1
|
Odeniran PO, Paul-Odeniran KF, Odeyemi AO, Ademola IO. Big Six: Vertebrate host interactions as significant transmission drivers of bovine trypanosomosis in Nigeria - A systematic review and meta-analysis. Acta Trop 2025; 263:107547. [PMID: 39923869 DOI: 10.1016/j.actatropica.2025.107547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 01/27/2025] [Accepted: 02/06/2025] [Indexed: 02/11/2025]
Abstract
Bovine trypanosomosis remains a significant challenge in Nigeria due to the widespread presence of tsetse and biting flies. Despite numerous control interventions, livestock owners continue to face the burden of high treatment costs year-round. Holistic management has been elusive, largely due to the interconnected roles of the "Big-Six" animal hosts in sustaining transmission dynamics. This study conducted a systematic review of publications from Web of Science, Ovid MEDLINE, PubMed, Google Scholar, and AJOL Online databases, following PRISMA guidelines between 2000 and 2024. Eligible studies reported trypanosomosis prevalence in cattle, small ruminants, dogs, pigs, camels, and wildlife. Subgroup analyses by breed, sex, and diagnostic techniques were performed, with point estimates evaluated at a 95 % confidence interval (CI). A total of 80 studies involving 25,171 animals were included, revealing average prevalence of 38.2 % (95 % CI: 31.4-45.3) in wildlife, pooled prevalence of 12.0 % (95 % CI: 3.0-25.1) in cattle, with 11.7 % specifically observed in trypanotolerant cattle breeds, 4.6 % (2.3-7.6) in small ruminants, 9.6 % (95 % CI: 1.9-21.5) in dogs, 10.4 % (95 % CI: 5.6-16.3) in pigs, and 28.0 % (95 % CI: 18.5-38.6) in camels. Wildlife exhibited distinct ecological patterns, while ovine and caprine data clustered closely. These findings explain the critical role of vertebrate hosts, along with bovine herd management practices, in perpetuating disease transmission within susceptible cattle populations. Effective control requires treating vertebrate hosts harbouring trypanosomes within or surrounding bovine herds and the use of insecticide-impregnated nets, alongside fencing cattle herds from forest edges. This integrated approach is essential to achieving the elimination of African animal trypanosomosis (AAT) in Nigeria and across Africa.
Collapse
|
2
|
Adepoju OA, Quinnell D, Sirohi H, Amlabu E, Sallau AB, Ibrahim A, Atawodi SE, Shuaibu MN, Chang G, Balogun EO. Overproduction and Characterization of Recombinant Soluble Trypanosoma brucei Phospholipase A 2. Eng Life Sci 2025; 25:e70005. [PMID: 40124852 PMCID: PMC11926252 DOI: 10.1002/elsc.70005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/17/2024] [Accepted: 01/17/2025] [Indexed: 03/25/2025] Open
Abstract
Trypanosoma brucei phospholipase A2 (TbPLA2) is a validated drug target but the difficulty in expressing its soluble recombinant protein has limited its exploitation for drug and vaccine development for African and American trypanosomiases. We utilized recombinant deoxyribonucleic acid (DNA) technology approaches to express soluble TbPLA2 in Escherichia coli and Pichia pastoris and biochemically characterize the purified enzyme. Full-length TbPLA2 was insoluble and deposited as inclusion bodies when expressed in E. coli. However, soluble and active forms were obtained when both the full-length and truncated TbPLA2 were expressed in fusion with N-terminal FLAG tag and C-terminal eGFP in P. pastoris, and the truncated protein in fusion with N-terminal FLAG tag and C-terminal mClover in E. coli. Truncated TbPLA2 lacking the signal peptide and transmembrane domain was finally expressed in Rosetta 2 cells and purified to homogeneity. Its migration on sodium dodecyl polyacrylamide gel electrophoresis (SDS-PAGE) confirmed its size to be 39 kDa. Kinetic studies revealed that the enzyme has a specific activity of 107.14 µmol/min/mg, a V max of 25.1 µmol/min, and a K M of 1.58 mM. This is the first report on the successful expression of soluble and active recombinant TbPLA2, which will facilitate the discovery of its specific inhibitors for the development of therapeutics for trypanosomiasis.
Collapse
Affiliation(s)
- Oluwafemi Abiodun Adepoju
- Department of BiochemistryAhmadu Bello UniversityZariaNigeria
- Skaggs School of Pharmacy and Pharmaceutical SciencesUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Daniel Quinnell
- Skaggs School of Pharmacy and Pharmaceutical SciencesUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Harshverdhan Sirohi
- Skaggs School of Pharmacy and Pharmaceutical SciencesUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Emmanuel Amlabu
- Department of BiochemistryPrince Abubakar Audu UniversityAnyigbaNigeria
- Africa Centre of Excellence for Neglected Tropical Diseases and Forensic BiotechnologyAhmadu Bello UniversityZariaNigeria
| | - Abdullahi Balarabe Sallau
- Department of BiochemistryAhmadu Bello UniversityZariaNigeria
- Africa Centre of Excellence for Neglected Tropical Diseases and Forensic BiotechnologyAhmadu Bello UniversityZariaNigeria
| | - Abdulrazak Ibrahim
- Department of BiochemistryAhmadu Bello UniversityZariaNigeria
- Forum for Agricultural Research in Africa (FARA), PMB CT 173, CantonmentsAccraGhana
| | | | - Mohammed Nasiru Shuaibu
- Department of BiochemistryAhmadu Bello UniversityZariaNigeria
- Africa Centre of Excellence for Neglected Tropical Diseases and Forensic BiotechnologyAhmadu Bello UniversityZariaNigeria
| | - Geoffrey Chang
- Skaggs School of Pharmacy and Pharmaceutical SciencesUniversity of California San DiegoLa JollaCaliforniaUSA
- Department of Pharmacology, School of MedicineUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Emmanuel Oluwadare Balogun
- Department of BiochemistryAhmadu Bello UniversityZariaNigeria
- Skaggs School of Pharmacy and Pharmaceutical SciencesUniversity of California San DiegoLa JollaCaliforniaUSA
- Africa Centre of Excellence for Neglected Tropical Diseases and Forensic BiotechnologyAhmadu Bello UniversityZariaNigeria
- Department of Biomedical Chemistry, Graduate School of MedicineThe University of TokyoHongoTokyoJapan
| |
Collapse
|
3
|
Ilbeigi K, Mabille D, Matheeussen A, Hendrickx R, Claes M, Van Reet N, Anthonissen R, Hulpia F, Lin C, Maes L, Regnault C, Whitfield P, Roy R, Ungogo MA, Sterckx YGJ, De Winter H, Mertens B, Bundschuh M, De Koning HP, Van Calenbergh S, Caljon G. Discovery and Development of an Advanced Lead for the Treatment of African Trypanosomiasis. ACS Infect Dis 2025; 11:131-143. [PMID: 39665421 DOI: 10.1021/acsinfecdis.4c00472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
African trypanosomiasis is a widespread disease of human and veterinary importance caused by various Trypanosoma spp. with a globally devastating impact and a need for novel treatment options. We here provide a comprehensive preclinical evaluation of nucleoside analogues, 6-thioether-modified tubercidins, with curative activity against African trypanosomiasis. Promising hits were identified following in vitro screening against the most relevant trypanosome species. Selected hit compounds were extensively tested for in vitro metabolic stability, potency in in vivo mouse models for the various species, genotoxicity in an in vitro testing battery, and mode of action studies (i.e., genome-wide RNA interference library screening and metabolomics). Among the nucleoside analogues, analogue 3 was curative in mouse models with no indication of genotoxicity and a low ecotoxicological footprint. Mode-of-action studies revealed that P1-type nucleoside transporters and adenosine kinase are involved in the uptake and activation, respectively. Analogue 3 represents a potent, advanced lead fitting the preferred target product profile for a broad-spectrum trypanocide regardless of the causative species.
Collapse
Affiliation(s)
- Kayhan Ilbeigi
- Laboratory of Microbiology, Parasitology and Hygiene, Infla-Med Centre of Excellence, University of Antwerp, 2610 Wilrijk, Belgium
| | - Dorien Mabille
- Laboratory of Microbiology, Parasitology and Hygiene, Infla-Med Centre of Excellence, University of Antwerp, 2610 Wilrijk, Belgium
| | - An Matheeussen
- Laboratory of Microbiology, Parasitology and Hygiene, Infla-Med Centre of Excellence, University of Antwerp, 2610 Wilrijk, Belgium
| | - Rik Hendrickx
- Laboratory of Microbiology, Parasitology and Hygiene, Infla-Med Centre of Excellence, University of Antwerp, 2610 Wilrijk, Belgium
| | - Mathieu Claes
- Laboratory of Microbiology, Parasitology and Hygiene, Infla-Med Centre of Excellence, University of Antwerp, 2610 Wilrijk, Belgium
| | - Nick Van Reet
- Protozoology Research Group, Institute of Tropical Medicine, 2000 Antwerp, Belgium
| | - Roel Anthonissen
- Sciensano, SD Chemical and Physical Health Risks, 1050 Brussels, Belgium
| | - Fabian Hulpia
- Laboratory for Medicinal Chemistry (Campus Heymans), Ghent University, B-9000 Gent, Belgium
| | - Cai Lin
- Laboratory for Medicinal Chemistry (Campus Heymans), Ghent University, B-9000 Gent, Belgium
| | - Louis Maes
- Laboratory of Microbiology, Parasitology and Hygiene, Infla-Med Centre of Excellence, University of Antwerp, 2610 Wilrijk, Belgium
| | - Clement Regnault
- Glasgow Polyomics, College of Medical, Veterinary and Life Sciences, Garscube Campus, University of Glasgow, Glasgow G61 1BD, U.K
| | - Phillip Whitfield
- Glasgow Polyomics, College of Medical, Veterinary and Life Sciences, Garscube Campus, University of Glasgow, Glasgow G61 1BD, U.K
| | - Rajdeep Roy
- iES Landau, Institute for Environmental Sciences, University of Kaiserslautern-Landau (RPTU), 76829 Landau, Germany
| | - Marzuq A Ungogo
- School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, U.K
| | - Yann G-J Sterckx
- Laboratory of Medical Biochemistry (LMB), Infla-Med Centre of Excellence, University of Antwerp, Antwerp, 2610 Wilrijk, Belgium
| | - Hans De Winter
- Laboratory of Medicinal Chemistry, Infla-Med Centre of Excellence, University of Antwerp, 2610 Wilrijk, Belgium
| | - Birgit Mertens
- Sciensano, SD Chemical and Physical Health Risks, 1050 Brussels, Belgium
| | - Mirco Bundschuh
- iES Landau, Institute for Environmental Sciences, University of Kaiserslautern-Landau (RPTU), 76829 Landau, Germany
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, 75007 Uppsala, Sweden
| | - Harry P De Koning
- School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, U.K
| | - Serge Van Calenbergh
- Laboratory for Medicinal Chemistry (Campus Heymans), Ghent University, B-9000 Gent, Belgium
| | - Guy Caljon
- Laboratory of Microbiology, Parasitology and Hygiene, Infla-Med Centre of Excellence, University of Antwerp, 2610 Wilrijk, Belgium
| |
Collapse
|
4
|
McHugo GP, Ward JA, Ng'ang'a SI, Frantz LAF, Salter-Townshend M, Hill EW, O'Gorman GM, Meade KG, Hall TJ, MacHugh DE. Genome-wide local ancestry and the functional consequences of admixture in African and European cattle populations. Heredity (Edinb) 2025; 134:49-63. [PMID: 39516247 PMCID: PMC11723932 DOI: 10.1038/s41437-024-00734-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 10/26/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024] Open
Abstract
Bos taurus (taurine) and Bos indicus (indicine) cattle diverged at least 150,000 years ago and, since that time, substantial genomic differences have evolved between the two lineages. During the last two millennia, genetic exchange in Africa has resulted in a complex tapestry of taurine-indicine ancestry, with most cattle populations exhibiting varying levels of admixture. Similarly, there are several Southern European cattle populations that also show evidence for historical gene flow from indicine cattle, the highest levels of which are found in the Central Italian White breeds. Here we use two different software tools (MOSAIC and ELAI) for local ancestry inference (LAI) with genome-wide high- and low-density SNP array data sets in hybrid African and residually admixed Southern European cattle populations and obtained broadly similar results despite critical differences in the two LAI methodologies used. Our analyses identified genomic regions with elevated levels of retained or introgressed ancestry from the African taurine, European taurine, and Asian indicine lineages. Functional enrichment of genes underlying these ancestry peaks highlighted biological processes relating to immunobiology and olfaction, some of which may relate to differing susceptibilities to infectious diseases, including bovine tuberculosis, East Coast fever, and tropical theileriosis. Notably, for retained African taurine ancestry in admixed trypanotolerant cattle we observed enrichment of genes associated with haemoglobin and oxygen transport. This may reflect positive selection of genomic variants that enhance control of severe anaemia, a debilitating feature of trypanosomiasis disease, which severely constrains cattle agriculture across much of sub-Saharan Africa.
Collapse
Affiliation(s)
- Gillian P McHugo
- UCD School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, D04 V1W8, Ireland
| | - James A Ward
- UCD School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, D04 V1W8, Ireland
| | - Said Ismael Ng'ang'a
- Palaeogenomics Group, Department of Veterinary Sciences, Ludwig Maximilian University, 80539, Munich, Germany
- School of Biological and Chemical Sciences, Queen Mary University of London, London, E1 4NS, UK
| | - Laurent A F Frantz
- Palaeogenomics Group, Department of Veterinary Sciences, Ludwig Maximilian University, 80539, Munich, Germany
- School of Biological and Chemical Sciences, Queen Mary University of London, London, E1 4NS, UK
| | | | - Emmeline W Hill
- UCD School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, D04 V1W8, Ireland
| | - Grace M O'Gorman
- UK Agri-Tech Centre, Innovation Centre, York Science Park, York, YO10 5DG, UK
| | - Kieran G Meade
- UCD School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, D04 V1W8, Ireland
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, D04 V1W8, Ireland
- UCD One Health Centre, University College Dublin, Dublin, D04 V1W8, Ireland
| | - Thomas J Hall
- UCD School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, D04 V1W8, Ireland
| | - David E MacHugh
- UCD School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, D04 V1W8, Ireland.
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, D04 V1W8, Ireland.
- UCD One Health Centre, University College Dublin, Dublin, D04 V1W8, Ireland.
| |
Collapse
|
5
|
Nyabally K, Okeno TO, Muasya TK. Genetic parameters and correlations between growth traits and packed cell volume of N'Dama cattle in the Gambia. Trop Anim Health Prod 2024; 57:7. [PMID: 39710818 DOI: 10.1007/s11250-024-04252-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 12/10/2024] [Indexed: 12/24/2024]
Abstract
The evolution of body weight under the natural trypanosome challenge and its association with disease tolerance to trypanosomosis is of utmost economic importance in cattle. This study estimated heritability for growth traits and packed cell volume (PCV) and their genetic correlations in the N'Dama cattle in the Gambia. A total of 2,488, 2,442, 1,471, 1,934, and 1,452 bodyweight records at 12 months (WT12), 16 months (WT16), 18 months (WT18), 24 months (WT24), 36 months (WT36) and 50 months (WT50) and 1,782, 1,800, 1,844, 1,608, and 1,459 records for PCV at 12 months (PCV12) 18 months (PCV18), 24 months (PCV24), 36 months (PCV36), and 50 months (PCV50), respectively, were analysed. Genetic parameters were estimated using univariate and multivariate animal models using the GIBBSF90 software. Least square means for WT12, WT18, WT24, WT36 and WT50 were 75.08 ± 0.37 kg, 95.58 ± 0.52, 123.80 ± 0.52 kg, 149.90 ± 0.73 kg and 190.37 ± 0.68 kg, respectively. The Least square means for PCV declined from 24.56 ± 0.18 at 12 months of age to 23.18 ± 0.19 at 50 months. Heritability estimates for growth ranged from 0.47 ± 0.05 at 12 months to 0.31 ± 0.06 at 50 months, while for PCV the estimates were 0.09 ± 0.01 to 0.15 ± 0.01. Genetic correlations between bodyweights were high and positive (0.73 ± 0.01 to 0.96 ± 0.01) while those between PCV traits were low to medium and positive (0.16 ± 0.04 to 0.56 ± 0.02). Genetic correlations between bodyweight and PCV range from -0.14 ± 0.02 to 0.59 ± 0.02. BW18 and PCV18 had high heritability estimates and as well as the highest genetic correlation and therefore could be used as selection criteria for body weight and trypanotolerance, respectively.
Collapse
Affiliation(s)
- Kebba Nyabally
- Animal Breeding and Genomic Group, Department of Animal Science, University Egerton, PO Box 536-20115, Egerton, Kenya.
