1
|
Lara-Hernandez I, Muñoz-Escalante JC, Bernal-Silva S, Noyola DE, Wong-Chew RM, Comas-García A, Comas-Garcia M. Ultrastructural and Functional Characterization of Mitochondrial Dynamics Induced by Human Respiratory Syncytial Virus Infection in HEp-2 Cells. Viruses 2023; 15:1518. [PMID: 37515204 PMCID: PMC10386036 DOI: 10.3390/v15071518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/27/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
Human respiratory syncytial virus (hRSV) is the leading cause of acute lower respiratory tract infections in children under five years of age and older adults worldwide. During hRSV infection, host cells undergo changes in endomembrane organelles, including mitochondria. This organelle is responsible for energy production in the cell and plays an important role in the antiviral response. The present study focuses on characterizing the ultrastructural and functional changes during hRSV infection using thin-section transmission electron microscopy and RT-qPCR. Here we report that hRSV infection alters mitochondrial morphodynamics by regulating the expression of key genes in the antiviral response process, such as Mfn1, VDAC2, and PINK1. Our results suggest that hRSV alters mitochondrial morphology during infection, producing a mitochondrial phenotype with shortened cristae, swollen matrix, and damaged membrane. We also observed that hRSV infection modulates the expression of the aforementioned genes, possibly as an evasion mechanism in the face of cellular antiviral response. Taken together, these results advance our knowledge of the ultrastructural alterations associated with hRSV infection and might guide future therapeutic efforts to develop effective antiviral drugs for hRSV treatment.
Collapse
Affiliation(s)
- Ignacio Lara-Hernandez
- High-Resolution Microscopy Section, Center for Research in Health Sciences and Biomedicine, Autonomous University of San Luis Potosí, San Luis Potosí 78210, Mexico
| | - Juan Carlos Muñoz-Escalante
- Center for Research in Health Sciences and Biomedicine, Autonomous University of San Luis Potosí, San Luis Potosí 78210, Mexico
- Department of Microbiology, School of Medicine, Autonomous University of San Luis Potosí, San Luis Potosí 78210, Mexico
| | - Sofía Bernal-Silva
- Department of Microbiology, School of Medicine, Autonomous University of San Luis Potosí, San Luis Potosí 78210, Mexico
- Genomic Medicine Section, Center for Research in Health Sciences and Biomedicine, Autonomous University of San Luis Potosí, San Luis Potosí 78210, Mexico
| | - Daniel E Noyola
- Center for Research in Health Sciences and Biomedicine, Autonomous University of San Luis Potosí, San Luis Potosí 78210, Mexico
- Department of Microbiology, School of Medicine, Autonomous University of San Luis Potosí, San Luis Potosí 78210, Mexico
| | - Rosa María Wong-Chew
- Research Division, School of Medicine, National Autonomous University of Mexico, Mexico City 04360, Mexico
| | - Andreu Comas-García
- Department of Microbiology, School of Medicine, Autonomous University of San Luis Potosí, San Luis Potosí 78210, Mexico
| | - Mauricio Comas-Garcia
- High-Resolution Microscopy Section, Center for Research in Health Sciences and Biomedicine, Autonomous University of San Luis Potosí, San Luis Potosí 78210, Mexico
- Science Department, Autonomous University of San Luis Potosí, San Luis Potosí 78210, Mexico
- Molecular and Translation Medicine Section, Center for Research in Health Sciences and Biomedicine, Autonomous University of San Luis Potosí, San Luis Potosí 78210, Mexico
| |
Collapse
|
2
|
Kaler J, Hussain A, Patel K, Hernandez T, Ray S. Respiratory Syncytial Virus: A Comprehensive Review of Transmission, Pathophysiology, and Manifestation. Cureus 2023; 15:e36342. [PMID: 37082497 PMCID: PMC10111061 DOI: 10.7759/cureus.36342] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2023] [Indexed: 03/21/2023] Open
Abstract
With an increasing global incidence in children younger than the age of five, respiratory syncytial virus (RSV) is one of the most common viral respiratory infections worldwide. Despite the increasing number of cases among infants and young children, RSV can infect any age group; however, some individuals are more high risk than others. Premature infants, young children, elderly, and immunocompromised individuals are the most likely to suffer a more severe presentation of RSV in comparison to healthy adults. RSV is transmitted through respiratory droplets via direct contact with an infected individual or with contaminated surfaces. The viral genome of RSV consists of 11 proteins. Out of these 11, two proteins allow for the attachment of the virus to the respiratory epithelial cells and fusion with host cells. Upon fusion, the viral material transfers to the host cell, where viral replication occurs. It is important to acknowledge that an individual is considered infectious and can transmit the virus even before the symptomatic presentation of RSV begins. As long as the individual is shedding the virus, he or she is considered infectious. The length of viral shedding also differs depending on the severity of the infection, who is infected, and the underlying immune status of an individual. Currently, there is no definitive treatment for RSV; however, supportive therapy is considered the mainstay treatment. Some pharmaceutical treatments such as ribavirin have been FDA-approved; however, the administration is typically limited to children and infants. Palivizumab is also administered as an immune prophylaxis; however, both therapies are constantly at the end of a cost-effective debate due to their extensively expensive nature and questionable adverse effect profiles. Supportive therapy includes hydration, supplemental oxygen, and mechanical ventilation in hospitalized cases; however, most RSV cases can be treated as outpatient cases. Prevention techniques such as hand washing and maintaining social distancing are imperative to minimize the transmission of the virus as much as remotely possible.
