1
|
de Bruin ACM, Lamers MM, Haagmans BL, Leijten LM, Fouchier RAM, Richard M. Long-term culture of chicken tracheal organoids for the purpose of avian influenza virus research. Virol J 2025; 22:99. [PMID: 40234888 PMCID: PMC11998437 DOI: 10.1186/s12985-025-02714-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 03/27/2025] [Indexed: 04/17/2025] Open
Abstract
There is an increasing need for reproducible long-term in vitro primary cell culture systems that are representative of the avian respiratory tract to study pathogens like highly pathogenic avian influenza viruses (HPAIVs), which threaten poultry, wildlife, and human health. Self-renewing organoid cultures allow for long-term culture, due to the presence of tissue-resident stem cells, and can approximate the in vivo cellular diversity and organization of tissues. Efforts to establish avian organoid cultures have been limited to the intestinal tract. Here, we describe the isolation and long-term culture of chicken tracheal organoids (CTOs). The CTO cultures were passaged for three to four months and cryopreserved at different stages. Mucociliary differentiation of CTOs was promoted by culture at air-liquid-interface, after which the pseudostratified epithelial cell layer of the avian trachea was recapitulated, including ciliated, goblet, and basal cells. Inoculation of CTO-derived 2D cultures with low pathogenic avian influenza viruses (LPAIVs) and HPAIVs showed that the appropriate receptors, as confirmed by virus histochemistry, and proteases to sustain multi-cycle replication of LPAIVs were expressed and that HPAIVs preferentially disseminated to the endothelium of epithelial/endothelial co-culture systems. Taken together, CTOs represent a useful tool for research on the avian respiratory tract, and their application will generate new insights into host-pathogen interactions, including HPAIV tropism.
Collapse
Affiliation(s)
- Anja C M de Bruin
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, The Netherlands
- Institute of Virology, Medical University Innsbruck, Innsbruck, Austria
| | - Mart M Lamers
- Emerging Infectious Diseases Program, Duke-NUS Medical School, Singapore, Singapore
| | - Bart L Haagmans
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Lonneke M Leijten
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Ron A M Fouchier
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Mathilde Richard
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
2
|
Figueras-Novoa C, Akutsu M, Murata D, Weston A, Jiang M, Montaner B, Dubois C, Shenoy A, Beale R. Caspase cleavage of influenza A virus M2 disrupts M2-LC3 interaction and regulates virion production. EMBO Rep 2025; 26:1768-1791. [PMID: 40033051 PMCID: PMC11977235 DOI: 10.1038/s44319-025-00388-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 01/28/2025] [Accepted: 01/31/2025] [Indexed: 03/05/2025] Open
Abstract
Influenza A virus (IAV) Matrix 2 protein (M2) is an ion channel, required for efficient viral entry and egress. M2 interacts with the small ubiquitin-like LC3 protein through a cytoplasmic C-terminal LC3-interacting region (LIR). Here, we report that M2 is cleaved by caspases, abolishing the M2-LC3 interaction. A crystal structure of the M2 LIR in complex with LC3 indicates the caspase cleavage tetrapeptide motif (82SAVD85) is an unstructured linear motif that does not overlap with the LIR. IAV mutant expressing a permanently truncated M2, mimicking caspase cleavage, exhibit defects in M2 plasma membrane transport, viral filament formation, and virion production. Our results reveal a dynamic regulation of the M2-LC3 interaction by caspases. This highlights the role of host proteases in regulating IAV exit, relating virion production with host cell state.
Collapse
Affiliation(s)
- Carmen Figueras-Novoa
- Cell Biology of Infection Laboratory, The Francis Crick Institute, London, UK
- Faculty of Life Sciences, University College London, London, UK
| | - Masato Akutsu
- Buchmann Institute for Molecular Life Sciences, Institute of Biochemistry II, Goethe University, Max-von Laue-Str. 15, Frankfurt, 60438, Germany
- Research Center for Advanced Analysis, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan
| | - Daichi Murata
- Buchmann Institute for Molecular Life Sciences, Institute of Biochemistry II, Goethe University, Max-von Laue-Str. 15, Frankfurt, 60438, Germany
- Department of Biomolecular Chemistry, Kyoto Prefectural University, Hangi-cho, Shimogamo, Sakyo-ku, Kyoto, 606-8522, Japan
- China Innovation Center, Shiseido China Co., Ltd., Shanghai, China
| | - Anne Weston
- Electron Microscopy STP, The Francis Crick Institute, London, UK
| | - Ming Jiang
- High Throughput Screening STP, The Francis Crick Institute, London, UK
| | - Beatriz Montaner
- Cell Biology of Infection Laboratory, The Francis Crick Institute, London, UK
| | | | - Avinash Shenoy
- Department of Infectious Disease, Imperial College, London, UK.
- Satellite Group Leader, The Francis Crick Institute, London, UK.
| | - Rupert Beale
- Cell Biology of Infection Laboratory, The Francis Crick Institute, London, UK.
- Division of Medicine, University College London, London, UK.
| |
Collapse
|
3
|
Setz C, Rauch P, Setz M, Breitenberger S, Plattner S, Schubert U. Synergistic Antiviral Activity of European Black Elderberry Fruit Extract and Quinine Against SARS-CoV-2 and Influenza A Virusa. Nutrients 2025; 17:1205. [PMID: 40218964 PMCID: PMC11990106 DOI: 10.3390/nu17071205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/24/2025] [Accepted: 03/28/2025] [Indexed: 04/14/2025] Open
Abstract
BACKGROUND/OBJECTIVES The persistent threat of emerging respiratory RNA viruses like SARS-CoV-2 and Influenza A virus (IAV) necessitates the continuous development of effective, safe, broadly acting, and generally accessible antiviral agents. Current treatments often face limitations such as early administration requirements, resistance development, and limited global access. Natural products, like European black elderberry (Sambucus nigra L.; S. nigra) fruit extract and quinine, have been used historically against viral infections. In this study, we investigated the antiviral efficacy of a standardized black elderberry fruit extract containing 3.2% anthocyanins (EC 3.2) and, as a second natural antiviral product, quinine, against IAV and SARS-CoV-2 in vitro. METHODS Madin-Darby Canine Kidney II (MDCKII) cells were infected with IAV PR-8, while human Calu-3 lung epithelial cells were infected with Wuhan-type SARS-CoV-2. Cells were treated with varying concentrations of EC 3.2 and quinine either as mono- or combinational therapy. Viral replication was assessed using quantitative RT-PCR, and cell viability was evaluated using WST-1 assays. RESULTS Our results demonstrate, for the first time, that both EC 3.2 and quinine individually inhibited IAV replication in a dose-dependent manner, with IC50 values of approximately 1:400 for EC 3.2 and 250 nM for quinine. Most importantly, the combinational treatment exhibited a strong synergistic antiviral effect, as confirmed by the Bliss independence model (synergy scores of 14.7 for IAV, and 27.8 for SARS-CoV-2), without affecting cell viability. CONCLUSIONS These findings suggest that the combined use of black elderberry extract and quinine might serve as an effective antiviral strategy against IAV and SARS-CoV-2, particularly since the synergistic effect allows for lower doses of each product while retaining therapeutic efficacy. In summary, this combinational in vitro approach, when expanded to other respiratory RNA viruses and confirmed in clinical studies, has the potential to open a promising avenue for pandemic preparedness.
Collapse
Affiliation(s)
- Christian Setz
- Institute of Virology, Friedrich-Alexander University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (C.S.); (P.R.); (M.S.)
| | - Pia Rauch
- Institute of Virology, Friedrich-Alexander University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (C.S.); (P.R.); (M.S.)
| | - Melanie Setz
- Institute of Virology, Friedrich-Alexander University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (C.S.); (P.R.); (M.S.)
| | | | - Stephan Plattner
- Iprona Lana SpA, Industriestraße 1/6, I-39011 Lana, Italy; (S.B.); (S.P.)
| | - Ulrich Schubert
- Institute of Virology, Friedrich-Alexander University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (C.S.); (P.R.); (M.S.)
| |
Collapse
|
4
|
Schafers J, Warren CJ, Yang J, Zhang J, Cole SJ, Cooper J, Drewek K, Kolli BR, McGinn N, Qureshi M, Reid SM, Peacock TP, Brown I, James J, Banyard AC, Iqbal M, Digard P, Hutchinson E. Pasteurisation temperatures effectively inactivate influenza A viruses in milk. Nat Commun 2025; 16:1173. [PMID: 39885133 PMCID: PMC11782573 DOI: 10.1038/s41467-025-56406-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 01/17/2025] [Indexed: 02/01/2025] Open
Abstract
In late 2023 an H5N1 lineage of high pathogenicity avian influenza virus (HPAIV) began circulating in American dairy cattle Concerningly, high titres of virus were detected in cows' milk, raising the concern that milk could be a route of human infection. Cows' milk is typically pasteurised to render it safe for human consumption, but the effectiveness of pasteurisation on influenza viruses in milk was uncertain. To assess this, here we evaluate heat inactivation in milk for a panel of different influenza viruses. This includes human and avian influenza A viruses (IAVs), an influenza D virus that naturally infects cattle, and recombinant IAVs carrying contemporary avian or bovine H5N1 glycoproteins. At pasteurisation temperatures of 63 °C and 72 °C, we find that viral infectivity is rapidly lost and becomes undetectable before the times recommended for pasteurisation (30 minutes and 15 seconds, respectively). We then show that an H5N1 HPAIV in milk is effectively inactivated by a comparable treatment, even though its genetic material remains detectable. We conclude that pasteurisation conditions should effectively inactivate H5N1 HPAIV in cows' milk, but that unpasteurised milk could carry infectious influenza viruses.
Collapse
Affiliation(s)
- Jenna Schafers
- Roslin Institute, The University of Edinburgh, Easter Bush Campus, Midlothian, UK
| | - Caroline J Warren
- Department of Virology, Animal and Plant Health Agency-Weybridge, Woodham Lane, New Haw, Addlestone, Surrey, UK
| | - Jiayun Yang
- The Pirbright Institute, Ash Road, Woking, Surrey, UK
| | - Junsen Zhang
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Sarah J Cole
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Jayne Cooper
- Department of Virology, Animal and Plant Health Agency-Weybridge, Woodham Lane, New Haw, Addlestone, Surrey, UK
| | - Karolina Drewek
- Department of Virology, Animal and Plant Health Agency-Weybridge, Woodham Lane, New Haw, Addlestone, Surrey, UK
| | - B Reddy Kolli
- The Pirbright Institute, Ash Road, Woking, Surrey, UK
| | - Natalie McGinn
- Department of Virology, Animal and Plant Health Agency-Weybridge, Woodham Lane, New Haw, Addlestone, Surrey, UK
| | | | - Scott M Reid
- Department of Virology, Animal and Plant Health Agency-Weybridge, Woodham Lane, New Haw, Addlestone, Surrey, UK
| | | | - Ian Brown
- The Pirbright Institute, Ash Road, Woking, Surrey, UK
| | - Joe James
- Department of Virology, Animal and Plant Health Agency-Weybridge, Woodham Lane, New Haw, Addlestone, Surrey, UK
- WOAH/FAO Reference Laboratory for Avian Influenza, Animal and Plant Health Agency-Weybridge, Woodham Lane, New Haw, Addlestone, Surrey, UK
| | - Ashley C Banyard
- Department of Virology, Animal and Plant Health Agency-Weybridge, Woodham Lane, New Haw, Addlestone, Surrey, UK
- WOAH/FAO Reference Laboratory for Avian Influenza, Animal and Plant Health Agency-Weybridge, Woodham Lane, New Haw, Addlestone, Surrey, UK
| | - Munir Iqbal
- The Pirbright Institute, Ash Road, Woking, Surrey, UK
| | - Paul Digard
- Roslin Institute, The University of Edinburgh, Easter Bush Campus, Midlothian, UK
| | | |
Collapse
|
5
|
Tosheva II, Filaire F, Rijnink WF, de Meulder D, van Kekem B, Bestebroer TM, Funk M, Spronken MI, Cáceres CJ, Perez DR, Richard M, Koopmans MPG, Fraaij PLA, Fouchier RAM, Herfst S. Influenza A(H5N1) shedding in air corresponds to transmissibility in mammals. Nat Microbiol 2025; 10:14-19. [PMID: 39623068 PMCID: PMC11726459 DOI: 10.1038/s41564-024-01885-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 11/14/2024] [Indexed: 01/12/2025]
Abstract
An increase in spillover events of highly pathogenic avian influenza A(H5N1) viruses to mammals suggests selection of viruses that transmit well in mammals. Here we use air-sampling devices to continuously sample infectious influenza viruses expelled by experimentally infected ferrets. The resulting quantitative virus shedding kinetics data resembled ferret-to-ferret transmission studies and indicated that the absence of transmission observed for earlier A(H5N1) viruses was due to a lack of infectious virus shedding in the air, rather than the absence of necessary mammalian adaptation mutations. Whereas infectious human A(H1N1pdm) virus was efficiently shed in the air, infectious 2005 zoonotic and 2024 bovine A(H5N1) viruses were not detected in the air. By contrast, shedding of infectious virus was observed for 1 out of 4 ferrets infected with a 2022 European polecat A(H5N1) virus and a 2024 A(H5N1) virus isolated from a dairy farm worker.
