1
|
Identification and characterization of a common B-cell epitope on EIAV capsid proteins. Appl Microbiol Biotechnol 2016; 100:10531-10542. [PMID: 27660181 DOI: 10.1007/s00253-016-7817-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Revised: 08/09/2016] [Accepted: 08/12/2016] [Indexed: 10/21/2022]
Abstract
The equine infectious anemia virus (EIAV) capsid protein (p26) is one of the major immunogenic proteins during EIAV infection and is widely used for the detection of EIAV antibodies in horses. However, few reports have described the use of EIAV-specific monoclonal antibodies (MAbs) in etiological and immunological detection. Previously, we developed an antigen capture enzyme-linked immunosorbent assay (AC-ELISA) for the quantification of the EIAV p26 protein level. However, the epitopes recognized by the MAbs were not identified, and the utilization of the MAbs needs to be evaluated. In this study, we characterized two monoclonal antibodies (9H8 and 1G11 MAbs) against EIAV p26. Two B-cell epitopes are located in amino acid residues, 73NLDKIAEE81 (HE) and 199KNAMRHLRPEDTLEEKMYAC218 (GE) for the 9H8 and 1G11 MAbs, respectively. The 1G11 epitope (GE) varied among viruses isolated worldwide but can be recognized by anti-EIAV sera from different regions, including China, the USA, and Argentina. Meanwhile, 1G11 MAb could react with the mutants of almost all the EIAV strains. Furthermore, we found that the histidine at position 204 (H204), leucine at position 205 (L205), and aspartic acid at position 209 (D209) of EIAV p26 individually played pivotal roles in binding with the 1G11 MAb. Our results revealed that the GE peptide might be a common B-cell binding epitope of EIAV antibodies. This is also the first report to identify a broad-spectrum monoclonal antibody (1G11) against p26 of EIAV. These findings may provide a useful basis for the development of new diagnostic assays for EIAV.
Collapse
|
2
|
Yao S, Liu J, Qi J, Chen R, Zhang N, Liu Y, Wang J, Wu Y, Gao GF, Xia C. Structural Illumination of Equine MHC Class I Molecules Highlights Unconventional Epitope Presentation Manner That Is Evolved in Equine Leukocyte Antigen Alleles. THE JOURNAL OF IMMUNOLOGY 2016; 196:1943-54. [DOI: 10.4049/jimmunol.1501352] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 12/03/2015] [Indexed: 01/20/2023]
|
3
|
Liu C, Cook SJ, Craigo JK, Cook FR, Issel CJ, Montelaro RC, Horohov DW. Epitope shifting of gp90-specific cellular immune responses in EIAV-infected ponies. Vet Immunol Immunopathol 2014; 161:161-9. [PMID: 25176006 DOI: 10.1016/j.vetimm.2014.08.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 07/02/2014] [Accepted: 08/04/2014] [Indexed: 11/16/2022]
Abstract
Unlike other lentiviruses, EIAV replication can be controlled in most infected horses leading to an inapparent carrier state free of overt clinical signs which lasts for many years. While the resolution of the initial infection is correlated with the appearance of virus specific cellular immune responses, the precise immune mechanisms responsible for control of the infection are not yet identified. Since the virus undergoes rapid mutation following infection, the immune response must also adapt to meet this challenge. We hypothesize that this adaptation involves peptide-specific recognition shifting from immunodominant variable determinants to conserved immunorecessive determinants following EIAV infection. Forty-four peptides, spanning the entire surface unit protein (gp90) of EIAV, were used to monitor peptide-specific T cell responses in vivo over a six-month period following infection. Peptides were injected intradermally and punch biopsies were collected for real-time PCR analysis to monitor the cellular peptide-specific immune responses in vivo. Similar to the CMI response to HIV infection, peptide-specific T cell recognition patterns changed over time. Early post infection (1 month), immune responses were directed to the peptides in the carboxyl-terminus variable region. By six months post infection, the peptide recognition spanned the entire gp90 sequence. These results indicate that peptide recognition broadens during EIAV infection.
