1
|
Wang D, Yang G, Liu B. Structure of the measles virus ternary polymerase complex. Nat Commun 2025; 16:3819. [PMID: 40268911 PMCID: PMC12019284 DOI: 10.1038/s41467-025-58985-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 04/08/2025] [Indexed: 04/25/2025] Open
Abstract
Measles virus (MeV) is a highly contagious pathogen that causes significant morbidity worldwide. Its polymerase machinery, composed of the large protein (L) and phosphoprotein (P), is crucial for viral replication and transcription, making it a promising target for antiviral drug development. Here we present cryo-electron microscopy structures of two distinct MeV polymerase complexes: Lcore-P and Lfull-P-C. The Lcore-P complex characterizes the N-terminal domain, RNA-dependent RNA polymerase (RdRp), and GDP poly-ribonucleotidyltransferase of the L protein, along with the tetrameric P of varying lengths. The Lfull-P-C complex reveals that C protein dimer binds at the cleft between RdRp and the flexible domains of the L protein: the connecting domain, methyltransferase domain, and C-terminal domain. This interaction results in the visualization of these domains and creates an extended RNA channel, remodeling the putative nascent replicated RNA exit and potentially regulating RNA synthesis processivity. Our findings reveal the architecture and molecular details of MeV polymerase complexes, providing new insights into their mechanisms and suggesting potential intervention targets for antiviral therapy.
Collapse
Affiliation(s)
- Dong Wang
- Section of Transcription & Gene Regulation, The Hormel Institute, University of Minnesota, Austin, MN, USA
| | - Ge Yang
- Section of Transcription & Gene Regulation, The Hormel Institute, University of Minnesota, Austin, MN, USA
| | - Bin Liu
- Section of Transcription & Gene Regulation, The Hormel Institute, University of Minnesota, Austin, MN, USA.
| |
Collapse
|
2
|
Wang L, Lu D, Yang M, Chai S, Du H, Jiang H. Nipah virus: epidemiology, pathogenesis, treatment, and prevention. Front Med 2024; 18:969-987. [PMID: 39417975 DOI: 10.1007/s11684-024-1078-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 03/18/2024] [Indexed: 10/19/2024]
Abstract
Nipah virus (NiV) is a zoonotic paramyxovirus that has recently emerged as a crucial public health issue. It can elicit severe encephalitis and respiratory diseases in animals and humans, leading to fatal outcomes, exhibiting a wide range of host species tropism, and directly transmitting from animals to humans or through an intermediate host. Human-to-human transmission associated with recurrent NiV outbreaks is a potential global health threat. Currently, the lack of effective therapeutics or licensed vaccines for NiV necessitates the primary utilization of supportive care. In this review, we summarize current knowledge of the various aspects of the NiV, including therapeutics, vaccines, and its biological characteristics, epidemiology, pathogenesis, and clinical features. The objective is to provide valuable information from scientific and clinical research and facilitate the formulation of strategies for preventing and controlling the NiV.
Collapse
Affiliation(s)
- Limei Wang
- Department of Microbiology and Pathogenic Biology, School of Basic Medicine, Air Force Medical University, Xi'an, 710032, China
| | - Denghui Lu
- Center for Diagnosis and Treatment of Infectious Diseases, The Second Affiliated Hospital, Air Force Medical University, Xi'an, 710038, China
| | - Maosen Yang
- Center for Diagnosis and Treatment of Infectious Diseases, The Second Affiliated Hospital, Air Force Medical University, Xi'an, 710038, China
| | - Shiqi Chai
- Center for Diagnosis and Treatment of Infectious Diseases, The Second Affiliated Hospital, Air Force Medical University, Xi'an, 710038, China.
| | - Hong Du
- Center for Diagnosis and Treatment of Infectious Diseases, The Second Affiliated Hospital, Air Force Medical University, Xi'an, 710038, China.
| | - Hong Jiang
- Center for Diagnosis and Treatment of Infectious Diseases, The Second Affiliated Hospital, Air Force Medical University, Xi'an, 710038, China.
| |
Collapse
|
3
|
Type I and Type II Interferon Antagonism Strategies Used by Paramyxoviridae: Previous and New Discoveries, in Comparison. Viruses 2022; 14:v14051107. [PMID: 35632848 PMCID: PMC9145045 DOI: 10.3390/v14051107] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/15/2022] [Accepted: 05/18/2022] [Indexed: 02/04/2023] Open
Abstract
Paramyxoviridae is a viral family within the order of Mononegavirales; they are negative single-strand RNA viruses that can cause significant diseases in both humans and animals. In order to replicate, paramyxoviruses–as any other viruses–have to bypass an important protective mechanism developed by the host’s cells: the defensive line driven by interferon. Once the viruses are recognized, the cells start the production of type I and type III interferons, which leads to the activation of hundreds of genes, many of which encode proteins with the specific function to reduce viral replication. Type II interferon is produced by active immune cells through a different signaling pathway, and activates a diverse range of genes with the same objective to block viral replication. As a result of this selective pressure, viruses have evolved different strategies to avoid the defensive function of interferons. The strategies employed by the different viral species to fight the interferon system include a number of sophisticated mechanisms. Here we analyzed the current status of the various strategies used by paramyxoviruses to subvert type I, II, and III interferon responses.
Collapse
|
4
|
Linjie L, Xiaoling S, Xiaoxia M, Xin C, Ali A, Jialin B. Peste des petits ruminants virus non-structural C protein inhibits the induction of interferon-β by potentially interacting with MAVS and RIG-I. Virus Genes 2021; 57:60-71. [PMID: 33389635 PMCID: PMC7870622 DOI: 10.1007/s11262-020-01811-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 11/10/2020] [Indexed: 12/24/2022]
Abstract
Peste des petits ruminants virus (PPRV) causes an acute and highly contagious disease in domestic and wild small ruminants throughout the world, mainly by invoking immunosuppression in its natural hosts. It has been suggested that the non-structural C protein of PPRV helps in evading host responses but the molecular mechanisms by which it antagonizes the host responses have not been fully characterized. Here, we report the antagonistic effect of PPRV C protein on the expression of interferon-β (IFN-β) through both MAVS and RIG-I mediated pathways in vitro. Dual luciferase reporter assay and direct expression of IFN-β mRNA analysis indicated that PPRV C significantly down regulates IFN-β via its potential interaction with MAVS and RIG-I signaling molecules. Results further indicated that PPRV C protein significantly suppresses endogenous and exogenous IFN-β-induced anti-viral effects in PPRV, EMCV and SVS infections in vitro. Moreover, PPRV C protein not only down regulates IFN-β but also the downstream cytokines of interferon stimulated genes 56 (ISG56), ISG15, C-X-C motif chemokine (CXCL10) and RIG-I mediated activation of IFN promoter elements of ISRE and NF-κB. Further, this study deciphers that PPRV C protein could significantly inhibit the phosphorylation of STAT1 and interferes with the signal transmission in JAK-STAT signaling pathway. Collectively, this study indicates that PPRV C protein is important for innate immune evasion and disease progression.
Collapse
Affiliation(s)
- Li Linjie
- Key Laboratory of Bioengineering & Biotechnology of the National Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, 730030, China
| | - Shi Xiaoling
- School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Ma Xiaoxia
- Key Laboratory of Bioengineering & Biotechnology of the National Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China
| | - Cao Xin
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, 730030, China
| | - Amjad Ali
- Key Laboratory of Bioengineering & Biotechnology of the National Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China
| | - Bai Jialin
- Key Laboratory of Bioengineering & Biotechnology of the National Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China.
| |
Collapse
|
5
|
The C Protein Is Recruited to Measles Virus Ribonucleocapsids by the Phosphoprotein. J Virol 2020; 94:JVI.01733-19. [PMID: 31748390 DOI: 10.1128/jvi.01733-19] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 11/08/2019] [Indexed: 11/20/2022] Open
Abstract
Measles virus (MeV), like all viruses of the order Mononegavirales, utilizes a complex consisting of genomic RNA, nucleoprotein, the RNA-dependent RNA polymerase, and a polymerase cofactor, the phosphoprotein (P), for transcription and replication. We previously showed that a recombinant MeV that does not express another viral protein, C, has severe transcription and replication deficiencies, including a steeper transcription gradient than the parental virus and generation of defective interfering RNA. This virus is attenuated in vitro and in vivo However, how the C protein operates and whether it is a component of the replication complex remained unclear. Here, we show that C associates with the ribonucleocapsid and forms a complex that can be purified by immunoprecipitation or ultracentrifugation. In the presence of detergent, the C protein is retained on purified ribonucleocapsids less efficiently than the P protein and the polymerase. The C protein is recruited to the ribonucleocapsid through its interaction with the P protein, as shown by immunofluorescence microscopy of cells expressing different combinations of viral proteins and by split luciferase complementation assays. Forty amino-terminal C protein residues are dispensable for the interaction with P, and the carboxyl-terminal half of P is sufficient for the interaction with C. Thus, the C protein, rather than being an "accessory" protein as qualified in textbooks so far, is a ribonucleocapsid-associated protein that interacts with P, thereby increasing replication accuracy and processivity of the polymerase complex.IMPORTANCE Replication of negative-strand RNA viruses relies on two components: a helical ribonucleocapsid and an RNA-dependent RNA polymerase composed of a catalytic subunit, the L protein, and a cofactor, the P protein. We show that the measles virus (MeV) C protein is an additional component of the replication complex. We provide evidence that the C protein is recruited to the ribonucleocapsid by the P protein and map the interacting segments of both C and P proteins. We conclude that the primary function of MeV C is to improve polymerase processivity and accuracy, rather than uniquely to antagonize the type I interferon response. Since most viruses of the Paramyxoviridae family express C proteins, their primary function may be conserved.
Collapse
|
6
|
Pabbaraju K, Fonseca K, Wong S, Koch MW, Joseph JT, Tipples GA, Tellier R. Genetic characterization of measles virus genotype D6 subacute sclerosing panencephalitis case, Alberta, Canada. J Neurovirol 2018; 24:720-729. [PMID: 30291564 DOI: 10.1007/s13365-018-0668-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 07/09/2018] [Accepted: 07/26/2018] [Indexed: 11/29/2022]
Abstract
Subacute sclerosing panencephalitis (SSPE) is a progressive and eventually fatal neurological disease arising from a persistent infection with measles virus (MV) acquired at a young age. SSPE measles virus strains are defective and unable to produce progeny virions, due to multiple and extensive mutations in a number of key genes. We sequenced the full MV genome from our recently reported SSPE case, which typed as genotype D6, and compared it with other genotype D6 wild type and SSPE sequences. The Alberta D6 strain was significantly different from other reported SSPE D6 sequences. Mutations were observed in all the genes of the Alberta strain, with the greatest sequence divergence noted in the M gene with 17.6% nucleotide and 31% amino acid variation. The L gene showed the least variation with 1.3% nucleotide and 0.7% amino acid differences respectively. The nucleotide variability for 15,672 bases of the complete genome compared to the wild type and other SSPE D6 strains was around 3%.
