1
|
Zhou F, Wang K, Ji S, Liao X, Zhang W, Teng T, Wang L, Li Q. The virulent bacteriophage Henu8 as an antimicrobial synergist against Escherichia coli. Microbiol Spectr 2025:e0163324. [PMID: 40377308 DOI: 10.1128/spectrum.01633-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 04/02/2025] [Indexed: 05/18/2025] Open
Abstract
As the overuse of antibiotics has not yet been strictly limited in urban areas, drug-resistant Escherichia coli has become a fatal pressure for bacteremia treatment. Considering the outstanding performance of bacteriophages in vitro, bacteriophages may serve as an alternative to heal chronic refractory infections. In this study, a 49,890 bp double-stranded circular DNA phage, Henu8, was isolated and was able to lyse the group of E. coli strains tested in this study. Prominent biological characterization revealed that the highly adsorbed bacteriophage Henu8 could form a fully transparent plaque with a narrow translucent halo. The optimal multiplicity of infection of the bacteriophage Henu8 was 0.01, with a burst size of 275 PFU/cell. Genomic analysis revealed a G + C content of 44.17% Henu8, in which 65 open reading frames were located, which could be assigned as a new species in the genus Hanrivervirus of the subfamily Tempevirinae. The effective antibacterial ability and the obvious biofilm destruction and inhibition capability of phage Henu8 were observed. The time-killing assay demonstrated the synergetic potential of Henu8 with antibiotics in vitro for E. coli eradication. Henu8 has profound medicinal potential in a mouse bacteremia model. These studies indicate that Henu8 is a novel bacteriophage with therapeutic potential alone or in combination with antibiotics for clinical treatment.IMPORTANCEThe findings described in this study constitute concrete evidence that it is possible to significantly synergize the antimicrobial activity of bacteriophages and antibiotics. We showed that the newly isolated potent bacteriophage Henu8 lyses Escherichia coli rapidly but tends to produce resistant bacteria. The bacteriophage Henu8 has synergistic antimicrobial effects with several antibiotics and is not susceptible to developing resistance. These results provide further evidence that bacterial resistance to phages arises, possibly at an adaptive cost to sensitivity to antibiotics. Therefore, the findings of this study are important for increasing the potential of phages for clinical applications and developing new approaches to improve their therapeutic efficacy against bacterial drug resistance.
Collapse
Affiliation(s)
- Fang Zhou
- Henan Province Engineering Technology Research Center of Rapid-Accuracy Medical Diagnostics, Department of Clinical Laboratory, The First Affiliated Hospital of Henan University, Henan University, Kaifeng, China
| | - Kexiao Wang
- Henan Province Engineering Technology Research Center of Rapid-Accuracy Medical Diagnostics, Department of Clinical Laboratory, The First Affiliated Hospital of Henan University, Henan University, Kaifeng, China
| | - Shuai Ji
- The Joint National Laboratory of Antibody Drug Engineering, Henan University, Kaifeng, China
| | - Xiaochen Liao
- The Joint National Laboratory of Antibody Drug Engineering, Henan University, Kaifeng, China
| | - Wenwen Zhang
- Department of Microbiology, College of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Tieshan Teng
- Henan Province Engineering Technology Research Center of Rapid-Accuracy Medical Diagnostics, Department of Clinical Laboratory, The First Affiliated Hospital of Henan University, Henan University, Kaifeng, China
- Department of Microbiology, College of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Li Wang
- Henan Province Engineering Technology Research Center of Rapid-Accuracy Medical Diagnostics, Department of Clinical Laboratory, The First Affiliated Hospital of Henan University, Henan University, Kaifeng, China
| | - Qiming Li
- Henan Province Engineering Technology Research Center of Rapid-Accuracy Medical Diagnostics, Department of Clinical Laboratory, The First Affiliated Hospital of Henan University, Henan University, Kaifeng, China
- The Joint National Laboratory of Antibody Drug Engineering, Henan University, Kaifeng, China
- Department of Microbiology, College of Basic Medical Sciences, Henan University, Kaifeng, China
| |
Collapse
|
2
|
Dandekar SS, Thanikkal S, Londhe A, Bhutada P, Saha U, Pawar S, Samson R, Dharne M, Saroj SD, Koratkar S. Characterization of novel phages KPAФ1, KP149Ф1, and KP149Ф2 for lytic efficiency against clinical MDR Klebsiella pneumoniae infections. Microb Pathog 2025; 202:107440. [PMID: 40024540 DOI: 10.1016/j.micpath.2025.107440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 02/04/2025] [Accepted: 02/27/2025] [Indexed: 03/04/2025]
Abstract
Phage therapy offers a promising approach to the increasing antimicrobial resistance of Klebsiella pneumoniae. This study highlights three novel lytic bacteriophages-KPAФ1, KP149Ф1, and KP149Ф2- targeting multidrug-resistant (MDR) K. pneumoniae. These phages belong to the Myoviridae and Podoviridae family and demonstrate their efficacy and stability across a wide range of temperatures (up to 60°C) and pH levels (pH 4 to 11). Genomic analysis reveals that they are free from virulence, toxicity, and antimicrobial resistance genes, making them promising candidates for therapeutic use. Among these phages, KPAФ1 showed the highest lytic activity with a 26.15% lysis against MDR K. pneumoniae isolates. Additionally, a phage cocktail comprising all three phages improved lytic efficacy to 32.30%. This study also examined the antimicrobial resistance profiles of K. pneumoniae isolates, emphasizing the critical need for alternative treatments. By effectively targeting resistant strains, these phages offer a potential candidacy to be used as a viable alternative or a complementary antimicrobial agent to traditional antibiotics, opening up the possibility for advanced phage-based therapies. The promising results from this study pave the way for developing new treatments that could significantly improve patient care and outcomes from the growing issue of resistant bacterial infections.
Collapse
Affiliation(s)
- Shraddha S Dandekar
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Lavale, Maharashtra, India.
| | - Sinta Thanikkal
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Lavale, Maharashtra, India.
| | - Arti Londhe
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Lavale, Maharashtra, India.
| | - Pankhudi Bhutada
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Lavale, Maharashtra, India.
| | - Ujjayni Saha
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Lavale, Maharashtra, India.
| | - Shubhankar Pawar
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Lavale, Maharashtra, India.
| | - Rachel Samson
- National Collection of Industrial Microorganisms (NCIM), Biochemical Sciences Division, CSIR-National Chemical Laboratory (NCL), Pune, Maharashtra, 411008, India.
| | - Mahesh Dharne
- National Collection of Industrial Microorganisms (NCIM), Biochemical Sciences Division, CSIR-National Chemical Laboratory (NCL), Pune, Maharashtra, 411008, India.
| | - Sunil D Saroj
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Lavale, Maharashtra, India.
| | - Santosh Koratkar
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Lavale, Maharashtra, India.
| |
Collapse
|
3
|
Yang P, Shan B, Hu X, Xue L, Song G, He P, Yang X. Identification of a novel phage depolymerase against ST11 K64 carbapenem-resistant Klebsiella pneumoniae and its therapeutic potential. J Bacteriol 2025; 207:e0038724. [PMID: 40135928 PMCID: PMC12004950 DOI: 10.1128/jb.00387-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 01/24/2025] [Indexed: 03/27/2025] Open
Abstract
Carbapenem-resistant Klebsiella pneumoniae (CRKP) is a clinical pathogen with a high mortality rate, and its clinical management and infection control have become a serious challenge. Phage-encoded depolymerase cleaves the capsular polysaccharide, a major virulence factor of K. pneumoniae. This study aimed to identify a phage depolymerase targeting ST11 K64 CRKP, evaluate its antimicrobial activity and therapeutic efficacy, and provide new alternative therapeutic strategies for K64 CRKP. Phages were screened from untreated hospital sewage using clinically isolated CRKP as the host bacterium. The host range, efficiency of plaque formation, optimal multiplicity of infection, adsorption efficiency, and one-step growth curve of phage vB_KpnP_IME1309 were determined by the double-layer agar plate culture method. The morphology of the phage was observed by transmission electron microscopy. Phage nucleic acids were extracted for whole-genome sequencing, and the phage-encoded depolymerase gene ORF37 was amplified by polymerase chain reaction. Next, a recombinant plasmid was constructed to induce depolymerase expression, which was verified using sodium dodecyl sulfate-polyacrylamide gel electrophoresis. In vitro bactericidal activity was determined using a combined serum assay, and the anti-K. pneumoniae biofilm effect of depolymerase was determined by crystal violet staining. Finally, a Galleria mellonella larvae infection model was established to investigate the therapeutic effect of depolymerase on larvae in vivo. Here, we isolated and characterized a phage vB_KpnP_IME1309 targeting ST11 K64 CRKP, which featured a latent period of 20 min and a burst size of approximately 290 plaque-forming units/cell. It contained 41 predicted open reading frames, of which ORF37 encoded depolymerase. The expressed and purified depolymerase Dep37 cleaved only ST11 K64 CRKP and formed a translucent halo on the agar plate. Dep37 increased the susceptibility of K. pneumoniae B1 to serum killing, inhibited CRKP biofilm formation, and degraded mature biofilms. The combination of Dep37 and kanamycin was significantly more effective in treating CRKP biofilms compared to either Dep37 or kanamycin alone. An injection of Dep37 at 5 min and 2 h after the CRKP infection of Galleria mellonella larvae increased their survival rates by up to 73% and 53%, respectively. Depolymerase Dep37 may be used as a potential method for capsule typing of K. pneumoniae, showing great promise for the development of novel alternative therapeutic strategies against ST11 K64 CRKP. IMPORTANCE A novel phage vB_KpnP_IME1309 targeting ST11 K64 carbapenem-resistant Klebsiella pneumoniae (CRKP) was isolated and characterized. The ORF37 encoding depolymerase gene of phage vB_KpnP_IME1309 was successfully expressed and purified. Depolymerase increases the susceptibility of CRKP to serum killing, inhibits CRKP biofilm formation, and degrades mature biofilms. The combination of depolymerase and kanamycin is significantly more effective than either depolymerase or kanamycin alone in the treatment of CRKP biofilm. Depolymerase injection at 5 min and 2 h after CRKP infection of Galleria mellonella larvae increased the survival rate of larvae by up to 73% and 53%, respectively. Depolymerase Dep37 may be used as a method for the development of novel alternative therapeutic strategies against ST11 K64 CRKP.