Collapse
Affiliation(s)
- Ilona I Tosheva
- Department of Viroscience, Erasmus University Medical Centre, Rotterdam, the Netherlands
| | - Fabien Filaire
- Department of Viroscience, Erasmus University Medical Centre, Rotterdam, the Netherlands
| | - Willemijn F Rijnink
- Department of Viroscience, Erasmus University Medical Centre, Rotterdam, the Netherlands
| | - Dennis de Meulder
- Department of Viroscience, Erasmus University Medical Centre, Rotterdam, the Netherlands
| | - Bianca van Kekem
- Department of Viroscience, Erasmus University Medical Centre, Rotterdam, the Netherlands
| | - Theo M Bestebroer
- Department of Viroscience, Erasmus University Medical Centre, Rotterdam, the Netherlands
| | - Mathis Funk
- Department of Viroscience, Erasmus University Medical Centre, Rotterdam, the Netherlands
| | - Monique I Spronken
- Department of Viroscience, Erasmus University Medical Centre, Rotterdam, the Netherlands
| | - C Joaquin Cáceres
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Daniel R Perez
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Mathilde Richard
- Department of Viroscience, Erasmus University Medical Centre, Rotterdam, the Netherlands
| | - Marion P G Koopmans
- Department of Viroscience, Erasmus University Medical Centre, Rotterdam, the Netherlands
- Pandemic and Disaster Preparedness Center, Delft, Rotterdam, the Netherlands
| | - Pieter L A Fraaij
- Department of Viroscience, Erasmus University Medical Centre, Rotterdam, the Netherlands
- Pandemic and Disaster Preparedness Center, Delft, Rotterdam, the Netherlands
- Department of Paediatrics, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Ron A M Fouchier
- Department of Viroscience, Erasmus University Medical Centre, Rotterdam, the Netherlands
- Pandemic and Disaster Preparedness Center, Delft, Rotterdam, the Netherlands
| | - Sander Herfst
- Department of Viroscience, Erasmus University Medical Centre, Rotterdam, the Netherlands.
- Pandemic and Disaster Preparedness Center, Delft, Rotterdam, the Netherlands.
| |
Collapse
|
6
|
Cardoso KF, de Souza LRA, da Silva Santos BSÁ, de Carvalho KRA, da Silva Messias SG, de Faria Gonçalves AP, Kano FS, Alves PA, da Silva Campos MA, Xavier MP, Garcia CC, Russo RC, Gazzinelli RT, Costa ÉA, da Silva Martins NR, Miyaji EN, de Magalhães Vieira Machado A, Silva Araújo MS. Intranasal influenza-vectored vaccine expressing pneumococcal surface protein A protects against Influenza and Streptococcus pneumoniae infections. NPJ Vaccines 2024; 9:246. [PMID: 39702744 DOI: 10.1038/s41541-024-01033-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 11/21/2024] [Indexed: 12/21/2024] Open
Abstract
Streptococcus pneumoniae and influenza A virus (IAV) are significant agents of pneumonia cases and severe respiratory infections globally. Secondary bacterial infections, particularly by Streptococcus pneumoniae, are common in IAV-infected individuals, leading to critical outcomes. Despite reducing mortality, pneumococcal vaccines have high production costs and are serotype specific. The emergence of new circulating serotypes has led to the search for new prevention strategies that provide a broad spectrum of protection. In this context, vaccination using antigens present in all serotypes, such as Pneumococcal Surface Protein A (PspA), can offer broad coverage regardless of serotype. Employing the reverse genetics technique, our research group developed a recombinant influenza A H1N1 virus that expresses PspA (Flu-PspA), through the replacement of neuraminidase by PspA. This virus was evaluated as a bivalent vaccine against infections caused by influenza A and S. pneumoniae in mice. Initially, we evaluated the Flu-PspA virus's ability to infect cells and express PspA in vitro, its capacity to multiply in embryonated chicken eggs, and its safety when inoculated in mice. Subsequently, the protective effect against influenza A and Streptococcus pneumoniae lethal challenge infections in mice was assessed using different immunization protocols. Analysis of the production of antibodies against PspA4 protein and influenza, and the binding capacity of anti-PspA4 antibodies/complement deposition to different strains of S. pneumoniae were also evaluated. Our results demonstrate that the Flu-PspA virus vaccine efficiently induces PspA protein expression in vitro, and that it was able to multiply in embryonated chicken eggs even without exogenous neuraminidase. The Flu-PspA-based bivalent vaccine was demonstrated to be safe, stimulated high titers of anti-PspA and anti-influenza antibodies, and protected mice against homosubtypic and heterosubtypic influenza A and S. pneumoniae challenge. Moreover, an efficient binding of antibodies and complement deposition on the surface of pneumococcal strains ascribes the broad-spectrum vaccine response in vivo. In summary, this innovative approach holds promise for developing a dual-protective vaccine against two major respiratory pathogens.
Collapse
Affiliation(s)
- Kimberly Freitas Cardoso
- Laboratório de Imunologia de Doenças Virais, Instituto René Rachou-Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brasil
| | - Lara Regina Alves de Souza
- Laboratório de Imunologia de Doenças Virais, Instituto René Rachou-Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brasil
| | | | | | - Sarah Giarola da Silva Messias
- Grupo Integrado de Pesquisa em Biomarcadores, Instituto René Rachou-Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brasil
| | - Ana Paula de Faria Gonçalves
- Laboratório de Imunologia de Doenças Virais, Instituto René Rachou-Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brasil
| | - Flora Satiko Kano
- Grupo de Pesquisa em Biologia Molecular e Imunologia da Malária, Instituto René Rachou-Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brasil
| | - Pedro Augusto Alves
- Laboratório de Imunologia de Doenças Virais, Instituto René Rachou-Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brasil
| | - Marco Antônio da Silva Campos
- Laboratório de Imunologia de Doenças Virais, Instituto René Rachou-Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brasil
| | - Marcelo Pascoal Xavier
- Laboratório de Imunologia de Doenças Virais, Instituto René Rachou-Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brasil
| | - Cristiana Couto Garcia
- Grupo Integrado de Pesquisa em Biomarcadores, Instituto René Rachou-Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brasil
| | - Remo Castro Russo
- Laboratório de Imunologia e Mecânica Pulmonar, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brasil
| | - Ricardo Tostes Gazzinelli
- Centro de Tecnologia de Vacinas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brasil
| | - Érica Azevedo Costa
- Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brasil
| | | | | | | | - Márcio Sobreira Silva Araújo
- Grupo Integrado de Pesquisa em Biomarcadores, Instituto René Rachou-Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brasil.
| |
Collapse
|
7
|
Timimi L, Wrobel AG, Chiduza GN, Maslen SL, Torres-Méndez A, Montaner B, Davis C, Minckley T, Hole KL, Serio A, Devine MJ, Skehel JM, Rubinstein JL, Schreiber A, Beale R. The V-ATPase/ATG16L1 axis is controlled by the V 1H subunit. Mol Cell 2024; 84:2966-2983.e9. [PMID: 39089251 DOI: 10.1016/j.molcel.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 05/15/2024] [Accepted: 07/05/2024] [Indexed: 08/03/2024]
Abstract
Defects in organellar acidification indicate compromised or infected compartments. Recruitment of the autophagy-related ATG16L1 complex to pathologically neutralized organelles targets ubiquitin-like ATG8 molecules to perturbed membranes. How this process is coupled to proton gradient disruption is unclear. Here, we reveal that the V1H subunit of the vacuolar ATPase (V-ATPase) proton pump binds directly to ATG16L1. The V1H/ATG16L1 interaction only occurs within fully assembled V-ATPases, allowing ATG16L1 recruitment to be coupled to increased V-ATPase assembly following organelle neutralization. Cells lacking V1H fail to target ATG8s during influenza infection or after activation of the immune receptor stimulator of interferon genes (STING). We identify a loop within V1H that mediates ATG16L1 binding. A neuronal V1H isoform lacks this loop and is associated with attenuated ATG8 targeting in response to ionophores in primary murine and human iPSC-derived neurons. Thus, V1H controls ATG16L1 recruitment following proton gradient dissipation, suggesting that the V-ATPase acts as a cell-intrinsic damage sensor.
Collapse
Affiliation(s)
- Lewis Timimi
- Cell Biology of Infection Laboratory, The Francis Crick Institute, London NW1 1AT, UK; Division of Medicine, University College London, London WC1E 6JF, UK
| | - Antoni G Wrobel
- Structural Biology of Disease Processes Laboratory, The Francis Crick Institute, London NW1 1AT, UK; Structural Biology STP, The Francis Crick Institute, London NW1 1AT, UK
| | - George N Chiduza
- Molecular Cell Biology of Autophagy Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Sarah L Maslen
- Proteomics STP, The Francis Crick Institute, London NW1 1AT, UK
| | - Antonio Torres-Méndez
- Neural Circuits & Evolution Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Beatriz Montaner
- Cell Biology of Infection Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Colin Davis
- Cellular Degradation Systems Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Taylor Minckley
- Neural Circuit Bioengineering and Disease Modelling Laboratory, The Francis Crick Institute, London NW1 1AT, UK; UK Dementia Research Institute at King's College London, London SE5 9RX, UK; Department of Basic and Clinical Neuroscience, Institute of Psychiatry Psychology & Neuroscience, King's College London, London SE5 9RX, UK
| | - Katriona L Hole
- Mitochondrial Neurobiology Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Andrea Serio
- Neural Circuit Bioengineering and Disease Modelling Laboratory, The Francis Crick Institute, London NW1 1AT, UK; UK Dementia Research Institute at King's College London, London SE5 9RX, UK; Department of Basic and Clinical Neuroscience, Institute of Psychiatry Psychology & Neuroscience, King's College London, London SE5 9RX, UK
| | - Michael J Devine
- Mitochondrial Neurobiology Laboratory, The Francis Crick Institute, London NW1 1AT, UK; Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - J Mark Skehel
- Proteomics STP, The Francis Crick Institute, London NW1 1AT, UK
| | - John L Rubinstein
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Biochemistry, The University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Medical Biophysics, The University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Anne Schreiber
- Cellular Degradation Systems Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Rupert Beale
- Cell Biology of Infection Laboratory, The Francis Crick Institute, London NW1 1AT, UK; Division of Medicine, University College London, London WC1E 6JF, UK.
| |
Collapse
|
8
|
Kok A, Wilks SH, Tureli S, James SL, Bestebroer TM, Burke DF, Funk M, van der Vliet S, Spronken MI, Rijnink WF, Pattinson D, de Meulder D, Rosu ME, Lexmond P, van den Brand JMA, Herfst S, Smith DJ, Fouchier RAM, Richard M. A vaccine antigen central in influenza A(H5) virus antigenic space confers subtype-wide immunity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.06.606696. [PMID: 39553979 PMCID: PMC11566024 DOI: 10.1101/2024.08.06.606696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Highly pathogenic avian influenza A(H5) viruses globally impact wild and domestic birds, and mammals, including humans, underscoring their pandemic potential. The antigenic evolution of the A(H5) hemagglutinin (HA) poses challenges for pandemic preparedness and vaccine design. Here, the global antigenic evolution of the A(H5) HA was captured in a high-resolution antigenic map. The map was used to engineer immunogenic and antigenically central vaccine HA antigens, eliciting antibody responses that broadly cover the A(H5) antigenic space. In ferrets, a central antigen protected as well as homologous vaccines against heterologous infection with two antigenically distinct viruses. This work showcases the rational design of subtype-wide influenza A(H5) pre-pandemic vaccines and demonstrates the value of antigenic maps for the evaluation of vaccine-induced immune responses through antibody profiles.