Collapse
Affiliation(s)
- K Pabbaraju
- Provincial Laboratory for Public Health, Calgary, Alberta, Canada.
| | - K Fonseca
- Provincial Laboratory for Public Health, Calgary, Alberta, Canada.,Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
| | - S Wong
- Provincial Laboratory for Public Health, Calgary, Alberta, Canada
| | - M W Koch
- Departments of Clinical Neurosciences and Community Health Sciences, University of Calgary, Calgary, Alberta, Canada
| | - J T Joseph
- Department of Pathology and Laboratory Medicine, University of Calgary, Calgary, Alberta, Canada
| | - G A Tipples
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada.,Provincial Laboratory for Public Health, Edmonton, Alberta, Canada
| | - R Tellier
- Provincial Laboratory for Public Health, Calgary, Alberta, Canada.,Department of Pathology and Laboratory Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
7
|
Sanz Bernardo B, Goodbourn S, Baron MD. Control of the induction of type I interferon by Peste des petits ruminants virus. PLoS One 2017; 12:e0177300. [PMID: 28475628 PMCID: PMC5419582 DOI: 10.1371/journal.pone.0177300] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 04/25/2017] [Indexed: 12/24/2022] Open
Abstract
Peste des petits ruminants virus (PPRV) is a morbillivirus that produces clinical disease in goats and sheep. We have studied the induction of interferon-β (IFN-β) following infection of cultured cells with wild-type and vaccine strains of PPRV, and the effects of such infection with PPRV on the induction of IFN-β through both MDA-5 and RIG-I mediated pathways. Using both reporter assays and direct measurement of IFN-β mRNA, we have found that PPRV infection induces IFN-β only weakly and transiently, and the virus can actively block the induction of IFN-β. We have also generated mutant PPRV that lack expression of either of the viral accessory proteins (V&C) to characterize the role of these proteins in IFN-β induction during virus infection. Both PPRV_ΔV and PPRV_ΔC were defective in growth in cell culture, although in different ways. While the PPRV V protein bound to MDA-5 and, to a lesser extent, RIG-I, and over-expression of the V protein inhibited both IFN-β induction pathways, PPRV lacking V protein expression can still block IFN-β induction. In contrast, PPRV C bound to neither MDA-5 nor RIG-I, but PPRV lacking C protein expression lost the ability to block both MDA-5 and RIG-I mediated activation of IFN-β. These results shed new light on the inhibition of the induction of IFN-β by PPRV.
Collapse
Affiliation(s)
| | - Stephen Goodbourn
- Institute for Infection and Immunity, St George’s, University of London, London, United Kingdom
| | | |
Collapse
|
8
|
Audsley MD, Jans DA, Moseley GW. Roles of nuclear trafficking in infection by cytoplasmic negative-strand RNA viruses: paramyxoviruses and beyond. J Gen Virol 2016; 97:2463-2481. [PMID: 27498841 DOI: 10.1099/jgv.0.000575] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Genome replication and virion production by most negative-sense RNA viruses (NSVs) occurs exclusively in the cytoplasm, but many NSV-expressed proteins undergo active nucleocytoplasmic trafficking via signals that exploit cellular nuclear transport pathways. Nuclear trafficking has been reported both for NSV accessory proteins (including isoforms of the rabies virus phosphoprotein, and V, W and C proteins of paramyxoviruses) and for structural proteins. Trafficking of the former is thought to enable accessory functions in viral modulation of antiviral responses including the type I IFN system, but the intranuclear roles of structural proteins such as nucleocapsid and matrix proteins, which have critical roles in extranuclear replication and viral assembly, are less clear. Nevertheless, nuclear trafficking of matrix protein has been reported to be critical for efficient production of Nipah virus and Respiratory syncytial virus, and nuclear localization of nucleocapsid protein of several morbilliviruses has been linked to mechanisms of immune evasion. Together, these data point to the nucleus as a significant host interface for viral proteins during infection by NSVs with otherwise cytoplasmic life cycles. Importantly, several lines of evidence now suggest that nuclear trafficking of these proteins may be critical to pathogenesis and thus could provide new targets for vaccine development and antiviral therapies.
Collapse
Affiliation(s)
- Michelle D Audsley
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - David A Jans
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Gregory W Moseley
- Department of Biochemistry and Molecular Biology, BIO21 Molecular Science and Biotechnology Institute, University of Melbourne, VIC 3000, Australia
| |
Collapse
|
9
|
Jinushi M, Yamamoto S, Ogasawara N, Nagano H, Hashimoto S, Tsutsumi H, Himi T, Yokota SI. Measles Virus Genotype D Wild Strains Suppress Interferon-Stimulated Gene Expression More Potently than Laboratory Strains in SiHa Cells. Viral Immunol 2016; 29:296-306. [PMID: 27035543 DOI: 10.1089/vim.2016.0004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Changes in interferon (IFN)-stimulated gene (ISG) expression in cells infected with measles virus (MeV), four wild strains (belonging to different genotypes), and the laboratory strain Edmonston were examined. ISGs [MxA, 2'-5'-oligoadenylate synthetase, and interferon regulatory factor-1] were upregulated in an MeV-infection-induced manner and in an IFN-induced manner. In MeV-infected SiHa cell lines, the MeV infection-induced expression levels were in the order of A>H1>D8>D5>D3. On the other hand, all infected cell lines abolished type I and III IFN-induced ISG expression. However, partial type II IFN-mediated induction was observed in the MeV-infected cells. The wild strain of genotype D3 was the most potent inhibitor of MeV infection-induced and IFN-induced ISG expression and generated the highest titer of infectious viral particles. Edmonston triggered the highest levels of MeV infection-induced ISG expression in SiHa cells and produced the lowest titer of infectious particles. Expression of the viral C protein was associated with suppression of MeV infection-induced and type II IFN-induced ISG expression.
Collapse
Affiliation(s)
- Masaru Jinushi
- 1 Department of Microbiology, Sapporo Medical University School of Medicine , Sapporo, Japan
| | - Soh Yamamoto
- 1 Department of Microbiology, Sapporo Medical University School of Medicine , Sapporo, Japan
| | - Noriko Ogasawara
- 1 Department of Microbiology, Sapporo Medical University School of Medicine , Sapporo, Japan .,2 Department of Otorhinolaryngology, Sapporo Medical University School of Medicine , Sapporo, Japan
| | - Hideki Nagano
- 3 Hokkaido Institute of Public Health , Sapporo, Japan
| | - Shin Hashimoto
- 4 Department of Pediatrics, Sapporo Medical University School of Medicine , Sapporo, Japan
| | - Hiroyuki Tsutsumi
- 4 Department of Pediatrics, Sapporo Medical University School of Medicine , Sapporo, Japan
| | - Tetsuo Himi
- 2 Department of Otorhinolaryngology, Sapporo Medical University School of Medicine , Sapporo, Japan
| | - Shin-Ichi Yokota
- 1 Department of Microbiology, Sapporo Medical University School of Medicine , Sapporo, Japan
| |
Collapse
|
10
|
Regulation of Viral RNA Synthesis by the V Protein of Parainfluenza Virus 5. J Virol 2015; 89:11845-57. [PMID: 26378167 DOI: 10.1128/jvi.01832-15] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 09/06/2015] [Indexed: 02/08/2023] Open
Abstract
UNLABELLED Paramyxoviruses include many important animal and human pathogens. The genome of parainfluenza virus 5 (PIV5), a prototypical paramyxovirus, encodes a V protein that inhibits viral RNA synthesis. In this work, the mechanism of inhibition was investigated. Using mutational analysis and a minigenome system, we identified regions in the N and C termini of the V protein that inhibit viral RNA synthesis: one at the very N terminus of V and the second at the C terminus of V. Furthermore, we determined that residues L16 and I17 are critical for the inhibitory function of the N-terminal region of the V protein. Both regions interact with the nucleocapsid protein (NP), an essential component of the viral RNA genome complex (RNP). Mutations at L16 and I17 abolished the interaction between NP and the N-terminal domain of V. This suggests that the interaction between NP and the N-terminal domain plays a critical role in V inhibition of viral RNA synthesis by the N-terminal domain. Both the N- and C-terminal regions inhibited viral RNA replication. The C terminus inhibited viral RNA transcription, while the N-terminal domain enhanced viral RNA transcription, suggesting that the two domains affect viral RNA through different mechanisms. Interestingly, V also inhibited the synthesis of the RNA of other paramyxoviruses, such as Nipah virus (NiV), human parainfluenza virus 3 (HPIV3), measles virus (MeV), mumps virus (MuV), and respiratory syncytial virus (RSV). This suggests that a common host factor may be involved in the replication of these paramyxoviruses. IMPORTANCE We identified two regions of the V protein that interact with NP and determined that one of these regions enhances viral RNA transcription via its interaction with NP. Our data suggest that a common host factor may be involved in the regulation of paramyxovirus replication and could be a target for broad antiviral drug development. Understanding the regulation of paramyxovirus replication will enable the rational design of vaccines and potential antiviral drugs.