- West African Livestock Innovation Center, Banjul, The Gambia.
| | - Tobias O Okeno
- Center of Excellence for Livestock Innovation and Business (CoELIB), Egerton University, PO Box 536-20115, Egerton, Kenya
| | - Thomas Kainga Muasya
- Animal Breeding and Genomic Group, Department of Animal Science, University Egerton, PO Box 536-20115, Egerton, Kenya
| |
Collapse
|
6
|
Alzan HF, Mahmoud MS, Suarez CE. Current vaccines, experimental immunization trials, and new perspectives to control selected vector borne blood parasites of veterinary importance. Front Vet Sci 2024; 11:1484787. [PMID: 39606652 PMCID: PMC11602000 DOI: 10.3389/fvets.2024.1484787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024] Open
Abstract
Parasite infections transmitted by vectors such as ticks and blood-sucking arthropods pose a significant threat to both human and animal health worldwide and have a substantial economic impact, particularly in the context of worsening environmental conditions. These infections can manifest in a variety of symptoms, including fever, anemia, jaundice, enlarged spleen, neurological disorders, and lymphatic issues, and can have varying mortality rates. In this review, we will focus on the current state of available vaccines, vaccine research approaches, and trials for diseases caused by vector-borne blood parasites, such as Babesia, Theileria, Anaplasma, and Trypanosoma, in farm animals. Control measures for these infections primarily rely on vector control, parasiticidal drug treatments, and vaccinations for disease prevention. However, many of these approaches have limitations, such as environmental concerns associated with the use of parasiticides, acaricides, and insecticides. Additionally, while some vaccines for blood parasites are already available, they still have several drawbacks, including practicality issues, unsuitability in non-endemic areas, and concerns about spreading other infectious agents, particularly in the case of live vaccines. This article highlights recent efforts to develop vaccines for controlling blood parasites in animals. The focus is on vaccine development approaches that show promise, including those based on recombinant antigens, vectored vaccines, and live attenuated or genetically modified parasites. Despite intensive research, developing effective subunit vaccines against blood stage parasites remains a challenge. By learning from previous vaccine development efforts and using emerging technologies to define immune mechanisms of protection, appropriate adjuvants, and protective antigens, we can expand our toolkit for controlling these burdensome diseases.
Collapse
Affiliation(s)
- Heba F. Alzan
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
- Parasitology and Animal Diseases Department, Veterinary Research Institute, National Research Center, Giza, Egypt
| | - Mona S. Mahmoud
- Parasitology and Animal Diseases Department, Veterinary Research Institute, National Research Center, Giza, Egypt
| | - Carlos E. Suarez
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
- Animal Disease Research Unit, Agricultural Research Service, United States Department of Agriculture, Pullman, WA, United States
| |
Collapse
|
7
|
Bouaka Tsakeng CU, Melachio Tanekou TT, Ngambia Freitas FS, Tirados I, Tsagmo Ngoune JM, Bigoga JD, Njiokou F, Wondji CS. Patterns of microbiome composition in tsetse fly Glossina palpalis palpalis during vector control using Tiny Targets in Campo, South Cameroon. Microbiol Spectr 2024; 12:e0093524. [PMID: 39297636 PMCID: PMC11540164 DOI: 10.1128/spectrum.00935-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 08/22/2024] [Indexed: 11/08/2024] Open
Abstract
Novel vector control tools against African trypanosomiases require a deep understanding of the factors driving tsetse vector fitness or population resilience in their ecosystems. Following evidence of microbiota-mediated host fitness or traits shaping, including insecticide resistance in arthropod populations, we undertook a comparative study of the microbiota in wild-caught tsetse flies during vector control with deltamethrin-impregnated traps called Tiny Targets. The bacterial microbiome composition of tsetse flies collected before and after 6, 12, and 18 months of vector control were characterized using high-throughput sequencing of the V3-V4 hypervariable region of the bacterial 16S rRNA gene and compared. Overall, 48 bacterial genera and five phyla were identified. The primary symbiont Wigglesworthia dominated almost all the samples with an overall relative abundance of 71.76%. A significant increase was observed in microbiome diversities over the vector control with new taxa identified. Interestingly, few genera, like Curvibacter for instance, displayed a regularly increasing abundance, from 0.57% to 0.65%, 4.73%, and 8.57% after 6, 12, and 18 months of tsetse control, respectively. This study provided preliminary for further investigation into the role and mechanism of action of microbiota in tsetse fly fitness under selective pressure like insecticides.IMPORTANCEThe interest in vector control in the fight against African trypanosomiases has been reinforced in recent years, with the development of small insecticide-impregnated screens, known as "Tiny Targets". As some tsetse biotopes are difficult to access for their installation, other tools are under consideration that involve using bacteria harbored by the tsetse vector to block the development of trypanosomes or impair the tsetse's fitness in its natural environment. Several bacterial symbionts were previously described as important for tsetse fly development, and some like Burkholderia and Citrobacter also found in tsetse flies were found associated with insecticide tolerance in other arthropods. In this research, we found the bacterial genera, Curvibacter and Acinetobacter, increased in abundance in tsetse flies during vector control. These bacteria deserve further attention to determine if they can interfere with insecticides used to control tsetse fly populations.
Collapse
Affiliation(s)
- Calmes Ursain Bouaka Tsakeng
- Centre for Research in
Infectious Diseases (CRID),
Yaoundé, Cameroon
- Department of
Biochemistry, Faculty of Science, University of Yaoundé
I, Yaoundé,
Cameroon
| | - Tito Tresor Melachio Tanekou
- Centre for Research in
Infectious Diseases (CRID),
Yaoundé, Cameroon
- Department of
Microbiology and Parasitology, Faculty of Science, University of
Bamenda, Bamenda,
Cameroon
| | | | - Inaki Tirados
- Department of Vector
Biology, Liverpool School of Tropical Medicine (LSTM), Pembroke
Place, Liverpool,
United Kingdom
| | - Jean Marc Tsagmo Ngoune
- Department of
Parasites and Insect Vectors, Trypanosome Transmission Group,
Trypanosome Cell Biology Unit, INSERM U1201, Institut Pasteur,
Université Paris Cité,
Paris, France
| | - Jude Daiga Bigoga
- Department of
Biochemistry, Faculty of Science, University of Yaoundé
I, Yaoundé,
Cameroon
| | - Flobert Njiokou
- Department of Animal
Biology and Physiology, Faculty of Science, University of Yaoundé
I, Yaoundé,
Cameroon
| | - Charles Sinclair Wondji
- Centre for Research in
Infectious Diseases (CRID),
Yaoundé, Cameroon
- Department of Vector
Biology, Liverpool School of Tropical Medicine (LSTM), Pembroke
Place, Liverpool,
United Kingdom
| |
Collapse
|
8
|
Somé GF, Séré M, Somda BM, Dayo GK, Ouédraogo GA, Boulangé A, Maarifi G, Chantal I, Berthier-Teyssedre D, Thévenon S. Immune Response in Cattle Trypanosomosis and Trypanotolerance: Main Findings and Gaps. Parasite Immunol 2024; 46:e13075. [PMID: 39508487 DOI: 10.1111/pim.13075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 09/30/2024] [Accepted: 10/24/2024] [Indexed: 11/15/2024]
Abstract
Trypanosome parasites of the genus Trypanosoma cause African animal trypanosomosis, a devastating livestock disease plaguing sub-Saharan Africa. Unlike many protozoan parasites, these extracellular blood-borne pathogens directly engage the host's immune system. While the mouse model has provided valuable insights, a comprehensive understanding of the bovine immune response to trypanosomes remains elusive. Addressing the immune response in cattle, the most relevant host species, and how it takes part in mitigating the negative impact of the disease could contribute to setting up sustainable control strategies. This review summarises the current knowledge of the immune response in cattle during trypanosomosis. Following a brief overview of infection processes and bovine trypanotolerance, we present advances in the regulation of host innate, inflammatory and adaptive responses and delve into the key immunological players involved in immunoactivities and immunosuppression. We discuss how these mechanisms contribute to tolerance or susceptibility to infection, highlighting critical gaps in knowledge that require further investigation.
Collapse
Affiliation(s)
- Gnohion Fabrice Somé
- Centre International de Recherche-Développement Sur l'Elevage en Zone Subhumide (CIRDES), Bobo-Dioulasso, Burkina Faso
- Cirad, UMR INTERTRYP, Montpellier, France
- INTERTRYP, Université de Montpellier, Cirad, IRD, Montpellier, France
| | - Modou Séré
- Centre International de Recherche-Développement Sur l'Elevage en Zone Subhumide (CIRDES), Bobo-Dioulasso, Burkina Faso
- Université Daniel-Ouezzin-COULIBALLY, Dédougou, Burkina Faso
| | - Bienvenu Martin Somda
- Centre International de Recherche-Développement Sur l'Elevage en Zone Subhumide (CIRDES), Bobo-Dioulasso, Burkina Faso
- Université Nazi BONI, Bobo-Dioulasso, Burkina Faso
| | - Guiguigbaza-Kossigan Dayo
- Centre International de Recherche-Développement Sur l'Elevage en Zone Subhumide (CIRDES), Bobo-Dioulasso, Burkina Faso
| | | | - Alain Boulangé
- Cirad, UMR INTERTRYP, Montpellier, France
- INTERTRYP, Université de Montpellier, Cirad, IRD, Montpellier, France
| | - Ghizlane Maarifi
- Cirad, UMR INTERTRYP, Montpellier, France
- INTERTRYP, Université de Montpellier, Cirad, IRD, Montpellier, France
| | - Isabelle Chantal
- Cirad, UMR INTERTRYP, Montpellier, France
- INTERTRYP, Université de Montpellier, Cirad, IRD, Montpellier, France
| | - David Berthier-Teyssedre
- Cirad, UMR INTERTRYP, Montpellier, France
- INTERTRYP, Université de Montpellier, Cirad, IRD, Montpellier, France
| | - Sophie Thévenon
- Cirad, UMR INTERTRYP, Montpellier, France
- INTERTRYP, Université de Montpellier, Cirad, IRD, Montpellier, France
| |
Collapse
|
9
|
Gebeyehu S, Robi DT. Epidemiological investigation of trypanosomosis in livestock and distribution of vector in Dabo Hana district, Southwest Oromia, Ethiopia. Parasite Epidemiol Control 2024; 27:e00396. [PMID: 39720310 PMCID: PMC11667175 DOI: 10.1016/j.parepi.2024.e00396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 10/30/2024] [Accepted: 12/01/2024] [Indexed: 12/26/2024] Open
Abstract
The trypanosomosis remains unresolved due to its impact on various hosts, leading to production losses in Ethiopia. In the Southwest of Oromia, multiple livestock species share grazing land in tsetse-infested areas. Thus, a cross-sectional study was conducted from December 2020 to December 2021 to determine the prevalence and associated risk factors of trypanosomosis in bovines, small ruminants, and equines, as well as the distribution of the vector in the Dabo Hana district of Southwest Oromia, Ethiopia. A vector survey was carried out using 60 monoconical traps placed at intervals ranging from about 100 to 200 m. Out of the 1441 flies captured, 86.2 % were Glossina, 7.84 % were Stomoxys, and 5.96 % were Tabanus. The overall apparent density of flies was 12 flies per trap per day. Among the 1242 caught Glossina species, 85 % were identified as G. tachinoides and 15 % as G. m. submorsitans. The average age of male tsetse flies was 28 days, and the overall infection rate of trypanosomes in tsetse flies was 4.8 %. A total of 701 blood samples (190 from bovines, 384 from small ruminants, and 127 from equines) were analyzed using buffy coat and Giemsa techniques. The prevalence of trypanosomosis was found to be 10 % in bovines, 4.2 % in small ruminants, and 3.1 % in equines. A significant difference (P < 0.05) in trypanosome infection was observed among the three host species, as well as with respect to the age and body condition of the animals. The predominant cause of infection was T. congolense, accounting for 74.4 % of cases. The mean packed cell volume (PCV) values of infected bovines, small ruminants, and equines were significantly lower (P < 0.05) compared to those of non-infected animals. Trypanosomosis is a major livestock disease in the study area. The findings provide valuable insights into the prevalence and infection rates of trypanosomosis, identify the affected species, and highlight significant risk factors, such as age, body condition, and vector distribution. Implementing sustainable and integrated practices for trypanosomosis control is crucial, and conducting molecular techniques in different seasons is also recommended.
Collapse
Affiliation(s)
- Surra Gebeyehu
- Wollega University, School of Veterinary Medicine, Nekemte, Ethiopia
| | - Dereje Tulu Robi
- Ethiopian Institute of Agricultural Research, Tepi Agricultural Research Center, P.O. Box 34, Tepi, Ethiopia
| |
Collapse
|
10
|
de Mendonça DR, Couto LFM, Pureza LH, Martins DB, Soares VE, Ferreira LL, Fioravanti MCS, Bastos TSA, da Cunha PHJ, Lopes WDZ. First record of a possible trypanotolerant cattle breed in Latin America: Parasitological, serological, and clinical aspects. Vet Parasitol Reg Stud Reports 2024; 54:101090. [PMID: 39237241 DOI: 10.1016/j.vprsr.2024.101090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/18/2024] [Accepted: 07/23/2024] [Indexed: 09/07/2024]
Abstract
Trypanosoma vivax infections are endemic in Africa, where they provoke trypanosomosis against which some local taurine breeds are tolerant and are thus named trypanotolerant. In Latin America, T. vivax was imported in 1919, since when it has been responsible for periodic outbreaks of the disease. This study assessed whether a South American taurine breed resilient to several parasitic and infectious diseases (Curraleiro Pé-Duro-CPD) can meet trypanotolerant criteria (control parasite proliferation, prevent anemia, survive without treatment, and maintain productivity). Three groups were established, each consisting of six animals (Group 1: CPD-infected; Group 2: Holstein/Gyr-infected; Group 3: Holstein/Gyr-uninfected, negative control). Groups 1 and 2 were infected with T. vivax on Day 0 and evaluated until day 532. Throughout the experimental period, parasitological (Woo and Brener), molecular (cPCR), serological (enzyme-linked immunosorbent assay - ELISA, indirect fluorescent antibody test - IFAT, immunochromatographic assay - IA), and clinical (hemogram, fever, weight loss) aspects were evaluated. During the acute phase of the disease, T. vivax was initially detected in Holstein/Gyr. Notably, the CPD animals restored their packed cell volume (PCV) values to the normal range 74 days after inoculations. In the chronic phase, two of the six CPD animals were positive by cPCR until D + 522 following immunosuppression with dexamethasone. Regarding serological aspects, the two CPD animals had positive tests until D + 532. The absence of T. vivax in blood during the chronic phase did not correspond to "self-cure". Holstein/Gyr animals exhibited fever on more evaluation days than CPD animals. Both breeds experienced weight loss, with Holstein/Gyr animals losing significantly more weight. On D + 25, the Holstein/Gyr group required treatment. During the 532 days, none of the CPD animals required treatment, even after being sensitized with dexamethasone. Animals from Group 3 tested negative for T. vivax throughout the experiment. This study demonstrated that CPD cattle fulfill the mentioned trypanotolerant criteria.
Collapse
Affiliation(s)
| | | | - Luana Hernandez Pureza
- Escola de Veterinária e Zootecnia, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Danieli Brolo Martins
- Escola de Veterinária e Zootecnia, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | | | - Lorena Lopes Ferreira
- Departamento de Medicina Veterinária Preventiva, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | | | | | - Welber Daniel Zanetti Lopes
- Escola de Veterinária e Zootecnia, Universidade Federal de Goiás, Goiânia, Goiás, Brazil; Departamento de Biociências e Tecnologia, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Goiás, Brazil.
| |
Collapse
|
11
|
Ungogo MA, de Koning HP. Drug resistance in animal trypanosomiases: Epidemiology, mechanisms and control strategies. Int J Parasitol Drugs Drug Resist 2024; 25:100533. [PMID: 38555795 PMCID: PMC10990905 DOI: 10.1016/j.ijpddr.2024.100533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/13/2024] [Accepted: 03/15/2024] [Indexed: 04/02/2024]
Abstract
Animal trypanosomiasis (AT) is a complex of veterinary diseases known under various names such as nagana, surra, dourine and mal de caderas, depending on the country, the infecting trypanosome species and the host. AT is caused by parasites of the genus Trypanosoma, and the main species infecting domesticated animals are T. brucei brucei, T. b. rhodesiense, T. congolense, T. simiae, T. vivax, T. evansi and T. equiperdum. AT transmission, again depending on species, is through tsetse flies or common Stomoxys and tabanid flies or through copulation. Therefore, the geographical spread of all forms of AT together is not restricted to the habitat of a single vector like the tsetse fly and currently includes almost all of Africa, and most of South America and Asia. The disease is a threat to millions of companion and farm animals in these regions, creating a financial burden in the billions of dollars to developing economies as well as serious impacts on livestock rearing and food production. Despite the scale of these impacts, control of AT is neglected and under-resourced, with diagnosis and treatments being woefully inadequate and not improving for decades. As a result, neither the incidence of the disease, nor the effectiveness of treatment is documented in most endemic countries, although it is clear that there are serious issues of resistance to the few old drugs that are available. In this review we particularly look at the drugs, their application to the various forms of AT, and their mechanisms of action and resistance. We also discuss the spread of veterinary trypanocide resistance and its drivers, and highlight current and future strategies to combat it.