Collapse
Affiliation(s)
- Adinda Kok
- Department of Viroscience, Erasmus University Medical Center; Rotterdam, The Netherlands
| | - Samuel H Wilks
- Center for Pathogen Evolution, University of Cambridge; Cambridge, United Kingdom
| | - Sina Tureli
- Center for Pathogen Evolution, University of Cambridge; Cambridge, United Kingdom
| | - Sarah L James
- Center for Pathogen Evolution, University of Cambridge; Cambridge, United Kingdom
| | - Theo M Bestebroer
- Department of Viroscience, Erasmus University Medical Center; Rotterdam, The Netherlands
| | - David F Burke
- Center for Pathogen Evolution, University of Cambridge; Cambridge, United Kingdom
| | - Mathis Funk
- Department of Viroscience, Erasmus University Medical Center; Rotterdam, The Netherlands
| | - Stefan van der Vliet
- Department of Viroscience, Erasmus University Medical Center; Rotterdam, The Netherlands
| | - Monique I Spronken
- Department of Viroscience, Erasmus University Medical Center; Rotterdam, The Netherlands
| | - Willemijn F Rijnink
- Department of Viroscience, Erasmus University Medical Center; Rotterdam, The Netherlands
| | - David Pattinson
- Department of Viroscience, Erasmus University Medical Center; Rotterdam, The Netherlands
- Center for Pathogen Evolution, University of Cambridge; Cambridge, United Kingdom
- Division of Pathology, Faculty of Veterinary Medicine, Utrecht University; Utrecht, the Netherlands
| | - Dennis de Meulder
- Department of Viroscience, Erasmus University Medical Center; Rotterdam, The Netherlands
| | - Miruna E Rosu
- Department of Viroscience, Erasmus University Medical Center; Rotterdam, The Netherlands
| | - Pascal Lexmond
- Department of Viroscience, Erasmus University Medical Center; Rotterdam, The Netherlands
| | - Judith M A van den Brand
- Division of Pathology, Faculty of Veterinary Medicine, Utrecht University; Utrecht, the Netherlands
| | - Sander Herfst
- Department of Viroscience, Erasmus University Medical Center; Rotterdam, The Netherlands
| | - Derek J Smith
- Center for Pathogen Evolution, University of Cambridge; Cambridge, United Kingdom
| | - Ron A M Fouchier
- Department of Viroscience, Erasmus University Medical Center; Rotterdam, The Netherlands
| | - Mathilde Richard
- Department of Viroscience, Erasmus University Medical Center; Rotterdam, The Netherlands
| |
Collapse
|
9
|
Spronken MI, Funk M, Gultyaev AP, de Bruin ACM, Fouchier RAM, Richard M. Nucleotide sequence as key determinant driving insertions at influenza A virus hemagglutinin cleavage sites. NPJ VIRUSES 2024; 2:17. [PMID: 40295814 PMCID: PMC11721075 DOI: 10.1038/s44298-024-00029-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 03/14/2024] [Indexed: 04/30/2025]
Abstract
Highly pathogenic avian influenza viruses (HPAIVs) emerge from H5 and H7 low pathogenic avian influenza viruses (LPAIVs), most frequently upon insertions of nucleotides coding for basic amino acids at the cleavage site (CS) of the hemagglutinin (HA). The exact molecular mechanism(s) underlying this genetic change and reasons underlying the restriction to H5 and H7 viruses remain unknown. Here, we developed a novel experimental system based on frame repair through insertions or deletions (indels) of HAs with single nucleotide deletions. Indels were readily detected in a consensus H5 LPAIV CS at low frequency, which was increased upon the introduction of only one substitution leading to a longer stretch of adenines at the CS. In contrast, we only detected indels in H6 when multiple nucleotide substitutions were introduced. These data show that nucleotide sequence is a key determinant of insertions in the HA CS, and reveal novel insights about the subtype-specificity of HPAIV emergence.
Collapse
Affiliation(s)
- Monique I Spronken
- Department of Viroscience, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Mathis Funk
- Department of Viroscience, Erasmus Medical Centre, Rotterdam, The Netherlands
| | | | - Anja C M de Bruin
- Department of Viroscience, Erasmus Medical Centre, Rotterdam, The Netherlands
- Institute for Biochemistry & Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Hannover, Germany
| | - Ron A M Fouchier
- Department of Viroscience, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Mathilde Richard
- Department of Viroscience, Erasmus Medical Centre, Rotterdam, The Netherlands.
| |
Collapse
|
10
|
Vigeveno RM, Han AX, de Vries RP, Parker E, de Haan K, van Leeuwen S, Hulme KD, Lauring AS, te Velthuis AJW, Boons GJ, Fouchier RAM, Russell CA, de Jong MD, Eggink D. Long-term evolution of human seasonal influenza virus A(H3N2) is associated with an increase in polymerase complex activity. Virus Evol 2024; 10:veae030. [PMID: 38808037 PMCID: PMC11131032 DOI: 10.1093/ve/veae030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 04/08/2024] [Indexed: 05/30/2024] Open
Abstract
Since the influenza pandemic in 1968, influenza A(H3N2) viruses have become endemic. In this state, H3N2 viruses continuously evolve to overcome immune pressure as a result of prior infection or vaccination, as is evident from the accumulation of mutations in the surface glycoproteins hemagglutinin (HA) and neuraminidase (NA). However, phylogenetic studies have also demonstrated ongoing evolution in the influenza A(H3N2) virus RNA polymerase complex genes. The RNA polymerase complex of seasonal influenza A(H3N2) viruses produces mRNA for viral protein synthesis and replicates the negative sense viral RNA genome (vRNA) through a positive sense complementary RNA intermediate (cRNA). Presently, the consequences and selection pressures driving the evolution of the polymerase complex remain largely unknown. Here, we characterize the RNA polymerase complex of seasonal influenza A(H3N2) viruses representative of nearly 50 years of influenza A(H3N2) virus evolution. The H3N2 polymerase complex is a reassortment of human and avian influenza virus genes. We show that since 1968, influenza A(H3N2) viruses have increased the transcriptional activity of the polymerase complex while retaining a close balance between mRNA, vRNA, and cRNA levels. Interestingly, the increased polymerase complex activity did not result in increased replicative ability on differentiated human airway epithelial (HAE) cells. We hypothesize that the evolutionary increase in polymerase complex activity of influenza A(H3N2) viruses may compensate for the reduced HA receptor binding and avidity that is the result of the antigenic evolution of influenza A(H3N2) viruses.
Collapse
Affiliation(s)
- René M Vigeveno
- Department of Medical Microbiology, Amsterdam UMC, Amsterdam, The Netherlands
| | - Alvin X Han
- Department of Medical Microbiology, Amsterdam UMC, Amsterdam, The Netherlands
| | - Robert P de Vries
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Edyth Parker
- Department of Medical Microbiology, Amsterdam UMC, Amsterdam, The Netherlands
| | - Karen de Haan
- Department of Medical Microbiology, Amsterdam UMC, Amsterdam, The Netherlands
| | - Sarah van Leeuwen
- Department of Medical Microbiology, Amsterdam UMC, Amsterdam, The Netherlands
| | - Katina D Hulme
- Department of Medical Microbiology, Amsterdam UMC, Amsterdam, The Netherlands
| | - Adam S Lauring
- Department of Microbiology and Immunology and Division of Infectious Diseases, Department of Internal Medicine, University of Michigan, 1150 W. Medical Center Dr., Ann Arbor, MI 48109, USA
| | - Aartjan J W te Velthuis
- Lewis Thomas Laboratory, Department of Molecular Biology, Princeton University, Washington Road, Princeton, NJ 08544, USA
| | - Geert-Jan Boons
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA
- Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, Utrecht 3584 CH, The Netherlands
- Department of Chemistry, University of Georgia, 315 Riverbend Rd, Athens, GA 30602, USA
| | - Ron A M Fouchier
- Department of Viroscience, Erasmus MC, Dr. Molewaterplein 50, Rotterdam 3015 GE, The Netherlands
| | - Colin A Russell
- Department of Medical Microbiology, Amsterdam UMC, Amsterdam, The Netherlands
| | - Menno D de Jong
- Department of Medical Microbiology, Amsterdam UMC, Amsterdam, The Netherlands
| | - Dirk Eggink
- Department of Medical Microbiology, Amsterdam UMC, Amsterdam, The Netherlands
- Center for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Antonie van Leeuwenhoeklaan 9, Bilthoven 3721 MA, The Netherlands
| |
Collapse
|
11
|
Marques M, Ramos B, Albuquerque H, Pereira M, Ribeiro DR, Nunes A, Sarabando J, Brás D, Ferreira AR, Vitorino R, Amorim MJ, Silva AM, Soares AR, Ribeiro D. Influenza A virus propagation requires the activation of the unfolded protein response and the accumulation of insoluble protein aggregates. iScience 2024; 27:109100. [PMID: 38405606 PMCID: PMC10884513 DOI: 10.1016/j.isci.2024.109100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 12/11/2023] [Accepted: 01/30/2024] [Indexed: 02/27/2024] Open
Abstract
Influenza A virus (IAV) employs multiple strategies to manipulate cellular mechanisms and support proper virion formation and propagation. In this study, we performed a detailed analysis of the interplay between IAV and the host cells' proteostasis throughout the entire infectious cycle. We reveal that IAV infection activates the inositol requiring enzyme 1 (IRE1) branch of the unfolded protein response, and that this activation is important for an efficient infection. We further observed the accumulation of virus-induced insoluble protein aggregates, containing both viral and host proteins, associated with a dysregulation of the host cell RNA metabolism. Our data indicate that this accumulation is important for IAV propagation and favors the final steps of the infection cycle, more specifically the virion assembly. These findings reveal additional mechanisms by which IAV disrupts host proteostasis and uncovers new cellular targets that can be explored for the development of host-directed antiviral strategies.
Collapse
Affiliation(s)
- Mariana Marques
- Institute of Biomedicine – iBiMED, Department of Medical Sciences University of Aveiro, Aveiro, Portugal
| | - Bruno Ramos
- Institute of Biomedicine – iBiMED, Department of Medical Sciences University of Aveiro, Aveiro, Portugal
| | - Hélio Albuquerque
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - Marisa Pereira
- Institute of Biomedicine – iBiMED, Department of Medical Sciences University of Aveiro, Aveiro, Portugal
| | - Diana Roberta Ribeiro
- Institute of Biomedicine – iBiMED, Department of Medical Sciences University of Aveiro, Aveiro, Portugal
| | - Alexandre Nunes
- Institute of Biomedicine – iBiMED, Department of Medical Sciences University of Aveiro, Aveiro, Portugal
| | - Jéssica Sarabando
- Institute of Biomedicine – iBiMED, Department of Medical Sciences University of Aveiro, Aveiro, Portugal
| | - Daniela Brás
- Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal
| | - Ana Rita Ferreira
- Institute of Biomedicine – iBiMED, Department of Medical Sciences University of Aveiro, Aveiro, Portugal
| | - Rui Vitorino
- Institute of Biomedicine – iBiMED, Department of Medical Sciences University of Aveiro, Aveiro, Portugal
| | - Maria João Amorim
- Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal
- Católica Biomedical Research Centre, Católica Medical School, Universidade Católica Portuguesa, 1649-023 Lisboa, Portugal
| | - Artur M.S. Silva
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - Ana Raquel Soares
- Institute of Biomedicine – iBiMED, Department of Medical Sciences University of Aveiro, Aveiro, Portugal
| | - Daniela Ribeiro
- Institute of Biomedicine – iBiMED, Department of Medical Sciences University of Aveiro, Aveiro, Portugal
| |
Collapse
|
12
|
de Bruin ACM, Spronken MI, Kok A, Rosu ME, de Meulder D, van Nieuwkoop S, Lexmond P, Funk M, Leijten LM, Bestebroer TM, Herfst S, van Riel D, Fouchier RAM, Richard M. Species-specific emergence of H7 highly pathogenic avian influenza virus is driven by intrahost selection differences between chickens and ducks. PLoS Pathog 2024; 20:e1011942. [PMID: 38408092 PMCID: PMC10919841 DOI: 10.1371/journal.ppat.1011942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 03/07/2024] [Accepted: 01/03/2024] [Indexed: 02/28/2024] Open
Abstract
Highly pathogenic avian influenza viruses (HPAIVs) cause severe hemorrhagic disease in terrestrial poultry and are a threat to the poultry industry, wild life, and human health. HPAIVs arise from low pathogenic avian influenza viruses (LPAIVs), which circulate in wild aquatic birds. HPAIV emergence is thought to occur in poultry and not wild aquatic birds, but the reason for this species-restriction is not known. We hypothesized that, due to species-specific tropism and replication, intrahost HPAIV selection is favored in poultry and disfavored in wild aquatic birds. We tested this hypothesis by co-inoculating chickens, representative of poultry, and ducks, representative of wild aquatic birds, with a mixture of H7N7 HPAIV and LPAIV, mimicking HPAIV emergence in an experimental setting. Virus selection was monitored in swabs and tissues by RT-qPCR and immunostaining of differential N-terminal epitope tags that were added to the hemagglutinin protein. HPAIV was selected in four of six co-inoculated chickens, whereas LPAIV remained the major population in co-inoculated ducks on the long-term, despite detection of infectious HPAIV in tissues at early time points. Collectively, our data support the hypothesis that HPAIVs are more likely to be selected at the intrahost level in poultry than in wild aquatic birds and point towards species-specific differences in HPAIV and LPAIV tropism and replication levels as possible explanations.