Collapse
|
11
|
Yoshida A, Kawabata R, Honda T, Tomonaga K, Sakaguchi T, Irie T. IFN-β-inducing, unusual viral RNA species produced by paramyxovirus infection accumulated into distinct cytoplasmic structures in an RNA-type-dependent manner. Front Microbiol 2015; 6:804. [PMID: 26300870 PMCID: PMC4523817 DOI: 10.3389/fmicb.2015.00804] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 07/22/2015] [Indexed: 12/22/2022] Open
Abstract
The interferon (IFN) system is one of the most important defensive responses of mammals against viruses, and is rapidly evoked when the pathogen-associated molecular patterns (PAMPs) of viruses are sensed. Non-self, virus-derived RNA species have been identified as the PAMPs of RNA viruses. In the present study, we compared different types of IFN-β-inducing and -non-inducing viruses in the context of Sendai virus infection. We found that some types of unusual viral RNA species were produced by infections with IFN-β-inducing viruses and accumulated into distinct cytoplasmic structures in an RNA-type-dependent manner. One of these structures was similar to the so-called antiviral stress granules (avSGs) formed by an infection with IFN-inducing viruses whose C proteins were knocked-out or mutated. Non-encapsidated, unusual viral RNA harboring the 5'-terminal region of the viral genome as well as RIG-I and typical SG markers accumulated in these granules. Another was a non-SG-like inclusion formed by an infection with the Cantell strain; a copyback-type DI genome, but not an authentic viral genome, specifically accumulated in the inclusion, whereas RIG-I and SG markers did not. The induction of IFN-β was closely associated with the production of these unusual RNAs as well as the formation of the cytoplasmic structures.
Collapse
Affiliation(s)
- Asuka Yoshida
- Department of Virology, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima Japan
| | - Ryoko Kawabata
- Department of Virology, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima Japan
| | - Tomoyuki Honda
- Department of Viral Oncology, Institute for Virus Research, Kyoto University, Kyoto Japan
| | - Keizo Tomonaga
- Department of Viral Oncology, Institute for Virus Research, Kyoto University, Kyoto Japan
| | - Takemasa Sakaguchi
- Department of Virology, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima Japan
| | - Takashi Irie
- Department of Virology, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima Japan
| |
Collapse
|
12
|
Measles Virus Defective Interfering RNAs Are Generated Frequently and Early in the Absence of C Protein and Can Be Destabilized by Adenosine Deaminase Acting on RNA-1-Like Hypermutations. J Virol 2015; 89:7735-47. [PMID: 25972541 DOI: 10.1128/jvi.01017-15] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 05/11/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Defective interfering RNAs (DI-RNAs) of the viral genome can form during infections of negative-strand RNA viruses and outgrow full-length viral genomes, thereby modulating the severity and duration of infection. Here we document the frequent de novo generation of copy-back DI-RNAs from independent rescue events both for a vaccine measles virus (vac2) and for a wild-type measles virus (IC323) as early as passage 1 after virus rescue. Moreover, vaccine and wild-type C-protein-deficient (C-protein-knockout [CKO]) measles viruses generated about 10 times more DI-RNAs than parental virus, suggesting that C enhances the processivity of the viral polymerase. We obtained the nucleotide sequences of 65 individual DI-RNAs, identified breakpoints and reinitiation sites, and predicted their structural features. Several DI-RNAs possessed clusters of A-to-G or U-to-C transitions. Sequences flanking these mutation sites were characteristic of those favored by adenosine deaminase acting on RNA-1 (ADAR1), which catalyzes in double-stranded RNA the C-6 deamination of adenosine to produce inosine, which is recognized as guanosine, a process known as A-to-I RNA editing. In individual DI-RNAs the transitions were of the same type and occurred on both sides of the breakpoint. These patterns of mutations suggest that ADAR1 edits unencapsidated DI-RNAs that form double-strand RNA structures. Encapsidated DI-RNAs were incorporated into virus particles, which reduced the infectivity of virus stocks. The CKO phenotype was dominant: DI-RNAs derived from vac2 with a CKO suppressed the replication of vac2, as shown by coinfections of interferon-incompetent lymphatic cells with viruses expressing different fluorescent reporter proteins. In contrast, coinfection with a C-protein-expressing virus did not counteract the suppressive phenotype of DI-RNAs. IMPORTANCE Recombinant measles viruses (MVs) are in clinical trials as cancer therapeutics and as vectored vaccines for HIV-AIDS and other infectious diseases. The efficacy of MV-based vectors depends on their replication proficiency and immune activation capacity. Here we document that copy-back defective interfering RNAs (DI-RNAs) are generated by recombinant vaccine and wild-type MVs immediately after rescue. The MV C protein interferes with DI-RNA generation and may enhance the processivity of the viral polymerase. We frequently detected clusters of A-to-G or U-to-C transitions and noted that sequences flanking individual mutations contain motifs favoring recognition by the adenosine deaminase acting on RNA-1 (ADAR1). The consistent type of transitions on the DI-RNAs indicates that these are direct substrates for editing by ADAR1. The ADAR1-mediated biased hypermutation events are consistent with the protein kinase R (PKR)-ADAR1 balancing model of innate immunity activation. We show by coinfection that the C-defective phenotype is dominant.
Collapse
|
13
|
Lo MK, Søgaard TM, Karlin DG. Evolution and structural organization of the C proteins of paramyxovirinae. PLoS One 2014; 9:e90003. [PMID: 24587180 PMCID: PMC3934983 DOI: 10.1371/journal.pone.0090003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 01/24/2014] [Indexed: 12/21/2022] Open
Abstract
The phosphoprotein (P) gene of most Paramyxovirinae encodes several proteins in overlapping frames: P and V, which share a common N-terminus (PNT), and C, which overlaps PNT. Overlapping genes are of particular interest because they encode proteins originated de novo, some of which have unknown structural folds, challenging the notion that nature utilizes only a limited, well-mapped area of fold space. The C proteins cluster in three groups, comprising measles, Nipah, and Sendai virus. We predicted that all C proteins have a similar organization: a variable, disordered N-terminus and a conserved, α-helical C-terminus. We confirmed this predicted organization by biophysically characterizing recombinant C proteins from Tupaia paramyxovirus (measles group) and human parainfluenza virus 1 (Sendai group). We also found that the C of the measles and Nipah groups have statistically significant sequence similarity, indicating a common origin. Although the C of the Sendai group lack sequence similarity with them, we speculate that they also have a common origin, given their similar genomic location and structural organization. Since C is dispensable for viral replication, unlike PNT, we hypothesize that C may have originated de novo by overprinting PNT in the ancestor of Paramyxovirinae. Intriguingly, in measles virus and Nipah virus, PNT encodes STAT1-binding sites that overlap different regions of the C-terminus of C, indicating they have probably originated independently. This arrangement, in which the same genetic region encodes simultaneously a crucial functional motif (a STAT1-binding site) and a highly constrained region (the C-terminus of C), seems paradoxical, since it should severely reduce the ability of the virus to adapt. The fact that it originated twice suggests that it must be balanced by an evolutionary advantage, perhaps from reducing the size of the genetic region vulnerable to mutations.
Collapse
Affiliation(s)
- Michael K. Lo
- Centers for Disease Control and Prevention, Viral Special Pathogens Branch, Atlanta, Georgia, United States of America
| | - Teit Max Søgaard
- Division of Structural Biology, Oxford University, Oxford, United Kingdom
| | - David G. Karlin
- Division of Structural Biology, Oxford University, Oxford, United Kingdom
- Department of Zoology, University of Oxford, Oxford, United Kingdom
- * E-mail:
| |
Collapse
|
14
|
|
15
|
Measles virus C protein impairs production of defective copyback double-stranded viral RNA and activation of protein kinase R. J Virol 2013; 88:456-68. [PMID: 24155404 DOI: 10.1128/jvi.02572-13] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Measles virus (MV) lacking expression of C protein (C(KO)) is a potent activator of the double-stranded RNA (dsRNA)-dependent protein kinase (PKR), whereas the isogenic parental virus expressing C protein is not. Here, we demonstrate that significant amounts of dsRNA accumulate during C(KO) mutant infection but not following parental virus infection. dsRNA accumulated during late stages of infection and localized with virus replication sites containing N and P proteins. PKR autophosphorylation and stress granule formation correlated with the timing of dsRNA appearance. Phospho-PKR localized to dsRNA-containing structures as revealed by immunofluorescence. Production of dsRNA was sensitive to cycloheximide but resistant to actinomycin D, suggesting that dsRNA is a viral product. Quantitative PCR (qPCR) analyses revealed reduced viral RNA synthesis and a steepened transcription gradient in C(KO) virus-infected cells compared to those in parental virus-infected cells. The observed alterations were further reflected in lower viral protein expression levels and reduced C(KO) virus infectious yield. RNA deep sequencing confirmed the viral RNA expression profile differences seen by qPCR between C(KO) mutant and parental viruses. After one subsequent passage of the C(KO) virus, defective interfering RNA (DI-RNA) with a duplex structure was obtained that was not seen with the parental virus. We conclude that in the absence of C protein, the amount of PKR activator RNA, including DI-RNA, is increased, thereby triggering innate immune responses leading to impaired MV growth.
Collapse
|
16
|
Measles virus nonstructural C protein modulates viral RNA polymerase activity by interacting with host protein SHCBP1. J Virol 2013; 87:9633-42. [PMID: 23804634 DOI: 10.1128/jvi.00714-13] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Most viruses possess strategies to circumvent host immune responses. The measles virus (MV) nonstructural C protein suppresses the interferon response, thereby allowing efficient viral growth, but its detailed mechanism has been unknown. We identified Shc Src homology 2 domain-binding protein 1 (SHCBP1) as one of the host proteins interacting with the C protein. Knockdown of SHCBP1 using a short-hairpin RNA greatly reduced MV growth. SHCBP1 was found to be required for viral RNA synthesis in the minigenome assay and to bind to the MV phosphoprotein, a subunit of the viral RNA polymerase. A stretch of 12 amino acid residues in the C protein were sufficient for SHCBP1 binding, and the peptide containing these 12 residues could suppress MV RNA synthesis, like the full-length C protein. The central region of SHCBP1 was found to bind to the C protein, as well as the phosphoprotein, but the two viral proteins did not compete for SHCBP1 binding. Our results indicate that the C protein modulates MV RNA polymerase activity by binding to the host protein SHCBP1. SHCBP1 may be exploited as a target of antiviral compounds.