Collapse
|
3
|
Martín-Vicente M, Resino S, Martínez I. Early innate immune response triggered by the human respiratory syncytial virus and its regulation by ubiquitination/deubiquitination processes. J Biomed Sci 2022; 29:11. [PMID: 35152905 PMCID: PMC8841119 DOI: 10.1186/s12929-022-00793-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 01/28/2022] [Indexed: 12/25/2022] Open
Abstract
The human respiratory syncytial virus (HRSV) causes severe lower respiratory tract infections in infants and the elderly. An exuberant inadequate immune response is behind most of the pathology caused by the HRSV. The main targets of HRSV infection are the epithelial cells of the respiratory tract, where the immune response against the virus begins. This early innate immune response consists of the expression of hundreds of pro-inflammatory and anti-viral genes that stimulates subsequent innate and adaptive immunity. The early innate response in infected cells is mediated by intracellular signaling pathways composed of pattern recognition receptors (PRRs), adapters, kinases, and transcriptions factors. These pathways are tightly regulated by complex networks of post-translational modifications, including ubiquitination. Numerous ubiquitinases and deubiquitinases make these modifications reversible and highly dynamic. The intricate nature of the signaling pathways and their regulation offers the opportunity for fine-tuning the innate immune response against HRSV to control virus replication and immunopathology.
Collapse
Affiliation(s)
- María Martín-Vicente
- Unidad de Infección Viral E Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III (Campus Majadahonda), Carretera Majadahonda-Pozuelo, Km 2.2, 28220 Majadahonda, Madrid, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Salvador Resino
- Unidad de Infección Viral E Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III (Campus Majadahonda), Carretera Majadahonda-Pozuelo, Km 2.2, 28220 Majadahonda, Madrid, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Isidoro Martínez
- Unidad de Infección Viral E Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III (Campus Majadahonda), Carretera Majadahonda-Pozuelo, Km 2.2, 28220 Majadahonda, Madrid, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
4
|
Zhu L, Li X, Xu H, Fu L, Gao GF, Liu W, Zhao L, Wang X, Jiang W, Fang M. Multiple RNA virus matrix proteins interact with SLD5 to manipulate host cell cycle. J Gen Virol 2021; 102. [PMID: 34882534 PMCID: PMC8744269 DOI: 10.1099/jgv.0.001697] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The matrix protein of many enveloped RNA viruses regulates multiple stages of viral life cycle and has the characteristics of nucleocytoplasmic shuttling. We have previously demonstrated that matrix protein 1 (M1) of an RNA virus, influenza virus, blocks host cell cycle progression by interacting with SLD5, a member of the GINS complex, which is required for normal cell cycle progression. In this study, we found that M protein of several other RNA viruses, including VSV, SeV and HIV, interacted with SLD5. Furthermore, VSV/SeV infection and M protein of VSV/SeV/HIV induced cell cycle arrest at G0/G1 phase. Importantly, overexpression of SLD5 partially rescued the cell cycle arrest by VSV/SeV infection and VSV M protein. In addition, SLD5 suppressed VSV replication in vitro and in vivo, and enhanced type Ⅰ interferon signalling. Taken together, our results suggest that targeting SLD5 by M protein might be a common strategy used by multiple enveloped RNA viruses to block host cell cycle. Our findings provide new mechanistic insights for virus to manipulate cell cycle progression by hijacking host replication factor SLD5 during infection.
Collapse
Affiliation(s)
- Li Zhu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China.,State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150069, PR China
| | - Xinyu Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China.,University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Henan Xu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Lifeng Fu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - George Fu Gao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Wenjun Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Linqing Zhao
- Laboratory of Virology, Beijing Key Laboratory of Etiology of Viral Diseases in Children, Capital Institute of Pediatrics, Beijing 100020, PR China
| | - Xiaojun Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150069, PR China
| | - Wei Jiang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Min Fang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China.,State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150069, PR China.,International College, University of Chinese Academy of Sciences, Beijing 100049, PR China
| |
Collapse
|
5
|
Abstract
Orf virus (ORFV) is a highly epitheliotropic parapoxvirus with zoonotic significance that induces proliferative lesions in the skin of sheep, goats, and humans. Several viral proteins carried by ORFV, including nuclear factor-κB (NF-κB) inhibitors, play important roles in hijacking host-associated proteins for viral evasion of the host innate immune response. However, the roles of proteins with unknown functions in viral replication and latent infection remain to be explored. Here, we present data demonstrating that the ORF120, an early-late ORFV-encoded protein, activates the NF-κB pathway in the early phase of infection, which implies that ORFV may regulate NF-κB through a biphasic mechanism. A DUAL membrane yeast two-hybrid system and coimmunoprecipitation experiments revealed that the ORF120 protein interacts with Ras-GTPase-activating protein (SH3 domain) binding protein 1 (G3BP1). The overexpression of the ORF120 protein can efficiently increase the expression of G3BP1 and nuclear translocation of NF-κB-p65 in primary ovine fetal turbinate (OFTu) and HeLa cells. The knockdown of G3BP1 significantly decreased ORF120-induced NF-κB activation, indicating that G3BP1 is involved in ORF120-induced NF-κB pathway activation. A dual-luciferase reporter assay revealed that ORF120 could positively regulate the NF-κB pathway through the full-length G3BP1 or the domain of G3BP1RRM+RGG. In conclusion, we demonstrate, for the first time, that the ORF120 protein is capable of positively regulating NF-κB signaling by interacting with G3BP1, providing new insights into ORFV pathogenesis and a theoretical basis for antiviral drug design. IMPORTANCE As part of the host innate response, the nuclear factor-κB (NF-κB) pathway plays a partial antiviral role in nature by regulating the innate immune response. Thus, the NF-κB pathway is probably the most frequently targeted intracellular pathway for subversion by anti-immune modulators that are carried by a wide range of pathogens. Various viruses, including poxviruses, carry several proteins that prepare the host cell for viral replication by inhibiting cytoplasmic events, leading to the initiation of NF-κB transcriptional activity. However, NF-κB activity is hypothesized to facilitate viral replication to a great extent. The significance of our research is in the exploration of the activation mechanism of NF-κB induced by the Orf virus (ORFV) ORF120 protein interacting with G3BP1, which helps not only to explain the ability of ORFV to modulate the immune response through the positive regulation of NF-κB but also to show the mechanism by which the virus evades the host innate immune response.