Collapse
Affiliation(s)
- Chong Liu
- Department of Veterinary Science, University of Kentucky, Lexington, KY, USA
| | - Sheila J Cook
- Department of Veterinary Science, University of Kentucky, Lexington, KY, USA
| | - Jodi K Craigo
- Center for Vaccine Research and Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Frank R Cook
- Department of Veterinary Science, University of Kentucky, Lexington, KY, USA
| | - Charles J Issel
- Department of Veterinary Science, University of Kentucky, Lexington, KY, USA
| | - Ronald C Montelaro
- Center for Vaccine Research and Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| | - David W Horohov
- Department of Veterinary Science, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
4
|
Amplification of complete gag gene sequences from geographically distinct equine infectious anemia virus isolates. J Virol Methods 2013; 189:41-6. [DOI: 10.1016/j.jviromet.2012.12.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2012] [Revised: 09/22/2012] [Accepted: 12/17/2012] [Indexed: 11/17/2022]
|
5
|
Schwartz EJ, Pawelek KA, Harrington K, Cangelosi R, Madrid S. Immune Control of Equine Infectious Anemia Virus Infection by Cell-Mediated and Humoral Responses. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/am.2013.48a023] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
6
|
Kalemkerian P, Metz G, Peral-Garcia P, Echeverria M, Giovambattista G, Díaz S. ELA-DRA polymorphisms are not associated with Equine Arteritis Virus infection in horses from Argentina. Res Vet Sci 2012; 93:1271-3. [DOI: 10.1016/j.rvsc.2012.03.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 03/14/2012] [Accepted: 03/16/2012] [Indexed: 10/28/2022]
|
7
|
The determination of in vivo envelope-specific cell-mediated immune responses in equine infectious anemia virus-infected ponies. Vet Immunol Immunopathol 2012; 148:302-10. [PMID: 22795699 DOI: 10.1016/j.vetimm.2012.06.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Revised: 06/15/2012] [Accepted: 06/18/2012] [Indexed: 11/24/2022]
Abstract
Distinct from human lentivirus infection, equine infectious anemia virus (EIAV)-infected horses will eventually enter an inapparent carrier state in which virus replication is apparently controlled by adaptive immune responses. Although recrudescence of disease can occur after immune suppression, the actual immune correlate associated with protection has yet to be determined. Therefore, EIAV provides a model for investigating immune-mediated protective mechanisms against lentivirus infection. Here, we have developed a method to monitor EIAV-envelope specific cellular immunity in vivo. An EIA carrier horse with no clinical signs infected 7 years ago and 4 related experimental ponies infected 6 months previously were used in this study. Forty-four 20-mer peptides, representing the entire surface unit protein (gp90) of EIAV, were combined into 14 peptide pools and intradermally injected into the neck of EIAV-infected horses. An identical volume of saline alone was injected into a fifteenth site as a negative control. After 48 h, those sites with palpable infiltrations were measured prior to the collection of 2mm and 4mm punch biopsies. Total RNA was extracted from each 2mm biopsy for determination of CD3 and interferon-γ (IFN-γ) mRNA expression by real-time PCR. The 4mm skin biopsies were formalin-fixed and paraffin-embedded for immunohistochemistry (IHC) staining for CD3, CD20, CD25 and MAC387 (macrophage marker). Peripheral blood mononuclear cells (PBMC) were obtained prior to the injection and tested for in vitro reactivity against the same peptides. Histological examination showed that some of the envelope peptides elicited a lymphocytic cellular infiltration at the injection site, as evidenced by positive staining for CD3. Gp90 peptide-specific increases in CD3 and IFN-γ gene expression were also detected in the injection sites. Furthermore, differences were found between in vivo and in vitro responses to gp90 specific peptides. These results demonstrate a novel method for detecting in vivo cell-mediated immune responses to EIAV-specific peptides that is readily applicable to other host/pathogen systems.
Collapse
|
8
|
Sun XM, Zou J, A A ES, Yan WC, Liu XY, Suo X, Wang H, Chen QJ. DNA vaccination with a gene encoding Toxoplasma gondii GRA6 induces partial protection against toxoplasmosis in BALB/c mice. Parasit Vectors 2011; 4:213. [PMID: 22070984 PMCID: PMC3229464 DOI: 10.1186/1756-3305-4-213] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2011] [Accepted: 11/09/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Infection with the protozoan Toxoplasma gondii causes serious public health problems and is of great economic importance worldwide. Protection from acute toxoplasmosis is known to be mediated by CD8+ T cells, but the T. gondii antigens and host genes required for eliciting protective immunity have been poorly defined. The T. gondii dense granule protein 6 (GRA6), recently proved to be highly immunogenic and produces fully immune protection in T. gondii infected BALB/c mice with an H-2Ld gene. The CD8+ T cell response of H-2Ld mice infected by the T. gondii strain seemed to target entirely to a single GRA6 peptide HF10-H-2Ld complex. RESULTS To determine whether a GRA6-based DNA vaccine can elicit protective immune responses to T. gondii in BALB/c mice, we constructed a eukaryotic expression vector pcDNA3.1-HisGRA6 and tested its immunogenicity in a mouse model. BALB/c mice were vaccinated intramuscularly with three doses of GRA6 DNA and then challenged with a lethal dose of T. gondii RH strain tachyzoites. All immunized mice developed high levels of serum anti-GRA6 IgG antibodies, and in vitro splenocyte proliferation was strongly enhanced in mice adjuvanted with levamisole (LMS). Immunization with pcDNA3.1-HisGRA6 with LMS resulted in 53.3% survival of challenged BALB/c mice as compared to 40% survival of BALB/c without LMS. Additionally, immunized Kunming mice without an allele of H-2Ld failed to survive. CONCLUSIONS Our result supports the concept that the acquired immune response is MHC restricted. This study has a major implication for vaccine designs using a single antigen in a population with diverse MHC class I alleles.