Collapse
|
17
|
Wells G, Addington-Hall M, Malur AG. Mutations within the human parainfluenza virus type 3 (HPIV 3) C protein affect viral replication and host interferon induction. Virus Res 2012; 167:385-90. [PMID: 22634035 DOI: 10.1016/j.virusres.2012.05.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Revised: 05/09/2012] [Accepted: 05/15/2012] [Indexed: 10/28/2022]
Abstract
Human parainfluenza virus type 3 (HPIV 3) encodes a multifunctional C protein that is capable of inhibiting viral replication and counteracting the host interferon (IFN) signaling pathway. We recently demonstrated that the C protein is phosphorylated both in vitro and in vivo and mutations within the phosphorylation sites exhibit differential inhibitory activities in vitro. In this study, we report for the first time the successful recovery of mutant HPIV 3 viruses containing mutations within the C protein. Three mutant viruses, Cm-1, Cm-3 and Cm-4, harboring individual mutations of S7, S47T48 and S81 residues, respectively, were examined for their replication profiles and their ability to abrogate host IFN induction. Viral transcription was similar for all viruses; however Cm-3 displayed a relatively higher replication. Infection of cells with Cm-1 and Cm-3 led to the activation of IFN regulatory transcription factor 3 (IRF-3) and subsequent increase in IFN-β mRNA levels as determined by immunofluorescence assay and RT-PCR analyses, respectively. Moreover, Cm-3 was able to partially resist the interferon induced antiviral state in Vero cells. Taken together, these results suggest that mutations within the C protein differentially affect viral replication and host interferon induction.
Collapse
Affiliation(s)
- Greg Wells
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, 600 Moye Boulevard, Greenville, NC 27834, USA
| | | | | |
Collapse
|
18
|
Adenosine deaminase acting on RNA 1 (ADAR1) suppresses the induction of interferon by measles virus. J Virol 2012; 86:3787-94. [PMID: 22278222 DOI: 10.1128/jvi.06307-11] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
ADAR1, the interferon (IFN)-inducible adenosine deaminase acting on RNA, catalyzes the C-6 deamination of adenosine (A) to produce inosine (I) in RNA substrates with a double-stranded character. Because double-stranded RNA is a known inducer of IFN, we tested the role of ADAR1 in IFN induction following virus infection. HeLa cells made stably deficient in ADAR1 (ADAR1(kd)) were compared to vector control (CON(kd)) and protein kinase PKR-deficient (PKR(kd)) cells for IFN-β induction following infection with either parental (wild-type [WT]) recombinant Moraten vaccine strain measles virus (MV) or isogenic knockout mutants deficient for either V (V(ko)) or C (C(ko)) protein expression. We observed potent IFN-β transcript induction in ADAR1(kd) cells by all three viruses; in contrast, in ADAR1-sufficient CON(kd) cells, only the C(ko) mutant virus was an effective inducer and the IFN-β RNA induction was amplified by PKR. The enhanced IFN-β transcript-inducing capacity of the WT and V(ko) viruses seen in ADAR1-deficient cells correlated with the enhanced activation of PKR, IFN regulatory factor IRF3, and activator of transcription ATF2, reaching levels similar to those seen in C(ko) virus-infected cells. However, the level of IFN-β protein produced was not proportional to the level of IFN-β RNA but rather correlated inversely with the level of activated PKR. These results suggest that ADAR1 functions as an important suppressor of MV-mediated responses, including the activation of PKR and IRF3 and the induction of IFN-β RNA. Our findings further implicate a balanced interplay between PKR and ADAR1 in modulating IFN-β protein production following virus infection.
Collapse
|
19
|
Sparrer KMJ, Pfaller CK, Conzelmann KK. Measles virus C protein interferes with Beta interferon transcription in the nucleus. J Virol 2012; 86:796-805. [PMID: 22072748 PMCID: PMC3255862 DOI: 10.1128/jvi.05899-11] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Accepted: 10/31/2011] [Indexed: 12/18/2022] Open
Abstract
Transcriptional induction of beta interferon (IFN-β) through pattern recognition receptors is a key event in the host defense against invading viruses. Infection of cells by paramyxoviruses, like measles virus (MV) (genus Morbillivirus), is sensed predominantly by the ubiquitous cytoplasmic helicase RIG-I, recognizing viral 5'-triphosphate RNAs, and to some degree by MDA5. While MDA5 activation is effectively prevented by the MV V protein, the viral mechanisms for inhibition of MDA5-independent induction of IFN-β remained obscure. Here, we identify the 186-amino-acid MV C protein, which shuttles between the nucleus and the cytoplasm, as a major viral inhibitor of IFN-β transcription in human cells. Activation of the transcription factor IRF3 by upstream kinases and nuclear import of activated IRF3 were not affected in the presence of C protein, suggesting a nuclear target. Notably, C proteins of wild-type MV isolates, which are poor IFN-β inducers, were found to comprise a canonical nuclear localization signal (NLS), whereas the NLSs of all vaccine strains, irrespective of their origins, were mutated. Site-directed mutagenesis of the C proteins from an MV wild-type isolate and from the vaccine virus strain Schwarz confirmed a correlation of nuclear localization and inhibition of IFN-β transcription. A functional NLS and efficient nuclear accumulation are therefore critical for MV C to retain its potential to downregulate IFN-β induction. We suggest that a defect in efficient nuclear import of C protein contributes to attenuation of MV vaccine strains.
Collapse
Affiliation(s)
- Konstantin M J Sparrer
- Max von Pettenkofer-Institute and Gene Center, Ludwig-Maximilians-University Munich, Munich, Germany
| | | | | |
Collapse
|
20
|
Abstract
Nipah (NiV) and Hendra (HeV) viruses comprise the genus Henipavirus and are highly pathogenic paramyxoviruses, which cause fatal encephalitis and respiratory disease in humans. Since their respective initial outbreaks in 1998 and 1994, they have continued to cause sporadic outbreaks resulting in fatal disease. Due to their designation as Biosafety Level 4 pathogens, the level of containment required to work with live henipaviruses is available only to select laboratories around the world. This chapter provides an overview of the molecular virology of NiV and HeV including comparisons to other, well-characterized paramyxoviruses. This chapter also describes the sequence diversity present among the henipaviruses.
Collapse
Affiliation(s)
- Paul A Rota
- MS-C-22, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA.
| | | |
Collapse
|
21
|
Fehrholz M, Kendl S, Prifert C, Weissbrich B, Lemon K, Rennick L, Duprex PW, Rima BK, Koning FA, Holmes RK, Malim MH, Schneider-Schaulies J. The innate antiviral factor APOBEC3G targets replication of measles, mumps and respiratory syncytial viruses. J Gen Virol 2011; 93:565-576. [PMID: 22170635 DOI: 10.1099/vir.0.038919-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The cytidine deaminase APOBEC3G (apolipoprotein B mRNA-editing enzyme-catalytic polypeptide 3G; A3G) exerts antiviral activity against retroviruses, hepatitis B virus, adeno-associated virus and transposable elements. We assessed whether the negative-strand RNA viruses measles, mumps and respiratory syncytial might be affected by A3G, and found that their infectivity was reduced by 1-2 logs (90-99 %) in A3G overexpressing Vero cells, and in T-cell lines expressing A3G at physiological levels. Viral RNA was co-precipitated with HA-tagged A3G and could be amplified by RT-PCR. Interestingly, A3G reduced viral transcription and protein expression in infected cells by 50-70 %, and caused an increased mutation frequency of 0.95 mutations per 1000 nt in comparison to the background level of 0.22/1000. The observed mutations were not specific for A3G [cytidine to uridine (C→U) or guanine to adenine (G→A) hypermutations], nor specific for ADAR (adenosine deaminase acting on RNA, A→G and U→C transitions, with preference for next neighbour-nucleotides U = A>C>G). In addition, A3G mutants with inactivated catalytic deaminase (H257R and E259Q) were inhibitory, indicating that the deaminase activity is not required for the observed antiviral activity. In combination, impaired transcription and increased mutation frequencies are sufficient to cause the observed reduction in viral infectivity and eliminate virus replication within a few passages in A3G-expressing cells.
Collapse
Affiliation(s)
- Markus Fehrholz
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Sabine Kendl
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Christiane Prifert
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Benedikt Weissbrich
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Ken Lemon
- Centre for Infection and Immunity, School of Medicine, Dentistry and Biomedical Sciences, The Queen's University of Belfast, Belfast, UK
| | - Linda Rennick
- Department of Microbiology, Boston University School of Medicine and National Emerging Infectious Diseases Laboratories, Boston University, Boston, USA
| | - Paul W Duprex
- Department of Microbiology, Boston University School of Medicine and National Emerging Infectious Diseases Laboratories, Boston University, Boston, USA
| | - Bert K Rima
- Centre for Infection and Immunity, School of Medicine, Dentistry and Biomedical Sciences, The Queen's University of Belfast, Belfast, UK
| | | | | | - Michael H Malim
- Department of Infectious Diseases, King's College, London, UK
| | | |
Collapse
|
22
|
Rima BK, Duprex WP. New concepts in measles virus replication: Getting in and out in vivo and modulating the host cell environment. Virus Res 2011; 162:47-62. [DOI: 10.1016/j.virusres.2011.09.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Revised: 09/13/2011] [Accepted: 09/14/2011] [Indexed: 12/24/2022]
|
23
|
Expression of the Sendai (murine parainfluenza) virus C protein alleviates restriction of measles virus growth in mouse cells. Proc Natl Acad Sci U S A 2011; 108:15384-9. [PMID: 21896767 DOI: 10.1073/pnas.1107382108] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Measles virus (MV), a human pathogen, uses the signaling lymphocyte activation molecule (SLAM) or CD46 as an entry receptor. Although several transgenic mice expressing these receptors have been generated as small animal models for measles, these mice usually have to be made defective in IFN-α/β signaling to facilitate MV replication. Similarly, when functional receptors are expressed by transfection, mouse cells do not allow MV growth as efficiently as primate cells. In this study, we demonstrate that MV efficiently grows in SLAM-expressing mouse cells in which the Sendai virus (SeV) C protein is transiently expressed. We developed a SLAM-expressing mouse cell line whose genome also encodes the SeV C protein downstream of the sequence flanked with loxP sequences. When this cell line was infected with the recombinant MV expressing the Cre recombinase, the SeV C protein was readily expressed. Importantly, the Cre recombinase-encoding MV grew in this cell line much more efficiently than it did in the parental cell. The minigenome assay demonstrated that the SeV C protein does not modulate MV RNA synthesis. Analyses using the mutant proteins with the defined functional defects revealed that the IFN-antagonist function, but not the budding-accelerating function, of the SeV C protein was critical for supporting efficient MV growth in mouse cells. Our results indicate that insufficient IFN antagonism can be an important determinant of the host range of viruses, and the system described here may be useful to overcome the species barrier of other human viruses.
