1
|
Jamieson PJ, Shen X, Abu-Shmais AA, Wasdin PT, Janowska K, Edwards RJ, Scapellato G, Richardson SI, Manamela NP, Liu S, Barr M, Gillespie RA, Mimms J, Suryadevara N, Sornberger TA, Zost S, Parks R, Flaherty S, Janke AK, Howard BN, Suresh YP, Ruprecht RM, Crowe JE, Carnahan RH, Bailey JR, Masaru K, Haynes BF, Moore PL, Acharya P, Montefiori DC, Kalams SA, Lu S, Georgiev IS. Glycan-reactive antibodies isolated from human HIV-1 vaccine trial participants show broad pathogen cross-reactivity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.17.633475. [PMID: 39896680 PMCID: PMC11785028 DOI: 10.1101/2025.01.17.633475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
HIV-1 continues to pose a significant global health challenge, requiring ongoing research into effective prevention and treatment strategies. Understanding the B cell repertoire that can be engaged upon vaccination in humans is crucial for the development of future preventive vaccines. In this study, PBMCs from HIV-negative participants in the multivalent HVTN124 human HIV-1 vaccine clinical trial were interrogated for HIV-reactive B cells using LIBRA-seq, a high-throughput B cell mapping technology. We report the discovery of glycan-reactive antibodies capable of neutralizing diverse heterologous HIV-1 virus strains. Further, isolated antibodies showed broad cross-reactivity against antigens from a variety of other pathogens, while remaining mostly negative on autoreactivity assays. The emerging class of glycan-reactive virus-neutralizing antibodies with exceptional breadth of pathogen cross-reactivity may present an effective target for vaccination at the population level.
Collapse
Affiliation(s)
- Parker J Jamieson
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Xiaoying Shen
- Department of Surgery, Duke University School of Medicine, Durham, NC 27710, USA
| | - Alexandra A Abu-Shmais
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Perry T Wasdin
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Program in Chemical and Physical Biology, Vanderbilt University Medical Center; Nashville, TN 37232, USA
| | - Katarzyna Janowska
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Robert J Edwards
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Garrett Scapellato
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Simone I Richardson
- South African Medical Research Council Antibody Immunity Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Centre for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
| | - Nelia P Manamela
- South African Medical Research Council Antibody Immunity Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Centre for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
| | - Shuying Liu
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Maggie Barr
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Rebecca A Gillespie
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jessica Mimms
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | - Ty A Sornberger
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Seth Zost
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Rob Parks
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Shelby Flaherty
- Department of Surgery, Duke University School of Medicine, Durham, NC 27710, USA
| | - Alexis K Janke
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Bethany N Howard
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Yukthi P Suresh
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Program in Chemical and Physical Biology, Vanderbilt University Medical Center; Nashville, TN 37232, USA
| | - Ruth M Ruprecht
- Texas Biomedical Research Institute and Southwest National Primate Research Center, San Antonio, TX 78227, USA
| | - James E Crowe
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Robert H Carnahan
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Justin R Bailey
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Kanekiyo Masaru
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Barton F Haynes
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Integrative Immunology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Penny L Moore
- South African Medical Research Council Antibody Immunity Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Centre for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
| | - Priyamvada Acharya
- Department of Surgery, Duke University School of Medicine, Durham, NC 27710, USA
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - David C Montefiori
- Department of Surgery, Duke University School of Medicine, Durham, NC 27710, USA
| | - Spyros A Kalams
- Infectious Diseases Unit, Department of Internal Medicine; Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Shan Lu
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Ivelin S Georgiev
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Program in Chemical and Physical Biology, Vanderbilt University Medical Center; Nashville, TN 37232, USA
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Computer Science, Vanderbilt University, Nashville, TN 37232, USA
- Center for Structural Biology, Vanderbilt University, Nashville, TN 37232, USA
- Center for Computational Microbiology and Immunology, Vanderbilt University Medical Center; Nashville, TN 37232, USA
| |
Collapse
|
2
|
Yuan L, Zhang S, Bi R, Liu X, Han Z, Li M, Liao X, Xie T, Bai S, Xie Q, Luo C, Jiang Y, Yuan J, Luo H, Yan H, Sun C, Shu Y. A broad-spectrum multiepitope vaccine against seasonal influenza A and B viruses in mice. EBioMedicine 2024; 106:105269. [PMID: 39111250 DOI: 10.1016/j.ebiom.2024.105269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 07/23/2024] [Accepted: 07/23/2024] [Indexed: 08/18/2024] Open
Abstract
BACKGROUND Influenza viruses pose a persistent threat to global public health, necessitating the development of innovative and broadly effective vaccines. METHODS This study focuses on a multiepitope vaccine (MEV) designed to provide broad-spectrum protection against different influenza viruses. The MEV, containing 19 B-cell linear epitopes, 7 CD4+ T cells, and 11 CD8+ T cells epitopes identified through enzyme-linked immunospot assay (ELISPOT) in influenza viruses infected mice, was administered through a regimen of two doses of DNA vaccine followed by one dose of a protein vaccine in C57BL/6 female mice. FINDINGS Upon lethal challenge with both seasonal circulating strains (H1N1, H3N2, BV, and BY) and historical strains (H1N1-PR8 and H3N2-X31), MEV demonstrated substantial protection against different influenza seasonal strains, with partial efficacy against historical strains. Notably, the increased germinal centre B cells and antibody-secreting cells, along with robust T cell immune responses, highlighted the comprehensive immune defence elicited by MEV. Elevated hemagglutinin inhibition antibody was also observed against seasonal circulating and historical strains. Additionally, mice vaccinated with MEV exhibited significantly lower counts of inflammatory cells in the lungs compared to negative control groups. INTERPRETATION Our results demonstrated the efficacy of a broad-spectrum MEV against influenza viruses in mice. Conducting long-term studies to evaluate the durability of MEV-induced immune responses and explore its potential application in diverse populations will offer valuable insights for the continued advancement of this promising vaccine. FUNDING Funding bodies are described in the Acknowledgments section.
Collapse
Affiliation(s)
- Lifang Yuan
- School of Public Health (Shenzhen), Shenzhen Key Laboratory of Pathogenic Microbes and Biosafetuy, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, PR China.
| | - Shengze Zhang
- School of Public Health (Shenzhen), Shenzhen Key Laboratory of Pathogenic Microbes and Biosafetuy, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, PR China.
| | - Rongjun Bi
- School of Public Health (Shenzhen), Shenzhen Key Laboratory of Pathogenic Microbes and Biosafetuy, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, PR China.
| | - Xuejie Liu
- School of Public Health (Shenzhen), Shenzhen Key Laboratory of Pathogenic Microbes and Biosafetuy, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, PR China.
| | - Zirong Han
- School of Public Health (Shenzhen), Shenzhen Key Laboratory of Pathogenic Microbes and Biosafetuy, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, PR China.
| | - Minchao Li
- School of Public Health (Shenzhen), Shenzhen Key Laboratory of Pathogenic Microbes and Biosafetuy, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, PR China.
| | - Xinzhong Liao
- School of Public Health (Shenzhen), Shenzhen Key Laboratory of Pathogenic Microbes and Biosafetuy, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, PR China.
| | - Ting Xie
- School of Public Health (Shenzhen), Shenzhen Key Laboratory of Pathogenic Microbes and Biosafetuy, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, PR China.
| | - Shaohui Bai
- School of Public Health (Shenzhen), Shenzhen Key Laboratory of Pathogenic Microbes and Biosafetuy, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, PR China.
| | - Qian Xie
- School of Public Health (Shenzhen), Shenzhen Key Laboratory of Pathogenic Microbes and Biosafetuy, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, PR China.
| | - Chuming Luo
- School of Public Health (Shenzhen), Shenzhen Key Laboratory of Pathogenic Microbes and Biosafetuy, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, PR China.
| | - Ying Jiang
- Shenzhen Nanshan Centre for Disease Control and Prevention, Shenzhen, 518054, PR China.
| | - Jianhui Yuan
- Shenzhen Nanshan Centre for Disease Control and Prevention, Shenzhen, 518054, PR China.
| | - Huanle Luo
- School of Public Health (Shenzhen), Shenzhen Key Laboratory of Pathogenic Microbes and Biosafetuy, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, PR China; Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, PR China.
| | - Huacheng Yan
- Centre for Disease Control and Prevention of Southern Military Theatre, 510610, Guangzhou, PR China.
| | - Caijun Sun
- School of Public Health (Shenzhen), Shenzhen Key Laboratory of Pathogenic Microbes and Biosafetuy, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, PR China; Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, PR China.
| | - Yuelong Shu
- School of Public Health (Shenzhen), Shenzhen Key Laboratory of Pathogenic Microbes and Biosafetuy, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, PR China; Key Laboratory of Pathogen Infection Prevention and Control (MOE), State Key Laboratory of Respiratory Health and Multimorbidity, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 102629, PR China.
| |
Collapse
|
3
|
Bhattacharya S, Jenkins MC, Keshavarz-Joud P, Bourque AR, White K, Alvarez Barkane AM, Bryksin AV, Hernandez C, Kopylov M, Finn M. Heterologous Prime-Boost with Immunologically Orthogonal Protein Nanoparticles for Peptide Immunofocusing. ACS NANO 2024; 18:20083-20100. [PMID: 39041587 PMCID: PMC11308774 DOI: 10.1021/acsnano.4c00949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/24/2024]
Abstract
Protein nanoparticles are effective platforms for antigen presentation and targeting effector immune cells in vaccine development. Encapsulins are a class of protein-based microbial nanocompartments that self-assemble into icosahedral structures with external diameters ranging from 24 to 42 nm. Encapsulins from Myxococcus xanthus were designed to package bacterial RNA when produced in E. coli and were shown to have immunogenic and self-adjuvanting properties enhanced by this RNA. We genetically incorporated a 20-mer peptide derived from a mutant strain of the SARS-CoV-2 receptor binding domain (RBD) into the encapsulin protomeric coat protein for presentation on the exterior surface of the particle, inducing the formation of several nonicosahedral structures that were characterized by cryogenic electron microscopy. This immunogen elicited conformationally relevant humoral responses to the SARS-CoV-2 RBD. Immunological recognition was enhanced when the same peptide was presented in a heterologous prime/boost vaccination strategy using the engineered encapsulin and a previously reported variant of the PP7 virus-like particle, leading to the development of a selective antibody response against a SARS-CoV-2 RBD point mutant. While generating epitope-focused antibody responses is an interplay between inherent vaccine properties and B/T cells, here we demonstrate the use of orthogonal nanoparticles to fine-tune the control of epitope focusing.
Collapse
Affiliation(s)
- Sonia Bhattacharya
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia 30332, United States
| | - Matthew C. Jenkins
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia 30332, United States
| | - Parisa Keshavarz-Joud
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia 30332, United States
| | - Alisyn Retos Bourque
- Parker
H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Keiyana White
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia 30332, United States
| | - Amina Maria Alvarez Barkane
- Parker
H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Anton V. Bryksin
- Parker
H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Carolina Hernandez
- New
York Structural Biology Center, New York, New York 10027, United States
| | - Mykhailo Kopylov
- New
York Structural Biology Center, New York, New York 10027, United States
| | - M.G. Finn
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia 30332, United States
- School
of Biological Sciences, Georgia Institute
of Technology, Atlanta, Georgia 30332, United
States
| |
Collapse
|
4
|
Bhattacharya S, Jenkins MC, Keshavarz-Joud P, Bourque AR, White K, Alvarez Barkane AM, Bryksin AV, Hernandez C, Kopylov M, Finn MG. Heterologous Prime-Boost with Immunologically Orthogonal Protein Nanoparticles for Peptide Immunofocusing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.24.581861. [PMID: 38464232 PMCID: PMC10925081 DOI: 10.1101/2024.02.24.581861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Protein nanoparticles are effective platforms for antigen presentation and targeting effector immune cells in vaccine development. Encapsulins are a class of protein-based microbial nanocompartments that self-assemble into icosahedral structures with external diameters ranging from 24 to 42 nm. Encapsulins from Mxyococcus xanthus were designed to package bacterial RNA when produced in E. coli and were shown to have immunogenic and self-adjuvanting properties enhanced by this RNA. We genetically incorporated a 20-mer peptide derived from a mutant strain of the SARS-CoV-2 receptor binding domain (RBD) into the encapsulin protomeric coat protein for presentation on the exterior surface of the particle. This immunogen elicited conformationally-relevant humoral responses to the SARS-CoV-2 RBD. Immunological recognition was enhanced when the same peptide was presented in a heterologous prime/boost vaccination strategy using the engineered encapsulin and a previously reported variant of the PP7 virus-like particle, leading to the development of a selective antibody response against a SARS-CoV-2 RBD point mutant. While generating epitope-focused antibody responses is an interplay between inherent vaccine properties and B/T cells, here we demonstrate the use of orthogonal nanoparticles to fine-tune the control of epitope focusing.
Collapse
Affiliation(s)
- Sonia Bhattacharya
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Matthew C Jenkins
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Parisa Keshavarz-Joud
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Alisyn Retos Bourque
- Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Keiyana White
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Amina M Alvarez Barkane
- Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Anton V Bryksin
- Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | | | - Mykhailo Kopylov
- New York Structural Biology Center, New York, New York, 10027, USA
| | - M G Finn
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
5
|
An Y, Zhao G, Duan H, Zhang N, Duan M, Xu S, Liu X, Han Y, Zheng T, Li X, Hou J, Zhang Z, Bi Y, Zhao X, Xu K, Dai L, Wang B, Gao GF. Robust and protective immune responses induced by heterologous prime-boost vaccination with DNA-protein dimeric RBD vaccines for COVID-19. J Med Virol 2023; 95:e28948. [PMID: 37436839 DOI: 10.1002/jmv.28948] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 07/14/2023]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic posed great impacts on public health. To fight against the pandemic, robust immune responses induced by vaccination are indispensable. Previously, we developed a subunit vaccine adjuvanted by aluminum hydroxide, ZF2001, based on the dimeric tandem-repeat RBD immunogen, which has been approved for clinical use. This dimeric RBD design was also explored as an mRNA vaccine. Both showed potent immunogenicity. In this study, a DNA vaccine candidate encoding RBD-dimer was designed. The humoral and cellular immune responses induced by homologous and heterologous prime-boost approaches with DNA-RBD-dimer and ZF2001 were assessed in mice. Protection efficacy was studied by the SARS-CoV-2 challenge. We found that the DNA-RBD-dimer vaccine was robustly immunogenic. Priming with DNA-RBD-dimer followed by ZF2001 boosting induced higher levels of neutralizing antibodies than homologous vaccination with either DNA-RBD-dimer or ZF2001, elicited polyfunctional cellular immunity with a TH 1-biased polarization, and efficiently protected mice against SARS-CoV-2 infection in the lung. This study demonstrated the robust and protective immune responses induced by the DNA-RBD-dimer candidate and provided a heterologous prime-boost approach with DNA-RBD-dimer and ZF2001.