Collapse
Affiliation(s)
- Marzuq A Ungogo
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom; School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Harry P de Koning
- School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom.
| |
Collapse
|
12
|
Arthofer P, Panhölzl F, Delafont V, Hay A, Reipert S, Cyran N, Wienkoop S, Willemsen A, Sifaoui I, Arberas-Jiménez I, Schulz F, Lorenzo-Morales J, Horn M. A giant virus infecting the amoeboflagellate Naegleria. Nat Commun 2024; 15:3307. [PMID: 38658525 PMCID: PMC11043551 DOI: 10.1038/s41467-024-47308-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 03/26/2024] [Indexed: 04/26/2024] Open
Abstract
Giant viruses (Nucleocytoviricota) are significant lethality agents of various eukaryotic hosts. Although metagenomics indicates their ubiquitous distribution, available giant virus isolates are restricted to a very small number of protist and algal hosts. Here we report on the first viral isolate that replicates in the amoeboflagellate Naegleria. This genus comprises the notorious human pathogen Naegleria fowleri, the causative agent of the rare but fatal primary amoebic meningoencephalitis. We have elucidated the structure and infection cycle of this giant virus, Catovirus naegleriensis (a.k.a. Naegleriavirus, NiV), and show its unique adaptations to its Naegleria host using fluorescence in situ hybridization, electron microscopy, genomics, and proteomics. Naegleriavirus is only the fourth isolate of the highly diverse subfamily Klosneuvirinae, and like its relatives the NiV genome contains a large number of translation genes, but lacks transfer RNAs (tRNAs). NiV has acquired genes from its Naegleria host, which code for heat shock proteins and apoptosis inhibiting factors, presumably for host interactions. Notably, NiV infection was lethal to all Naegleria species tested, including the human pathogen N. fowleri. This study expands our experimental framework for investigating giant viruses and may help to better understand the basic biology of the human pathogen N. fowleri.
Collapse
Affiliation(s)
- Patrick Arthofer
- University of Vienna, Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, Vienna, Austria
- University of Vienna, Doctoral School in Microbiology and Environmental Science, Vienna, Austria
| | - Florian Panhölzl
- University of Vienna, Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, Vienna, Austria
| | - Vincent Delafont
- Ecologie et Biologie des Interactions Laboratory (EBI), Microorganisms, hosts & environments team, Université de Poitiers, UMR CNRS, Poitiers, France
| | - Alban Hay
- Ecologie et Biologie des Interactions Laboratory (EBI), Microorganisms, hosts & environments team, Université de Poitiers, UMR CNRS, Poitiers, France
| | - Siegfried Reipert
- University of Vienna, Research Support Facilities UBB, Vienna, Austria
| | - Norbert Cyran
- University of Vienna, Research Support Facilities UBB, Vienna, Austria
| | - Stefanie Wienkoop
- University of Vienna, Department of Functional and Evolutionary Ecology, Division of Molecular Systems Biology, Vienna, Austria
| | - Anouk Willemsen
- University of Vienna, Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, Vienna, Austria
| | - Ines Sifaoui
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, and Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, Tenerife, Islas Canarias, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Iñigo Arberas-Jiménez
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, and Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, Tenerife, Islas Canarias, Spain
| | - Frederik Schulz
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, USA
| | - Jacob Lorenzo-Morales
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, and Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, Tenerife, Islas Canarias, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Matthias Horn
- University of Vienna, Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, Vienna, Austria.
| |
Collapse
|
13
|
Dibello E, Oddone N, Franco J, Illyés TZ, Medeiros A, Kiss A, Hőgye F, Kövér KE, Szilágyi L, Comini MA. Selenosugars targeting the infective stage of Trypanosoma brucei with high selectivity. Int J Parasitol Drugs Drug Resist 2024; 24:100529. [PMID: 38461700 PMCID: PMC10938134 DOI: 10.1016/j.ijpddr.2024.100529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/16/2024] [Accepted: 02/27/2024] [Indexed: 03/12/2024]
Abstract
Earlier evidences showed that diglycosyl diselenides are active against the infective stage of African trypanosomes (top hits IC50 0.5 and 1.5 μM) but poorly selective (selectivity index <10). Here we extended the study to 33 new seleno-glycoconjugates with the aim to improve potency and selectivity. Three selenoglycosides and three glycosyl selenenylsulfides displayed IC50 against bloodstream Trypanosoma brucei in the sub-μM range (IC50 0.35-0.77 μM) and four of them showed an improved selectivity (selectivity index >38-folds vs. murine and human macrohages). For the glycosyl selenylsulfides, the anti-trypanosomal activity was not significantly influenced by the nature of the moiety attached to the sulfur atom. Except for a quinoline-, and to a minor extent a nitro-derivative, the most selective hits induced a rapid (within 60 min) and marked perturbation of the LMWT-redox homeostasis. The formation of selenenylsulfide glycoconjugates with free thiols has been identified as a potential mechanism involved in this process.
Collapse
Affiliation(s)
- Estefanía Dibello
- Laboratory Redox Biology of Trypanosomes, Institut Pasteur de Montevideo, Mataojo 2020, CP 11400, Montevideo, Uruguay; Organic Chemistry Department, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Natalia Oddone
- Laboratory Redox Biology of Trypanosomes, Institut Pasteur de Montevideo, Mataojo 2020, CP 11400, Montevideo, Uruguay
| | - Jaime Franco
- Laboratory Redox Biology of Trypanosomes, Institut Pasteur de Montevideo, Mataojo 2020, CP 11400, Montevideo, Uruguay
| | - Tünde-Zita Illyés
- Department of Organic Chemistry, Faculty of Science and Technology, University of Debrecen, Hungary
| | - Andrea Medeiros
- Laboratory Redox Biology of Trypanosomes, Institut Pasteur de Montevideo, Mataojo 2020, CP 11400, Montevideo, Uruguay; Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Attila Kiss
- Department of Organic Chemistry, Faculty of Science and Technology, University of Debrecen, Hungary
| | - Fanni Hőgye
- Department of Inorganic and Analytical Chemistry, Faculty of Science and Technology, University of Debrecen, Hungary
| | - Katalin E Kövér
- Department of Inorganic and Analytical Chemistry, Faculty of Science and Technology, University of Debrecen, Hungary
| | - László Szilágyi
- Department of Organic Chemistry, Faculty of Science and Technology, University of Debrecen, Hungary.
| | - Marcelo A Comini
- Laboratory Redox Biology of Trypanosomes, Institut Pasteur de Montevideo, Mataojo 2020, CP 11400, Montevideo, Uruguay.
| |
Collapse
|
14
|
Racané L, Ptiček L, Kostrun S, Raić-Malić S, Taylor MC, Delves M, Alsford S, Olmo F, Francisco AF, Kelly JM. Bis-6-amidino-benzothiazole Derivative that Cures Experimental Stage 1 African Trypanosomiasis with a Single Dose. J Med Chem 2023; 66:13043-13057. [PMID: 37722077 PMCID: PMC10544003 DOI: 10.1021/acs.jmedchem.3c01051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Indexed: 09/20/2023]
Abstract
We designed and synthesized a series of symmetric bis-6-amidino-benzothiazole derivatives with aliphatic central units and evaluated their efficacy against bloodstream forms of the African trypanosome Trypanosoma brucei. Of these, a dicationic benzothiazole compound (9a) exhibited sub-nanomolar in vitro potency with remarkable selectivity over mammalian cells (>26,000-fold). Unsubstituted 5-amidine groups and a cyclohexyl spacer were the crucial determinants of trypanocidal activity. In all cases, mice treated with a single dose of 20 mg kg-1 were cured of stage 1 trypanosomiasis. The compound displayed a favorable in vitro ADME profile, with the exception of low membrane permeability. However, we found evidence that uptake by T. brucei is mediated by endocytosis, a process that results in lysosomal sequestration. The compound was also active in low nanomolar concentrations against cultured asexual forms of the malaria parasite Plasmodium falciparum. Therefore, 9a has exquisite cross-species efficacy and represents a lead compound with considerable therapeutic potential.
Collapse
Affiliation(s)
- Livio Racané
- Department
of Applied Chemistry, Faculty of Textile Technology, University of Zagreb, Prilaz baruna Filipovića 28a, 10000 Zagreb, Croatia
| | - Lucija Ptiček
- Department
of Applied Chemistry, Faculty of Textile Technology, University of Zagreb, Prilaz baruna Filipovića 28a, 10000 Zagreb, Croatia
| | - Sanja Kostrun
- Chemistry
Department, Selvita Ltd., Prilaz baruna Filipovića 29, 10000 Zagreb, Croatia
| | - Silvana Raić-Malić
- Department
of Organic Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 20, 10000 Zagreb, Croatia
| | - Martin Craig Taylor
- Department
of Infection Biology, London School of Hygiene
and Tropical Medicine, Keppel Street, WC1E 7HT London, U.K.
| | - Michael Delves
- Department
of Infection Biology, London School of Hygiene
and Tropical Medicine, Keppel Street, WC1E 7HT London, U.K.
| | - Sam Alsford
- Department
of Infection Biology, London School of Hygiene
and Tropical Medicine, Keppel Street, WC1E 7HT London, U.K.
| | - Francisco Olmo
- Department
of Infection Biology, London School of Hygiene
and Tropical Medicine, Keppel Street, WC1E 7HT London, U.K.
| | - Amanda Fortes Francisco
- Department
of Infection Biology, London School of Hygiene
and Tropical Medicine, Keppel Street, WC1E 7HT London, U.K.
| | - John M. Kelly
- Department
of Infection Biology, London School of Hygiene
and Tropical Medicine, Keppel Street, WC1E 7HT London, U.K.
| |
Collapse
|
15
|
Vector-Borne Diseases in Ruminants. Infect Dis (Lond) 2023. [DOI: 10.1007/978-1-0716-2463-0_1095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
|
16
|
Obeta SS, Ubah SA, Ejiofor CE, Agbonu OA, Columbus PK, Abah KO, Ikpe AB, Bankole AS, Ezinwo PA, Itodo JI, Akefe IO, Uba CA, Mailafia S. The clinical effect of experimental infection with Trypanosoma congolense on Dutch belted rabbits. Parasitol Res 2023; 122:113-116. [PMID: 36282320 DOI: 10.1007/s00436-022-07702-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 10/20/2022] [Indexed: 01/10/2023]
Abstract
The clinical effect of Trypanosoma congolense infection on Dutch belted (does) rabbits was investigated. Sixteen Dutch belted rabbits weighing between 1.6 and 1.8 kg were grouped into two groups of eight each. Animals were accessed for packed cell volume (PCV), total leucocyte count (TLC), rectal temperature (RT), heart rate (HR), and body weight (BW) before infection as well as 18, 25, and 58 days post inoculation (PI). The level of parasitaemia was estimated on a weekly basis and was graded by number of parasites/field. There was a significant difference (P < 0.05) in the mean PCV between treatment and control groups of the rabbits on all days PI. The other parameters were not significantly different between uninfected controls and treatment group although the rectal temperature fluctuated. The mean PCV of infected rabbits was 36.0 ± 0.53%, 35.3 ± 0.19%, and 28.0 ± 0.89% at days 18, 25, and 58 PI, while for uninfected, the mean PCV was 40.8 ± 0.11%, 41.8 ± 0.19%, and 41.3 ± 0.08% across the same time periods. Parasitaemia was detected at 6th day PI and remained high to the end of the study. The study suggests that the use of haematinics and anti-pyrexia treatments as part of disease management for rabbits would be useful.
Collapse
Affiliation(s)
- Sylvester Sunday Obeta
- Department of Veterinary Parasitology and Entomology, Faculty of Veterinary Medicine, University of Abuja, Abuja, Nigeria.
| | - Simon Azubuike Ubah
- Department of Theriogenology, Faculty of Veterinary Medicine, University of Abuja, Abuja, Nigeria
| | - Charles Ejike Ejiofor
- Department of Veterinary Parasitology and Entomology, Faculty of Veterinary Medicine, University of Abuja, Abuja, Nigeria
| | - Oluwa Adikpe Agbonu
- Department of Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Abuja, Abuja, Nigeria
| | | | - Kenneth Owoicho Abah
- Department of Theriogenology, Faculty of Veterinary Medicine, University of Abuja, Abuja, Nigeria
| | - Alapa Baba Ikpe
- Department of Theriogenology, Faculty of Veterinary Medicine, University of Abuja, Abuja, Nigeria
| | - Abayomi Samuel Bankole
- Department of Animal Science and Fisheries, Faculty of Agricultural Science, National Open University of Nigeria Abuja, Abuja, Nigeria
| | - Prisca Adaoma Ezinwo
- Department of Theriogenology, Faculty of Veterinary Medicine, University of Abuja, Abuja, Nigeria
| | - Joy Iyojo Itodo
- Department of Wildlife and Forestry, Faculty of Agriculture, Federal University of Lafia, Lafia, Nigeria
| | - Issac Oluwatobi Akefe
- Department of Physiology, Biochemistry and Pharmacology, Faculty of Veterinary Medicine, University of Jos, Jos, Nigeria
| | - Charles Amaechi Uba
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, Ahmadu Bello University, Zaria, Nigeria
| | - Samuel Mailafia
- Department of Veterinary Microbiology, Faculty of Veterinary Medicine, University of Abuja, Abuja, Nigeria
| |
Collapse
|
17
|
Okello I, Mafie E, Eastwood G, Nzalawahe J, Mboera LEG. African Animal Trypanosomiasis: A Systematic Review on Prevalence, Risk Factors and Drug Resistance in Sub-Saharan Africa. JOURNAL OF MEDICAL ENTOMOLOGY 2022; 59:1099-1143. [PMID: 35579072 DOI: 10.1093/jme/tjac018] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Indexed: 06/15/2023]
Abstract
African animal trypanosomiasis (AAT) a parasitic disease of livestock in sub-Saharan Africa causing tremendous loses. Sub-Saharan continental estimation of mean prevalence in both large and small domestic animals, risk factors, tsetse and non-tsetse prevalence and drug resistance is lacking. A review and meta-analysis was done to better comprehend changes in AAT prevalence and drug resistance. Publish/Perish software was used to search and extract peer-reviewed articles in Google scholar, PubMed and CrossRef. In addition, ResearchGate and African Journals Online (AJOL) were used. Screening and selection of articles from 2000-2021 was performed according to Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). Articles 304 were retrieved; on domestic animals 192, tsetse and non-tsetse vectors 44, risk factors 49 and trypanocidal drug resistance 30. Prevalence varied by, host animals in different countries, diagnostic methods and species of Trypanosoma. Cattle had the highest prevalence with Ethiopia and Nigeria leading, T. congolense (11.80-13.40%) and T. vivax (10.50-18.80%) being detected most. This was followed by camels and pigs. Common diagnostic method used was buffy coat microscopy. However; polymerase chain reaction (PCR), CATT and ELISA had higher detection rates. G. pallidipes caused most infections in Eastern regions while G. palpalis followed by G. mortisans in Western Africa. Eastern Africa reported more non-tsetse biting flies with Stomoxys leading. Common risk factors were, body conditions, breed type, age, sex and seasons. Ethiopia and Nigeria had the highest trypanocidal resistance 30.00-35.00% and highest AAT prevalence. Isometamidium and diminazene showed more resistance with T. congolense being most resistant species 11.00-83.00%.
Collapse
Affiliation(s)
- Ivy Okello
- SACIDS Africa Centre of Excellence for Infectious Diseases of Humans and Animals in East and Southern Africa, P.O. Box 3297, Morogoro, Tanzania
- Sokoine University of Agriculture, Department of Veterinary Microbiology, Parasitology and Biotechnology, Chuo Kikuu, Morogoro, Tanzania
| | - Eliakunda Mafie
- Sokoine University of Agriculture, Department of Veterinary Microbiology, Parasitology and Biotechnology, Chuo Kikuu, Morogoro, Tanzania
| | - Gillian Eastwood
- Virginia Polytechnic Institute & State University, College of Agriculture & Life Sciences, Blacksburg, VA, USA
| | - Jahashi Nzalawahe
- Sokoine University of Agriculture, Department of Veterinary Microbiology, Parasitology and Biotechnology, Chuo Kikuu, Morogoro, Tanzania
| | - Leonard E G Mboera
- SACIDS Africa Centre of Excellence for Infectious Diseases of Humans and Animals in East and Southern Africa, P.O. Box 3297, Morogoro, Tanzania
| |
Collapse
|
18
|
Venturelli A, Tagliazucchi L, Lima C, Venuti F, Malpezzi G, Magoulas GE, Santarem N, Calogeropoulou T, Cordeiro-da-Silva A, Costi MP. Current Treatments to Control African Trypanosomiasis and One Health Perspective. Microorganisms 2022; 10:microorganisms10071298. [PMID: 35889018 PMCID: PMC9321528 DOI: 10.3390/microorganisms10071298] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/10/2022] [Accepted: 06/20/2022] [Indexed: 02/01/2023] Open
Abstract
Human African Trypanosomiasis (HAT, sleeping sickness) and Animal African Trypanosomiasis (AAT) are neglected tropical diseases generally caused by the same etiological agent, Trypanosoma brucei. Despite important advances in the reduction or disappearance of HAT cases, AAT represents a risky reservoir of the infections. There is a strong need to control AAT, as is claimed by the European Commission in a recent document on the reservation of antimicrobials for human use. Control of AAT is considered part of the One Health approach established by the FAO program against African Trypanosomiasis. Under the umbrella of the One Health concepts, in this work, by analyzing the pharmacological properties of the therapeutic options against Trypanosoma brucei spp., we underline the need for clearer and more defined guidelines in the employment of drugs designed for HAT and AAT. Essential requirements are addressed to meet the challenge of drug use and drug resistance development. This approach shall avoid inter-species cross-resistance phenomena and retain drugs therapeutic activity.