Collapse
|
24
|
Bankamp B, Takeda M, Zhang Y, Xu W, Rota PA. Genetic characterization of measles vaccine strains. J Infect Dis 2011; 204 Suppl 1:S533-48. [PMID: 21666210 DOI: 10.1093/infdis/jir097] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The complete genomic sequences of 9 measles vaccine strains were compared with the sequence of the Edmonston wild-type virus. AIK-C, Moraten, Rubeovax, Schwarz, and Zagreb are vaccine strains of the Edmonston lineage, whereas CAM-70, Changchun-47, Leningrad-4 and Shanghai-191 were derived from 4 different wild-type isolates. Nucleotide substitutions were found in the noncoding regions of the genomes as well as in all coding regions, leading to deduced amino acid substitutions in all 8 viral proteins. Although the precise mechanisms involved in the attenuation of individual measles vaccines remain to be elucidated, in vitro assays of viral protein functions and recombinant viruses with defined genetic modifications have been used to characterize the differences between vaccine and wild-type strains. Although almost every protein contributes to an attenuated phenotype, substitutions affecting host cell tropism, virus assembly, and the ability to inhibit cellular antiviral defense mechanisms play an especially important role in attenuation.
Collapse
Affiliation(s)
- Bettina Bankamp
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA.
| | | | | | | | | |
Collapse
|
25
|
Measles virus C protein suppresses gamma-activated factor formation and virus-induced cell growth arrest. Virology 2011; 414:74-82. [PMID: 21477834 DOI: 10.1016/j.virol.2011.03.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Revised: 03/08/2011] [Accepted: 03/11/2011] [Indexed: 11/23/2022]
Abstract
Measles virus (MeV) produces two accessory proteins, V and C, from the P gene. These accessory proteins have been reported to contribute to efficient virus proliferation through the modulation of host cell events. Our previous paper described that Vero cell-adapted strains of MeV led host cells to growth arrest through the upregulation of interferon regulatory factor 1 (IRF-1), and wild strains did not. In the present study, we found that C protein expression levels varied among MeV strains in infected SiHa cells. C protein levels were inversely correlated with IRF-1 expression levels and with cell growth arrest. Forced expression of C protein released cells from growth arrest. C-deficient recombinant virus efficiently upregulated IRF-1 and caused growth arrest more efficiently than the wild-type virus. C protein preferentially bound to phosphorylated STAT1 and suppressed STAT1 dimer formation. We conclude that MeV C protein suppresses IFN-γ signaling pathway via inhibition of phosphorylated STAT1 dimerization.
Collapse
|
26
|
Abstract
Measles is an important cause of child mortality that has a seemingly paradoxical interaction with the immune system. In most individuals, the immune response is successful in eventually clearing measles virus (MV) infection and in establishing life-long immunity. However, infection is also associated with persistence of viral RNA and several weeks of immune suppression, including loss of delayed type hypersensitivity responses and increased susceptibility to secondary infections. The initial T-cell response includes CD8+ and T-helper 1 CD4+ T cells important for control of infectious virus. As viral RNA persists, there is a shift to a T-helper 2 CD4+ T-cell response that likely promotes B-cell maturation and durable antibody responses but may suppress macrophage activation and T-helper 1 responses to new infections. Suppression of mitogen-induced lymphocyte proliferation can be induced by lymphocyte infection with MV or by lymphocyte exposure to a complex of the hemagglutinin and fusion surface glycoproteins without infection. Dendritic cells (DCs) are susceptible to infection and can transmit infection to lymphocytes. MV-infected DCs are unable to stimulate a mixed lymphocyte reaction and can induce lymphocyte unresponsiveness through expression of MV glycoproteins. Thus, multiple factors may contribute both to measles-induced immune suppression and to the establishment of durable protective immunity.
Collapse
Affiliation(s)
- Diane E Griffin
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA.
| |
Collapse
|
27
|
Goodbourn S, Randall RE. The regulation of type I interferon production by paramyxoviruses. J Interferon Cytokine Res 2010; 29:539-47. [PMID: 19702509 DOI: 10.1089/jir.2009.0071] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Experimentally, paramyxoviruses are conventionally considered good inducers of type I interferons (IFN-alpha/beta), and have been used as agents in the commercial production of human IFN-alpha. However, in the last few years it has become clear that viruses in general mount a major challenge to the IFN system, and paramyxoviruses are no exception. Indeed, most paramyxoviruses encode mechanisms to inhibit both the production of, and response to, type I IFN. Here we review our knowledge of the type I IFN-inducing signals (by so-called pathogen-associated molecular patterns, or PAMPs) produced during paramyxovirus infections, and discuss how paramyxoviruses limit the production of PAMPs and inhibit the cellular responses to PAMPs by interfering with the activities of the pattern recognition receptors (PRRs), mda-5, and RIG-I, as well as downstream components in the type I IFN induction cascades.
Collapse
Affiliation(s)
- Stephen Goodbourn
- Division of Basic Medical Sciences, St. George's, University of London, London, United Kingdom
| | | |
Collapse
|
28
|
Mechanisms of protein kinase PKR-mediated amplification of beta interferon induction by C protein-deficient measles virus. J Virol 2010; 84:380-6. [PMID: 19846517 DOI: 10.1128/jvi.02630-08] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The measles virus P gene products V and C antagonize the host interferon (IFN) response, blocking both IFN signaling and production. Using Moraten vaccine strain-derived measles virus and isogenic mutants deficient for either V or C protein production (V(ko) and C(ko), respectively), we observed that the C(ko) virus was a potent inducer of IFN-beta, while induction by V(ko) virus was an order of magnitude lower than that by the C(ko) virus. The parental recombinant Moraten virus did not significantly induce IFN-beta. The enhanced IFN-inducing capacity of the C(ko) virus correlated with an enhanced activation of IFN regulatory factor 3 (IRF-3), NF-kappaB, and ATF-2 in C(ko)-infected compared to V(ko) or parental virus-infected cells. Furthermore, protein kinase PKR and mitochondrial adapter IPS-1 were required for maximal C(ko)-mediated IFN-beta induction, which correlated with the PKR-mediated enhancement of mitogen-activated protein kinase and NF-kappaB activation. Our results reveal multiple consequences of C protein expression and document an important function for PKR as an enhancer of IFN-beta induction during measles virus infection.
Collapse
|
29
|
Nakatsu Y, Takeda M, Iwasaki M, Yanagi Y. A highly attenuated measles virus vaccine strain encodes a fully functional C protein. J Virol 2009; 83:11996-2001. [PMID: 19726523 PMCID: PMC2772723 DOI: 10.1128/jvi.00791-09] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2009] [Accepted: 08/20/2009] [Indexed: 01/29/2023] Open
Abstract
The P, V, and C proteins of measles virus are encoded in overlapping reading frames of the P gene, which makes it difficult to analyze the functions of the individual proteins in the context of virus infection. We established a system to analyze the C protein independently from the P and V proteins by placing its gene in an additional transcription unit between the H and L genes. Analyses with this system indicated that a highly attenuated Edmonston lineage vaccine strain encodes a fully functional C protein, and the P and/or V protein is involved in the attenuated phenotype.
Collapse
Affiliation(s)
- Yuichiro Nakatsu
- Department of Virology, Faculty of Medicine, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Makoto Takeda
- Department of Virology, Faculty of Medicine, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Masaharu Iwasaki
- Department of Virology, Faculty of Medicine, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Yusuke Yanagi
- Department of Virology, Faculty of Medicine, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
30
|
Malur AG, Wells G, McCoy A, Banerjee AK. Evidence for phosphorylation of human parainfluenza virus type 3 C protein: mutant C proteins exhibit variable inhibitory activities in vitro. Virus Res 2009; 144:180-7. [PMID: 19410612 PMCID: PMC2736354 DOI: 10.1016/j.virusres.2009.04.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2008] [Revised: 04/16/2009] [Accepted: 04/26/2009] [Indexed: 11/16/2022]
Abstract
The P mRNA of human parainfluenza virus type 3, like other members of the subfamily Paramyxovirinae, gives rise to several polypeptides, one amongst them, the C protein, which is involved in inhibition of viral RNA synthesis as well as counteracting the host interferon signaling pathway. As a further step towards characterizing the function of C protein we present evidence to demonstrate the phosphorylation of C protein. Evidence for this observation emerged from deletion mapping studies coupled with mass spectroscopy analysis confirming residues S7, S22, S47T48 and S81 residues as the phosphorylation sites within the NH(2)-terminus of C protein. Here, we utilized a HPIV 3 minigenome replication assay and real time RT-PCR analysis to measure the relative RNA levels synthesized in the presence of mutant C proteins. Mutants S7A and S81A displayed low levels of RNA while mutant 5A that was devoid of all these phosphorylation sites exhibited high RNA level in comparison to wild type C during transcription. Interestingly, high levels of RNA were observed in the presence of S81A and mutant 5A during replication. Taken together, our results indicate that phosphorylation may differentially affect the inhibitory activity of C protein thereby regulating viral RNA synthesis.
Collapse
Affiliation(s)
- Achut G Malur
- Department of Microbiology and Immunology, Brody School of Medicine, Biotech 124, East Carolina University, 600 Moye Boulevard, Greenville, NC 27834, USA.
| | | | | | | |
Collapse
|
31
|
Toth AM, Li Z, Cattaneo R, Samuel CE. RNA-specific adenosine deaminase ADAR1 suppresses measles virus-induced apoptosis and activation of protein kinase PKR. J Biol Chem 2009; 284:29350-6. [PMID: 19710021 DOI: 10.1074/jbc.m109.045146] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
ADAR1 (adenosine deaminase acting on RNA) catalyzes the conversion of adenosine to inosine, a process known as A-to-I editing. Extensive A-to-I editing has been described in viral RNAs isolated from the brains of patients persistently infected with measles virus, although the precise role of ADAR during measles virus infection remains unknown. We generated human HeLa cells stably deficient in ADAR1 ("ADAR1(kd) cells") through short hairpin RNA-mediated knockdown, and using these cells, we tested the effect of ADAR1 deficiency on measles virus (MVvac strain) growth and virus-induced cell death. We found that the growth of mutant viruses lacking expression of the viral accessory proteins V and C (V(ko) and C(ko), respectively) was decreased in ADAR1-deficient cells compared with ADAR1-sufficient cells. In addition, apoptosis was enhanced in ADAR1-deficient cells following infection with wild type and V(ko) virus but not following infection with C(ko) virus or treatment with tumor necrosis factor-alpha or staurosporine. Furthermore, in C(ko)-infected ADAR1-sufficient cells when ADAR1 did not protect against apoptosis, caspase cleavage of the ADAR1 p150 protein was detected. Finally, enhanced apoptosis in ADAR1(kd) cells following infection with wild type and V(ko) virus correlated with enhanced activation of PKR kinase and interferon regulatory factor IRF-3. Taken together, these results demonstrate that ADAR1 is a proviral, antiapoptotic host factor in the context of measles virus infection and suggest that the antiapoptotic activity of ADAR1 is achieved through suppression of activation of proapoptotic and double-stranded RNA-dependent activities, as exemplified by PKR and IRF-3.