Collapse
Affiliation(s)
- Anja C. M. de Bruin
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Monique I. Spronken
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Adinda Kok
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Miruna E. Rosu
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Dennis de Meulder
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | - Pascal Lexmond
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Mathis Funk
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Lonneke M. Leijten
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Theo M. Bestebroer
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Sander Herfst
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Debby van Riel
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Ron A. M. Fouchier
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Mathilde Richard
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
13
|
Funk M, Spronken MI, Bestebroer TM, de Bruin AC, Gultyaev AP, Fouchier RA, te Velthuis AJ, Richard M. Transient RNA structures underlie highly pathogenic avian influenza virus genesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.11.574333. [PMID: 38370829 PMCID: PMC10871305 DOI: 10.1101/2024.01.11.574333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Highly pathogenic avian influenza viruses (HPAIVs) cause severe disease and high fatality in poultry1. They emerge exclusively from H5 and H7 low pathogenic avian influenza viruses (LPAIVs)2. Although insertion of a furin-cleavable multibasic cleavage site (MBCS) in the hemagglutinin gene was identified decades ago as the genetic basis for LPAIV-to-HPAIV transition3,4, the exact mechanisms underlying said insertion have remained unknown. Here we used an innovative combination of bioinformatic models to predict RNA structures forming around the influenza virus RNA polymerase during replication, and circular sequencing5 to reliably detect nucleotide insertions. We show that transient H5 hemagglutinin RNA structures predicted to trap the polymerase on purine-rich sequences drive nucleotide insertions characteristic of MBCSs, providing the first strong empirical evidence of RNA structure involvement in MBCS acquisition. Insertion frequencies at the H5 cleavage site were strongly affected by substitutions in flanking genomic regions altering predicted transient RNA structures. Introduction of H5-like cleavage site sequences and structures into an H6 hemagglutinin resulted in MBCS-yielding insertions never observed before in H6 viruses. Our results demonstrate that nucleotide insertions that underlie H5 HPAIV emergence result from a previously unknown RNA-structure-driven diversity-generating mechanism, which could be shared with other RNA viruses.
Collapse
Affiliation(s)
- Mathis Funk
- Department of Viroscience; Erasmus Medical Center, 3000 CA Rotterdam, The Netherlands
| | - Monique I. Spronken
- Department of Viroscience; Erasmus Medical Center, 3000 CA Rotterdam, The Netherlands
| | - Theo M. Bestebroer
- Department of Viroscience; Erasmus Medical Center, 3000 CA Rotterdam, The Netherlands
| | - Anja C.M. de Bruin
- Department of Viroscience; Erasmus Medical Center, 3000 CA Rotterdam, The Netherlands
| | - Alexander P. Gultyaev
- Department of Viroscience; Erasmus Medical Center, 3000 CA Rotterdam, The Netherlands
- Group Imaging and Bioinformatics, Leiden Institute of Advanced Computer Science (LIACS); Leiden University, 2300 RA Leiden, The Netherlands
| | - Ron A.M. Fouchier
- Department of Viroscience; Erasmus Medical Center, 3000 CA Rotterdam, The Netherlands
| | - Aartjan J.W. te Velthuis
- Lewis Thomas Laboratory, Department of Molecular Biology; Princeton University, 08544 New Jersey, United States
| | - Mathilde Richard
- Department of Viroscience; Erasmus Medical Center, 3000 CA Rotterdam, The Netherlands
| |
Collapse
|
14
|
Ribó-Molina P, Weiss HJ, Susma B, van Nieuwkoop S, Persoons L, Zheng Y, Ruzek M, Daelemans D, Fouchier RAM, O'Neill LAJ, van den Hoogen BG. 4-Octyl itaconate reduces influenza A replication by targeting the nuclear export protein CRM1. J Virol 2023; 97:e0132523. [PMID: 37823646 PMCID: PMC10617539 DOI: 10.1128/jvi.01325-23] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 08/28/2023] [Indexed: 10/13/2023] Open
Abstract
IMPORTANCE Itaconate derivates, as well as the naturally produced metabolite, have been proposed as antivirals against influenza virus. Here, the mechanism behind the antiviral effects of exogenous 4-octyl itaconate (4-OI), a derivative of itaconate, against the influenza A virus replication is demonstrated. The data indicate that 4-OI targets the cysteine at position 528 of the CRM1 protein, resulting in inhibition of the nuclear export of viral ribonucleoprotein complexes in a similar manner as previously described for other selective inhibitors of nuclear export. These results postulate a mechanism not observed before for this immuno-metabolite derivative. This knowledge is helpful for the development of derivatives of 4-OI as potential antiviral and anti-inflammatory therapeutics.
Collapse
Affiliation(s)
- Pau Ribó-Molina
- Department of Viroscience, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Hauke J. Weiss
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | | | | | - Leentje Persoons
- Laboratory of Virology and Chemotherapy, KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Yunan Zheng
- AbbVie Bioresearch Center, Worcester, Massachusetts, USA
| | - Melanie Ruzek
- AbbVie Bioresearch Center, Worcester, Massachusetts, USA
| | - Dirk Daelemans
- Laboratory of Virology and Chemotherapy, KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Ron A. M. Fouchier
- Department of Viroscience, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Luke A. J. O'Neill
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | | |
Collapse
|
15
|
Kok A, Scheuer R, Bestebroer TM, Burke DF, Wilks SH, Spronken MI, de Meulder D, Lexmond P, Pronk M, Smith DJ, Herfst S, Fouchier RAM, Richard M. Characterization of A/H7 influenza virus global antigenic diversity and key determinants in the hemagglutinin globular head mediating A/H7N9 antigenic evolution. mBio 2023; 14:e0048823. [PMID: 37565755 PMCID: PMC10655666 DOI: 10.1128/mbio.00488-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 04/26/2023] [Indexed: 08/12/2023] Open
Abstract
IMPORTANCE A/H7 avian influenza viruses cause outbreaks in poultry globally, resulting in outbreaks with significant socio-economical impact and zoonotic risks. Occasionally, poultry vaccination programs have been implemented to reduce the burden of these viruses, which might result in an increased immune pressure accelerating antigenic evolution. In fact, evidence for antigenic diversification of A/H7 influenza viruses exists, posing challenges to pandemic preparedness and the design of vaccination strategies efficacious against drifted variants. Here, we performed a comprehensive analysis of the global antigenic diversity of A/H7 influenza viruses and identified the main substitutions in the hemagglutinin responsible for antigenic evolution in A/H7N9 viruses isolated between 2013 and 2019. The A/H7 antigenic map and knowledge of the molecular determinants of their antigenic evolution add value to A/H7 influenza virus surveillance programs, the design of vaccines and vaccination strategies, and pandemic preparedness.
Collapse
Affiliation(s)
- Adinda Kok
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Rachel Scheuer
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Theo M. Bestebroer
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | - David F. Burke
- Center for Pathogen Evolution, Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Samuel H. Wilks
- Center for Pathogen Evolution, Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Monique I. Spronken
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Dennis de Meulder
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Pascal Lexmond
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Mark Pronk
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Derek J. Smith
- Center for Pathogen Evolution, Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Sander Herfst
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Ron A. M. Fouchier
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Mathilde Richard
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
16
|
Daniels A, Fletcher S, Kerr HEM, Kratzel A, Pinto RM, Kriplani N, Craig N, Hastie CJ, Davies P, Digard P, Thiel V, Tait-Burkard C. One for all-human kidney Caki-1 cells are highly susceptible to infection with corona- and other respiratory viruses. J Virol 2023; 97:e0055523. [PMID: 37668370 PMCID: PMC10537734 DOI: 10.1128/jvi.00555-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 07/05/2023] [Indexed: 09/06/2023] Open
Abstract
In vitro investigations of host-virus interactions are reliant on suitable cell and tissue culture models. Results are only as good as the model they are generated in. However, choosing cell models for in vitro work often depends on availability and previous use alone. Despite the vast increase in coronavirus research over the past few years, scientists are still heavily reliant on: non-human, highly heterogeneous or not fully differentiated, or naturally unsusceptible cells requiring overexpression of receptors and other accessory factors. Complex primary or stem cell models are highly representative of human tissues but are expensive and time-consuming to develop and maintain with limited suitability for high-throughput experiments.Using tissue-specific expression patterns, we identified human kidney cells as an ideal target for severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) and broader coronavirus infection. We show the use of the well-characterized human kidney cell line Caki-1 for infection with three human coronaviruses (hCoVs): Betacoronaviruses SARS-CoV-2 and Middle Eastern respiratory syndrome coronavirus and Alphacoronavirus hCoV 229E. Caki-1 cells show equal or superior susceptibility to all three coronaviruses when compared to other commonly used cell lines for the cultivation of the respective virus. Antibody staining against SARS-CoV-2 N protein shows comparable replication rates. A panel of 26 custom antibodies shows the location of SARS-CoV-2 proteins during replication using immunocytochemistry. In addition, Caki-1 cells were found to be susceptible to two other human respiratory viruses, influenza A virus and respiratory syncytial virus, making them an ideal model for cross-comparison for a broad range of respiratory viruses. IMPORTANCE Cell lines remain the backbone of virus research, but results are only as good as their originating model. Despite increased research into human coronaviruses following the COVID-19 pandemic, researchers continue to rely on suboptimal cell line models of: non-human origin, incomplete differentiation, or lacking active interferon responses. We identified the human kidney Caki-1 cell line as a potential target for severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). This cell line could be shown to be infectable with a wide range of coronaviruses including common cold virus hCoV-229E, epidemic virus MERS-CoV, and SARS-CoV-2 as well as other important respiratory viruses influenza A virus and respiratory syncytial virus. We could show the localization of 26 SARS-CoV-2 proteins in Caki-1 cells during natural replication and the cells are competent of forming a cellular immune response. Together, this makes Caki-1 cells a unique tool for cross-virus comparison in one cell line.
Collapse
Affiliation(s)
- Alison Daniels
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, United Kingdom
- Infection Medicine, University of Edinburgh, Little France Crescent, United Kingdom
| | - Sarah Fletcher
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, United Kingdom
| | - Holly E. M. Kerr
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, United Kingdom
| | - Annika Kratzel
- Institute of Virology and Immunology (IVI), Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Rute Maria Pinto
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, United Kingdom
| | - Nisha Kriplani
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, United Kingdom
| | - Nicky Craig
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, United Kingdom
| | - C. James Hastie
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Paul Davies
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Paul Digard
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, United Kingdom
| | - Volker Thiel
- Institute of Virology and Immunology (IVI), Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Christine Tait-Burkard
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, United Kingdom
| |
Collapse
|
17
|
Kutter JS, Linster M, de Meulder D, Bestebroer TM, Lexmond P, Rosu ME, Richard M, de Vries RP, Fouchier RAM, Herfst S. Continued adaptation of A/H2N2 viruses during pandemic circulation in humans. J Gen Virol 2023; 104:001881. [PMID: 37650875 PMCID: PMC10721047 DOI: 10.1099/jgv.0.001881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 07/27/2023] [Indexed: 09/01/2023] Open
Abstract
Influenza A viruses of the H2N2 subtype sparked a pandemic in 1957 and circulated in humans until 1968. Because A/H2N2 viruses still circulate in wild birds worldwide and human population immunity is low, the transmissibility of six avian A/H2N2 viruses was investigated in the ferret model. None of the avian A/H2N2 viruses was transmitted between ferrets, suggesting that their pandemic risk may be low. The transmissibility, receptor binding preference and haemagglutinin (HA) stability of human A/H2N2 viruses were also investigated. Human A/H2N2 viruses from 1957 and 1958 bound to human-type α2,6-linked sialic acid receptors, but the 1958 virus had a more stable HA, indicating adaptation to replication and spread in the new host. This increased stability was caused by a previously unknown stability substitution G205S in the 1958 H2N2 HA, which became fixed in A/H2N2 viruses after 1958. Although individual substitutions were identified that affected the HA receptor binding and stability properties, they were not found to have a substantial effect on transmissibility of A/H2N2 viruses via the air in the ferret model. Our data demonstrate that A/H2N2 viruses continued to adapt during the first year of pandemic circulation in humans, similar to what was previously shown for the A/H1N1pdm09 virus.
