to cluster II. This study describes high rates of BCoV, P. multocida, and M. haemolytica in heifer calves from high-production dairy cattle herds with BRD. Additionally, the molecular characterization provides evidence that the circulating BCoV strains are ancestrally different from the prototype vaccine strains and even different BCoV strains previously described in Brazil.
Collapse
Affiliation(s)
- Ana Paula S. Frucchi
- Laboratory of Animal Virology, Department of Veterinary Preventive Medicine, Universidade Estadual de Londrina, Londrina, Brazil
- Multi-User Animal Health Laboratory, Molecular Biology Unit, Department of Veterinary Preventive Medicine, Universidade Estadual de Londrina, Londrina, Brazil
| | - Alais M. Dall Agnol
- Laboratory of Animal Virology, Department of Veterinary Preventive Medicine, Universidade Estadual de Londrina, Londrina, Brazil
- Multi-User Animal Health Laboratory, Molecular Biology Unit, Department of Veterinary Preventive Medicine, Universidade Estadual de Londrina, Londrina, Brazil
- National Institute of Science and Technology for Dairy Production Chain (INCT–LEITE), Universidade Estadual de Londrina, Londrina, Brazil
| | - Dalton E. Bronkhorst
- Laboratory of Animal Virology, Department of Veterinary Preventive Medicine, Universidade Estadual de Londrina, Londrina, Brazil
| | - Edsel A. Beuttemmuller
- Laboratory of Animal Virology, Department of Veterinary Preventive Medicine, Universidade Estadual de Londrina, Londrina, Brazil
| | - Amauri A. Alfieri
- Laboratory of Animal Virology, Department of Veterinary Preventive Medicine, Universidade Estadual de Londrina, Londrina, Brazil
- Multi-User Animal Health Laboratory, Molecular Biology Unit, Department of Veterinary Preventive Medicine, Universidade Estadual de Londrina, Londrina, Brazil
- National Institute of Science and Technology for Dairy Production Chain (INCT–LEITE), Universidade Estadual de Londrina, Londrina, Brazil
- *Correspondence: Amauri A. Alfieri
| | - Alice F. Alfieri
- Laboratory of Animal Virology, Department of Veterinary Preventive Medicine, Universidade Estadual de Londrina, Londrina, Brazil
- Multi-User Animal Health Laboratory, Molecular Biology Unit, Department of Veterinary Preventive Medicine, Universidade Estadual de Londrina, Londrina, Brazil
- National Institute of Science and Technology for Dairy Production Chain (INCT–LEITE), Universidade Estadual de Londrina, Londrina, Brazil
| |
Collapse
|
8
|
Zhu Q, Li B, Sun D. Advances in Bovine Coronavirus Epidemiology. Viruses 2022; 14:v14051109. [PMID: 35632850 PMCID: PMC9147158 DOI: 10.3390/v14051109] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/02/2022] [Accepted: 05/19/2022] [Indexed: 11/16/2022] Open
Abstract
Bovine coronavirus (BCoV) is a causative agent of enteric and respiratory disease in cattle. BCoV has also been reported to cause a variety of animal diseases and is closely related to human coronaviruses, which has attracted extensive attention from both cattle farmers and researchers. However, there are few comprehensive epidemiological reviews, and key information regarding the effect of S-gene differences on tissue tendency and potential cross-species transmission remain unclear. In this review, we summarize BCoV epidemiology, including the transmission, infection-associated factors, co-infection, pathogenicity, genetic evolution, and potential cross-species transmission. Furthermore, the potential two-receptor binding motif system for BCoV entry and the association between BCoV and SARS-CoV-2 are also discussed in this review. Our aim is to provide valuable information for the prevention and treatment of BCoV infection throughout the world.
Collapse
Affiliation(s)
- Qinghe Zhu
- Heilongjiang Provincial Key Laboratory of the Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing 163319, China;
| | - Bin Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing 210014, China
- Correspondence: (B.L.); (D.S.); Tel.: +86-045-9681-9121 (D.S.)
| | - Dongbo Sun
- Heilongjiang Provincial Key Laboratory of the Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing 163319, China;
- Correspondence: (B.L.); (D.S.); Tel.: +86-045-9681-9121 (D.S.)
| |
Collapse
|
9
|
Möller S, Theiß J, Deinert TIL, Golat K, Heinze J, Niemeyer D, Wyrwa R, Schnabelrauch M, Bogner E. High-Sulfated Glycosaminoglycans Prevent Coronavirus Replication. Viruses 2022; 14:v14020413. [PMID: 35216006 PMCID: PMC8877876 DOI: 10.3390/v14020413] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/09/2022] [Accepted: 02/15/2022] [Indexed: 12/14/2022] Open
Abstract
Coronaviruses (CoVs) are common among humans and many animals, causing respiratory or gastrointestinal diseases. Currently, only a few antiviral drugs against CoVs are available. Especially for SARS-CoV-2, new compounds for treatment of COVID-19 are urgently needed. In this study, we characterize the antiviral effects of two high-sulfated glycosaminoglycan (GAG) derivatives against SARS-CoV-2 and bovine coronaviruses (BCoV), which are both members of the Betacoronavirus genus. The investigated compounds are based on hyaluronan (HA) and chondroitin sulfate (CS) and exhibit a strong inhibitory effect against both CoVs. Yield assays were performed using BCoV-infected PT cells in the presence and absence of the compounds. While the high-sulfated HA (sHA3) led to an inhibition of viral growth early after infection, high-sulfated CS (sCS3) had a slightly smaller effect. Time of addition assays, where sHA3 and sCS3 were added to PT cells before, during or after infection, demonstrated an inhibitory effect during all phases of infection, whereas sHA3 showed a stronger effect even after virus absorbance. Furthermore, attachment analyses with prechilled PT cells revealed that virus attachment is not blocked. In addition, sHA3 and sCS3 inactivated BCoV by stable binding. Analysis by quantitative real-time RT PCR underlines the high potency of the inhibitors against BCoV, as well as B.1-lineage, Alpha and Beta SARS-CoV-2 viruses. Taken together, these results demonstrated that the two high-sulfated GAG derivatives exhibit low cytotoxicity and represent promising candidates for an anti-CoV therapy.
Collapse
Affiliation(s)
- Stephanie Möller
- INNOVENT e.V., Biomaterial Department, 07745 Jena, Germany; (S.M.); (R.W.); (M.S.)
| | - Janine Theiß
- Institute of Virology, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany; (J.T.); (T.I.L.D.); (K.G.); (J.H.); (D.N.)
| | - Thaira I. L. Deinert
- Institute of Virology, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany; (J.T.); (T.I.L.D.); (K.G.); (J.H.); (D.N.)
| | - Karoline Golat
- Institute of Virology, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany; (J.T.); (T.I.L.D.); (K.G.); (J.H.); (D.N.)
| | - Julian Heinze
- Institute of Virology, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany; (J.T.); (T.I.L.D.); (K.G.); (J.H.); (D.N.)
- German Center for Infection Research (DZIF), 10117 Berlin, Germany
| | - Daniela Niemeyer
- Institute of Virology, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany; (J.T.); (T.I.L.D.); (K.G.); (J.H.); (D.N.)
- German Center for Infection Research (DZIF), 10117 Berlin, Germany
| | - Ralf Wyrwa
- INNOVENT e.V., Biomaterial Department, 07745 Jena, Germany; (S.M.); (R.W.); (M.S.)
| | | | - Elke Bogner
- Institute of Virology, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany; (J.T.); (T.I.L.D.); (K.G.); (J.H.); (D.N.)