Collapse
Affiliation(s)
- Peini Yang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Bin Shan
- Department of Clinical Laboratory, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xing Hu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Li Xue
- Department of Clinical Laboratory, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Guibo Song
- Department of Clinical Laboratory, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Pingan He
- Department of Clinical Laboratory, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xu Yang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
4
|
Jiao X, Wang M, Liu Y, Yang S, Yu Q, Qiao J. Bacteriophage-derived depolymerase: a review on prospective antibacterial agents to combat Klebsiella pneumoniae. Arch Virol 2025; 170:70. [PMID: 40057622 DOI: 10.1007/s00705-025-06257-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 12/21/2024] [Indexed: 03/29/2025]
Abstract
Klebsiella pneumoniae is a Gram-negative bacterium that colonizes mucosal surfaces and is a common cause of nosocomial infections. The emergence of antimicrobial resistance in K. pneumoniae, particularly carbapenem-resistant strains, poses a significant threat to human health, with high mortality rates and healthcare costs. Another major problem is that hypervirulent K. pneumoniae tends to form biofilms. Bacteriophage-derived depolymerases, a class of enzymes that degrade diverse bacterial surface carbohydrates, have been exploited as antibiofilm and antimicrobial adjuvants because of their high stability, specificity, strong antimicrobial activity, and low incidence of bacterial resistance. This review presents a summary of the structure and properties of depolymerase, as well as an overview of both in vitro and in vivo studies of depolymerase therapy for multidrug-resistant or biofilm-forming K. pneumoniae infections. These studies employed a range of approaches, including utilizing a single depolymerase or combinations of depolymerase and phages or antibiotics. Furthermore, this review outlines the current challenges facing depolymerase therapy and potential future approaches for treating K. pneumoniae infections.
Collapse
Affiliation(s)
- Xin Jiao
- School of Medical Laboratory, Shandong Second Medical University, Weifang, 261053, Shandong, People's Republic of China
| | - Menglu Wang
- School of Medical Laboratory, Shandong Second Medical University, Weifang, 261053, Shandong, People's Republic of China
| | - Yanxia Liu
- School of Medical Laboratory, Shandong Second Medical University, Weifang, 261053, Shandong, People's Republic of China
- Department of Clinical Laboratory, Affiliated Hospital of Shandong Second Medical University, Weifang, 261031, Shandong, People's Republic of China
| | - Shuqi Yang
- School of Medical Laboratory, Shandong Second Medical University, Weifang, 261053, Shandong, People's Republic of China
| | - Qianhui Yu
- School of Medical Laboratory, Shandong Second Medical University, Weifang, 261053, Shandong, People's Republic of China
| | - Jinjuan Qiao
- School of Medical Laboratory, Shandong Second Medical University, Weifang, 261053, Shandong, People's Republic of China.
- Institutional Key Laboratory of Clinical Laboratory Diagnostics, 12th 5-Year Project of Shandong Province, Shandong Second Medical University, Weifang, 261053, Shandong, People's Republic of China.
| |
Collapse
|
5
|
Ali S, Karaynir A, Salih Doğan H, Nachimuthu R, Badu K, Bozdoğan B. Degradation of Preformed Gram-Positive and Gram-Negative Bacterial Biofilms Using Disintegrated and Intact Phages. PHAGE (NEW ROCHELLE, N.Y.) 2025; 6:20-31. [PMID: 40351404 PMCID: PMC12059619 DOI: 10.1089/phage.2024.0029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
Abstract
Introduction Biofilm is a major challenge across several sectors and contributes to serious risks to public health. This study aimed to evaluate the antibiofilm efficacy of disintegrated phages, whose lytic activities have been eliminated, against bacterial biofilms. Methods A total of seven lytic phages were disintegrated by sonication and confirmed to have completely lost their lytic activities by the spot test. Subsequently, both the disintegrated and intact phages were tested on the biofilms produced by five different biofilm-producing bacteria. The effects of heat and proteinase K on the ability of disintegrated phages to disrupt biofilms were determined. Moreover, the structural proteins released after the disintegration of phages were screened for their presence of lipase, amylase, protease, and DNase activities. Genome analysis of all the seven phages were screened for the presence of genes encoding proteins with enzymatic activities. Results The disintegrated phages showed more effectiveness in degrading the bacterial biofilm when compared with intact phages. The amylase test results were positive for all the seven disintegrated phages tested, confirming the presence of starch-degrading enzymes. Genomic analysis of five phages revealed the presence of genes encoding transglycosylases, amidases, and glycosaminidases, which could contribute to biofilm degradation. However, only four of these proteins were also structural proteins of phages. Conclusions Our study demonstrated that disintegrated phages without lytic effects can still possess biofilm degrading ability, probably associated with the enzymatic activities of their structural proteins. This study showed that phages may have activities beyond lytic phage activities exhibited by their structural enzymes.
Collapse
Affiliation(s)
- Sahd Ali
- Recombinant DNA and Protein Research Center (REDPROM), Aydin Adnan Menderes University, Aydin, Türkiye
| | - Abdulkerim Karaynir
- Recombinant DNA and Protein Research Center (REDPROM), Aydin Adnan Menderes University, Aydin, Türkiye
| | - Hanife Salih Doğan
- Recombinant DNA and Protein Research Center (REDPROM), Aydin Adnan Menderes University, Aydin, Türkiye
| | - Ramesh Nachimuthu
- Antibiotic Resistance and Phage Therapy Laboratory, SBST, Vellore Institute of Technology, Vellore, India
| | - Kingsley Badu
- Department of Theoretical and Applied Biology, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Bülent Bozdoğan
- Recombinant DNA and Protein Research Center (REDPROM), Aydin Adnan Menderes University, Aydin, Türkiye
- Department of Medical Microbiology, Medical Faculty, Aydin Adnan Menderes University, Aydin, Türkiye
| |
Collapse
|
6
|
Wang T, Yang H, Sheng Q, Ding Y, Zhang J, Chen F, Wang J, Song L, Deng X. Isoferulic acid facilitates effective clearance of hypervirulent Klebsiella pneumoniae through targeting capsule. PLoS Pathog 2025; 21:e1012787. [PMID: 39761301 PMCID: PMC11737856 DOI: 10.1371/journal.ppat.1012787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 01/16/2025] [Accepted: 11/27/2024] [Indexed: 01/18/2025] Open
Abstract
Hypervirulent Klebsiella pneumoniae (hvKP) poses an alarming threat in clinical settings and global public health owing to its high pathogenicity, epidemic success and rapid development of drug resistance, especially the emergence of carbapenem-resistant lineages (CR-hvKP). With the decline of the "last resort" antibiotic class and the decreasing efficacy of first-line antibiotics, innovative alternative therapeutics are urgently needed. Capsule, an essential virulence determinant, is a major cause of the enhanced pathogenicity of hvKP and thus represents an attractive drug target to prevent the devastating clinical outcomes caused by hvKP infection. Here, we identified isoferulic acid (IFA), a natural phenolic acid compound widely present in traditional herbal medicines, as a potent broad-spectrum K. pneumoniae capsule inhibitor that suppresses capsule polysaccharide synthesis by increasing the energy status of bacteria. In this way, IFA remarkably reduced capsule thickness and impaired hypercapsule-associated hypermucoviscosity phenotype (HMV), thereby significantly sensitizing hvKP to complement-mediated bacterial killing and accelerating host cell adhesion and phagocytosis. Consequently, IFA facilitated effective bacterial clearance and thus remarkably protected mice from lethal hvKP infection, as evidenced by limited bacterial dissemination and a significant improvement in survival rate. In conclusion, this work promotes the development of a capsule-targeted alternative therapeutic strategy for the use of the promising candidate IFA as an intervention to curb hvKP infection, particularly drug-resistant cases.
