1
|
The immunological impact of adenovirus early genes on vaccine-induced responses in mice and nonhuman primates. J Virol 2021; 95:JVI.02253-20. [PMID: 33441339 PMCID: PMC8092689 DOI: 10.1128/jvi.02253-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Adenovirus (Ad) is being explored for use in the prevention and treatment of a variety of infectious diseases and cancers. Ad with a deletion in early region 3 (ΔE3) provokes a stronger immune response than Ad with deletions in early regions 1 and E3 (ΔE1/ΔE3). The ΔE1/ΔE3 Ads are more popular because they can carry a larger transgene and because of the deleted E1 (E1A and E1B), are perceived safer for clinical use. Ad with a deletion in E1B55K (ΔE1B55K) has been in phase III clinical trials for use in cancer therapy in the US and has been approved for use in head and neck tumor therapy in China, demonstrating that Ad containing E1A are safe for clinical use. We have shown previously that ΔE1B55K Ad, even while promoting lower levels of an inserted transgene, promoted similar levels of transgene-specific immune responses as a ΔE3 Ad. Products of the Ad early region 4 (E4) limit the ability of cells to mount an innate immune response. Using this knowledge, we deleted the Ad E4 open reading frames 1-4 (E4orf1-4) from the ΔE1B55K Ad. Here, we show that innate cytokine network genes are elevated in the ΔE4 Ad-infected cells beyond that of ΔE3 Ad-infected cells. Further, in immunized mice the IgG2a subclass was favored as was the IgG1 subclass in immunized nonhuman primates. Thus, Ad E4 impacts immune responses in cells, in immunized mice, and immunized nonhuman primates. These Ad may offer advantages that are beneficial for clinical use.Importance: Adenovirus (Ad) is being explored for use in the prevention and treatment of a variety of infectious diseases and cancers. Here we provide evidence in cells, mice, and nonhuman primates supporting the notion that Ad early gene-products limit specific immune responses. Ad constructed with deletions in early genes and expressing HIV envelope protein was shown to induce greater HIV-specific cellular immune responses and higher titer antibodies compared to the parental Ad with the early genes. In addition to eliciting enhanced immunity, the deleted Ad possesses more space for insertion of additional or larger transgenes needed for targeting other infectious agents or cancers.
Collapse
|
2
|
A Prime/Boost Vaccine Regimen Alters the Rectal Microbiome and Impacts Immune Responses and Viremia Control Post-Simian Immunodeficiency Virus Infection in Male and Female Rhesus Macaques. J Virol 2020; 94:JVI.01225-20. [PMID: 32967951 DOI: 10.1128/jvi.01225-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 09/15/2020] [Indexed: 12/22/2022] Open
Abstract
An efficacious human immunodeficiency virus (HIV) vaccine will likely require induction of both mucosal and systemic immune responses. We compared the immunogenicity and protective efficacy of two mucosal/systemic vaccine regimens and investigated their effects on the rectal microbiome. Rhesus macaques were primed twice mucosally with replication-competent adenovirus type 5 host range mutant (Ad5hr)-simian immunodeficiency virus (SIV) recombinants and boosted twice intramuscularly with ALVAC-SIV recombinant plus SIV gp120 protein or with DNA for SIV genes and rhesus interleukin-12 plus SIV gp120 protein. Controls received empty Ad5hr vector and alum adjuvant only. Both regimens elicited strong, comparable mucosal and systemic cellular and humoral immunity. Prevaccination rectal microbiomes of males and females differed and significantly changed over the course of immunization, most strongly in females after Ad5hr immunizations. Following repeated low-dose intrarectal SIV challenges, both vaccine groups exhibited modestly but significantly reduced acute viremia. Male and female controls exhibited similar acute viral loads; however, vaccinated females, but not males, exhibited lower levels of acute viremia, compared to same-sex controls. Few differences in adaptive immune responses were observed between the sexes. Striking differences in correlations of the rectal microbiome of males and females with acute viremia and immune responses associated with protection were seen and point to effects of the microbiome on vaccine-induced immunity and viremia control. Our study clearly demonstrates direct effects of a mucosal SIV vaccine regimen on the rectal microbiome and validates our previously reported SIV vaccine-induced sex bias. Sex and the microbiome are critical factors that should not be overlooked in vaccine design and evaluation.IMPORTANCE Differences in HIV pathogenesis between males and females, including immunity postinfection, have been well documented, as have steroid hormone effects on the microbiome, which is known to influence mucosal immune responses. Few studies have applied this knowledge to vaccine trials. We investigated two SIV vaccine regimens combining mucosal priming immunizations and systemic protein boosting. We again report a vaccine-induced sex bias, with female rhesus macaques but not males displaying significantly reduced acute viremia. The vaccine regimens, especially the mucosal primes, significantly altered the rectal microbiome. The greatest effects were in females. Striking differences between female and male macaques in correlations of prevalent rectal bacteria with viral loads and potentially protective immune responses were observed. Effects of the microbiome on vaccine-induced immunity and viremia control require further study by microbiome transfer. However, the findings presented highlight the critical importance of considering effects of sex and the microbiome in vaccine design and evaluation.
Collapse
|
3
|
Ma L, Chen Z, Huang DW, Cissé OH, Rothenburger JL, Latinne A, Bishop L, Blair R, Brenchley JM, Chabé M, Deng X, Hirsch V, Keesler R, Kutty G, Liu Y, Margolis D, Morand S, Pahar B, Peng L, Van Rompay KKA, Song X, Song J, Sukura A, Thapar S, Wang H, Weissenbacher-Lang C, Xu J, Lee CH, Jardine C, Lempicki RA, Cushion MT, Cuomo CA, Kovacs JA. Diversity and Complexity of the Large Surface Protein Family in the Compacted Genomes of Multiple Pneumocystis Species. mBio 2020; 11:e02878-19. [PMID: 32127451 PMCID: PMC7064768 DOI: 10.1128/mbio.02878-19] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 01/16/2020] [Indexed: 12/23/2022] Open
Abstract
Pneumocystis, a major opportunistic pathogen in patients with a broad range of immunodeficiencies, contains abundant surface proteins encoded by a multicopy gene family, termed the major surface glycoprotein (Msg) gene superfamily. This superfamily has been identified in all Pneumocystis species characterized to date, highlighting its important role in Pneumocystis biology. In this report, through a comprehensive and in-depth characterization of 459 msg genes from 7 Pneumocystis species, we demonstrate, for the first time, the phylogeny and evolution of conserved domains in Msg proteins and provide a detailed description of the classification, unique characteristics, and phylogenetic relatedness of five Msg families. We further describe, for the first time, the relative expression levels of individual msg families in two rodent Pneumocystis species, the substantial variability of the msg repertoires in P. carinii from laboratory and wild rats, and the distinct features of the expression site for the classic msg genes in Pneumocystis from 8 mammalian host species. Our analysis suggests multiple functions for this superfamily rather than just conferring antigenic variation to allow immune evasion as previously believed. This study provides a rich source of information that lays the foundation for the continued experimental exploration of the functions of the Msg superfamily in Pneumocystis biology.IMPORTANCEPneumocystis continues to be a major cause of disease in humans with immunodeficiency, especially those with HIV/AIDS and organ transplants, and is being seen with increasing frequency worldwide in patients treated with immunodepleting monoclonal antibodies. Annual health care associated with Pneumocystis pneumonia costs ∼$475 million dollars in the United States alone. In addition to causing overt disease in immunodeficient individuals, Pneumocystis can cause subclinical infection or colonization in healthy individuals, which may play an important role in species preservation and disease transmission. Our work sheds new light on the diversity and complexity of the msg superfamily and strongly suggests that the versatility of this superfamily reflects multiple functions, including antigenic variation to allow immune evasion and optimal adaptation to host environmental conditions to promote efficient infection and transmission. These findings are essential to consider in developing new diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Liang Ma