Collapse
|
6
|
Elahi S. Neonatal and Children’s Immune System and COVID-19: Biased Immune Tolerance versus Resistance Strategy. THE JOURNAL OF IMMUNOLOGY 2020; 205:1990-1997. [DOI: 10.4049/jimmunol.2000710] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Abstract
The recent outbreak of COVID-19 has emerged as a major global health concern. Although susceptible to infection, recent evidence indicates mostly asymptomatic or mild presentation of the disease in infants, children, and adolescents. Similar observations were made for acute respiratory infections caused by other coronaviruses (severe acute respiratory syndrome and Middle East respiratory syndrome). These observations suggest that the immune system behaves differently in children than adults. Recent developments in the field demonstrated fundamental differences in the neonatal immune system as compared with adults, whereby infants respond to microorganisms through biased immune tolerance rather than resistance strategies. Similarly, more frequent/recent vaccinations in children and younger populations may result in trained immunity. Therefore, the physiological abundance of certain immunosuppressive cells, a tightly regulated immune system, and/or exposure to attenuated vaccines may enhance trained immunity to limit excessive immune reaction to COVID-19 in the young.
Collapse
Affiliation(s)
- Shokrollah Elahi
- School of Dentistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G2E1, Canada
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Alberta T6G1Z2, Canada
- Department of Medical Microbiology and Immunology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G2E1, Canada; and
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta T6G2E1, Canada
| |
Collapse
|
7
|
Gao Y, Cao D, Pawnikar S, John KP, Ahn HM, Hill S, Ha JM, Parikh P, Ogilvie C, Swain A, Yang A, Bell A, Salazar A, Miao Y, Liang B. Structure of the Human Respiratory Syncytial Virus M2-1 Protein in Complex with a Short Positive-Sense Gene-End RNA. Structure 2020; 28:979-990.e4. [PMID: 32697936 DOI: 10.1016/j.str.2020.07.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 06/19/2020] [Accepted: 07/01/2020] [Indexed: 12/25/2022]
Abstract
The M2-1 protein of human respiratory syncytial virus (HRSV) is a transcription anti-terminator that regulates the processivity of the HRSV RNA-dependent RNA polymerase (RdRP). Here, we report a crystal structure of HRSV M2-1 bound to a short positive-sense gene-end RNA (SH7) at 2.7 Å resolution. We identified multiple critical residues of M2-1 involved in RNA interaction and examined their roles using mutagenesis and MicroScale Thermophoresis (MST) assay. We found that hydrophobic residue Phe23 is indispensable for M2-1 to recognize the base of RNA. We also captured spontaneous binding of RNA (SH7) to M2-1 in all-atom simulations using a robust Gaussian accelerated molecular dynamics (GaMD) method. Both experiments and simulations revealed that the interactions of RNA with two separate domains of M2-1, the zinc-binding domain (ZBD) and the core domain (CD), are independent of each other. Collectively, our results provided a structural basis for RNA recognition by HRSV M2-1.
Collapse
Affiliation(s)
- Yunrong Gao
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322 USA
| | - Dongdong Cao
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322 USA
| | - Shristi Pawnikar
- Center for Computational Biology and Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66047, USA
| | - Karen P John
- Center for Computational Biology and Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66047, USA
| | - Hyunjun Max Ahn
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322 USA
| | - Shaylan Hill
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322 USA
| | - Ju Mi Ha
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322 USA
| | - Priyal Parikh
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322 USA
| | - Claire Ogilvie
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322 USA
| | - Anshuman Swain
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322 USA
| | - Amy Yang
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322 USA
| | - Amber Bell
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322 USA
| | - Angela Salazar
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322 USA
| | - Yinglong Miao
- Center for Computational Biology and Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66047, USA.
| | - Bo Liang
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322 USA.
| |
Collapse
|
8
|
Hofstetter AR, Sacco RE. Oxidative stress pathway gene transcription after bovine respiratory syncytial virus infection in vitro and ex vivo. Vet Immunol Immunopathol 2019; 219:109956. [PMID: 31706084 DOI: 10.1016/j.vetimm.2019.109956] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 09/24/2019] [Accepted: 09/30/2019] [Indexed: 11/26/2022]
Abstract
Studies in mouse and lamb models indicate important roles of reactive oxygen species (ROS) in the pathology and immune response to respiratory syncytial virus (RSV). The role of ROS in bovine RSV (BRSV) infection of calves remains unclear. BRSV naturally infects calves, leading to similar disease course, micro- and macro-lesions, and symptomology as is observed in RSV infection of human neonates. Furthermore, humans, lambs, and calves, but not mice, have an active lung oxidative system involving lactoperoxidase (LPO) and the dual oxidases (DUOX) 1 and 2. To gain insight into the role of ROS in the BRSV-infected lung, we examined gene expression in infected bovine cells using qPCR. A panel of 19 primers was used to assay ex vivo and in vitro BRSV-infected cells. The panel targeted genes involved in both production and regulation of ROS. BRSV infection significantly increased transcription of five genes in bovine respiratory tract cells in vitro and ex vivo. PTGS2 expression more than doubled in both sample types. Four transcripts varied significantly in lung lesions, but not non-lesion samples, compared with uninfected lung. This is the first report of the transcriptional profile of ROS-related genes in the airway after BRSV infection in the natural host.