Collapse
Affiliation(s)
- Tingting Wang
- Department of Respiratory Medicine, Center for Pathogen Biology and Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, The First Hospital of Jilin University, Changchun, China
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Huaizhi Yang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Qiushuang Sheng
- Jilin Province Product Quality Supervision and Inspection Institute, Changchun, Jilin, China
| | - Ying Ding
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Jian Zhang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Feng Chen
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Jianfeng Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Lei Song
- Department of Respiratory Medicine, Center for Pathogen Biology and Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, The First Hospital of Jilin University, Changchun, China
| | - Xuming Deng
- Department of Respiratory Medicine, Center for Pathogen Biology and Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, The First Hospital of Jilin University, Changchun, China
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| |
Collapse
|
7
|
Zhang J, Chen S, Sun X, Chen S, Cheng Q. Phage Therapy: A Promising Treatment Strategy against Infections Caused by Multidrug-resistant Klebsiella pneumoniae. Curr Pharm Des 2025; 31:1007-1019. [PMID: 39757682 DOI: 10.2174/0113816128343976241117183624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/13/2024] [Accepted: 10/21/2024] [Indexed: 01/07/2025]
Abstract
Klebsiella pneumoniae (KP) is a common and highly pathogenic pathogen, which often causes several serious infections in humans. The rampant and inappropriate use of broad-spectrum antibiotics has fueled a worrisome surge in Multidrug Resistance (MDR) among the strains of K. pneumoniae, which has significantly boosted the risk and complexity of nosocomial infection transmission in clinical settings. Consequently, this situation presents a substantial challenge to the efficacy of anti-infective treatments, making the development of new and innovative therapeutic approaches important. Bacteriophages (phages) are viruses that can infect and kill bacteria. They and their derived products are now being considered as promising alternatives or adjuncts to antimicrobial therapies for treating bacterial infections in humans, which exhibit a remarkable safety profile and precise host specificity. Numerous studies have also unequivocally demonstrated the remarkable potential of phages in effectively combating MDR K. pneumoniae infections both in vitro and in vivo. These studies have explored various approaches to K. pneumoniae phages, such as phage cocktails, phage-derived enzymes, and the synergistic utilization of phages and antibiotics. Therefore, phage therapy is old but not obsolete, particularly in light of the escalating problem of antimicrobial-resistant K. pneumoniae infections. Here, we have presented a comprehensive summary of the current knowledge on phage therapy for K. pneumoniae infections, including phage distribution, in vitro characterization of phages, in vivo investigations, and cases of clinical study. This review highlights the rapid advancements in phage therapy for K. pneumoniae, offering a promising avenue for combating this global public health threat.
Collapse
Affiliation(s)
- Jinghan Zhang
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Metabolic Diseases, College of Life Sciences, Anhui Normal University, Wuhu 241000, Anhui, China
- Auhui Provincial Engineering Research Centre for Molecular Detection and Diagnostics, College of Life Sciences, Anhui Normal University, Wuhu 241000, Anhui, China
| | - Siyue Chen
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Metabolic Diseases, College of Life Sciences, Anhui Normal University, Wuhu 241000, Anhui, China
- Auhui Provincial Engineering Research Centre for Molecular Detection and Diagnostics, College of Life Sciences, Anhui Normal University, Wuhu 241000, Anhui, China
| | - Xiaoxiao Sun
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Metabolic Diseases, College of Life Sciences, Anhui Normal University, Wuhu 241000, Anhui, China
- Auhui Provincial Engineering Research Centre for Molecular Detection and Diagnostics, College of Life Sciences, Anhui Normal University, Wuhu 241000, Anhui, China
| | - Sheng Chen
- Department of Food Science and Nutrition, Faculty of Science, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Qipeng Cheng
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Metabolic Diseases, College of Life Sciences, Anhui Normal University, Wuhu 241000, Anhui, China
- Auhui Provincial Engineering Research Centre for Molecular Detection and Diagnostics, College of Life Sciences, Anhui Normal University, Wuhu 241000, Anhui, China
| |
Collapse
|
8
|
Cheetham MJ, Huo Y, Stroyakovski M, Cheng L, Wan D, Dell A, Santini JM. Specificity and diversity of Klebsiella pneumoniae phage-encoded capsule depolymerases. Essays Biochem 2024; 68:661-677. [PMID: 39668555 DOI: 10.1042/ebc20240015] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/26/2024] [Accepted: 12/05/2024] [Indexed: 12/14/2024]
Abstract
Klebsiella pneumoniae is an opportunistic pathogen with significant clinical relevance. K. pneumoniae-targeting bacteriophages encode specific polysaccharide depolymerases with the ability to selectively degrade the highly varied protective capsules, allowing for access to the bacterial cell wall. Bacteriophage depolymerases have been proposed as novel antimicrobials to combat the rise of multidrug-resistant K. pneumoniae strains. These enzymes display extraordinary diversity, and are key determinants of phage host range, however with limited data available our current knowledge of their mechanisms and ability to predict their efficacy is limited. Insight into the resolved structures of Klebsiella-specific capsule depolymerases reveals varied catalytic mechanisms, with the intra-chain cleavage mechanism providing opportunities for recombinant protein engineering. A detailed comparison of the 58 characterised depolymerases hints at structural and mechanistic patterns, such as the conservation of key domains for substrate recognition and phage tethering, as well as diversity within groups of depolymerases that target the same substrate. Another way to understand depolymerase specificity is by analyzing the targeted capsule structures, as these may share similarities recognizable by bacteriophage depolymerases, leading to broader substrate specificities. Although we have only begun to explore the complexity of Klebsiella capsule depolymerases, further research is essential to thoroughly characterise these enzymes. This will be crucial for understanding their mechanisms, predicting their efficacy, and engineering optimized enzymes for therapeutic applications.
Collapse
Affiliation(s)
- Max J Cheetham
- Department of Structural and Molecular Biology, Division of Biosciences, University College London, London, WC1E 6AA, U.K
| | - Yunlong Huo
- Department of Structural and Molecular Biology, Division of Biosciences, University College London, London, WC1E 6AA, U.K
| | - Maria Stroyakovski
- Department of Structural and Molecular Biology, Division of Biosciences, University College London, London, WC1E 6AA, U.K
| | - Li Cheng
- Department of Structural and Molecular Biology, Division of Biosciences, University College London, London, WC1E 6AA, U.K
| | - Daniel Wan
- Department of Structural and Molecular Biology, Division of Biosciences, University College London, London, WC1E 6AA, U.K
| | - Anne Dell
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, U.K
| | - Joanne M Santini
- Department of Structural and Molecular Biology, Division of Biosciences, University College London, London, WC1E 6AA, U.K
| |
Collapse
|
9
|
Pchelin IM, Smolensky AV, Azarov DV, Goncharov AE. Lytic Spectra of Tailed Bacteriophages: A Systematic Review and Meta-Analysis. Viruses 2024; 16:1879. [PMID: 39772189 PMCID: PMC11680127 DOI: 10.3390/v16121879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/25/2024] [Accepted: 12/02/2024] [Indexed: 01/11/2025] Open
Abstract
As natural predators of bacteria, tailed bacteriophages can be used in biocontrol applications, including antimicrobial therapy. Also, phage lysis is a detrimental factor in technological processes based on bacterial growth and metabolism. The spectrum of bacteria bacteriophages interact with is known as the host range. Phage science produced a vast amount of host range data. However, there has been no attempt to analyse these data from the viewpoint of modern phage and bacterial taxonomy. Here, we performed a meta-analysis of spotting and plaquing host range data obtained on strains of production host species. The main metric of our study was the host range value calculated as a ratio of lysed strains to the number of tested bacterial strains. We found no boundary between narrow and broad host ranges in tailed phages taken as a whole. Family-level groups of strictly lytic bacteriophages had significantly different median plaquing host range values in the range from 0.18 (Drexlerviridae) to 0.70 (Herelleviridae). In Escherichia coli phages, broad host ranges were associated with decreased efficiency of plating. Bacteriophage morphology, genome size, and the number of tRNA-coding genes in phage genomes did not correlate with host range values. From the perspective of bacterial species, median plaquing host ranges varied from 0.04 in bacteriophages infecting Acinetobacter baumannii to 0.73 in Staphylococcus aureus phages. Taken together, our results imply that taxonomy of bacteriophages and their bacterial hosts can be predictive of intraspecies host ranges.
Collapse
Affiliation(s)
- Ivan M. Pchelin
- Department of Molecular Microbiology, Institute of Experimental Medicine, Saint Petersburg 197022, Russia; (D.V.A.); (A.E.G.)
| | - Andrei V. Smolensky
- Department of Computer Science, Neapolis University Pafos, Paphos 8042, Cyprus;
| | - Daniil V. Azarov
- Department of Molecular Microbiology, Institute of Experimental Medicine, Saint Petersburg 197022, Russia; (D.V.A.); (A.E.G.)
| | - Artemiy E. Goncharov
- Department of Molecular Microbiology, Institute of Experimental Medicine, Saint Petersburg 197022, Russia; (D.V.A.); (A.E.G.)
| |
Collapse
|
10
|
Zhao D, Tang M, Ma Z, Hu P, Fu Q, Yao Z, Zhou C, Zhou T, Cao J. Synergy of bacteriophage depolymerase with host immunity rescues sepsis mice infected with hypervirulent Klebsiella pneumoniae of capsule type K2. Virulence 2024; 15:2415945. [PMID: 39429194 PMCID: PMC11497950 DOI: 10.1080/21505594.2024.2415945] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 09/11/2024] [Accepted: 10/03/2024] [Indexed: 10/22/2024] Open
Abstract
The hypervirulent Klebsiella pneumoniae (hvKp) with K1 and K2 capsular types causes liver abscess, pneumonia, sepsis, and invasive infections with high lethality. The presence of capsular polysaccharide (CPS) resists phagocytic engulfment and contributes to excessive inflammatory responses. Bacteriophage depolymerases can specifically target bacterial CPS, neutralizing its defense. Based on our previous research, we expressed and purified a bacteriophage depolymerase (Dep1979) targeting hvKp with capsule type K2. Interestingly, although Dep1979 lacked direct bactericidal activity in vitro, it exhibited potent antibacterial activity in vivo. Low-dose Dep1979 (0.1 mg/kg) improved the 7-day survival of immunocompetent mice to 100%. Even at 0.01 mg/kg, mice achieved 100% survival at 5 days, although efficacy sharply declined at doses as low as 0.001 mg/kg. Following Dep1979 treatment, reduced expression of inflammatory factors and no apparent tissue damage were observed. However, therapeutic efficacy significantly diminished in immunosuppressed mice. These findings underscore the critical role of Dep1979 in disarming CPS, which synergizes with host immunity to enhance antibacterial activity against hvKp.