- Critical Care Medicine Department, NIH Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Zehua Chen
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Da Wei Huang
- Leidos BioMedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Ousmane H Cissé
- Critical Care Medicine Department, NIH Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Jamie L Rothenburger
- Department of Pathobiology, Canadian Wildlife Health Cooperative, Ontario Veterinary College, University of Guelph, Ontario, Canada
| | | | - Lisa Bishop
- Critical Care Medicine Department, NIH Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Robert Blair
- Tulane National Primate Research Center, Tulane University, New Orleans, Louisiana, USA
| | - Jason M Brenchley
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Magali Chabé
- Université Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 8204-CIIL-Centre d'Infection et d'Immunité de Lille, Lille, France
| | - Xilong Deng
- Critical Care Medicine Department, NIH Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Vanessa Hirsch
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Rebekah Keesler
- California National Primate Research Center, University of California, Davis, Davis, California, USA
| | - Geetha Kutty
- Critical Care Medicine Department, NIH Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Yueqin Liu
- Critical Care Medicine Department, NIH Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Daniel Margolis
- Critical Care Medicine Department, NIH Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Serge Morand
- Institut des Sciences de l'Evolution, Université de Montpellier 2, Montpellier, France
| | - Bapi Pahar
- Tulane National Primate Research Center, Tulane University, New Orleans, Louisiana, USA
| | - Li Peng
- Critical Care Medicine Department, NIH Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Koen K A Van Rompay
- California National Primate Research Center, University of California, Davis, Davis, California, USA
| | - Xiaohong Song
- Critical Care Medicine Department, NIH Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Jun Song
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Antti Sukura
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Sabrina Thapar
- Critical Care Medicine Department, NIH Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Honghui Wang
- Critical Care Medicine Department, NIH Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | | | - Jie Xu
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Chao-Hung Lee
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Claire Jardine
- Department of Pathobiology, Canadian Wildlife Health Cooperative, Ontario Veterinary College, University of Guelph, Ontario, Canada
| | - Richard A Lempicki
- Leidos BioMedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Melanie T Cushion
- Department of Internal Medicine, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Christina A Cuomo
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Joseph A Kovacs
- Critical Care Medicine Department, NIH Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
4
|
Sui Y, Lewis GK, Wang Y, Berckmueller K, Frey B, Dzutsev A, Vargas-Inchaustegui D, Mohanram V, Musich T, Shen X, DeVico A, Fouts T, Venzon D, Kirk J, Waters RC, Talton J, Klinman D, Clements J, Tomaras GD, Franchini G, Robert-Guroff M, Trinchieri G, Gallo RC, Berzofsky JA. Mucosal vaccine efficacy against intrarectal SHIV is independent of anti-Env antibody response. J Clin Invest 2019; 129:1314-1328. [PMID: 30776026 DOI: 10.1172/jci122110] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 01/08/2019] [Indexed: 12/14/2022] Open
Abstract
It is widely believed that protection against acquisition of HIV or SIV infection requires anti-envelope (anti-Env) antibodies, and that cellular immunity may affect viral loads but not acquisition, except in special cases. Here we provide evidence to the contrary. Mucosal immunization may enhance HIV vaccine efficacy by eliciting protective responses at portals of exposure. Accordingly, we vaccinated macaques mucosally with HIV/SIV peptides, modified vaccinia Ankara-SIV (MVA-SIV), and HIV-gp120-CD4 fusion protein plus adjuvants, which consistently reduced infection risk against heterologous intrarectal SHIVSF162P4 challenge, both high dose and repeated low dose. Surprisingly, vaccinated animals exhibited no anti-gp120 humoral responses above background and Gag- and Env-specific T cells were induced but failed to correlate with viral acquisition. Instead, vaccine-induced gut microbiome alteration and myeloid cell accumulation in colorectal mucosa correlated with protection. Ex vivo stimulation of the myeloid cell-enriched population with SHIV led to enhanced production of trained immunity markers TNF-α and IL-6, as well as viral coreceptor agonist MIP1α, which correlated with reduced viral Gag expression and in vivo viral acquisition. Overall, our results suggest mechanisms involving trained innate mucosal immunity together with antigen-specific T cells, and also indicate that vaccines can have critical effects on the gut microbiome, which in turn can affect resistance to infection. Strategies to elicit similar responses may be considered for vaccine designs to achieve optimal protective efficacy.
Collapse
Affiliation(s)
- Yongjun Sui
- Vaccine Branch, Center for Cancer Research, National Cancer Institute (NCI), Bethesda, Maryland, USA
| | - George K Lewis
- Institute of Human Virology, University of Maryland, Baltimore, Maryland, USA
| | - Yichuan Wang
- Vaccine Branch, Center for Cancer Research, National Cancer Institute (NCI), Bethesda, Maryland, USA
| | - Kurt Berckmueller
- Vaccine Branch, Center for Cancer Research, National Cancer Institute (NCI), Bethesda, Maryland, USA
| | - Blake Frey
- Vaccine Branch, Center for Cancer Research, National Cancer Institute (NCI), Bethesda, Maryland, USA
| | - Amiran Dzutsev
- Cancer and Inflammation Program, Center for Cancer Research, NCI, Frederick, Maryland, USA
| | - Diego Vargas-Inchaustegui
- Vaccine Branch, Center for Cancer Research, National Cancer Institute (NCI), Bethesda, Maryland, USA
| | - Venkatramanan Mohanram
- Vaccine Branch, Center for Cancer Research, National Cancer Institute (NCI), Bethesda, Maryland, USA
| | - Thomas Musich
- Vaccine Branch, Center for Cancer Research, National Cancer Institute (NCI), Bethesda, Maryland, USA
| | - Xiaoying Shen
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, USA
| | - Anthony DeVico
- Institute of Human Virology, University of Maryland, Baltimore, Maryland, USA
| | | | - David Venzon
- Biostatistics and Data Management Section, NCI, Rockville, Maryland, USA
| | - James Kirk
- Nanotherapeutics, Inc., Alachua, Florida, USA
| | | | | | - Dennis Klinman
- Cancer and Inflammation Program, Center for Cancer Research, NCI, Frederick, Maryland, USA
| | | | - Georgia D Tomaras
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, USA
| | - Genoveffa Franchini
- Vaccine Branch, Center for Cancer Research, National Cancer Institute (NCI), Bethesda, Maryland, USA
| | - Marjorie Robert-Guroff
- Vaccine Branch, Center for Cancer Research, National Cancer Institute (NCI), Bethesda, Maryland, USA
| | - Giorgio Trinchieri
- Cancer and Inflammation Program, Center for Cancer Research, NCI, Frederick, Maryland, USA
| | - Robert C Gallo
- Institute of Human Virology, University of Maryland, Baltimore, Maryland, USA
| | - Jay A Berzofsky
- Vaccine Branch, Center for Cancer Research, National Cancer Institute (NCI), Bethesda, Maryland, USA
| |
Collapse
|
5
|
Abuharfeil NM, Yaseen MM, Alsheyab FM. Harnessing Antibody-Dependent Cellular Cytotoxicity To Control HIV-1 Infection. ACS Infect Dis 2019; 5:158-176. [PMID: 30525453 DOI: 10.1021/acsinfecdis.8b00167] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Passive administration of broadly neutralizing anti-human immunodeficiency virus type 1 (HIV-1) antibodies (bNAbs) has been recently suggested as a promising alternative therapeutic approach for HIV-1 infection. Although the success behind the studies that used this approach has been attributed to the potency and neutralization breadth of anti-HIV-1 antibodies, several lines of evidence support the idea that specific antibody-dependent effector functions, particularly antibody-dependent cellular cytotoxicity (ADCC), play a critical role in controlling HIV-1 infection. In this review, we showed that there is a direct association between the activation of ADCC and better clinical outcomes. This, in turn, suggests that ADCC could be harnessed to control HIV-1 infection. To this end, we addressed the passive administration of bNAbs capable of selectively activating ADCC responses to HIV-1 patients. Finally, we summarized the potential barriers that may impede the optimal activation of ADCC during HIV-1 infection and provided strategic solutions to overcome these barriers.