Collapse
Affiliation(s)
- Jasmin S. Kutter
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Martin Linster
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, Netherlands
- Present address: Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Dennis de Meulder
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Theo M. Bestebroer
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Pascal Lexmond
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Miruna E. Rosu
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Mathilde Richard
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Robert P. de Vries
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Ron A. M. Fouchier
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Sander Herfst
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
18
|
Pinto RM, Bakshi S, Lytras S, Zakaria MK, Swingler S, Worrell JC, Herder V, Hargrave KE, Varjak M, Cameron-Ruiz N, Collados Rodriguez M, Varela M, Wickenhagen A, Loney C, Pei Y, Hughes J, Valette E, Turnbull ML, Furnon W, Gu Q, Orr L, Taggart A, Diebold O, Davis C, Boutell C, Grey F, Hutchinson E, Digard P, Monne I, Wootton SK, MacLeod MKL, Wilson SJ, Palmarini M. BTN3A3 evasion promotes the zoonotic potential of influenza A viruses. Nature 2023; 619:338-347. [PMID: 37380775 DOI: 10.1038/s41586-023-06261-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 05/25/2023] [Indexed: 06/30/2023]
Abstract
Spillover events of avian influenza A viruses (IAVs) to humans could represent the first step in a future pandemic1. Several factors that limit the transmission and replication of avian IAVs in mammals have been identified. There are several gaps in our understanding to predict which virus lineages are more likely to cross the species barrier and cause disease in humans1. Here, we identified human BTN3A3 (butyrophilin subfamily 3 member A3)2 as a potent inhibitor of avian IAVs but not human IAVs. We determined that BTN3A3 is expressed in human airways and its antiviral activity evolved in primates. We show that BTN3A3 restriction acts primarily at the early stages of the virus life cycle by inhibiting avian IAV RNA replication. We identified residue 313 in the viral nucleoprotein (NP) as the genetic determinant of BTN3A3 sensitivity (313F or, rarely, 313L in avian viruses) or evasion (313Y or 313V in human viruses). However, avian IAV serotypes, such as H7 and H9, that spilled over into humans also evade BTN3A3 restriction. In these cases, BTN3A3 evasion is due to substitutions (N, H or Q) in NP residue 52 that is adjacent to residue 313 in the NP structure3. Thus, sensitivity or resistance to BTN3A3 is another factor to consider in the risk assessment of the zoonotic potential of avian influenza viruses.
Collapse
Affiliation(s)
- Rute Maria Pinto
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
- The Roslin Institute, University of Edinburgh, Edinburgh, UK
| | - Siddharth Bakshi
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Spyros Lytras
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | | | - Simon Swingler
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Julie C Worrell
- School of Infection and Immunity, University of Glasgow, Glasgow, UK
| | - Vanessa Herder
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Kerrie E Hargrave
- School of Infection and Immunity, University of Glasgow, Glasgow, UK
| | - Margus Varjak
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
- Faculty of Science and Technology, Institute of Technology, University of Tartu, Tartu, Estonia
| | | | | | - Mariana Varela
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | | | - Colin Loney
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Yanlong Pei
- Department of Pathobiology, University of Guelph, Guelph, Ontario, Canada
| | - Joseph Hughes
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Elise Valette
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | | | - Wilhelm Furnon
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Quan Gu
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Lauren Orr
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Aislynn Taggart
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Ola Diebold
- The Roslin Institute, University of Edinburgh, Edinburgh, UK
| | - Chris Davis
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Chris Boutell
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Finn Grey
- The Roslin Institute, University of Edinburgh, Edinburgh, UK
| | | | - Paul Digard
- The Roslin Institute, University of Edinburgh, Edinburgh, UK
| | - Isabella Monne
- Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Legnaro, Italy
| | - Sarah K Wootton
- Department of Pathobiology, University of Guelph, Guelph, Ontario, Canada
| | - Megan K L MacLeod
- School of Infection and Immunity, University of Glasgow, Glasgow, UK
| | - Sam J Wilson
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | | |
Collapse
|
19
|
Sharp CP, Thompson BH, Nash TJ, Diebold O, Pinto RM, Thorley L, Lin YT, Sives S, Wise H, Clohisey Hendry S, Grey F, Vervelde L, Simmonds P, Digard P, Gaunt ER. CpG dinucleotide enrichment in the influenza A virus genome as a live attenuated vaccine development strategy. PLoS Pathog 2023; 19:e1011357. [PMID: 37146066 PMCID: PMC10191365 DOI: 10.1371/journal.ppat.1011357] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 05/17/2023] [Accepted: 04/12/2023] [Indexed: 05/07/2023] Open
Abstract
Synonymous recoding of RNA virus genomes is a promising approach for generating attenuated viruses to use as vaccines. Problematically, recoding typically hinders virus growth, but this may be rectified using CpG dinucleotide enrichment. CpGs are recognised by cellular zinc-finger antiviral protein (ZAP), and so in principle, removing ZAP sensing from a virus propagation system will reverse attenuation of a CpG-enriched virus, enabling high titre yield of a vaccine virus. We tested this using a vaccine strain of influenza A virus (IAV) engineered for increased CpG content in genome segment 1. Virus attenuation was mediated by the short isoform of ZAP, correlated with the number of CpGs added, and was enacted via turnover of viral transcripts. The CpG-enriched virus was strongly attenuated in mice, yet conveyed protection from a potentially lethal challenge dose of wildtype virus. Importantly for vaccine development, CpG-enriched viruses were genetically stable during serial passage. Unexpectedly, in both MDCK cells and embryonated hens' eggs that are used to propagate live attenuated influenza vaccines, the ZAP-sensitive virus was fully replication competent. Thus, ZAP-sensitive CpG enriched viruses that are defective in human systems can yield high titre in vaccine propagation systems, providing a realistic, economically viable platform to augment existing live attenuated vaccines.
Collapse
Affiliation(s)
- Colin P. Sharp
- The Roslin Institute, The University of Edinburgh, Easter Bush Campus, Midlothian, United Kingdom
| | - Beth H. Thompson
- The Roslin Institute, The University of Edinburgh, Easter Bush Campus, Midlothian, United Kingdom
| | - Tessa J. Nash
- The Roslin Institute, The University of Edinburgh, Easter Bush Campus, Midlothian, United Kingdom
| | - Ola Diebold
- The Roslin Institute, The University of Edinburgh, Easter Bush Campus, Midlothian, United Kingdom
| | - Rute M. Pinto
- The Roslin Institute, The University of Edinburgh, Easter Bush Campus, Midlothian, United Kingdom
| | - Luke Thorley
- The Roslin Institute, The University of Edinburgh, Easter Bush Campus, Midlothian, United Kingdom
| | - Yao-Tang Lin
- The Roslin Institute, The University of Edinburgh, Easter Bush Campus, Midlothian, United Kingdom
| | - Samantha Sives
- The Roslin Institute, The University of Edinburgh, Easter Bush Campus, Midlothian, United Kingdom
| | - Helen Wise
- Royal Infirmary of Edinburgh, NHS Lothian, Edinburgh, United Kingdom
| | - Sara Clohisey Hendry
- The Roslin Institute, The University of Edinburgh, Easter Bush Campus, Midlothian, United Kingdom
| | - Finn Grey
- The Roslin Institute, The University of Edinburgh, Easter Bush Campus, Midlothian, United Kingdom
| | - Lonneke Vervelde
- The Roslin Institute, The University of Edinburgh, Easter Bush Campus, Midlothian, United Kingdom
| | - Peter Simmonds
- Nuffield Department of Medicine, University of Oxford, South Parks Road, Oxford, United Kingdom
| | - Paul Digard
- The Roslin Institute, The University of Edinburgh, Easter Bush Campus, Midlothian, United Kingdom
| | - Eleanor R. Gaunt
- The Roslin Institute, The University of Edinburgh, Easter Bush Campus, Midlothian, United Kingdom
| |
Collapse
|
20
|
de Bruin ACM, Spronken MI, Bestebroer TM, Fouchier RAM, Richard M. Conserved Expression and Functionality of Furin between Chickens and Ducks as an Activating Protease of Highly Pathogenic Avian Influenza Virus Hemagglutinins. Microbiol Spectr 2023; 11:e0460222. [PMID: 36916982 PMCID: PMC10100678 DOI: 10.1128/spectrum.04602-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 02/23/2023] [Indexed: 03/15/2023] Open
Abstract
Highly pathogenic avian influenza viruses (HPAIVs) typically emerge from low-pathogenic avian influenza viruses (LPAIVs) of the H5 and H7 subtypes upon spillover from wild aquatic birds into poultry. The conversion from LPAIV to HPAIV is characterized by the acquisition of a multibasic cleavage site (MBCS) at the proteolytic cleavage site in the viral binding and fusion protein, hemagglutinin (HA), resulting in cleavage and activation of HA by ubiquitously expressed furin-like proteases. The ensuing HPAIVs disseminate systemically in gallinaceous poultry, are endotheliotropic, and cause hemorrhagic disease with high mortality. HPAIV infections in wild aquatic birds are generally milder, often asymptomatic, and generally not associated with systemic dissemination nor endotheliotropic. As MBCS cleavage by host proteases is the main virulence determinant of HPAIVs in poultry, we set out to determine whether cleavage of HPAIV HA by host proteases might influence the observed species-specific pathogenesis and tropism. Here, we sequenced, cloned, and characterized the expression and functionality of duck furin. The furin sequence was strongly conserved between chickens and ducks, and duck furin cleaved HPAIV and tetrabasic HA in an overexpression system, confirming its functionality. Furin was expressed ubiquitously and to similar extents in duck and chicken tissues, including in primary duck endothelial cells, which sustained multicycle replication of H5N1 HPAIV but not LPAIVs. In conclusion, differences in furin-like protease biology between wild aquatic birds and gallinaceous poultry are unlikely to largely determine the stark differences observed in species-specific pathogenesis of HPAIVs. IMPORTANCE HPAIV outbreaks are a global concern due to the health risks for poultry, wildlife, and humans and their major economic impact. The number of LPAIV-to-HPAIV conversions, which is associated with spillover from wild birds to poultry, has been increasing over recent decades. Furthermore, H5 HPAIVs from the A/goose/Guangdong/1/96 lineage have been circulating in migratory birds, causing increasingly frequent epizootics in poultry and wild birds. Milder symptoms in migratory birds allow for dispersion of HPAIVs over long distances, justifying the importance of understanding the pathogenesis of HPAIVs in wild birds. Here, we examined whether host proteases are a likely candidate to explain some differences in the degree of HPAIV systemic dissemination between avian species. This is the first report to show that furin function and expression is comparable between chickens and ducks, which renders the hypothesis unlikely that furin-like protease differences influence the HPAIV species-specific pathogenesis and tropism.
Collapse
Affiliation(s)
- Anja C. M. de Bruin
- Department of Viroscience, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Monique I. Spronken
- Department of Viroscience, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Theo M. Bestebroer
- Department of Viroscience, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Ron A. M. Fouchier
- Department of Viroscience, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Mathilde Richard
- Department of Viroscience, Erasmus Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
21
|
Siegers JY, Ferreri L, Eggink D, Veldhuis Kroeze EJB, te Velthuis AJW, van de Bildt M, Leijten L, van Run P, de Meulder D, Bestebroer T, Richard M, Kuiken T, Lowen AC, Herfst S, van Riel D. Evolution of highly pathogenic H5N1 influenza A virus in the central nervous system of ferrets. PLoS Pathog 2023; 19:e1011214. [PMID: 36897923 PMCID: PMC10032531 DOI: 10.1371/journal.ppat.1011214] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 03/22/2023] [Accepted: 02/16/2023] [Indexed: 03/11/2023] Open
Abstract
Central nervous system (CNS) disease is the most common extra-respiratory tract complication of influenza A virus infections in humans. Remarkably, zoonotic highly pathogenic avian influenza (HPAI) H5N1 virus infections are more often associated with CNS disease than infections with seasonal influenza viruses. Evolution of avian influenza viruses has been extensively studied in the context of respiratory infections, but evolutionary processes in CNS infections remain poorly understood. We have previously observed that the ability of HPAI A/Indonesia/5/2005 (H5N1) virus to replicate in and spread throughout the CNS varies widely between individual ferrets. Based on these observations, we sought to understand the impact of entrance into and replication within the CNS on the evolutionary dynamics of virus populations. First, we identified and characterized three substitutions-PB1 E177G and A652T and NP I119M - detected in the CNS of a ferret infected with influenza A/Indonesia/5/2005 (H5N1) virus that developed a severe meningo-encephalitis. We found that some of these substitutions, individually or collectively, resulted in increased polymerase activity in vitro. Nevertheless, in vivo, the virus bearing the CNS-associated mutations retained its capacity to infect the CNS but showed reduced dispersion to other anatomical sites. Analyses of viral diversity in the nasal turbinate and olfactory bulb revealed the lack of a genetic bottleneck acting on virus populations accessing the CNS via this route. Furthermore, virus populations bearing the CNS-associated mutations showed signs of positive selection in the brainstem. These features of dispersion to the CNS are consistent with the action of selective processes, underlining the potential for H5N1 viruses to adapt to the CNS.