Collapse
Affiliation(s)
- Ann M Toth
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, California 93106, USA
| | | | | | | |
Collapse
|
32
|
Zhang Y, Zhou J, Bellini WJ, Xu W, Rota PA. Genetic characterization of Chinese measles vaccines by analysis of complete genomic sequences. J Med Virol 2009; 81:1477-83. [PMID: 19551837 DOI: 10.1002/jmv.21535] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The complete genomic sequences of two Chinese measles vaccine viruses, Shanghai-191 (S-191) and Changchun-47 (C-47), were determined and compared to the sequences of other measles vaccine strains as well as the prototype measles strain, Edmonston wild-type (Edwt). Compared to Edwt, S-191 and C-47 had 49 and 43 nucleotide changes, respectively. These differences were found at 52 nucleotide positions that were not found in other vaccine strains. Phylogenetic analysis of the all of the available genomic sequences for measles vaccines showed that S-191 and C-47 were most closely related to the Leningrad-4 strain. S-191 and C-47 shared conserved vaccine virus-specific amino acid changes in the phosphoprotein (P), V, C, matrix (M), and hemagglutinin (H) that could represent important targets for future studies aimed at understanding the molecular basis of attenuation. In addition, S-191 and C-47 had several unique amino acid changes including 13 positions that differed from Edwt. This is the first comparison of the complete genomic sequences of Chinese measles vaccines to the sequences of other vaccine strains.
Collapse
Affiliation(s)
- Yan Zhang
- National Institute for Viral Disease Control and Prevention, Chinese Centers for Disease Control and Prevention, Beijing, China
| | | | | | | | | |
Collapse
|
33
|
The matrix protein of measles virus regulates viral RNA synthesis and assembly by interacting with the nucleocapsid protein. J Virol 2009; 83:10374-83. [PMID: 19656884 DOI: 10.1128/jvi.01056-09] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The genome of measles virus (MV) is encapsidated by the nucleocapsid (N) protein and associates with RNA-dependent RNA polymerase to form the ribonucleoprotein complex. The matrix (M) protein is believed to play an important role in MV assembly by linking the ribonucleoprotein complex with envelope glycoproteins. Analyses using a yeast two-hybrid system and coimmunoprecipitation in mammalian cells revealed that the M protein interacts with the N protein and that two leucine residues at the carboxyl terminus of the N protein (L523 and L524) are critical for the interaction. In MV minigenome reporter gene assays, the M protein inhibited viral RNA synthesis only when it was able to interact with the N protein. The N protein colocalized with the M protein at the plasma membrane when the proteins were coexpressed in plasmid-transfected or MV-infected cells. In contrast, the N protein formed small dots in the perinuclear area when it was expressed without the M protein, or it was incapable of interacting with the M protein. Furthermore, a recombinant MV possessing a mutant N protein incapable of interacting with the M protein grew much less efficiently than the parental virus. Since the M protein has an intrinsic ability to associate with the plasma membrane, it may retain the ribonucleoprotein complex at the plasma membrane by binding to the N protein, thereby stopping viral RNA synthesis and promoting viral particle production. Consequently, our results indicate that the M protein regulates MV RNA synthesis and assembly via its interaction with the N protein.
Collapse
|
34
|
Lo MK, Harcourt BH, Mungall BA, Tamin A, Peeples ME, Bellini WJ, Rota PA. Determination of the henipavirus phosphoprotein gene mRNA editing frequencies and detection of the C, V and W proteins of Nipah virus in virus-infected cells. J Gen Virol 2009; 90:398-404. [PMID: 19141449 DOI: 10.1099/vir.0.007294-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The henipaviruses, Nipah virus (NiV) and Hendra virus (HeV), are highly pathogenic zoonotic paramyxoviruses. Like many other paramyxoviruses, henipaviruses employ a process of co-transcriptional mRNA editing during transcription of the phosphoprotein (P) gene to generate additional mRNAs encoding the V and W proteins. The C protein is translated from the P mRNA, but in an alternate reading frame. Sequence analysis of multiple, cloned mRNAs showed that the mRNA editing frequencies of the P genes of the henipaviruses are higher than those reported for other paramyxoviruses. Antisera to synthetic peptides from the P, V, W and C proteins of NiV were generated to study their expression in infected cells. All proteins were detected in both infected cells and purified virions. In infected cells, the W protein was detected in the nucleus while P, V and C were found in the cytoplasm.
Collapse
Affiliation(s)
- Michael K Lo
- The Research Institute at Nationwide Children's Hospital, Center for Vaccines and Immunity, 700 Children's Drive, Columbus, OH 43205, USA.,The Ohio State University, College of Medicine, Department of Pediatrics, Columbus, OH 43205, USA.,Emory University School of Medicine, Department of Microbiology and Immunology, 1510 Clifton Road, Atlanta, GA 30322, USA.,Measles, Mumps, Rubella and Herpesviruses Laboratory Branch, 1600 Clifton Road, MS-C-22, Atlanta, GA 30333, USA
| | - Brian H Harcourt
- Measles, Mumps, Rubella and Herpesviruses Laboratory Branch, 1600 Clifton Road, MS-C-22, Atlanta, GA 30333, USA
| | - Bruce A Mungall
- Commonwealth Scientific Industrial Research Organization, Australian Animal Health Laboratory, 5 Portarlington Road, East Geelong, Victoria, Australia
| | - Azaibi Tamin
- Measles, Mumps, Rubella and Herpesviruses Laboratory Branch, 1600 Clifton Road, MS-C-22, Atlanta, GA 30333, USA
| | - Mark E Peeples
- The Ohio State University, College of Medicine, Department of Pediatrics, Columbus, OH 43205, USA.,The Research Institute at Nationwide Children's Hospital, Center for Vaccines and Immunity, 700 Children's Drive, Columbus, OH 43205, USA
| | - William J Bellini
- Measles, Mumps, Rubella and Herpesviruses Laboratory Branch, 1600 Clifton Road, MS-C-22, Atlanta, GA 30333, USA
| | - Paul A Rota
- Measles, Mumps, Rubella and Herpesviruses Laboratory Branch, 1600 Clifton Road, MS-C-22, Atlanta, GA 30333, USA
| |
Collapse
|
35
|
Sleeman K, Stein DA, Tamin A, Reddish M, Iversen PL, Rota PA. Inhibition of measles virus infections in cell cultures by peptide-conjugated morpholino oligomers. Virus Res 2009; 140:49-56. [PMID: 19059443 DOI: 10.1016/j.virusres.2008.10.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2008] [Revised: 10/29/2008] [Accepted: 10/31/2008] [Indexed: 01/15/2023]
Abstract
Measles virus (MeV) is a highly contagious human pathogen. Despite the success of measles vaccination programs, measles is still responsible for an estimated 245,000 deaths each year. There are currently no antiviral compounds available for the treatment of measles. Peptide-conjugated phosphorodiamidate morpholino oligomers (PPMO) are antisense compounds that enter cells readily and can interfere with mRNA function by steric blocking. A panel of PPMO was designed to target various sequences of MeV RNA that are known to be important for viral replication. Five PPMO, targeting MeV genomic RNA or mRNA, inhibited the replication of MeV, in a dose-responsive and sequence-specific manner in cultured cells. One of the highly active PPMO (PPMO 454), targeting a conserved sequence in the translation start site of the mRNA coding for the nucleocapsid protein, inhibited multiple genotypes of MeV. This report provides evidence that PPMO treatment represents a promising approach for developing antiviral agents against measles and other paramyxoviruses.
Collapse
Affiliation(s)
- Katrina Sleeman
- Measles, Mumps, Rubella, and Herpesviruses Laboratory Branch, Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | | | | | | | | | |
Collapse
|
36
|
Toth AM, Devaux P, Cattaneo R, Samuel CE. Protein kinase PKR mediates the apoptosis induction and growth restriction phenotypes of C protein-deficient measles virus. J Virol 2009; 83:961-8. [PMID: 19004947 PMCID: PMC2612345 DOI: 10.1128/jvi.01669-08] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2008] [Accepted: 11/04/2008] [Indexed: 12/24/2022] Open
Abstract
The measles virus (MV) accessory proteins V and C play important roles in MV replication and pathogenesis. Infection with recombinant MV lacking either V or C causes more cell death than infection with the parental vaccine-equivalent virus (MVvac), and C-deficient virus grows poorly relative to the parental virus. Here, we show that a major effector of the C phenotype is the RNA-dependent protein kinase PKR. Using human HeLa cells stably deficient in PKR as a result of RNA interference-mediated knockdown (PKR(kd) cells), we demonstrated that a reduction in PKR partially rescued the growth defect of C knockout (C(ko)) virus but had no effect on the growth of either wild-type (WT) or V knockout (V(ko)) virus. Increased growth of the C(ko) virus in PKR(kd) cells correlated with increased viral protein expression, while defective growth and decreased protein expression in PKR-sufficient cells correlated with increased phosphorylation of PKR and the alpha subunit of eukaryotic initiation factor 2. Furthermore, infection with WT, V(ko), or especially C(ko) virus caused significantly less apoptosis in PKR(kd) cells than in PKR-sufficient cells. Although apoptosis induced by C(ko) virus infection in PKR-sufficient cells was blocked by a caspase antagonist, the growth of C(ko) virus was not restored to the WT level by treatment with this pharmacologic inhibitor. Taken together, these results indicate that PKR plays an important antiviral role during MV infection but that the virus growth restriction by PKR is not dependent upon the induction of apoptosis. Furthermore, the results establish that a principal function of the MV C protein is to antagonize the proapoptotic and antiviral activities of PKR.