Collapse
Affiliation(s)
- Nizar Mohammad Abuharfeil
- Department of Applied Biological Sciences, College of Science and Arts, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Mahmoud Mohammad Yaseen
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, Jordan University of Science and Technology, Irbid 22110. Jordan
| | - Fawzi M. Alsheyab
- Department of Applied Biological Sciences, College of Science and Arts, Jordan University of Science and Technology, Irbid 22110, Jordan
| |
Collapse
|
6
|
Alrubayyi A, Schuetz A, Lal KG, Jongrakthaitae S, Paolino KM, Ake JA, Robb ML, de Souza MS, Michael NL, Paquin-Proulx D, Eller MA. A flow cytometry based assay that simultaneously measures cytotoxicity and monocyte mediated antibody dependent effector activity. J Immunol Methods 2018; 462:74-82. [PMID: 30148978 DOI: 10.1016/j.jim.2018.08.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 08/23/2018] [Accepted: 08/23/2018] [Indexed: 12/14/2022]
Abstract
Antibody effector functions such as antibody dependent cellular cytotoxicity (ADCC) and antibody dependent cellular phagocytosis (ADCP) are considered important immunologic parameters following results from the RV144 clinical trial where a reduced risk of infection was associated with non-neutralizing antibody against the V1/V2 region of HIV envelope. The rapid and fluorometric ADCC (RFADCC) assay has been widely used to measure ADCC, however, the mechanism behind the activity measured remains unclear. Here, we demonstrate that monocytes acquire the PKH26 dye used in the RFADCC assay and that the commonly used RFADCC readout correlates with phagocytosis. The RFADCC assay was combined with an amine reactive dye staining to confirm target cell killing. Interestingly, the majority of RFADCC and amine indices were mutually exclusive. In fact, the amine reactive assay results correlated with results from another assays that directly measure NK cell antibody effector functions not associated with phagocytosis. Together, this combined assay offers the opportunity to discriminate monocytes and NK cell antibody effector functions simultaneously.
Collapse
Affiliation(s)
- Aljawharah Alrubayyi
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - Alexandra Schuetz
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA; Department of Retrovirology, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Kerri G Lal
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - Surat Jongrakthaitae
- Department of Retrovirology, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Kristopher M Paolino
- Clinical Trials Center, Translational Medicine Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Julie A Ake
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Merlin L Robb
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - Mark S de Souza
- SEARCH, Thai Red Cross AIDS Research Center, Bangkok, Thailand
| | - Nelson L Michael
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Dominic Paquin-Proulx
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA.
| | - Michael A Eller
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| |
Collapse
|
7
|
Zhu Y, Du S, Zhang Y, Liu J, Guo Y, Liu C, Bai J, Wang M, Zhao F, Cao T, Xu W, Bai B, Zhang K, Ma Y, Li C, Jin N. SIV-Specific Antibodies are Elicited by a Recombinant Fowlpox Virus Co-expressing SIV Gag and envT. Indian J Microbiol 2018; 58:345-352. [PMID: 30013279 DOI: 10.1007/s12088-018-0728-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 04/20/2018] [Indexed: 10/17/2022] Open
Abstract
Given the failures of past HIV-1 vaccine clinical trials, potential HIV-1 vaccine candidates should be rigorously screened in preclinical models including simian immunodeficiency virus (SIV) primate models and small animal models. In this study, we tested the immunogenicity of a recombinant fowlpox virus (rFPV) expressing the SIV gag and SIV envT (rFPVsg-se) proteins in BALB/c mice, to establish a foundation for further development. rFPVsg-se was constructed through homologous recombination techniques and purified through plaque screening assays using enhanced green fluorescent protein as the reporter gene. The integration, transcription, and translation of the SIV genes were measured by PCR (genomic DNA), RT-PCR (RNA), Western-blot, respectively. The levels of SIV-specific antibodies were assessed by ELISA following a single immunization (n = 18/group) or a prime-boost strategy (n = 24/group) with rFPVsg-se and compared to FPV and PBS controls. Residual virus was measured in distant organs following immunization using PCR. SIV-specific IgG titers against gag and gp120 were detected following single vaccination and the prime-boost. As expected the titers were higher following the prime-boost approach. The levels of Gag- and gp120-specific antibodies were significantly higher than controls (p < 0.01) 14 days after the booster immunization. Residual rFPVSg-Se was detected in the muscle at the site of injection, but not in distant organs, from day 1-7 post immunization. In summary, rFPVsg-se induced high levels of SIV-specific antibodies suggesting it may be a viable candidate for further development.
Collapse
Affiliation(s)
- Yilong Zhu
- 1Changchun University of Chinese Medicine, Changchun, 130117 People's Republic of China.,3Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, 130122 People's Republic of China
| | - Shouwen Du
- 3Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, 130122 People's Republic of China
| | - Yang Zhang
- 4Department of Neurosurgery, First Hospital, Jilin University, Changchun, 130021 People's Republic of China
| | - Jingwei Liu
- 4Department of Neurosurgery, First Hospital, Jilin University, Changchun, 130021 People's Republic of China
| | - Yan Guo
- 1Changchun University of Chinese Medicine, Changchun, 130117 People's Republic of China
| | - Cunxia Liu
- 3Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, 130122 People's Republic of China
| | - Jieying Bai
- 3Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, 130122 People's Republic of China
| | - Maopeng Wang
- 3Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, 130122 People's Republic of China
| | - Fei Zhao
- 3Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, 130122 People's Republic of China
| | - Tingting Cao
- 3Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, 130122 People's Republic of China
| | - Wang Xu
- 3Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, 130122 People's Republic of China
| | - Bing Bai
- 1Changchun University of Chinese Medicine, Changchun, 130117 People's Republic of China.,3Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, 130122 People's Republic of China
| | - Kelong Zhang
- 3Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, 130122 People's Republic of China
| | - Yizhen Ma
- 1Changchun University of Chinese Medicine, Changchun, 130117 People's Republic of China
| | - Chang Li
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009 People's Republic of China.,3Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, 130122 People's Republic of China
| | - Ningyi Jin
- 1Changchun University of Chinese Medicine, Changchun, 130117 People's Republic of China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009 People's Republic of China.,3Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, 130122 People's Republic of China
| |
Collapse
|
8
|
Tuero I, Mohanram V, Musich T, Miller L, Vargas-Inchaustegui DA, Demberg T, Venzon D, Kalisz I, Kalyanaraman VS, Pal R, Ferrari MG, LaBranche C, Montefiori DC, Rao M, Vaccari M, Franchini G, Barnett SW, Robert-Guroff M. Mucosal B Cells Are Associated with Delayed SIV Acquisition in Vaccinated Female but Not Male Rhesus Macaques Following SIVmac251 Rectal Challenge. PLoS Pathog 2015; 11:e1005101. [PMID: 26267144 PMCID: PMC4534401 DOI: 10.1371/journal.ppat.1005101] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 07/21/2015] [Indexed: 12/02/2022] Open
Abstract