Collapse
Affiliation(s)
- Xi-Meng Sun
- National Animal Protozoa Laboratory & College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Lin YZ, Shen RX, Zhu ZY, Deng XL, Cao XZ, Wang XF, Ma J, Jiang CG, Zhao LP, Lv XL, Shao YM, Zhou JH. An attenuated EIAV vaccine strain induces significantly different immune responses from its pathogenic parental strain although with similar in vivo replication pattern. Antiviral Res 2011; 92:292-304. [PMID: 21893100 DOI: 10.1016/j.antiviral.2011.08.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Revised: 07/25/2011] [Accepted: 08/18/2011] [Indexed: 01/06/2023]
Abstract
The EIAV (equine infectious anemia virus) multi-species attenuated vaccine EIAV(DLV121) successfully prevented the spread of equine infectious anemia (EIA) in China in the 1970s and provided an excellent model for the study of protective immunity to lentiviruses. In this study, we compared immune responses induced by EIAV(DLV121) to immunity elicited by the virulent EIAV(LN40) strain and correlated immune responses to protection from infection. Horses were randomly grouped and inoculated with either EIAV(DLV121) (Vaccinees, Vac) or a sublethal dose of EIAV(LN40) (asymptomatic carriers, Car). Car horses became EIAV(LN40) carriers without disease symptoms. Two of the four Vac horses were protected against infection and the other two had delayed onset or reduced severity of EIA with a lethal EIAV(LN40) challenge 5.5 months post initial inoculation. In contrast, all three Car animals developed acute EIA and two succumbed to death. Specific humoral and cellular immune responses in both Vac and Car groups were evaluated for potential correlations with protection. These analyses revealed that although plasma viral loads remained between 10(3) and 10(5)copies/ml for both groups before EIAV(LN40) challenge, Vac-treated animals developed significantly higher levels of conformational dependent, Env-specific antibody, neutralizing antibody as well as significantly elevated CD4(+) T cell proliferation and IFN-γ-secreting CD8(+) T cells than those observed in EIAV(LN40) asymptomatic carriers. Further analysis of protected and unprotected cases in vaccinated horses identified that cellular response parameters and the reciprocal anti-p26-specific antibody titers closely correlated with protection against infection with the pathogenic EIAV(LN40). These data provide a better understanding of protective immunity to lentiviruses.
Collapse
Affiliation(s)
- Yue-Zhi Lin
- State Key Laboratory of Veterinary Biotechnology, Division of Livestock Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Kalemkerian PB, Metz GE, Peral-García P, Lopez-Gappa J, Echeverría MG, Giovambattista G, Díaz S. Eca20 microsatellite polymorphisms in equine viral arteritis-infected horses from Argentina. ACTA ACUST UNITED AC 2011; 78:281-4. [PMID: 21812763 DOI: 10.1111/j.1399-0039.2011.01743.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We investigated the association of equine arteritis virus (EAV) infection and three short tandem repeat (STR) polymorphisms located within or in close proximity to equine lymphocyte antigen (ELA) region. We used a case-control design as a first approach before proceeding to select candidate genes. One hundred and sixty-five Silla Argentino horses were taken in 2002 from positive serological detections of EAV in Argentina, to determine whether STR genotypes were correlated to genetic susceptibility to EVA. Allele frequency distribution did not show significant differences between both groups (P = 0.0781). However, in particular alleles, Fisher exact test and odds ratio calculations showed significant values >1 for TKY08 and LEX52, and <1 for UM011, TKY08, LEX52 and VHL20. Interestingly, TKY08 STR is located in ELA class I region.
Collapse
Affiliation(s)
- P B Kalemkerian
- Instituto de Genética Veterinaria Ing. Fernando N Dulout (IGEVET)-CCT La Plata-CONICET, Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, La Plata, Argentina
| | | | | | | | | | | | | |
Collapse
|
11
|
Selection of a rare neutralization-resistant variant following passive transfer of convalescent immune plasma in equine infectious anemia virus-challenged SCID horses. J Virol 2010; 84:6536-48. [PMID: 20392850 DOI: 10.1128/jvi.00218-10] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vaccines preventing HIV-1 infection will likely elicit antibodies that neutralize diverse strains. However, the capacity for lentiviruses to escape broadly neutralizing antibodies (NAbs) is not completely understood, nor is it known whether NAbs alone can control heterologous infection. Here, we determined that convalescent immune plasma from a horse persistently infected with equine infectious anemia virus (EIAV) neutralized homologous virus and several envelope variants containing heterologous principal neutralizing domains (PND). Plasma was infused into young horses (foals) affected with severe combined immunodeficiency (SCID), followed by challenge with a homologous EIAV stock. Treated SCID foals were protected against clinical disease, with complete prevention of infection occurring in one foal. In three SCID foals, a novel neutralization-resistant variant arose that was found to preexist at a low frequency in the challenge inoculum. In contrast, SCID foals infused with nonimmune plasma developed acute disease associated with high levels of the predominant challenge virus. Following transfer to an immunocompetent horse, the neutralization-resistant variant induced a single febrile episode and was subsequently controlled in the absence of type-specific NAb. Long-term control was associated with the presence of cytotoxic T lymphocytes (CTL). Our results demonstrate that immune plasma with neutralizing activity against heterologous PND variants can prevent lentivirus infection and clinical disease in the complete absence of T cells. Importantly, however, rare neutralization-resistant envelope variants can replicate in vivo under relatively broad selection pressure, highlighting the need for protective lentivirus vaccines to elicit NAb responses with increased breadth and potency and/or CTL that target conserved epitopes.