Collapse
Affiliation(s)
- Amelia R Hofstetter
- Ruminant Diseases and Immunology Research Unit, National Animal Disease Center, United States Department of Agriculture, 1920 Dayton Avenue, Ames, IA, 50010, United States of America.
| | - Randy E Sacco
- Ruminant Diseases and Immunology Research Unit, National Animal Disease Center, United States Department of Agriculture, 1920 Dayton Avenue, Ames, IA, 50010, United States of America.
| |
Collapse
|
9
|
Bohmwald K, Gálvez NMS, Canedo-Marroquín G, Pizarro-Ortega MS, Andrade-Parra C, Gómez-Santander F, Kalergis AM. Contribution of Cytokines to Tissue Damage During Human Respiratory Syncytial Virus Infection. Front Immunol 2019; 10:452. [PMID: 30936869 PMCID: PMC6431622 DOI: 10.3389/fimmu.2019.00452] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 02/19/2019] [Indexed: 12/26/2022] Open
Abstract
The human respiratory syncytial virus (hRSV) remains one of the leading pathogens causing acute respiratory tract infections (ARTIs) in children younger than 2 years old, worldwide. Hospitalizations during the winter season due to hRSV-induced bronchiolitis and pneumonia increase every year. Despite this, there are no available vaccines to mitigate the health and economic burden caused by hRSV infection. The pathology caused by hRSV induces significant damage to the pulmonary epithelium, due to an excessive inflammatory response at the airways. Cytokines are considered essential players for the establishment and modulation of the immune and inflammatory responses, which can either be beneficial or harmful for the host. The deleterious effect observed upon hRSV infection is mainly due to tissue damage caused by immune cells recruited to the site of infection. This cellular recruitment takes place due to an altered profile of cytokines secreted by epithelial cells. As a result of inflammatory cell recruitment, the amounts of cytokines, such as IL-1, IL-6, IL-10, and CCL5 are further increased, while IL-10 and IFN-γ are decreased. However, additional studies are required to elicit the mediators directly associated with hRSV damage entirely. In addition to the detrimental induction of inflammatory mediators in the respiratory tract caused by hRSV, reports indicating alterations in the central nervous system (CNS) have been published. Indeed, elevated levels of IL-6, IL-8 (CXCL8), CCL2, and CCL4 have been reported in cerebrospinal fluid from patients with severe bronchiolitis and hRSV-associated encephalopathy. In this review article, we provide an in-depth analysis of the role of cytokines secreted upon hRSV infection and their potentially harmful contribution to tissue damage of the respiratory tract and the CNS.
Collapse
Affiliation(s)
- Karen Bohmwald
- Millenium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Nicolás M. S. Gálvez
- Millenium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Gisela Canedo-Marroquín
- Millenium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Magdalena S. Pizarro-Ortega
- Millenium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Catalina Andrade-Parra
- Millenium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Felipe Gómez-Santander
- Millenium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexis M. Kalergis
- Millenium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
10
|
González AE, Lay MK, Jara EL, Espinoza JA, Gómez RS, Soto J, Rivera CA, Abarca K, Bueno SM, Riedel CA, Kalergis AM. Aberrant T cell immunity triggered by human Respiratory Syncytial Virus and human Metapneumovirus infection. Virulence 2016; 8:685-704. [PMID: 27911218 DOI: 10.1080/21505594.2016.1265725] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Human Respiratory syncytial virus (hRSV) and human metapneumovirus (hMPV) are the two major etiological viral agents of lower respiratory tract diseases, affecting mainly infants, young children and the elderly. Although the infection of both viruses trigger an antiviral immune response that mediate viral clearance and disease resolution in immunocompetent individuals, the promotion of long-term immunity appears to be deficient and reinfection are common throughout life. A possible explanation for this phenomenon is that hRSV and hMPV, can induce aberrant T cell responses, which leads to exacerbated lung inflammation and poor T and B cell memory immunity. The modulation of immune response exerted by both viruses include different strategies such as, impairment of immunological synapse mediated by viral proteins or soluble factors, and the induction of pro-inflammatory cytokines by epithelial cells, among others. All these viral strategies contribute to the alteration of the adaptive immunity in order to increase the susceptibility to reinfections. In this review, we discuss current research related to the mechanisms underlying the impairment of T and B cell immune responses induced by hRSV and hMPV infection. In addition, we described the role each virulence factor involved in immune modulation caused by these viruses.