Many viral infections, including HIV, exhibit sex-based pathogenic differences. However, few studies have examined vaccine-related sex differences. We compared immunogenicity and protective efficacy of monomeric SIV gp120 with oligomeric SIV gp140 in a pre-clinical rhesus macaque study and explored a subsequent sex bias in vaccine outcome. Each immunization group (16 females, 8 males) was primed twice mucosally with replication-competent Ad-recombinants encoding SIVsmH4env/rev, SIV239gag and SIV239nefΔ1–13 and boosted twice intramuscularly with SIVmac239 monomeric gp120 or oligomeric gp140 in MF59 adjuvant. Controls (7 females, 5 males) received empty Ad and MF59. Up to 9 weekly intrarectal challenges with low-dose SIVmac251 were administered until macaques became infected. We assessed vaccine-induced binding, neutralizing, and non-neutralizing antibodies, Env-specific memory B cells and plasmablasts/plasma cells (PB/PC) in bone marrow and rectal tissue, mucosal Env-specific antibodies, and Env-specific T-cells. Post-challenge, only one macaque (gp140-immunized) remained uninfected. However, SIV acquisition was significantly delayed in vaccinated females but not males, correlated with Env-specific IgA in rectal secretions, rectal Env-specific memory B cells, and PC in rectal tissue. These results extend previous correlations of mucosal antibodies and memory B cells with protective efficacy. The gp140 regimen was more immunogenic, stimulating elevated gp140 and cyclic V2 binding antibodies, ADCC and ADCP activities, bone marrow Env-specific PB/PC, and rectal gp140-specific IgG. However, immunization with gp120, the form of envelope immunogen used in RV144, the only vaccine trial to show some efficacy, provided more significant acquisition delay. Further over 40 weeks of follow-up, no gp120 immunized macaques met euthanasia criteria in contrast to 7 gp140-immunized and 2 control animals. Although males had higher binding antibodies than females, ADCC and ADCP activities were similar. The complex challenge outcomes may reflect differences in IgG subtypes, Fc glycosylation, Fc-R polymorphisms, and/or the microbiome, key areas for future studies. This first demonstration of a sex-difference in SIV vaccine-induced protection emphasizes the need for sex-balancing in vaccine trials. Our results highlight the importance of mucosal immunity and memory B cells at the SIV exposure site for protection. Viral infections can have different disease courses in men and women. Following HIV infection, women generally exhibit lower viral loads and higher CD4 counts than men, but paradoxically progress faster to AIDS. Sex differences result from effects of X-linked genes and hormonal influences, and are believed to be largely based on immune response differences. Nevertheless, little is known about potential sex differences following vaccination. Here we report for the first time a sex bias in response to a SIV vaccine in rhesus macaques, showing that female animals were better protected against acquisition of SIV compared to males. The vaccine-induced immune responses that contributed to this better protection were viral-specific antibodies and immune antibody-secreting B cells, both at the local rectal site of SIV exposure. These results suggest that HIV/SIV vaccines should be better designed to target mucosal exposure sites. Additionally, they indicate that more vaccine studies should include animals of both sexes to address potential differences. Our study also illustrates that inclusion of both sexes can lead to greater complexity in vaccine trial outcomes, necessitating more in depth analyses. However, we believe sex balancing to be particularly important, as approximately 50% of HIV infections worldwide occur in women.
Collapse
Affiliation(s)
- Iskra Tuero
- Immune Biology of Retroviral Infection Section, Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Venkatramanan Mohanram
- Immune Biology of Retroviral Infection Section, Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Thomas Musich
- Immune Biology of Retroviral Infection Section, Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Leia Miller
- Immune Biology of Retroviral Infection Section, Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Diego A. Vargas-Inchaustegui
- Immune Biology of Retroviral Infection Section, Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Thorsten Demberg
- Immune Biology of Retroviral Infection Section, Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - David Venzon
- Biostatistics and Data Management Section, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Irene Kalisz
- Advanced Bioscience Laboratories, Inc., Rockville, Maryland, United States of America
| | - V. S. Kalyanaraman
- Advanced Bioscience Laboratories, Inc., Rockville, Maryland, United States of America
| | - Ranajit Pal
- Advanced Bioscience Laboratories, Inc., Rockville, Maryland, United States of America
| | - Maria Grazia Ferrari
- Advanced Bioscience Laboratories, Inc., Rockville, Maryland, United States of America
| | - Celia LaBranche
- Duke University Medical Center, Durham, North Carolina, United States of America
| | - David C. Montefiori
- Duke University Medical Center, Durham, North Carolina, United States of America
| | - Mangala Rao
- USMHRP, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Monica Vaccari
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Genoveffa Franchini
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Susan W. Barnett
- Novartis Vaccines, Cambridge, Massachusetts, United States of America
| | - Marjorie Robert-Guroff
- Immune Biology of Retroviral Infection Section, Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
9
|
Rosati M, Alicea C, Kulkarni V, Virnik K, Hockenbury M, Sardesai NY, Pavlakis GN, Valentin A, Berkower I, Felber BK. Recombinant rubella vectors elicit SIV Gag-specific T cell responses with cytotoxic potential in rhesus macaques. Vaccine 2015; 33:2167-74. [PMID: 25802183 DOI: 10.1016/j.vaccine.2015.02.067] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 02/19/2015] [Accepted: 02/25/2015] [Indexed: 11/25/2022]
Abstract
Live-attenuated rubella vaccine strain RA27/3 has been demonstrated to be safe and immunogenic in millions of children. The vaccine strain was used to insert SIV gag sequences and the resulting rubella vectors were tested in rhesus macaques alone and together with SIV gag DNA in different vaccine prime-boost combinations. We previously reported that such rubella vectors induce robust and durable SIV-specific humoral immune responses in macaques. Here, we report that recombinant rubella vectors elicit robust de novo SIV-specific cellular immune responses detectable for >10 months even after a single vaccination. The antigen-specific responses induced by the rubella vector include central and effector memory CD4(+) and CD8(+) T cells with cytotoxic potential. Rubella vectors can be administered repeatedly even after vaccination with the rubella vaccine strain RA27/3. Vaccine regimens including rubella vector and SIV gag DNA in different prime-boost combinations resulted in robust long-lasting cellular responses with significant increase of cellular responses upon boost. Rubella vectors provide a potent platform for inducing HIV-specific immunity that can be combined with DNA in a prime-boost regimen to elicit durable cellular immunity.
Collapse
Affiliation(s)
- Margherita Rosati
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, USA
| | - Candido Alicea
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, USA
| | - Viraj Kulkarni
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, USA
| | - Konstantin Virnik
- Laboratory of Immunoregulation, Division of Viral Products, Office of Vaccines, Center for Biologics, FDA, Silver Spring, MD, USA
| | - Max Hockenbury
- Laboratory of Immunoregulation, Division of Viral Products, Office of Vaccines, Center for Biologics, FDA, Silver Spring, MD, USA
| | | | - George N Pavlakis
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, USA
| | - Antonio Valentin
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, USA
| | - Ira Berkower
- Laboratory of Immunoregulation, Division of Viral Products, Office of Vaccines, Center for Biologics, FDA, Silver Spring, MD, USA.
| | - Barbara K Felber
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, USA.
| |
Collapse
|
10
|
Balance of cellular and humoral immunity determines the level of protection by HIV vaccines in rhesus macaque models of HIV infection. Proc Natl Acad Sci U S A 2015; 112:E992-9. [PMID: 25681373 DOI: 10.1073/pnas.1423669112] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
A guiding principle for HIV vaccine design has been that cellular and humoral immunity work together to provide the strongest degree of efficacy. However, three efficacy trials of Ad5-vectored HIV vaccines showed no protection. Transmission was increased in two of the trials, suggesting that this vaccine strategy elicited CD4+ T-cell responses that provide more targets for infection, attenuating protection or increasing transmission. The degree to which this problem extends to other HIV vaccine candidates is not known. Here, we show that a gp120-CD4 chimeric subunit protein vaccine (full-length single chain) elicits heterologous protection against simian-human immunodeficiency virus (SHIV) or simian immunodeficiency virus (SIV) acquisition in three independent rhesus macaque repeated low-dose rectal challenge studies with SHIV162P3 or SIVmac251. Protection against acquisition was observed with multiple formulations and challenges. In each study, protection correlated with antibody-dependent cellular cytotoxicity specific for CD4-induced epitopes, provided that the concurrent antivaccine T-cell responses were minimal. Protection was lost in instances when T-cell responses were high or when the requisite antibody titers had declined. Our studies suggest that balance between a protective antibody response and antigen-specific T-cell activation is the critical element to vaccine-mediated protection against HIV. Achieving and sustaining such a balance, while enhancing antibody durability, is the major challenge for HIV vaccine development, regardless of the immunogen or vaccine formulation.