Collapse
|
12
|
Mealey RH, Leib SR, Littke MH, Wagner B, Horohov DW, McGuire TC. Viral load and clinical disease enhancement associated with a lentivirus cytotoxic T lymphocyte vaccine regimen. Vaccine 2009; 27:2453-68. [PMID: 19368787 DOI: 10.1016/j.vaccine.2009.02.048] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2008] [Revised: 02/04/2009] [Accepted: 02/18/2009] [Indexed: 10/21/2022]
Abstract
Effective DNA-based vaccines against lentiviruses will likely induce CTL against conserved viral proteins. Equine infectious anemia virus (EIAV) infects horses worldwide, and serves as a useful model for lentiviral immune control. Although attenuated live EIAV vaccines have induced protective immune responses, DNA-based vaccines have not. In particular, DNA-based vaccines have had limited success in inducing CTL responses against intracellular pathogens in the horse. We hypothesized that priming with a codon-optimized plasmid encoding EIAV Gag p15/p26 with co-administration of a plasmid encoding an equine IL-2/IgG fusion protein as a molecular adjuvant, followed by boosting with a vaccinia vector expressing Gag p15/p26, would induce protective Gag-specific CTL responses. Although the regimen induced Gag-specific CTL in four of seven vaccinated horses, CTL were not detected until after the vaccinia boost, and protective effects were not observed in EIAV challenged vaccinates. Unexpectedly, vaccinates had significantly higher viral loads and more severe clinical disease, associated with the presence of vaccine-induced CTL. It was concluded that (1) further optimization of the timing and route of DNA immunization was needed for efficient CTL priming in vivo, (2) co-administration of the IL-2/IgG plasmid did not enhance CTL priming by the Gag p15/p26 plasmid, (3) vaccinia vectors are useful for lentivirus-specific CTL induction in the horse, (4) Gag-specific CTL alone are either insufficient or a more robust Gag-specific CTL response is needed to limit EIAV viremia and clinical disease, and (5) CTL-inducing vaccines lacking envelope immunogens can result in lentiviral disease enhancement. Although the mechanisms for enhancement associated with this vaccine regimen remain to be elucidated, these results have important implications for development of lentivirus T cell vaccines.
Collapse
Affiliation(s)
- Robert H Mealey
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, 99164-7040, United States.
| | | | | | | | | | | |
Collapse
|
13
|
Wu C, Barbezange C, McConnell I, Blacklaws BA. Mapping and characterization of visna/maedi virus cytotoxic T-lymphocyte epitopes. J Gen Virol 2008; 89:2586-2596. [PMID: 18796728 DOI: 10.1099/vir.0.2008/002634-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
CD8(+) cytotoxic T-lymphocyte (CTL) responses have been shown to be important in the control of human and simian immunodeficiency virus infections. Infection of sheep with visna/maedi virus (VISNA), a related lentivirus, induces specific CD8(+) CTL in vivo, but the specific viral proteins recognized are not known. To determine which VISNA antigens were recognized by sheep CTL, we used recombinant vaccinia viruses expressing the different genes of VISNA: in six sheep (Finnish LandracexDorset crosses, Friesland and Lleyn breeds) all VISNA proteins were recognized except TAT. Two sheep, shown to share major histocompatibility complex (MHC) class I alleles, recognized POL and were used to map the epitope. The pol gene is 3267 bp long encoding 1088 aa. By using recombinant vaccinia viruses a central portion (nt 1609-2176, aa 537-725) was found to contain the CTL epitope and this was mapped with synthetic peptides to a 25 aa region (aa 612-636). When smaller peptides were used, a cluster of epitopes was detected: at least three epitopes were present, at positions 612-623: DSRYAFEFMIRN; 620-631: MIRNWDEEVIKN; and 625-635: EEVIKNPIQAR. A DNA-prime-modified vaccinia virus Ankara (MVA)-boost strategy was employed to immunize four sheep shown to share MHC class I allele(s) with the sheep above. Specific CTL activity developed in all the immunized sheep within 3 weeks of the final MVA boost although half the sheep showed evidence of specific reactivity after the DNA-prime immunizations. This is the first report, to our knowledge, of induction of CTL by a DNA-prime-boost method in VISNA infection.
Collapse
Affiliation(s)
- Changxin Wu
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Cyril Barbezange
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Ian McConnell
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | | |
Collapse
|
14
|
Nagarajan MM, Simard C. Gag genetic heterogeneity of equine infectious anemia virus (EIAV) in naturally infected horses in Canada. Virus Res 2007; 129:228-35. [PMID: 17767972 DOI: 10.1016/j.virusres.2007.07.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2007] [Revised: 07/07/2007] [Accepted: 07/09/2007] [Indexed: 11/19/2022]
Abstract
Gag genetic heterogeneity of equine infectious anemia virus (EIAV) variants in naturally infected horses in Canada was studied since very limited information is available on the variability of EIAV Gag sequences in public database. A phylogenetic analysis based on 414nts of Gag gene sequences amplified by a nested polymerase chain reaction (PCR) revealed the distinct divergence of these variants compared to other published strains in a corresponding region. Significant predicted amino acid sequence variations were also identified in an immunorelevant region within this fragment which corresponded to a previously characterized cytotoxic T lymphocytes (CTL) epitope cluster (EC2, aa 77-119). Furthermore, alignment of the predicted full-length Gag protein gene sequences of some of these variants associated with clinical cases of EIA in Canada with the published sequences of EIAV originating from other countries revealed conserved and variant sequences in regions corresponding to other characterized CTL epitope clusters, EC1, EC3 and EC4. Conserved sequences identified among different variant strains might have an important implication for their screening and selection of putative peptide epitopes to mediate relevant immune response and cross protection against divergent field strains of EIAV.