- Correspondence: ; Tel.: +49-30-450-525121
| |
Collapse
|
10
|
Shahrajabian MH. Powerful Stress Relieving Medicinal Plants for Anger, Anxiety, Depression, and Stress During Global Pandemic. Recent Pat Biotechnol 2022; 16:284-310. [PMID: 35319401 DOI: 10.2174/1872208316666220321102216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 10/01/2021] [Accepted: 12/08/2021] [Indexed: 06/14/2023]
Abstract
Consideration and improvement for anxiety and depression are important during a global pandemic. Appropriate healthcare can be obtained by paying more attention to traditional medicinal sciences. The adverse effects of stress with various symptoms can be managed by introducing plants that boost mental health. The most relevant psychological reactions in the general population related to the global pandemic are pervasive anxiety, frustration and boredom, specific and uncontrolled fear, disabling loneliness, significant lifestyle changes, and psychiatric conditions. Ginseng, chamomile, passionflower, herbal tea, lavender, saffron, kava, rose, cardamom, Chinese date, and some chief formula like yokukansan, Dan-zhi-xiao-yao-san, so-ochim-tang-gamiband, and saikokaryukotsuboreito are notable herbal treatments for mental health problems. The most common medicinal plants that have been used in Iran for the cure of stress and anxiety are Viper's-buglosses, Dracocephalum, valerian, chamomile, common hop, hawthorns, and lavender. Medicinal plants and herbs can be used for the treatment and alleviation of the negative effects of stress, anger, and depression during the global pandemic.
Collapse
|
11
|
Ven S, Arunvipas P, Lertwatcharasarakul P, Ratanapob N. Seroprevalence of bovine coronavirus and factors associated with the serological status in dairy cattle in the western region of Thailand. Vet World 2021; 14:2041-2047. [PMID: 34566319 PMCID: PMC8448641 DOI: 10.14202/vetworld.2021.2041-2047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 06/28/2021] [Indexed: 11/26/2022] Open
Abstract
Background and Aims: Bovine coronavirus (BCoV) is a pathogen affecting the productivities of dairy cattle worldwide. The present study aimed to determine the seroprevalence and factors associated with BCoV serological status using a commercial indirect enzyme-linked immunosorbent assay (ELISA). Materials and Methods: A cross-sectional study was conducted in the western region of Thailand. Blood samples were collected from 30 dairy herds. In total, 617 blood serum samples were tested using a commercial indirect ELISA for BCoV-specific immunoglobulin G antibodies. A questionnaire was used to collect data on the factors which have been identified as risk factors for BCoV antibody detection. The age and history of diarrhea of each animal were recorded. Fisher’s exact test was performed to univariately assess the association between BCoV serological status and possible risk factors. Variables with Fisher’s exact test p<0.10 were then evaluated using multivariate logistic regression to identify factors associated with BCoV serological status. The Bonferroni adjustment was used for multiple comparisons of significant variables in the final multivariate logistic regression model. Results: No herd was free from antibodies to BCoV. The individual seroprevalence of BCoV was 97.89% (604/617). The prevalence within herds was in the range of 45.45-100%. Cattle >3 years of age were more likely to be seropositive to BCoV compared to cattle <1 year of age (p=0.003), with the odds ratio being 81.96. Disinfecting diarrhea stools were a protective factor for being BCoV seropositive, with odds ratios of 0.08 and 0.06 compared to doing nothing (p=0.008) and to clean with water (p=0.002), respectively. Conclusion: BCoV seropositive dairy cattle were distributed throughout the western region of Thailand. The probability of being seropositive for BCoV increased with increasing animal age. Cleaning the contaminated stool with appropriate disinfectants should be recommended to farmers to minimize the spread of the virus.
Collapse
Affiliation(s)
- Samnang Ven
- Bio-Veterinary Science Program, Faculty of Veterinary Medicine, Kasetsart University, Kamphaeng Saen Campus, Kamphaeng Saen, Nakhon Pathom 73140, Thailand
| | - Pipat Arunvipas
- Department of Large Animal and Wildlife Clinical Sciences, Faculty of Veterinary Medicine, Kasetsart University, Kamphaeng Saen Campus, Kamphaeng Saen, Nakhon Pathom 73140, Thailand
| | - Preeda Lertwatcharasarakul
- Department of Pathology, Faculty of Veterinary Medicine, Kasetsart University, Kamphaeng Saen Campus, Kamphaeng Saen, Nakhon Pathom 73140, Thailand
| | - Niorn Ratanapob
- Department of Large Animal and Wildlife Clinical Sciences, Faculty of Veterinary Medicine, Kasetsart University, Kamphaeng Saen Campus, Kamphaeng Saen, Nakhon Pathom 73140, Thailand
| |
Collapse
|
12
|
Assessment of Influential Factors for Scours Associated with Cryptosporidium sp., Rotavirus and Coronavirus in Calves from Argentinean Dairy Farms. Animals (Basel) 2021; 11:ani11092652. [PMID: 34573615 PMCID: PMC8466251 DOI: 10.3390/ani11092652] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/13/2021] [Accepted: 07/23/2021] [Indexed: 01/27/2023] Open
Abstract
Simple Summary Scours is the most common disease in dairy calves, and it is a multifactorial syndrome complex. Cryptosporidium sp., rotavirus group A, and bovine coronavirus are the three main pathogens associated with scours. The objective of this study was to identify potential factors associated with scours and these three pathogens in preweaned dairy calves. The results of this study indicated that scours is a prevalent disease in farms of Salta, Argentina, and that rotavirus and Cryptosporidium sp. infections, along with specific farm management practices, might be important contributing factors that could increase the chance of scours in dairy farms. Abstract Scours is the most common disease in dairy calves, and it is a multifactorial syndrome complex. Cryptosporidium sp. (C. sp.), rotavirus group A (RVA), and bovine coronavirus (BCoV) are the three main pathogens associated with scours. The objective of this study was to identify potential factors associated with scours, C. sp., RVA, and BCoV infections in preweaned dairy calves from Lerma Valley in Salta Province, Argentina. A total of 488 preweaned calves from 19 dairy farms located in the Lerma Valley were enrolled in this observational study. One fecal sample was collected from each calf between one week and two months of age for assessment of C. sp., RVA, and BCoV infection status. Cryptosporidium sp. oocysts and RVA and BCoV antigens in fecal samples were assessed using microscopic observation and indirect enzyme-linked immune sorbent assay (iELISA), respectively. A voluntary questionnaire was developed and used to collect data regarding management practices from the participants’ farms. The data were analyzed using multivariable logistic regression models. Scours incidence was 35.4%, and a greater proportion of calves younger than 20 days were affected. Of the fecal samples, 18% and 9.5% tested were positives for C. sp. and RVA, respectively, while BCoV was detected only in two calves. Furthermore, 84.2% and 63.1% of the farms tested positive for Cryptosporidium sp. and RVA, respectively. In addition, the following variables were associated with higher odds of having scours: (1) herd size (>300 milking cows; OR = 1.7), (2) calf age (<20 days of age; OR = 2.2), (3) RVA and C. sp. test (positive test; RVA OR = 2.6; C. sp. OR = 3), calf feeding practices (feeding milk replacer; OR = 1.81), and newborn calf management practices (calf moved from maternity pen <6 h after calving; OR = 1.7). Concerning RVA infection, calves less than 20 days of age (OR = 2.6) had a higher chance of testing positive for RVA, while calves that remained in the calving pen for less than 6 h after calving had a lower chance (OR = 0.3). On the other hand, for C. sp. infection, large farm size (>300 milking cows; OR = 1.2) and young calf age (<20 days of age; OR = 4.4) indicated a higher chance of testing positive for C. sp., while calves belonging to farms that fed frozen colostrum (OR = 0.2) had a lower chance of becoming infected with C. sp. The result of this study indicated that scours is a prevalent disease in farms of the Lerma Valley, Salta, Argentina, and that RVA and C. sp. infections, along with specific farm management practices, might be important contributing factors that could increase the chance of NCS in dairy farms.