Collapse
Affiliation(s)
- Jurre Y. Siegers
- Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands
| | - Lucas Ferreri
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Dirk Eggink
- Department of Medical Microbiology, Amsterdam UMC, Amsterdam, The Netherlands
| | | | - Aartjan J. W. te Velthuis
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | | | - Lonneke Leijten
- Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands
| | - Peter van Run
- Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands
| | | | - Theo Bestebroer
- Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands
| | - Mathilde Richard
- Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands
| | - Thijs Kuiken
- Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands
| | - Anice C. Lowen
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Sander Herfst
- Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands
| | - Debby van Riel
- Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands
| |
Collapse
|
22
|
Foret-Lucas C, Figueroa T, Bertin A, Bessière P, Lucas A, Bergonnier D, Wasniewski M, Servat A, Tessier A, Lezoualc’h F, Volmer R. EPAC1 Pharmacological Inhibition with AM-001 Prevents SARS-CoV-2 and Influenza A Virus Replication in Cells. Viruses 2023; 15:319. [PMID: 36851533 PMCID: PMC9965159 DOI: 10.3390/v15020319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 01/24/2023] Open
Abstract
The exceptional impact of the COVID-19 pandemic has stimulated an intense search for antiviral molecules. Host-targeted antiviral molecules have the potential of presenting broad-spectrum antiviral activity and are also considered as less likely to select for resistant viruses. In this study, we investigated the antiviral activity exerted by AM-001, a specific pharmacological inhibitor of EPAC1, a host exchange protein directly activated by cyclic AMP (cAMP). The cAMP-sensitive protein, EPAC1 regulates various physiological and pathological processes but its role in SARS-CoV-2 and influenza A virus infection has not yet been studied. Here, we provide evidence that the EPAC1 specific inhibitor AM-001 exerts potent antiviral activity against SARS-CoV-2 in the human lung Calu-3 cell line and the African green monkey Vero cell line. We observed a concentration-dependent inhibition of SARS-CoV-2 infectious viral particles and viral RNA release in the supernatants of AM-001 treated cells that was not associated with a significant impact on cellular viability. Furthermore, we identified AM-001 as an inhibitor of influenza A virus in Calu-3 cells. Altogether these results identify EPAC1 inhibition as a promising therapeutic target against viral infections.
Collapse
Affiliation(s)
- Charlotte Foret-Lucas
- Ecole Nationale Vétérinaire de Toulouse, Université de Toulouse, ENVT, INRAE, IHAP, UMR 1225, 31300 Toulouse, France
| | - Thomas Figueroa
- Ecole Nationale Vétérinaire de Toulouse, Université de Toulouse, ENVT, INRAE, IHAP, UMR 1225, 31300 Toulouse, France
| | - Alexandre Bertin
- Ecole Nationale Vétérinaire de Toulouse, Université de Toulouse, ENVT, INRAE, IHAP, UMR 1225, 31300 Toulouse, France
| | - Pierre Bessière
- Ecole Nationale Vétérinaire de Toulouse, Université de Toulouse, ENVT, INRAE, IHAP, UMR 1225, 31300 Toulouse, France
| | - Alexandre Lucas
- Institute of Metabolic and Cardiovascular Diseases, INSERM, Université de Toulouse, UMR 1297-I2MC, 31432 Toulouse, France
| | - Dorian Bergonnier
- Institute of Metabolic and Cardiovascular Diseases, INSERM, Université de Toulouse, UMR 1297-I2MC, 31432 Toulouse, France
| | - Marine Wasniewski
- Nancy Laboratory for Rabies and Wildlife, ANSES, Lyssavirus Unit, 54220 Malzéville, France
| | - Alexandre Servat
- Nancy Laboratory for Rabies and Wildlife, ANSES, Lyssavirus Unit, 54220 Malzéville, France
| | - Arnaud Tessier
- Nantes Université, CNRS, CEISAM, UMR 6230, 44000 Nantes, France
| | - Frank Lezoualc’h
- Institute of Metabolic and Cardiovascular Diseases, INSERM, Université de Toulouse, UMR 1297-I2MC, 31432 Toulouse, France
| | - Romain Volmer
- Ecole Nationale Vétérinaire de Toulouse, Université de Toulouse, ENVT, INRAE, IHAP, UMR 1225, 31300 Toulouse, France
| |
Collapse
|
23
|
Marques M, Ferreira AR, Ribeiro D. Determining the Importance of Peroxisomal Proteins for Viral Infections in Cultured Mammalian Cells. Methods Mol Biol 2023; 2643:309-319. [PMID: 36952194 DOI: 10.1007/978-1-0716-3048-8_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
Peroxisomes have recently been shown to play important roles in the context of viral infections. However, further and more detailed studies should be performed to unravel the specific mechanisms involved. The analysis of the relevance of particular peroxisomal components, such as peroxisomal proteins, for viral infections can be performed by comparing the production of new virus particles in the absence and presence of those specific components. Different methodologies are used to quantify the production of infectious virus particles, depending on the virus, cell type, and the specific characteristics of the viral infection to be analyzed. Here we provide a detailed protocol to study the importance of a putative peroxisomal protein on infection by viruses that induce the death of their host cells. We use the influenza A virus (IAV) infection in A549 cells as a model, and the quantification of the newly produced infectious virus particles is performed by a plaque assay.
Collapse
Affiliation(s)
- Mariana Marques
- Institute of Biomedicine (iBiMED) and Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - Ana Rita Ferreira
- Institute of Biomedicine (iBiMED) and Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - Daniela Ribeiro
- Institute of Biomedicine (iBiMED) and Department of Medical Sciences, University of Aveiro, Aveiro, Portugal.
| |
Collapse
|
24
|
Diebold O, Gonzalez V, Venditti L, Sharp C, Blake RA, Tan WS, Stevens J, Caddy S, Digard P, Borodavka A, Gaunt E. Using Species a Rotavirus Reverse Genetics to Engineer Chimeric Viruses Expressing SARS-CoV-2 Spike Epitopes. J Virol 2022; 96:e0048822. [PMID: 35758692 PMCID: PMC9327695 DOI: 10.1128/jvi.00488-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/31/2022] [Indexed: 02/02/2023] Open
Abstract
Species A rotavirus (RVA) vaccines based on live attenuated viruses are used worldwide in humans. The recent establishment of a reverse genetics system for rotoviruses (RVs) has opened the possibility of engineering chimeric viruses expressing heterologous peptides from other viral or microbial species in order to develop polyvalent vaccines. We tested the feasibility of this concept by two approaches. First, we inserted short SARS-CoV-2 spike peptides into the hypervariable region of the simian RV SA11 strain viral protein (VP) 4. Second, we fused the receptor binding domain (RBD) of the SARS-CoV-2 spike protein, or the shorter receptor binding motif (RBM) nested within the RBD, to the C terminus of nonstructural protein (NSP) 3 of the bovine RV RF strain, with or without an intervening Thosea asigna virus 2A (T2A) peptide. Mutating the hypervariable region of SA11 VP4 impeded viral replication, and for these mutants, no cross-reactivity with spike antibodies was detected. To rescue NSP3 mutants, we established a plasmid-based reverse genetics system for the bovine RV RF strain. Except for the RBD mutant that demonstrated a rescue defect, all NSP3 mutants delivered endpoint infectivity titers and exhibited replication kinetics comparable to that of the wild-type virus. In ELISAs, cell lysates of an NSP3 mutant expressing the RBD peptide showed cross-reactivity with a SARS-CoV-2 RBD antibody. 3D bovine gut enteroids were susceptible to infection by all NSP3 mutants, but cross-reactivity with SARS-CoV-2 RBD antibody was only detected for the RBM mutant. The tolerance of large SARS-CoV-2 peptide insertions at the C terminus of NSP3 in the presence of T2A element highlights the potential of this approach for the development of vaccine vectors targeting multiple enteric pathogens simultaneously. IMPORTANCE We explored the use of rotaviruses (RVs) to express heterologous peptides, using SARS-CoV-2 as an example. Small SARS-CoV-2 peptide insertions (<34 amino acids) into the hypervariable region of the viral protein 4 (VP4) of RV SA11 strain resulted in reduced viral titer and replication, demonstrating a limited tolerance for peptide insertions at this site. To test the RV RF strain for its tolerance for peptide insertions, we constructed a reverse genetics system. NSP3 was C-terminally tagged with SARS-CoV-2 spike peptides of up to 193 amino acids in length. With a T2A-separated 193 amino acid tag on NSP3, there was no significant effect on the viral rescue efficiency, endpoint titer, and replication kinetics. Tagged NSP3 elicited cross-reactivity with SARS-CoV-2 spike antibodies in ELISA. We highlight the potential for development of RV vaccine vectors targeting multiple enteric pathogens simultaneously.
Collapse
Affiliation(s)
- Ola Diebold
- Infection and Immunity Division, Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian, United Kingdom
| | - Victoria Gonzalez
- Infection and Immunity Division, Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian, United Kingdom
| | - Luca Venditti
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Colin Sharp
- Infection and Immunity Division, Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian, United Kingdom
| | - Rosemary A. Blake
- Infection and Immunity Division, Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian, United Kingdom
| | - Wenfang S. Tan
- Infection and Immunity Division, Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian, United Kingdom
| | - Joanne Stevens
- Infection and Immunity Division, Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian, United Kingdom
| | - Sarah Caddy
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Paul Digard
- Infection and Immunity Division, Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian, United Kingdom
| | - Alexander Borodavka
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Eleanor Gaunt
- Infection and Immunity Division, Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian, United Kingdom
| |
Collapse
|
25
|
Choudhury NR, Trus I, Heikel G, Wolczyk M, Szymanski J, Bolembach A, Dos Santos Pinto RM, Smith N, Trubitsyna M, Gaunt E, Digard P, Michlewski G. TRIM25 inhibits influenza A virus infection, destabilizes viral mRNA, but is redundant for activating the RIG-I pathway. Nucleic Acids Res 2022; 50:7097-7114. [PMID: 35736141 PMCID: PMC9262604 DOI: 10.1093/nar/gkac512] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 05/26/2022] [Accepted: 05/31/2022] [Indexed: 12/24/2022] Open
Abstract
The E3 ubiquitin ligase TRIM25 is a key factor in the innate immune response to RNA viruses. TRIM25 has been shown to play a role in the retinoic-acid-inducible gene-1 (RIG-I) pathway, which triggers expression of type 1 interferons upon viral infection. We and others have shown that TRIM25 is an RNA-binding protein; however, the role of TRIM25 RNA-binding in the innate immune response to RNA viruses is unclear. Here, we demonstrate that influenza A virus (IAV A/PR/8/34_NS1(R38A/K41A)) infection is inhibited by TRIM25. Surprisingly, previously identified RNA-binding deficient mutant TRIM25ΔRBD and E3 ubiquitin ligase mutant TRIM25ΔRING, which lack E3 ubiquitin ligase activity, still inhibited IAV replication. Furthermore, we show that in human-derived cultured cells, activation of the RIG-I/interferon type 1 pathway mediated by either an IAV-derived 5'-triphosphate RNA or by IAV itself does not require TRIM25 activity. Additionally, we present new evidence that instead of TRIM25 directly inhibiting IAV transcription it binds and destabilizes IAV mRNAs. Finally, we show that direct tethering of TRIM25 to RNA is sufficient to downregulate the targeted RNA. In summary, our results uncover a potential mechanism that TRIM25 uses to inhibit IAV infection and regulate RNA metabolism.