Collapse
Affiliation(s)
- Ann M Toth
- Department of Molecular, University of California, Santa Barbara, California 93106, USA
| | | | | | | |
Collapse
|
37
|
Abstract
This review describes the two interrelated and interdependent processes of transcription and replication for measles virus. First, we concentrate on the ribonucleoprotein (RNP) complex, which contains the negative sense genomic template and in encapsidated in every virion. Second, we examine the viral proteins involved in these processes, placing particular emphasis on their structure, conserved sequence motifs, their interaction partners and the domains which mediate these associations. Transcription is discussed in terms of sequence motifs in the template, editing, co-transcriptional modifications of the mRNAs and the phase of the gene start sites within the genome. Likewise, replication is considered in terms of promoter strength, copy numbers and the remarkable plasticity of the system. The review emphasises what is not known or known only by analogy rather than by direct experimental evidence in the MV replication cycle and hence where additional research, using reverse genetic systems, is needed to complete our understanding of the processes involved.
Collapse
Affiliation(s)
- B K Rima
- Centre for Infection and Immunity, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast BT9 7BL, Northern Ireland, UK.
| | | |
Collapse
|
38
|
Bankamp B, Fontana JM, Bellini WJ, Rota PA. Adaptation to cell culture induces functional differences in measles virus proteins. Virol J 2008; 5:129. [PMID: 18954437 PMCID: PMC2582235 DOI: 10.1186/1743-422x-5-129] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2008] [Accepted: 10/27/2008] [Indexed: 11/10/2022] Open
Abstract
Background Live, attenuated measles virus (MeV) vaccine strains were generated by adaptation to cell culture. The genetic basis for the attenuation of the vaccine strains is unknown. We previously reported that adaptation of a pathogenic, wild-type MeV to Vero cells or primary chicken embryo fibroblasts (CEFs) resulted in a loss of pathogenicity in rhesus macaques. The CEF-adapted virus (D-CEF) contained single amino acid changes in the C and matrix (M) proteins and two substitutions in the shared amino terminal domain of the phosphoprotein (P) and V protein. The Vero-adapted virus (D-VI) had a mutation in the cytoplasmic tail of the hemagglutinin (H) protein. Results In vitro assays were used to test the functions of the wild-type and mutant proteins. The substitution in the C protein of D-CEF decreased its ability to inhibit mini-genome replication, while the wild-type and mutant M proteins inhibited replication to the same extent. The substitution in the cytoplasmic tail of the D-VI H protein resulted in reduced fusion in a quantitative fusion assay. Co-expression of M proteins with wild-type fusion and H proteins decreased fusion activity, but the mutation in the M protein of D-CEF did not affect this function. Both mutations in the P and V proteins of D-CEF reduced the ability of these proteins to inhibit type I and II interferon signaling. Conclusion Adaptation of a wild-type MeV to cell culture selected for genetic changes that caused measurable functional differences in viral proteins.
Collapse
Affiliation(s)
- Bettina Bankamp
- Measles, Mumps, Rubella and Herpesvirus Laboratory Branch, Division of Viral Diseases, Centers for Disease Control and Prevention, MS C-22, 1600 Clifton Road, Atlanta, Georgia 30333, USA.
| | | | | | | |
Collapse
|
39
|
Measles viruses possessing the polymerase protein genes of the Edmonston vaccine strain exhibit attenuated gene expression and growth in cultured cells and SLAM knock-in mice. J Virol 2008; 82:11979-84. [PMID: 18799577 DOI: 10.1128/jvi.00867-08] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Live attenuated vaccines against measles have been developed through adaptation of clinical isolates of measles virus (MV) in various cultured cells. Analyses using recombinant MVs with chimeric genomes between wild-type and Edmonston vaccine strains indicated that viruses possessing the polymerase protein genes of the Edmonston strain exhibited attenuated viral gene expression and growth in cultured cells as well as in mice expressing an MV receptor, signaling lymphocyte activation molecule, regardless of whether the virus genome had the wild-type or vaccine-type promoter sequence. These data demonstrate that the polymerase protein genes of the Edmonston strain contribute to its attenuated phenotype.
Collapse
|
40
|
Expression of human parainfluenza virus type 3 PD protein and intracellular localization in virus infected cells. Virus Genes 2008; 37:358-67. [PMID: 18751884 DOI: 10.1007/s11262-008-0269-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2008] [Accepted: 07/30/2008] [Indexed: 10/21/2022]
Abstract
The P gene of human parainfluenza virus type 3 (HPIV 3) encodes a multicistronic P mRNA that gives rise to four polypeptides. The P and C proteins are synthesized from two discrete overlapping AUG codons from the unedited P mRNA, while synthesis of two additional proteins, V and PD, presumably occurs via a unique transcriptional editing mechanism. However, the presence of V and PD proteins in HPIV 3 infected cells and their role in viral replication remains uncertain. Here, in vitro expression of full-length PD protein from an altered P mRNA and generation of a polyclonal antibody to the COOH-terminus of PD was achieved. Confocal immunofluorescence analysis following Leptomycin B (LMB) treatment revealed the presence of PD protein in nuclear and cytoplasmic compartments of HPIV 3 infected cells suggesting the involvement of a nuclear localization signal in this process. These initial results provide new impetus for further characterization of the role of PD in HPIV 3 infection.
Collapse
|
41
|
Measles virus circumvents the host interferon response by different actions of the C and V proteins. J Virol 2008; 82:8296-306. [PMID: 18562542 DOI: 10.1128/jvi.00108-08] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Measles is an acute febrile infectious disease with high morbidity and mortality. The genome of measles virus (MV), the causative agent, encodes two accessory products, V and C proteins, that play important roles in MV virulence. The V but not the C protein of the IC-B strain (a well-characterized virulent strain of MV) has been shown to block the Jak/Stat signaling pathway and counteract the cellular interferon (IFN) response. We have recently shown that a recombinant IC-B strain that lacks C protein expression replicates poorly in certain cell lines, and its growth defect is related to translational inhibition and strong IFN induction. Here, we show that the V protein of the MV IC-B strain also blocks the IFN induction pathway mediated by the melanoma differentiation-associated gene 5 product, thus actively interfering with the host IFN response at two different steps. On the other hand, the C protein per se possesses no activity to block the IFN induction pathway. Our data indicate that the C protein acts as a regulator of viral RNA synthesis, thereby acting indirectly to suppress IFN induction. Since recombinant MVs with C protein defective in modulating viral RNA synthesis or lacking C protein expression strongly stimulate IFN production, in spite of V protein production, both the C and V proteins must be required for MV to fully circumvent the host IFN response.
Collapse
|
42
|
Sleeman K, Bankamp B, Hummel KB, Lo MK, Bellini WJ, Rota PA. The C, V and W proteins of Nipah virus inhibit minigenome replication. J Gen Virol 2008; 89:1300-1308. [PMID: 18420809 DOI: 10.1099/vir.0.83582-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Nipah virus (NiV) is a recently emergent, highly pathogenic, zoonotic paramyxovirus of the genus Henipavirus. Like the phosphoprotein (P) gene of other paramyxoviruses, the P gene of NiV is predicted to encode three additional proteins, C, V and W. When the C, V and W proteins of NiV were tested for their ability to inhibit expression of the chloramphenicol acetyltransferase (CAT) reporter gene in plasmid-based, minigenome replication assays, each protein inhibited CAT expression in a dose-dependent manner. The C, V and W proteins of NiV also inhibited expression of CAT from a measles virus (MV) minigenome, but not from a human parainfluenzavirus 3 (hPIV3) minigenome. Interestingly, the C and V proteins of MV, which have previously been shown to inhibit MV minigenome replication, also inhibited NiV minigenome replication; however, they were not able to inhibit hPIV3 minigenome replication. In contrast, the C protein of hPIV3 inhibited minigenome replication of hPIV3, NiV and MV. Although there is very limited amino acid sequence similarity between the C, V and W proteins within the paramyxoviruses, the heterotypic inhibition of replication suggests that these proteins may share functional properties.
Collapse
Affiliation(s)
- Katrina Sleeman
- Measles, Mumps, Rubella, and Herpesvirus Laboratory Branch, Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Bettina Bankamp
- Measles, Mumps, Rubella, and Herpesvirus Laboratory Branch, Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Kimberly B Hummel
- Measles, Mumps, Rubella, and Herpesvirus Laboratory Branch, Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Michael K Lo
- Emory University, Atlanta, GA, USA.,The Research Institute, Nationwide Children's Hospital, Columbus, OH, USA.,Measles, Mumps, Rubella, and Herpesvirus Laboratory Branch, Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - William J Bellini
- Measles, Mumps, Rubella, and Herpesvirus Laboratory Branch, Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Paul A Rota
- Measles, Mumps, Rubella, and Herpesvirus Laboratory Branch, Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| |
Collapse
|
43
|
Bankamp B, Lopareva EN, Kremer JR, Tian Y, Clemens MS, Patel R, Fowlkes AL, Kessler JR, Muller CP, Bellini WJ, Rota PA. Genetic variability and mRNA editing frequencies of the phosphoprotein genes of wild-type measles viruses. Virus Res 2008; 135:298-306. [PMID: 18490071 DOI: 10.1016/j.virusres.2008.04.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2008] [Revised: 04/01/2008] [Accepted: 04/03/2008] [Indexed: 11/30/2022]
Abstract
The sequences of the nucleoprotein (N) and hemagglutinin (H) genes are routinely used for molecular epidemiologic studies of measles virus (MV). However, the amount of genetic diversity contained in other genes of MV has not been thoroughly evaluated. In this report, the nucleotide sequences of the phosphoprotein (P) genes from 34 wild-type strains representing 15 genotypes of MV were analyzed and found to be almost as variable as the H genes but less variable than the N genes. Deduced amino acid sequences of the three proteins encoded by the P gene, P, V and C, demonstrated considerably higher variability than the H proteins. Phylogenetic analysis showed the same tree topography for the P gene sequences as previously seen for the N and H genes. RNA editing of P gene transcripts affects the relative ratios of P and V proteins, which may have consequences for pathogenicity. Wild-type isolates produced more transcripts with more than one G insertion; however, there was no significant difference in the use of P and V open reading frames, suggesting that the relative amounts of P and V proteins in infected cells would be similar for both vaccine and wild-type strains.