Collapse
Affiliation(s)
- Malliga M Nagarajan
- St-Hyacinthe Laboratory, Canadian Food Inspection Agency, St-Hyacinthe, QC, J2S 8E3, Canada.
| | | |
Collapse
|
15
|
Mealey R, Stone D, Hines M, Alperin D, Littke M, Leib S, Leach S, Hines S. Experimental Rhodococcus equi and equine infectious anemia virus DNA vaccination in adult and neonatal horses: effect of IL-12, dose, and route. Vaccine 2007; 25:7582-97. [PMID: 17889970 PMCID: PMC3342688 DOI: 10.1016/j.vaccine.2007.07.055] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2007] [Revised: 07/24/2007] [Accepted: 07/28/2007] [Indexed: 11/15/2022]
Abstract
Improving the ability of DNA-based vaccines to induce potent Type1/Th1 responses against intracellular pathogens in large outbred species is essential. Rhodoccocus equi and equine infectious anemia virus (EIAV) are two naturally occurring equine pathogens that also serve as important large animal models of neonatal immunity and lentiviral immune control. Neonates present a unique challenge for immunization due to their diminished immunologic capabilities and apparent Th2 bias. In an effort to augment R. equi- and EIAV-specific Th1 responses induced by DNA vaccination, we hypothesized that a dual promoter plasmid encoding recombinant equine IL-12 (rEqIL-12) would function as a molecular adjuvant. In adult horses, DNA vaccines induced R. equi- and EIAV-specific antibody and lymphoproliferative responses, and EIAV-specific CTL and tetramer-positive CD8+ T lymphocytes. These responses were not enhanced by the rEqIL-12 plasmid. In neonatal foals, DNA immunization induced EIAV-specific antibody and lymphoproliferative responses, but not CTL. The R. equi vapA vaccine was poorly immunogenic in foals even when co-administered with the IL-12 plasmid. It was concluded that DNA immunization was capable of inducing Th1 responses in horses; dose and route were significant variables, but rEqIL-12 was not an effective molecular adjuvant. Additional work is needed to optimize DNA vaccine-induced Th1 responses in horses, especially in neonates.
Collapse
Affiliation(s)
- R.H. Mealey
- Department of Veterinary Microbiology & Pathology, Washington State University, College of Veterinary Medicine, P.O. Box 647040, Pullman, WA 99164-7040, United States
| | - D.M. Stone
- Department of Veterinary Microbiology & Pathology, Washington State University, College of Veterinary Medicine, P.O. Box 647040, Pullman, WA 99164-7040, United States
| | - M.T. Hines
- Department of Veterinary Clinical Sciences, Washington State University, College of Veterinary Medicine, P.O. Box 646010, Pullman, WA 99164-6010, United States
| | - D.C. Alperin
- Department of Veterinary Microbiology & Pathology, Washington State University, College of Veterinary Medicine, P.O. Box 647040, Pullman, WA 99164-7040, United States
| | - M.H. Littke
- Department of Veterinary Microbiology & Pathology, Washington State University, College of Veterinary Medicine, P.O. Box 647040, Pullman, WA 99164-7040, United States
| | - S.R. Leib
- Department of Veterinary Microbiology & Pathology, Washington State University, College of Veterinary Medicine, P.O. Box 647040, Pullman, WA 99164-7040, United States
| | - S.E. Leach
- Department of Veterinary Microbiology & Pathology, Washington State University, College of Veterinary Medicine, P.O. Box 647040, Pullman, WA 99164-7040, United States
| | - S.A. Hines
- Department of Veterinary Microbiology & Pathology, Washington State University, College of Veterinary Medicine, P.O. Box 647040, Pullman, WA 99164-7040, United States
- Corresponding author. Tel.: +1 509 335 6030; fax: +1 509 335 8529. (S.A. Hines)
| |
Collapse
|
16
|
Mealey RH, Littke MH, Leib SR, Davis WC, McGuire TC. Cloning and large-scale expansion of epitope-specific equine cytotoxic T lymphocytes using an anti-equine CD3 monoclonal antibody and human recombinant IL-2. Vet Immunol Immunopathol 2007; 118:121-8. [PMID: 17498813 PMCID: PMC2002571 DOI: 10.1016/j.vetimm.2007.04.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2007] [Revised: 03/20/2007] [Accepted: 04/05/2007] [Indexed: 11/20/2022]
Abstract
Cytotoxic T lymphocytes are involved in controlling intracellular pathogens in many species, including horses. Particularly, CTL are critical for the control of equine infectious anemia virus (EIAV), a lentivirus that infects horses world-wide. In humans and animal models, CTL clones are valuable for evaluating the fine specificity of epitope recognition, and for adoptive immunotherapy against infectious and neoplastic diseases. Cloned CTL would be equally useful for similar studies in the horse. Here we present the first analysis of a method to generate equine CTL clones. Peripheral blood mononuclear cells were obtained from an EIAV-infected horse and stimulated with the EIAV Rev-QW11 peptide. Sorted CD8+ T cells were cloned by limiting dilution, and expanded without further antigen addition using irradiated PBMC, anti-equine CD3, and human recombinant IL-2. Clones could be frozen and thawed without detrimental effects, and could be subsequently expanded to numbers exceeding 2 x 10(9)cells. Flow cytometry of expanded clones confirmed the CD3+/CD8+ phenotype, and chromium release assays confirmed CTL activity. Finally, sequencing TCR beta chain genes confirmed clonality. Our results provide a reliable means to generate large numbers of epitope-specific equine CTL clones that are suitable for use in downstream applications, including functional assays and adoptive transfer studies.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antibodies, Monoclonal/immunology
- CD3 Complex/immunology
- Clone Cells/cytology
- Clone Cells/drug effects
- Epitopes, T-Lymphocyte/immunology
- Horses/immunology
- Humans
- Interleukin-2/immunology
- Interleukin-2/pharmacology
- Receptors, Antigen, T-Cell, alpha-beta/chemistry
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Recombinant Proteins
- T-Lymphocytes, Cytotoxic/cytology
- T-Lymphocytes, Cytotoxic/drug effects
- T-Lymphocytes, Cytotoxic/immunology
- Time Factors
Collapse
Affiliation(s)
- Robert H Mealey
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164-7040, USA.