Collapse
Affiliation(s)
| | | | | | - Magdalena Wolczyk
- Dioscuri Centre for RNA-Protein Interactions in Human Health and Disease, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Jacek Szymanski
- Dioscuri Centre for RNA-Protein Interactions in Human Health and Disease, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Agnieszka Bolembach
- Dioscuri Centre for RNA-Protein Interactions in Human Health and Disease, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | | | - Nikki Smith
- The Roslin Institute, Easter Bush, University of Edinburgh, Edinburgh, UK
| | - Maryia Trubitsyna
- Institute of Quantitative Biology, Biochemistry and Biotechnology, University of Edinburgh, Roger Land Building, Edinburgh, UK
| | - Eleanor Gaunt
- The Roslin Institute, Easter Bush, University of Edinburgh, Edinburgh, UK
| | - Paul Digard
- The Roslin Institute, Easter Bush, University of Edinburgh, Edinburgh, UK
| | | |
Collapse
|
26
|
Craig N, Fletcher SL, Daniels A, Newman C, O’Shea M, Tan WS, Warr A, Tait-Burkard C. Direct Lysis RT-qPCR of SARS-CoV-2 in Cell Culture Supernatant Allows for Fast and Accurate Quantification. Viruses 2022; 14:v14030508. [PMID: 35336915 PMCID: PMC8949636 DOI: 10.3390/v14030508] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/16/2022] [Accepted: 02/25/2022] [Indexed: 11/16/2022] Open
Abstract
Studying the entire virus replication cycle of SARS-CoV-2 is essential to identify the host factors involved and treatments to combat infection. Quantification of released virions often requires lengthy procedures, whereas quantification of viral RNA in supernatant is faster and applicable to clinical isolates. Viral RNA purification is expensive in terms of time and resources, and is often unsuitable for high-throughput screening. Direct lysis protocols were explored for patient swab samples, but the lack of virus inactivation, cost, sensitivity, and accuracy is hampering their application and usefulness for in vitro studies. Here, we show a highly sensitive, accurate, fast, and cheap direct lysis RT-qPCR method for quantification of SARS-CoV-2 in culture supernatant. This method inactivates the virus and permits detection limits of 0.043 TCID50 virus and <1.89 copy RNA template per reaction. Comparing direct lysis with RNA extraction, a mean difference of +0.69 ± 0.56 cycles was observed. Application of the method to established qPCR methods for RSV (-ve RNA), IAV (segmented -ve RNA), and BHV (dsDNA) showed wider applicability to other enveloped viruses, whereby IAV showed poorer sensitivity. This shows that accurate quantification of SARS-CoV-2 and other enveloped viruses can be achieved using direct lysis protocols, facilitating a wide range of high- and low-throughput applications.
Collapse
Affiliation(s)
- Nicky Craig
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK; (N.C.); (S.L.F.); (A.D.); (C.N.); (M.O.); (W.S.T.); (A.W.)
| | - Sarah L. Fletcher
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK; (N.C.); (S.L.F.); (A.D.); (C.N.); (M.O.); (W.S.T.); (A.W.)
| | - Alison Daniels
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK; (N.C.); (S.L.F.); (A.D.); (C.N.); (M.O.); (W.S.T.); (A.W.)
- Division of Infection Medicine, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Caitlin Newman
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK; (N.C.); (S.L.F.); (A.D.); (C.N.); (M.O.); (W.S.T.); (A.W.)
| | - Marie O’Shea
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK; (N.C.); (S.L.F.); (A.D.); (C.N.); (M.O.); (W.S.T.); (A.W.)
| | - Wenfang Spring Tan
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK; (N.C.); (S.L.F.); (A.D.); (C.N.); (M.O.); (W.S.T.); (A.W.)
| | - Amanda Warr
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK; (N.C.); (S.L.F.); (A.D.); (C.N.); (M.O.); (W.S.T.); (A.W.)
| | - Christine Tait-Burkard
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK; (N.C.); (S.L.F.); (A.D.); (C.N.); (M.O.); (W.S.T.); (A.W.)
- Correspondence:
| |
Collapse
|
27
|
Innate immune sensing of influenza A viral RNA through IFI16 promotes pyroptotic cell death. iScience 2022; 25:103714. [PMID: 35072006 PMCID: PMC8762390 DOI: 10.1016/j.isci.2021.103714] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 10/04/2021] [Accepted: 12/29/2021] [Indexed: 11/22/2022] Open
Abstract
Programmed cell death pathways are triggered by various stresses or stimuli, including viral infections. The mechanism underlying the regulation of these pathways upon Influenza A virus (IAV) infection is not well characterized. We report that a cytosolic DNA sensor IFI16 is essential for the activation of programmed cell death pathways in IAV infected cells. We have identified that IFI16 functions as an RNA sensor for the influenza A virus by interacting with genomic RNA. The activation of IFI16 triggers the production of type I, III interferons, and also pro-inflammatory cytokines via the STING-TBK1 and Pro-caspase-1 signaling axis, thereby promoting cell death (apoptosis and pyroptosis in IAV infected cells). On the contrary, IFI16 knockdown cells showed reduced inflammatory responses and also prevented cell mortality during IAV infection. Collectively, these results demonstrate the pivotal role of IFI16-mediated IAV sensing and its essential role in activating programmed cell death pathways. DNA sensor IFI16 senses Influenza viral RNA IFI16 induce pyroptosis in Influenza A Virus (IAV) infected cells IFI16 interacts with IAV RNA and restricts viral replication IFI16 promotes overall antiviral state during IAV infection
Collapse
|
28
|
de Bruin ACM, Spronken MI, Bestebroer TM, Fouchier RAM, Richard M. Reduced Replication of Highly Pathogenic Avian Influenza Virus in Duck Endothelial Cells Compared to Chicken Endothelial Cells Is Associated with Stronger Antiviral Responses. Viruses 2022; 14:v14010165. [PMID: 35062369 PMCID: PMC8779112 DOI: 10.3390/v14010165] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 12/11/2022] Open
Abstract
Highly pathogenic avian influenza viruses (HPAIVs) cause fatal systemic infections in chickens, which are associated with endotheliotropism. HPAIV infections in wild birds are generally milder and not endotheliotropic. Here, we aimed to elucidate the species-specific endotheliotropism of HPAIVs using primary chicken and duck aortic endothelial cells (chAEC and dAEC respectively). Viral replication kinetics and host responses were assessed in chAEC and dAEC upon inoculation with HPAIV H5N1 and compared to embryonic fibroblasts. Although dAEC were susceptible to HPAIV upon inoculation at high multiplicity of infection, HPAIV replicated to lower levels in dAEC than chAEC during multi-cycle replication. The susceptibility of duck embryonic endothelial cells to HPAIV was confirmed in embryos. Innate immune responses upon HPAIV inoculation differed between chAEC, dAEC, and embryonic fibroblasts. Expression of the pro-inflammatory cytokine IL8 increased in chicken cells but decreased in dAEC. Contrastingly, the induction of antiviral responses was stronger in dAEC than in chAEC, and chicken and duck fibroblasts. Taken together, these data demonstrate that although duck endothelial cells are permissive to HPAIV infection, they display markedly different innate immune responses than chAEC and embryonic fibroblasts. These differences may contribute to the species-dependent differences in endotheliotropism and consequently HPAIV pathogenesis.
Collapse
|
29
|
Wickenhagen A, Sugrue E, Lytras S, Kuchi S, Noerenberg M, Turnbull ML, Loney C, Herder V, Allan J, Jarmson I, Cameron-Ruiz N, Varjak M, Pinto RM, Lee JY, Iselin L, Palmalux N, Stewart DG, Swingler S, Greenwood EJD, Crozier TWM, Gu Q, Davies EL, Clohisey S, Wang B, Trindade Maranhão Costa F, Freire Santana M, de Lima Ferreira LC, Murphy L, Fawkes A, Meynert A, Grimes G, ISARIC4C Investigators, Da Silva Filho JL, Marti M, Hughes J, Stanton RJ, Wang ECY, Ho A, Davis I, Jarrett RF, Castello A, Robertson DL, Semple MG, Openshaw PJM, Palmarini M, Lehner PJ, Baillie JK, Rihn SJ, Wilson SJ. A prenylated dsRNA sensor protects against severe COVID-19. Science 2021; 374:eabj3624. [PMID: 34581622 PMCID: PMC7612834 DOI: 10.1126/science.abj3624] [Citation(s) in RCA: 156] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 09/23/2021] [Indexed: 12/11/2022]
Abstract
Inherited genetic factors can influence the severity of COVID-19, but the molecular explanation underpinning a genetic association is often unclear. Intracellular antiviral defenses can inhibit the replication of viruses and reduce disease severity. To better understand the antiviral defenses relevant to COVID-19, we used interferon-stimulated gene (ISG) expression screening to reveal that 2′-5′-oligoadenylate synthetase 1 (OAS1), through ribonuclease L, potently inhibits severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We show that a common splice-acceptor single-nucleotide polymorphism (Rs10774671) governs whether patients express prenylated OAS1 isoforms that are membrane-associated and sense-specific regions of SARS-CoV-2 RNAs or if they only express cytosolic, nonprenylated OAS1 that does not efficiently detect SARS-CoV-2. In hospitalized patients, expression of prenylated OAS1 was associated with protection from severe COVID-19, suggesting that this antiviral defense is a major component of a protective antiviral response.
Collapse
Affiliation(s)
- Arthur Wickenhagen
- Medical Research Council–University of Glasgow Centre for Virus Research (CVR), Institute of Infection, Inflammation and Immunity, University of Glasgow, Glasgow, UK
| | - Elena Sugrue
- Medical Research Council–University of Glasgow Centre for Virus Research (CVR), Institute of Infection, Inflammation and Immunity, University of Glasgow, Glasgow, UK
| | - Spyros Lytras
- Medical Research Council–University of Glasgow Centre for Virus Research (CVR), Institute of Infection, Inflammation and Immunity, University of Glasgow, Glasgow, UK
| | - Srikeerthana Kuchi
- Medical Research Council–University of Glasgow Centre for Virus Research (CVR), Institute of Infection, Inflammation and Immunity, University of Glasgow, Glasgow, UK
| | - Marko Noerenberg
- Medical Research Council–University of Glasgow Centre for Virus Research (CVR), Institute of Infection, Inflammation and Immunity, University of Glasgow, Glasgow, UK
| | - Matthew L. Turnbull
- Medical Research Council–University of Glasgow Centre for Virus Research (CVR), Institute of Infection, Inflammation and Immunity, University of Glasgow, Glasgow, UK
| | - Colin Loney
- Medical Research Council–University of Glasgow Centre for Virus Research (CVR), Institute of Infection, Inflammation and Immunity, University of Glasgow, Glasgow, UK
| | - Vanessa Herder
- Medical Research Council–University of Glasgow Centre for Virus Research (CVR), Institute of Infection, Inflammation and Immunity, University of Glasgow, Glasgow, UK
| | - Jay Allan
- Medical Research Council–University of Glasgow Centre for Virus Research (CVR), Institute of Infection, Inflammation and Immunity, University of Glasgow, Glasgow, UK
| | - Innes Jarmson
- Medical Research Council–University of Glasgow Centre for Virus Research (CVR), Institute of Infection, Inflammation and Immunity, University of Glasgow, Glasgow, UK
| | - Natalia Cameron-Ruiz
- Medical Research Council–University of Glasgow Centre for Virus Research (CVR), Institute of Infection, Inflammation and Immunity, University of Glasgow, Glasgow, UK
| | - Margus Varjak
- Medical Research Council–University of Glasgow Centre for Virus Research (CVR), Institute of Infection, Inflammation and Immunity, University of Glasgow, Glasgow, UK
| | - Rute M. Pinto
- Medical Research Council–University of Glasgow Centre for Virus Research (CVR), Institute of Infection, Inflammation and Immunity, University of Glasgow, Glasgow, UK
| | - Jeffrey Y. Lee
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Louisa Iselin
- Medical Research Council–University of Glasgow Centre for Virus Research (CVR), Institute of Infection, Inflammation and Immunity, University of Glasgow, Glasgow, UK
- Department of Biochemistry, University of Oxford, Oxford, UK
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Natasha Palmalux
- Medical Research Council–University of Glasgow Centre for Virus Research (CVR), Institute of Infection, Inflammation and Immunity, University of Glasgow, Glasgow, UK
| | - Douglas G. Stewart
- Medical Research Council–University of Glasgow Centre for Virus Research (CVR), Institute of Infection, Inflammation and Immunity, University of Glasgow, Glasgow, UK
| | - Simon Swingler
- Medical Research Council–University of Glasgow Centre for Virus Research (CVR), Institute of Infection, Inflammation and Immunity, University of Glasgow, Glasgow, UK
| | - Edward J. D. Greenwood
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Cambridge, UK