Collapse
Affiliation(s)
- B Bankamp
- Centers for Disease Control and Prevention, Measles, Mumps, Rubella and Herpesvirus Laboratory Branch, 1600 Clifton Road, Atlanta, GA 30333, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Regulation of interferon signaling by the C and V proteins from attenuated and wild-type strains of measles virus. Virology 2008; 374:71-81. [DOI: 10.1016/j.virol.2007.12.031] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2007] [Revised: 09/26/2007] [Accepted: 12/21/2007] [Indexed: 11/20/2022]
|
45
|
Watanabe S, Noda T, Halfmann P, Jasenosky L, Kawaoka Y. Ebola virus (EBOV) VP24 inhibits transcription and replication of the EBOV genome. J Infect Dis 2008; 196 Suppl 2:S284-90. [PMID: 17940962 DOI: 10.1086/520582] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
The roles of Ebola virus (EBOV) VP24 in nucleocapsid (NC) formation and the effect of VP24 on transcription and replication of the viral genome during NC formation remain unknown. We therefore examined the effect of VP24 on the expression of a reporter gene (luciferase), viral RNA, and messenger RNA from the EBOV minigenome. VP24 inhibited the expression of luciferase and both RNAs in a dose-dependent manner, suggesting that VP24 inhibits transcription and replication of the EBOV genome. By contrast, FLAG-tagged VP24, which cannot support NC-like structure formation, did not appreciably decrease luciferase expression, indicating that association of VP24 with the ribonucleoprotein complex is required for inhibition. Glycoprotein and VP40 did not affect VP24-mediated inhibition of transcription and replication. Together, these results suggest that VP24 reduces transcription and replication of the EBOV genome by direct association with the ribonucleoprotein complex in virus-infected cells.
Collapse
Affiliation(s)
- Shinji Watanabe
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, USA
| | | | | | | | | |
Collapse
|
46
|
Bankamp B, Hodge G, McChesney MB, Bellini WJ, Rota PA. Genetic changes that affect the virulence of measles virus in a rhesus macaque model. Virology 2007; 373:39-50. [PMID: 18155263 DOI: 10.1016/j.virol.2007.11.025] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2007] [Revised: 10/19/2007] [Accepted: 11/19/2007] [Indexed: 12/18/2022]
Abstract
To identify genetic changes that lead to the attenuation of measles virus (MV), a strain of MV that is pathogenic in rhesus macaques was adapted to grow in Vero cells, Vero/hSLAM cells and, to simulate the process used to derive live attenuated vaccines, in primary chicken embryo fibroblasts (CEF). Comparison of the complete genomic sequences of the pathogenic wild-type (Davis87-wt) and four cell culture-adapted strains derived from it showed complete conservation of sequence in the Vero/hSLAM-passaged virus. Viruses adapted to Vero cells and CEF had predicted amino acid changes in the nucleocapsid protein, phosphoprotein, V protein, C protein, matrix protein, and the cytoplasmic tail of the hemagglutinin protein. All four cell culture-adapted strains, including the Vero/hSLAM cell-passaged virus, were able to productively infect Vero cells, but the peak viral titers differed. The Vero cell-adapted strains were unable to replicate in Chinese Hamster Ovary cells expressing CD46, indicating that they had not adapted to use the CD46 receptor. The Vero/hSLAM cell-passaged virus retained pathogenicity in rhesus macaques as measured by the appearance of a skin rash while the Vero cell-adapted and CEF-adapted strains had lost the ability to cause a rash. There were no significant differences in viral titers in peripheral blood mononuclear cells among monkeys infected with any of the viral stocks tested. These results identify a limited number of genetic changes in the genome of MV that lead to attenuation in vivo.
Collapse
Affiliation(s)
- Bettina Bankamp
- Measles, Mumps, Rubella and Herpes Viruses Laboratory Branch, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA.
| | | | | | | | | |
Collapse
|
47
|
Borges MB, Caride E, Jabor AV, Malachias JMN, Freire MS, Homma A, Galler R. Study of the genetic stability of measles virus CAM-70 vaccine strain after serial passages in chicken embryo fibroblasts primary cultures. Virus Genes 2007; 36:35-44. [PMID: 18040767 DOI: 10.1007/s11262-007-0173-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2007] [Accepted: 10/31/2007] [Indexed: 11/28/2022]
Abstract
To evaluate the genetic stability of the CAM-70 measles vaccine strain we have performed 10 serial passages of the seed lot virus FMS-7 in chicken embryo fibroblasts primary cultures (CEF) under production conditions. The nucleotide sequences of the seed lot virus, the virus from a vaccine vial (third passage) and from the 10th passage were determined and compared with each other and with sequences from other sources. The full genome analysis of the CAM-70 vaccine still considers it as the most divergent among all vaccine strains. The nucleotide sequence analyses of viral genomes from the three CAM-70 passage levels have demonstrated that they are identical. This study shows that the measles CAM-70 vaccine virus is highly adapted to its cultivation conditions and that its genetic stability contributes, in part, to the safety profile of the vaccine.
Collapse
Affiliation(s)
- Maria Beatriz Borges
- Bio-Manguinhos, Fundação Oswaldo Cruz, Av. Brasil, 4365 - Manguinhos, Rio de Janeiro, RJ 21040-360, Brazil.
| | | | | | | | | | | | | |
Collapse
|
48
|
Nishie T, Nagata K, Takeuchi K. The C protein of wild-type measles virus has the ability to shuttle between the nucleus and the cytoplasm. Microbes Infect 2007; 9:344-54. [PMID: 17303464 DOI: 10.1016/j.micinf.2006.12.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2006] [Revised: 12/08/2006] [Accepted: 12/14/2006] [Indexed: 11/25/2022]
Abstract
Measles virus (MV) C protein is a small and basic non-structural protein, but its function is not well understood. We have found that a FLAG-tagged wild-type MV C protein expressed from cDNA was accumulated exclusively in the nucleus. To analyze the amino acid sequence important for the nuclear localization of C protein, a plasmid expressing C protein fused to the enhanced green fluorescent protein (EGFP) was generated. Mutation analysis revealed that (41)PPARKRRQ(48), belonging to the classical nuclear localization signal was important for nuclear localization. Analysis of the amino acid sequence of C protein revealed that it has a nuclear export signal (NES)-like sequence, (76)LEKAMTTLKL(85). Addition of the putative NES to the EGFP resulted in the translocation of EGFP to the cytoplasm. The Rev(1.4)-EGFP nuclear export assay showed that this putative NES has a CRM1-dependent NES activity. C-EGFP accumulated in HeLa nuclei could be translocated to NIH3T3 nuclei in heterokaryon assays. In MV-infected cells, C-EGFP was accumulated in the nuclei in early phase but in the cytoplasm in late phase. These results indicate that the putative NES is functional and that C protein has the ability to shuttle between the nucleus and the cytoplasm.
Collapse
Affiliation(s)
- Tomomi Nishie
- Department of Infection Biology, Graduate School of Comprehensive Human Sciences and Institute of Basic Medical Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | | | | |
Collapse
|
49
|
Nakatsu Y, Takeda M, Ohno S, Koga R, Yanagi Y. Translational inhibition and increased interferon induction in cells infected with C protein-deficient measles virus. J Virol 2006; 80:11861-7. [PMID: 16987969 PMCID: PMC1642609 DOI: 10.1128/jvi.00751-06] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2006] [Accepted: 09/12/2006] [Indexed: 01/12/2023] Open
Abstract
In addition to the phosphoprotein, the P gene of measles virus (MV) also encodes the V and C proteins by an RNA editing process and by alternative initiation of translation in a different reading frame, respectively. Although the MV C protein is required for efficient MV replication in vivo and in some cultured cells, its exact functions in virus infection are currently unclear. Here, we report that a recombinant MV lacking the C protein (MVDeltaC) grew poorly in a human cell line possessing the intact interferon (IFN) pathway and that this growth defect was associated with reduced viral translation and genome replication. The translational inhibition was correlated with phosphorylation of the alpha subunit of eukaryotic translation initiation factor 2. Moreover, increased IFN induction was observed in MVDeltaC-infected cells. The NS1 protein of influenza virus, which binds to double-stranded RNA (dsRNA) and consequently inhibits IFN induction and dsRNA-dependent protein kinase activation, complemented the growth defect of MVDeltaC. These results indicate that the MV C protein inhibits IFN induction and modulates host antiviral responses, thereby ensuring MV growth in host cells.
Collapse
Affiliation(s)
- Yuichiro Nakatsu
- Department of Virology, Faculty of Medicine, Kyushu University, Fukuoka 812-8582, Japan
| | | | | | | | | |
Collapse
|
50
|
Hotta H, Nihei K, Abe YI, Kato S, Jiang DP, Nagano-Fujii M, Sada K. Full-length sequence analysis of subacute sclerosing panencephalitis (SSPE) virus, a mutant of measles virus, isolated from brain tissues of a patient shortly after onset of SSPE. Microbiol Immunol 2006; 50:525-34. [PMID: 16858143 DOI: 10.1111/j.1348-0421.2006.tb03822.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Subacute sclerosing panencephalitis (SSPE) virus, a measles virus (MeV) mutant, was isolated from brain tissues of a patient shortly after the clinical onset, and the entire viral genome was sequenced. The virus, named SSPE-Kobe-1, formed syncytia on B95a and Vero/SLAM cells without producing cell-free infectious virus particles, which is characteristic of SSPE virus. Phylogenetic analysis classified SSPE-Kobe-1 into genotype D3. When compared with an MeV field isolate of the same genotype (Ich-B strain), SSPE-Kobe-1 exhibited mutation rates of 0.8-1.6% at the nucleotide level in each of the proteincoding regions of the viral genome. It is noteworthy that the mutation rate of the M gene (1.2%) of SSPE-Kobe-1 was considerably lower than for other SSPE virus strains reported so far, but that the majority of the mutations (75%) were the uridine-to-cytidine biased hypermutation characteristic of the SSPE virus M gene. At the amino acid level, the viral proteins, such as N, P, C, V, M, F, H and L proteins, had point-mutations on 3, 7, 1, 4, 3, 9, 8 and 14 residues, respectively, compared with the Ich-B strain. In addition, the F and H proteins had mutated C-termini due to single-point mutations near or at the stop codons. Two of the three mutations in the M protein were Leu-to-Pro mutations, which are likely to affect the conformation and, therefore, the function of the protein. Because of the relatively small number of mutations, SSPE-Kobe-1 would be a useful tool to study genetic evolution of SSPE virus.
Collapse
Affiliation(s)
- Hak Hotta
- Division of Microbiology, Kobe University Graduate School of Medicine, Kobe, Japan.
| | | | | | | | | | | | | |
Collapse
|