Collapse
Affiliation(s)
- Alberto Venturelli
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (A.V.); (L.T.); (F.V.); (G.M.)
| | - Lorenzo Tagliazucchi
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (A.V.); (L.T.); (F.V.); (G.M.)
- Doctorate School in Clinical and Experimental Medicine (CEM), University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Clara Lima
- Host-Parasite Interactions Group, Institute of Research and Innovation in Health, University of Porto, 4099-002 Porto, Portugal; (C.L.); (N.S.); (A.C.-d.-S.)
- Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4099-002 Porto, Portugal
| | - Federica Venuti
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (A.V.); (L.T.); (F.V.); (G.M.)
| | - Giulia Malpezzi
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (A.V.); (L.T.); (F.V.); (G.M.)
| | - George E. Magoulas
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece; (G.E.M.); (T.C.)
| | - Nuno Santarem
- Host-Parasite Interactions Group, Institute of Research and Innovation in Health, University of Porto, 4099-002 Porto, Portugal; (C.L.); (N.S.); (A.C.-d.-S.)
- Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4099-002 Porto, Portugal
| | - Theodora Calogeropoulou
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece; (G.E.M.); (T.C.)
| | - Anabela Cordeiro-da-Silva
- Host-Parasite Interactions Group, Institute of Research and Innovation in Health, University of Porto, 4099-002 Porto, Portugal; (C.L.); (N.S.); (A.C.-d.-S.)
- Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4099-002 Porto, Portugal
| | - Maria Paola Costi
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (A.V.); (L.T.); (F.V.); (G.M.)
- Correspondence:
| |
Collapse
|
19
|
Anyogu DC, Shoyinka SVO, Ihedioha JI. Brain and pituitary-adrenal lesions of Trypanosoma brucei brucei and Trypanosoma congolense infections in the West African Dwarf rams: Is trypanotolerance overrated? Vet Pathol 2022; 59:773-781. [PMID: 35656928 DOI: 10.1177/03009858221100432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Trypanosomosis of the West African Dwarf (WAD) sheep is often neglected due to emphasis on trypanotolerance. Nevertheless, significant pathological changes may occur in tissues of infected WAD sheep. The purpose of this study was to evaluate the brain, pituitary, and adrenal lesions of Trypanosoma brucei brucei (Tbb) and Trypanosoma congolense (Tc) infections in WAD rams. Fifteen WAD rams were infected intraperitoneally with Tbb or Tc (106 trypanosomes/animal) or were uninfected controls (5 rams per group). Adrenocorticotrophic hormone (ACTH) and cortisol were assayed in serum by enzyme immunoassay technique. The brain, pituitary, and adrenal glands were processed for histopathology. Serum ACTH levels of infected rams were significantly (P < .05) higher than that of controls on days 14 and 70 post infection (PI). Serum cortisol levels of infected rams were significantly (P < .05) higher than that of controls only on day 14 PI. Mortality was 60% in Tbb- and 40% in Tc-infected rams. The brain of the infected groups showed chromatolysis of cortical neurons and Purkinje cells with severe encephalitis. Degenerative, necrotic, and inflammatory changes were seen in the pituitary and adrenal glands of the infected rams. Adrenal corticomedullary ratio was significantly (P < .05) higher in Tc-infected rams than controls. Based on the high mortality levels, likely due to severe encephalitis, the WAD sheep may not be regarded as trypanotolerant.
Collapse
|
20
|
African trypanosome strategies for conquering new hosts and territories: the end of monophyly? Trends Parasitol 2022; 38:724-736. [DOI: 10.1016/j.pt.2022.05.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 11/22/2022]
|
21
|
Curvicollide D Isolated from the Fungus Amesia sp. Kills African Trypanosomes by Inhibiting Transcription. Int J Mol Sci 2022; 23:ijms23116107. [PMID: 35682786 PMCID: PMC9181715 DOI: 10.3390/ijms23116107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/25/2022] [Accepted: 05/27/2022] [Indexed: 12/10/2022] Open
Abstract
Sleeping sickness or African trypanosomiasis is a serious health concern with an added socio-economic impact in sub-Saharan Africa due to direct infection in both humans and their domestic livestock. There is no vaccine available against African trypanosomes and its treatment relies only on chemotherapy. Although the current drugs are effective, most of them are far from the modern concept of a drug in terms of toxicity, specificity and therapeutic regime. In a search for new molecules with trypanocidal activity, a high throughput screening of 2000 microbial extracts was performed. Fractionation of one of these extracts, belonging to a culture of the fungus Amesia sp., yielded a new member of the curvicollide family that has been designated as curvicollide D. The new compound showed an inhibitory concentration 50 (IC50) 16-fold lower in Trypanosoma brucei than in human cells. Moreover, it induced cell cycle arrest and disruption of the nucleolar structure. Finally, we showed that curvicollide D binds to DNA and inhibits transcription in African trypanosomes, resulting in cell death. These results constitute the first report on the activity and mode of action of a member of the curvicollide family in T. brucei.
Collapse
|
22
|
Rajavel A, Klees S, Hui Y, Schmitt AO, Gültas M. Deciphering the Molecular Mechanism Underlying African Animal Trypanosomiasis by Means of the 1000 Bull Genomes Project Genomic Dataset. BIOLOGY 2022; 11:biology11050742. [PMID: 35625470 PMCID: PMC9138820 DOI: 10.3390/biology11050742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 05/05/2022] [Accepted: 05/10/2022] [Indexed: 11/16/2022]
Abstract
Simple Summary Climate change is increasing the risk of spreading vector-borne diseases such as African Animal Trypanosomiasis (AAT), which is causing major economic losses, especially in sub-Saharan African countries. Mainly considering this disease, we have investigated transcriptomic and genomic data from two cattle breeds, namely Boran and N‘Dama, where the former is known for its susceptibility and the latter one for its tolerance to the AAT. Despite the rich literature on this disease, there is still a need to investigate underlying genetic mechanisms to decipher the complex interplay of regulatory SNPs (rSNPs), their corresponding gene expression profiles and the downstream effectors associated with the AAT disease. The findings of this study complement our previous results, which mainly involve the upstream events, including transcription factors (TFs) and their co-operations as well as master regulators. Moreover, our investigation of significant rSNPs and effectors found in the liver, spleen and lymph node tissues of both cattle breeds could enhance the understanding of distinct mechanisms leading to either resistance or susceptibility of cattle breeds. Abstract African Animal Trypanosomiasis (AAT) is a neglected tropical disease and spreads by the vector tsetse fly, which carries the infectious Trypanosoma sp. in their saliva. Particularly, this parasitic disease affects the health of livestock, thereby imposing economic constraints on farmers, costing billions of dollars every year, especially in sub-Saharan African countries. Mainly considering the AAT disease as a multistage progression process, we previously performed upstream analysis to identify transcription factors (TFs), their co-operations, over-represented pathways and master regulators. However, downstream analysis, including effectors, corresponding gene expression profiles and their association with the regulatory SNPs (rSNPs), has not yet been established. Therefore, in this study, we aim to investigate the complex interplay of rSNPs, corresponding gene expression and downstream effectors with regard to the AAT disease progression based on two cattle breeds: trypanosusceptible Boran and trypanotolerant N’Dama. Our findings provide mechanistic insights into the effectors involved in the regulation of several signal transduction pathways, thereby differentiating the molecular mechanism with regard to the immune responses of the cattle breeds. The effectors and their associated genes (especially MAPKAPK5, CSK, DOK2, RAC1 and DNMT1) could be promising drug candidates as they orchestrate various downstream regulatory cascades in both cattle breeds.
Collapse
Affiliation(s)
- Abirami Rajavel
- Breeding Informatics Group, Department of Animal Sciences, Georg-August University, Margarethe von Wrangell-Weg 7, 37075 Göttingen, Germany; (S.K.); (Y.H.); (A.O.S.)
- Center for Integrated Breeding Research (CiBreed), Georg-August University, Carl-Sprengel-Weg 1, 37075 Göttingen, Germany
- Correspondence: (A.R.); (M.G.)
| | - Selina Klees
- Breeding Informatics Group, Department of Animal Sciences, Georg-August University, Margarethe von Wrangell-Weg 7, 37075 Göttingen, Germany; (S.K.); (Y.H.); (A.O.S.)
- Center for Integrated Breeding Research (CiBreed), Georg-August University, Carl-Sprengel-Weg 1, 37075 Göttingen, Germany
| | - Yuehan Hui
- Breeding Informatics Group, Department of Animal Sciences, Georg-August University, Margarethe von Wrangell-Weg 7, 37075 Göttingen, Germany; (S.K.); (Y.H.); (A.O.S.)
| | - Armin Otto Schmitt
- Breeding Informatics Group, Department of Animal Sciences, Georg-August University, Margarethe von Wrangell-Weg 7, 37075 Göttingen, Germany; (S.K.); (Y.H.); (A.O.S.)
- Center for Integrated Breeding Research (CiBreed), Georg-August University, Carl-Sprengel-Weg 1, 37075 Göttingen, Germany
| | - Mehmet Gültas
- Center for Integrated Breeding Research (CiBreed), Georg-August University, Carl-Sprengel-Weg 1, 37075 Göttingen, Germany
- Faculty of Agriculture, South Westphalia University of Applied Sciences, Lübecker Ring 2, 59494 Soest, Germany
- Correspondence: (A.R.); (M.G.)
| |
Collapse
|
23
|
Tauheed AM, Mamman M, Ahmed A, Suleiman MM, Balogun EO. Antitrypanosomal properties of Anogeissus leiocarpa extracts and their inhibitory effect on trypanosome alternative oxidase. PHYTOMEDICINE PLUS : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 2:100223. [PMID: 37378019 PMCID: PMC10295807 DOI: 10.1016/j.phyplu.2022.100223] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Background African trypanosomiasis is a protozoan disease with huge socio-economic burden to sub-Saharan African exceeding US$4.6 annual loss. To mitigate the incidence of trypanosomal drug resistance, efforts are geared towards discovery of molecules, especially from natural products, with potential to inhibit important molecular target (trypanosome alternative oxidase, TAO) in trypanosomes that are critical to their survival. Method Crude methanol extract of Anogeissus leiocarpa was subjected to in vitro bioassay-guided antitrypanosomal assay to identify the most active extract with trypanocidal activity. The most active extract was run on a column chromatography yielding five fractions, F1-F5. The fractions were assayed for inhibitory effect on TAO. The most promising TAO inhibitor was subjected to antitrypanosomal evaluation by trypanosome count, drug incubation infectivity test (DIIT) and in vivo studies. Gas chromatography-mass spectrometry (GC-MS) was used to identify and quantify phytochemical constituents of the potential TAO-inhibiting fraction. Results Ethyl acetate extract (EtOAc) significantly (p<0.05) produced trypanocidal effect and was the most active extract. Of the five fractions, only F4 significantly (p<0.05) inhibited TAO compared to the control. F4 completely immobilised the trypanosomes up to 0.5 μg/μl, yielding an EC50 of 0.024 μg/μl compared to the 0.502 μg/μl of diminazene aceturate positive control group. The DIIT showed that F4 was significantly (p<0.05) potent up to 0.1 μg/μl. F4 significantly (p<0.05) suppressed parasite multiplication in systemic circulation of the treated rats and significantly (p<0.05) maintained high PCV when compared to the 5% DMSO group. Furthermore, F4 significantly (p<0.05) lowered serum concentrations of malondialdehyde. Phytoconstituents identified by the GC-MS include tetradecene; cetene; 3-(benzylthio) acrylic acid, methyl ester; 1-octadecene; 9-heptadecanone; hexadecanoic acid, methyl ester; dibutyl phthalate; eicosene; octadecenoic acid, methyl ester; oleic acid; 2-methyl-Z,Z-3,13-octadecadienol; 1-docosene; 3-phenylthiane, s-oxide; phenol, 3-methyl; phthalic acid, di(2-propylpentyl) ester and 1,4-benzenedicarboxylic acid, bis (2-ethylhexyl) ester. Conclusion F4 from EtOAc contains six carbohydrates (9.58%), two free fatty acids (6.48%), five fatty acid esters (27.73%), two aromatic compounds (50.63%) and one organosulphide (5.61%). It inhibited TAO and demonstrated antitrypanosomal effects.
Collapse
Affiliation(s)
- Abdullah M. Tauheed
- Department of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Medicine, Ahmadu Bello University, Zaria, Kaduna State, Nigeria
| | - Mohammed Mamman
- Department of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Medicine, Ahmadu Bello University, Zaria, Kaduna State, Nigeria
| | - Abubakar Ahmed
- Department of Pharmacognosy and Drug Development, Faculty of Pharmaceutical Sciences, Ahmadu Bello University, Zaria, Kaduna State, Nigeria
| | - Mohammed M. Suleiman
- Department of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Medicine, Ahmadu Bello University, Zaria, Kaduna State, Nigeria
| | - Emmanuel O. Balogun
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, Zaria, Kaduna State, Nigeria
- Africa Centre of Excellence for Neglected Tropical Diseases and Forensic Biotechnology (ACENTDFB), Ahmadu Bello University, Zaria, Nigeria
| |
Collapse
|
24
|
Malatji DP. Breeding of African sheep reared under low-input/output smallholder production systems for trypanotolerance. Vet World 2022; 15:1031-1043. [PMID: 35698514 PMCID: PMC9178589 DOI: 10.14202/vetworld.2022.1031-1043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 03/11/2022] [Indexed: 11/30/2022] Open
Abstract
Trypanosomiasis is a disease caused by unicellular protozoan parasites. Small ruminants succumb to trypanosomiasis in areas of high tsetse fly challenge, resulting in serious economic loss often to farmers in low-input smallholder systems. At present, trypanosomiasis is treated with trypanocidal drugs, but access to these can be limited, and increasing parasite resistance raises questions about their efficacy. The development of trypanotolerance in small ruminant flocks through targeted breeding strategies is considered a sustainable and economical option for controlling African trypanosomiasis. Recently, quantitative trait loci (QTLs) associated with trypanotolerance traits in sheep have been reported. The results of these studies form the basis for more studies to identify QTLs associated with trypanosomiasis resistance, particularly in African livestock species. For example, signatures of positive selection for trypanotolerance have been identified using genome-wide single-nucleotide polymorphism data. However, there are several challenges in performing genetic analyses using data from low-input smallholder systems, including a lack of recorded pedigree and production records and the need for large sample sizes when flock sizes are often fewer than 50 animals. Breeding strategies to improve trypanotolerance should also preserve existing genetic diversity as well as minimize excessive genetic introgression by trypanosusceptible breeds. This review discusses the possibilities of breeding for trypanosome tolerance/resistance in low-input/low-output small ruminant production systems. Potential challenges are outlined, and potential available genetic resources are described as a foundation for future work.
Collapse
Affiliation(s)
- Dikeledi P. Malatji
- Department of Agriculture and Animal Health, College of Agriculture and Environmental Sciences, University of South Africa, Johannesburg, Gauteng Province, South Africa
| |
Collapse
|
25
|
Ofori JA, Bakari SM, Bah S, Kolugu MK, Aning GK, Awandare GA, Carrington M, Gwira TM. A longitudinal two-year survey of the prevalence of trypanosomes in domestic cattle in Ghana by massively parallel sequencing of barcoded amplicons. PLoS Negl Trop Dis 2022; 16:e0010300. [PMID: 35442960 PMCID: PMC9060370 DOI: 10.1371/journal.pntd.0010300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 05/02/2022] [Accepted: 03/03/2022] [Indexed: 12/01/2022] Open
Abstract
Background Animal African Trypanosomiasis (AAT) is one of the most economically important diseases affecting livestock productivity in sub-Saharan Africa. The disease is caused by a broad range of Trypanosoma spp., infecting both wild and domesticated animals through cyclical and mechanical transmission. This study aimed to characterize trypanosomes present in cattle at regular intervals over two years in an AAT endemic and a non-endemic region of Ghana. Methodology/Principal findings Groups of cattle at Accra and Adidome were selected based on their geographical location, tsetse fly density, prevalence of trypanosomiasis and the breed of cattle available. Blood for DNA extraction was collected at approximately four to five-week intervals over a two-year period. Trypanosome DNA were detected by a sensitive nested PCR targeting the tubulin gene array and massively parallel sequencing of barcoded amplicons. Analysis of the data was a semi-quantitative estimation of infection levels using read counts obtained from the sequencing as a proxy for infection levels. Majority of the cattle were infected with multiple species most of the time [190/259 (73%) at Adidome and 191/324 (59%) at Accra], with T. vivax being the most abundant. The level of infection and in particular T. vivax, was higher in Adidome, the location with a high density of tsetse flies. The infection level varied over the time course, the timings of this variation were not consistent and in Adidome it appeared to be independent of prophylactic treatment for trypanosome infection. Effect of gender or breed on infection levels was insignificant. Conclusions/Significance Most cattle were infected with low levels of several trypanosome species at both study sites, with T. vivax being the most abundant. The measurements of infection over time provided insight to the importance of the approach in identifying cattle that could suppress trypanosome infection over an extended time and may serve as reservoir. Cattle are of economic importance in sub-Saharan Africa as they fulfil multiple roles, ranging from draught power, to providing manure, milk, and meat. However, Animal African Trypanosomiasis (AAT) diseases in cattle affect productivity and food security in most African countries. In Ghana, bovine trypanosomiasis has been detected in few cross-sectional studies by molecular methods. To get a better understanding of the disease, a longitudinal study showing natural trypanosome infection over the life of cattle will be applicable. To explore this issue, the study determined the nature of trypanosome infection in cattle in farm settings in Ghana over two years, a period similar to that used in beef production, by massively parallel amplicon sequencing. The study provided a description of the prevalence over two years and showed that the cattle were infected with multiply species most of the time and the level of infection varied but was low most of the time. The longitudinal study allowed the identification of one individual able to supress infection far more effectively than other members of the herd and this is crucial in implementing control measures in the infected area.