Collapse
Affiliation(s)
- Yaling An
- Savaid Medical School, University of Chinese Academy of Sciences (UCAS), Beijing, China
| | - Gan Zhao
- Advaccine Biopharmaceutics (Suzhou) Co. Ltd, Suzhou, China
| | - Huixin Duan
- Savaid Medical School, University of Chinese Academy of Sciences (UCAS), Beijing, China
| | - Ning Zhang
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Minrun Duan
- School of Life Sciences, Yunnan University, Kunming, China
| | - Senyu Xu
- Savaid Medical School, University of Chinese Academy of Sciences (UCAS), Beijing, China
| | - Xueyuan Liu
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yuxuan Han
- Savaid Medical School, University of Chinese Academy of Sciences (UCAS), Beijing, China
| | - Tianyi Zheng
- Zhejiang University School of Medicine, Hangzhou, China
| | - Xin Li
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Jiawang Hou
- Advaccine Biopharmaceutics (Suzhou) Co. Ltd, Suzhou, China
| | - Zhiyu Zhang
- Advaccine Biopharmaceutics (Suzhou) Co. Ltd, Suzhou, China
| | - Yuhai Bi
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Chinese Academy of Sciences (CAS), Beijing, China
- CAS Center for Influenza Research and Early-Warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Diseases (CEEID), Chinese Academy of Sciences, Beijing, China
| | - Xin Zhao
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Kun Xu
- Research Network of Immunity and Health (RNIH), Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
| | - Lianpan Dai
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Bin Wang
- Advaccine Biopharmaceutics (Suzhou) Co. Ltd, Suzhou, China
| | - George F Gao
- Savaid Medical School, University of Chinese Academy of Sciences (UCAS), Beijing, China
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Chinese Academy of Sciences (CAS), Beijing, China
- Research Network of Immunity and Health (RNIH), Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
6
|
Ulrich-Lewis JT, Draves KE, Roe K, O’Connor MA, Clark EA, Fuller DH. STING Is Required in Conventional Dendritic Cells for DNA Vaccine Induction of Type I T Helper Cell- Dependent Antibody Responses. Front Immunol 2022; 13:861710. [PMID: 35529875 PMCID: PMC9072870 DOI: 10.3389/fimmu.2022.861710] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/14/2022] [Indexed: 02/02/2023] Open
Abstract
DNA vaccines elicit antibody, T helper cell responses and CD8+ T cell responses. Currently, little is known about the mechanism that DNA vaccines employ to induce adaptive immune responses. Prior studies have demonstrated that stimulator of interferon genes (STING) and conventional dendritic cells (cDCs) play critical roles in DNA vaccine induced antibody and T cell responses. STING activation by double stranded (dsDNA) sensing proteins initiate the production of type I interferon (IFN),but the DC-intrinsic effect of STING signaling is still unclear. Here, we investigated the role of STING within cDCs on DNA vaccine induction of antibody and T cell responses. STING knockout (STING-/- ) and conditional knockout mice that lack STING in cDCs (cDC STING cKO), were immunized intramuscularly with a DNA vaccine that expressed influenza A nucleoprotein (pNP). Both STING-/- and cDC STING cKO mice had significantly lower type I T helper (Th1) type antibody (anti-NP IgG2C) responses and lower frequencies of Th1 associated T cells (NP-specific IFN-γ+CD4+ T cells) post-immunization than wild type (WT) and cDC STING littermate control mice. In contrast, all mice had similar Th2-type NP-specific (IgG1) antibody titers. STING-/- mice developed significantly lower polyfunctional CD8+ T cells than WT, cDC STING cKO and cDC STING littermate control mice. These findings suggest that STING within cDCs mediates DNA vaccine induction of type I T helper responses including IFN-γ+CD4+ T cells, and Th1-type IgG2C antibody responses. The induction of CD8+ effector cell responses also require STING, but not within cDCs. These findings are the first to show that STING is required within cDCs to mediate DNA vaccine induced Th1 immune responses and provide new insight into the mechanism whereby DNA vaccines induce Th1 responses.
Collapse
Affiliation(s)
- Justin Theophilus Ulrich-Lewis
- Department of Microbiology, University of Washington, Seattle, WA, United States,Department of Immunology, University of Washington, Seattle, WA, United States
| | - Kevin E. Draves
- Department of Microbiology, University of Washington, Seattle, WA, United States,Department of Immunology, University of Washington, Seattle, WA, United States
| | - Kelsey Roe
- Department of Immunology, University of Washington, Seattle, WA, United States,Seattle Children's Hospital Center for Immunity and Immunotherapies Children’s Hospital, Seattle, WA, United States
| | - Megan A. O’Connor
- Department of Microbiology, University of Washington, Seattle, WA, United States
| | - Edward A. Clark
- Department of Microbiology, University of Washington, Seattle, WA, United States,Department of Immunology, University of Washington, Seattle, WA, United States
| | - Deborah Heydenburg Fuller
- Department of Microbiology, University of Washington, Seattle, WA, United States,*Correspondence: Deborah Heydenburg Fuller,
| |
Collapse
|
7
|
Hioe CE, Li G, Liu X, Tsahouridis O, He X, Funaki M, Klingler J, Tang AF, Feyznezhad R, Heindel DW, Wang XH, Spencer DA, Hu G, Satija N, Prévost J, Finzi A, Hessell AJ, Wang S, Lu S, Chen BK, Zolla-Pazner S, Upadhyay C, Alvarez R, Su L. Non-neutralizing antibodies targeting the immunogenic regions of HIV-1 envelope reduce mucosal infection and virus burden in humanized mice. PLoS Pathog 2022; 18:e1010183. [PMID: 34986207 PMCID: PMC8765624 DOI: 10.1371/journal.ppat.1010183] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 01/18/2022] [Accepted: 12/09/2021] [Indexed: 02/07/2023] Open
Abstract
Antibodies are principal immune components elicited by vaccines to induce protection from microbial pathogens. In the Thai RV144 HIV-1 vaccine trial, vaccine efficacy was 31% and the sole primary correlate of reduced risk was shown to be vigorous antibody response targeting the V1V2 region of HIV-1 envelope. Antibodies against V3 also were inversely correlated with infection risk in subsets of vaccinees. Antibodies recognizing these regions, however, do not exhibit potent neutralizing activity. Therefore, we examined the antiviral potential of poorly neutralizing monoclonal antibodies (mAbs) against immunodominant V1V2 and V3 sites by passive administration of human mAbs to humanized mice engrafted with CD34+ hematopoietic stem cells, followed by mucosal challenge with an HIV-1 infectious molecular clone expressing the envelope of a tier 2 resistant HIV-1 strain. Treatment with anti-V1V2 mAb 2158 or anti-V3 mAb 2219 did not prevent infection, but V3 mAb 2219 displayed a superior potency compared to V1V2 mAb 2158 in reducing virus burden. While these mAbs had no or weak neutralizing activity and elicited undetectable levels of antibody-dependent cellular cytotoxicity (ADCC), V3 mAb 2219 displayed a greater capacity to bind virus- and cell-associated HIV-1 envelope and to mediate antibody-dependent cellular phagocytosis (ADCP) and C1q complement binding as compared to V1V2 mAb 2158. Mutations in the Fc region of 2219 diminished these effector activities in vitro and lessened virus control in humanized mice. These results demonstrate the importance of Fc functions other than ADCC for antibodies without potent neutralizing activity.
Collapse
Affiliation(s)
- Catarina E. Hioe
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- James J. Peters VA Medical Center, Bronx, New York, New York, United States of America
| | - Guangming Li
- Laboratory of Viral Pathogenesis and Immunotherapy, Division of Virology, Pathogenesis, and Cancer, Institute of Human Virology, Department of Pharmacology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Lineberger Comprehensive Cancer Center, Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Xiaomei Liu
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Ourania Tsahouridis
- Lineberger Comprehensive Cancer Center, Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Xiuting He
- Laboratory of Viral Pathogenesis and Immunotherapy, Division of Virology, Pathogenesis, and Cancer, Institute of Human Virology, Department of Pharmacology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Masaya Funaki
- Laboratory of Viral Pathogenesis and Immunotherapy, Division of Virology, Pathogenesis, and Cancer, Institute of Human Virology, Department of Pharmacology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Jéromine Klingler
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- James J. Peters VA Medical Center, Bronx, New York, New York, United States of America
| | - Alex F. Tang
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- School of Medicine, University of California, San Francisco, California, United States of America
| | - Roya Feyznezhad
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Daniel W. Heindel
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Xiao-Hong Wang
- VA New York Harbor Healthcare System–Manhattan, New York, New York, United States of America
| | - David A. Spencer
- Division of Pathobiology & Immunology, Oregon Health & Science University, Oregon National Primate Research Center, Beaverton, Oregon, United States of America
| | - Guangnan Hu
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Namita Satija
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Jérémie Prévost
- Centre de recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), Montreal, Quebec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada
| | - Andrés Finzi
- Centre de recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), Montreal, Quebec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada
| | - Ann J. Hessell
- Division of Pathobiology & Immunology, Oregon Health & Science University, Oregon National Primate Research Center, Beaverton, Oregon, United States of America
| | - Shixia Wang
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Shan Lu
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Benjamin K. Chen
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Susan Zolla-Pazner
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Chitra Upadhyay
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Raymond Alvarez
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Lishan Su
- Laboratory of Viral Pathogenesis and Immunotherapy, Division of Virology, Pathogenesis, and Cancer, Institute of Human Virology, Department of Pharmacology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Lineberger Comprehensive Cancer Center, Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina, United States of America
- Laboratory of Viral Pathogenesis and Immunotherapy, Division of Virology, Pathogenesis and Cancer, Institute of Human Virology, Departments of Pharmacology and Microbiology & Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| |
Collapse
|
8
|
Li H, Wang S, Hu G, Zhang L, Liu S, Lu S. DNA priming immunization is more effective than recombinant protein vaccine in eliciting antigen-specific B cell responses. Emerg Microbes Infect 2021; 10:833-841. [PMID: 33853515 PMCID: PMC8812797 DOI: 10.1080/22221751.2021.1918026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
While DNA prime-protein boost vaccination approach has been widely used in preclinical and clinical studies especially in the field of HIV vaccine development, the exact role of DNA immunization has not been fully identified. Our previous work demonstrated that DNA immunization was able to elicit T follicular helper (Tfh) cell responses and germinal center (GC) B cell development in a mouse model. In the current report, a mouse immunogenicity study was conducted to further ask whether DNA immunization is able to elicit antigen-specific B cell responses. Using HIV-1 Env as model antigen delivered in the form of DNA prime-protein boost, our data demonstrated that DNA prime was able to enhance the antigen-specific B cell responses for both Env-specific antibody secreting cells (ASC) and memory B cells. Furthermore, the DNA priming can greatly reduce the need of including an adjuvant as part of the recombinant protein vaccine boost formulation. Our findings revealed one mechanism that supports the value of DNA priming in assisting the inductin of high affinity and long lasting antigen specific antibody responses.
Collapse
Affiliation(s)
- Haiying Li
- Laboratory of Nucleic Acid Vaccines, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Shixia Wang
- Laboratory of Nucleic Acid Vaccines, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Guangnan Hu
- Laboratory of Nucleic Acid Vaccines, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Lu Zhang
- Department of General Surgery, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | | | - Shan Lu
- Laboratory of Nucleic Acid Vaccines, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| |
Collapse
|
9
|
Karch CP, Burkhard P, Matyas GR, Beck Z. The diversity of HIV-1 fights against vaccine efficacy: how self-assembling protein nanoparticle technology may fight back. Nanomedicine (Lond) 2021; 16:673-680. [PMID: 33715403 DOI: 10.2217/nnm-2020-0450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
An efficacious HIV-1 vaccine has remained an elusive target for almost 40 years. The sheer diversity of the virus is one of the major roadblocks for vaccine development. HIV-1 frequently mutates and various strains predominate in different geographic regions, making the development of a globally applicable vaccine extremely difficult. Multiple approaches have been taken to overcome the issue of viral diversity, including sequence optimization, development of consensus and mosaic sequences and the use of different prime-boost approaches. To develop an efficacious vaccine, these approaches may need to be combined. One way to potentially synergize these approaches is to use a rationally designed protein nanoparticle that allows for the native-like presentation of antigens, such as the self-assembling protein nanoparticle.
Collapse
Affiliation(s)
- Christopher P Karch
- US Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Ave, Silver Spring, MD 20910, USA.,Henry M Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Drive, Bethesda, MD 20817, USA
| | - Peter Burkhard
- Alpha-O Peptides, Lörracherstrasse 50, 4125 Riehen, Switzerland
| | - Gary R Matyas
- US Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Ave, Silver Spring, MD 20910, USA
| | - Zoltan Beck
- US Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Ave, Silver Spring, MD 20910, USA.,Henry M Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Drive, Bethesda, MD 20817, USA.,Current address: VRD, Pfizer, 401 N Middletown Rd, Pearl River, NY 10965, USA
| |
Collapse
|
10
|
Lin Y, Wang XF, Wang Y, Du C, Ren H, Liu C, Zhu D, Chen J, Na L, Liu D, Yang Z, Wang X. Env diversity-dependent protection of the attenuated equine infectious anaemia virus vaccine. Emerg Microbes Infect 2021; 9:1309-1320. [PMID: 32525460 PMCID: PMC7473056 DOI: 10.1080/22221751.2020.1773323] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Lentiviruses harbour high genetic variability for efficient evasion from host immunity.