Collapse
|
13
|
Goecke NB, Nielsen BH, Petersen MB, Larsen LE. Design of a High-Throughput Real-Time PCR System for Detection of Bovine Respiratory and Enteric Pathogens. Front Vet Sci 2021; 8:677993. [PMID: 34250065 PMCID: PMC8267094 DOI: 10.3389/fvets.2021.677993] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 05/11/2021] [Indexed: 12/15/2022] Open
Abstract
Bovine respiratory and enteric diseases have a profound negative impact on animal, health, welfare, and productivity. A vast number of viruses and bacteria are associated with the diseases. Pathogen detection using real-time PCR (rtPCR) assays performed on traditional rtPCR platforms are costly and time consuming and by that limit the use of diagnostics in bovine medicine. To diminish these limitations, we have developed a high-throughput rtPCR system (BioMark HD; Fluidigm) for simultaneous detection of the 11 most important respiratory and enteric viral and bacterial pathogens. The sensitivity and specificity of the rtPCR assays on the high-throughput platform was comparable with that of the traditional rtPCR platform. Pools consisting of positive and negative individual field samples were tested in the high-throughput rtPCR system in order to investigate the effect of an individual sample in a pool. The pool tests showed that irrespective of the size of the pool, a high-range positive individual sample had a high influence on the cycle quantification value of the pool compared with the influence of a low-range positive individual sample. To validate the test on field samples, 2,393 nasal swab and 2,379 fecal samples were tested on the high-throughput rtPCR system as pools in order to determine the occurrence of the 11 pathogens in 100 Danish herds (83 dairy and 17 veal herds). In the dairy calves, Pasteurella multocida (38.4%), rotavirus A (27.4%), Mycoplasma spp. (26.2%), and Trueperella pyogenes (25.5%) were the most prevalent pathogens, while P. multocida (71.4%), Mycoplasma spp. (58.9%), Mannheimia haemolytica (53.6%), and Mycoplasma bovis (42.9%) were the most often detected pathogens in the veal calves. The established high-throughput system provides new possibilities for analysis of bovine samples, since the system enables testing of multiple samples for the presence of different pathogens in the same analysis test even with reduced costs and turnover time.
Collapse
Affiliation(s)
- Nicole B Goecke
- Centre for Diagnostics, Technical University of Denmark, Lyngby, Denmark.,Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Bodil H Nielsen
- Department of Animal Science, Aarhus University, Aarhus, Denmark
| | - Mette B Petersen
- Department of Veterinary Clinical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lars E Larsen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
14
|
Occurrence of Cryptosporidium and other enteropathogens and their association with diarrhea in dairy calves of Buenos Aires province, Argentina. VETERINARY PARASITOLOGY- REGIONAL STUDIES AND REPORTS 2021; 24:100567. [PMID: 34024383 DOI: 10.1016/j.vprsr.2021.100567] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 03/15/2021] [Accepted: 03/30/2021] [Indexed: 11/20/2022]
Abstract
Cryptosporidiosis of neonatal dairy calves causes diarrhea, resulting in important economic losses. In Argentina, prevalence values of Cryptosporidium spp. and other enteropathogens such as group A rotavirus (RVA), bovine coronavirus (BCoV) and enterotoxigenic Escherichia coli (ETEC, endotoxin STa+), have been independently studied in different regions. However, an integrative epidemiological investigation on large-scale farms has not been carried out. In this study, fecal samples (n = 908) were randomly collected from diarrheic and healthy calves from 42 dairy farms, and analyzed for the presence of Cryptosporidium spp., RVA, BCoV, ETEC (STa+) and Salmonella spp. In all sampled dairy farms, dams had been vaccinated against rotavirus and gram-negative bacteria to protect calves against neonatal diarrhea. The proportion of calves shedding Cryptosporidium spp., RVA, and BCoV in animals younger than 20 days of age were 29.8%, 12.4% and 6.4%, and in calves aged between 21 and 90 days, 5.6%, 3.9%, and 1.8%, respectively. ETEC was absent in the younger, and occurred only sporadically in the older group (0.9%), whereas Salmonella spp. was absent in both. The observed sporadic finding or even absence of bacterial pathogens might be explained by the frequent use of parenteral antibiotics in 25.3% and 6.5% of the younger and the older group of calves, respectively, within 2 days prior to sampling and/or vaccination of dams against gram-negative bacteria. Diarrhea was observed in 28.8% (95% CI, 24.7-32.8%) of the younger calves and 11.7% (95% CI, 9.1-15.5%) of the older calves. Importantly, Cryptosporidium spp. (odds ratio (OR) = 5.7; 95% CI, 3.3-9.9; p < 0.0001) and RVA (OR = 2.5; 95% CI, 1.2-5.1; p < 0.05) were both found to be risk factors for diarrhea in calves younger than 20 days old. Based on its high prevalence and OR, our results strongly suggest that Cryptosporidium spp. is the principal causative factor for diarrhea in the group of neonatal calves, whereas RVA seems to play a secondary role in the etiology of diarrhea in the studied farms, with about three-times lower prevalence and a half as high OR. Furthermore, a coinfection rate of Cryptosporidium spp. and RVA of 3.7% was observed in the group of younger calves, which strengthens the assumption that these events are independent. In contrast, due to a low infection rate of enteropathogens in older calves, mixed infection (<< 1%) was virtually absent in this group.
Collapse
|
15
|
Vlasova AN, Saif LJ. Bovine Coronavirus and the Associated Diseases. Front Vet Sci 2021; 8:643220. [PMID: 33869323 PMCID: PMC8044316 DOI: 10.3389/fvets.2021.643220] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 03/08/2021] [Indexed: 12/17/2022] Open
Abstract
Coronaviruses (CoVs) possess the largest and most complex RNA genome (up to 32 kb) that encodes for 16 non-structural proteins regulating RNA synthesis and modification. Coronaviruses are known to infect a wide range of mammalian and avian species causing remarkably diverse disease syndromes. Variable tissue tropism and the ability to easily cross interspecies barriers are the well-known characteristics of certain CoVs. The 21st century epidemics of severe acute respiratory CoV (SARS-CoV), Middle East respiratory CoV and the ongoing SARS-CoV-2 pandemic further highlight these characteristics and emphasize the relevance of CoVs to the global public health. Bovine CoVs (BCoVs) are betacoronaviruses associated with neonatal calf diarrhea, and with winter dysentery and shipping fever in older cattle. Of interest, no distinct genetic or antigenic markers have been identified in BCoVs associated with these distinct clinical syndromes. In contrast, like other CoVs, BCoVs exist as quasispecies. Besides cattle, BCoVs and bovine-like CoVs were identified in various domestic and wild ruminant species (water buffalo, sheep, goat, dromedary camel, llama, alpaca, deer, wild cattle, antelopes, giraffes, and wild goats), dogs and humans. Surprisingly, bovine-like CoVs also cannot be reliably distinguished from BCoVs using comparative genomics. Additionally, there are historical examples of zoonotic transmission of BCoVs. This article will discuss BCoV pathogenesis, epidemiology, interspecies transmission, immune responses, vaccines, and diagnostics.
Collapse
Affiliation(s)
- Anastasia N Vlasova
- Center for Food Animal Health Research, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH, United States
| | - Linda J Saif
- Center for Food Animal Health Research, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH, United States
| |
Collapse
|
16
|
Colina SE, Serena MS, Echeverría MG, Metz GE. Clinical and molecular aspects of veterinary coronaviruses. Virus Res 2021; 297:198382. [PMID: 33705799 PMCID: PMC7938195 DOI: 10.1016/j.virusres.2021.198382] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 12/20/2020] [Accepted: 03/04/2021] [Indexed: 12/12/2022]
Abstract
Coronaviruses are a large group of RNA viruses that infect a wide range of animal species. The replication strategy of coronaviruses involves recombination and mutation events that lead to the possibility of cross-species transmission. The high plasticity of the viral receptor due to a continuous modification of the host species habitat may be the cause of cross-species transmission that can turn into a threat to other species including the human population. The successive emergence of highly pathogenic coronaviruses such as the Severe Acute Respiratory Syndrome (SARS) in 2003, the Middle East Respiratory Syndrome Coronavirus in 2012, and the recent SARS-CoV-2 has incentivized a number of studies on the molecular basis of the coronavirus and its pathogenesis. The high degree of interrelatedness between humans and wild and domestic animals and the modification of animal habitats by human urbanization, has favored new viral spreads. Hence, knowledge on the main clinical signs of coronavirus infection in the different hosts and the distinctive molecular characteristics of each coronavirus is essential to prevent the emergence of new coronavirus diseases. The coronavirus infections routinely studied in veterinary medicine must be properly recognized and diagnosed not only to prevent animal disease but also to promote public health.