Collapse
Affiliation(s)
- Deyi Zhao
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China
| | - Miran Tang
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhexiao Ma
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China
| | - Panjie Hu
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China
| | - Qingxia Fu
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhuocheng Yao
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Cui Zhou
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Tieli Zhou
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Jianming Cao
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
11
|
Wang H, Zeng P, Zhang P, Zuo Z, Liu Y, Xia J, Lam JKW, Chan HK, Leung SSY. Phage-derived polysaccharide depolymerase potentiates ceftazidime efficacy against Acinetobacter baumannii pneumonia via low-serum-dependent mechanisms. Int J Biol Macromol 2024; 282:137486. [PMID: 39528188 DOI: 10.1016/j.ijbiomac.2024.137486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/28/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
The emergence of multidrug-resistant Acinetobacter baumannii (MDR-AB), which most commonly manifests as pneumonia, has posed significant clinical challenges and called for novel treatment strategies. Phage depolymerases, which degrade bacterial surface carbohydrates, have emerged as potential antimicrobial agents. However, their preclinical application is limited to systemic infections due to their dependency on serum-mediated bacterial killing. To extend the treatment paradigm of depolymerase to low-serum lung infections, we explored the feasibility of applying phage depolymerase to potentiate antibiotic efficacy in controlling MDR-AB pneumonia. Using a model depolymerase, Dpo71, we observed that it could effectively potentiate antibiotic efficacy against MDR-AB2 bacteria in low-serum conditions mimicking lung milieu but showed no adjuvant effect in serum-free conditions. Unprecedentedly, we reported this low-serum-dependent mechanism that polysaccharide-degrading enzyme Dpo71 exposed bacteria to serum-induced membrane permeabilization and oxidative phosphorylation pathway inhibition, leading to a weakened ATP-dependent efflux pump and strengthened ROS-induced membrane permeabilization. These joint effects facilitated antibiotic (ceftazidime, CFZ) binding, ultimately exerting bactericidal effects. Resultantly, the bacterial load in the lungs of the Dpo71-CFZ combination group was significantly reduced compared with the Dpo71-alone and CFZ-alone groups. Overall, this study unravels the low-serum-dependent mechanisms by which depolymerase potentiated antibiotic efficacy, highlighting its potential as a novel strategy to enhance antibiotic activity against severe pneumonia.
Collapse
Affiliation(s)
- Honglan Wang
- School of Pharmacy, the Chinese University of Hong Kong, Hong Kong
| | - Ping Zeng
- School of Pharmacy, the Chinese University of Hong Kong, Hong Kong
| | - Pengfei Zhang
- School of Pharmacy, the Chinese University of Hong Kong, Hong Kong
| | - Zhong Zuo
- School of Pharmacy, the Chinese University of Hong Kong, Hong Kong
| | - Yannan Liu
- Emergency Medicine Clinical Research Center, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Jiang Xia
- Department of Chemistry, the Chinese University of Hong Kong, Hong Kong
| | - Jenny Ka Wing Lam
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, WC1N 1AX, UK
| | - Hak-Kim Chan
- Sydney Pharmacy School, University of Sydney, Sydney, NSW 2006, Australia
| | | |
Collapse
|
12
|
Chen L, Xiang H, Yang H, Zhang J, Huang B, Tan Z, Wang Y, Ma H. Inhibition of porcine origin Klebsiella pneumoniae capsular polysaccharide and immune escape by BY3 compounded traditional Chinese medicine residue fermentation broth. Microb Pathog 2024; 195:106853. [PMID: 39147214 DOI: 10.1016/j.micpath.2024.106853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 07/29/2024] [Accepted: 08/12/2024] [Indexed: 08/17/2024]
Abstract
Klebsiella pneumoniae (K. pneumoniae) is a gram-negative conditionally pathogenic bacterium that causes disease primarily in immunocompromised individuals. Recently, highly virulent K. pneumoniae strains have caused severe disease in healthy individuals, posing significant challenges to global infection control. Capsular polysaccharide (CPS), a major virulence determinant of K. pneumoniae, protects the bacteria from being killed by the host immune system, suggesting an urgent need for the development of drugs to prevent or treat K. pneumoniae infections. In this study, BY3 compounded traditional Chinese medicine residue (TCMR) was carried out using Lactobacillus rhamnosus as a fermentation strain, and BY3 compounded TCMR fermentation broth (BY3 fermentation broth) was obtained. The transcription of K. pneumoniae CPS-related biosynthesis genes after treatment with BY3 fermentation broth was detected using quantitative real-time polymerase chain reaction. The effects of BY3 fermentation broth on K. pneumoniae serum killing, macrophage phagocytosis, complement deposition and human β-defensin transcription were investigated. The therapeutic effect of BY3 fermentation broth on K. pneumoniae-infected mice was also observed, and the major active components of BY3 fermentation broth were analysed via LC‒MS analysis, network pharmacology, and molecular docking. The results showed that BY3 fermentation broth inhibited K. pneumoniae CPS production and downregulated transcription of CPS-related biosynthesis genes, which weakened bacterial resistance to serum killing and phagocytosis, while promoting bacterial surface complement C3 deposition and human β-defensin expression. BY3 fermentation broth demonstrated safety and therapeutic effects in vivo and in vitro, restoring body weight and visceral indices, significantly reducing the organ bacterial load and serum cytokine levels, and alleviating pathological organ damage in mice. In addition, three natural compounds-oleanolic acid, quercetin, and palmitoleic acid-were identified as the major active components in the BY3 fermentation broth. Therefore, BY3 fermentation broth may be a promising strategy for the prevention or treatment of K. pneumoniae infections.
Collapse
Affiliation(s)
- Linlin Chen
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, 130118, China; The Key Laboratory of New Veterinary Drug Research and Development of Jilin Province, Jilin Agricultural University, Changchun, 130118, China
| | - Hua Xiang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, 130118, China; The Key Laboratory of New Veterinary Drug Research and Development of Jilin Province, Jilin Agricultural University, Changchun, 130118, China
| | - Hui Yang
- Jilin Province Wanbang Goose Technical Service Company, Changchun, 130000, China
| | - Jiabin Zhang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, 130118, China
| | - Bowen Huang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, 130118, China; The Key Laboratory of New Veterinary Drug Research and Development of Jilin Province, Jilin Agricultural University, Changchun, 130118, China
| | - Zining Tan
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, 130118, China; The Key Laboratory of New Veterinary Drug Research and Development of Jilin Province, Jilin Agricultural University, Changchun, 130118, China
| | - Yiming Wang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, 130118, China; The Key Laboratory of New Veterinary Drug Research and Development of Jilin Province, Jilin Agricultural University, Changchun, 130118, China.
| | - Hongxia Ma
- College of Life Sciences, Jilin Agricultural University, Changchun, 130118, China; The Engineering Research Center of Bioreactor and Drug Development, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China.
| |
Collapse
|
13
|
Shariati A, Kashi M, Chegini Z, Hosseini SM. Antibiotics-free compounds for managing carbapenem-resistant bacteria; a narrative review. Front Pharmacol 2024; 15:1467086. [PMID: 39355778 PMCID: PMC11442292 DOI: 10.3389/fphar.2024.1467086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 09/04/2024] [Indexed: 10/03/2024] Open
Abstract
Carbapenem-resistant (CR) Gram-negative bacteria have become a significant public health problem in the last decade. In recent years, the prevalence of CR bacteria has increased. The resistance to carbapenems could result from different mechanisms such as loss of porin, penicillin-binding protein alteration, carbapenemase, efflux pump, and biofilm community. Additionally, genetic variations like insertion, deletion, mutation, and post-transcriptional modification of corresponding coding genes could decrease the susceptibility of bacteria to carbapenems. In this regard, scientists are looking for new approaches to inhibit CR bacteria. Using bacteriophages, natural products, nanoparticles, disulfiram, N-acetylcysteine, and antimicrobial peptides showed promising inhibitory effects against CR bacteria. Additionally, the mentioned compounds could destroy the biofilm community of CR bacteria. Using them in combination with conventional antibiotics increases the efficacy of antibiotics, decreases their dosage and toxicity, and resensitizes CR bacteria to antibiotics. Therefore, in the present review article, we have discussed different aspects of non-antibiotic approaches for managing and inhibiting the CR bacteria and various methods and procedures used as an alternative for carbapenems against these bacteria.
Collapse
Affiliation(s)
- Aref Shariati
- Infectious Diseases Research Center (IDRC), Arak University of Medical Sciences, Arak, Iran
| | - Milad Kashi
- Student research committee, Arak University of Medical Sciences, Arak, Iran
| | - Zahra Chegini
- Infectious Disease Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Seyed Mostafa Hosseini
- Infectious Disease Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
14
|
Li P, Guo G, Zheng X, Xu S, Zhou Y, Qin X, Hu Z, Yu Y, Tan Z, Ma J, Chen L, Zhang W. Therapeutic efficacy of a K5-specific phage and depolymerase against Klebsiella pneumoniae in a mouse model of infection. Vet Res 2024; 55:59. [PMID: 38715095 PMCID: PMC11077817 DOI: 10.1186/s13567-024-01311-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/14/2024] [Indexed: 05/12/2024] Open
Abstract
Klebsiella pneumoniae has become one of the most intractable gram-negative pathogens infecting humans and animals due to its severe antibiotic resistance. Bacteriophages and protein products derived from them are receiving increasing amounts of attention as potential alternatives to antibiotics. In this study, we isolated and investigated the characteristics of a new lytic phage, P1011, which lyses K5 K. pneumoniae specifically among 26 serotypes. The K5-specific capsular polysaccharide-degrading depolymerase dep1011 was identified and expressed. By establishing murine infection models using bovine strain B16 (capable of supporting phage proliferation) and human strain KP181 (incapable of sustaining phage expansion), we explored the safety and efficacy of phage and dep1011 treatments against K5 K. pneumoniae. Phage P1011 resulted in a 60% survival rate of the mice challenged with K. pneumoniae supporting phage multiplication, concurrently lowering the bacterial burden in their blood, liver, and lungs. Unexpectedly, even when confronted with bacteria impervious to phage multiplication, phage therapy markedly decreased the number of viable organisms. The protective efficacy of the depolymerase was significantly better than that of the phage. The depolymerase achieved 100% survival in both treatment groups regardless of phage propagation compatibility. These findings indicated that P1011 and dep1011 might be used as potential antibacterial agents to control K5 K. pneumoniae infection.