| | | | | | | | | |
Collapse
|
17
|
McGuire TC, Fraser DG, Mealey RH. Cytotoxic T lymphocytes in protection against equine infectious anemia virus. Anim Health Res Rev 2007; 5:271-6. [PMID: 15984338 DOI: 10.1079/ahr200482] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
AbstractCytotoxic T lymphocytes (CTL) are associated with virus control in horses infected with equine infectious anemia virus (EIAV). Early in infection, control of the initial viremia coincides with the appearance of CTL and occurs before the appearance of neutralizing antibody. In carrier horses, treatment with immunosuppressive drugs results in viremia before a change in serum neutralizing antibody occurs. Clearance of initial viremia caused by other lentiviruses, including human immunodeficiency virus-1 and simian immunodeficiency virus, is also associated with CTL and not neutralizing antibody. In addition, depletion of CD8+cells prior to infection of rhesus monkeys with simian immunodeficiency prevents clearance of virus and the same treatment of persistently infected monkeys results in viremia. Cats given adoptive transfers of lymphocytes from vaccinated cats were protected and the protection was MHC-restricted, occurred in the absence of antiviral humoral immunity, and correlated with the transfer of cells with feline immunodeficiency virus-specific CTL and T-helper lymphocyte activities. Therefore, a lentiviral vaccine, including one for EIAV, needs to induce CTL. Based on initial failures to induce CTL to EIAV proteins by any means other than infection, we attempted to define an experimental system for the evaluation of methods for CTL induction. CTL epitopes restricted by the ELA-A1 haplotype were identified and the MHC class I molecule presenting these peptides was identified. This was done by expressing individual MHC class I molecules from cDNA clones in target cells. The target cells were then pulsed with peptides and used with effector CTL stimulated with the same peptides. In a preliminary experiment, immunization of three ELA-A1 haplotype horses with an Env peptide restricted by this haplotype resulted in CTL in peripheral blood mononuclear cells (PBMC) which recognized the Env peptide and virus-infected cells, but the CTL response was transient. Nevertheless there was significant protection against clinical disease following EIAV challenge of these immunized horses when compared with three control horses given the same virus challenge. These data indicated that responses to peptides in immunized horses needed to be enhanced. Optimal CTL responses require help from CD4+T lymphocytes, and experiments were done to identify EIAV peptides which stimulated CD4+T lymphocytes in PBMC from infected horses with different MHC class II types. Two broadly cross-reactive Gag peptides were identified which stimulated only an interferon γ response by CD4+T lymphocytes, which indicated a T helper 1 response is needed for CTL stimulation. Such peptides should facilitate CTL responses; however, other problems in inducing protection against lentiviruses remain, the most significant of them being EIAV variants that can escape both CTL and neutralizing antibody. A possible solution to CTL escape variants is the induction of high-avidity CTL to multiple EIAV epitopes.
Collapse
Affiliation(s)
- Travis C McGuire
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA 99164-7040, USA.
| | | | | |
Collapse
|
18
|
Mealey RH, Lee JH, Leib SR, Littke MH, McGuire TC. A single amino acid difference within the alpha-2 domain of two naturally occurring equine MHC class I molecules alters the recognition of Gag and Rev epitopes by equine infectious anemia virus-specific CTL. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2006; 177:7377-90. [PMID: 17082657 PMCID: PMC3342702 DOI: 10.4049/jimmunol.177.10.7377] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Although CTL are critical for control of lentiviruses, including equine infectious anemia virus, relatively little is known regarding the MHC class I molecules that present important epitopes to equine infectious anemia virus-specific CTL. The equine class I molecule 7-6 is associated with the equine leukocyte Ag (ELA)-A1 haplotype and presents the Env-RW12 and Gag-GW12 CTL epitopes. Some ELA-A1 target cells present both epitopes, whereas others are not recognized by Gag-GW12-specific CTL, suggesting that the ELA-A1 haplotype comprises functionally distinct alleles. The Rev-QW11 CTL epitope is also ELA-A1-restricted, but the molecule that presents Rev-QW11 is unknown. To determine whether functionally distinct class I molecules present ELA-A1-restricted CTL epitopes, we sequenced and expressed MHC class I genes from three ELA-A1 horses. Two horses had the 7-6 allele, which when expressed, presented Env-RW12, Gag-GW12, and Rev-QW11 to CTL. The other horse had a distinct allele, designated 141, encoding a molecule that differed from 7-6 by a single amino acid within the alpha-2 domain. This substitution did not affect recognition of Env-RW12, but resulted in more efficient recognition of Rev-QW11. Significantly, CTL recognition of Gag-GW12 was abrogated, despite Gag-GW12 binding to 141. Molecular modeling suggested that conformational changes in the 141/Gag-GW12 complex led to a loss of TCR recognition. These results confirmed that the ELA-A1 haplotype is comprised of functionally distinct alleles, and demonstrated for the first time that naturally occurring MHC class I molecules that vary by only a single amino acid can result in significantly different patterns of epitope recognition by lentivirus-specific CTL.