Collapse
Affiliation(s)
- Santiago Emanuel Colina
- Virology, Faculty of Veterinary Sciences, National University of La Plata, La Plata, Argentina; CONICET (National Scientific and Technical Research Council), CCT La Plata, Argentina
| | - María Soledad Serena
- Virology, Faculty of Veterinary Sciences, National University of La Plata, La Plata, Argentina; CONICET (National Scientific and Technical Research Council), CCT La Plata, Argentina
| | - María Gabriela Echeverría
- Virology, Faculty of Veterinary Sciences, National University of La Plata, La Plata, Argentina; CONICET (National Scientific and Technical Research Council), CCT La Plata, Argentina
| | - Germán Ernesto Metz
- Virology, Faculty of Veterinary Sciences, National University of La Plata, La Plata, Argentina; CONICET (National Scientific and Technical Research Council), CCT La Plata, Argentina.
| |
Collapse
|
17
|
Khamassi Khbou M, Daaloul Jedidi M, Bouaicha Zaafouri F, Benzarti M. Coronaviruses in farm animals: Epidemiology and public health implications. Vet Med Sci 2021; 7:322-347. [PMID: 32976707 PMCID: PMC7537542 DOI: 10.1002/vms3.359] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 08/27/2020] [Accepted: 08/29/2020] [Indexed: 12/12/2022] Open
Abstract
Coronaviruses (CoVs) are documented in a wide range of animal species, including terrestrial and aquatic, domestic and wild. The geographic distribution of animal CoVs is worldwide and prevalences were reported in several countries across the five continents. The viruses are known to cause mainly gastrointestinal and respiratory diseases with different severity levels. In certain cases, CoV infections are responsible of huge economic losses associated or not to highly public health impact. Despite being enveloped, CoVs are relatively resistant pathogens in the environment. Coronaviruses are characterized by a high mutation and recombination rate, which makes host jumping and cross-species transmission easy. In fact, increasing contact between different animal species fosters cross-species transmission, while agriculture intensification, animal trade and herd management are key drivers at the human-animal interface. If contacts with wild animals are still limited, humans have much more contact with farm animals, during breeding, transport, slaughter and food process, making CoVs a persistent threat to both humans and animals. A global network should be established for the surveillance and monitoring of animal CoVs.
Collapse
Affiliation(s)
- Médiha Khamassi Khbou
- Laboratory of Infectious Animal Diseases, Zoonoses, and Sanitary RegulationUniv. Manouba. Ecole Nationale de Médecine Vétérinaire de Sidi ThabetSidi ThabetTunisia
| | - Monia Daaloul Jedidi
- Laboratory of Microbiology and ImmunologyUniv. ManoubaEcole Nationale de Médecine Vétérinaire de Sidi ThabetSidi ThabetTunisia
| | - Faten Bouaicha Zaafouri
- Department of Livestock Semiology and MedicineUniv. ManoubaEcole Nationale de Médecine Vétérinaire de Sidi ThabetSidi ThabetTunisia
| | - M’hammed Benzarti
- Laboratory of Infectious Animal Diseases, Zoonoses, and Sanitary RegulationUniv. Manouba. Ecole Nationale de Médecine Vétérinaire de Sidi ThabetSidi ThabetTunisia
| |
Collapse
|
18
|
Lotfollahzadeh S, Madadgar O, Reza Mohebbi M, Reza Mokhber Dezfouli M, George Watson D. Bovine coronavirus in neonatal calf diarrhoea in Iran. Vet Med Sci 2020; 6:686-694. [PMID: 32349194 PMCID: PMC7267123 DOI: 10.1002/vms3.277] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 04/03/2020] [Accepted: 04/09/2020] [Indexed: 11/22/2022] Open
Abstract
Partial gene sequencing for the bovine coronavirus at the World Genebank is available for many countries, which are distributed unevenly in five continents, but so far, no sequencing of strains has been recorded in Iran. One hundred ninety-four stool samples from calves with diarrhoea less than one-month old were collected from five different geographical regions of country in order to detect coronavirus and characterize it if coronavirus was found. Samples were screened for the presence of BCoV by using a commercially available ELISA kit. Furthermore, RT-PCR was carried out on positive samples for confirmation of the presence of N and S specific genes. Sequencing and phylogenetic analysis was carried out following RT-PCR tests. 7.2% of samples, were positive for BCoV and all stool samples from the South-West, Northeast and West regions of Iran were negative. The results showed that all the strains of coronavirus identified in Iran were completely in independent clusters and that they did not stand in the same cluster as any of the strains identified in other parts of the world. The strains from Iran were quite different from strains in other parts of the world but from the point of similarity these viruses showed some similarities to the European strains, such as those found in France, Croatia, Denmark and Sweden.
Collapse
Affiliation(s)
- Samad Lotfollahzadeh
- Department of Internal MedicineFaculty of Veterinary MedicineUniversity of TehranTehranIran
| | - Omid Madadgar
- Department of MicrobiologyFaculty of Veterinary MedicineUniversity of TehranTehranIran
- Department of Microbiology and Molecular GeneticsMichigan State UniversityEast LansingMIUSA
| | - Mohammad Reza Mohebbi
- Department of Internal MedicineFaculty of Veterinary MedicineUniversity of TehranTehranIran
| | | | - David George Watson
- Strathclyde Institute of Pharmacy and Biomedical ScienceUniversity of StrathclydeGlasgowUK
| |
Collapse
|
19
|
An emerging novel bovine coronavirus with a 4-amino-acid insertion in the receptor-binding domain of the hemagglutinin-esterase gene. Arch Virol 2020; 165:3011-3015. [PMID: 33025200 PMCID: PMC7538171 DOI: 10.1007/s00705-020-04840-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 09/08/2020] [Indexed: 12/28/2022]
Abstract
The hemagglutinin-esterase (HE) protein of betacoronavirus lineage A is a secondary receptor in the infection process and is involved in the emergence of new betacoronavirus genotypes with altered host specificity and tissue tropism. We previously reported a novel recombinant bovine coronavirus (BCoV) strain that was circulating in dairy cattle in China, but this virus was not successfully isolated, and the genetic characteristics of BCoV are still largely unknown. In this study, 20 diarrheic faecal samples were collected from a farm in Liaoning province that had an outbreak of calf diarrhea (≤ 3 months of age) in November 2018, and all of the samples tested positive for BCoV by RT-PCR. In addition, a BCoV strain with a recombinant HE (designated as SWUN/A1/2018) and another BCoV strain with a recombinant HE containing an insertion (designated as SWUN/A10/2018) were successfully isolated in cell culture (TCID50: 104.25/mL and 104.73/mL, respectively). Unexpectedly, we identified the emergence of a novel BCoV variant characterized by a 12-nt bovine gene insertion in the receptor-binding domain in a natural recombinant HE gene, suggesting a novel evolutionary pattern in BCoV.