Collapse
Affiliation(s)
- Andrea E González
- a Millennium Institute of Immunology and Immunotherapy , Departamento de Genética Molecular y Microbiología , Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile , Santiago , Chile
| | - Margarita K Lay
- b Departamento de Biotecnología , Facultad de Ciencias del Mar y Recursos Biológicos, Universidad de Antofagasta , Antofagasta , Chile
| | - Evelyn L Jara
- a Millennium Institute of Immunology and Immunotherapy , Departamento de Genética Molecular y Microbiología , Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile , Santiago , Chile
| | - Janyra A Espinoza
- a Millennium Institute of Immunology and Immunotherapy , Departamento de Genética Molecular y Microbiología , Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile , Santiago , Chile
| | - Roberto S Gómez
- a Millennium Institute of Immunology and Immunotherapy , Departamento de Genética Molecular y Microbiología , Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile , Santiago , Chile
| | - Jorge Soto
- a Millennium Institute of Immunology and Immunotherapy , Departamento de Genética Molecular y Microbiología , Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile , Santiago , Chile
| | - Claudia A Rivera
- a Millennium Institute of Immunology and Immunotherapy , Departamento de Genética Molecular y Microbiología , Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile , Santiago , Chile
| | - Katia Abarca
- c Departamento de Pediatría , Facultad de Medicina, Pontificia Universidad Católica de Chile , Santiago , Chile
| | - Susan M Bueno
- a Millennium Institute of Immunology and Immunotherapy , Departamento de Genética Molecular y Microbiología , Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile , Santiago , Chile.,d INSERM UMR1064 , Nantes , France
| | - Claudia A Riedel
- e Millennium Institute of Immunology and Immunotherapy , Departamento de Ciencias Biológicas , Facultad de Ciencias Biológicas y Facultad de Medicina, Universidad Andrés Bello , Santiago , Chile
| | - Alexis M Kalergis
- a Millennium Institute of Immunology and Immunotherapy , Departamento de Genética Molecular y Microbiología , Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile , Santiago , Chile.,c Departamento de Pediatría , Facultad de Medicina, Pontificia Universidad Católica de Chile , Santiago , Chile.,f Millennium Institute of Immunology and Immunotherapy , Departamento de Endocrinología , Facultad de Medicina, Pontificia Universidad Católica de Chile , Santiago , Chile
| |
Collapse
|
11
|
Bohmwald K, Espinoza JA, Rey-Jurado E, Gómez RS, González PA, Bueno SM, Riedel CA, Kalergis AM. Human Respiratory Syncytial Virus: Infection and Pathology. Semin Respir Crit Care Med 2016; 37:522-37. [PMID: 27486734 PMCID: PMC7171722 DOI: 10.1055/s-0036-1584799] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The human respiratory syncytial virus (hRSV) is by far the major cause of acute lower respiratory tract infections (ALRTIs) worldwide in infants and children younger than 2 years. The overwhelming number of hospitalizations due to hRSV-induced ALRTI each year is due, at least in part, to the lack of licensed vaccines against this virus. Thus, hRSV infection is considered a major public health problem and economic burden in most countries. The lung pathology developed in hRSV-infected individuals is characterized by an exacerbated proinflammatory and unbalanced Th2-type immune response. In addition to the adverse effects in airway tissues, hRSV infection can also cause neurologic manifestations in the host, such as seizures and encephalopathy. Although the origins of these extrapulmonary symptoms remain unclear, studies with patients suffering from neurological alterations suggest an involvement of the inflammatory response against hRSV. Furthermore, hRSV has evolved numerous mechanisms to modulate and evade the immune response in the host. Several studies have focused on elucidating the interactions between hRSV virulence factors and the host immune system, to rationally design new vaccines and therapies against this virus. Here, we discuss about the infection, pathology, and immune response triggered by hRSV in the host.
Collapse
Affiliation(s)
- Karen Bohmwald
- Departamento de Genética Molecular y Microbiología, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Janyra A Espinoza
- Departamento de Genética Molecular y Microbiología, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Emma Rey-Jurado
- Departamento de Genética Molecular y Microbiología, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Roberto S Gómez
- Departamento de Genética Molecular y Microbiología, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pablo A González
- Departamento de Genética Molecular y Microbiología, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Susan M Bueno
- Departamento de Genética Molecular y Microbiología, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Claudia A Riedel
- Departamento de Ciencias Biológicas y Facultad de Medicina, Millennium Institute on Immunology and Immunotherapy, Universidad Andrés Bello, Santiago, Chile
| | - Alexis M Kalergis
- Departamento de Genética Molecular y Microbiología, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
12
|
Lay MK, Bueno SM, Gálvez N, Riedel CA, Kalergis AM. New insights on the viral and host factors contributing to the airway pathogenesis caused by the respiratory syncytial virus. Crit Rev Microbiol 2015; 42:800-12. [PMID: 26119025 DOI: 10.3109/1040841x.2015.1055711] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The respiratory syncytial virus (RSV) is the most prevalent etiological agent of lower respiratory tract infections and the first cause of hospitalization in infants due to respiratory disease worldwide. However, efforts to develop safe and effective vaccines and antivirals have been challenged by an incomplete understanding of the RSV pathogenesis and the host immune response to RSV infection in the airways. Here, we discuss recent advances in understanding the interaction between RSV and the epithelium to induce pathogenesis in the airways, such as the role of the RSV NS2 protein in the airway epithelium, as well as the events involved in the RSV entry process. In addition, we summarize the cellular factors produced by airway epithelial cells (AECs) in response to RSV infection that lead to the activation of innate and adaptive immune responses, inducing lung inflammation and disease. Further, we discuss the possible contribution of a recently identified cytokine, thymic stromal lymphopoitein (TSLP), in the lung immunopathology caused by RSV.
Collapse
Affiliation(s)
- Margarita K Lay
- a Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas , Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile , Santiago , Chile
| | - Susan M Bueno
- a Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas , Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile , Santiago , Chile .,b INSERM U1064 , Nantes , France
| | - Nicolás Gálvez
- a Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas , Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile , Santiago , Chile
| | - Claudia A Riedel
- c Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas y Facultad de Medicina , Laboratorio de Biología Celular y Farmacología, Millennium Institute on Immunology and Immunotherapy, Universidad Andrés Bello , Santiago , Chile , and
| | - Alexis M Kalergis
- a Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas , Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile , Santiago , Chile .,b INSERM U1064 , Nantes , France .,d Departamento de Inmunología Clínica y Reumatología, Facultad de Medicina , Pontificia Universidad Católica de Chile , Santiago , Chile
| |
Collapse
|
13
|
Yamaji Y, Nakayama T. Recombinant measles viruses expressing respiratory syncytial virus proteins induced virus-specific CTL responses in cotton rats. Vaccine 2014; 32:4529-4536. [PMID: 24951869 DOI: 10.1016/j.vaccine.2014.06.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 05/27/2014] [Accepted: 06/06/2014] [Indexed: 10/25/2022]
Abstract
Respiratory syncytial virus (RSV) is a common cause of serious lower respiratory tract illnesses in infants. Natural infections with RSV provide limited protection against reinfection because of inefficient immunological responses that do not induce long-term memory. RSV natural infection has been shown to induce unbalanced immune response. The effective clearance of RSV is known to require the induction of a balanced Th1/Th2 immune response, which involves the induction of cytotoxic T lymphocytes (CTL). In our previous study, recombinant AIK-C measles vaccine strains MVAIK/RSV/F and MVAIK/RSV/G were developed, which expressed the RSV fusion (F) protein or glycoprotein (G). These recombinant viruses elicited antibody responses against RSV in cotton rats, and no infectious virus was recovered, but small amounts of infiltration of inflammatory cells were observed in the lungs following RSV challenge. In the present study, recombinant AIK-C measles vaccine strains MVAIK/RSV/M2-1 and MVAIK/RSV/NP were developed, expressing RSV M2-1 or Nucleoprotein (NP), respectively. These viruses exhibited temperature-sensitivity (ts), which was derived from AIK-C, and expressed respective RSV antigens. The intramuscular inoculation of cotton rats with the recombinant measles virus led to the induction of CD8(+) IFN-γ(+) cells. No infectious virus was recovered from a lung homogenate following the challenge. A Histological examination of the lungs revealed a significant reduction in inflammatory reactions without alveolar damage. These results support the recombinant measles viruses being effective vaccine candidates against RSV that induce RSV-specific CTL responses with or without the development of an antibody response.