Collapse
Affiliation(s)
- Pei Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China
- The Sanya Institute of Nanjing Agricultural University, Yabulun Industrial Park, Yazhou Bay Science and Technology City, Sanya, 572024, China
| | - Genglin Guo
- Shandong Institute of Sericulture, Shandong Academy of Agricultural Sciences, Yantai, China
| | - Xiangkuan Zheng
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China
- The Sanya Institute of Nanjing Agricultural University, Yabulun Industrial Park, Yazhou Bay Science and Technology City, Sanya, 572024, China
| | - Sixiang Xu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China
- The Sanya Institute of Nanjing Agricultural University, Yabulun Industrial Park, Yazhou Bay Science and Technology City, Sanya, 572024, China
| | - Yu Zhou
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China
- The Sanya Institute of Nanjing Agricultural University, Yabulun Industrial Park, Yazhou Bay Science and Technology City, Sanya, 572024, China
| | - Xiayan Qin
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China
| | - Zimeng Hu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China
- The Sanya Institute of Nanjing Agricultural University, Yabulun Industrial Park, Yazhou Bay Science and Technology City, Sanya, 572024, China
| | - Yanfei Yu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture and Rural Affairs, Nanjing, China
| | - Zhongming Tan
- NHC Key Laboratory of Enteric Pathogenic Microbiology, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, 210014, China
| | - Jiale Ma
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China
| | - Long Chen
- Department of Clinical Laboratory, Zhangjiagang Hospital Affiliated to Soochow University, Zhangjiagang, 215600, China.
| | - Wei Zhang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China.
- The Sanya Institute of Nanjing Agricultural University, Yabulun Industrial Park, Yazhou Bay Science and Technology City, Sanya, 572024, China.
| |
Collapse
|
15
|
Samson R, Dharne M, Khairnar K. Bacteriophages: Status quo and emerging trends toward one health approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168461. [PMID: 37967634 DOI: 10.1016/j.scitotenv.2023.168461] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/30/2023] [Accepted: 11/07/2023] [Indexed: 11/17/2023]
Abstract
The alarming rise in antimicrobial resistance (AMR) among the drug-resistant pathogens has been attributed to the ESKAPEE group (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumanii, Pseudomonas aeruginosa, Enterobacter sp., and Escherichia coli). Recently, these AMR microbes have become difficult to treat, as they have rendered the existing therapeutics ineffective. Thus, there is an urgent need for effective alternatives to lessen or eliminate the current infections and limit the spread of emerging diseases under the "One Health" framework. Bacteriophages (phages) are naturally occurring biological resources with extraordinary potential for biomedical, agriculture/food safety, environmental protection, and energy production. Specific unique properties of phages, such as their bactericidal activity, host specificity, potency, and biocompatibility, make them desirable candidates in therapeutics. The recent biotechnological advancement has broadened the repertoire of phage applications in nanoscience, material science, physical chemistry, and soft-matter research. Herein, we present a comprehensive review, coupling the substantial aspects of phages with their applicability status and emerging opportunities in several interdependent areas under one health concept. Consolidating the recent state-of-the-art studies that integrate human, animal, plant, and environment health, the following points have been highlighted: (i) The biomedical and pharmacological advantages of phages and their antimicrobial derivatives with particular emphasis on in-vivo and clinical studies. (ii) The remarkable potential of phages to be altered, improved, and applied for drug delivery, biosensors, biomedical imaging, tissue engineering, energy, and catalysis. (iii) Resurgence of phages in biocontrol of plant, food, and animal-borne pathogens. (iv) Commercialization of phage-based products, current challenges, and perspectives.
Collapse
Affiliation(s)
- Rachel Samson
- National Collection of Industrial Microorganisms (NCIM), Biochemical Sciences Division, CSIR-National Chemical Laboratory (NCL), Pune 411008, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Mahesh Dharne
- National Collection of Industrial Microorganisms (NCIM), Biochemical Sciences Division, CSIR-National Chemical Laboratory (NCL), Pune 411008, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India.
| | - Krishna Khairnar
- National Collection of Industrial Microorganisms (NCIM), Biochemical Sciences Division, CSIR-National Chemical Laboratory (NCL), Pune 411008, India; Environmental Virology Cell (EVC), CSIR-National Environmental Engineering Research Institute (NEERI), Nehru Marg, Nagpur 440020, India.
| |
Collapse
|
16
|
Wang H, Liu Y, Bai C, Leung SSY. Translating bacteriophage-derived depolymerases into antibacterial therapeutics: Challenges and prospects. Acta Pharm Sin B 2024; 14:155-169. [PMID: 38239242 PMCID: PMC10792971 DOI: 10.1016/j.apsb.2023.08.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/12/2023] [Accepted: 07/22/2023] [Indexed: 01/22/2024] Open
Abstract
Predatory bacteriophages have evolved a vast array of depolymerases for bacteria capture and deprotection. These depolymerases are enzymes responsible for degrading diverse bacterial surface carbohydrates. They are exploited as antibiofilm agents and antimicrobial adjuvants while rarely inducing bacterial resistance, making them an invaluable asset in the era of antibiotic resistance. Numerous depolymerases have been investigated preclinically, with evidence indicating that depolymerases with appropriate dose regimens can safely and effectively combat different multidrug-resistant pathogens in animal infection models. Additionally, some formulation approaches have been developed for improved stability and activity of depolymerases. However, depolymerase formulation is limited to liquid dosage form and remains in its infancy, posing a significant hurdle to their clinical translation, compounded by challenges in their applicability and manufacturing. Future development must address these obstacles for clinical utility. Here, after unravelling the history, diversity, and therapeutic use of depolymerases, we summarized the preclinical efficacy and existing formulation findings of recombinant depolymerases. Finally, the challenges and perspectives of depolymerases as therapeutics for humans were assessed to provide insights for their further development.
Collapse
Affiliation(s)
- Honglan Wang
- School of Pharmacy, the Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yannan Liu
- Emergency Medicine Clinical Research Center, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Changqing Bai
- Department of Respiratory, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Guangdong 518055, China
| | | |
Collapse
|
17
|
Lukianova AA, Shneider MM, Evseev PV, Egorov MV, Kasimova AA, Shpirt AM, Shashkov AS, Knirel YA, Kostryukova ES, Miroshnikov KA. Depolymerisation of the Klebsiella pneumoniae Capsular Polysaccharide K21 by Klebsiella Phage K5. Int J Mol Sci 2023; 24:17288. [PMID: 38139119 PMCID: PMC10743669 DOI: 10.3390/ijms242417288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/05/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Klebsiella pneumoniae is a pathogen associated with various infection types, which often exhibits multiple antibiotic resistance. Phages, or bacterial viruses, have an ability to specifically target and destroy K. pneumoniae, offering a potential means of combatting multidrug-resistant infections. Phage enzymes are another promising therapeutic agent that can break down bacterial capsular polysaccharide, which shields K. pneumoniae from the immune response and external factors. In this study, Klebsiella phage K5 was isolated; this phage is active against Klebsiella pneumoniae with the capsular type K21. It was demonstrated that the phage can effectively lyse the host culture. The adsorption apparatus of the phage has revealed two receptor-binding proteins (RBPs) with predicted polysaccharide depolymerising activity. A recombinant form of both RBPs was obtained and experiments showed that one of them depolymerised the capsular polysaccharide K21. The structure of this polysaccharide and its degradation fragments were analysed. The second receptor-binding protein showed no activity on capsular polysaccharide of any of the 31 capsule types tested, so the substrate for this enzyme remains to be determined in the future. Klebsiella phage K5 may be considered a useful agent against Klebsiella infections.
Collapse
Affiliation(s)
- Anna A. Lukianova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str. 16/10, 117997 Moscow, Russia; (P.V.E.); (M.V.E.); (K.A.M.)
| | - Mikhail M. Shneider
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str. 16/10, 117997 Moscow, Russia; (P.V.E.); (M.V.E.); (K.A.M.)
| | - Peter V. Evseev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str. 16/10, 117997 Moscow, Russia; (P.V.E.); (M.V.E.); (K.A.M.)
| | - Mikhail V. Egorov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str. 16/10, 117997 Moscow, Russia; (P.V.E.); (M.V.E.); (K.A.M.)
| | - Anastasiya A. Kasimova
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prosp. 47, 119991 Moscow, Russia; (A.A.K.); (A.M.S.); (A.S.S.); (Y.A.K.)
| | - Anna M. Shpirt
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prosp. 47, 119991 Moscow, Russia; (A.A.K.); (A.M.S.); (A.S.S.); (Y.A.K.)
| | - Alexander S. Shashkov
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prosp. 47, 119991 Moscow, Russia; (A.A.K.); (A.M.S.); (A.S.S.); (Y.A.K.)
| | - Yuriy A. Knirel
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prosp. 47, 119991 Moscow, Russia; (A.A.K.); (A.M.S.); (A.S.S.); (Y.A.K.)
| | - Elena S. Kostryukova
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, Malaya Pirogovskaya Str. 1, 119435 Moscow, Russia;
| | - Konstantin A. Miroshnikov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str. 16/10, 117997 Moscow, Russia; (P.V.E.); (M.V.E.); (K.A.M.)
| |
Collapse
|
18
|
Guo Z, Liu M, Zhang D. Potential of phage depolymerase for the treatment of bacterial biofilms. Virulence 2023; 14:2273567. [PMID: 37872768 PMCID: PMC10621286 DOI: 10.1080/21505594.2023.2273567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 08/30/2023] [Indexed: 10/25/2023] Open
Abstract
Resistance of bacteria to antibiotics is a major concern in medicine and veterinary science. The bacterial biofilm structures not only prevent the penetration of drugs into cells within the biofilm's interior but also aid in evasion of the host immune system. Hence, there is an urgent need to develop novel therapeutic approaches against bacterial biofilms. One potential strategy to counter biofilms is to use phage depolymerases that degrade the matrix structure of the bacteria and enable access to bacterial cells. This review mainly discusses the methods by which phage depolymerases enhance the efficacy of the human immune system and the therapeutic applications of some phage depolymerases, such as single phage depolymerase application, combined therapy with phage depolymerase and antibiotics, and phage depolymerase cocktails, for treating bacterial biofilms. This review also summarizes the relationship between bacterial biofilms and antibiotic resistance.