Collapse
|
20
|
Vega CG, Bok M, Ebinger M, Rocha LA, Rivolta AA, González Thomas V, Muntadas P, D'Aloia R, Pinto V, Parreño V, Wigdorovitz A. A new passive immune strategy based on IgY antibodies as a key element to control neonatal calf diarrhea in dairy farms. BMC Vet Res 2020; 16:264. [PMID: 32727468 PMCID: PMC7388481 DOI: 10.1186/s12917-020-02476-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 07/13/2020] [Indexed: 11/30/2022] Open
Abstract
Background Neonatal diarrhea remains one of the main causes of morbi-mortality in dairy calves under artificial rearing. It is often caused by infectious agents of viral, bacterial, or parasitic origin. Cows vaccination and colostrum intake by calves during the first 6 h of life are critical strategies to prevent severe diarrhea but these are still insufficient. Here we report the field evaluation of a product based on IgY antibodies against group A rotavirus (RVA), coronavirus (CoV), enterotoxigenic Escherichia coli, and Salmonella sp. This product, named IgY DNT, has been designed as a complementary passive immunization strategy to prevent neonatal calf diarrhea. The quality of the product depends on the titers of specific IgY antibodies to each antigen evaluated by ELISA. In the case of the viral antigens, ELISA antibody (Ab) titers are correlated with protection against infection in calves experimentally challenged with RVA and CoV (Bok M, et al., Passive immunity to control bovine coronavirus diarrhea in a dairy herd in Argentina, 2017), (Vega C, et al., Vet Immunol Immunopathol, 142:156–69, 2011), (Vega C, et al., Res Vet Sci, 103:1–10, 2015). To evaluate the efficiency in dairy farms, thirty newborn Holstein calves were randomly assigned to IgY DNT or control groups and treatment initiated after colostrum intake and gut closure. Calves in the IgY DNT group received 20 g of the oral passive treatment in 2 L of milk twice a day during the first 2 weeks of life. Animals were followed until 3 weeks of age and diarrhea due to natural exposure to infectious agents was recorded during all the experimental time. Results Results demonstrate that the oral administration of IgY DNT during the first 2 weeks of life to newborn calves caused a delay in diarrhea onset and significantly reduced its severity and duration compared with untreated calves. Animals treated with IgY DNT showed a trend towards a delay in RVA infection with significantly shorter duration and virus shedding compared to control calves. Conclusions This indicates that IgY DNT is an effective product to complement current preventive strategies against neonatal calf diarrhea in dairy farms. Furthermore, to our knowledge, this is the only biological product available for the prevention of virus-associated neonatal calf diarrhea.
Collapse
Affiliation(s)
- Celina Guadalupe Vega
- Incuinta, Instituto Nacional de Tecnología Agropecuaria (INTA), Buenos Aires, Argentina. .,Instituto de Virología e Innovaciones Tecnológicas, Consejo Nacional de Investigaciones Científicas y Técnicas (IVIT-CONICET), Buenos Aires, Argentina. .,Bioinnovo S.A, Buenos Aires, Argentina.
| | - Marina Bok
- Incuinta, Instituto Nacional de Tecnología Agropecuaria (INTA), Buenos Aires, Argentina.,Instituto de Virología e Innovaciones Tecnológicas, Consejo Nacional de Investigaciones Científicas y Técnicas (IVIT-CONICET), Buenos Aires, Argentina.,Bioinnovo S.A, Buenos Aires, Argentina
| | | | - Lucía Alejandra Rocha
- Incuinta, Instituto Nacional de Tecnología Agropecuaria (INTA), Buenos Aires, Argentina.,Instituto de Virología e Innovaciones Tecnológicas, Consejo Nacional de Investigaciones Científicas y Técnicas (IVIT-CONICET), Buenos Aires, Argentina
| | - Alejandra Antonella Rivolta
- Incuinta, Instituto Nacional de Tecnología Agropecuaria (INTA), Buenos Aires, Argentina.,Instituto de Virología e Innovaciones Tecnológicas, Consejo Nacional de Investigaciones Científicas y Técnicas (IVIT-CONICET), Buenos Aires, Argentina
| | | | - Pilar Muntadas
- Servicio Nacional de Sanidad y Calidad Agroalimentaria (SENASA), Buenos Aires, Argentina
| | - Ricardo D'Aloia
- Servicio Nacional de Sanidad y Calidad Agroalimentaria (SENASA), Buenos Aires, Argentina
| | | | - Viviana Parreño
- Incuinta, Instituto Nacional de Tecnología Agropecuaria (INTA), Buenos Aires, Argentina.,Instituto de Virología e Innovaciones Tecnológicas, Consejo Nacional de Investigaciones Científicas y Técnicas (IVIT-CONICET), Buenos Aires, Argentina.,Bioinnovo S.A, Buenos Aires, Argentina
| | - Andrés Wigdorovitz
- Incuinta, Instituto Nacional de Tecnología Agropecuaria (INTA), Buenos Aires, Argentina.,Instituto de Virología e Innovaciones Tecnológicas, Consejo Nacional de Investigaciones Científicas y Técnicas (IVIT-CONICET), Buenos Aires, Argentina.,Bioinnovo S.A, Buenos Aires, Argentina
| |
Collapse
|
21
|
Bertoni E, Aduriz M, Bok M, Vega C, Saif L, Aguirre D, Cimino RO, Miño S, Parreño V. First report of group A rotavirus and bovine coronavirus associated with neonatal calf diarrhea in the northwest of Argentina. Trop Anim Health Prod 2020; 52:2761-2768. [PMID: 32488696 PMCID: PMC7266565 DOI: 10.1007/s11250-020-02293-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 05/13/2020] [Indexed: 12/04/2022]
Abstract
Group A rotavirus (RVA) and bovine coronavirus (BCoV) are the two main viral enteropathogens associated with neonatal calf diarrhea. The aim of the present survey was to investigate the epidemiology and the role of RVA and BCoV in the presentation of dairy and beef calf diarrhea in Lerma Valley of Salta province, within the Northwest region of Argentina. Stool samples of calves with or without diarrhea younger than 2 months of age were collected from 19 dairy farms and 20 beef farms between the years 2014 and 2016. Stool samples were screened for RVA and BCoV detection by ELISA. Heminested multiplex RT-PCR was used for RVA typing and RT-PCR to confirm BCoV. Positive samples were submitted to sequencing analysis. Bovine RVA and BCoV were circulating in 63% (12/19) and 10.52% (2/19) of the dairy farms, respectively, where 9.5% (46/484) of the calves were positives to RVA and 0.4% (2/484) to BCoV. In beef herds, RVA was detected in 40% (8/20) of the farms and in 6.75% (21/311) of the calves, without positives cases of BCoV. Molecular analysis showed that in dairy farms, G6P[11] and G10P[11] were the prevalent RVA strains, while in beef farms, G10P[11] was the prevalent. The main finding was the detection for the first time of a G15P[11] causing diarrhea in beef calves of Argentina that represents a new alert to be consider for future vaccine updates. Analysis of detected BCoV showed that it is related to the other circulating strains of Argentina.
Collapse
Affiliation(s)
- E Bertoni
- Instituto de Investigación Animal del Chaco Semiárido, Área de Salud Animal. RN 68 Km 172, 4403, Salta, Argentina
| | - M Aduriz
- Instituto Nacional de Tecnología Agropecuaria, CICVyA, INCUINTA, Nicolas Repetto y de los Reseros s/n., 1686, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, Godoy Cruz 2290, 1425, Bueno Aires, Argentina
| | - M Bok
- Instituto Nacional de Tecnología Agropecuaria, CICVyA, INCUINTA, Nicolas Repetto y de los Reseros s/n., 1686, Buenos Aires, Argentina
| | - C Vega
- Instituto Nacional de Tecnología Agropecuaria, CICVyA, INCUINTA, Nicolas Repetto y de los Reseros s/n., 1686, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, Godoy Cruz 2290, 1425, Bueno Aires, Argentina
| | - L Saif
- Food Animal Health Research Program (FAHRP), The Ohio Agricultural Research and Development Center, The Ohio State University, Columbus, OH, USA
| | - D Aguirre
- Instituto de Investigación Animal del Chaco Semiárido, Área de Salud Animal. RN 68 Km 172, 4403, Salta, Argentina
| | - R O Cimino
- Consejo Nacional de Investigaciones Científicas y Técnicas, Godoy Cruz 2290, 1425, Bueno Aires, Argentina.,Facultad de Ciencias Naturales, Universidad Nacional de Salta, Av. Bolivia 5150, 4400, Salta, Argentina
| | - S Miño
- Instituto Nacional de Tecnología Agropecuaria, CICVyA, INCUINTA, Nicolas Repetto y de los Reseros s/n., 1686, Buenos Aires, Argentina
| | - V Parreño
- Instituto Nacional de Tecnología Agropecuaria, CICVyA, INCUINTA, Nicolas Repetto y de los Reseros s/n., 1686, Buenos Aires, Argentina. .,Consejo Nacional de Investigaciones Científicas y Técnicas, Godoy Cruz 2290, 1425, Bueno Aires, Argentina.