An attenuated equine infectious anaemia (EIA) vaccine was developed decades ago in China
and presented remarkably robust protection against EIA. The vaccine was recently proven to
have high genomic diversity, particular in env. However, how
and to what extent the high env diversity relates to immune
protection remains unclear. In this study, we compared immune protections and responses of
three groups of horses stimulated by the high-diversity vaccine EIAV_HD, a single
molecular clone of the vaccine EIAV_LD with low env
diversity, as well as a constructed vaccine strain EIAV_MD with moderate env diversity. The disparity of virus-host interactions between
three env diversity-varied groups (5 horses in each group)
was evaluated using clinical manifestation, pathological scores, and env-specific antibody. We found the highest titres of env antibodies (Abs) or neutralizing Abs (nAbs) in the EIAV_HD group, followed
by the EIAV_MD group, and the lowest titres in the EIAV_LD group (P<0.05). The occurrence of disease/death was different between EIAV_HD
group (1/0), EIAV_MD (2/2), and EIAV_LD group (4/2). A similar env diversity-related linear relationship was observed in the clinical
manifestations and pathological changes. This diversity-dependent disparity in changes
between the three groups was more distinct after immunosuppression, suggesting that
env diversity plays an important role in protection under
low host immunocompetence. In summary, inoculation with vaccines with higher genetic
diversity could present broader and more efficient protection. Our findings strongly
suggest that an abundance of Env antigens are required for efficient protection against
lentiviruses.
Collapse
Affiliation(s)
- Yuezhi Lin
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Xue-Feng Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China.,Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai, People's Republic of China
| | - Yuhong Wang
- Department of Geriatrics and Gerontology, First Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
| | - Cheng Du
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Huiling Ren
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Cong Liu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Dantong Zhu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Jie Chen
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Lei Na
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Diqiu Liu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Zhibiao Yang
- Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai, People's Republic of China
| | - Xiaojun Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| |
Collapse
|
11
|
Roark RS, Li H, Williams WB, Chug H, Mason RD, Gorman J, Wang S, Lee FH, Rando J, Bonsignori M, Hwang KK, Saunders KO, Wiehe K, Moody MA, Hraber PT, Wagh K, Giorgi EE, Russell RM, Bibollet-Ruche F, Liu W, Connell J, Smith AG, DeVoto J, Murphy AI, Smith J, Ding W, Zhao C, Chohan N, Okumura M, Rosario C, Ding Y, Lindemuth E, Bauer AM, Bar KJ, Ambrozak D, Chao CW, Chuang GY, Geng H, Lin BC, Louder MK, Nguyen R, Zhang B, Lewis MG, Raymond DD, Doria-Rose NA, Schramm CA, Douek DC, Roederer M, Kepler TB, Kelsoe G, Mascola JR, Kwong PD, Korber BT, Harrison SC, Haynes BF, Hahn BH, Shaw GM. Recapitulation of HIV-1 Env-antibody coevolution in macaques leading to neutralization breadth. Science 2021; 371:eabd2638. [PMID: 33214287 PMCID: PMC8040783 DOI: 10.1126/science.abd2638] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 11/09/2020] [Indexed: 12/21/2022]
Abstract
Neutralizing antibodies elicited by HIV-1 coevolve with viral envelope proteins (Env) in distinctive patterns, in some cases acquiring substantial breadth. We report that primary HIV-1 envelope proteins-when expressed by simian-human immunodeficiency viruses in rhesus macaques-elicited patterns of Env-antibody coevolution very similar to those in humans, including conserved immunogenetic, structural, and chemical solutions to epitope recognition and precise Env-amino acid substitutions, insertions, and deletions leading to virus persistence. The structure of one rhesus antibody, capable of neutralizing 49% of a 208-strain panel, revealed a V2 apex mode of recognition like that of human broadly neutralizing antibodies (bNAbs) PGT145 and PCT64-35S. Another rhesus antibody bound the CD4 binding site by CD4 mimicry, mirroring human bNAbs 8ANC131, CH235, and VRC01. Virus-antibody coevolution in macaques can thus recapitulate developmental features of human bNAbs, thereby guiding HIV-1 immunogen design.
Collapse
Affiliation(s)
- Ryan S Roark
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hui Li
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Wilton B Williams
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Hema Chug
- Laboratory of Molecular Medicine, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Rosemarie D Mason
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jason Gorman
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Shuyi Wang
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Fang-Hua Lee
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Juliette Rando
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mattia Bonsignori
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Kwan-Ki Hwang
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Kevin O Saunders
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Departments of Immunology and Surgery, Duke University School of Medicine, Durham, NC 27710, USA
| | - Kevin Wiehe
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - M Anthony Moody
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Departments of Pediatrics and Immunology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Peter T Hraber
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Kshitij Wagh
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Elena E Giorgi
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Ronnie M Russell
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Frederic Bibollet-Ruche
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Weimin Liu
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jesse Connell
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Andrew G Smith
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Julia DeVoto
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Alexander I Murphy
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jessica Smith
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Wenge Ding
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Chengyan Zhao
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Neha Chohan
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Maho Okumura
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Christina Rosario
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yu Ding
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Emily Lindemuth
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Anya M Bauer
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Katharine J Bar
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - David Ambrozak
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Cara W Chao
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Gwo-Yu Chuang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hui Geng
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Bob C Lin
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mark K Louder
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Richard Nguyen
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Baoshan Zhang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | - Donald D Raymond
- Laboratory of Molecular Medicine, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Nicole A Doria-Rose
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Chaim A Schramm
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Daniel C Douek
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mario Roederer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Thomas B Kepler
- Department of Microbiology, Boston University School of Medicine, Boston, MA 02118, USA
- Department of Mathematics and Statistics, Boston University, Boston, MA 02215, USA
| | - Garnett Kelsoe
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Departments of Immunology and Surgery, Duke University School of Medicine, Durham, NC 27710, USA
| | - John R Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Bette T Korber
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Stephen C Harrison
- Laboratory of Molecular Medicine, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Barton F Haynes
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Beatrice H Hahn
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - George M Shaw
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
12
|
Wang S, Voronin Y, Zhao P, Ishihara M, Mehta N, Porterfield M, Chen Y, Bartley C, Hu G, Han D, Wells L, Tiemeyer M, Lu S. Glycan Profiles of gp120 Protein Vaccines from Four Major HIV-1 Subtypes Produced from Different Host Cell Lines under Non-GMP or GMP Conditions. J Virol 2020; 94:e01968-19. [PMID: 31941770 PMCID: PMC7081908 DOI: 10.1128/jvi.01968-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 12/19/2019] [Indexed: 02/06/2023] Open
Abstract
Envelope (Env) glycoprotein of human immunodeficiency virus type 1 (HIV-1) is an important target for the development of an HIV vaccine. Extensive glycosylation of Env is an important feature that both protects the virus from antibody responses and serves as a target for some highly potent broadly neutralizing antibodies. Therefore, analysis of glycans on recombinant Env proteins is highly significant. Here, we present glycosylation profiles of recombinant gp120 proteins from four major clades of HIV-1 (A, B, C, and AE), produced either as research-grade material in 293 and CHO cells or as two independent lots of clinical material under good manufacturing practice (GMP) conditions. Almost all potential N-linked glycosylation sites were at least partially occupied in all proteins. The occupancy rates were largely consistent among proteins produced under different conditions, although a few sites showed substantial variability even between the two GMP lots. Our data confirmed previous studies in the field, showing an abundance of oligomannose on Env protein, with 40 to 50% of glycans being Man5 to Man9 on all four proteins under all production conditions. Overall, the differences in occupancy and glycan forms among different Env subtypes produced under different conditions were less dramatic than anticipated, and antigenicity analysis with a panel of six monoclonal antibodies, including antibodies that recognize glycan forms, showed that all four gp120s maintained their antibody-binding profiles. Such findings have major implications for the final production of a clinical HIV vaccine with Env glycoprotein components.IMPORTANCE HIV-1 Env protein is a major target for the development of an HIV-1 vaccine. Env is covered with a large number of sugar-based glycan forms; about 50% of the Env molecular weight is composed of glycans. Glycan analysis of recombinant Env is important for understanding its roles in viral pathogenesis and immune responses. The current report presents the first extensive comparison of glycosylation patterns of recombinant gp120 proteins from four major clades of HIV-1 produced in two different cell lines, grown either under laboratory conditions or at 50-liter GMP scale in different lots. Information learned in this study is valuable for the further design and production of HIV-1 Env proteins as the critical components of HIV-1 vaccine formulations.
Collapse
Affiliation(s)
- Shixia Wang
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
- Worcester HIV Vaccine, Inc., Worcester, Massachusetts, USA
| | - Yegor Voronin
- Worcester HIV Vaccine, Inc., Worcester, Massachusetts, USA
| | - Peng Zhao
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Mayumi Ishihara
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Nickita Mehta
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Mindy Porterfield
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Yuxin Chen
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | | | - Guangnan Hu
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Dong Han
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Lance Wells
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Michael Tiemeyer
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Shan Lu
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
13
|
del Moral-Sánchez I, Sliepen K. Strategies for inducing effective neutralizing antibody responses against HIV-1. Expert Rev Vaccines 2019; 18:1127-1143. [PMID: 31791150 PMCID: PMC6961309 DOI: 10.1080/14760584.2019.1690458] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Introduction: Despite intensive research efforts, there is still no effective prophylactic vaccine available against HIV-1. Currently, substantial efforts are devoted to the development of vaccines aimed at inducing broadly neutralizing antibodies (bNAbs), which are capable of neutralizing most HIV-1 strains. All bNAbs target the HIV-1 envelope glycoprotein (Env), but Env immunizations usually only induce neutralizing antibodies (NAbs) against the sequence-matched virus and not against other strains.Areas covered: We describe the different strategies that have been explored to improve the breadth and potency of anti-HIV-1 NAb responses. The discussed strategies include the application of engineered Env immunogens, optimization of (bNAb) epitopes, different cocktail and sequential vaccination strategies, nanoparticles and nucleic acid-based vaccines.Expert opinion: A combination of the strategies described in this review and future approaches are probably needed to develop an effective HIV-1 vaccine that can induce broad, potent and long-lasting NAb responses.
Collapse
Affiliation(s)
- Iván del Moral-Sánchez
- Department of Medical Microbiology, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Kwinten Sliepen
- Department of Medical Microbiology, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands,CONTACT Kwinten Sliepen Department of Medical Microbiology, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
14
|
Immunogenicity in Rabbits of HIV-1 SOSIP Trimers from Clades A, B, and C, Given Individually, Sequentially, or in Combination. J Virol 2018; 92:JVI.01957-17. [PMID: 29367243 PMCID: PMC5874403 DOI: 10.1128/jvi.01957-17] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 01/05/2018] [Indexed: 12/21/2022] Open
Abstract
Recombinant soluble HIV-1 envelope glycoprotein (Env) SOSIP trimers are a design platform for inducing broadly neutralizing antibodies (bNAbs) by vaccination. To date, these and alternative designs of native-like trimers, given singly or in pairs, have not induced bNAbs in test animals such as rabbits or macaques. Here, we have evaluated whether trivalent and tetravalent combinations of SOSIP trimers from clades A, B, and C, delivered simultaneously or sequentially, induce better neutralizing antibody responses in rabbits than when given alone. None of the tested formulations led to the induction of bNAbs. We found that BG505 clade A trimers dominated the autologous NAb responses induced by combinations, which probably relates to the presence of immunodominant glycan holes on the BG505 trimer. Furthermore, autologous NAb responses to all individual trimers were reduced when they were delivered in combinations compared with when delivered alone, suggesting that immunogen interference had occurred. Finally, in a sequential regimen, a heterologous clade C trimer cross-boosted NAb responses that were primed by earlier immunizations with clade A and B trimers. Taken together, these findings should allow us to improve the design of immunization regimens based on native-like HIV-1 Env trimers.IMPORTANCE A successful HIV-1 vaccine most probably requires a trimeric envelope glycoprotein (Env) component, as Env is the only viral protein on the surface of the virus and therefore the only target for neutralizing antibodies. Native-like Env trimers can induce strain-specific neutralizing antibodies but not yet broadly neutralizing antibodies. To try to broaden the antibody response, we immunized rabbits with soluble native-like Env trimers from three different clades using monovalent, multivalent, and sequential regimens. We found that the neutralizing antibody response against each immunogen was reduced when the immunogens were delivered in combination or sequentially compared to the monovalent regimen. In contrast, when the Env trimers from different clades were delivered sequentially, the neutralizing antibody response could be cross-boosted. Although the combination of native-like Env trimers from different clades did not induce broadly neutralizing antibodies, the results provide clues on how to use native-like trimers in vaccination experiments.
Collapse
|
15
|
Gao Y, Wijewardhana C, Mann JFS. Virus-Like Particle, Liposome, and Polymeric Particle-Based Vaccines against HIV-1. Front Immunol 2018. [PMID: 29541072 PMCID: PMC5835502 DOI: 10.3389/fimmu.2018.00345] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
It is acknowledged that vaccines remain the best hope for eliminating the HIV-1 epidemic. However, the failure to produce effective vaccine immunogens and the inability of conventional delivery strategies to elicit the desired immune responses remains a central theme and has ultimately led to a significant roadblock in HIV vaccine development. Consequently, significant efforts have been applied to generate novel vaccine antigens and delivery agents, which mimic viral structures for optimal immune induction. Here, we review the latest developments that have occurred in the nanoparticle vaccine field, with special emphasis on strategies that are being utilized to attain highly immunogenic, systemic, and mucosal anti-HIV humoral and cellular immune responses. This includes the design of novel immunogens, the central role of antigen-presenting cells, delivery routes, and biodistribution of nanoparticles to lymph nodes. In particular, we will focus on virus-like-particle formulations and their preclinical uses within the HIV prophylactic vaccine setting.