Collapse
Affiliation(s)
- Yoshiaki Yamaji
- Laboratory of Viral Infection I, Kitasato Institute for Life Sciences, Kitasato University, Shirokane 5-9-1, Minato-ku, Tokyo 108-8641, Japan
| | - Tetsuo Nakayama
- Laboratory of Viral Infection I, Kitasato Institute for Life Sciences, Kitasato University, Shirokane 5-9-1, Minato-ku, Tokyo 108-8641, Japan.
| |
Collapse
|
14
|
Obata K, Kojima T, Masaki T, Okabayashi T, Yokota S, Hirakawa S, Nomura K, Takasawa A, Murata M, Tanaka S, Fuchimoto J, Fujii N, Tsutsumi H, Himi T, Sawada N. Curcumin prevents replication of respiratory syncytial virus and the epithelial responses to it in human nasal epithelial cells. PLoS One 2013; 8:e70225. [PMID: 24058438 PMCID: PMC3776807 DOI: 10.1371/journal.pone.0070225] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2012] [Accepted: 06/18/2013] [Indexed: 12/24/2022] Open
Abstract
The human nasal epithelium is the first line of defense during respiratory virus infection. Respiratory syncytial virus (RSV) is the major cause of bronchitis, asthma and severe lower respiratory tract disease in infants and young children. We previously reported in human nasal epithelial cells (HNECs), the replication and budding of RSV and the epithelial responses, including release of proinflammatory cytokines and enhancement of the tight junctions, are in part regulated via an NF-κB pathway. In this study, we investigated the effects of the NF-κB in HNECs infected with RSV. Curcumin prevented the replication and budding of RSV and the epithelial responses to it without cytotoxicity. Furthermore, the upregulation of the epithelial barrier function caused by infection with RSV was enhanced by curcumin. Curcumin also has wide pharmacokinetic effects as an inhibitor of NF-κB, eIF-2α dephosphorylation, proteasome and COX2. RSV-infected HNECs were treated with the eIF-2α dephosphorylation blocker salubrinal and the proteasome inhibitor MG132, and inhibitors of COX1 and COX2. Treatment with salubrinal, MG132 and COX2 inhibitor, like curcumin, prevented the replication of RSV and the epithelial responses, and treatment with salubrinal and MG132 enhanced the upregulation of tight junction molecules induced by infection with RSV. These results suggest that curcumin can prevent the replication of RSV and the epithelial responses to it without cytotoxicity and may act as therapy for severe lower respiratory tract disease in infants and young children caused by RSV infection.
Collapse
Affiliation(s)
- Kazufumi Obata
- Department of Otolaryngology, Sapporo Medical University School of Medicine, Sapporo, Japan
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Takashi Kojima
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
- Department of Cell Science, Research Institute of Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
- * E-mail:
| | - Tomoyuki Masaki
- Department of Otolaryngology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Tamaki Okabayashi
- Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Shinichi Yokota
- Department of Microbiology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Satoshi Hirakawa
- Department of Pediatrics, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Kazuaki Nomura
- Department of Otolaryngology, Sapporo Medical University School of Medicine, Sapporo, Japan
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Akira Takasawa
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Masaki Murata
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Satoshi Tanaka
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Jun Fuchimoto
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Nobuhiro Fujii
- Department of Microbiology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hiroyuki Tsutsumi
- Department of Pediatrics, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Tetsuo Himi
- Department of Otolaryngology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Norimasa Sawada
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| |
Collapse
|
15
|
Different NF-κB activation characteristics of human respiratory syncytial virus subgroups A and B. Microb Pathog 2012; 52:184-91. [DOI: 10.1016/j.micpath.2011.12.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Revised: 12/22/2011] [Accepted: 12/24/2011] [Indexed: 11/21/2022]
|
16
|
Abstract
The nuclear factor-κB (NF-κB) family of transcription factors plays a central part in the host response to infection by microbial pathogens, by orchestrating the innate and acquired host immune responses. The NF-κB proteins are activated by diverse signalling pathways that originate from many different cellular receptors and sensors. Many successful pathogens have acquired sophisticated mechanisms to regulate the NF-κB signalling pathways by deploying subversive proteins or hijacking the host signalling molecules. Here, we describe the mechanisms by which viruses and bacteria micromanage the host NF-κB signalling circuitry to favour the continued survival of the pathogen.