| |
Collapse
|
22
|
Global Transmission, Spatial Segregation, and Recombination Determine the Long-Term Evolution and Epidemiology of Bovine Coronaviruses. Viruses 2020; 12:v12050534. [PMID: 32414076 PMCID: PMC7290379 DOI: 10.3390/v12050534] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/10/2020] [Accepted: 05/11/2020] [Indexed: 01/15/2023] Open
Abstract
Bovine coronavirus (BCoV) is widespread in cattle and wild ruminant populations throughout the world. The virus causes neonatal calf diarrhea and winter dysentery in adult cattle, as well as upper and lower respiratory tract infection in young cattle. We isolated and deep sequenced whole genomes of BCoV from calves with respiratory distress in the south–west of France and conducted a comparative genome analysis using globally collected BCoV sequences to provide insights into the genomic characteristics, evolutionary origins, and global diversity of BCoV. Molecular clock analyses allowed us to estimate that the BCoV ancestor emerged in the 1940s, and that two geographically distinct lineages diverged from the 1960s–1970s. A recombination event in the spike gene (breakpoint at nt 1100) may be at the origin of the genetic divergence sixty years ago. Little evidence of genetic mixing between the spatially segregated lineages was found, suggesting that BCoV genetic diversity is a result of a global transmission pathway that occurred during the last century. However, we found variation in evolution rates between the European and non-European lineages indicating differences in virus ecology.
Collapse
|
23
|
Castells M, Giannitti F, Caffarena RD, Casaux ML, Schild C, Castells D, Riet-Correa F, Victoria M, Parreño V, Colina R. Bovine coronavirus in Uruguay: genetic diversity, risk factors and transboundary introductions from neighboring countries. Arch Virol 2019; 164:2715-2724. [PMID: 31456086 PMCID: PMC7087214 DOI: 10.1007/s00705-019-04384-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 07/30/2019] [Indexed: 11/15/2022]
Abstract
Bovine coronavirus (BCoV) is a recognized cause of severe neonatal calf diarrhea, with a negative impact on animal welfare, leading to economic losses to the livestock industry. Cattle production is one of the most important economic sectors in Uruguay. The aim of this study was to determine the frequency of BCoV infections and their genetic diversity in Uruguayan calves and to describe the evolutionary history of the virus in South America. The overall detection rate of BCoV in Uruguay was 7.8% (64/824): 7.7% (60/782) in dairy cattle and 9.5% (4/42) in beef cattle. The detection rate of BCoV in samples from deceased and live calves was 10.0% (6/60) and 7.6% (58/763), respectively. Interestingly, there was a lower frequency of BCoV detection in calves born to vaccinated dams (3.3%, 8/240) than in calves born to unvaccinated dams (12.2%, 32/263) (OR: 4.02, 95%CI: 1.81–8.90; p = 0.00026). The frequency of BCoV detection was higher in colder months (11.8%, 44/373) than in warmer months (1.5%, 3/206) (OR: 9.05, 95%CI: 2.77–29.53, p = 0.000013). Uruguayan strains grouped together in two different lineages: one with Argentinean strains and the other with Brazilian strains. Both BCoV lineages were estimated to have entered Uruguay in 2013: one of them from Brazil (95%HPD interval: 2011–2014) and the other from Argentina (95%HPD interval: 2010–2014). The lineages differed by four amino acid changes, and both were divergent from the Mebus reference strain. Surveillance should be maintained to detect possible emerging strains that can clearly diverge at the antigenic level from vaccine strains.
Collapse
Affiliation(s)
- Matías Castells
- Laboratorio de Virología Molecular, CENUR Litoral Norte, Centro Universitario de Salto, Universidad de la República, Rivera 1350, 50000, Salto, Uruguay.,Instituto Nacional de Investigación Agropecuaria (INIA), Plataforma de Investigación en Salud Animal, Ruta 50 km 11, La Estanzuela, 70000, Colonia, Uruguay
| | - Federico Giannitti
- Instituto Nacional de Investigación Agropecuaria (INIA), Plataforma de Investigación en Salud Animal, Ruta 50 km 11, La Estanzuela, 70000, Colonia, Uruguay
| | - Rubén Darío Caffarena
- Instituto Nacional de Investigación Agropecuaria (INIA), Plataforma de Investigación en Salud Animal, Ruta 50 km 11, La Estanzuela, 70000, Colonia, Uruguay.,Facultad de Veterinaria, Universidad de la República, Alberto Lasplaces 1620, Montevideo, Uruguay
| | - María Laura Casaux
- Instituto Nacional de Investigación Agropecuaria (INIA), Plataforma de Investigación en Salud Animal, Ruta 50 km 11, La Estanzuela, 70000, Colonia, Uruguay
| | - Carlos Schild
- Instituto Nacional de Investigación Agropecuaria (INIA), Plataforma de Investigación en Salud Animal, Ruta 50 km 11, La Estanzuela, 70000, Colonia, Uruguay
| | - Daniel Castells
- Centro de Investigación y Experimentación Dr. Alejandro Gallinal, Secretariado Uruguayo de la Lana, Ruta 7 km 140, Cerro Colorado, Florida, Uruguay
| | - Franklin Riet-Correa
- Instituto Nacional de Investigación Agropecuaria (INIA), Plataforma de Investigación en Salud Animal, Ruta 50 km 11, La Estanzuela, 70000, Colonia, Uruguay
| | - Matías Victoria
- Laboratorio de Virología Molecular, CENUR Litoral Norte, Centro Universitario de Salto, Universidad de la República, Rivera 1350, 50000, Salto, Uruguay
| | - Viviana Parreño
- Sección de Virus Gastroentéricos, Instituto de Virología, CICV y A, INTA Castelar, Buenos Aires, Argentina
| | - Rodney Colina
- Laboratorio de Virología Molecular, CENUR Litoral Norte, Centro Universitario de Salto, Universidad de la República, Rivera 1350, 50000, Salto, Uruguay.
| |
Collapse
|
24
|
Keha A, Xue L, Yan S, Yue H, Tang C. Prevalence of a novel bovine coronavirus strain with a recombinant hemagglutinin/esterase gene in dairy calves in China. Transbound Emerg Dis 2019; 66:1971-1981. [PMID: 31077561 PMCID: PMC7168545 DOI: 10.1111/tbed.13228] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 03/07/2019] [Accepted: 05/04/2019] [Indexed: 11/29/2022]
Abstract
Bovine coronavirus (BCoV) is the causative agent of diarrhoea in newborn calves, winter dysentery in adult cattle and respiratory tract illnesses in cattle across the world. In this study, a total of 190 faecal samples from dairy calves with diarrhoea were collected from 14 farms in six Chinese provinces, and BCoV was detected in 18.95% (36/190) of the samples by reverse transcriptase polymerase chain reaction. Full-length spike, hemagglutinin/esterase (HE), nucleocapsid and transmembrane genes were simultaneously cloned from 13 clinical samples (eight farms in four provinces), and most of the BCoV strains showed a unique evolutionary pattern based on the phylogenetic analysis of these genes. Interesting, 10 of the 13 strains were identified as HE recombinant strains, and these strains had experienced the same recombination event and carried the same recombination sites located between the esterase and lectin domain. They also shared an identical aa variant (F181V) in the R2-loop. Moreover, 9/10 strains displayed another identical aa variant (P, S158A) in the adjacent R1-loop of the HE gene, which differs from the other available BCoV HE sequences in the GenBank database. Our results showed that BCoV is widely circulating in dairy cattle in China, contributing to the diagnosis and control of dairy calves diarrhoea. Furthermore, a BCoV strain that carries a recombinant HE gene has spread in dairy calves in China. To the best of our knowledge, this is the first description of an HE recombination event occurring in BCoV; this is also the first description of the molecular prevalence of BCoV in China. Our findings will enhance current understanding about the genetic evolution of BCoV.