Collapse
|
11
|
Thomas MA, Tuero I, Demberg T, Vargas-Inchaustegui DA, Musich T, Xiao P, Venzon D, LaBranche C, Montefiori DC, DiPasquale J, Reed SG, DeVico A, Fouts T, Lewis GK, Gallo RC, Robert-Guroff M. HIV-1 CD4-induced (CD4i) gp120 epitope vaccines promote B and T-cell responses that contribute to reduced viral loads in rhesus macaques. Virology 2014; 471-473:81-92. [PMID: 25461534 PMCID: PMC4312258 DOI: 10.1016/j.virol.2014.10.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 09/24/2014] [Accepted: 10/01/2014] [Indexed: 11/21/2022]
Abstract
To target the HIV CD4i envelope epitope, we primed rhesus macaques with replicating Ad-rhFLSC (HIV-1BaLgp120 linked to macaque CD4 D1 and D2), with or without Ad-SIVgag and Ad-SIVnef. Macaques were boosted with rhFLSC protein. Memory T-cells in PBMC, bronchoalveolar lavage and rectal tissue, antibodies with neutralizing and ADCC activity, and Env-specific secretory IgA in rectal secretions were elicited. Although protective neutralizing antibody levels were induced, SHIVSF162P4 acquisition following rectal challenge was not prevented. Rapid declines in serum ADCC activity, Env-specific memory B cells in PBMC and bone marrow, and systemic and mucosal memory T cells were observed immediately post-challenge together with delayed anamnestic responses. Innate immune signaling resulting from persisting Ad replication and the TLR-4 booster adjuvant may have been in conflict and reoriented adaptive immunity. A different adjuvant paired with replicating Ad, or a longer post-prime interval allowing vector clearance before boosting might foster persistent T- and B-cell memory.
Collapse
Affiliation(s)
- Michael A Thomas
- Section on Immune Biology of Retroviral Infection, Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, United States
| | - Iskra Tuero
- Section on Immune Biology of Retroviral Infection, Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, United States
| | - Thorsten Demberg
- Section on Immune Biology of Retroviral Infection, Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, United States
| | - Diego A Vargas-Inchaustegui
- Section on Immune Biology of Retroviral Infection, Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, United States
| | - Thomas Musich
- Section on Immune Biology of Retroviral Infection, Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, United States
| | - Peng Xiao
- Section on Immune Biology of Retroviral Infection, Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, United States
| | - David Venzon
- Biostatistics and Data Management Section, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, United States
| | - Celia LaBranche
- Duke University Medical Center, Durham, NC 27710, United States
| | | | - Janet DiPasquale
- Section on Immune Biology of Retroviral Infection, Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, United States
| | - Steven G Reed
- Infectious Diseases Research Institute, Seattle, WA 98102, United States
| | - Anthony DeVico
- Institute of Human Virology, University of Maryland, Baltimore, MD, United States
| | - Timothy Fouts
- Profectus BioSciences, Inc., Baltimore, MD 21224, United States
| | - George K Lewis
- Institute of Human Virology, University of Maryland, Baltimore, MD, United States
| | - Robert C Gallo
- Institute of Human Virology, University of Maryland, Baltimore, MD, United States
| | - Marjorie Robert-Guroff
- Section on Immune Biology of Retroviral Infection, Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, United States.
| |
Collapse
|
12
|
Valentin A, McKinnon K, Li J, Rosati M, Kulkarni V, Pilkington GR, Bear J, Alicea C, Vargas-Inchaustegui DA, Jean Patterson L, Pegu P, Liyanage NPM, Gordon SN, Vaccari M, Wang Y, Hogg AE, Frey B, Sui Y, Reed SG, Sardesai NY, Berzofsky JA, Franchini G, Robert-Guroff M, Felber BK, Pavlakis GN. Comparative analysis of SIV-specific cellular immune responses induced by different vaccine platforms in rhesus macaques. Clin Immunol 2014; 155:91-107. [PMID: 25229164 DOI: 10.1016/j.clim.2014.09.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 09/03/2014] [Accepted: 09/04/2014] [Indexed: 12/21/2022]
Abstract
To identify the most promising vaccine candidates for combinatorial strategies, we compared five SIV vaccine platforms including recombinant canary pox virus ALVAC, replication-competent adenovirus type 5 host range mutant RepAd, DNA, modified vaccinia Ankara (MVA), peptides and protein in distinct combinations. Three regimens used viral vectors (prime or boost) and two regimens used plasmid DNA. Analysis at necropsy showed that the DNA-based vaccine regimens elicited significantly higher cellular responses against Gag and Env than any of the other vaccine platforms. The T cell responses induced by most vaccine regimens disseminated systemically into secondary lymphoid tissues (lymph nodes, spleen) and effector anatomical sites (including liver, vaginal tissue), indicative of their role in viral containment at the portal of entry. The cellular and reported humoral immune response data suggest that combination of DNA and viral vectors elicits a balanced immunity with strong and durable responses able to disseminate into relevant mucosal sites.
Collapse
Affiliation(s)
- Antonio Valentin
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Katherine McKinnon
- FACS Core Facility, Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jinyao Li
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Margherita Rosati
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Viraj Kulkarni
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Guy R Pilkington
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Jenifer Bear
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Candido Alicea
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Diego A Vargas-Inchaustegui
- Immune Biology of Retroviral Infection Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - L Jean Patterson
- Immune Biology of Retroviral Infection Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Poonam Pegu
- Animal Models and Retroviral Vaccine Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Namal P M Liyanage
- Animal Models and Retroviral Vaccine Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Shari N Gordon
- Animal Models and Retroviral Vaccine Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Monica Vaccari
- Animal Models and Retroviral Vaccine Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Yichuan Wang
- Molecular Immunogenetics and Vaccine Research Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Alison E Hogg
- Molecular Immunogenetics and Vaccine Research Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Blake Frey
- Molecular Immunogenetics and Vaccine Research Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Yongjun Sui
- Molecular Immunogenetics and Vaccine Research Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Steven G Reed
- Infectious Diseases Research Institute, Seattle, WA, USA
| | | | - Jay A Berzofsky
- Molecular Immunogenetics and Vaccine Research Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Genoveffa Franchini
- Animal Models and Retroviral Vaccine Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Marjorie Robert-Guroff
- Immune Biology of Retroviral Infection Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Barbara K Felber
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA.
| | - George N Pavlakis
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA.
| |
Collapse
|
13
|
Vargas-Inchaustegui DA, Tuero I, Mohanram V, Musich T, Pegu P, Valentin A, Sui Y, Rosati M, Bear J, Venzon DJ, Kulkarni V, Alicea C, Pilkington GR, Liyanage NPM, Demberg T, Gordon SN, Wang Y, Hogg AE, Frey B, Patterson LJ, DiPasquale J, Montefiori DC, Sardesai NY, Reed SG, Berzofsky JA, Franchini G, Felber BK, Pavlakis GN, Robert-Guroff M. Humoral immunity induced by mucosal and/or systemic SIV-specific vaccine platforms suggests novel combinatorial approaches for enhancing responses. Clin Immunol 2014; 153:308-22. [PMID: 24907411 DOI: 10.1016/j.clim.2014.05.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 05/13/2014] [Accepted: 05/21/2014] [Indexed: 12/22/2022]
Abstract
Combinatorial HIV/SIV vaccine approaches targeting multiple arms of the immune system might improve protective efficacy. We compared SIV-specific humoral immunity induced in rhesus macaques by five vaccine regimens. Systemic regimens included ALVAC-SIVenv priming and Env boosting (ALVAC/Env); DNA immunization; and DNA plus Env co-immunization (DNA&Env). RepAd/Env combined mucosal replication-competent Ad-env priming with systemic Env boosting. A Peptide/Env regimen, given solely intrarectally, included HIV/SIV peptides followed by MVA-env and Env boosts. Serum antibodies mediating neutralizing, phagocytic and ADCC activities were induced by ALVAC/Env, RepAd/Env and DNA&Env vaccines. Memory B cells and plasma cells were maintained in the bone marrow. RepAd/Env vaccination induced early SIV-specific IgA in rectal secretions before Env boosting, although mucosal IgA and IgG responses were readily detected at necropsy in ALVAC/Env, RepAd/Env, DNA&Env and DNA vaccinated animals. Our results suggest that combined RepAd priming with ALVAC/Env or DNA&Env regimen boosting might induce potent, functional, long-lasting systemic and mucosal SIV-specific antibodies.