Collapse
Affiliation(s)
- Yong Gao
- Department of Microbiology and Immunology, University of Western Ontario, London, ON, Canada
| | - Chanuka Wijewardhana
- Department of Microbiology and Immunology, University of Western Ontario, London, ON, Canada
| | - Jamie F S Mann
- Department of Microbiology and Immunology, University of Western Ontario, London, ON, Canada
| |
Collapse
|
16
|
Pankrac J, Klein K, McKay PF, King DFL, Bain K, Knapp J, Biru T, Wijewardhana CN, Pawa R, Canaday DH, Gao Y, Fidler S, Shattock RJ, Arts EJ, Mann JFS. A heterogeneous human immunodeficiency virus-like particle (VLP) formulation produced by a novel vector system. NPJ Vaccines 2018; 3:2. [PMID: 29367885 PMCID: PMC5775397 DOI: 10.1038/s41541-017-0040-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 12/06/2017] [Accepted: 12/08/2017] [Indexed: 01/12/2023] Open
Abstract
First identified as the etiological agent behind Acquired Immunodeficiency Syndrome (AIDS) in the early 1980s, HIV-1 has continued to spread into a global pandemic and major public health concern. Despite the success of antiretroviral therapy at reducing HIV-1 viremia and preventing the dramatic CD4+ T-cell collapse, infected individuals remain HIV positive for life. Unfortunately, it is increasingly clear that natural immunity is not, and may never be, protective against this pathogen. Therefore, efficacious vaccine interventions, which can either prevent infection or eradicate the latent viral reservoir and effect cure, are a major medical priority. Here we describe the development of a safe vaccine platform, currently being utilized in on-going prophylactic and therapeutic preclinical studies and consisting of highly heterogeneous virus-like particle formulations that represent the virus diversity within infected individuals. These VLPs contain no 5'LTR, no functional integrase, and have a severely mutated stem loop 1-thereby preventing any potential reverse transcription, integration, and RNA packaging. Furthermore, we demonstrate that these VLPs are morphologically identical to wild-type virus with polyvalent Env in a functional form. Finally, we show that the VLPs are antigenic and capable of generating strong immune recall responses.
Collapse
Affiliation(s)
- Joshua Pankrac
- Department of Microbiology and Immunology, University of Western Ontario, London, ON N6A 5C1 Canada
| | - Katja Klein
- Department of Microbiology and Immunology, University of Western Ontario, London, ON N6A 5C1 Canada
- Division of Infectious Diseases, Department of Medicine, Case Western Reserve University, Cleveland, OH 44106 USA
| | - Paul F. McKay
- Division of Medicine, Department of Infectious Diseases, Imperial College London, Norfolk Place, London, W2 1PG UK
| | - Deborah F. L. King
- Division of Medicine, Department of Infectious Diseases, Imperial College London, Norfolk Place, London, W2 1PG UK
| | - Katie Bain
- Department of Microbiology and Immunology, University of Western Ontario, London, ON N6A 5C1 Canada
| | - Jason Knapp
- Department of Microbiology and Immunology, University of Western Ontario, London, ON N6A 5C1 Canada
| | - Tsigereda Biru
- Division of Infectious Diseases, Department of Medicine, Case Western Reserve University, Cleveland, OH 44106 USA
| | - Chanuka N. Wijewardhana
- Department of Microbiology and Immunology, University of Western Ontario, London, ON N6A 5C1 Canada
| | - Rahul Pawa
- Department of Microbiology and Immunology, University of Western Ontario, London, ON N6A 5C1 Canada
| | - David H. Canaday
- Division of Infectious Diseases, Department of Medicine, Case Western Reserve University, Cleveland, OH 44106 USA
| | - Yong Gao
- Department of Microbiology and Immunology, University of Western Ontario, London, ON N6A 5C1 Canada
- Division of Infectious Diseases, Department of Medicine, Case Western Reserve University, Cleveland, OH 44106 USA
| | - Sarah Fidler
- Department of Medicine, Imperial College London, London, UK
| | - Robin J. Shattock
- Division of Medicine, Department of Infectious Diseases, Imperial College London, Norfolk Place, London, W2 1PG UK
| | - Eric J. Arts
- Department of Microbiology and Immunology, University of Western Ontario, London, ON N6A 5C1 Canada
- Division of Infectious Diseases, Department of Medicine, Case Western Reserve University, Cleveland, OH 44106 USA
| | - Jamie F. S. Mann
- Department of Microbiology and Immunology, University of Western Ontario, London, ON N6A 5C1 Canada
- Division of Infectious Diseases, Department of Medicine, Case Western Reserve University, Cleveland, OH 44106 USA
| |
Collapse
|
17
|
Wang S, Chou TH, Hackett A, Efros V, Wang Y, Han D, Wallace A, Chen Y, Hu G, Liu S, Clapham P, Arthos J, Montefiori D, Lu S. Screening of primary gp120 immunogens to formulate the next generation polyvalent DNA prime-protein boost HIV-1 vaccines. Hum Vaccin Immunother 2017; 13:2996-3009. [PMID: 28933684 PMCID: PMC5718816 DOI: 10.1080/21645515.2017.1380137] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Our previous preclinical studies and a Phase I clinical trial DP6-001 have indicated that a polyvalent Env formulation was able to elicit broadly reactive antibody responses including low titer neutralizing antibody responses against viral isolates of subtypes A, B, C and AE. In the current report, a panel of 62 gp120 immunogens were screened in a rabbit model to identify gp120 immunogens that can elicit improved binding and neutralizing antibody responses and some of them can be included in the next polyvalent formulation. Only about 19% of gp120 immunogens in this panel were able to elicit neutralizing antibodies against greater than 50% of the viruses included in a high throughput PhenoSense neutralization assay when these immuongens were tested as a DNA prime followed by a fixed 5-valent gp120 protein vaccine boost. The new polyvalent formulation, using five gp120 immunogens selected from this subgroup, elicited improved quality of antibody responses in rabbits than the previous DP6-001 formulation. More significantly, this new polyvalent formulation elicited higher antibody responses against a panel of gp70V1/V2 antigens expressing V1/V2 sequences from diverse subtypes. Bioinformatics analysis supports the design of a 4-valent or 5-valent formulation using gp120 immunogens from this screening study to achieve a broad coverage against 16 HIV-1 subtypes.
Collapse
Affiliation(s)
- Shixia Wang
- a Laboratory of Nucleic Acid Vaccines, Department of Medicine , University of Massachusetts Medical School , Worcester , MA , USA
| | - Te-Hui Chou
- a Laboratory of Nucleic Acid Vaccines, Department of Medicine , University of Massachusetts Medical School , Worcester , MA , USA
| | - Anthony Hackett
- a Laboratory of Nucleic Acid Vaccines, Department of Medicine , University of Massachusetts Medical School , Worcester , MA , USA
| | - Veronica Efros
- a Laboratory of Nucleic Acid Vaccines, Department of Medicine , University of Massachusetts Medical School , Worcester , MA , USA
| | - Yan Wang
- a Laboratory of Nucleic Acid Vaccines, Department of Medicine , University of Massachusetts Medical School , Worcester , MA , USA
| | - Dong Han
- a Laboratory of Nucleic Acid Vaccines, Department of Medicine , University of Massachusetts Medical School , Worcester , MA , USA
| | - Aaron Wallace
- a Laboratory of Nucleic Acid Vaccines, Department of Medicine , University of Massachusetts Medical School , Worcester , MA , USA
| | - Yuxin Chen
- a Laboratory of Nucleic Acid Vaccines, Department of Medicine , University of Massachusetts Medical School , Worcester , MA , USA
| | - Guangnan Hu
- a Laboratory of Nucleic Acid Vaccines, Department of Medicine , University of Massachusetts Medical School , Worcester , MA , USA
| | - Shuying Liu
- a Laboratory of Nucleic Acid Vaccines, Department of Medicine , University of Massachusetts Medical School , Worcester , MA , USA
| | - Paul Clapham
- b Department of Molecular Medicine , University of Massachusetts Medical School , Worcester , MA , USA
| | - James Arthos
- c Immunopathogenesis Section, NIAID, NIH , Bethesda , MD , USA
| | - David Montefiori
- d Department of Surgery , Duke University School of Medicine , Durham , NC , USA
| | - Shan Lu
- a Laboratory of Nucleic Acid Vaccines, Department of Medicine , University of Massachusetts Medical School , Worcester , MA , USA
| |
Collapse
|
18
|
Ahmed Y, Tian M, Gao Y. Development of an anti-HIV vaccine eliciting broadly neutralizing antibodies. AIDS Res Ther 2017; 14:50. [PMID: 28893278 PMCID: PMC5594608 DOI: 10.1186/s12981-017-0178-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 08/11/2017] [Indexed: 11/17/2022] Open
Abstract
The extreme HIV diversity posts a great challenge on development of an effective anti-HIV vaccine. To solve this problem, it is crucial to discover an appropriate immunogens and strategies that are able to prevent the transmission of the diverse viruses that are circulating in the world. Even though there have been a number of broadly neutralizing anti-HIV antibodies (bNAbs) been discovered in recent years, induction of such antibodies to date has only been observed in HIV-1 infection. Here, in this mini review, we review the progress in development of HIV vaccine in eliciting broad immune response, especially production of bNAbs, discuss possible strategies, such as polyvalent sequential vaccination, that facilitates B cell maturation leading to bNAb response.
Collapse
|
19
|
Abstract
A key unresolved challenge for developing an effective HIV‐1 vaccine is the discovery of strategies to elicit immune responses that are able to cross‐protect against a significant fraction of the diverse viruses that are circulating worldwide. Here, we summarize some of the immunological implications of HIV‐1 diversity, and outline the rationale behind several polyvalent vaccine design strategies that are currently under evaluation. Vaccine‐elicited T‐cell responses, which contribute to the control of HIV‐1 in natural infections, are currently being considered in both prevention and treatment settings. Approaches now in preclinical and human trials include full proteins in novel vectors, concatenated conserved protein regions, and polyvalent strategies that improve coverage of epitope diversity and enhance the cross‐reactivity of responses. While many barriers to vaccine induction of broadly neutralizing antibody (bNAb) responses remain, epitope diversification has emerged as both a challenge and an opportunity. Recent longitudinal studies have traced the emergence of bNAbs in HIV‐1 infection, inspiring novel approaches to recapitulate and accelerate the events that give rise to potent bNAb in vivo. In this review, we have selected two such lineage‐based design strategies to illustrate how such in‐depth analysis can offer conceptual improvements that may bring us closer to an effective vaccine.
Collapse
Affiliation(s)
- Bette Korber
- Theoretical Biology and Biophysics, T6, Los Alamos National Laboratory, Los Alamos, NM, USA.,New Mexico Consortium, Los Alamos, NM, USA
| | - Peter Hraber
- Theoretical Biology and Biophysics, T6, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Kshitij Wagh
- Theoretical Biology and Biophysics, T6, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Beatrice H Hahn
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Department of Microbiology, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
20
|
Hinkula J, Petkov S, Ljungberg K, Hallengärd D, Bråve A, Isaguliants M, Falkeborn T, Sharma S, Liakina V, Robb M, Eller M, Moss B, Biberfeld G, Sandström E, Nilsson C, Markland K, Blomberg P, Wahren B. HIVIS-DNA or HIVISopt-DNA priming followed by CMDR vaccinia-based boosts induce both humoral and cellular murine immune responses to HIV. Heliyon 2017; 3:e00339. [PMID: 28721397 PMCID: PMC5496381 DOI: 10.1016/j.heliyon.2017.e00339] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 06/19/2017] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND In order to develop a more effective prophylactic HIV-1 vaccine it is important optimize the components, improve Envelope glycoprotein immunogenicity as well as to explore prime-boost immunization schedules. It is also valuable to include several HIV-1 subtype antigens representing the world-wide epidemic. METHODS HIVIS-DNA plasmids which include Env genes of subtypes A, B and C together with Gag subtypes A and B and RTmut/Rev of subtype B were modified as follows: the Envelope sequences were shortened, codon optimized, provided with an FT4 sequence and an immunodominant region mutated. The reverse transcriptase (RT) gene was shortened to contain the most immunogenic N-terminal fragment and fused with an inactivated viral protease vPR gene. HIVISopt-DNA thus contains fewer plasmids but additional PR epitopes compared to the native HIVIS-DNA. DNA components were delivered intradermally to young Balb/c mice once, using a needle-free Biojector® immediately followed by dermal electroporation. Vaccinia-based MVA-CMDR boosts including Env gene E and Gag-RT genes A were delivered intramuscularly by needle, once or twice. RESULTS Both HIVIS-DNA and HIVISopt-DNA primed humoral and cell mediated responses well. When boosted with heterologous MVA-CMDR (subtypes A and E) virus inhibitory neutralizing antibodies were obtained to HIV-1 subtypes A, B, C and AE. Both plasmid compositions boosted with MVA-CMDR generated HIV-1 specific cellular responses directed against HIV-1 Env, Gag and Pol, as measured by IFNγ ELISpot. It was shown that DNA priming augmented the vector MVA immunological boosting effects, the HIVISopt-DNA with a trend to improved (Env) neutralization, the HIVIS-DNA with a trend to better (Gag) cell mediated immune reponses. CONCLUSIONS HIVIS-DNA was modified to obtain HIVISopt-DNA that had fewer plasmids, and additional epitopes. Even with one DNA prime followed by two MVA-CMDR boosts, humoral and cell-mediated immune responses were readily induced by priming with either DNA construct composition. Priming by HIV-DNA augmented neutralizing antibody responses revealed by boosting with the vaccinia-based heterologous sequences. Cellular and antibody responses covered selected strains representing HIV-1 subtypes A, B, C and CRF01_AE. We assume this is related to the inclusion of heterologous full genes in the vaccine schedule.