Collapse
Affiliation(s)
- Masmudur M Rahman
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, 1600 SW Archer Road, PO Box 100266, Gainesville, Florida, USA
| | | |
Collapse
|
17
|
Bueno SM, González PA, Riedel CA, Carreño LJ, Vásquez AE, Kalergis AM. Local cytokine response upon respiratory syncytial virus infection. Immunol Lett 2010; 136:122-9. [PMID: 21195729 DOI: 10.1016/j.imlet.2010.12.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Revised: 11/01/2010] [Accepted: 12/06/2010] [Indexed: 11/28/2022]
Abstract
Respiratory syncytial virus (RSV) is the leading cause of childhood hospitalization and respiratory distress and has been recognized for several decades as a major health and economic burden worldwide. This virus has developed several virulence mechanisms to impair the establishment of a protective immune response to re-infection. Accordingly, inefficient immunological memory is usually generated after exposure to this pathogen. Furthermore, it has been shown that RSV can actively promote the induction of an inadequate cellular immune response at the site of infection that causes exacerbated inflammation in the respiratory tract. Such an inflammatory response is both inefficient for clearing the virus and can be responsible for detrimental symptoms, such as asthma and wheezing. Recent data suggest that RSV possesses molecular mechanisms to induce the secretion of pro-inflammatory cytokines that modulate the immune response and impair viral clearance by reducing IFN-γ production. Here, we discuss recent research leading to the identification of RSV virulence factors that are responsible of promoting a pro-inflammatory environment at the airways and their implications on pathogenicity.
Collapse
Affiliation(s)
- Susan M Bueno
- Millennium Nucleus on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | | | | | | | | |
Collapse
|
18
|
Munday DC, Emmott E, Surtees R, Lardeau CH, Wu W, Duprex WP, Dove BK, Barr JN, Hiscox JA. Quantitative proteomic analysis of A549 cells infected with human respiratory syncytial virus. Mol Cell Proteomics 2010; 9:2438-59. [PMID: 20647383 PMCID: PMC2984239 DOI: 10.1074/mcp.m110.001859] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Human respiratory syncytial virus (HRSV) is a major cause of pediatric lower respiratory tract disease to which there is no vaccine or efficacious chemotherapeutic strategy. Although RNA synthesis and virus assembly occur in the cytoplasm, HRSV is known to induce nuclear responses in the host cell as replication alters global gene expression. Quantitative proteomics was used to take an unbiased overview of the protein changes in transformed human alveolar basal epithelial cells infected with HRSV. Underpinning this was the use of stable isotope labeling with amino acids in cell culture coupled to LC-MS/MS, which allowed the direct and simultaneous identification and quantification of both cellular and viral proteins. To reduce sample complexity and increase data return on potential protein localization, cells were fractionated into nuclear and cytoplasmic extracts. This resulted in the identification of 1,140 cellular proteins and six viral proteins. The proteomics data were analyzed using Ingenuity Pathways Analysis to identify defined canonical pathways and functional groupings. Selected data were validated using Western blot, direct and indirect immunofluorescence confocal microscopy, and functional assays. The study served to validate and expand upon known HRSV-host cell interactions, including those associated with the antiviral response and alterations in subnuclear structures such as the nucleolus and ND10 (promyelocytic leukemia bodies). In addition, novel changes were observed in mitochondrial proteins and functions, cell cycle regulatory molecules, nuclear pore complex proteins and nucleocytoplasmic trafficking proteins. These data shed light into how the cell is potentially altered to create conditions more favorable for infection. Additionally, the study highlights the application and advantage of stable isotope labeling with amino acids in cell culture coupled to LC-MS/MS for the analysis of virus-host interactions.
Collapse
Affiliation(s)
- Diane C Munday
- Institute of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
The battle between virus and host: modulation of Toll-like receptor signaling pathways by virus infection. Mediators Inflamm 2010; 2010:184328. [PMID: 20672047 PMCID: PMC2903949 DOI: 10.1155/2010/184328] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2009] [Accepted: 04/07/2010] [Indexed: 02/05/2023] Open
Abstract
In order to establish an infection, viruses need to either suppress or escape from host immune defense systems. Recent immunological research has focused on innate immunity as the first line of host defense, especially pattern recognition molecules such as Toll-like receptors (TLRs), RIG-I-like receptors (RLRs), and NOD-like receptors (NLRs). Various microbial components are recognized by their vague and common molecular shapes so-called, pathogen-associated molecular patterns (PAMPs). PAMPs induce inflammatory reactions mediated by the activation of the transcription factor, NF-κB, and by interferons, which lead to an antiviral immune response. Viruses have the capacity to suppress or escape from this pattern recognition molecule-mediated antimicrobial response in various ways. In this paper, we review the various strategies used by viruses to modulate the pattern recognition molecule-mediated innate immune response.
Collapse
|
20
|
Coronavirus infection modulates the unfolded protein response and mediates sustained translational repression. J Virol 2008; 82:4492-501. [PMID: 18305036 DOI: 10.1128/jvi.00017-08] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
During coronavirus replication, viral proteins induce the formation of endoplasmic reticulum (ER)-derived double-membrane vesicles for RNA synthesis, and viral structural proteins assemble virions at the ER-Golgi intermediate compartment. We hypothesized that the association and intense utilization of the ER during viral replication would induce the cellular unfolded protein response (UPR), a signal transduction cascade that acts to modulate translation, membrane biosynthesis, and the levels of ER chaperones. Here, we report that infection by the murine coronavirus mouse hepatitis virus (MHV) triggers the proximal UPR transducers, as revealed by monitoring the IRE1-mediated splicing of XBP-1 mRNA and the cleavage of ATF6alpha. However, we detected minimal downstream induction of UPR target genes, including ERdj4, ER degradation-enhancing alpha-mannosidase-like protein, and p58(IPK), or expression of UPR reporter constructs. Translation initiation factor eIF2alpha is highly phosphorylated during MHV infection, and translation of cellular mRNAs is attenuated. Furthermore, we found that the critical homeostasis regulator GADD34, which recruits protein phosphatase 1 to dephosphorylate eIF2alpha during the recovery phase of the UPR, is not expressed during MHV infection. These results suggest that MHV modifies the UPR by impeding the induction of UPR-responsive genes, thereby favoring a sustained shutdown of the synthesis of host cell proteins while the translation of viral proteins escalates. The role of this modified response and its potential relevance to viral mechanisms for the evasion of innate defense signaling pathways during coronavirus replication are discussed.