Collapse
Affiliation(s)
- Diego A Vargas-Inchaustegui
- Immune Biology of Retroviral Infection Section, Vaccine Branch, CCR, NCI, NIH, Bethesda, MD 20892, United States
| | - Iskra Tuero
- Immune Biology of Retroviral Infection Section, Vaccine Branch, CCR, NCI, NIH, Bethesda, MD 20892, United States
| | - Venkatramanan Mohanram
- Immune Biology of Retroviral Infection Section, Vaccine Branch, CCR, NCI, NIH, Bethesda, MD 20892, United States
| | - Thomas Musich
- Immune Biology of Retroviral Infection Section, Vaccine Branch, CCR, NCI, NIH, Bethesda, MD 20892, United States
| | - Poonam Pegu
- Animal Models and Retroviral Vaccine Section, Vaccine Branch, CCR, NCI, NIH, Bethesda, MD 20892, United States
| | - Antonio Valentin
- Human Retrovirus Section, Vaccine Branch, CCR, NCI, NIH, Frederick, MD 21702, United States
| | - Yongjun Sui
- Molecular Immunogenetics and Vaccine Research Section, Vaccine Branch, CCR, NCI, NIH, Bethesda, MD 20892, United States
| | - Margherita Rosati
- Human Retrovirus Section, Vaccine Branch, CCR, NCI, NIH, Frederick, MD 21702, United States
| | - Jenifer Bear
- Human Retrovirus Pathogenesis Section, Vaccine Branch, CCR, NCI, NIH, Frederick, MD 21702, United States
| | - David J Venzon
- Biostatistics and Data Management Section, CCR, NCI, NIH, Rockville, MD 20850, United States
| | - Viraj Kulkarni
- Human Retrovirus Pathogenesis Section, Vaccine Branch, CCR, NCI, NIH, Frederick, MD 21702, United States
| | - Candido Alicea
- Human Retrovirus Pathogenesis Section, Vaccine Branch, CCR, NCI, NIH, Frederick, MD 21702, United States
| | - Guy R Pilkington
- Human Retrovirus Pathogenesis Section, Vaccine Branch, CCR, NCI, NIH, Frederick, MD 21702, United States
| | - Namal P M Liyanage
- Animal Models and Retroviral Vaccine Section, Vaccine Branch, CCR, NCI, NIH, Bethesda, MD 20892, United States
| | - Thorsten Demberg
- Immune Biology of Retroviral Infection Section, Vaccine Branch, CCR, NCI, NIH, Bethesda, MD 20892, United States
| | - Shari N Gordon
- Animal Models and Retroviral Vaccine Section, Vaccine Branch, CCR, NCI, NIH, Bethesda, MD 20892, United States
| | - Yichuan Wang
- Molecular Immunogenetics and Vaccine Research Section, Vaccine Branch, CCR, NCI, NIH, Bethesda, MD 20892, United States
| | - Alison E Hogg
- Molecular Immunogenetics and Vaccine Research Section, Vaccine Branch, CCR, NCI, NIH, Bethesda, MD 20892, United States
| | - Blake Frey
- Molecular Immunogenetics and Vaccine Research Section, Vaccine Branch, CCR, NCI, NIH, Bethesda, MD 20892, United States
| | - L Jean Patterson
- Immune Biology of Retroviral Infection Section, Vaccine Branch, CCR, NCI, NIH, Bethesda, MD 20892, United States
| | - Janet DiPasquale
- Immune Biology of Retroviral Infection Section, Vaccine Branch, CCR, NCI, NIH, Bethesda, MD 20892, United States
| | - David C Montefiori
- Duke Human Vaccine Institute and Department of Surgery, Duke University Medical Center, Durham, NC 27710, United States
| | | | - Steven G Reed
- Infectious Diseases Research Institute, Seattle, WA 98102, United States
| | - Jay A Berzofsky
- Molecular Immunogenetics and Vaccine Research Section, Vaccine Branch, CCR, NCI, NIH, Bethesda, MD 20892, United States
| | - Genoveffa Franchini
- Animal Models and Retroviral Vaccine Section, Vaccine Branch, CCR, NCI, NIH, Bethesda, MD 20892, United States
| | - Barbara K Felber
- Human Retrovirus Pathogenesis Section, Vaccine Branch, CCR, NCI, NIH, Frederick, MD 21702, United States
| | - George N Pavlakis
- Human Retrovirus Section, Vaccine Branch, CCR, NCI, NIH, Frederick, MD 21702, United States
| | - Marjorie Robert-Guroff
- Immune Biology of Retroviral Infection Section, Vaccine Branch, CCR, NCI, NIH, Bethesda, MD 20892, United States.
| |
Collapse
|
14
|
Thomas MA, Demberg T, Vargas-Inchaustegui DA, Xiao P, Tuero I, Venzon D, Weiss D, Treece J, Robert-Guroff M. Rhesus macaque rectal and duodenal tissues exhibit B-cell sub-populations distinct from peripheral blood that continuously secrete antigen-specific IgA in short-term explant cultures. Vaccine 2013; 32:872-80. [PMID: 24374153 DOI: 10.1016/j.vaccine.2013.12.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 11/26/2013] [Accepted: 12/10/2013] [Indexed: 12/15/2022]
Abstract
It is becoming increasingly obvious that evaluation of a vaccine aimed at preventing HIV infection should include assessment of induced immunity at mucosal sites of viral entry. Among the most salient immune responses are viral-specific antibodies. A recent report on IgA-secreting plasma cells in human duodenal explants prompted us to examine similar duodenal and rectal biopsies of rhesus macaques, a key animal model for pre-clinical HIV/SIV vaccine studies, and characterize the local resident B-cells. Here we report that non-human primate rectal explants possess similar levels of B-cells as duodenal explants. We characterize the antibody isotype expression on mucosal memory B-cells and show for the first time that the B-cell memory subsets of the duodenum and rectum are distinct from those of PBMC, not only by essentially lacking CD27(+) cells, as previously reported for uninfected macaques (Titanji et al., 2010), but also in being mostly IgD(-). SIV- and SHIV-infected macaques had fewer total IgA-secreting cells in rectal tissue compared to naïve macaques. As expected, the fractions of B-cells with surface expression of IgA were dominant in the rectal and duodenal explants whereas in PBMC IgG surface expression was dominant among IgD(-) B-cells. Mucosal antibody secreting cells were found to be predominantly plasma cells/plasma blasts based on their lack of response to stimulation. Importantly, short-term culture of rectal explants of SIV- and SHIV-positive animals led to secretion of Env-specific IgA into the culture supernatant which could be easily measured by ELISA. Collection of such culture supernatant over several days allows for accumulation of mucosal antibody in amounts that should enable antibody purification, characterization, and use in functional assays. Rectal explants can be readily obtained and unequivocally identify the mucosal tissue as the source of antibody. Overall they facilitate evaluation of mucosal vaccines.