Collapse
Affiliation(s)
- Jennifer Afua Ofori
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
- Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
| | - Soale Majeed Bakari
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
- Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
| | - Saikou Bah
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
| | - Michael Kojo Kolugu
- Department of Computer Science, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
| | - George Kwame Aning
- School of Veterinary Medicine, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
| | - Gordon Akanzuwine Awandare
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
- Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
| | - Mark Carrington
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Theresa Manful Gwira
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
- Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
- * E-mail:
| |
Collapse
|
26
|
Partially Purified Leaf Fractions of Azadirachta indica Inhibit Trypanosome Alternative Oxidase and Exert Antitrypanosomal Effects on Trypanosoma congolense. Acta Parasitol 2022; 67:120-129. [PMID: 34156634 PMCID: PMC8217781 DOI: 10.1007/s11686-021-00437-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 06/07/2021] [Indexed: 11/29/2022]
Abstract
Introduction Trypanosomiasis is a neglected disease of humans and livestock caused by single-celled flagellated haemo-protozoan parasites belonging to the genus Trypanosoma. Purpose Widespread resistance to trypanocidal drugs creates urgent need for new, more effective drugs with potential to inhibit important trypanosome molecular targets. Methods Nine column chromatographic, partially purified leaf fractions of Azadirachta indica (AIF) were subjected to trypanosome alternative oxidase (TAO) inhibition assay using ubiquinol oxidase assay. The potent TAO inhibitors were evaluated for trypanocidal activities against T. congolense in rat model using in vitro, ex vivo, and in vivo assays. Complete cessation or reduction in parasite motility was scored from 0 (no parasite) to 6 (greater than or equal to 6 × 107 trypanosomes/milliliter of blood), and was used to evaluate the efficacy of in vitro treatments. Results Only AIF1, AIF2, and AIF5 significantly inhibited TAO. AIF1 and AIF5 produced significant, dose-dependent suppression of parasite motility reaching score zero within 1 h with EC50 of 0.005 and 0.004 µg/µL, respectively, while trypanosome-laden blood was still at score six with an EC50 of 44,086 µg/µL. Mice inoculated with the concentrations at scores 0 and 1 (1–2 moribund parasites) at the end of the experiment did not develop parasitaemia. The two fractions significantly (p < 0.05) lowered parasite burden, with the AIF5 exhibiting highest in vivo trypanocidal effects. Packed cell volume was significantly higher in AIF1 (p < 0.05) and AIF5 (p < 0.001) groups compared to DMSO-treated group. Only AIF5 significantly (p < 0.05) lowered malondialdehyde. Conclusion AIF1 and AIF5 offer prospects for the discovery of TAO inhibitor(s).
Collapse
|
27
|
Kargbo A, Ebiloma GU, Ibrahim YKE, Chechet GD, Jeng M, Balogun EO. Epizootiology and Molecular Identification of Trypanosome Species in Livestock Ruminants in the Gambia. Acta Parasitol 2022; 67:130-142. [PMID: 34164784 DOI: 10.1007/s11686-021-00442-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 06/14/2021] [Indexed: 11/25/2022]
Abstract
INTRODUCTION African Animal Trypanosomiasis (AAT) or nagana in animals, is caused by the blood-borne parasitic protozoa called trypanosomes, and is potentially fatal. It is estimated that Africa loses $4‒5 billion annually due to the death of livestock to nagana in the tsetse belt. PURPOSE Although The Gambia lies within this belt, there is scanty data regarding the epizootiology of nagana in The Gambia. Here, records of reported cases of nagana for the period 2010-2019 at the International Trypanotolerance Centre (ITC) in The Gambia were analyzed retrospectively. METHODS For insights into the current prevalence of AAT, blood samples of 384 cattle, 42 goats, and 59 sheep from the Central River Region (CRR) and Lower River Region (LRR) were analyzed microscopically for parasite identification. Furthermore, trypanosomes were characterized by polymerase chain reaction (PCR) using a panel of primers that identify trypanosomes to the level of the species and subspecies by targeting a portion of the internally transcribed spacer-one (ITS-1) of the ribosomal RNA. RESULTS The retrospective study indicates that Trypanosoma vivax (66%) and T. congolense (33.4%) were the predominant species. Based on the archive records of ITC, the villages Touba, Misera, and Sambel Kunda all in the CRR of the Gambia are the most burdened with AAT. Microscopic examination of blood samples from cattle showed a prevalence of 1.56%, whereas the PCR-based analysis gave a higher prevalence of 12.5%. The molecular analysis revealed the presence of T. vivax (3.65%), T. congolense kilifi (2.6%), T. b. brucei (1.3%), T. congolense savannah/forest (0.52%), T. b. gambiense (0.52%). Interestingly, 4.43% of mixed infections i.e. multiple trypanosome species in individual animals were recorded. In 18% of the mixed infection cases, T. godfreyi, T. simiae were coinfecting cattle alongside T. congolense. The molecular identification including the phylogenetic analysis implicated T. congolense as the most predominant trypanosome species infecting animals in The Gambia. CONCLUSION The incidence of nagana in The Gambia is documented and the prevalent trypanosomes identified to be T. vivax, different types of T. congolense, and T. brucei including the gambiense subspecie. Finally, nagana is less profound in sheep and goats compared to cattle, with seasonal and regional variations playing a significant role in the disease dynamics.
Collapse
Affiliation(s)
- Alpha Kargbo
- Africa Centre of Excellence for Neglected Tropical Diseases and Forensic Biotechnology, Ahmadu Bello University, P.M.B 1044, Zaria, Nigeria
- School of Arts and Sciences, University of The Gambia, MDI Road, Kanifing, P.O. Box 3530, Serrekunda, The Gambia
| | | | - Yakubu Kokori Enevene Ibrahim
- Africa Centre of Excellence for Neglected Tropical Diseases and Forensic Biotechnology, Ahmadu Bello University, P.M.B 1044, Zaria, Nigeria
- Department of Pharmaceutical Microbiology, Ahmadu Bello University, P.M.B 1044, Zaria, Kaduna State, Nigeria
| | - Gloria Dada Chechet
- Department of Biochemistry, Ahmadu Bello University, P.M.B 1044, Zaria, Kaduna State, Nigeria
| | - Momodou Jeng
- West Africa Livestock Innovation Center (WALIC/ITC), PMB 14, Banjul, The Gambia
| | - Emmanuel Oluwadare Balogun
- Department of Biochemistry, Ahmadu Bello University, P.M.B 1044, Zaria, Kaduna State, Nigeria.
- Department of Public Health and Epidemiology, Nigerian Institute of Medical Research, Yaba, P.M. B, Lagos, 2013, Nigeria.
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-Ku, Tokyo, 113-0033, Japan.
| |
Collapse
|
28
|
Genetic Analyses and Genome-Wide Association Studies on Pathogen Resistance of Bos taurus and Bos indicus Cattle Breeds in Cameroon. Genes (Basel) 2021; 12:genes12070976. [PMID: 34206759 PMCID: PMC8307268 DOI: 10.3390/genes12070976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 11/16/2022] Open
Abstract
Autochthonous taurine and later introduced zebu cattle from Cameroon differ considerably in their resistance to endemic pathogens with little to no reports of the underlying genetic make-up. Breed history and habitat variations are reported to contribute significantly to this diversity worldwide, presumably in Cameroon as well, where locations diverge in climate, pasture, and prevalence of infectious agents. In order to investigate the genetic background, the genotypes of 685 individuals of different Cameroonian breeds were analysed by using the BovineSNP50v3 BeadChip. The variance components including heritability were estimated and genome-wide association studies (GWAS) were performed. Phenotypes were obtained by parasitological screening and categorised in Tick-borne pathogens (TBP), gastrointestinal nematodes (GIN), and onchocercosis (ONC). Estimated heritabilities were low for GIN and TBP (0.079 (se = 0.084) and 0.109 (se = 0.103) respectively) and moderate for ONC (0.216 (se = 0.094)). Further than revealing the quantitative nature of the traits, GWAS identified putative trait-associated genomic regions on five chromosomes, including the chromosomes 11 and 18 for GIN, 20 and 24 for TBP, and 12 for ONC. The results imply that breeding for resistant animals in the cattle population from Northern Cameroon might be possible for the studied pathogens; however, further research in this field using larger datasets will be required to improve the resistance towards pathogen infections, propose candidate genes or to infer biological pathways, as well as the genetic structures of African multi-breed populations.
Collapse
|
29
|
Jaimes-Dueñez J, Mogollón-Waltero E, Árias-Landazabal N, Rangel-Pachon D, Jimenez-Leaño A, Mejia-Jaramillo A, Triana-Chávez O. Molecular surveillance of Trypanosoma spp. reveals different clinical and epidemiological characteristics associated with the infection in three creole cattle breeds from Colombia. Prev Vet Med 2021; 193:105414. [PMID: 34175568 DOI: 10.1016/j.prevetmed.2021.105414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 05/17/2021] [Accepted: 06/17/2021] [Indexed: 10/21/2022]
Abstract
In South America, Colombia is the third-largest livestock producer with approximately 28.8 million cattle, of which Colombian Creole cattle represent around 1% of the livestock population. Animal Trypanosomiasis (AT) is one of the most critical problems in the livestock industry, reducing its production by about 30 %. Considering the paucity of information to understand the epidemiological features of AT in Colombian Creole cattle, the present study reports the molecular prevalence and clinical traits associated with the infection of Trypanosoma spp. in three Colombian Creole breeds. From 2019 to 2020, cross-sectional surveillance in farms of central and west of Colombia was designed to evaluate the mentioned characteristics in Casanareño, Chino Santandereano, and Sanmartinero Creole breeds. Molecular analysis showed an AT prevalence of 60.2 % (95 % CI = 54.2 % - 66.2 %). The Chino Santandereano population presented the highest value (Trypanosoma spp., 75.2 %, T. theileri 59.6 % and T. evansi 15.6 %), followed by Casanareño (Trypanosoma spp., 65.3 %, T. theileri 38.6 %, T. evansi 24.0 %, and T. vivax 5.3 %) and Sanmartinero (Trypanosoma spp., 33.3 %, T. theileri 24.0 % and T. evansi 9.3 %). Features such as breeds, age, and feeding system were significantly associated with AT prevalence (P < 0.05). Additionally, a low level of serum total proteins was observed during T. evansi infection in Sanmartinero (P < 0.05). To our knowledge, this is the first cross-sectional survey that evaluates using molecular methods the infection of Trypanosoma spp. in Colombian Creole breeds, showing significant variations in the prevalence and clinical signs associated with the infection. These results suggest different degrees of trypanotolerance in these breeds, as well as a possible effect of environmental variables on the prevalence and clinical characteristics associated with the infection. The epidemiological and economic implications of these findings are discussed here.
Collapse
Affiliation(s)
- Jeiczon Jaimes-Dueñez
- Grupo de Investigación en Ciencias Animales - GRICA, Facultad de Medicina Veterinaria y Zootecnia, Universidad Cooperativa de Colombia UCC, Bucaramanga, Colombia; Grupo Biología y Control de Enfermedades Infecciosas - BCEI, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia, Medellín, Colombia.
| | - Edgar Mogollón-Waltero
- Grupo de Investigación en Ciencias Animales - GRICA, Facultad de Medicina Veterinaria y Zootecnia, Universidad Cooperativa de Colombia UCC, Bucaramanga, Colombia
| | - Norberto Árias-Landazabal
- Grupo de Investigación en Ciencias Animales - GRICA, Facultad de Medicina Veterinaria y Zootecnia, Universidad Cooperativa de Colombia UCC, Bucaramanga, Colombia
| | - David Rangel-Pachon
- Grupo de Investigación en Ciencias Animales - GRICA, Facultad de Medicina Veterinaria y Zootecnia, Universidad Cooperativa de Colombia UCC, Bucaramanga, Colombia
| | - Angela Jimenez-Leaño
- Grupo de Investigación en Ciencias Animales - GRICA, Facultad de Medicina Veterinaria y Zootecnia, Universidad Cooperativa de Colombia UCC, Bucaramanga, Colombia
| | - Ana Mejia-Jaramillo
- Grupo Biología y Control de Enfermedades Infecciosas - BCEI, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia, Medellín, Colombia
| | - Omar Triana-Chávez
- Grupo Biología y Control de Enfermedades Infecciosas - BCEI, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia, Medellín, Colombia
| |
Collapse
|
30
|
Salivarian Trypanosomes Have Adopted Intricate Host-Pathogen Interaction Mechanisms That Ensure Survival in Plain Sight of the Adaptive Immune System. Pathogens 2021; 10:pathogens10060679. [PMID: 34072674 PMCID: PMC8229994 DOI: 10.3390/pathogens10060679] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/24/2021] [Accepted: 05/28/2021] [Indexed: 12/21/2022] Open
Abstract
Salivarian trypanosomes are extracellular parasites affecting humans, livestock and game animals. Trypanosoma brucei rhodesiense and Trypanosoma brucei gambiense are human infective sub-species of T. brucei causing human African trypanosomiasis (HAT—sleeping sickness). The related T. b. brucei parasite lacks the resistance to survive in human serum, and only inflicts animal infections. Animal trypanosomiasis (AT) is not restricted to Africa, but is present on all continents. T. congolense and T. vivax are the most widespread pathogenic trypanosomes in sub-Saharan Africa. Through mechanical transmission, T. vivax has also been introduced into South America. T. evansi is a unique animal trypanosome that is found in vast territories around the world and can cause atypical human trypanosomiasis (aHT). All salivarian trypanosomes are well adapted to survival inside the host’s immune system. This is not a hostile environment for these parasites, but the place where they thrive. Here we provide an overview of the latest insights into the host-parasite interaction and the unique survival strategies that allow trypanosomes to outsmart the immune system. In addition, we review new developments in treatment and diagnosis as well as the issues that have hampered the development of field-applicable anti-trypanosome vaccines for the implementation of sustainable disease control.
Collapse
|
31
|
Abah KO, Ogwu D, Allam L, Obudu CE, Itodo JI, Sani NA. Genital lesions in cows naturally infected with trypanosomes in Abuja, Nigeria. Vet World 2021; 14:1363-1370. [PMID: 34220142 PMCID: PMC8243680 DOI: 10.14202/vetworld.2021.1363-1370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 04/16/2021] [Indexed: 11/22/2022] Open
Abstract
Background and Aim: Different species of trypanosomes have been reported to cause varying degrees of reproductive disorders in pregnant and non-pregnant animals under experimental infections. Information on reproductive disorders and losses in animals naturally infected with trypanosome species are few. This study was carried out to assess the abnormalities in the genital organs (ovaries, oviduct, uterus, cervix, and vagina) of female cattle naturally infected with trypanosomes in and around Abuja, Nigeria. Materials and Methods: Cows showing signs such as emaciation, weakness, or anemia were selected and examined at Gwagwalada and Karu abattoirs, respectively. Venous blood samples were taken from 108 of such animals and screened using standard trypanosome detection methods. The genital organs were also collected and inspected for gross and histopathological lesions in the laboratory. Results: Six (5.55%) out of the 108 animals were positive for trypanosomes; 4 (66.7%) were infected with Trypanosomavivax and 2 (33.3%) were infected with Trypanosoma congolense. The mean packed cell volume of the infected animals was 22.83%. Grossly, congestion and ecchymotic hemorrhages were observed in the endometrium, myometrium, and cervical submucosa. Mucometra, hydrometra, and pyometra were also seen in the uterus. Histologically, necrosis of the epithelium and endometrial glands accompanied by mononuclear cellular infiltration was observed in the uterus. There was also sloughing of the endometrial epithelium, vascular congestion, and hypertrophy of serosa of the uterus. There was atropy of the granulosa cells, increased numbers of degenerating tertiary follicles, and absence of corpora lutea in the ovary. No gross or histopathological lesions were observed in the fallopian tube and vagina. Conclusion: The lesions observed were restricted to the uterus and ovary of the animals and were less severe when compared to lesions observed under experimental conditions as reported by previous authors.