Collapse
Affiliation(s)
- Abi Keha
- College of Life Science and Technology, Southwest University for Nationalities, Chengdu, China
| | - Luo Xue
- College of Life Science and Technology, Southwest University for Nationalities, Chengdu, China
| | - Shen Yan
- College of Life Science and Technology, Southwest University for Nationalities, Chengdu, China
| | - Hua Yue
- College of Life Science and Technology, Southwest University for Nationalities, Chengdu, China.,Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu, China
| | - Cheng Tang
- College of Life Science and Technology, Southwest University for Nationalities, Chengdu, China.,Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu, China
| |
Collapse
|
25
|
Szczepanski A, Owczarek K, Bzowska M, Gula K, Drebot I, Ochman M, Maksym B, Rajfur Z, Mitchell JA, Pyrc K. Canine Respiratory Coronavirus, Bovine Coronavirus, and Human Coronavirus OC43: Receptors and Attachment Factors. Viruses 2019; 11:v11040328. [PMID: 30959796 PMCID: PMC6521053 DOI: 10.3390/v11040328] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 03/31/2019] [Accepted: 04/02/2019] [Indexed: 01/19/2023] Open
Abstract
Despite high similarity of canine respiratory coronavirus (CRCoV), bovine coronavirus, (BCoV) and human coronavirus OC43 (HCoV-OC43), these viruses differ in species specificity. For years it was believed that they share receptor specificity, utilizing sialic acids for cell surface attachment, internalization, and entry. Interestingly, careful literature analysis shows that viruses indeed bind to the cell surface via sialic acids, but there is no solid data that these moieties mediate virus entry. In our study, using a number of techniques, we showed that all three viruses are indeed able to bind to sialic acids to a different extent, but these molecules render the cells permissive only for the clinical strain of HCoV-OC43, while for others they serve only as attachment receptors. CRCoV and BCoV appear to employ human leukocyte antigen class I (HLA-1) as the entry receptor. Furthermore, we identified heparan sulfate as an alternative attachment factor, but this may be related to the cell culture adaptation, as in ex vivo conditions, it does not seem to play a significant role. Summarizing, we delineated early events during CRCoV, BCoV, and HCoV-OC43 entry and systematically studied the attachment and entry receptor utilized by these viruses.
Collapse
Affiliation(s)
- Artur Szczepanski
- Microbiology Department, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland.
- Virogenetics Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7a, 30-387 Krakow, Poland.
| | - Katarzyna Owczarek
- Microbiology Department, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland.
- Virogenetics Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7a, 30-387 Krakow, Poland.
| | - Monika Bzowska
- Department of Cell Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland.
| | - Katarzyna Gula
- Virogenetics Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7a, 30-387 Krakow, Poland.
| | - Inga Drebot
- Virogenetics Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7a, 30-387 Krakow, Poland.
| | - Marek Ochman
- Department of Cardiac, Vascular and Endovascular Surgery and Transplantology, Medical University of Silesia in Katowice, Silesian Centre for Heart Diseases, Marii Curie Sklodowskiej 9, 41-800 Zabrze, Poland.
| | - Beata Maksym
- Department of Pharmacology, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia in Katowice, ul. Jordana 19, 41-808 Zabrze, Poland.
| | - Zenon Rajfur
- Institute of Physics, Faculty of Physics, Astronomy and Applied Computer Sciences, Jagiellonian University, Lojasiewicza 11, 30-348 Krakow, Poland.
| | - Judy A Mitchell
- Department of Pathology and Pathogen Biology, The Royal Veterinary College, Hatfield, Hertfordshire AL9 7TA, UK.
| | - Krzysztof Pyrc
- Virogenetics Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7a, 30-387 Krakow, Poland.
| |
Collapse
|
26
|
de Mira Fernandes A, Brandão PE, dos Santos Lima M, de Souza Nunes Martins M, da Silva TG, da Silva Cardoso Pinto V, de Paula LT, Vicente MES, Okuda LH, Pituco EM. Genetic diversity of BCoV in Brazilian cattle herds. Vet Med Sci 2018; 4:183-189. [PMID: 29687958 PMCID: PMC6090412 DOI: 10.1002/vms3.102] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Bovine coronavirus (BCoV) is one of the main aetiological agents of gastroenteritis in calves, causing significant economic damage to livestock. This study aims to characterise BCoV genetically on the basis of the N gene. A total of 114 faecal samples from beef and dairy calves with or without clinical symptoms of diarrhoea from five Brazilian states (São Paulo, Minas Gerais, Santa Catarina, Mato Grosso and Bahia) were evaluated between 2008 and 2015 by technique of Semi-nested RT-PCR for gene N and genealogical analysis. Of the 114 samples analysed, 14.91% (17/114) were positive. BCoV was detected in 22.72% (10/44) of the animals with diarrhoea and in 10% (7/70) of asymptomatic animals. BCoV was identified in calves from rural properties located in all of the regions sampled. Genealogical analysis showed that the Brazilian sequences of BCoV for the gene which codes for the N protein can be broken down into two distinct clusters, and the samples from this study were closely linked to Asian strains. These results contribute to the molecular characterization of BCoV in Brazil and are the first report of the circulation of BCoV in the states of Santa Catarina and Bahia.
Collapse
Affiliation(s)
- Adeline de Mira Fernandes
- Laboratory of Bovine VirusesCenter of Research and Development of Animal HealthBiological Institute of São PauloSão PauloBrazil
| | - Paulo E. Brandão
- Department of Preventative Veterinary Medicine and Animal HealthFaculty of Veterinary and Zootechnical MedicineUniversity of São PauloSão PauloBrazil
| | - Michele dos Santos Lima
- Laboratory of Bovine VirusesCenter of Research and Development of Animal HealthBiological Institute of São PauloSão PauloBrazil
| | - Maira de Souza Nunes Martins
- Laboratory of Bovine VirusesCenter of Research and Development of Animal HealthBiological Institute of São PauloSão PauloBrazil
| | - Thais G. da Silva
- Laboratory of Bovine VirusesCenter of Research and Development of Animal HealthBiological Institute of São PauloSão PauloBrazil
| | - Vivian da Silva Cardoso Pinto
- Laboratory of Bovine VirusesCenter of Research and Development of Animal HealthBiological Institute of São PauloSão PauloBrazil
| | - Larissa T. de Paula
- Laboratory of Bovine VirusesCenter of Research and Development of Animal HealthBiological Institute of São PauloSão PauloBrazil
| | - Marta Elisabete S. Vicente
- Laboratory of Bovine VirusesCenter of Research and Development of Animal HealthBiological Institute of São PauloSão PauloBrazil
| | - Liria H. Okuda
- Laboratory of Bovine VirusesCenter of Research and Development of Animal HealthBiological Institute of São PauloSão PauloBrazil
| | - Edviges M. Pituco
- Laboratory of Bovine VirusesCenter of Research and Development of Animal HealthBiological Institute of São PauloSão PauloBrazil
| |
Collapse
|
27
|
Bok M, Alassia M, Frank F, Vega CG, Wigdorovitz A, Parreño V. Passive immunity to control Bovine coronavirus diarrhea in a dairy herd in Argentina. Rev Argent Microbiol 2017; 50:23-30. [PMID: 28893529 PMCID: PMC7116951 DOI: 10.1016/j.ram.2017.03.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 01/12/2017] [Accepted: 03/27/2017] [Indexed: 01/12/2023] Open
Abstract
Bovine coronavirus (BCoV) is a viral enteric pathogen associated with calf diarrhea worldwide being, in Argentina, mostly detected in dairy husbandry systems. The aim of the present work was to study if maternal IgG1 antibodies (Abs) to BCoV acquired by colostrum intake modulate the development of BCoV infection in calves reared in a dairy farm in Argentina. Thirty Holstein calves were monitored during their first 60 days of age. Animals were classified into two groups depending on their initial BCoV IgG1 Ab titers. The “failure of passive transfer” (FPT) group had significantly lower IgG1 Abs to BCoV than the “acceptable passive transfer” (APT) group of calves (log10 1.98 vs. 3.38 respectively) (p < 0.0001). These differences were also observed when the total protein levels in both groups were compared (p = 0.0081). Moreover, 71% (5/7) of calves from the FPT group showed IgG1 seroconversion to BCoV compared to 29.4% (5/17) of animals from the APT group. Regarding viral circulation, BCoV was detected in 10% (3/30) of all calves and BCoV IgG1 Ab seroconversion was detected in 42% of the total animals showing that almost half of the calves were infected with BCoV. In conclusion, calves with high titers of specific BCoV IgG1 (≥1024) were mostly protected against viral infection, while animals with low titers of IgG1 (<1024) were mostly infected with BCoV. IgG1 Abs from colostrum origin are critical for prevention of BCoV infection.