Collapse
MESH Headings
- Alleles
- Amino Acid Sequence
- Amino Acid Substitution/immunology
- Animals
- Antigen Presentation/immunology
- Computer Simulation
- Crystallography, X-Ray
- Cytotoxicity Tests, Immunologic
- Epitopes, T-Lymphocyte/chemistry
- Epitopes, T-Lymphocyte/immunology
- Epitopes, T-Lymphocyte/metabolism
- Female
- Gene Products, gag/chemistry
- Gene Products, gag/immunology
- Gene Products, gag/metabolism
- Gene Products, rev/chemistry
- Gene Products, rev/immunology
- Gene Products, rev/metabolism
- Histocompatibility Antigens Class I/chemistry
- Histocompatibility Antigens Class I/immunology
- Histocompatibility Antigens Class I/metabolism
- Horses
- Infectious Anemia Virus, Equine/chemistry
- Infectious Anemia Virus, Equine/immunology
- Male
- Molecular Sequence Data
- Protein Binding/immunology
- Protein Structure, Tertiary
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/metabolism
Collapse
Affiliation(s)
- Robert H Mealey
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164, USA.
| | | | | | | | | |
Collapse
|
19
|
Kydd JH, Townsend HGG, Hannant D. The equine immune response to equine herpesvirus-1: The virus and its vaccines. Vet Immunol Immunopathol 2006; 111:15-30. [PMID: 16476492 DOI: 10.1016/j.vetimm.2006.01.005] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Equine herpesvirus-1 (EHV-1) is an alphaherpesvirus which infects horses, causing respiratory and neurological disease and abortion in pregnant mares. Latency is established in trigeminal ganglia and lymphocytes. Immunity to EHV-1 lasts between 3 and 6 months. Current vaccines, many of which contain inactivated virus, have reduced the incidence of abortion storms in pregnant mares but individual animals, which may be of high commercial value, remain susceptible to infection. The development of effective vaccines which stimulate both humoral and cellular immune responses remains a priority. Utilising data generated following experimental and field infections of the target species, this review describes the immunopathogenesis of EHV-1 and the interaction between the horse's immune system and this virus, both in vivo and in vitro, and identifies immune responses, highlighting those which have been associated with protective immunity. It then goes on to recount a brief history of vaccination, outlines factors likely to influence the outcome of vaccine administration and describes the immune response stimulated by a selection of commercial and experimental vaccines. Finally, based on the available data, a rational strategy designed to stimulate protective immune responses by vaccination is outlined.
Collapse
Affiliation(s)
- Julia H Kydd
- Centre for Preventive Medicine, Animal Health Trust, Lanwades Park, Kentford, Newmarket, Suffolk CB8 7UU, United Kingdom.
| | | | | |
Collapse
|
20
|
Fluri A, Nenci C, Zahno ML, Vogt HR, Charan S, Busato A, Pancino G, Peterhans E, Obexer-Ruff G, Bertoni G. The MHC-haplotype influences primary, but not memory, immune responses to an immunodominant peptide containing T- and B-cell epitopes of the caprine arthritis encephalitis virus Gag protein. Vaccine 2006; 24:597-606. [PMID: 16154240 DOI: 10.1016/j.vaccine.2005.08.043] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2005] [Revised: 07/25/2005] [Accepted: 08/09/2005] [Indexed: 11/26/2022]
Abstract
In this report, we describe a short peptide, containing a T helper- and a B-cell epitope, located in the Gag protein of the caprine arthritis encephalitis virus (CAEV). This T-cell epitope is capable of inducing a robust T-cell proliferative response in vaccinated goats with different genetic backgrounds and to provide help for a strong antibody response to the B-cell epitope, indicating that it may function as a universal antigen-carrier for goat vaccines. The primary immune response of goats homozygous for MHC class I and II genes showed an MHC-dependent partitioning in rapid-high and slow-low responses, whereas the memory immune response was strong in both groups, demonstrating that a vaccine based on this immunodominant T helper epitope is capable to overcome genetic differences.