Collapse
Affiliation(s)
- Michael A Thomas
- Section on Immune Biology of Retroviral Infection, Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Thorsten Demberg
- Section on Immune Biology of Retroviral Infection, Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Diego A Vargas-Inchaustegui
- Section on Immune Biology of Retroviral Infection, Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Peng Xiao
- Section on Immune Biology of Retroviral Infection, Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Iskra Tuero
- Section on Immune Biology of Retroviral Infection, Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - David Venzon
- Biostatistics and Data Management Section, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Deborah Weiss
- Advanced BioScience Laboratories, Inc., Rockville, MD, USA
| | - James Treece
- Advanced BioScience Laboratories, Inc., Rockville, MD, USA
| | - Marjorie Robert-Guroff
- Section on Immune Biology of Retroviral Infection, Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
15
|
Campbell CT, Llewellyn SR, Damberg T, Morgan IL, Robert-Guroff M, Gildersleeve JC. High-throughput profiling of anti-glycan humoral responses to SIV vaccination and challenge. PLoS One 2013; 8:e75302. [PMID: 24086502 PMCID: PMC3781036 DOI: 10.1371/journal.pone.0075302] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 08/13/2013] [Indexed: 11/18/2022] Open
Abstract
Recent progress toward an HIV vaccine highlights both the potential of vaccines to end the AIDS pandemic and the need to boost efficacy by incorporating additional vaccine strategies. Although many aspects of the immune response can contribute to vaccine efficacy, the key factors have not been defined fully yet. A particular area that may yield new insights is anti-glycan immune responses, such as those against the glycan shield that HIV uses to evade the immune system. In this study, we used glycan microarray technology to evaluate anti-glycan antibody responses induced by SIV vaccination and infection in a non-human primate model of HIV infection. This comprehensive profiling of circulating anti-glycan antibodies found changes in anti-glycan antibody levels after both vaccination with the Ad5hr-SIV vaccine and SIV infection. Notably, SIV infection produced generalized declines in anti-glycan IgM antibodies in a number of animals. Additionally, some infected animals generated antibodies to the Tn antigen, which is a cryptic tumor-associated antigen exposed by premature termination of O-linked glycans; however, the Ad5hr-SIV vaccine did not induce anti-Tn IgG antibodies. Overall, this study demonstrates the potential contributions that glycan microarrays can make for HIV vaccine development.
Collapse
Affiliation(s)
- Christopher T. Campbell
- Chemical Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick, Maryland, United States of America
| | - Sean R. Llewellyn
- Chemical Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick, Maryland, United States of America
| | - Thorsten Damberg
- Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Ian L. Morgan
- Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Marjorie Robert-Guroff
- Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail: (JCG); (MR)
| | - Jeffrey C. Gildersleeve
- Chemical Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick, Maryland, United States of America
- * E-mail: (JCG); (MR)
| |
Collapse
|
16
|
Wiseman RW, Karl JA, Bohn PS, Nimityongskul FA, Starrett GJ, O'Connor DH. Haplessly hoping: macaque major histocompatibility complex made easy. ILAR J 2013; 54:196-210. [PMID: 24174442 PMCID: PMC3814398 DOI: 10.1093/ilar/ilt036] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Major histocompatibility complex (MHC) gene products control the repertoire of T cell responses that an individual may create against pathogens and foreign tissues. This text will review the current understanding of MHC genetics in nonhuman primates, with a focus on Mauritian-origin cynomolgus macaques (Macaca fascicularis) and Indian-origin rhesus macaques (Macaca mulatta). These closely related macaque species provide important experimental models for studies of infectious disease pathogenesis, vaccine development, and transplantation research. Recent advances resulting from the application of several cost effective, high-throughput approaches, with deep sequencing technologies have revolutionized our ability to perform MHC genotyping of large macaque cohorts. Pyrosequencing of cDNA amplicons with a Roche/454 GS Junior instrument, provides excellent resolution of MHC class I allelic variants with semi-quantitative estimates of relative levels of transcript abundance. Introduction of the Illumina MiSeq platform significantly increased the sample throughput, since the sample loading workflow is considerably less labor intensive, and each instrument run yields approximately 100-fold more sequence data. Extension of these sequencing methods from cDNA to genomic DNA amplicons further streamlines the experimental workflow and opened opportunities for retrospective MHC genotyping of banked DNA samples. To facilitate the reporting of MHC genotypes, and comparisons between groups of macaques, this text also introduces an intuitive series of abbreviated rhesus MHC haplotype designations based on a major Mamu-A or Mamu-B transcript characteristic for ancestral allele combinations. The authors believe that the use of MHC-defined macaques promises to improve the reproducibility, and predictability of results from pre-clinical studies for translation to humans.
Collapse
Affiliation(s)
- Roger W. Wiseman
- Address correspondence and reprint requests to Dr. Roger Wiseman, Wisconsin National Primate Research Center, University of Wisconsin-Madison, 555 Science Drive, Madison, WI 53711 or email
| | | | | | | | | | | |
Collapse
|
17
|
Kramski M, Schorcht A, Johnston APR, Lichtfuss GF, Jegaskanda S, De Rose R, Stratov I, Kelleher AD, French MA, Center RJ, Jaworowski A, Kent SJ. Role of monocytes in mediating HIV-specific antibody-dependent cellular cytotoxicity. J Immunol Methods 2012; 384:51-61. [PMID: 22841577 DOI: 10.1016/j.jim.2012.07.006] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2012] [Revised: 07/17/2012] [Accepted: 07/17/2012] [Indexed: 10/28/2022]
Abstract
Antibodies (Abs) that mediate antibody-dependent cellular cytotoxicity (ADCC) activity against HIV-1 are of major interest. A widely used method to measure ADCC Abs is the rapid and fluorometric antibody-dependent cellular cytotoxicity (RFADCC) assay. Antibody-dependent killing of a labelled target cell line by PBMC is assessed by loss of intracellular CFSE but retention of membrane dye PKH26 (CFSE-PKH26+). Cells of this phenotype are assumed to be derived from CFSE+PKH26+ target cells killed by NK cells. We assessed the effector cells that mediate ADCC in this assay. Backgating analysis and phenotyping of CFSE-PKH26+ revealed that the RFADCC assay's readout mainly represents CD3-CD14+ monocytes taking up the PKH26 dye. This was confirmed for 53 HIV+plasma-purified IgG samples when co-cultured with PBMC from three separate healthy donors. Emergence of the CFSE-PKH26+ monocyte population was observed upon co-culture of targets with purified monocytes but not with purified NK cells. Image flow cytometry and microscopy showed a monocyte-specific interaction with target cells without typical morphological changes associated with phagocytosis, suggesting a monocyte-mediated ADCC process. We conclude that the RFADCC assay primarily reflects Ab-mediated monocyte function. Further studies on the immunological importance of HIV-specific monocyte-mediated ADCC are warranted.
Collapse
Affiliation(s)
- M Kramski
- Department of Microbiology and Immunology, University of Melbourne, Australia.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Vargas-Inchaustegui DA, Xiao P, Tuero I, Patterson LJ, Robert-Guroff M. NK and CD4+ T cell cooperative immune responses correlate with control of disease in a macaque simian immunodeficiency virus infection model. THE JOURNAL OF IMMUNOLOGY 2012; 189:1878-85. [PMID: 22798665 DOI: 10.4049/jimmunol.1201026] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Control of infectious disease may be accomplished by successful vaccination or by complex immunologic and genetic factors favoring Ag-specific multicellular immune responses. Using a rhesus macaque model, we evaluated Ag-specific T cell-dependent NK cell immune responses in SIV-infected macaques, designated "controlling" or "noncontrolling" based on long-term chronic viremia levels, to determine whether NK cell effector functions contribute to control of SIV infection. We observed that Gag stimulation of macaque PBMCs induced subset-specific NK cell responses in SIV-controlling but not SIV-noncontrolling animals, as well as that circulatory NK cell responses were dependent on Ag-specific IL-2 production by CD4(+) central memory T cells. NK cell activation was blocked by anti-IL-2-neutralizing Ab and by CD4(+) T cell depletion, which abrogated the Gag-specific responses. Among tissue-resident cells, splenic and circulatory NK cells displayed similar activation profiles, whereas liver and mucosal NK cells displayed a decreased activation profile, similar in SIV-controlling and -noncontrolling macaques. Lack of T cell-dependent NK cell function was rescued in SIV-noncontrolling macaques through drug-mediated control of viremia. Our results indicate that control of disease progression in SIV-controlling macaques is associated with cooperation between Ag-specific CD4(+) T cells and NK cell effector function, which highlight the importance of such cell-to-cell cooperativity in adaptive immunity and suggest that this interaction should be further investigated in HIV vaccine development and other prophylactic vaccine approaches.