Collapse
Affiliation(s)
- Kenneth Owoicho Abah
- Department of Theriogenology, Faculty of Veterinary Medicine, University of Abuja, Nigeria
| | - David Ogwu
- Department of Theriogenology and Production, Faculty of Veterinary Medicine, Ahmadu Bello University, Nigeria
| | - Lushaikyaa Allam
- Department of Theriogenology and Production, Faculty of Veterinary Medicine, Ahmadu Bello University, Nigeria
| | - Christopher Ese Obudu
- Department of Theriogenology, Faculty of Veterinary Medicine, University of Abuja, Nigeria
| | - Joy Iyojo Itodo
- Department of Animal Science, Faculty of Agriculture, Federal University of Lafia, Nigeria
| | - Nuhu Abdulazeez Sani
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, University of Abuja, Nigeria
| |
Collapse
|
32
|
Kostygov AY, Karnkowska A, Votýpka J, Tashyreva D, Maciszewski K, Yurchenko V, Lukeš J. Euglenozoa: taxonomy, diversity and ecology, symbioses and viruses. Open Biol 2021; 11:200407. [PMID: 33715388 PMCID: PMC8061765 DOI: 10.1098/rsob.200407] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 02/08/2021] [Indexed: 12/14/2022] Open
Abstract
Euglenozoa is a species-rich group of protists, which have extremely diverse lifestyles and a range of features that distinguish them from other eukaryotes. They are composed of free-living and parasitic kinetoplastids, mostly free-living diplonemids, heterotrophic and photosynthetic euglenids, as well as deep-sea symbiontids. Although they form a well-supported monophyletic group, these morphologically rather distinct groups are almost never treated together in a comparative manner, as attempted here. We present an updated taxonomy, complemented by photos of representative species, with notes on diversity, distribution and biology of euglenozoans. For kinetoplastids, we propose a significantly modified taxonomy that reflects the latest findings. Finally, we summarize what is known about viruses infecting euglenozoans, as well as their relationships with ecto- and endosymbiotic bacteria.
Collapse
Affiliation(s)
- Alexei Y. Kostygov
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
- Zoological Institute, Russian Academy of Sciences, St Petersburg, Russia
| | - Anna Karnkowska
- Institute of Evolutionary Biology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | - Jan Votýpka
- Institute of Parasitology, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Daria Tashyreva
- Institute of Parasitology, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
| | - Kacper Maciszewski
- Institute of Evolutionary Biology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | - Vyacheslav Yurchenko
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov University, Moscow, Russia
| | - Julius Lukeš
- Institute of Parasitology, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
- Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| |
Collapse
|
33
|
Chimera ET, Fosgate GT, Etter EMC, Boulangé A, Vorster I, Neves L. A one health investigation of pathogenic trypanosomes of cattle in Malawi. Prev Vet Med 2021; 188:105255. [PMID: 33465642 DOI: 10.1016/j.prevetmed.2020.105255] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 12/20/2020] [Accepted: 12/28/2020] [Indexed: 10/22/2022]
Abstract
Parasitic protozoan trypanosomes of the genus Trypanosoma cause infections in both man and livestock in Africa. Understanding the current spatial distribution of trypanosomes, herd-level factors associated with Trypanosoma brucei infection as well as local knowledge of African trypanosomosis is key to its prevention and control. A cross-sectional study was performed that sampled 53 livestock farmers and 444 cattle throughout Malawi. Cattle were screened for trypanosomes using serology and molecular techniques. Questionnaires were administered to livestock herders and incidence of hospital diagnosed human trypanosome infections was estimated from reports submitted to the Department of Health Unit. The apparent prevalence of trypanosome species based on molecular detection was low for Trypanosoma brucei (2%; 95 % CI: 1-4 %) and Trypanosoma congolense (3%; 95 % CI: 2-5 %) but higher for Trypanosoma theileri (26 %; 95 % CI: 22-30 %). The central region of the country was identified as being at a higher risk of T.brucei infection. One of the sampled cattle was confirmed as being infected with Trypanosoma brucei rhodesiense. Human trypanosome cases were more frequently reported in the northern region with an estimated incidence of 5.9 cases per 100,000 people in Rumphi District. The control of zoonotic diseases that impact poor livestock herders requires a One Health approach due to the close contact between humans and their animals and the reliance on animal production for a sustainable livelihood.
Collapse
Affiliation(s)
- Elizabeth T Chimera
- Epidemiology Section, Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, 0110, South Africa.
| | - Geoffrey T Fosgate
- Epidemiology Section, Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, 0110, South Africa
| | - Eric M C Etter
- Epidemiology Section, Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, 0110, South Africa; CIRAD, UMR Animal, Santé, Territoires, Risque et Ecosystèmes (ASTRE), Pretoria, South Africa; ASTRE, Univ Montpellier, CIRAD, INRA, Montpellier, France
| | - Alain Boulangé
- Centro de Biotecnologia, Universidade Eduardo Mondlane, Av. de Moçambique Km 1.5, Maputo, Mozambique; CIRAD, UMR INTERTRYP, 01009 Maputo, Mozambique; INTERTRYP, Univ Montpellier, CIRAD, IRD, Montpellier, France
| | - Ilse Vorster
- Vectors and Vector Borne Diseases Research Program, Department of Veterinary Tropical Diseases Faculty of Veterinary Science, University of Pretoria, Onderstepoort, 0110, South Africa
| | - Luis Neves
- Vectors and Vector Borne Diseases Research Program, Department of Veterinary Tropical Diseases Faculty of Veterinary Science, University of Pretoria, Onderstepoort, 0110, South Africa; Centro de Biotecnologia, Universidade Eduardo Mondlane, Av. de Moçambique Km 1.5, Maputo, Mozambique
| |
Collapse
|
34
|
Stuen S. Haemoparasites-Challenging and Wasting Infections in Small Ruminants: A Review. Animals (Basel) 2020; 10:E2179. [PMID: 33266365 PMCID: PMC7700527 DOI: 10.3390/ani10112179] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/16/2020] [Accepted: 11/19/2020] [Indexed: 12/24/2022] Open
Abstract
Haemoparasites include bacteria, mycoplasma, protozoa and flagellates inhabiting the bloodstream of living hosts. These infections occur worldwide and are transmitted by vectors, especially ticks and tsetse flies. Geographical distribution varies due to movements of animals and vectors between geographical areas, and even between countries and continents. These changes may be caused by climate change, directly and indirectly, and have a huge effect on the epidemiology of these microbes. Active and ongoing surveillance is necessary to obtain reliable maps concerning the distribution of these infections in order to do proper risk assessment and efficient prophylactic treatment. Genera Anaplasma, Ehrlichia, Mycoplasma, Babesia, Theileria and Trypanosoma include common haemoparasite species in small ruminants causing a variety of clinical manifestations from high fatality rates to more subclinical infections, depending on the species or strain involved. These infections may also cause ill-thift or long-lasting wasting conditions. Life-long infections are a common feature of these pathogens. The present review will focus on haemoparasites in small ruminants, especially related to challenging and wasting infections.
Collapse
Affiliation(s)
- Snorre Stuen
- Department of Production Animal Clinical Sciences, Norwegian University of Life Sciences, N-4325 Sandnes, Norway
| |
Collapse
|
35
|
Nvau JB, Alenezi S, Ungogo MA, Alfayez IAM, Natto MJ, Gray AI, Ferro VA, Watson DG, de Koning HP, Igoli JO. Antiparasitic and Cytotoxic Activity of Bokkosin, A Novel Diterpene-Substituted Chromanyl Benzoquinone From Calliandra portoricensis. Front Chem 2020; 8:574103. [PMID: 33282826 PMCID: PMC7705231 DOI: 10.3389/fchem.2020.574103] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 09/29/2020] [Indexed: 12/22/2022] Open
Abstract
Calliandra portoricensis is a medicinal plant growing freely in Nigeria. It is used traditionally to treat tuberculosis, as an anthelmintic and an abortifacient. Phytochemical fractionation and screening of its root extracts has yielded a novel (5-hydroxy-7-methoxy-4-oxo-1-chromanyl)-4-methoxy-p-benzoquinone (breverin)-substituted cassane diterpene, which was designated bokkosin. It was obtained from column chromatography of the ethyl acetate extract of the roots. The compound was characterized using IR, NMR (1D and 2D) and mass spectral data. Promising antiparasitic activity was observed against the kinetoplastid parasite Trypanosoma brucei brucei, as well as moderate activity against Trypanosoma congolense and Leishmania mexicana and low toxicity in mammalian cells, with the best in vitro EC50 values against T. b. brucei (0.69 μg/mL against a standard laboratory strain, and its multi-drug resistant clone (0.33 μg/mL). The effect on T. b. brucei in culture was rapid and dose-dependent, leading to apparently irreversible growth arrest and cell death after an exposure of just 2 h at 2 × or 4 × EC50. The identification of bokkosin constitutes the first isolation of this class of compound from any natural source and establishes the compound as a potential trypanocide that, considering its novelty, should now be tested for activity against other microorganisms as well.
Collapse
Affiliation(s)
- John B. Nvau
- Department of Chemistry, Plateau State University, Bokkos, Nigeria
| | - Samya Alenezi
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Marzuq A. Ungogo
- College of Medical, Veterinary and Life Sciences, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
- Department of Veterinary Pharmacology and Toxicology, Ahmadu Bello University, Zaria, Nigeria
| | - Ibrahim A. M. Alfayez
- College of Medical, Veterinary and Life Sciences, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Manal J. Natto
- College of Medical, Veterinary and Life Sciences, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Alexander I. Gray
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Valerie A. Ferro
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Dave G. Watson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Harry P. de Koning
- College of Medical, Veterinary and Life Sciences, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - John O. Igoli
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
- Department of Chemistry, Phytochemistry Research Group, University of Agriculture, Makurdi, Nigeria
| |
Collapse
|
36
|
Vanvanhossou SFU, Scheper C, Dossa LH, Yin T, Brügemann K, König S. A multi-breed GWAS for morphometric traits in four Beninese indigenous cattle breeds reveals loci associated with conformation, carcass and adaptive traits. BMC Genomics 2020; 21:783. [PMID: 33176675 PMCID: PMC7656759 DOI: 10.1186/s12864-020-07170-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 10/20/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Specific adaptive features including disease resistance and growth abilities in harsh environments are attributed to indigenous cattle breeds of Benin, but these breeds are endangered due to crossbreeding. So far, there is a lack of systematic trait recording, being the basis for breed characterizations, and for structured breeding program designs aiming on conservation. Bridging this gap, own phenotyping for morphological traits considered measurements for height at withers (HAW), sacrum height (SH), heart girth (HG), hip width (HW), body length (BL) and ear length (EL), including 449 cattle from the four indigenous Benin breeds Lagune, Somba, Borgou and Pabli. In order to utilize recent genomic tools for breed characterizations and genetic evaluations, phenotypes for novel traits were merged with high-density SNP marker data. Multi-breed genetic parameter estimations and genome-wide association studies (GWAS) for the six morphometric traits were carried out. Continuatively, we aimed on inferring genomic regions and functional loci potentially associated with conformation, carcass and adaptive traits. RESULTS SNP-based heritability estimates for the morphometric traits ranged between 0.46 ± 0.14 (HG) and 0.74 ± 0.13 (HW). Phenotypic and genetic correlations ranged from 0.25 ± 0.05 (HW-BL) to 0.89 ± 0.01 (HAW-SH), and from 0.14 ± 0.10 (HW-BL) to 0.85 ± 0.02 (HAW-SH), respectively. Three genome-wide and 25 chromosome-wide significant SNP positioned on different chromosomes were detected, located in very close chromosomal distance (±25 kb) to 15 genes (or located within the genes). The genes PIK3R6 and PIK3R1 showed direct functional associations with height and body size. We inferred the potential candidate genes VEPH1, CNTNAP5, GYPC for conformation, growth and carcass traits including body weight and body fat deposition. According to their functional annotations, detected potential candidate genes were associated with stress or immune response (genes PTAFR, PBRM1, ADAMTS12) and with feed efficiency (genes MEGF11 SLC16A4, CCDC117). CONCLUSIONS Accurate measurements contributed to large SNP heritabilities for some morphological traits, even for a small mixed-breed sample size. Multi-breed GWAS detected different loci associated with conformation or carcass traits. The identified potential candidate genes for immune response or feed efficiency indicators reflect the evolutionary development and adaptability features of the breeds.
Collapse
Affiliation(s)
| | - Carsten Scheper
- Institute of Animal Breeding and Genetics, Justus-Liebig-University Gießen, Gießen, Germany
| | - Luc Hippolyte Dossa
- School of Science and Technics of Animal Production, Faculty of Agricultural Sciences, University of Abomey-Calavi, Cotonou, Benin
| | - Tong Yin
- Institute of Animal Breeding and Genetics, Justus-Liebig-University Gießen, Gießen, Germany
| | - Kerstin Brügemann
- Institute of Animal Breeding and Genetics, Justus-Liebig-University Gießen, Gießen, Germany
| | - Sven König
- Institute of Animal Breeding and Genetics, Justus-Liebig-University Gießen, Gießen, Germany.
| |
Collapse
|
37
|
An African Canine Trypanosomosis Case Import: Is There a Possibility of Creating a Secondary Focus of Trypanosoma congolense Infection in France? Pathogens 2020; 9:pathogens9090709. [PMID: 32867247 PMCID: PMC7558263 DOI: 10.3390/pathogens9090709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 08/24/2020] [Accepted: 08/26/2020] [Indexed: 11/25/2022] Open
Abstract
African animal trypanosomosis are parasitic diseases caused by several protozoa of the genus Trypanosoma, transmitted by hematophagous insects, essentially tsetse flies, but also, less frequently by Tabanidae and Stomoxidae. They are geolocated in a part of the continent and affect livestock animals and carnivores; dogs are especially sensitive to them. They do not seem to present a zoonotic risk. Despite the chemical prevention with trypanocides for French military working dogs on mission in Côte d’Ivoire, a fatal case induced by Trypanosoma congolense in France after returning from Abidjan raises the question of an imported secondary focus. The clinical case was developed and the causative agent was confirmed by microscopy and PCR methods. The three necessary pillars to create a secondary potential focus are present: the parasite introduction in a new territory, the presence and the propagation vectors, and their proximity with sensitive species.