Collapse
Affiliation(s)
- Alexandra Fluri
- Institute of Veterinary Virology, University of Berne, Laenggass-Strasse 122, CH-3012 Berne, Switzerland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Mealey RH, Sharif A, Ellis SA, Littke MH, Leib SR, McGuire TC. Early detection of dominant Env-specific and subdominant Gag-specific CD8+ lymphocytes in equine infectious anemia virus-infected horses using major histocompatibility complex class I/peptide tetrameric complexes. Virology 2005; 339:110-26. [PMID: 15979679 PMCID: PMC3342685 DOI: 10.1016/j.virol.2005.05.025] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2005] [Revised: 04/27/2005] [Accepted: 05/23/2005] [Indexed: 11/16/2022]
Abstract
Cytotoxic T lymphocytes (CTL) are critical for control of lentiviruses, including equine infectious anemia virus (EIAV). Measurement of equine CTL responses has relied on chromium-release assays, which do not allow accurate quantitation. Recently, the equine MHC class I molecule 7-6, associated with the ELA-A1 haplotype, was shown to present both the Gag-GW12 and Env-RW12 EIAV CTL epitopes. In this study, 7-6/Gag-GW12 and 7-6/Env-RW12 MHC class I/peptide tetrameric complexes were constructed and used to analyze Gag-GW12- and Env-RW12-specific CTL responses in two EIAV-infected horses (A2164 and A2171). Gag-GW12 and Env-RW12 tetramer-positive CD8+ cells were identified in nonstimulated peripheral blood mononuclear cells as early as 14 days post-EIAV inoculation, and frequencies of tetramer-positive cells ranged from 0.4% to 6.7% of nonstimulated peripheral blood CD8+ cells during the 127-day study period. Although both horses terminated the initial viremic peak, only horse A2171 effectively controlled viral load. Neutralizing antibody was present during the initial control of viral load in both horses, but the ability to maintain control correlated with Gag-GW12-specific CD8+ cells in A2171. Despite Env-RW12 dominance, Env-RW12 escape viral variants were identified in both horses and there was no correlation between Env-RW12-specific CD8+ cells and control of viral load. Although Gag-GW12 CTL escape did not occur, a Gag-GW12 epitope variant arose in A2164 that was recognized less efficiently than the original epitope. These data indicate that tetramers are useful for identification and quantitation of CTL responses in horses, and suggest that the observed control of EIAV replication and clinical disease was associated with sustained CTL recognition of Gag-specific epitopes.
Collapse
Affiliation(s)
- Robert H Mealey
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164-7040, USA.
| | | | | | | | | | | |
Collapse
|
22
|
Chung C, Mealey RH, McGuire TC. Evaluation of high functional avidity CTL to Gag epitope clusters in EIAV carrier horses. Virology 2005; 342:228-39. [PMID: 16139857 PMCID: PMC3348724 DOI: 10.1016/j.virol.2005.07.033] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2005] [Revised: 05/25/2005] [Accepted: 07/29/2005] [Indexed: 11/24/2022]
Abstract
Cytotoxic T lymphocytes (CTL) are critical for lentivirus control including EIAV. Since CTL from most EIAV carrier horses recognize Gag epitope clusters (EC), the hypothesis that carrier horses would have high functional avidity CTL to optimal epitopes in Gag EC was tested. Twenty-two optimal EC epitopes were identified; two in EC1, six in EC2, and seven each in EC3 and 4. However, only five of nine horses had high functional avidity CTL (<or=11 nM) recognizing six epitopes in EC; four in relatively conserved EC3; and one each in EC1 and 2. Horses with high functional avidity CTL had significantly more days since the last clinical episode than horses with low avidity CTL, and this was not explained by analyzing duration of infection. Furthermore, there was a significant inverse correlation between the CTL functional avidity of the nine horses and the days since the last clinical episode. Gag CTL epitope escape variants were found in three horses, but only one of these was recognized by high functional avidity CTL. Thus, not all carrier horses had high functional avidity CTL to Gag EC, but those that did had longer periods without disease episodes.
Collapse
|
23
|
Soutullo A, García MI, Bailat A, Racca A, Tonarelli G, Malan Borel I. Antibodies and PMBC from EIAV infected carrier horses recognize gp45 and p26 synthetic peptides. Vet Immunol Immunopathol 2005; 108:335-43. [PMID: 16105689 DOI: 10.1016/j.vetimm.2005.06.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2004] [Revised: 06/06/2005] [Accepted: 06/13/2005] [Indexed: 10/25/2022]
Abstract
Equine infectious anemia virus (EIAV) is a lentivirus causing a persistent infection in horses characterized by recurrent febrile episodes and high levels of viremia associated with a novel antigenic strain of the virus. The virus contains two envelope glycoproteins, gp90 and gp45, and four internal proteins, p26, p15, p11 and p9. Considering that the most infected horses are able to restrict EIAV replication to very low levels and that gp45 and p26 contain highly conserved epitopes among lentiviruses, it would be necessary to identify those conserved epitopes stimulating cellular and humoral responses. The aims of this study were to determine if the synthetic peptides identified as gp45 (aa 523-547) and p26 (aa 318-346) representing two highly conserved and immunodominant regions of EIA virus are recognized by PBMC and antibodies to EIAV adult mixed-breed naturally infected carrier horses, and if these peptides are able to induce immune responses in mice. Antibodies from 100% of carrier horses, evaluated by ELISA, recognized both peptides; PBMC from 80% of carrier horses, evaluated by lymphoproliferation assay, recognized, at least, one peptide. Furthermore, immunization with 100 microg of each peptide elicited humoral and cellular responses in BALB/c mice, antibodies appeared at 48 or 63 days of immunization with gp45 or p26, respectively. Although the kinetics of gp45- and p26-specific antibody responses were similar, percentage of positivity was higher for gp45. The lymphoproliferation assay, evaluated by BrdU uptake, was higher in mice immunized with gp45 or p26 than in the control group (P<0.05). Based on our findings, we consider that both peptides could be included in an effective vaccine design to induce long-term immunological memory.
Collapse
Affiliation(s)
- A Soutullo
- Laboratorio de Inmunoquímica, Dirección de Sanidad Animal, Ministerio de la Producción, Bv. Pellegrini 3100, Santa Fe, Argentina
| | | | | | | | | | | |
Collapse
|