Collapse
|
21
|
Arnold R, König W. Peroxisome proliferator-activated receptor-γ agonists inhibit the replication of respiratory syncytial virus (RSV) in human lung epithelial cells. Virology 2006; 350:335-46. [PMID: 16616290 DOI: 10.1016/j.virol.2006.03.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2005] [Revised: 02/13/2006] [Accepted: 03/09/2006] [Indexed: 11/16/2022]
Abstract
We have previously shown that peroxisome proliferator-activated receptor-gamma (PPARgamma) agonists inhibited the inflammatory response of RSV-infected human lung epithelial cells. In this study, we supply evidence that specific PPARgamma agonists (15d-PGJ2, ciglitazone, troglitazone, Fmoc-Leu) efficiently blocked the RSV-induced cytotoxicity and development of syncytia in tissue culture (A549, HEp-2). All PPARgamma agonists under study markedly inhibited the cell surface expression of the viral G and F protein on RSV-infected A549 cells. This was paralleled by a reduced cellular amount of N protein-encoding mRNA determined by real-time RT-PCR. Concomitantly, a reduced release of infectious progeny virus into the cell supernatants of human lung epithelial cells (A549, normal human bronchial epithelial cells (NHBE)) was observed. Similar results were obtained regardless whether PPARgamma agonists were added prior to RSV infection or thereafter, suggesting that the agonists inhibited viral gene expression and not the primary adhesion or fusion process.
Collapse
Affiliation(s)
- Ralf Arnold
- Institute of Medical Microbiology, Otto-von-Guericke-University, Leipzigerstr. 44, 39120 Magdeburg, Germany.
| | | |
Collapse
|
22
|
Cheng X, Park H, Zhou H, Jin H. Overexpression of the M2-2 protein of respiratory syncytial virus inhibits viral replication. J Virol 2006; 79:13943-52. [PMID: 16254330 PMCID: PMC1280200 DOI: 10.1128/jvi.79.22.13943-13952.2005] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The M2-2 protein of respiratory syncytial virus (RSV) is involved in regulation of viral RNA transcription and replication. Encoded by the next-to-last gene of RSV, the M2-2 open reading frame (ORF) overlaps with the upstream M2-1 ORF, suggesting that the production of the M2-2 protein might be tightly regulated during virus replication. To evaluate the effect of M2-2 overexpression on RSV replication, the M2-2 gene was separated from M2-1 by leaving it at the position prior to the M2-1 or moving it to the promoter proximal position as an independent transcriptional unit in the RSV A2 genome. Although recombinant viruses bearing the shuffled M2-2 gene were recovered and expressed higher levels of M2-2, most of these viruses grew poorly in HEp-2 cells. Sequence analysis revealed that various mutations (substitution, insertion, and deletion) occurred in the M2-2 gene, resulting in reduced M2-2 activity as measured by the RSV minigenome system. Further examination of the M2-2 sequence and its function showed that either one of the first two AUG codons located at the 5' end of M2-2 could be used to produce a functional M2-2 protein and that deletion of the first six amino acids from its N terminus or four amino acids from its C terminus greatly reduced its function. The effect of M2-2 protein on RSV replication was also studied by examining RSV replication in cells transiently expressing M2-2. The M2-2 protein expressed at a high level completely inhibited RSV replication. These results strongly suggested that the level of the M2-2 protein produced in the infected cells is critical to RSV replication.
Collapse
Affiliation(s)
- Xing Cheng
- MedImmune Vaccines Inc., 297 N. Bernardo Ave., Mountain View, CA 94043, USA
| | | | | | | |
Collapse
|
23
|
Arnold R, König W. Peroxisome-proliferator-activated receptor-gamma agonists inhibit the release of proinflammatory cytokines from RSV-infected epithelial cells. Virology 2005; 346:427-39. [PMID: 16330064 DOI: 10.1016/j.virol.2005.11.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2005] [Revised: 10/07/2005] [Accepted: 11/09/2005] [Indexed: 11/15/2022]
Abstract
The epithelial cells of the airways are the target cells for respiratory syncytial virus (RSV) infection and the site of the majority of the inflammation associated with the disease. Recently, peroxisome-proliferator-activated receptor gamma (PPARgamma), a member of the nuclear hormone receptor superfamily, has been shown to possess anti-inflammatory properties. Therefore, we investigated the role of PPARgamma agonists (15d-PGJ(2), ciglitazone and troglitazone) on the synthesis of RSV-induced cytokine release from RSV-infected human lung epithelial cells (A549). We observed that all PPARgamma ligands inhibited dose-dependently the release of TNF-alpha, GM-CSF, IL-1alpha, IL-6 and the chemokines CXCL8 (IL-8) and CCL5 (RANTES) from RSV-infected A549 cells. Concomitantly, the PPARgamma ligands diminished the cellular amount of mRNA encoding for IL-6, CXCL8 and CCL5 and the RSV-induced binding activity of the transcription factors NF-kappaB (p65/p50) and AP-1 (c-fos), respectively. Our data presented herein suggest a potential application of PPARgamma ligands in the anti-inflammatory treatment of RSV infection.
Collapse
Affiliation(s)
- Ralf Arnold
- Institute of Medical Microbiology, Otto-von-Guericke-University, Leipzigerstr. 44, 39120 Magdeburg, Germany.
| | | |
Collapse
|