Collapse
Affiliation(s)
- J Hinkula
- Department of Clinical and Experimental Medicine, Linköping University, 58183 Linköping, Sweden
- Department of Microbiology Tumor and Cell Biology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - S Petkov
- Department of Microbiology Tumor and Cell Biology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - K Ljungberg
- Department of Microbiology Tumor and Cell Biology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - D Hallengärd
- Department of Microbiology Tumor and Cell Biology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - A Bråve
- Department of Microbiology Tumor and Cell Biology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - M Isaguliants
- Department of Microbiology Tumor and Cell Biology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - T Falkeborn
- Department of Clinical and Experimental Medicine, Linköping University, 58183 Linköping, Sweden
| | - S Sharma
- Department of Clinical and Experimental Medicine, Linköping University, 58183 Linköping, Sweden
| | - V Liakina
- Faculty of Medicine, Vilnius University 2, 08661 Vilnius, Lithuania
| | - M Robb
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, 20892 MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, 20892 MD, USA
| | - M Eller
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, 20892 MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, 20892 MD, USA
| | - B Moss
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, 20892 MD, USA
| | - G Biberfeld
- Department of Microbiology Tumor and Cell Biology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - E Sandström
- Department of South Hospital, Karolinska Institutet, 11883 Stockholm, Sweden
| | - C Nilsson
- Department of Microbiology Tumor and Cell Biology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - K Markland
- Clinical Research Center and Vecura, Karolinska University Hospital, 17176 Stockholm, Sweden
| | - P Blomberg
- Clinical Research Center and Vecura, Karolinska University Hospital, 17176 Stockholm, Sweden
| | - B Wahren
- Department of Microbiology Tumor and Cell Biology, Karolinska Institutet, 17177 Stockholm, Sweden
| |
Collapse
|
21
|
Rationally Designed Immunogens Targeting HIV-1 gp120 V1V2 Induce Distinct Conformation-Specific Antibody Responses in Rabbits. J Virol 2016; 90:11007-11019. [PMID: 27707920 DOI: 10.1128/jvi.01409-16] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 09/23/2016] [Indexed: 11/20/2022] Open
Abstract
The V1V2 region of HIV-1 gp120 harbors a major vulnerable site targeted by a group of broadly neutralizing monoclonal antibodies (MAbs) such as PG9 through strand-strand recognition. However, this epitope region is structurally polymorphic as it can also form a helical conformation recognized by RV144 vaccine-induced MAb CH58. This structural polymorphism is a potential mechanism for masking the V1V2 vulnerable site. Designing immunogens that can induce conformation-specific antibody (Ab) responses may lead to vaccines targeting this vulnerable site. We designed a panel of immunogens engrafting the V1V2 domain into trimeric and pentameric scaffolds in structurally constrained conformations. We also fused V1V2 to an Fc fragment to mimic the unconstrained V1V2 conformation. We tested these V1V2-scaffold proteins for immunogenicity in rabbits and assessed the responses by enzyme-linked immunosorbent assay (ELISA) and competition assays. Our V1V2 immunogens induced distinct conformation-specific Ab responses. Abs induced by structurally unconstrained immunogens reacted preferentially with unconstrained V1V2 antigens, suggesting recognition of the helical configuration, while Abs induced by the structurally constrained immunogens reacted preferentially with constrained V1V2 antigens, suggesting recognition of the β-strand conformation. The Ab responses induced by the structurally constrained immunogens were more broadly reactive and had higher titers than those induced by the structurally unconstrained immunogens. Our results demonstrate that immunogens presenting the different structural conformations of the gp120 V1V2 vulnerable site can be designed and that these immunogens induce distinct Ab responses with epitope conformation specificity. Therefore, these structurally constrained V1V2 immunogens are vaccine prototypes targeting the V1V2 domain of the HIV-1 envelope. IMPORTANCE The correlates analysis of the RV144 HIV-1 vaccine trial suggested that the presence of antibodies to the V1V2 region of HIV-1 gp120 was responsible for the modest protection observed in the trial. In addition, V1V2 harbors one of the key vulnerable sites of HIV-1 Env recognized by a family of broadly neutralizing MAbs such as PG9. Thus, V1V2 is a key target for vaccine development. However, this vulnerable site is structurally polymorphic, and designing immunogens that present different conformations is crucial for targeting this site. We show here that such immunogens can be designed and that they induced conformation-specific antibody responses in rabbits. Our immunogens are therefore prototypes of vaccine candidates targeting the V1V2 region of HIV-1 Env.
Collapse
|
22
|
Hollister K, Chen Y, Wang S, Wu H, Mondal A, Clegg N, Lu S, Dent A. The role of follicular helper T cells and the germinal center in HIV-1 gp120 DNA prime and gp120 protein boost vaccination. Hum Vaccin Immunother 2016; 10:1985-92. [PMID: 25424808 DOI: 10.4161/hv.28659] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The importance of follicular T helper (TFH) cells and the germinal center (GC) reaction in the humoral immune response has become clear in recent years, however the role of TFH cells and the GC in an HIV vaccine strategy remains unclear. In this study, we primed mice with gp120-encoding DNA and boosted with gp120 protein, a regimen previously shown to induce high titers of high affinity and cross-reactive anti-gp120 Abs. Priming with gp120 DNA caused increased TFH cell differentiation, GC B cells, and antigen-specific antibody titers, compared with priming with gp120 protein. Priming with DNA also caused more activated CD4(+) T cells to become TFH cells and more GC B cells to become memory cells. Deletion of BCL6 midway through the vaccine regimen resulted in loss of TFH cells and GCs, and, unexpectedly, increased anti-gp120 IgG titers and avidity. Our data suggests vaccination with gp120-encoding DNA elicits a stronger and more rapid TFH and GC response than gp120 protein. Furthermore, we demonstrate that the GC reaction may actually limit antigen-specific IgG secretion in the context of repeated immunizations.
Collapse
Affiliation(s)
- Kristin Hollister
- a Department of Microbiology and Immunology; Indiana University School of Medicine; Indianapolis, IN USA
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Apostólico JDS, Boscardin SB, Yamamoto MM, de Oliveira-Filho JN, Kalil J, Cunha-Neto E, Rosa DS. HIV Envelope Trimer Specific Immune Response Is Influenced by Different Adjuvant Formulations and Heterologous Prime-Boost. PLoS One 2016; 11:e0145637. [PMID: 26727218 PMCID: PMC4699765 DOI: 10.1371/journal.pone.0145637] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 12/07/2015] [Indexed: 02/07/2023] Open
Abstract
The development of a preventive vaccine against human immunodeficiency virus (HIV-1) infection is the most efficient method to control the epidemic. The ultimate goal is to develop a vaccine able to induce specific neutralizing, non-neutralizing antibodies and cellular mediated immunity (CMI). Humoral and CMI responses can be directed to glycoproteins that are normally presented as a trimeric spike on the virus surface (gp140). Despite safer, subunit vaccines are normally less immunogenic/effective and need to be delivered together with an adjuvant. The choice of a suitable adjuvant can induce effective humoral and CMI that utterly lead to full protection against disease. In this report, we established a hierarchy of adjuvant potency on humoral and CMI when admixed with the recombinant HIV gp140 trimer. We show that vaccination with gp140 in the presence of different adjuvants can induce high-affinity antibodies, follicular helper T cells and germinal center B cells. The data show that poly (I:C) is the most potent adjuvant to induce specific CMI responses evidenced by IFN-γ production and CD4+/CD8+ T cell proliferation. Furthermore, we demonstrate that combining some adjuvants like MPL plus Alum and MPL plus MDP exert additive effects that impact on the magnitude and quality of humoral responses while mixing MDP with poly (I:C) or with R848 had no impact on total IgG titers but highly impact IgG subclass. In addition, heterologous DNA prime- protein boost yielded higher IgG titers when compare to DNA alone and improved the quality of humoral response when compare to protein immunization as evidenced by IgG1/IgG2a ratio. The results presented in this paper highlight the importance of selecting the correct adjuvant-antigen combination to potentiate desired cells for optimal stimulation.
Collapse
Affiliation(s)
- Juliana de Souza Apostólico
- Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo (UNIFESP/EPM), São Paulo, Brazil
| | - Silvia Beatriz Boscardin
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Márcio Massao Yamamoto
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Jethe Nunes de Oliveira-Filho
- Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo (UNIFESP/EPM), São Paulo, Brazil
| | - Jorge Kalil
- Heart Institute (InCor), University of São Paulo—School of Medicine, São Paulo, Brazil
- Institute for Investigation in Immunology—INCT, São Paulo, Brazil
| | - Edecio Cunha-Neto
- Heart Institute (InCor), University of São Paulo—School of Medicine, São Paulo, Brazil
- Institute for Investigation in Immunology—INCT, São Paulo, Brazil
- Laboratory of Clinical Immunology and Allergy—LIM60, University of São Paulo- School of Medicine, São Paulo, Brazil
| | - Daniela Santoro Rosa
- Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo (UNIFESP/EPM), São Paulo, Brazil
- Institute for Investigation in Immunology—INCT, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
24
|
Suschak JJ, Wang S, Fitzgerald KA, Lu S. A cGAS-Independent STING/IRF7 Pathway Mediates the Immunogenicity of DNA Vaccines. THE JOURNAL OF IMMUNOLOGY 2015; 196:310-6. [PMID: 26590319 DOI: 10.4049/jimmunol.1501836] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 10/29/2015] [Indexed: 11/19/2022]
Abstract
It has been known since the discovery of DNA vaccines >20 y ago that DNA vaccines can function as adjuvants. Our recent study reported the involvement of Aim2 as the sensor of DNA vaccines in eliciting Ag-specific Ab responses. Our findings indicated the presence of previously unrecognized innate immune response pathways in addition to the TLR9 pathway, which is mainly activated by the CpG motifs of DNA vaccines. Our data further demonstrated the requirement of type I IFN in DNA vaccine-induced immune responses via the Aim2 pathway, but the exact downstream molecular mechanism was not characterized. In the present study, we investigated the roles of the putative DNA sensor cyclic GMP-AMP synthase (cGas), as well as the downstream IFN regulatory factors (IRF) 3 and 7 in type I IFN induction and Ag-specific immune responses elicited by DNA vaccination. Our results showed that DNA vaccine-induced, Irf7-dependent signaling, as part of the Sting pathway, was critical for generation of both innate cytokine signaling and Ag-specific B and T cell responses. In contrast, Irf3 was not as critical as expected in this pathway and, more surprisingly, immune responses elicited by DNA vaccines were not cGas-dependent in vivo. Data from this study provide more details on the innate immune mechanisms involved in DNA vaccination and further enrich our understanding on the potential utility of DNA vaccines in generating Ag-specific immune responses.
Collapse
Affiliation(s)
- John J Suschak
- Laboratory of Nucleic Acid Vaccines, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01655; and
| | - Shixia Wang
- Laboratory of Nucleic Acid Vaccines, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01655; and
| | - Katherine A Fitzgerald
- Program in Innate Immunity, Division of Infectious Diseases, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01655
| | - Shan Lu
- Laboratory of Nucleic Acid Vaccines, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01655; and
| |
Collapse
|
25
|
Zhang L, Wang W, Wang S. Effect of vaccine administration modality on immunogenicity and efficacy. Expert Rev Vaccines 2015; 14:1509-23. [PMID: 26313239 DOI: 10.1586/14760584.2015.1081067] [Citation(s) in RCA: 169] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The many factors impacting the efficacy of a vaccine can be broadly divided into three categories: features of the vaccine itself, including immunogen design, vaccine type, formulation, adjuvant and dosing; individual variations among vaccine recipients and vaccine administration-related parameters. While much literature exists related to vaccines, and recently systems biology has started to dissect the impact of individual subject variation on vaccine efficacy, few studies have focused on the role of vaccine administration-related parameters on vaccine efficacy. Parenteral and mucosal vaccinations are traditional approaches for licensed vaccines; novel vaccine delivery approaches, including needless injection and adjuvant formulations, are being developed to further improve vaccine safety and efficacy. This review provides a brief summary of vaccine administration-related factors, including vaccination approach, delivery route and method of administration, to gain a better understanding of their potential impact on the safety and immunogenicity of candidate vaccines.
Collapse
Affiliation(s)
- Lu Zhang
- a 1 Department of Infectious Diseases, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China.,b 2 China-US Vaccine Research Center, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China
| | - Wei Wang
- c 3 Wang Biologics, LLC, Chesterfield, MO 63017, USA ; Current affiliation: Bayer HealthCare, Berkeley, CA 94710, USA
| | - Shixia Wang
- d 4 Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| |
Collapse
|
26
|
Knudsen ML, Ljungberg K, Tatoud R, Weber J, Esteban M, Liljeström P. Alphavirus replicon DNA expressing HIV antigens is an excellent prime for boosting with recombinant modified vaccinia Ankara (MVA) or with HIV gp140 protein antigen. PLoS One 2015; 10:e0117042. [PMID: 25643354 PMCID: PMC4314072 DOI: 10.1371/journal.pone.0117042] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 12/18/2014] [Indexed: 12/31/2022] Open
Abstract
Vaccination with DNA is an attractive strategy for induction of pathogen-specific T cells and antibodies. Studies in humans have shown that DNA vaccines are safe, but their immunogenicity needs further improvement. As a step towards this goal, we have previously demonstrated that immunogenicity is increased with the use of an alphavirus DNA-launched replicon (DREP) vector compared to conventional DNA vaccines. In this study, we investigated the effect of varying the dose and number of administrations of DREP when given as a prime prior to a heterologous boost with poxvirus vector (MVA) and/or HIV gp140 protein formulated in glucopyranosyl lipid A (GLA-AF) adjuvant. The DREP and MVA vaccine constructs encoded Env and a Gag-Pol-Nef fusion protein from HIV clade C. One to three administrations of 0.2 μg DREP induced lower HIV-specific T cell and IgG responses than the equivalent number of immunizations with 10 μg DREP. However, the two doses were equally efficient as a priming component in a heterologous prime-boost regimen. The magnitude of immune responses depended on the number of priming immunizations rather than the dose. A single low dose of DREP prior to a heterologous boost resulted in greatly increased immune responses compared to MVA or protein antigen alone, demonstrating that a mere 0.2 μg DREP was sufficient for priming immune responses. Following a DREP prime, T cell responses were expanded greatly by an MVA boost, and IgG responses were also expanded when boosted with protein antigen. When MVA and protein were administered simultaneously following multiple DREP primes, responses were slightly compromised compared to administering them sequentially. In conclusion, we have demonstrated efficient priming of HIV-specific T cell and IgG responses with a low dose of DREP, and shown that the priming effect depends on number of primes administered rather than dose.