Collapse
|
38
|
Mochizuki K, Inaoka DK, Mazet M, Shiba T, Fukuda K, Kurasawa H, Millerioux Y, Boshart M, Balogun EO, Harada S, Hirayama K, Bringaud F, Kita K. The ASCT/SCS cycle fuels mitochondrial ATP and acetate production in Trypanosoma brucei. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1861:148283. [PMID: 32763239 PMCID: PMC7402102 DOI: 10.1016/j.bbabio.2020.148283] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/22/2020] [Accepted: 07/29/2020] [Indexed: 11/03/2022]
Abstract
Acetate:succinate CoA transferase (ASCT) is a mitochondrial enzyme that catalyzes the production of acetate and succinyl-CoA, which is coupled to ATP production with succinyl-CoA synthetase (SCS) in a process called the ASCT/SCS cycle. This cycle has been studied in Trypanosoma brucei (T. brucei), a pathogen of African sleeping sickness, and is involved in (i) ATP and (ii) acetate production and proceeds independent of oxygen and an electrochemical gradient. Interestingly, knockout of ASCT in procyclic form (PCF) of T. brucei cause oligomycin A-hypersensitivity phenotype indicating that ASCT/SCS cycle complements the deficiency of ATP synthase activity. In bloodstream form (BSF) of T. brucei, ATP synthase works in reverse to maintain the electrochemical gradient by hydrolyzing ATP. However, no information has been available on the source of ATP, although ASCT/SCS cycle could be a potential candidate. Regarding mitochondrial acetate production, which is essential for fatty acid biosynthesis and growth of T. brucei, ASCT or acetyl-CoA hydrolase (ACH) are known to be its source. Despite the importance of this cycle, direct evidence of its function is lacking, and there are no comprehensive biochemical or structural biology studies reported so far. Here, we show that in vitro–reconstituted ASCT/SCS cycle is highly specific towards acetyl-CoA and has a higher kcat than that of yeast and bacterial ATP synthases. Our results provide the first biochemical basis for (i) rescue of ATP synthase-deficient phenotype by ASCT/SCS cycle in PCF and (ii) a potential source of ATP for the reverse reaction of ATP synthase in BSF. First biochemical and structural characterization of mitochondrial ASCT/SCS cycle It is essential for mitochondrial acetate/ATP production and T. brucei BSF growth. TbASCT/SCS cycle shows higher kcat than that of yeast and bacterial ATP synthases. Detailed comparative biochemical analysis between ASCT and human SCOT Active site residue and X-CoA binding site determined by site-directed mutagenesis
Collapse
Affiliation(s)
- Kota Mochizuki
- Department of Immunogenetics, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Japan; Graduate School of Biomedical Sciences, Nagasaki University, Japan
| | - Daniel Ken Inaoka
- Department of Molecular Infection Dynamics, Shionogi Global Infectious Diseases Division, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Japan; School of Tropical Medicine and Global Health, Nagasaki University, Japan; Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Japan.
| | - Muriel Mazet
- Laboratoire de Microbiologie Fondamentale et Pathogénicité (MFP), Université de Bordeaux, CNRS UMR-5234, France
| | - Tomoo Shiba
- Department of Applied Biology, Graduate School of Science and Technology, Kyoto Institute of Technology, Japan.
| | - Keisuke Fukuda
- Department of Applied Biology, Graduate School of Science and Technology, Kyoto Institute of Technology, Japan
| | - Hana Kurasawa
- Department of Applied Biology, Graduate School of Science and Technology, Kyoto Institute of Technology, Japan
| | - Yoann Millerioux
- Laboratoire de Microbiologie Fondamentale et Pathogénicité (MFP), Université de Bordeaux, CNRS UMR-5234, France
| | - Michael Boshart
- Fakultät für Biologie, Genetik, Ludwig-Maximilians-Universität München, Germany
| | - Emmanuel O Balogun
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Japan; Department of Biochemistry, Ahmadu Bello University, Nigeria
| | - Shigeharu Harada
- Department of Applied Biology, Graduate School of Science and Technology, Kyoto Institute of Technology, Japan
| | - Kenji Hirayama
- Department of Immunogenetics, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Japan
| | - Frédéric Bringaud
- Laboratoire de Microbiologie Fondamentale et Pathogénicité (MFP), Université de Bordeaux, CNRS UMR-5234, France
| | - Kiyoshi Kita
- School of Tropical Medicine and Global Health, Nagasaki University, Japan; Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Japan; Department of Host - Defense Biochemistry, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Japan
| |
Collapse
|
39
|
Adeyemi CM, Conibear AC, Mutorwa MK, Nokalipa IC, Isaacs M, Mnkandhla D, Hoppe HC, Lobb KA, Klein R, Kaye PT. Synthesis and anti-parasitic activity of achiral N-benzylated phosphoramidic acid derivatives. Bioorg Chem 2020; 101:103947. [PMID: 32559578 DOI: 10.1016/j.bioorg.2020.103947] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 05/11/2020] [Accepted: 05/14/2020] [Indexed: 10/24/2022]
Abstract
Synthetic pathways have been developed to access a series of N-benzylated phosphoramidic acid derivatives as novel, achiral analogues of the established Plasmodium falciparum 1-deoxy-d-xylulose-5-phosphate reductase (PfDXR) enzyme inhibitor, FR900098. Bioassays of the targeted compounds and their synthetic precursors have revealed minimal antimalarial activity but encouraging anti-trypanosomal activity - in one case with an IC50 value of 5.4 µM against Trypanosoma brucei, the parasite responsible for Nagana (African cattle sleeping sickness). The results of relevant in silico modelling and docking studies undertaken in the design and evaluation of these compounds are discussed.
Collapse
Affiliation(s)
| | - Anne C Conibear
- Department of Chemistry, Rhodes University, Grahamstown 6140, South Africa
| | - Marius K Mutorwa
- Department of Chemistry, Rhodes University, Grahamstown 6140, South Africa
| | - Iviwe C Nokalipa
- Department of Chemistry, Rhodes University, Grahamstown 6140, South Africa
| | - Michelle Isaacs
- Centre for Chemico- and Biomedicinal Research, Rhodes University, Grahamstown 6140, South Africa
| | - Dumisani Mnkandhla
- Centre for Chemico- and Biomedicinal Research, Rhodes University, Grahamstown 6140, South Africa
| | - Heinrich C Hoppe
- Department of Biochemistry and Microbiolgy, Rhodes University, Grahamstown 6140, South Africa; Centre for Chemico- and Biomedicinal Research, Rhodes University, Grahamstown 6140, South Africa
| | - Kevin A Lobb
- Department of Chemistry, Rhodes University, Grahamstown 6140, South Africa; Centre for Chemico- and Biomedicinal Research, Rhodes University, Grahamstown 6140, South Africa
| | - Rosalyn Klein
- Department of Chemistry, Rhodes University, Grahamstown 6140, South Africa; Centre for Chemico- and Biomedicinal Research, Rhodes University, Grahamstown 6140, South Africa
| | - Perry T Kaye
- Department of Chemistry, Rhodes University, Grahamstown 6140, South Africa; Centre for Chemico- and Biomedicinal Research, Rhodes University, Grahamstown 6140, South Africa.
| |
Collapse
|
40
|
Identifying Cattle Breed-Specific Partner Choice of Transcription Factors during the African Trypanosomiasis Disease Progression Using Bioinformatics Analysis. Vaccines (Basel) 2020; 8:vaccines8020246. [PMID: 32456126 PMCID: PMC7350023 DOI: 10.3390/vaccines8020246] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/13/2020] [Accepted: 05/21/2020] [Indexed: 12/18/2022] Open
Abstract
African Animal Trypanosomiasis (AAT) is a disease caused by pathogenic trypanosomes which affects millions of livestock every year causing huge economic losses in agricultural production especially in sub-Saharan Africa. The disease is spread by the tsetse fly which carries the parasite in its saliva. During the disease progression, the cattle are prominently subjected to anaemia, weight loss, intermittent fever, chills, neuronal degeneration, congestive heart failure, and finally death. According to their different genetic programs governing the level of tolerance to AAT, cattle breeds are classified as either resistant or susceptible. In this study, we focus on the cattle breeds N’Dama and Boran which are known to be resistant and susceptible to trypanosomiasis, respectively. Despite the rich literature on both breeds, the gene regulatory mechanisms of the underlying biological processes for their resistance and susceptibility have not been extensively studied. To address the limited knowledge about the tissue-specific transcription factor (TF) cooperations associated with trypanosomiasis, we investigated gene expression data from these cattle breeds computationally. Consequently, we identified significant cooperative TF pairs (especially DBP−PPARA and DBP−THAP1 in N’Dama and DBP−PAX8 in Boran liver tissue) which could help understand the underlying AAT tolerance/susceptibility mechanism in both cattle breeds.
Collapse
|
41
|
Obi CF, Ezeh IO, Okpala MI, Idika IK, Mbe N, Nwobi LG, Ezeokonkwo RC. Azithromycin and Diminazene Aceturate Combination Therapy in Experimental Multidrug-resistant Trypanosoma brucei brucei Infection in Albino Rats. Vet Parasitol 2020; 282:109138. [PMID: 32474296 DOI: 10.1016/j.vetpar.2020.109138] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 05/11/2020] [Accepted: 05/12/2020] [Indexed: 11/30/2022]
Abstract
Azithromycin and diminazene aceturate combination therapy in experimental multidrug-resistant Trypanosoma brucei brucei infection in albino rats was evaluated. A total of forty-five female albino rats were used. These rats were randomly assigned to nine groups of five rats each. Group 1 was the uninfected-untreated group while groups 2 - 6 were infected with 1 × 106 trypanosomes suspended in 0.3 ml of normal saline intraperitoneally. Following infection and parasitaemia, group 2 was untreated while group 3 was treated once with 7 mg/kg diminazene aceturate. Groups 4 - 6 were treated with 10, 20 and 30 mg/kg azithromycin respectively for 7 days. Groups 7 - 9 were treated with combination of 7 mg/kg diminazene aceturate (DA) once and 10, 20 and 30 mg/kg azithromycin (AZT) respectively for 7 days. Level of parasitaemia, haematological indices (packed cell volume, total erythrocyte count, total leukocyte count, haemoglobin concentration, mean corpuscular volume, mean corpuscular hemoglobin, mean corpuscular hemoglobin concentration), survivability, body weight and rectal temperature were used to assess the effectiveness of the combination therapy. A significant reduction in parasitaemia levels was observed in the DA-treated group and AZT-treated group 6 while clearance of parasitaemia was observed in the DA-AZT treated groups 7 - 9 for periods between 1 and 5 days post treatment. The haematological indices and survivability of the DA-AZT treated groups were better than the DA-treated group despite the relapse recorded in those groups. One rat each in the DA-AZT combination groups survived till the end of the experiment. In conclusion, the DA-AZT combination treatment can be used as a possible adjunct to DA in the treatment of multidrug-resistant T. brucei brucei. The combination also enhanced survivability and decreased the effect of the disease in rats.
Collapse
Affiliation(s)
- Chukwunonso Francis Obi
- Department of Veterinary Parasitology and Entomology, Faculty of Veterinary Medicine, University of Nigeria, Nsukka, Nigeria
| | - Ikenna Onyema Ezeh
- Department of Veterinary Parasitology and Entomology, Faculty of Veterinary Medicine, University of Nigeria, Nsukka, Nigeria.
| | - Michael Ikenna Okpala
- Department of Veterinary Parasitology and Entomology, Faculty of Veterinary Medicine, University of Nigeria, Nsukka, Nigeria
| | - Idika Kalu Idika
- Department of Veterinary Parasitology and Entomology, Faculty of Veterinary Medicine, University of Nigeria, Nsukka, Nigeria
| | - Nnamdi Mbe
- Department of Veterinary Parasitology and Entomology, Faculty of Veterinary Medicine, University of Nigeria, Nsukka, Nigeria
| | - Lotanna Gilbert Nwobi
- Department of Veterinary Physiology and Pharmacology, Faculty of Veterinary Medicine, University of Nigeria, Nsukka, Nigeria
| | - Romanus Chukwuduruo Ezeokonkwo
- Department of Veterinary Parasitology and Entomology, Faculty of Veterinary Medicine, University of Nigeria, Nsukka, Nigeria
| |
Collapse
|
42
|
Altamura F, Rajesh R, Catta-Preta CMC, Moretti NS, Cestari I. The current drug discovery landscape for trypanosomiasis and leishmaniasis: Challenges and strategies to identify drug targets. Drug Dev Res 2020; 83:225-252. [PMID: 32249457 DOI: 10.1002/ddr.21664] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 02/05/2020] [Accepted: 03/13/2020] [Indexed: 12/11/2022]
Abstract
Human trypanosomiasis and leishmaniasis are vector-borne neglected tropical diseases caused by infection with the protozoan parasites Trypanosoma spp. and Leishmania spp., respectively. Once restricted to endemic areas, these diseases are now distributed worldwide due to human migration, climate change, and anthropogenic disturbance, causing significant health and economic burden globally. The current chemotherapy used to treat these diseases has limited efficacy, and drug resistance is spreading. Hence, new drugs are urgently needed. Phenotypic compound screenings have prevailed as the leading method to discover new drug candidates against these diseases. However, the publication of the complete genome sequences of multiple strains, advances in the application of CRISPR/Cas9 technology, and in vivo bioluminescence-based imaging have set the stage for advancing target-based drug discovery. This review analyses the limitations of the narrow pool of available drugs presently used for treating these diseases. It describes the current drug-based clinical trials highlighting the most promising leads. Furthermore, the review presents a focused discussion on the most important biological and pharmacological challenges that target-based drug discovery programs must overcome to advance drug candidates. Finally, it examines the advantages and limitations of modern research tools designed to identify and validate essential genes as drug targets, including genomic editing applications and in vivo imaging.
Collapse
Affiliation(s)
- Fernando Altamura
- Institute of Parasitology, McGill University, Ste Anne de Bellevue, Quebec, Canada
| | - Rishi Rajesh
- Institute of Parasitology, McGill University, Ste Anne de Bellevue, Quebec, Canada
| | | | - Nilmar S Moretti
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Igor Cestari
- Institute of Parasitology, McGill University, Ste Anne de Bellevue, Quebec, Canada
| |
Collapse
|
43
|
Raftery AG, Jallow S, Coultous RM, Rodgers J, Sutton DGM. Variation in disease phenotype is marked in equine trypanosomiasis. Parasit Vectors 2020; 13:148. [PMID: 32199454 PMCID: PMC7085162 DOI: 10.1186/s13071-020-04020-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 03/16/2020] [Indexed: 11/19/2022] Open
Abstract
Background Equine trypanosomiasis is a severe and prevalent disease that has the greatest impact globally upon working equids due to its distribution across lower income countries. Morbidity and mortality rates are high; disease management strategies in endemic regions are ineffective and cost prohibitive. Individual variation in disease phenotype in other species suggests host factors could reveal novel treatment and control targets but has not been investigated in equids. Methods A prospective clinical evaluation of equines presenting for a free veterinary examination was performed in hyperendemic villages in The Gambia. Age, body condition score and body weight were estimated by validated methods, and haematocrit and total protein concentration measured. Animals fulfilling 2 out of 5 clinical inclusion criteria (anaemia, poor body condition, pyrexia, history of abortion, oedema) for a diagnosis of trypanosomiasis received trypanocidal treatment with follow-up at 1 and 2 weeks. Blood samples underwent PCR analysis with specific Trypanosoma spp. primers and results were compared to the subject’s clinical and clinicopathological features. A mixed effects generalised linear model was generated to evaluate the association of infection status with degree of pyrexia and anaemia. Results Morbidity was high within examined (n = 641) and selected (n = 247) study populations. PCR status was not associated with a defined disease phenotype; there was intra- and inter-species variability. Donkeys were more frequently Trypanosoma spp.-positive (P < 0.001) and febrile (P < 0.001) than horses, but infected horses were more anaemic (P < 0.001), and in poorer body condition (P < 0.001) than donkeys. Sex was correlated to disease phenotype: males were more anaemic (P = 0.03) and febrile (P < 0.001). Haemoparasite co-infections were more common than a single infection. Conclusions There was evidence of diversity in trypanosomiasis clinical signs plus variable disease phenotypes within equid subpopulations that warrant further investigation. The complex co-infection profile of field cases requires greater consideration to optimise disease management.![]()
Collapse
Affiliation(s)
- Alexandra G Raftery
- The Weipers Centre Equine Hospital, Large Animal Clinical Sciences and Public Health, School of Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden Road, Glasgow, UK.
| | - Saloum Jallow
- Gambia Horse and Donkey Trust, Sambel Kunda, Central River District, The Gambia
| | - Robert M Coultous
- Institute of Biodiversity, Animal Health & Comparative Medicine, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, UK
| | - Jean Rodgers
- Institute of Biodiversity, Animal Health & Comparative Medicine, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, UK
| | - David G M Sutton
- The Weipers Centre Equine Hospital, Large Animal Clinical Sciences and Public Health, School of Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden Road, Glasgow, UK
| |
Collapse
|
44
|
Design of an Epitope-Based Vaccine Ensemble for Animal Trypanosomiasis by Computational Methods. Vaccines (Basel) 2020; 8:vaccines8010130. [PMID: 32188062 PMCID: PMC7157688 DOI: 10.3390/vaccines8010130] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/29/2020] [Accepted: 03/13/2020] [Indexed: 12/22/2022] Open
Abstract
African animal trypanosomiasis is caused by vector-transmitted parasites of the genus Trypanosoma. T. congolense and T. brucei brucei are predominant in Africa; T. evansi and T. vivax in America and Asia. They have in common an extracellular lifestyle and livestock tropism, which provokes huge economic losses in regions where vectors are endemic. There are licensed drugs to treat the infections, but adherence to treatment is poor and appearance of resistances common. Therefore, the availability of a prophylactic vaccine would represent a major breakthrough towards the management and control of the disease. Selection of the most appropriate antigens for its development is a bottleneck step, especially considering the limited resources allocated. Herein we propose a vaccine strategy based on multiple epitopes from multiple antigens to counteract the parasites´ biological complexity. Epitopes were identified by computer-assisted genome-wide screenings, considering sequence conservation criteria, antigens annotation and sub-cellular localization, high binding affinity to antigen presenting molecules, and lack of cross-reactivity to proteins in cattle and other breeding species. We ultimately provide 31 B-cell, 8 CD4 T-cell, and 15 CD8 T-cell epitope sequences from 30 distinct antigens for the prospective design of a genetic ensemble vaccine against the four trypanosome species responsible for African animal trypanosomiasis.