Collapse
Affiliation(s)
- Zhimin Guo
- Department of Laboratory Medicine, Infectious Diseases and Pathogen Biology Center, The First Hospital of Jilin University, Changchun, China
| | - Mengmeng Liu
- Department of Laboratory Medicine, The First Hospital of Jilin University, Changchun, China
| | - Dan Zhang
- Department of Hepatological Surgery, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
19
|
Maciejewska B, Squeglia F, Latka A, Privitera M, Olejniczak S, Switala P, Ruggiero A, Marasco D, Kramarska E, Drulis-Kawa Z, Berisio R. Klebsiella phage KP34gp57 capsular depolymerase structure and function: from a serendipitous finding to the design of active mini-enzymes against K. pneumoniae. mBio 2023; 14:e0132923. [PMID: 37707438 PMCID: PMC10653864 DOI: 10.1128/mbio.01329-23] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 07/19/2023] [Indexed: 09/15/2023] Open
Abstract
IMPORTANCE In this work, we determined the structure of Klebsiella phage KP34p57 capsular depolymerase and dissected the role of individual domains in trimerization and functional activity. The crystal structure serendipitously revealed that the enzyme can exist in a monomeric state once deprived of its C-terminal domain. Based on the crystal structure and site-directed mutagenesis, we localized the key catalytic residues in an intra-subunit deep groove. Consistently, we show that C-terminally trimmed KP34p57 variants are monomeric, stable, and fully active. The elaboration of monomeric, fully active phage depolymerases is innovative in the field, as no previous example exists. Indeed, mini phage depolymerases can be combined in chimeric enzymes to extend their activity ranges, allowing their use against multiple serotypes.
Collapse
Affiliation(s)
- Barbara Maciejewska
- Department of Pathogen Biology and Immunology, University of Wrocław, Wrocław, Poland
| | - Flavia Squeglia
- Institute of Biostructures and Bioimaging, CNR, Napoli, Italy
| | - Agnieszka Latka
- Department of Pathogen Biology and Immunology, University of Wrocław, Wrocław, Poland
| | - Mario Privitera
- Institute of Biostructures and Bioimaging, CNR, Napoli, Italy
| | - Sebastian Olejniczak
- Department of Pathogen Biology and Immunology, University of Wrocław, Wrocław, Poland
| | - Paulina Switala
- Department of Pathogen Biology and Immunology, University of Wrocław, Wrocław, Poland
| | | | - Daniela Marasco
- Department of Pharmacy, University of Naples Federico II, Napoli, Italy
| | - Eliza Kramarska
- Institute of Biostructures and Bioimaging, CNR, Napoli, Italy
| | - Zuzanna Drulis-Kawa
- Department of Pathogen Biology and Immunology, University of Wrocław, Wrocław, Poland
| | - Rita Berisio
- Institute of Biostructures and Bioimaging, CNR, Napoli, Italy
| |
Collapse
|
20
|
Tsai YC, Lee YP, Lin NT, Yang HH, Teh SH, Lin LC. Therapeutic effect and anti-biofilm ability assessment of a novel phage, phiPA1-3, against carbapenem-resistant Pseudomonas aeruginosa. Virus Res 2023; 335:199178. [PMID: 37490958 PMCID: PMC10430585 DOI: 10.1016/j.virusres.2023.199178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 07/27/2023]
Abstract
Multiple drug-resistant (MDR) Pseudomonas aeruginosa commonly causes severe hospital-acquired infections. The gradual emergence of carbapenem-resistant P. aeruginosa has recently gained attention. A wide array of P. aeruginosa-mediated pathogenic mechanisms, including its biofilm-forming ability, limits the use of effective antimicrobial treatments against it. In the present study, we isolated and characterized the phenotypic, biological, and genomic characteristics of a bacteriophage, vB_PaP_phiPA1-3 (phiPA1-3). Biofilm eradication and phage rescue from bacterial infections were assessed to demonstrate the efficacy of the application potential. Host range spectrum analysis revealed that phiPA1-3 is a moderate host range phage that infects 20% of the clinically isolated strains of P. aeruginosa tested, including carbapenem-resistant P. aeruginosa (CRPA). The phage exhibited stability at pH 7.0 and 9.0, with significantly reduced viability below pH 5.0 and beyond pH 9.0. phiPA1-3 is a lytic phage with a burst size of 619 plaque-forming units/infected cell at 37 °C and can effectively lyse bacteria in a multiplicity of infection-dependent manner. The genome size of phiPA1-3 was found to be 73,402 bp, with a G+C content of 54.7%, containing 93 open reading frames, of which 62 were annotated as hypothetical proteins and the remaining 31 had known functions. The phage possesses several proteins similar to those found in N4-like phages, including three types of RNA polymerases. This study concluded that phiPA1-3 belongs to the N4-like Schitoviridae family, can potentially eradicate P. aeruginosa biofilms, and thus, serve as a valuable tool for controlling CRPA infections.
Collapse
Affiliation(s)
- Yu-Chuan Tsai
- Institute of Medical Sciences, Tzu Chi University, No. 701, Sec. 3, Zhongyang Rd., Hualien 97004, Taiwan, ROC
| | - Yi-Pang Lee
- Department of Dentistry, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, No. 707, Sec. 3, Zhongyang Rd., Hualien 97004, Taiwan, ROC
| | - Nien-Tsung Lin
- Master Program in Biomedical Science, School of Medicine, Tzu Chi University, No. 701, Sec. 3, Zhongyang Rd., Hualien 97004, Taiwan, ROC
| | - Hsueh-Hui Yang
- Department of Medical Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, No. 707, Sec. 3, Zhongyang Rd., Hualien 97004, Taiwan, ROC
| | - Soon-Hian Teh
- Division of Infectious Diseases, Department of Internal Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, No. 707, Sec. 3, Zhongyang Rd., Hualien 97004, Taiwan, ROC.
| | - Ling-Chun Lin
- Institute of Medical Sciences, Tzu Chi University, No. 701, Sec. 3, Zhongyang Rd., Hualien 97004, Taiwan, ROC; Master Program in Biomedical Science, School of Medicine, Tzu Chi University, No. 701, Sec. 3, Zhongyang Rd., Hualien 97004, Taiwan, ROC.
| |
Collapse
|
21
|
Han P, Pu M, Li Y, Fan H, Tong Y. Characterization of bacteriophage BUCT631 lytic for K1 Klebsiella pneumoniae and its therapeutic efficacy in Galleria mellonella larvae. Virol Sin 2023; 38:801-812. [PMID: 37419417 PMCID: PMC10590696 DOI: 10.1016/j.virs.2023.07.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2023] Open
Abstract
Severe infections caused by multidrug-resistant Klebsiella pneumoniae (K. pneumoniae) highlight the need for new therapeutics with activity against this pathogen. Phage therapy is an alternative treatment approach for multidrug-resistant K. pneumoniae infections. Here, we report a novel bacteriophage (phage) BUCT631 that can specifically lyse capsule-type K1 K. pneumoniae. Physiological characterization revealed that phage BUCT631 could rapidly adsorb to the surface of K. pneumoniae and form an obvious halo ring, and it had relatively favorable thermal stability (4-50 °C) and pH tolerance (pH = 4-12). In addition, the optimal multiplicity of infection (MOI) of phage BUCT631 was 0.01, and the burst size was approximately 303 PFU/cell. Genomic analysis showed that phage BUCT631 has double-stranded DNA (total length of 44,812 bp) with a G + C content of 54.1%, and the genome contains 57 open reading frames (ORFs) and no virulence or antibiotic resistance related genes. Based on phylogenetic analysis, phage BUCT631 could be assigned to a new species in the genus Drulisvirus of the subfamily Slopekvirinae. In addition, phage BUCT631 could quickly inhibit the growth of K. pneumoniae within 2 h in vitro and significantly elevated the survival rate of K. pneumoniae infected Galleria mellonella larvae from 10% to 90% in vivo. These studies suggest that phage BUCT631 has promising potential for development as a safe alternative for control and treatment of multidrug-resistant K. pneumoniae infection.