Collapse
MESH Headings
- Alphavirus/genetics
- Animals
- Antibodies, Viral/immunology
- Chemistry, Pharmaceutical
- DNA, Recombinant/genetics
- DNA, Viral/genetics
- Female
- Gene Expression
- Genetic Vectors/genetics
- HIV Antigens/genetics
- HIV Antigens/immunology
- HIV-1/immunology
- Immunization, Secondary
- Immunoglobulin G/immunology
- Lipid A/chemistry
- Mice
- Mice, Inbred BALB C
- Replicon/genetics
- T-Lymphocytes/immunology
- Vaccines, DNA/genetics
- Vaccines, DNA/immunology
- Vaccinia virus/genetics
- env Gene Products, Human Immunodeficiency Virus/chemistry
- env Gene Products, Human Immunodeficiency Virus/immunology
Collapse
Affiliation(s)
- Maria L. Knudsen
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- * E-mail: (MLK); (PL)
| | - Karl Ljungberg
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Roger Tatoud
- Imperial College London, Department of Infectious Diseases, Division of Medicine, Norfolk Place, London, United Kingdom
| | - Jonathan Weber
- Imperial College London, Department of Infectious Diseases, Division of Medicine, Norfolk Place, London, United Kingdom
| | - Mariano Esteban
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Peter Liljeström
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- * E-mail: (MLK); (PL)
| |
Collapse
|
27
|
A multivalent clade C HIV-1 Env trimer cocktail elicits a higher magnitude of neutralizing antibodies than any individual component. J Virol 2014; 89:2507-19. [PMID: 25540368 DOI: 10.1128/jvi.03331-14] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The sequence diversity of human immunodeficiency virus type 1 (HIV-1) presents a formidable challenge to the generation of an HIV-1 vaccine. One strategy to address such sequence diversity and to improve the magnitude of neutralizing antibodies (NAbs) is to utilize multivalent mixtures of HIV-1 envelope (Env) immunogens. Here we report the generation and characterization of three novel, acute clade C HIV-1 Env gp140 trimers (459C, 405C, and 939C), each with unique antigenic properties. Among the single trimers tested, 459C elicited the most potent NAb responses in vaccinated guinea pigs. We evaluated the immunogenicity of various mixtures of clade C Env trimers and found that a quadrivalent cocktail of clade C trimers elicited a greater magnitude of NAbs against a panel of tier 1A and 1B viruses than any single clade C trimer alone, demonstrating that the mixture had an advantage over all individual components of the cocktail. These data suggest that vaccination with a mixture of clade C Env trimers represents a promising strategy to augment vaccine-elicited NAb responses. IMPORTANCE It is currently not known how to generate potent NAbs to the diverse circulating HIV-1 Envs by vaccination. One strategy to address this diversity is to utilize mixtures of different soluble HIV-1 envelope proteins. In this study, we generated and characterized three distinct, novel, acute clade C soluble trimers. We vaccinated guinea pigs with single trimers as well as mixtures of trimers, and we found that a mixture of four trimers elicited a greater magnitude of NAbs than any single trimer within the mixture. The results of this study suggest that further development of Env trimer cocktails is warranted.
Collapse
|
28
|
Bowles EJ, Schiffner T, Rosario M, Needham GA, Ramaswamy M, McGouran J, Kessler B, LaBranche C, McMichael AJ, Montefiori D, Sattentau QJ, Hanke T, Stewart-Jones GBE. Comparison of neutralizing antibody responses elicited from highly diverse polyvalent heterotrimeric HIV-1 gp140 cocktail immunogens versus a monovalent counterpart in rhesus macaques. PLoS One 2014; 9:e114709. [PMID: 25490553 PMCID: PMC4260879 DOI: 10.1371/journal.pone.0114709] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 11/12/2014] [Indexed: 12/22/2022] Open
Abstract
Eliciting neutralizing antibodies capable of inactivating a broad spectrum of HIV-1 strains is a major goal of HIV-1 vaccine design. The challenge is that envelopes (Envs) of circulating viruses are almost certainly different from any Env used in a vaccine. A novel immunogen composed of a highly diverse set of gp140 Envs including subtypes A, B, C, D and F was developed to stimulate a more cross-neutralizing antibody response. Env heterotrimers composed of up to 54 different gp140s were produced with the aim of focusing the response to the conserved regions of Env while reducing the dominance of any individual hypervariable region. Heterotrimeric gp140 Envs of inter- and intra-subtype combinations were shown to bind CD4 and a panel of neutralizing monoclonal antibodies with similar affinity to monovalent UG37 gp140. Macaques immunized with six groups of heterotrimer mixtures showed slightly more potent neutralizing antibody responses in TZM-BL tier 1 and A3R5 tier 2 pseudovirus assays than macaques immunized with monovalent Env gp140, and exhibited a marginally greater focus on the CD4-binding site. Carbopol enhanced neutralization when used as an adjuvant instead of RIBI in combination with UG37 gp140. These data indicate that cross-subtype heterotrimeric gp140 Envs may elicit some improvement of the neutralizing antibody response in macaques compared to monovalent gp140 Env.
Collapse
Affiliation(s)
- Emma J. Bowles
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, The John Radcliffe Hospital, Oxford, United Kingdom
- * E-mail: (EJB); (GSJ)
| | - Torben Schiffner
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Maximillian Rosario
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, The John Radcliffe Hospital, Oxford, United Kingdom
| | - Gemma A. Needham
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Meghna Ramaswamy
- Division of Retrovirology, Centre for AIDS Reagents, National Institute of Biological Standards and Control, South Mimms, Potters Bar, Herts, United Kingdom
| | - Joanna McGouran
- Henry Wellcome Building for Molecular Physiology, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Benedikt Kessler
- Henry Wellcome Building for Molecular Physiology, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Celia LaBranche
- Division of Surgical Sciences, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Andrew J. McMichael
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, The John Radcliffe Hospital, Oxford, United Kingdom
| | - David Montefiori
- Division of Surgical Sciences, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Quentin J. Sattentau
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Tomáš Hanke
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, The John Radcliffe Hospital, Oxford, United Kingdom
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford, United Kingdom
| | - Guillaume B. E. Stewart-Jones
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, The John Radcliffe Hospital, Oxford, United Kingdom
- * E-mail: (EJB); (GSJ)
| |
Collapse
|
29
|
Ondondo BO. The influence of delivery vectors on HIV vaccine efficacy. Front Microbiol 2014; 5:439. [PMID: 25202303 PMCID: PMC4141443 DOI: 10.3389/fmicb.2014.00439] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 08/03/2014] [Indexed: 12/31/2022] Open
Abstract
Development of an effective HIV/AIDS vaccine remains a big challenge, largely due to the enormous HIV diversity which propels immune escape. Thus novel vaccine strategies are targeting multiple variants of conserved antibody and T cell epitopic regions which would incur a huge fitness cost to the virus in the event of mutational escape. Besides immunogen design, the delivery modality is critical for vaccine potency and efficacy, and should be carefully selected in order to not only maximize transgene expression, but to also enhance the immuno-stimulatory potential to activate innate and adaptive immune systems. To date, five HIV vaccine candidates have been evaluated for efficacy and protection from acquisition was only achieved in a small proportion of vaccinees in the RV144 study which used a canarypox vector for delivery. Conversely, in the STEP study (HVTN 502) where human adenovirus serotype 5 (Ad5) was used, strong immune responses were induced but vaccination was more associated with increased risk of HIV acquisition than protection in vaccinees with pre-existing Ad5 immunity. The possibility that pre-existing immunity to a highly promising delivery vector may alter the natural course of HIV to increase acquisition risk is quite worrisome and a huge setback for HIV vaccine development. Thus, HIV vaccine development efforts are now geared toward delivery platforms which attain superior immunogenicity while concurrently limiting potential catastrophic effects likely to arise from pre-existing immunity or vector-related immuno-modulation. However, it still remains unclear whether it is poor immunogenicity of HIV antigens or substandard immunological potency of the safer delivery vectors that has limited the success of HIV vaccines. This article discusses some of the promising delivery vectors to be harnessed for improved HIV vaccine efficacy.
Collapse
Affiliation(s)
- Beatrice O Ondondo
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford Oxford, UK
| |
Collapse
|
30
|
Abstract
UNLABELLED The extraordinary diversity of the human immunodeficiency virus type 1 (HIV-1) envelope (Env) glycoprotein poses a major challenge for the development of an HIV-1 vaccine. One strategy to circumvent this problem utilizes bioinformatically optimized mosaic antigens. However, mosaic Env proteins expressed as trimers have not been previously evaluated for their stability, antigenicity, and immunogenicity. Here, we report the production and characterization of a stable HIV-1 mosaic M gp140 Env trimer. The mosaic M trimer bound CD4 as well as multiple broadly neutralizing monoclonal antibodies, and biophysical characterization suggested substantial stability. The mosaic M trimer elicited higher neutralizing antibody (nAb) titers against clade B viruses than a previously described clade C (C97ZA.012) gp140 trimer in guinea pigs, whereas the clade C trimer elicited higher nAb titers than the mosaic M trimer against clade A and C viruses. A mixture of the clade C and mosaic M trimers elicited nAb responses that were comparable to the better component of the mixture for each virus tested. These data suggest that combinations of relatively small numbers of immunologically complementary Env trimers may improve nAb responses. IMPORTANCE The development of an HIV-1 vaccine remains a formidable challenge due to multiple circulating strains of HIV-1 worldwide. This study describes a candidate HIV-1 Env protein vaccine whose sequence has been designed by computational methods to address HIV-1 diversity. The characteristics and immunogenicity of this Env protein, both alone and mixed together with a clade C Env protein vaccine, are described.
Collapse
|
31
|
Chen Y, Wang S, Lu S. DNA Immunization for HIV Vaccine Development. Vaccines (Basel) 2014; 2:138-159. [PMID: 26344472 PMCID: PMC4494200 DOI: 10.3390/vaccines2010138] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 02/08/2014] [Accepted: 02/10/2014] [Indexed: 01/10/2023] Open
Abstract
DNA vaccination has been studied in the last 20 years for HIV vaccine research. Significant experience has been accumulated in vector design, antigen optimization, delivery approaches and the use of DNA immunization as part of a prime-boost HIV vaccination strategy. Key historical data and future outlook are presented. With better understanding on the potential of DNA immunization and recent progress in HIV vaccine research, it is anticipated that DNA immunization will play a more significant role in the future of HIV vaccine development.
Collapse
Affiliation(s)
- Yuxin Chen
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| | - Shixia Wang
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| | - Shan Lu
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
32
|
HIV-1 Env DNA vaccine plus protein boost delivered by EP expands B- and T-cell responses and neutralizing phenotype in vivo. PLoS One 2013; 8:e84234. [PMID: 24391921 PMCID: PMC3877240 DOI: 10.1371/journal.pone.0084234] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 11/13/2013] [Indexed: 02/07/2023] Open
Abstract
An effective HIV vaccine will most likely require the induction of strong T-cell responses, broadly neutralizing antibodies (bNAbs), and the elicitation of antibody-dependent cellular cytotoxicity (ADCC). Previously, we demonstrated the induction of strong HIV/SIV cellular immune responses in macaques and humans using synthetic consensus DNA immunogens delivered via adaptive electroporation (EP). However, the ability of this improved DNA approach to prime for relevant antibody responses has not been previously studied. Here, we investigate the immunogenicity of consensus DNA constructs encoding gp140 sequences from HIV-1 subtypes A, B, C and D in a DNA prime-protein boost vaccine regimen. Mice and guinea pigs were primed with single- and multi-clade DNA via EP and boosted with recombinant gp120 protein. Sera were analyzed for gp120 binding and induction of neutralizing antibody activity. Immunization with recombinant Env protein alone induced low-titer binding antibodies with limited neutralization breath. In contrast, the synthetic DNA prime-protein boost protocol induced significantly higher antibody binding titers. Furthermore, sera from DNA prime-protein boost groups were able to neutralize a broader range of viruses in a panel of tier 1 clade B viruses as well as multiple tier 1 clade A and clade C viruses. Further investigation of synthetic DNA prime plus adaptive EP plus protein boost appears warranted.
Collapse
|
33
|
Abstract
DNA immunization was discovered in early 1990s, and its use has been expanded from vaccine studies to a broader range of biomedical research areas, such as the generation of high-quality polyclonal and monoclonal antibodies as research reagents. In this unit, three common DNA immunization methods are described: needle injection, electroporation, and gene gun. In addition, several common considerations related to DNA immunization are discussed.
Collapse
Affiliation(s)
- Shixia Wang
- University of Massachusetts Medical School, Worcester, Massachusetts
| | - Shan Lu
- University of Massachusetts Medical School, Worcester, Massachusetts
| |
Collapse
|
34
|
Robust neutralizing antibodies elicited by HIV-1 JRFL envelope glycoprotein trimers in nonhuman primates. J Virol 2013; 87:13239-51. [PMID: 24067980 DOI: 10.1128/jvi.01247-13] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Host cell-mediated proteolytic cleavage of the human immunodeficiency virus type 1 (HIV-1) gp160 precursor glycoprotein into gp120 and gp41 subunits is required to generate fusion-competent envelope glycoprotein (Env) spikes. The gp120-directed broadly neutralizing monoclonal antibodies (bNabs) isolated from HIV-infected individuals efficiently recognize fully cleaved JRFL Env spikes; however, nonneutralizing gp120-directed monoclonal antibodies isolated from infected or vaccinated subjects recognize only uncleaved JRFL spikes. Therefore, as an immunogen, cleaved spikes that selectively present desired neutralizing epitopes to B cells may elicit cross-reactive neutralizing antibodies. Accordingly, we inoculated nonhuman primates (NHPs) with plasmid DNA encoding transmembrane-anchored, cleaved JRFL Env or by electroporation (EP). Priming with DNA expressing soluble, uncleaved gp140 trimers was included as a comparative experimental group of NHPs. DNA inoculation was followed by boosts with soluble JRFL gp140 trimers, and control NHPs were inoculated with soluble JRFL protein trimers without DNA priming. In the TZM-bl assay, elicitation of neutralizing antibodies against HIV-1 tier 1 isolates was robust following the protein boost. Neutralization of tier 2 isolates was detected, but only in animals primed with plasmid DNA and boosted with trimeric protein. Using the more sensitive A3R5 assay, consistent neutralization of both clade B and C tier 2 isolates was detected from all regimens assessed in the current study, exceeding levels achieved by our previous vaccine regimens in primates. Together, these data suggest a potential advantage of B cell priming followed by a rest interval and protein boosting to present JRFL Env spikes to the immune system to better generate HIV-1 cross-clade neutralizing antibodies.