Collapse
Affiliation(s)
- Marina Bok
- Instituto de Virología, CICVyA, Instituto Nacional de Tecnología Agropecuaria (INTA), Los Reseros y Nicolás Repetto S/N, Castelar, 1712 Buenos Aires, Argentina
| | - Martín Alassia
- Departamento de Producción Lechera, Facultad de Ciencias Agrarias, Universidad Nacional del Litoral, Kreder 2805, 3080 Esperanza, Santa Fe, Argentina
| | - Flavia Frank
- AproAgro S.A., Juan V.B. Mitri 55, S2322EGA, Sunchales, Santa Fe, Argentina
| | - Celina G Vega
- Instituto de Virología, CICVyA, Instituto Nacional de Tecnología Agropecuaria (INTA), Los Reseros y Nicolás Repetto S/N, Castelar, 1712 Buenos Aires, Argentina
| | - Andrés Wigdorovitz
- Instituto de Virología, CICVyA, Instituto Nacional de Tecnología Agropecuaria (INTA), Los Reseros y Nicolás Repetto S/N, Castelar, 1712 Buenos Aires, Argentina
| | - Viviana Parreño
- Instituto de Virología, CICVyA, Instituto Nacional de Tecnología Agropecuaria (INTA), Los Reseros y Nicolás Repetto S/N, Castelar, 1712 Buenos Aires, Argentina.
| |
Collapse
|
28
|
Ferragut F, Vega CG, Mauroy A, Conceição-Neto N, Zeller M, Heylen E, Uriarte EL, Bilbao G, Bok M, Matthijnssens J, Thiry E, Badaracco A, Parreño V. Molecular detection of bovine Noroviruses in Argentinean dairy calves: Circulation of a tentative new genotype. INFECTION GENETICS AND EVOLUTION 2016; 40:144-150. [PMID: 26940636 PMCID: PMC7185671 DOI: 10.1016/j.meegid.2016.02.034] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 02/11/2016] [Accepted: 02/25/2016] [Indexed: 11/27/2022]
Abstract
Bovine noroviruses are enteric pathogens detected in fecal samples of both diarrheic and non-diarrheic calves from several countries worldwide. However, epidemiological information regarding bovine noroviruses is still lacking for many important cattle producing countries from South America. In this study, three bovine norovirus genogroup III sequences were determined by conventional RT-PCR and Sanger sequencing in feces from diarrheic dairy calves from Argentina (B4836, B4848, and B4881, all collected in 2012). Phylogenetic studies based on a partial coding region for the RNA-dependent RNA polymerase (RdRp, 503 nucleotides) of these three samples suggested that two of them (B4836 and B4881) belong to genotype 2 (GIII.2) while the third one (B4848) was more closely related to genotype 1 (GIII.1) strains. By deep sequencing, the capsid region from two of these strains could be determined. This confirmed the circulation of genotype 1 (B4848) together with the presence of another sequence (B4881) sharing its highest genetic relatedness with genotype 1, but sufficiently distant to constitute a new genotype. This latter strain was shown in silico to be a recombinant: phylogenetic divergence was detected between its RNA-dependent RNA polymerase coding sequence (genotype GIII.2) and its capsid protein coding sequence (genotype GIII.1 or a potential norovirus genotype). According to this data, this strain could be the second genotype GIII.2_GIII.1 bovine norovirus recombinant described in literature worldwide. Further analysis suggested that this strain could even be a potential norovirus GIII genotype, tentatively named GIII.4. The data provides important epidemiological and evolutionary information on bovine noroviruses circulating in South America. Molecular prevalence of bovine Noroviruses in Argentina is reported. Newborn calves positive to Norovirus presented diarrhea. Phylogenetic inferences of the strains detected were performed and genotype–genogroups were determined for each strain. A tentative new genotype is reported. This is the first report of bovine Noroviruses from Argentina, one of the main meat and dairy farming countries worldwide.
Collapse
Affiliation(s)
- Fátima Ferragut
- Enteric Viruses Section, Virology Institute, Veterinary and Agronomic Research Centre, National Institute of Agricultural Technology (INTA), Castelar CC25 (CP 1712), Buenos Aires, Argentina
| | - Celina G Vega
- Enteric Viruses Section, Virology Institute, Veterinary and Agronomic Research Centre, National Institute of Agricultural Technology (INTA), Castelar CC25 (CP 1712), Buenos Aires, Argentina
| | - Axel Mauroy
- Veterinary Virology and Animal Viral Diseases, Fundamental and Applied Research for Animal and Health Centre, Faculty of Veterinary Medicine, University of Liège, Liège B-4000, Belgium
| | - Nádia Conceição-Neto
- KU Leuven - University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Viral Metagenomics, B-3000, Leuven, Belgium
| | - Mark Zeller
- KU Leuven - University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Viral Metagenomics, B-3000, Leuven, Belgium
| | - Elisabeth Heylen
- KU Leuven - University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Viral Metagenomics, B-3000, Leuven, Belgium
| | - Enrique Louge Uriarte
- Animal Health Section, Animal Production Area, EEA INTA Balcarce, Balcarce CP 7620, Buenos Aires, Argentina
| | - Gladys Bilbao
- Veterinary College, UNCPBA, Tandil CP 7000, Buenos Aires, Argentina
| | - Marina Bok
- Enteric Viruses Section, Virology Institute, Veterinary and Agronomic Research Centre, National Institute of Agricultural Technology (INTA), Castelar CC25 (CP 1712), Buenos Aires, Argentina
| | - Jelle Matthijnssens
- KU Leuven - University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Viral Metagenomics, B-3000, Leuven, Belgium
| | - Etienne Thiry
- Veterinary Virology and Animal Viral Diseases, Fundamental and Applied Research for Animal and Health Centre, Faculty of Veterinary Medicine, University of Liège, Liège B-4000, Belgium
| | - Alejandra Badaracco
- Enteric Viruses Section, Virology Institute, Veterinary and Agronomic Research Centre, National Institute of Agricultural Technology (INTA), Castelar CC25 (CP 1712), Buenos Aires, Argentina
| | - Viviana Parreño
- Enteric Viruses Section, Virology Institute, Veterinary and Agronomic Research Centre, National Institute of Agricultural Technology (INTA), Castelar CC25 (CP 1712), Buenos Aires, Argentina.
| |
Collapse
|