Collapse
Affiliation(s)
- Pengjun Han
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Mingfang Pu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yahao Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Huahao Fan
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Yigang Tong
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China; Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|
22
|
Cui X, Du B, Feng J, Feng Y, Fan Z, Chen J, Cui J, Gan L, Fu T, Tian Z, Zhang R, Yan C, Zhao H, Xu W, Xu Z, Yu Z, Ding Z, Li Z, Chen Y, Xue G, Yuan J. A novel phage carrying capsule depolymerase effectively relieves pneumonia caused by multidrug-resistant Klebsiella aerogenes. J Biomed Sci 2023; 30:75. [PMID: 37653407 PMCID: PMC10470133 DOI: 10.1186/s12929-023-00946-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 06/30/2023] [Indexed: 09/02/2023] Open
Abstract
BACKGROUND Klebsiella aerogenes can cause ventilator-associated pneumonia by forming biofilms, and it is frequently associated with multidrug resistance. Phages are good antibiotic alternatives with unique advantages. There has been a lack of phage therapeutic explorations, kinetic studies, and interaction mechanism research targeting K. aerogenes. METHODS Plaque assay, transmission electron microscopy and whole-genome sequencing were used to determine the biology, morphology, and genomic characteristics of the phage. A mouse pneumonia model was constructed by intratracheal/endobronchial delivery of K. aerogenes to assess the therapeutic effect of phage in vivo. Bioinformatics analysis and a prokaryotic protein expression system were used to predict and identify a novel capsule depolymerase. Confocal laser scanning microscopy, Galleria mellonella larvae infection models and other experiments were performed to clarify the function of the capsule depolymerase. RESULTS A novel lytic phage (pK4-26) was isolated from hospital sewage. It was typical of the Podoviridae family and exhibited serotype specificity, high lytic activity, and high environmental adaptability. The whole genome is 40,234 bp in length and contains 49 coding domain sequences. Genomic data show that the phage does not carry antibiotic resistance, virulence, or lysogenic genes. The phage effectively lysed K. aerogenes in vivo, reducing mortality and alleviating pneumonia without promoting obvious side effects. A novel phage-derived depolymerase was predicted and proven to be able to digest the capsule, remove biofilms, reduce bacterial virulence, and sensitize the bacteria to serum killing. CONCLUSIONS The phage pK4-26 is a good antibiotic alternative and can effectively relieve pneumonia caused by multidrug-resistant K. aerogenes. It carries a depolymerase that removes biofilms, reduces virulence, and improves intrinsic immune sensitivity.
Collapse
Affiliation(s)
- Xiaohu Cui
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Bing Du
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, 100020, China
- School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Junxia Feng
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Yanling Feng
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Zheng Fan
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Jinfeng Chen
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Jinghua Cui
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Lin Gan
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Tongtong Fu
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Ziyan Tian
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Rui Zhang
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Chao Yan
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Hanqing Zhao
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Wenjian Xu
- Department of Clinical Laboratory, Children's Hospital Affiliated to Capital Institute of Pediatrics, Beijing, China
| | - Ziying Xu
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Zihui Yu
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Zanbo Ding
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Zhoufei Li
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Yujie Chen
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Guanhua Xue
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, 100020, China.
| | - Jing Yuan
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, 100020, China.
| |
Collapse
|
23
|
Kasimova AA, Shneider MM, Evseev PV, Shelenkov AA, Mikhailova YV, Miroshnikov KA, Chebotar IV, Shagin DA. The structure of Klebsiella pneumoniae K108 capsular polysaccharide is similar to Escherichia coli colanic acid. Int J Biol Macromol 2023:125403. [PMID: 37330077 DOI: 10.1016/j.ijbiomac.2023.125403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/02/2023] [Accepted: 06/13/2023] [Indexed: 06/19/2023]
Abstract
The clinical isolate of Klebsiella pneumoniae 1333/P225 was revealed as containing a KL108 K. pneumoniae K locus for capsule biosynthesis. The gene cluster demonstrated a high level of sequence and arrangement similarity with that of the E. coli colanic acid biosynthesis gene cluster. The KL108 gene cluster includes a gene of WcaD polymerase responsible for joining oligosaccharide K units into capsular polysaccharide (CPS), acetyltransferase, pyruvyltransferasefive and genes for glycosyltransferases (Gtrs), four of which have homologues in genetic units of the colanic acid synthesis. The fifth Gtr is specific to this cluster. The work involved the use of sugar analysis, Smith degradation and one- and two-dimensional 1H and 13C NMR spectroscopy to establish the structure of the K108 CPS. The CPS repetitive K unit is composed of branched pentasaccharide with three monosaccharides in the backbone and a disaccharide side chain. The main chain is the same as for colanic acid but the side chain differs. Two bacteriophages infecting K. pneumoniae strain 1333/P225 were isolated and structural depolymerase genes were determined; depolymerases Dep108.1 and Dep108.2 were cloned, expressed and purified. It was demonstrated that both depolymerases specifically cleave the β-Glcp-(1→4)-α-Fucp linkage between K108 units in the CPS.
Collapse
Affiliation(s)
- Anastasiya A Kasimova
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Science, Moscow, Russia
| | - Mikhail M Shneider
- M.M. Shemyakin and Y.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Science, Moscow, Russia.
| | - Peter V Evseev
- M.M. Shemyakin and Y.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Science, Moscow, Russia
| | | | | | - Konstantin A Miroshnikov
- M.M. Shemyakin and Y.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Science, Moscow, Russia
| | - Igor V Chebotar
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - Dmitry A Shagin
- Pirogov Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
24
|
Mohammadi M, Saffari M, Siadat SD. Phage therapy of antibiotic-resistant strains of Klebsiella pneumoniae, opportunities and challenges from the past to the future. Folia Microbiol (Praha) 2023; 68:357-368. [PMID: 37036571 DOI: 10.1007/s12223-023-01046-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 03/12/2023] [Indexed: 04/11/2023]
Abstract
Klebsiella spp. is a commensal gram-negative bacterium and a member of the human microbiota. It is the leading cause of various hospital-acquired infections. The occurrence of multi-drug drug resistance and carbapenemase-producing strains of Klebsiella pneumoniae producing weighty contaminations is growing, and Klebsiella oxytoca is an arising bacterium. Alternative approaches to tackle contaminations led by these microorganisms are necessary as strains enhance opposing to last-stage antibiotics in the way that Colistin. The lytic bacteriophages are viruses that infect and rapidly eradicate bacterial cells and are strain-specific to their hosts. They and their proteins are immediately deliberate as opportunities or adjuncts to antibiotic therapy. There are several reports in vitro and in vivo form that proved the potential use of lytic phages to combat superbug stains of K. pneumoniae. Various reports dedicated that the phage area can be returned to the elimination of multi-drug resistance and carbapenemase resistance isolates of K. pneumoniae. This review compiles our current information on phages of Klebsiella spp. and highlights technological and biological issues related to the evolution of phage-based therapies targeting these bacterial hosts.
Collapse
Affiliation(s)
- Mehrdad Mohammadi
- Department of Microbiology and Immunology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran.
| | - Mahmood Saffari
- Department of Microbiology and Immunology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Seyed Davar Siadat
- Tuberculosis and Pulmonary Research Department, Pasteur Institute of Iran, Tehran, Iran
- Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
25
|
Zaki BM, Hussein AH, Hakim TA, Fayez MS, El-Shibiny A. Phages for treatment of Klebsiella pneumoniae infections. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 200:207-239. [PMID: 37739556 DOI: 10.1016/bs.pmbts.2023.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
Klebsiella pneumoniae is an opportunistic pathogen involved in both hospital- and community-acquired infections. K. pneumoniae is associated with various infections, including pneumonia, septicemia, meningitis, urinary tract infection, and surgical wound infection. K. pneumoniae possesses serious virulence, biofilm formation ability, and severe resistance to many antibiotics especially hospital-acquired strains, due to excessive use in healthcare systems. This limits the available effective antibiotics that can be used for patients suffering from K. pneumoniae infections; therefore, alternative treatments are urgently needed. Bacteriophages (for short, phages) are prokaryotic viruses capable of infecting, replicating, and then lysing (lytic phages) the bacterial host. Phage therapy exhibited great potential for treating multidrug-resistant bacterial infections comprising K. pneumoniae. Hence, this chapter emphasizes and summarizes the research articles in the PubMed database from 1948 until the 15th of December 2022, addressing phage therapy against K. pneumoniae. The chapter provides an overview of K. pneumoniae phages covering different aspects, including phage isolation, different morphotypes of isolated phages, in vitro characterization, anti-biofilm activity, various therapeutic forms, in vivo research and clinical studies.
Collapse
Affiliation(s)
- Bishoy Maher Zaki
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, Giza, Egypt; Microbiology and Immunology Department, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, Egypt
| | - Assmaa H Hussein
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, Giza, Egypt
| | - Toka A Hakim
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, Giza, Egypt
| | - Mohamed S Fayez
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, Giza, Egypt
| | - Ayman El-Shibiny
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, Giza, Egypt; Faculty of Environmental Agricultural Sciences, Arish University, Arish, Egypt.
| |
Collapse
|
26
|
Pertics BZ, Kovács T, Schneider G. Characterization of a Lytic Bacteriophage and Demonstration of Its Combined Lytic Effect with a K2 Depolymerase on the Hypervirulent Klebsiella pneumoniae Strain 52145. Microorganisms 2023; 11:microorganisms11030669. [PMID: 36985241 PMCID: PMC10051899 DOI: 10.3390/microorganisms11030669] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Klebsiella pneumoniae is a nosocomial pathogen. Among its virulence factors is the capsule with a prominent role in defense and biofilm formation. Bacteriophages (phages) can evoke the lysis of bacterial cells. Due to the mode of action of their polysaccharide depolymerase enzymes, phages are typically specific for one bacterial strain and its capsule type. In this study, we characterized a bacteriophage against the capsule-defective mutant of the nosocomial K. pneumoniae 52145 strain, which lacks K2 capsule. The phage showed a relatively narrow host range but evoked lysis on a few strains with capsular serotypes K33, K21, and K24. Phylogenetic analysis showed that the newly isolated Klebsiella phage 731 belongs to the Webervirus genus in the Drexlerviridae family; it has a 31.084 MDa double-stranded, linear DNA with a length of 50,306 base pairs and a G + C content of 50.9%. Out of the 79 open reading frames (ORFs), we performed the identification of orf22, coding for a trimeric tail fiber protein with putative capsule depolymerase activity, along with the mapping of other putative depolymerases of phage 731 and homologous phages. Efficacy of a previously described recombinant K2 depolymerase (B1dep) was tested by co-spotting phage 731 on K. pneumoniae strains, and it was demonstrated that the B1dep-phage 731 combination allows the lysis of the wild type 52145 strain, originally resistant to the phage 731. With phage 731, we showed that B1dep is a promising candidate for use as a possible antimicrobial agent, as it renders the virulent strain defenseless against other phages. Phage 731 alone is also important due to its efficacy on K. pneumoniae strains possessing epidemiologically important serotypes.