Collapse
|
19
|
Replicating adenovirus-simian immunodeficiency virus (SIV) vectors efficiently prime SIV-specific systemic and mucosal immune responses by targeting myeloid dendritic cells and persisting in rectal macrophages, regardless of immunization route. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2012; 19:629-37. [PMID: 22441384 DOI: 10.1128/cvi.00010-12] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Although priming with replicating adenovirus type 5 host range mutant (Ad5hr)-human immunodeficiency virus (HIV)/simian immunodeficiency virus (SIV) recombinants, followed by HIV/SIV envelope boosting, has proven highly immunogenic, resulting in protection from SIV/simian-human immunodeficiency virus (SHIV) challenges, Ad5hr recombinant distribution, replication, and persistence have not been examined comprehensively in nonhuman primates. We utilized Ad5hr-green fluorescent protein and Ad5hr-SIV recombinants to track biodistribution and immunogenicity following mucosal priming of rhesus macaques by the intranasal/intratracheal, sublingual, vaginal, or rectal route. Ad recombinants administered by all routes initially targeted macrophages in bronchoalveolar lavage (BAL) fluid and rectal tissue, later extending to myeloid dendritic cells in BAL fluid with persistent expression in rectal mucosa 25 weeks after the last Ad immunization. Comparable SIV-specific immunity, including cellular responses, serum binding antibody, and mucosal secretory IgA, was elicited among all groups. The ability of the vector to replicate in multiple mucosal sites irrespective of delivery route, together with the targeting of macrophages and professional antigen-presenting cells, which provide potent immunogenicity at localized sites of virus entry, warrants continued use of replicating Ad vectors.
Collapse
|
20
|
Replicating adenovirus-simian immunodeficiency virus (SIV) recombinant priming and envelope protein boosting elicits localized, mucosal IgA immunity in rhesus macaques correlated with delayed acquisition following a repeated low-dose rectal SIV(mac251) challenge. J Virol 2012; 86:4644-57. [PMID: 22345466 DOI: 10.1128/jvi.06812-11] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
We have shown that sequential replicating adenovirus type 5 host range mutant human immunodeficiency virus/simian immunodeficiency virus (HIV/SIV) recombinant priming delivered first intranasally (i.n.) plus orally and then intratracheally (i.t.), followed by envelope protein boosting, elicits broad cellular immunity and functional, envelope-specific serum and mucosal antibodies that correlate with protection from high-dose SIV and simian/human immunodeficiency virus (SHIV) challenges in rhesus macaques. Here we extended these studies to compare the standard i.n./i.t. regimen with additional mucosal administration routes, including sublingual, rectal, and vaginal routes. Similar systemic cellular and humoral immunity was elicited by all immunization routes. Central and effector memory T cell responses were also elicited by the four immunization routes in bronchoalveolar lavage fluid and jejunal, rectal, and vaginal tissue samples. Cellular responses in vaginal tissue were more compartmentalized, being induced primarily by intravaginal administration. In contrast, all immunization routes elicited secretory IgA (sIgA) responses at multiple mucosal sites. Following a repeated low-dose intrarectal (i.r.) challenge with SIV(mac251) at a dose transmitting one or two variants, protection against acquisition was not achieved except in one macaque in the i.r. immunized group. All immunized macaques exhibited reduced peak viremia compared to that of controls, correlated inversely with prechallenge serum antienvelope avidity, antibody-dependent cellular cytotoxicity (ADCC) titers, and percent antibody-dependent cell-mediated viral inhibition. Both antibody avidity and ADCC titers were correlated with the number of exposures required for infection. Notably, we show for the first time a significant correlation of vaccine-induced sIgA titers in rectal secretions with delayed acquisition. Further investigation of the characteristics and properties of the sIgA should elucidate the mechanism leading to this protective effect.
Collapse
|
21
|
Demberg T, Ettinger AC, Aladi S, McKinnon K, Kuddo T, Venzon D, Patterson LJ, Phillips TM, Robert-Guroff M. Strong viremia control in vaccinated macaques does not prevent gradual Th17 cell loss from central memory. Vaccine 2011; 29:6017-28. [PMID: 21708207 PMCID: PMC3148322 DOI: 10.1016/j.vaccine.2011.06.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Revised: 06/07/2011] [Accepted: 06/10/2011] [Indexed: 12/22/2022]
Abstract
It has been proposed that microbial translocation might play a role in chronic immune activation during HIV/SIV infection. Key roles in fighting bacterial and fungal infections have been attributed to Th17 and Tc17 cells. Th17 cells can be infected with HIV/SIV, however whether effective vaccination leads to their maintenance following viral challenge has not been addressed. Here we retrospectively investigated if a vaccine regimen that potently reduced viremia post-challenge preserved Th17 and Tc17 cells, thus adding benefit in the absence of sterilizing protection. Rhesus macaques were previously vaccinated with replication-competent Adenovirus recombinants expressing HIVtat and HIVenv followed by Tat and gp140 protein boosting. Upon SHIV(89.6P) challenge, the vaccines exhibited a significant 4 log reduction in chronic viremia compared to sham vaccinated controls which rapidly progressed to AIDS [39]. Plasma and cryopreserved PBMC samples were examined pre-challenge and during acute and chronic infection. Control macaques exhibited a rapid loss of CD4(+) cells, including Th17 cells. Tc17 cells tended to decline over the course of infection although significance was not reached. Immune activation, assessed by Ki-67 expression, was associated with elevated chronic viremia of the controls. Significantly increased plasma IFN-γ levels were also observed. No increase in plasma LPS levels were observed suggesting a lack of microbial translocation. In contrast, vaccinated macaques had no evidence of immune activation within the chronic phase and preserved both CD4(+) T-cells and Tc17 cells in PBMC. Nevertheless, they exhibited a gradual, significant loss of Th17 cells which concomitantly displayed significantly higher CCR6 expression over time. The gradual Th17 cell decline may reflect mucosal homing to inflammatory sites and/or slow depletion due to ongoing low levels of SHIV replication. Our results suggest that potent viremia reduction during chronic SHIV infection will delay but not prevent the loss of Th17 cells.
Collapse
Affiliation(s)
- Thorsten Demberg
- National Cancer Institute, Vaccine Branch, Bethesda, Maryland 20892, USA
| | - Amelia C. Ettinger
- National Cancer Institute, Vaccine Branch, Bethesda, Maryland 20892, USA
| | - Stanley Aladi
- National Cancer Institute, Vaccine Branch, Bethesda, Maryland 20892, USA
| | - Katherine McKinnon
- National Cancer Institute, Vaccine Branch, Bethesda, Maryland 20892, USA
| | - Thea Kuddo
- National Institute of Biomedical Imaging and Bioengineering, Laboratory of Cellular Imaging and Macromolecular Biophysics, Bethesda, Maryland 20892, USA
| | - David Venzon
- Biostatistics and Data Management Section, Bethesda, Maryland 20892, USA
| | - L. Jean Patterson
- National Cancer Institute, Vaccine Branch, Bethesda, Maryland 20892, USA
| | - Terry M. Phillips
- National Institute of Biomedical Imaging and Bioengineering, Laboratory of Cellular Imaging and Macromolecular Biophysics, Bethesda, Maryland 20892, USA
| | | |
Collapse
|