Collapse
|
35
|
Wallace A, West K, Rothman AL, Ennis FA, Lu S, Wang S. Post-translational intracellular trafficking determines the type of immune response elicited by DNA vaccines expressing Gag antigen of Human Immunodeficiency Virus Type 1 (HIV-1). Hum Vaccin Immunother 2013; 9:2095-102. [PMID: 23941868 DOI: 10.4161/hv.26009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
In the current study, immune responses induced by Gag DNA vaccines with different designs were evaluated in Balb/C mice. The results demonstrated that the DNA vaccine with the full length wild type gag gene (Wt-Gag) mainly produced Gag antigens intracellularly and induced a higher level of cell-mediated immune (CMI) responses, as measured by IFN-gamma ELISPOT, intracellular cytokine staining (ICS), and cytotoxic T lymphocytes (CTL) assays against a dominant CD8(+) T cell epitope (AMQMLKETI). In contrast, the addition of a tissue plasminogen activator (tPA) leader sequence significantly improved overall Gag protein expression/secretion and Gag-specific antibody responses; however, Gag-specific CMI responses were decreased. The mutation of zinc-finger motif changed Gag protein expression patterns and reduced the ability to generate both CMI and antibody responses against Gag. These findings indicate that the structure and post-translational processing of antigens expressed by DNA vaccines play a critical role in eliciting optimal antibody or CMI responses.
Collapse
Affiliation(s)
- Aaron Wallace
- Laboratory of Nucleic Acid Vaccines; Department of Medicine; University of Massachusetts Medical School; Worcester, MA USA
| | - Kim West
- Laboratory of Nucleic Acid Vaccines; Department of Medicine; University of Massachusetts Medical School; Worcester, MA USA; Center for Infectious Diseases and Vaccine Research; University of Massachusetts Medical School; Worcester, MA USA
| | - Alan L Rothman
- Center for Infectious Diseases and Vaccine Research; University of Massachusetts Medical School; Worcester, MA USA
| | - Francis A Ennis
- Center for Infectious Diseases and Vaccine Research; University of Massachusetts Medical School; Worcester, MA USA
| | - Shan Lu
- Laboratory of Nucleic Acid Vaccines; Department of Medicine; University of Massachusetts Medical School; Worcester, MA USA
| | - Shixia Wang
- Laboratory of Nucleic Acid Vaccines; Department of Medicine; University of Massachusetts Medical School; Worcester, MA USA
| |
Collapse
|
36
|
Gil A, Shen S, Coley S, Gibson L, Diamond DJ, Wang S, Lu S. DNA vaccine prime followed by boost with live attenuated virus significantly improves antigen-specific T cell responses against human cytomegalovirus. Hum Vaccin Immunother 2013; 9:2120-32. [PMID: 24051429 DOI: 10.4161/hv.25750] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
As a leading cause of congenital infection and a major threat to immunocompromised individuals, human cytomegalovirus (HCMV) is a major global public health concern. Effective HCMV vaccines would need to induce potent and balanced humoral and cellular immune responses. In this pilot study, immunogenicity studies were conducted in mice to examine HCMV antigen-specific antibody and T cell responses when a heterologous prime-boost immunization strategy was tested. DNA vaccines expressing either targets of protective antibody responses (gB and gM/gN) or well characterized T cell immunogens (pp65, pp150, and IE1) were used as the priming immunization while the live attenuated HCMV vaccine Towne strain was used as the boost, which may act like an inactivated vaccine due to the inability of HCMV to replicate in a mouse host. Our data indicate that while DNA vaccines were effective in priming HCMV-specific antibody responses, the final titers of gB- or gM-specific antibodies were not much different from those elicited by using multiple immunizations of HCMV alone. In contrast, DNA priming significantly enhanced T cell responses against gB, pp65, and IE1 as measured by IFN-γ. However, HCMV alone was not effective in eliciting strong T cell immune responses when used in a mouse host. Our data indicate that the complexity of antigen composition from a large virus, such as HCMV, may affect the profile of immune responses when viral vaccines are used as a boost.
Collapse
Affiliation(s)
- Anna Gil
- Department of Medicine; University of Massachusetts Medical School; Worcester, MA USA; Department of Pathology; University of Massachusetts Medical School; Worcester, MA USA
| | - Siyuan Shen
- Department of Medicine; University of Massachusetts Medical School; Worcester, MA USA
| | - Scott Coley
- Department of Medicine; University of Massachusetts Medical School; Worcester, MA USA
| | - Laura Gibson
- Department of Medicine; University of Massachusetts Medical School; Worcester, MA USA; Department of Pediatrics; University of Massachusetts Medical School; Worcester, MA USA
| | - Don J Diamond
- Division of Translational Vaccine Research; Beckman Research Institute of the City of Hope; Duarte, CA USA
| | - Shixia Wang
- Department of Medicine; University of Massachusetts Medical School; Worcester, MA USA
| | - Shan Lu
- Department of Medicine; University of Massachusetts Medical School; Worcester, MA USA
| |
Collapse
|
37
|
Almansour I, Chen H, Wang S, Lu S. Cross reactivity of serum antibody responses elicited by DNA vaccines expressing HA antigens from H1N1 subtype influenza vaccines in the past 30 years. Hum Vaccin Immunother 2013; 9:2049-59. [PMID: 23884239 DOI: 10.4161/hv.25735] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
In the past three decades, ten H1 subtype influenza vaccines have been recommended for global seasonal flu vaccination. Some of them were used only for one year before being replaced by another H1 flu vaccine while others may be used for up to seven years. While the selection of a new seasonal flu vaccine was based on the escape of a new emerging virus that was not effectively protected by the existing flu formulation, there is limited information on the magnitude and breadth of cross reactivity among H1 subtype virus circulation over a long period. In the current study, HA-expressing DNA vaccines were constructed to express individual HA antigens from H1 subtype vaccines used in the past 30 y. Rabbits naïve to HA antibody responses were immunized with these HA DNA vaccines and the cross reactivity of these sera against HA antigen and related H1 viruses in the same period was studied. Our data indicate that the level of cross reactivity was different for different viral isolates and the key mutations responsible for the cross reactivity may involve only a limited number of residues. Our results provide useful information for the development of improved seasonal vaccines than can achieve broad protection against viruses within the same H1 subtype.
Collapse
Affiliation(s)
- Iman Almansour
- Laboratory of Nucleic Acid Vaccines; Department of Medicine; University of Massachusetts Medical School; Worcester, MA USA
| | - Huaiqing Chen
- Laboratory of Nucleic Acid Vaccines; Department of Medicine; University of Massachusetts Medical School; Worcester, MA USA
| | - Shixia Wang
- Laboratory of Nucleic Acid Vaccines; Department of Medicine; University of Massachusetts Medical School; Worcester, MA USA
| | - Shan Lu
- Laboratory of Nucleic Acid Vaccines; Department of Medicine; University of Massachusetts Medical School; Worcester, MA USA
| |
Collapse
|
38
|
Optimization of HIV-1 Envelope DNA Vaccine Candidates within Three Different Animal Models, Guinea Pigs, Rabbits and Cynomolgus Macaques. Vaccines (Basel) 2013; 1:305-27. [PMID: 26344115 PMCID: PMC4494233 DOI: 10.3390/vaccines1030305] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 07/05/2013] [Accepted: 07/10/2013] [Indexed: 11/17/2022] Open
Abstract
HIV-1 DNA vaccines have many advantageous features. Evaluation of HIV-1 vaccine candidates often starts in small animal models before macaque and human trials. Here, we selected and optimized DNA vaccine candidates through systematic testing in rabbits for the induction of broadly neutralizing antibodies (bNAb). We compared three different animal models: guinea pigs, rabbits and cynomolgus macaques. Envelope genes from the prototype isolate HIV-1 Bx08 and two elite neutralizers were included. Codon-optimized genes, encoded secreted gp140 or membrane bound gp150, were modified for expression of stabilized soluble trimer gene products, and delivered individually or mixed. Specific IgG after repeated i.d. inoculations with electroporation confirmed in vivo expression and immunogenicity. Evaluations of rabbits and guinea pigs displayed similar results. The superior DNA construct in rabbits was a trivalent mix of non-modified codon-optimized gp140 envelope genes. Despite NAb responses with some potency and breadth in guinea pigs and rabbits, the DNA vaccinated macaques displayed less bNAb activity. It was concluded that a trivalent mix of non-modified gp140 genes from rationally selected clinical isolates was, in this study, the best option to induce high and broad NAb in the rabbit model, but this optimization does not directly translate into similar responses in cynomolgus macaques.
Collapse
|
39
|
|
40
|
Wang S, Kishko M, Wan S, Wang Y, Brewster F, Gray GE, Violari A, Sullivan JL, Somasundaran M, Luzuriaga K, Lu S. Pilot study on the immunogenicity of paired Env immunogens from mother-to-child transmitted HIV-1 isolates. Hum Vaccin Immunother 2012; 8:1638-47. [PMID: 23151449 PMCID: PMC3601138 DOI: 10.4161/hv.22414] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Recent studies have reported that founder viruses play unique roles in establishing HIV-1 infection. Understanding the biological and immunological features of envelope glycoproteins (Env) from such viruses may facilitate the development of effective vaccines against HIV-1. In this report, we evaluated the immunogenicity of gp120 immunogens from two pairs of clade B and two pairs of clade C mother-to-child transmitted (MTCT) HIV-1 variants that had various levels of sensitivity to broadly neutralizing monoclonal antibodies. Individual gp120 DNA and protein vaccines were produced from each of the eight MTCT Env antigens included in the current study. Rabbits were immunized with these gp120 immunogens by the DNA prime-protein boost approach. High level Env-specific antibody responses were elicited by all MTCT gp120 immunogens. However, their abilities to elicit neutralizing antibody (NAb) responses differed and those from relatively neutralization-resistant variants tended to be more effective in eliciting broader NAb. Results of this pilot study indicated that not all MTCT Env proteins have the same potential to elicit NAb. Understanding the mechanism(s) behind such variation may provide useful information in formulating the next generation of HIV vaccines.
Collapse
Affiliation(s)
- Shixia Wang
- Department of Medicine; University of Massachusetts Medical School; Worcester, MA USA
- Immunology and Virology Program; University of Massachusetts Medical School; Worcester, MA USA
| | - Michael Kishko
- Immunology and Virology Program; University of Massachusetts Medical School; Worcester, MA USA
- Department of Pediatrics; University of Massachusetts Medical School; Worcester, MA USA
| | - Shengqin Wan
- Department of Medicine; University of Massachusetts Medical School; Worcester, MA USA
| | - Yan Wang
- Department of Medicine; University of Massachusetts Medical School; Worcester, MA USA
| | - Frank Brewster
- Department of Pediatrics; University of Massachusetts Medical School; Worcester, MA USA
| | - Glenda E. Gray
- Perinatal HIV Research Unit; University of the Witwatersrand; Johannesburg, South Africa
| | - Avye Violari
- Perinatal HIV Research Unit; University of the Witwatersrand; Johannesburg, South Africa
| | - John L. Sullivan
- Immunology and Virology Program; University of Massachusetts Medical School; Worcester, MA USA
- Department of Pediatrics; University of Massachusetts Medical School; Worcester, MA USA
- Program in Molecular Medicine; University of Massachusetts Medical School; Worcester, MA USA
| | - Mohan Somasundaran
- Department of Pediatrics; University of Massachusetts Medical School; Worcester, MA USA
| | - Katherine Luzuriaga
- Immunology and Virology Program; University of Massachusetts Medical School; Worcester, MA USA
- Department of Pediatrics; University of Massachusetts Medical School; Worcester, MA USA
- Program in Molecular Medicine; University of Massachusetts Medical School; Worcester, MA USA
| | - Shan Lu
- Department of Medicine; University of Massachusetts Medical School; Worcester, MA USA
- Immunology and Virology Program; University of Massachusetts Medical School; Worcester, MA USA
| |
Collapse
|
41
|
Zhang M, Zhang L, Zhang C, Hong K, Shao Y, Huang Z, Wang S, Lu S. DNA prime-protein boost using subtype consensus Env was effective in eliciting neutralizing antibody responses against subtype BC HIV-1 viruses circulating in China. Hum Vaccin Immunother 2012; 8:1630-7. [PMID: 23111170 DOI: 10.4161/hv.21648] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Previously, we have shown that DNA prime-protein boost is effective in eliciting neutralizing antibodies (NAb) against randomly selected HIV-1 isolates. Given the genetic diversity of HIV-1 viruses and the unique predominant subtypes in different geographic regions, it is critical to test the DNA prime-protein boost approach against circulating viral isolates in key HIV endemic areas. In the current study, the same DNA prime-protein boost vaccine was used as in previous studies to investigate the induction of NAb responses against HIV-1 clade BC, a major subtype circulating in China. A codon optimized gp120-BC DNA vaccine, based on the consensus envelope (Env) antigen sequence of clade BC, was constructed and a stable CHO cell line expressing the same consensus BC gp120 protein was produced. The immunogenicity of this consensus gp120-BC was examined in New Zealand White rabbits by either DNA prime-protein boost or protein alone vaccination approaches. High levels of Env-specific antibody responses were elicited by both approaches. However, DNA prime-protein boost but not the protein alone immune sera contained significant levels of NAb against pseudotyped viruses expressing HIV-1 BC Env antigens. Furthermore, high frequencies of CD4 binding site-targeted antibodies were found in the DNA prime- protein boost rabbit sera indicating that the positive NAb may be the result of antibodies against conformationally sensitive epitopes on HIV-1 Env. The findings support that DNA prime-protein boost was effective in eliciting NAb against a key HIV-1 virus subtype in China. This result may lead to the development of regional HIV vaccines through this approach.
Collapse
Affiliation(s)
- Mingshun Zhang
- Jiangsu Province Key Laboratory in Infectious Diseases, The First Affiliated Hospital of Nanjing Medical University; Nanjing, China
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
PURPOSE OF REVIEW New findings continue to support the notion that broadly crossreactive neutralizing antibody induction is a worthwhile and achievable goal for HIV-1 vaccines. Immunogens are needed that can overcome the genetic variability and complex immune evasion tactics of the virus. Other antibodies might bridge innate and acquired immunity for possible beneficial vaccine effects. This review summarizes progress made over the past year that has enhanced our understanding of humoral immunity as it relates to HIV-1 vaccine development. RECENT FINDINGS Although a clear path to designing an effective neutralizing antibody-based HIV-1 vaccine remains elusive, there is new information on how antibodies neutralize HIV-1, the epitopes involved, and clues to the possible nature of protective immunogens that keep this goal alive. Moreover, there is a greater understanding of HIV-1 diversity and its possible limits under immune pressure. Other antibodies might possess antiviral activity by mechanisms involving Fc receptor engagement or complement activation that would be of value for HIV-1 vaccines. SUMMARY Recent developments strengthen the rationale for antibody-based HIV-1 vaccine immunogens and provide a stronger foundation for vaccine discovery.