Collapse
Affiliation(s)
- Botond Zsombor Pertics
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, Szigeti St. 12., H-7624 Pécs, Hungary
| | - Tamás Kovács
- Department of Biotechnology, Nanophagetherapy Center, Enviroinvest Corporation, Kertváros St. 2., H-7632 Pécs, Hungary
| | - György Schneider
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, Szigeti St. 12., H-7624 Pécs, Hungary
- Correspondence: ; Tel.: +36-72-536-200 (ext. 1908)
| |
Collapse
|
27
|
Klumpp J, Dunne M, Loessner MJ. A perfect fit: Bacteriophage receptor-binding proteins for diagnostic and therapeutic applications. Curr Opin Microbiol 2023; 71:102240. [PMID: 36446275 DOI: 10.1016/j.mib.2022.102240] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/26/2022] [Accepted: 10/31/2022] [Indexed: 11/27/2022]
Abstract
Bacteriophages are the most abundant biological entity on earth, acting as the predators and evolutionary drivers of bacteria. Owing to their inherent ability to specifically infect and kill bacteria, phages and their encoded endolysins and receptor-binding proteins (RBPs) have enormous potential for development into precision antimicrobials for treatment of bacterial infections and microbial disbalances; or as biocontrol agents to tackle bacterial contaminations during various biotechnological processes. The extraordinary binding specificity of phages and RBPs can be exploited in various areas of bacterial diagnostics and monitoring, from food production to health care. We review and describe the distinctive features of phage RBPs, explain why they are attractive candidates for use as therapeutics and in diagnostics, discuss recent applications using RBPs, and finally provide our perspective on how synthetic technology and artificial intelligence-driven approaches will revolutionize how we use these tools in the future.
Collapse
Affiliation(s)
- Jochen Klumpp
- Institute of Food, Nutrition and Health, ETH Zurich, Schmelzbergstrasse 7, 8092 Zurich, Switzerland
| | - Matthew Dunne
- Institute of Food, Nutrition and Health, ETH Zurich, Schmelzbergstrasse 7, 8092 Zurich, Switzerland
| | - Martin J Loessner
- Institute of Food, Nutrition and Health, ETH Zurich, Schmelzbergstrasse 7, 8092 Zurich, Switzerland.
| |
Collapse
|
28
|
Alaoui Mdarhri H, Benmessaoud R, Yacoubi H, Seffar L, Guennouni Assimi H, Hamam M, Boussettine R, Filali-Ansari N, Lahlou FA, Diawara I, Ennaji MM, Kettani-Halabi M. Alternatives Therapeutic Approaches to Conventional Antibiotics: Advantages, Limitations and Potential Application in Medicine. Antibiotics (Basel) 2022; 11:1826. [PMID: 36551487 PMCID: PMC9774722 DOI: 10.3390/antibiotics11121826] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/10/2022] [Accepted: 10/12/2022] [Indexed: 12/23/2022] Open
Abstract
Resistance to antimicrobials and particularly multidrug resistance is one of the greatest challenges in the health system nowadays. The continual increase in the rates of antimicrobial resistance worldwide boosted by the ongoing COVID-19 pandemic poses a major public health threat. Different approaches have been employed to minimize the effect of resistance and control this threat, but the question still lingers as to their safety and efficiency. In this context, new anti-infectious approaches against multidrug resistance are being examined. Use of new antibiotics and their combination with new β-lactamase inhibitors, phage therapy, antimicrobial peptides, nanoparticles, and antisense antimicrobial therapeutics are considered as one such promising approach for overcoming bacterial resistance. In this review, we provide insights into these emerging alternative therapies that are currently being evaluated and which may be developed in the future to break the progression of antimicrobial resistance. We focus on their advantages and limitations and potential application in medicine. We further highlight the importance of the combination therapy approach, wherein two or more therapies are used in combination in order to more effectively combat infectious disease and increasing access to quality healthcare. These advances could give an alternate solution to overcome antimicrobial drug resistance. We eventually hope to provide useful information for clinicians who are seeking solutions to the problems caused by antimicrobial resistance.
Collapse
Affiliation(s)
- Hiba Alaoui Mdarhri
- Faculty of Medicine, Mohammed VI University of Health Sciences (UM6SS), Casablanca 82 403, Morocco
- National Reference Laboratory, Mohammed VI University of Health Sciences (UM6SS), Casablanca 82 403, Morocco
| | - Rachid Benmessaoud
- National Reference Laboratory, Mohammed VI University of Health Sciences (UM6SS), Casablanca 82 403, Morocco
| | - Houda Yacoubi
- Faculty of Medicine, Mohammed VI University of Health Sciences (UM6SS), Casablanca 82 403, Morocco
- National Reference Laboratory, Mohammed VI University of Health Sciences (UM6SS), Casablanca 82 403, Morocco
| | - Lina Seffar
- Faculty of Medicine, Mohammed VI University of Health Sciences (UM6SS), Casablanca 82 403, Morocco
- National Reference Laboratory, Mohammed VI University of Health Sciences (UM6SS), Casablanca 82 403, Morocco
| | - Houda Guennouni Assimi
- Faculty of Medicine, Mohammed VI University of Health Sciences (UM6SS), Casablanca 82 403, Morocco
- National Reference Laboratory, Mohammed VI University of Health Sciences (UM6SS), Casablanca 82 403, Morocco
| | - Mouhsine Hamam
- Faculty of Medicine, Mohammed VI University of Health Sciences (UM6SS), Casablanca 82 403, Morocco
- National Reference Laboratory, Mohammed VI University of Health Sciences (UM6SS), Casablanca 82 403, Morocco
| | - Rihabe Boussettine
- Laboratory of Virology, Oncology, Biosciences, Environment and New Energies, Faculty of Sciences and Techniques Mohammedia, University Hassan II of Casablanca, Casablanca 28 806, Morocco
| | - Najoie Filali-Ansari
- Laboratory of Virology, Oncology, Biosciences, Environment and New Energies, Faculty of Sciences and Techniques Mohammedia, University Hassan II of Casablanca, Casablanca 28 806, Morocco
| | - Fatima Azzahra Lahlou
- Faculty of Medicine, Mohammed VI University of Health Sciences (UM6SS), Casablanca 82 403, Morocco
- National Reference Laboratory, Mohammed VI University of Health Sciences (UM6SS), Casablanca 82 403, Morocco
| | - Idrissa Diawara
- Department of Biological Engineering, Higher Institute of Bioscience and Biotechnology, Mohammed VI University of Health Sciences (UM6SS), Casablanca 82 403, Morocco
| | - Moulay Mustapha Ennaji
- Laboratory of Virology, Oncology, Biosciences, Environment and New Energies, Faculty of Sciences and Techniques Mohammedia, University Hassan II of Casablanca, Casablanca 28 806, Morocco
| | - Mohamed Kettani-Halabi
- Faculty of Medicine, Mohammed VI University of Health Sciences (UM6SS), Casablanca 82 403, Morocco
- National Reference Laboratory, Mohammed VI University of Health Sciences (UM6SS), Casablanca 82 403, Morocco
| |
Collapse
|
29
|
Characterization of Novel Bacteriophage vB_KpnP_ZX1 and Its Depolymerases with Therapeutic Potential for K57 Klebsiella pneumoniae Infection. Pharmaceutics 2022; 14:pharmaceutics14091916. [PMID: 36145665 PMCID: PMC9505181 DOI: 10.3390/pharmaceutics14091916] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/04/2022] [Accepted: 09/08/2022] [Indexed: 11/17/2022] Open
Abstract
A novel temperate phage vB_KpnP_ZX1 was isolated from hospital sewage samples using the clinically derived K57-type Klebsiella pneumoniae as a host. Phage vB_KpnP_ZX1, encoding three lysogen genes, the repressor, anti-repressor, and integrase, is the fourth phage of the genus Uetakevirus, family Podoviridae, ever discovered. Phage vB_KpnP_ZX1 did not show ideal bactericidal effect on K. pneumoniae 111-2, but TEM showed that the depolymerase Dep_ZX1 encoded on the short tail fiber protein has efficient capsule degradation activity. In vitro antibacterial results show that purified recombinant Dep_ZX1 can significantly prevent the formation of biofilm, degrade the formed biofilm, and improve the sensitivity of the bacteria in the biofilm to the antibiotics kanamycin, gentamicin, and streptomycin. Furthermore, the results of animal experiments show that 50 µg Dep_ZX1 can protect all K. pneumoniae 111-2-infected mice from death, whereas the control mice infected with the same dose of K. pneumoniae 111-2 all died. The degradation activity of Dep_ZX1 on capsular polysaccharide makes the bacteria weaken their resistance to immune cells, such as complement-mediated serum killing and phagocytosis, which are the key factors for its therapeutic action. In conclusion, Dep_ZX1 is a promising anti-virulence agent for the K57-type K. pneumoniae infection or biofilm diseases.
Collapse
|