Collapse
|
45
|
Mekonnen YA, Gültas M, Effa K, Hanotte O, Schmitt AO. Identification of Candidate Signature Genes and Key Regulators Associated With Trypanotolerance in the Sheko Breed. Front Genet 2019; 10:1095. [PMID: 31803229 PMCID: PMC6872528 DOI: 10.3389/fgene.2019.01095] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 10/11/2019] [Indexed: 12/23/2022] Open
Abstract
African animal trypanosomiasis (AAT) is caused by a protozoan parasite that affects the health of livestock. Livestock production in Ethiopia is severely hampered by AAT and various controlling measures were not successful to eradicate the disease. AAT affects the indigenous breeds in varying degrees. However, the Sheko breed shows better trypanotolerance than other breeds. The tolerance attributes of Sheko are believed to be associated with its taurine genetic background but the genetic controls of these tolerance attributes of Sheko are not well understood. In order to investigate the level of taurine background in the genome, we compare the genome of Sheko with that of 11 other African breeds. We find that Sheko has an admixed genome composed of taurine and indicine ancestries. We apply three methods: (i) The integrated haplotype score (iHS), (ii) the standardized log ratio of integrated site specific extended haplotype homozygosity between populations (Rsb), and (iii) the composite likelihood ratio (CLR) method to discover selective sweeps in the Sheko genome. We identify 99 genomic regions harboring 364 signature genes in Sheko. Out of the signature genes, 15 genes are selected based on their biological importance described in the literature. We also identify 13 overrepresented pathways and 10 master regulators in Sheko using the TRANSPATH database in the geneXplain platform. Most of the pathways are related with oxidative stress responses indicating a possible selection response against the induction of oxidative stress following trypanosomiasis infection in Sheko. Furthermore, we present for the first time the importance of master regulators involved in trypanotolerance not only for the Sheko breed but also in the context of cattle genomics. Our finding shows that the master regulator Caspase is a key protease which plays a major role for the emergence of adaptive immunity in harmony with the other master regulators. These results suggest that designing and implementing genetic intervention strategies is necessary to improve the performance of susceptible animals. Moreover, the master regulatory analysis suggests potential candidate therapeutic targets for the development of new drugs for trypanosomiasis treatment.
Collapse
Affiliation(s)
- Yonatan Ayalew Mekonnen
- Breeding Informatics Group, Department of Animal Sciences, University of Göttingen, Göttingen, Germany
| | - Mehmet Gültas
- Breeding Informatics Group, Department of Animal Sciences, University of Göttingen, Göttingen, Germany.,Center for Integrated Breeding Research (CiBreed), University of Göttingen, Göttingen, Germany
| | - Kefena Effa
- Animal Biosciences, National Program Coordinator for African Dairy Genetic Gain, International Livestock Research Institute (ILRI), Addis Ababa, Ethiopia
| | - Olivier Hanotte
- Cells, Organisms amd Molecular Genetics, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom.,LiveGene, International Livestock Research Institute (ILRI), Addis Ababa, Ethiopia
| | - Armin O Schmitt
- Breeding Informatics Group, Department of Animal Sciences, University of Göttingen, Göttingen, Germany.,Center for Integrated Breeding Research (CiBreed), University of Göttingen, Göttingen, Germany
| |
Collapse
|
46
|
Yaro M, Munyard KA, Morgan E, Allcock RJN, Stear MJ, Groth DM. Analysis of pooled genome sequences from Djallonke and Sahelian sheep of Ghana reveals co-localisation of regions of reduced heterozygosity with candidate genes for disease resistance and adaptation to a tropical environment. BMC Genomics 2019; 20:816. [PMID: 31699027 PMCID: PMC6836352 DOI: 10.1186/s12864-019-6198-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Accepted: 10/16/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The Djallonke sheep is well adapted to harsh environmental conditions, and is relatively resistant to Haemonchosis and resilient to animal trypanosomiasis. The larger Sahelian sheep, which cohabit the same region, is less well adapted to these disease challenges. Haemonchosis and Trypanosomiasis collectively cost the worldwide animal industry billions of dollars in production losses annually. RESULTS Here, we separately sequenced and then pooled according to breed the genomes from five unrelated individuals from each of the Djallonke and Sahelian sheep breeds (sourced from Ghana), at greater than 22-fold combined coverage for each breed. A total of approximately 404 million (97%) and 343 million (97%) sequence reads from the Djallonke and Sahelian breeds respectively, were successfully mapped to the sheep reference genome Oar v3.1. We identified approximately 11.1 million and 10.9 million single nucleotide polymorphisms (SNPs) in the Djallonke and Sahelian breeds, with approximately 15 and 16% respectively of these not previously reported in sheep. Multiple regions of reduced heterozygosity were also found; 70 co-localised within genomic regions harbouring genes that mediate disease resistance, immune response and adaptation in sheep or cattle. Thirty- three of the regions of reduced heterozygosity co-localised with previously reported genes for resistance to haemonchosis and trypanosomiasis. CONCLUSIONS Our analyses suggest that these regions of reduced heterozygosity may be signatures of selection for these economically important diseases.
Collapse
Affiliation(s)
- M. Yaro
- School of Biomedical Sciences, CHIRI Biosciences Research Precinct, Faculty of Health Sciences, Curtin University, GPO Box U1987, Perth, WA 6845 Australia
| | - K. A. Munyard
- School of Biomedical Sciences, CHIRI Biosciences Research Precinct, Faculty of Health Sciences, Curtin University, GPO Box U1987, Perth, WA 6845 Australia
| | - E. Morgan
- School of Biomedical Sciences, CHIRI Biosciences Research Precinct, Faculty of Health Sciences, Curtin University, GPO Box U1987, Perth, WA 6845 Australia
| | - R. J. N. Allcock
- The University of Western Australia, 35 Stirling Highway, Crawley, Perth, WA Australia
- Pathwest Laboratory Medicine WA, QEII Medical Centre, Monash Avenue, Nedlands, 6009 Australia
| | - M. J. Stear
- Agribio centre for Agribioscience, La Trobe University, Melbourne, Australia
- Institute of Biodiversity, Animal Health and Comparative Medicine University of Glasgow, Bearsden Road, Glasgow, G61 1QH UK
| | - D. M. Groth
- School of Biomedical Sciences, CHIRI Biosciences Research Precinct, Faculty of Health Sciences, Curtin University, GPO Box U1987, Perth, WA 6845 Australia
| |
Collapse
|
47
|
Deleeuw V, Phạm HTT, De Poorter I, Janssens I, De Trez C, Radwanska M, Magez S. Trypanosoma brucei brucei causes a rapid and persistent influx of neutrophils in the spleen of infected mice. Parasite Immunol 2019; 41:e12664. [PMID: 31325372 PMCID: PMC6771705 DOI: 10.1111/pim.12664] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 06/29/2019] [Accepted: 07/16/2019] [Indexed: 12/27/2022]
Abstract
Trypanosomosis is a chronic parasitic infection, affecting both humans and livestock. A common hallmark of experimental murine infections is the occurrence of inflammation and the associated remodelling of the spleen compartment. The latter involves the depletion of several lymphocyte populations, the induction of T‐cell‐mediated immune suppression, and the activation of monocyte/macrophage cell populations. Here, we show that in experimental T b brucei infections in mice, these changes are accompanied by the alteration of the spleen neutrophil compartment. Indeed, mature neutrophils are rapidly recruited to the spleen, and cell numbers remain elevated during the entire infection. Following the second peak of parasitemia, the neutrophil cell influx coincides with the rapid reduction of splenic marginal zone (MZ)B and follicular (Fo)B cells, as well as CD8+ T and NK1.1+ cells, the latter encompassing both natural killer (NK) and natural killer T (NKT) cells. This report is the first to show a comprehensive overview of all alterations in spleen cell populations, measured with short intervals throughout the entire course of an experimental T b brucei infection. These data provide new insights into the dynamic interlinked changes in spleen cell numbers associated with trypanosomosis‐associated immunopathology.
Collapse
Affiliation(s)
- Violette Deleeuw
- Laboratory for Biomedical Research, Ghent University Global Campus, Incheon, South Korea.,Laboratory for Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium.,Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Hien Thi Thu Phạm
- Laboratory for Biomedical Research, Ghent University Global Campus, Incheon, South Korea.,Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Isabel De Poorter
- Laboratory for Biomedical Research, Ghent University Global Campus, Incheon, South Korea.,Laboratory for Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium.,Department of Hematology, Erasmus MC, Rotterdam, The Netherlands
| | - Ibo Janssens
- Laboratory for Biomedical Research, Ghent University Global Campus, Incheon, South Korea.,Laboratory for Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium.,Laboratory for Experimental Hematology, University of Antwerp, Edegem, Belgium
| | - Carl De Trez
- Laboratory for Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Magdalena Radwanska
- Laboratory for Biomedical Research, Ghent University Global Campus, Incheon, South Korea.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Stefan Magez
- Laboratory for Biomedical Research, Ghent University Global Campus, Incheon, South Korea.,Laboratory for Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium.,Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| |
Collapse
|
48
|
de Mello VVC, de Souza Ramos IA, Herrera HM, Mendes NS, Calchi AC, Campos JBV, Macedo GC, Alves JVA, Machado RZ, André MR. Occurrence and genetic diversity of hemoplasmas in beef cattle from the Brazilian Pantanal, an endemic area for bovine trypanosomiasis in South America. Comp Immunol Microbiol Infect Dis 2019; 66:101337. [PMID: 31437678 DOI: 10.1016/j.cimid.2019.101337] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 07/05/2019] [Accepted: 07/19/2019] [Indexed: 11/26/2022]
Abstract
Hemotropic mycoplasmas (hemoplasmas) are Gram-negative bacteria that parasitize the erythrocyte surface of a wide variety of mammals. The present study aimed at investigating the occurrence of hemoplasmas in beef cattle in the Brazilian Pantanal, an area endemic for bovine trypanosomiasis in South America. Additionally, the objective of this study was to characterize molecularly the genotypes of the found hemoplasmas. For this purpose, blood and serum samples of 400 beef cattle were collected from five properties in Corumbá, Nhecolândia sub-region, Mato Grosso do Sul, in Midwest Brazil. Blood samples underwent DNA extraction and standard 16S rRNA gene-based PCR assays for hemoplasmas. The sequences obtained were submitted to phylogenetic inferences, distance analysis, and genotype diversity. The Indirect Enzyme-Linked Immunoabsorbent Assay (iELISA) indicated the presence of anti-Trypanosoma vivax IgG antibodies in 89.75% of the animals sampled, confirming the endemicity of said agent in the studied region. Among the 400 bovine blood samples tested, 2.25% (9/400) were positive for hemoplasmas in cPCR. The phylogenetic analysis of the obtained sequences confirmed the presence of 'Candidatus Mycoplasma haemobos' and Mycoplasma wenyonii DNA in 0.5% (2/400) and 1.75% (7/400) animals, respectively. Five genotypes of M. wenyonii and one of 'Candidatus M. haemobos' were detected among the sequenced amplicons. The present study showed low molecular occurrence of haemoplasmas in beef cattle sampled in the Brazilian Pantanal, an area endemic for bovine trypanosomiasis. Despite of the conservation of the 16S rRNA gene, there was considerable diversity of hemoplasma genotypes infecting the sampled beef cattle.
Collapse
Affiliation(s)
- Victória Valente Califre de Mello
- Graduate Program in Agricultural Microbiology, Universidade Estadual Paulista (FCAV/UNESP), Jaboticabal, SP, Brazil; Laboratory of Immunoparasitology, Department of Veterinary Pathology, Faculdade de Ciências Agrárias e Veterinárias/ Universidade Estadual Paulista (FCAV/UNESP), Jaboticabal, SP, Brazil
| | - Inalda Angélica de Souza Ramos
- Laboratory of Immunoparasitology, Department of Veterinary Pathology, Faculdade de Ciências Agrárias e Veterinárias/ Universidade Estadual Paulista (FCAV/UNESP), Jaboticabal, SP, Brazil
| | | | - Natalia Serra Mendes
- Graduate Program in Agricultural Microbiology, Universidade Estadual Paulista (FCAV/UNESP), Jaboticabal, SP, Brazil; Laboratory of Immunoparasitology, Department of Veterinary Pathology, Faculdade de Ciências Agrárias e Veterinárias/ Universidade Estadual Paulista (FCAV/UNESP), Jaboticabal, SP, Brazil
| | - Ana Cláudia Calchi
- Laboratory of Immunoparasitology, Department of Veterinary Pathology, Faculdade de Ciências Agrárias e Veterinárias/ Universidade Estadual Paulista (FCAV/UNESP), Jaboticabal, SP, Brazil
| | | | | | | | - Rosangela Zacarias Machado
- Laboratory of Immunoparasitology, Department of Veterinary Pathology, Faculdade de Ciências Agrárias e Veterinárias/ Universidade Estadual Paulista (FCAV/UNESP), Jaboticabal, SP, Brazil
| | - Marcos Rogério André
- Laboratory of Immunoparasitology, Department of Veterinary Pathology, Faculdade de Ciências Agrárias e Veterinárias/ Universidade Estadual Paulista (FCAV/UNESP), Jaboticabal, SP, Brazil.
| |
Collapse
|
49
|
The Nuclear Export Receptors TbMex67 and TbMtr2 Are Required for Ribosome Biogenesis in Trypanosoma brucei. mSphere 2019; 4:4/4/e00343-19. [PMID: 31270172 PMCID: PMC6609230 DOI: 10.1128/msphere.00343-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The nuclear export of ribosomal subunits (60S and 40S) depends in part on the activity of the essential auxiliary export receptors TbMtr2 and TbMex67. When these proteins are individually depleted from the medically and agriculturally significant parasite Trypanosoma brucei, distinct alterations in the processing of the rRNAs of the large subunit (60S) are observed as well as aberrations in the assembly of functional ribosomes (polysomes). We also established that TbMex67 and TbMtr2 interact directly or indirectly with the protein components of the 5S RNP, including the trypanosome-specific P34/P37. The critical role that TbMex67 and TbMtr2 play in this essential biological process together with their parasite-specific interactions may provide new therapeutic targets against this important parasite. Ribosomal maturation is a complex and highly conserved biological process involving migration of a continuously changing RNP across multiple cellular compartments. A critical point in this process is the translocation of individual ribosomal subunits (60S and 40S) from the nucleus to the cytoplasm, and a number of export factors participate in this process. In this study, we characterize the functional role of the auxiliary export receptors TbMex67 and TbMtr2 in ribosome biogenesis in the parasite Trypanosoma brucei. We demonstrate that depletion of each of these proteins dramatically impacts the steady-state levels of other proteins involved in ribosome biogenesis, including the trypanosome-specific factors P34 and P37. In addition, we observe that the loss of TbMex67 or TbMtr2 leads to aberrant ribosome formation, rRNA processing, and polysome formation. Although the TbMex67-TbMtr2 heterodimer is structurally distinct from Mex67-Mtr2 complexes previously studied, our data show that they retain a conserved function in ribosome biogenesis. IMPORTANCE The nuclear export of ribosomal subunits (60S and 40S) depends in part on the activity of the essential auxiliary export receptors TbMtr2 and TbMex67. When these proteins are individually depleted from the medically and agriculturally significant parasite Trypanosoma brucei, distinct alterations in the processing of the rRNAs of the large subunit (60S) are observed as well as aberrations in the assembly of functional ribosomes (polysomes). We also established that TbMex67 and TbMtr2 interact directly or indirectly with the protein components of the 5S RNP, including the trypanosome-specific P34/P37. The critical role that TbMex67 and TbMtr2 play in this essential biological process together with their parasite-specific interactions may provide new therapeutic targets against this important parasite.
Collapse
|
50
|
Saad SB, Ibrahim MA, Jatau ID, Shuaibu MN. Trypanostatic activity of geranylacetone: Mitigation of Trypanosoma congolense-associated pathological pertubations and insight into the mechanism of anaemia amelioration using in vitro and in silico models. Exp Parasitol 2019; 201:49-56. [PMID: 31029700 DOI: 10.1016/j.exppara.2019.04.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 04/16/2019] [Accepted: 04/24/2019] [Indexed: 02/08/2023]
Abstract
Trypanosoma congolense is an important pathogen that wreaks havoc in the livestock industry of the African continent. This study evaluated the in vivo antitrypanosomal activity of geranylacetone and its ameliorative effect on the disease-induced anaemia and organ damages as well as its inhibitory effects against trypanosomal sialidase using in vitro and in silico techniques. Geranylacetone was used to treat T. congolense infected rats, at a dose of 50 and 100 mg/kg BW, for 14 days where it was found to reduce the parasite burden in the infected animals. Moreover, 100 mg/kg BW of geranylacetone significantly (p < 0.05) ameliorated the anaemia, hepatic and renal damages caused by the parasite. This is in addition to the alleviation of the parasite-induced hepatosplenomegaly and upsurge in free serum sialic acid levels in the infected animals which were associated with the observed anaemia amelioration by the compound. Consequently, bloodstream T. congolense sialidase was partially purified on DEAE cellulose column and inhibition kinetic studies revealed that the enzyme was inhibited by geranylacetone via an uncompetitive inhibition pattern. In silico analysis using molecular docking with Autodock Vina indicated that geranylacetone binds to trypanosomal sialidase with a minimum free binding energy of -5.8 kcal/mol which was mediated by 26 different kinds of non-covalent interactions excluding hydrogen bond whilst Asp163 and Phe421 had the highest number of the interactions. The data suggests that geranylacetone has trypanostatic activity and could protect animals against the T. congolense-induced anaemia through the inhibition of sialidase and/or the protection of the parasite-induced hepatosplenomegaly.
Collapse
Affiliation(s)
- Saad Bello Saad
- Department of Biochemistry, Ahmadu Bello University, Zaria, Nigeria; Department of Biochemistry, Yusuf Maitama Sule University, Kano, Nigeria
| | | | - Isa Danladi Jatau
- Department of Veterinary Parasitology and Entomology, Ahmadu Bello University, Zaria, Nigeria
| | | |
Collapse
|