Collapse
|
43
|
Hallengärd D, Applequist SE, Nyström S, Maltais AK, Marovich M, Moss B, Earl P, Nihlmark K, Wahren B, Bråve A. Immunization with multiple vaccine modalities induce strong HIV-specific cellular and humoral immune responses. Viral Immunol 2012; 25:423-32. [PMID: 23035853 PMCID: PMC10970668 DOI: 10.1089/vim.2012.0046] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Accepted: 07/05/2012] [Indexed: 12/30/2022] Open
Abstract
Heterologous priming and boosting with antigens expressed by DNA, viral vectors, or as proteins, are experimental strategies to induce strong immune responses against infectious diseases and cancer. In a preclinical study we compared the ability of recombinant modified vaccinia Ankara encoding HIV antigens (MVA-CMDR), and/or recombinant gp140C (rgp140C), to boost responses induced by a multigene/multisubtype HIV DNA vaccine delivered by electroporation (EP). Homologous DNA immunizations augmented by EP stimulated strong cellular immune responses. Still stronger cellular immune responses were observed after DNA priming and MVA-CMDR boosting, which was superior to all other immunization schedules tested in terms of antigen-specific IFN-γ, IL-2, and bifunctional IFN-γ and IL-2 responses. For HIV Env-specific antibody responses, mice receiving repeated rgp140C immunizations, and mice boosted with rgp140C, elicited the highest binding titers and the highest numbers of antibody-secreting B cells. When considering both cellular and humoral immune responses, a combination of DNA, MVA-CMDR, and rgp140C immunizations induced the overall most potent immune responses and the highest avidity of HIV Env-specific antibodies. These data emphasize the importance of including multiple vaccine modalities that can stimulate both T and B cells, and thus elicit strong and balanced immune responses. The present HIV vaccine combination holds promise for further evaluation in clinical trials.
Collapse
Affiliation(s)
- David Hallengärd
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Vasan S, Michael NL. Improved outlook on HIV-1 prevention and vaccine development. Expert Opin Biol Ther 2012; 12:983-94. [DOI: 10.1517/14712598.2012.688020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
45
|
Cortez V, Odem-Davis K, McClelland RS, Jaoko W, Overbaugh J. HIV-1 superinfection in women broadens and strengthens the neutralizing antibody response. PLoS Pathog 2012; 8:e1002611. [PMID: 22479183 PMCID: PMC3315492 DOI: 10.1371/journal.ppat.1002611] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Accepted: 02/14/2012] [Indexed: 12/16/2022] Open
Abstract
Identifying naturally-occurring neutralizing antibodies (NAb) that are cross-reactive against all global subtypes of HIV-1 is an important step toward the development of a vaccine. Establishing the host and viral determinants for eliciting such broadly NAbs is also critical for immunogen design. NAb breadth has previously been shown to be positively associated with viral diversity. Therefore, we hypothesized that superinfected individuals develop a broad NAb response as a result of increased antigenic stimulation by two distinct viruses. To test this hypothesis, plasma samples from 12 superinfected women each assigned to three singly infected women were tested against a panel of eight viruses representing four different HIV-1 subtypes at matched time points post-superinfection (~5 years post-initial infection). Here we show superinfected individuals develop significantly broader NAb responses post-superinfection when compared to singly infected individuals (RR = 1.68, CI: 1.23-2.30, p = 0.001). This was true even after controlling for NAb breadth developed prior to superinfection, contemporaneous CD4+ T cell count and viral load. Similarly, both unadjusted and adjusted analyses showed significantly greater potency in superinfected cases compared to controls. Notably, two superinfected individuals were able to neutralize variants from four different subtypes at plasma dilutions >1∶300, suggesting that their NAbs exhibit elite activity. Cross-subtype breadth was detected within a year of superinfection in both of these individuals, which was within 1.5 years of their initial infection. These data suggest that sequential infections lead to augmentation of the NAb response, a process that may provide insight into potential mechanisms that contribute to the development of antibody breadth. Therefore, a successful vaccination strategy that mimics superinfection may lead to the development of broad NAbs in immunized individuals.
Collapse
Affiliation(s)
- Valerie Cortez
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, Washington, United States of America
- Department of Epidemiology, University of Washington, Seattle, Washington, United States of America
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Katherine Odem-Davis
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - R. Scott McClelland
- Department of Epidemiology, University of Washington, Seattle, Washington, United States of America
| | - Walter Jaoko
- Department of Medical Microbiology, University of Nairobi, Nairobi, Kenya
| | - Julie Overbaugh
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
46
|
Golden JW, Hooper JW. The strategic use of novel smallpox vaccines in the post-eradication world. Expert Rev Vaccines 2012; 10:1021-35. [PMID: 21806397 PMCID: PMC9491137 DOI: 10.1586/erv.11.46] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We still face a threat of orthopoxviruses in the form of biological weapons and emerging zoonoses. Therefore, there is a need to maintain a comprehensive defense strategy to counter the low-probability, high-impact threat of smallpox, as well as the ongoing threat of naturally occurring orthopoxvirus disease. The currently licensed live-virus smallpox vaccine ACAM2000 is effective, but associated with serious and even life-threatening adverse events. The health threat posed by this vaccine, and other previously licensed vaccines, has prevented many first responders, and even many in the military, from receiving a vaccine against smallpox. At the same time, global immunity produced during the smallpox eradication campaign is waning. Here, we review novel subunit/component vaccines and how they might play roles in unconventional strategies to defend against emerging orthopoxvirus diseases throughout the world and against smallpox used as a weapon of mass destruction.
Collapse
Affiliation(s)
- Joseph W Golden
- Department of Molecular Virology, Virology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, USA
| | | |
Collapse
|
47
|
Engineering, expression, purification, and characterization of stable clade A/B recombinant soluble heterotrimeric gp140 proteins. J Virol 2011; 86:128-42. [PMID: 22031951 DOI: 10.1128/jvi.06363-11] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The envelope glycoprotein (Env) of human immunodeficiency virus type 1 (HIV-1) is composed of two noncovalently associated subunits: an extracellular subunit (gp120) and a transmembrane subunit (gp41). The functional unit of Env on the surface of infectious virions is a trimer of gp120/gp41 heterodimers. Env is the target of anti-HIV neutralizing antibodies. A considerable effort has been invested in the engineering of recombinant soluble forms of the virion-associated Env trimer as vaccine candidates to elicit anti-HIV neutralizing antibody responses. These soluble constructs contain three gp120 subunits and the extracellular segments of the corresponding gp41 subunits. The individual gp120/gp41 protomers on these soluble trimers are identical in amino acid sequence (homotrimers). Here, we engineered novel soluble trimeric gp140 proteins that are formed by the association of gp140 protomers that differ in amino acid sequence and glycosylation patterns (heterotrimers). Specifically, we engineered soluble heterotrimeric proteins composed of clade A and clade B Env protomers. The clade A gp140 protomers were derived from viruses isolated during acute infection (Q168a2, Q259d2.17, and Q461e2), whereas the clade B gp140 protomers were derived from a virus isolated during chronic infection (SF162). The amino acid sequence divergence between the clade A and the clade B Envs is approximately 24%. Neutralization epitopes in the CD4 binding sites and coreceptor binding sites, as well as the membrane-proximal external region (MPER), were differentially expressed on the heterotrimeric and homotrimeric proteins. The heterotrimeric gp140s elicited broader anti-tier 1 isolate neutralizing antibody responses than did the homotrimeric gp140s.
Collapse
|
48
|
Du SX, Xu L, Zhang W, Tang S, Boenig RI, Chen H, Mariano EB, Zwick MB, Parren PWHI, Burton DR, Wrin T, Petropoulos CJ, Ballantyne JA, Chambers M, Whalen RG. A directed molecular evolution approach to improved immunogenicity of the HIV-1 envelope glycoprotein. PLoS One 2011; 6:e20927. [PMID: 21738594 PMCID: PMC3126809 DOI: 10.1371/journal.pone.0020927] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Accepted: 05/12/2011] [Indexed: 12/14/2022] Open
Abstract
A prophylactic vaccine is needed to slow the spread of HIV-1 infection. Optimization of the wild-type envelope glycoproteins to create immunogens that can elicit effective neutralizing antibodies is a high priority. Starting with ten genes encoding subtype B HIV-1 gp120 envelope glycoproteins and using in vitro homologous DNA recombination, we created chimeric gp120 variants that were screened for their ability to bind neutralizing monoclonal antibodies. Hundreds of variants were identified with novel antigenic phenotypes that exhibit considerable sequence diversity. Immunization of rabbits with these gp120 variants demonstrated that the majority can induce neutralizing antibodies to HIV-1. One novel variant, called ST-008, induced significantly improved neutralizing antibody responses when assayed against a large panel of primary HIV-1 isolates. Further study of various deletion constructs of ST-008 showed that the enhanced immunogenicity results from a combination of effective DNA priming, an enhanced V3-based response, and an improved response to the constant backbone sequences.
Collapse
Affiliation(s)
- Sean X. Du
- Department of Infectious Diseases, Maxygen, Inc., Redwood City, California, United States of America
| | - Li Xu
- Department of Infectious Diseases, Maxygen, Inc., Redwood City, California, United States of America
| | - Wenge Zhang
- Department of Infectious Diseases, Maxygen, Inc., Redwood City, California, United States of America
| | - Susan Tang
- Department of Infectious Diseases, Maxygen, Inc., Redwood City, California, United States of America
| | - Rebecca I. Boenig
- Department of Infectious Diseases, Maxygen, Inc., Redwood City, California, United States of America
| | - Helen Chen
- Department of Infectious Diseases, Maxygen, Inc., Redwood City, California, United States of America
| | - Ellaine B. Mariano
- Department of Infectious Diseases, Maxygen, Inc., Redwood City, California, United States of America
| | - Michael B. Zwick
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, United States of America
| | - Paul W. H. I. Parren
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, United States of America
| | - Dennis R. Burton
- Department of Immunology and Microbial Science, and IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, California, United States of America
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard, Boston, Massachusetts, United States of America
| | - Terri Wrin
- Monogram Biosciences, San Francisco, California, United States of America
| | | | | | | | - Robert G. Whalen
- Department of Infectious Diseases, Maxygen, Inc., Redwood City, California, United States of America
| |
Collapse
|
49
|
Girard MP, Osmanov S, Assossou OM, Kieny MP. Human immunodeficiency virus (HIV) immunopathogenesis and vaccine development: a review. Vaccine 2011; 29:6191-218. [PMID: 21718747 DOI: 10.1016/j.vaccine.2011.06.085] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Revised: 06/20/2011] [Accepted: 06/22/2011] [Indexed: 02/08/2023]
Abstract
The development of a safe, effective and globally affordable HIV vaccine offers the best hope for the future control of the HIV-1 pandemic. Since 1987, scores of candidate HIV-1 vaccines have been developed which elicited varying degrees of protective responses in nonhuman primate models, including DNA vaccines, subunit vaccines, live vectored recombinant vaccines and various prime-boost combinations. Four of these candidate vaccines have been tested for efficacy in human volunteers, but, to the exception of the recent RV144 Phase III trial in Thailand, which elicited a modest but statistically significant level of protection against infection, none has shown efficacy in preventing HIV-1 infection or in controlling virus replication and delaying progression of disease in humans. Protection against infection was observed in the RV144 trial, but intensive research is needed to try to understand the protective immune mechanisms at stake. Building-up on the results of the RV144 trial and deciphering what possibly are the immune correlates of protection are the top research priorities of the moment, which will certainly accelerate the development of an highly effective vaccine that could be used in conjunction with other HIV prevention and treatment strategies. This article reviews the state of the art of HIV vaccine development and discusses the formidable scientific challenges met in this endeavor, in the context of a better understanding of the immunopathogenesis of the disease.
Collapse
Affiliation(s)
- Marc P Girard
- University Paris 7, French National Academy of Medicine, 39 rue Seignemartin, FR 69008 Lyon, France.
| | | | | | | |
Collapse
|
50
|
Vaine M, Duenas-Decamp M, Peters P, Liu Q, Arthos J, Wang S, Clapham P, Lu S. Two closely related Env antigens from the same patient elicited different spectra of neutralizing antibodies against heterologous HIV-1 isolates. J Virol 2011; 85:4927-36. [PMID: 21411542 PMCID: PMC3126169 DOI: 10.1128/jvi.00081-11] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Accepted: 03/02/2011] [Indexed: 11/20/2022] Open
Abstract
Identification of immunogens capable of eliciting broadly neutralizing antibody (NAb) responses against HIV-1 is a major goal toward the development of an AIDS vaccine. Despite significant progress in understanding the structural features of the HIV-1 envelope glycoprotein (Env) and the discovery of multiple broadly neutralizing monoclonal antibodies with defined antigenic structures, the design of optimal Env immunogens to elicit broad NAbs remains a major challenge. As the structural determinants of Env immunogenicity remain unclear, we assessed two closely related Env antigens isolated from the same HIV-1-infected patient with different phenotypic features to identify what may result in a favorable immunogenic profile. One Env, B33, isolated from brain, was highly macrophage tropic with a high CD4 affinity, while the other, LN40, isolated from the lymph nodes, was poorly macrophage tropic with a low CD4 affinity. Using a DNA prime-protein boost approach, rabbits primed with LN40 Env antigen had a NAb response against heterologous primary isolates, while B33 Env antigens were capable of eliciting NAbs against only homologous and sensitive viral isolates. Further analysis revealed that the specificity of NAbs elicited by the LN40 antigen mapped to limited residues within or flanking the CD4 binding site. Certain key structural determinants were identified that could differentiate primary Env immunogens based on their potential to elicit broader NAbs. This progress will facilitate the rational design of effective HIV-1 vaccine formulations with optimal Env antigens.
Collapse
Affiliation(s)
| | - Maria Duenas-Decamp
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Paul Peters
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | | | - James Arthos
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | | | - Paul Clapham
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | | |
Collapse
|