| | - Thomas W. M. Crozier
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Cambridge, UK
| | - Quan Gu
- Medical Research Council–University of Glasgow Centre for Virus Research (CVR), Institute of Infection, Inflammation and Immunity, University of Glasgow, Glasgow, UK
| | - Emma L. Davies
- Medical Research Council–University of Glasgow Centre for Virus Research (CVR), Institute of Infection, Inflammation and Immunity, University of Glasgow, Glasgow, UK
| | - Sara Clohisey
- Roslin Institute, University of Edinburgh, Edinburgh, UK
| | - Bo Wang
- Roslin Institute, University of Edinburgh, Edinburgh, UK
| | - Fabio Trindade Maranhão Costa
- Laboratory of Tropical Diseases, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Sao Paolo, Brazil
| | - Monique Freire Santana
- Department of Education and Research, Oncology Control Centre of Amazonas State (FCECON), Manaus, Amazonas, Brazil
| | - Luiz Carlos de Lima Ferreira
- Postgraduate Program in Tropical Medicine, Tropical Medicine Foundation Dr. Heitor Vieira Dourado, Manaus, Amazonas, Brazil
| | - Lee Murphy
- Edinburgh Clinical Research Facility, University of Edinburgh, Western General Hospital, Edinburgh, UK
| | - Angie Fawkes
- Edinburgh Clinical Research Facility, University of Edinburgh, Western General Hospital, Edinburgh, UK
| | - Alison Meynert
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, UK
| | - Graeme Grimes
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, UK
| | - ISARIC4C Investigators
- Medical Research Council–University of Glasgow Centre for Virus Research (CVR), Institute of Infection, Inflammation and Immunity, University of Glasgow, Glasgow, UK
- Department of Biochemistry, University of Oxford, Oxford, UK
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Cambridge, UK
- Roslin Institute, University of Edinburgh, Edinburgh, UK
- Laboratory of Tropical Diseases, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Sao Paolo, Brazil
- Department of Education and Research, Oncology Control Centre of Amazonas State (FCECON), Manaus, Amazonas, Brazil
- Postgraduate Program in Tropical Medicine, Tropical Medicine Foundation Dr. Heitor Vieira Dourado, Manaus, Amazonas, Brazil
- Edinburgh Clinical Research Facility, University of Edinburgh, Western General Hospital, Edinburgh, UK
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, UK
- Wellcome Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
- Division of Infection & Immunity, Cardiff University, Cardiff, UK
- NIHR Health Protection Research Unit for Emerging and Zoonotic Infections, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
- Respiratory Medicine, Alder Hey Children’s Hospital, Liverpool, UK
- National Heart and Lung Institute, Imperial College London, London, UK
- Imperial College Healthcare, National Health Service Trust London, London, UK
- Intensive Care Unit, Royal Infirmary of Edinburgh, Edinburgh, UK
| | - Joao Luiz Da Silva Filho
- Wellcome Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Matthias Marti
- Wellcome Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Joseph Hughes
- Medical Research Council–University of Glasgow Centre for Virus Research (CVR), Institute of Infection, Inflammation and Immunity, University of Glasgow, Glasgow, UK
| | | | - Eddie C. Y. Wang
- Division of Infection & Immunity, Cardiff University, Cardiff, UK
| | - Antonia Ho
- Medical Research Council–University of Glasgow Centre for Virus Research (CVR), Institute of Infection, Inflammation and Immunity, University of Glasgow, Glasgow, UK
| | - Ilan Davis
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Ruth F. Jarrett
- Medical Research Council–University of Glasgow Centre for Virus Research (CVR), Institute of Infection, Inflammation and Immunity, University of Glasgow, Glasgow, UK
| | - Alfredo Castello
- Medical Research Council–University of Glasgow Centre for Virus Research (CVR), Institute of Infection, Inflammation and Immunity, University of Glasgow, Glasgow, UK
| | - David L. Robertson
- Medical Research Council–University of Glasgow Centre for Virus Research (CVR), Institute of Infection, Inflammation and Immunity, University of Glasgow, Glasgow, UK
| | - Malcolm G. Semple
- NIHR Health Protection Research Unit for Emerging and Zoonotic Infections, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
- Respiratory Medicine, Alder Hey Children’s Hospital, Liverpool, UK
| | - Peter J. M. Openshaw
- National Heart and Lung Institute, Imperial College London, London, UK
- Imperial College Healthcare, National Health Service Trust London, London, UK
| | - Massimo Palmarini
- Medical Research Council–University of Glasgow Centre for Virus Research (CVR), Institute of Infection, Inflammation and Immunity, University of Glasgow, Glasgow, UK
| | - Paul J. Lehner
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Cambridge, UK
| | - J. Kenneth Baillie
- Roslin Institute, University of Edinburgh, Edinburgh, UK
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, UK
- Intensive Care Unit, Royal Infirmary of Edinburgh, Edinburgh, UK
| | - Suzannah J. Rihn
- Medical Research Council–University of Glasgow Centre for Virus Research (CVR), Institute of Infection, Inflammation and Immunity, University of Glasgow, Glasgow, UK
| | - Sam J. Wilson
- Medical Research Council–University of Glasgow Centre for Virus Research (CVR), Institute of Infection, Inflammation and Immunity, University of Glasgow, Glasgow, UK
| |
Collapse
|
30
|
Ulferts R, Marcassa E, Timimi L, Lee LC, Daley A, Montaner B, Turner SD, Florey O, Baillie JK, Beale R. Subtractive CRISPR screen identifies the ATG16L1/vacuolar ATPase axis as required for non-canonical LC3 lipidation. Cell Rep 2021; 37:109899. [PMID: 34706226 PMCID: PMC8567314 DOI: 10.1016/j.celrep.2021.109899] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 04/08/2021] [Accepted: 10/06/2021] [Indexed: 11/25/2022] Open
Abstract
Although commonly associated with autophagosomes, LC3 can also be recruited to membranes by covalent lipidation in a variety of non-canonical contexts. These include responses to ionophores such as the M2 proton channel of influenza A virus. We report a subtractive CRISPR screen that identifies factors required for non-canonical LC3 lipidation. As well as the enzyme complexes directly responsible for LC3 lipidation in all contexts, we show the RALGAP complex is important for M2-induced, but not ionophore drug-induced, LC3 lipidation. In contrast, ATG4D is responsible for LC3 recycling in M2-induced and basal LC3 lipidation. Identification of a vacuolar ATPase subunit in the screen suggests a common mechanism for non-canonical LC3 recruitment. Influenza-induced and ionophore drug-induced LC3 lipidation lead to association of the vacuolar ATPase and ATG16L1 and can be antagonized by Salmonella SopF. LC3 recruitment to erroneously neutral compartments may therefore represent a response to damage caused by diverse invasive pathogens.
Collapse
Affiliation(s)
- Rachel Ulferts
- The Francis Crick Institute, London, UK; Department of Pathology, University of Cambridge, Cambridge, UK.
| | | | | | | | - Andrew Daley
- Department of Pathology, University of Cambridge, Cambridge, UK
| | | | | | - Oliver Florey
- Signalling Programme, Babraham Institute, Cambridge, UK
| | | | - Rupert Beale
- The Francis Crick Institute, London, UK; Department of Pathology, University of Cambridge, Cambridge, UK; Division of Medicine, UCL, London, UK.
| |
Collapse
|
31
|
Dixon CR, Malik P, de las Heras JI, Saiz-Ros N, de Lima Alves F, Tingey M, Gaunt E, Richardson AC, Kelly DA, Goldberg MW, Towers GJ, Yang W, Rappsilber J, Digard P, Schirmer EC. STING nuclear partners contribute to innate immune signaling responses. iScience 2021; 24:103055. [PMID: 34541469 PMCID: PMC8436130 DOI: 10.1016/j.isci.2021.103055] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 07/19/2021] [Accepted: 08/25/2021] [Indexed: 02/08/2023] Open
Abstract
STimulator of INterferon Genes (STING) is an adaptor for cytoplasmic DNA sensing by cGAMP/cGAS that helps trigger innate immune responses (IIRs). Although STING is mostly localized in the ER, we find a separate inner nuclear membrane pool of STING that increases mobility and redistributes to the outer nuclear membrane upon IIR stimulation by transfected dsDNA or dsRNA mimic poly(I:C). Immunoprecipitation of STING from isolated nuclear envelopes coupled with mass spectrometry revealed a distinct nuclear envelope-STING proteome consisting of known nuclear membrane proteins and enriched in DNA- and RNA-binding proteins. Seventeen of these nuclear envelope STING partners are known to bind direct interactors of IRF3/7 transcription factors, and testing a subset of these revealed STING partners SYNCRIP, MEN1, DDX5, snRNP70, RPS27a, and AATF as novel modulators of dsDNA-triggered IIRs. Moreover, we find that SYNCRIP is a novel antagonist of the RNA virus, influenza A, potentially shedding light on reports of STING inhibition of RNA viruses.
Collapse
Affiliation(s)
- Charles R. Dixon
- Institute of Cell Biology, University of Edinburgh, Kings Buildings, Swann 5.22, Mayfield Road, Edinburgh EH9 3BF, UK
| | - Poonam Malik
- Institute of Cell Biology, University of Edinburgh, Kings Buildings, Swann 5.22, Mayfield Road, Edinburgh EH9 3BF, UK
| | - Jose I. de las Heras
- Institute of Cell Biology, University of Edinburgh, Kings Buildings, Swann 5.22, Mayfield Road, Edinburgh EH9 3BF, UK
| | - Natalia Saiz-Ros
- Institute of Cell Biology, University of Edinburgh, Kings Buildings, Swann 5.22, Mayfield Road, Edinburgh EH9 3BF, UK
| | - Flavia de Lima Alves
- Institute of Cell Biology, University of Edinburgh, Kings Buildings, Swann 5.22, Mayfield Road, Edinburgh EH9 3BF, UK
| | - Mark Tingey
- Department of Biology, Temple University, Philadelphia 19121, USA
| | - Eleanor Gaunt
- Division of Infection and Immunity, Roslin Institute, University of Edinburgh, Edinburgh EH25 9RG, UK
| | | | - David A. Kelly
- Institute of Cell Biology, University of Edinburgh, Kings Buildings, Swann 5.22, Mayfield Road, Edinburgh EH9 3BF, UK
| | - Martin W. Goldberg
- School of Biological and Biomedical Sciences, Durham University, Durham DH1 3LE, UK
| | - Greg J. Towers
- Department of Infection and Immunity, University College London, London WC1E 6BT, UK
| | - Weidong Yang
- Department of Biology, Temple University, Philadelphia 19121, USA
| | - Juri Rappsilber
- Institute of Cell Biology, University of Edinburgh, Kings Buildings, Swann 5.22, Mayfield Road, Edinburgh EH9 3BF, UK
- Department of Bioanalytics, Institute of Biotechnology, Technische Universitat Berlin, 13355 Berlin, Germany
| | - Paul Digard
- Division of Infection and Immunity, Roslin Institute, University of Edinburgh, Edinburgh EH25 9RG, UK
| | - Eric C. Schirmer
- Institute of Cell Biology, University of Edinburgh, Kings Buildings, Swann 5.22, Mayfield Road, Edinburgh EH9 3BF, UK
| |
Collapse
|
32
|
Herfst S, Zhang J, Richard M, McBride R, Lexmond P, Bestebroer TM, Spronken MIJ, de Meulder D, van den Brand JM, Rosu ME, Martin SR, Gamblin SJ, Xiong X, Peng W, Bodewes R, van der Vries E, Osterhaus ADME, Paulson JC, Skehel JJ, Fouchier RAM. Hemagglutinin Traits Determine Transmission of Avian A/H10N7 Influenza Virus between Mammals. Cell Host Microbe 2021; 28:602-613.e7. [PMID: 33031770 DOI: 10.1016/j.chom.2020.08.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 06/04/2020] [Accepted: 08/26/2020] [Indexed: 01/19/2023]
Abstract
In 2014, an outbreak of avian A/H10N7 influenza virus occurred among seals along North-European coastal waters, significantly impacting seal populations. Here, we examine the cross-species transmission and mammalian adaptation of this influenza A virus, revealing changes in the hemagglutinin surface protein that increase stability and receptor binding. The seal A/H10N7 virus was aerosol or respiratory droplet transmissible between ferrets. Compared with avian H10 hemagglutinin, seal H10 hemagglutinin showed stronger binding to the human-type sialic acid receptor, with preferential binding to α2,6-linked sialic acids on long extended branches. In X-ray structures, changes in the 220-loop of the receptor-binding pocket caused similar interactions with human receptor as seen for pandemic strains. Two substitutions made seal H10 hemagglutinin more stable than avian H10 hemagglutinin and similar to human hemagglutinin. Consequently, identification of avian-origin influenza viruses across mammals appears critical to detect influenza A viruses posing a major threat to humans and other mammals.
Collapse
Affiliation(s)
- Sander Herfst
- Department of Viroscience, Postgraduate School of Molecular Medicine, Erasmus MC University Medical Center, 3015GE, Rotterdam, the Netherlands
| | - Jie Zhang
- Structural Biology of Disease Processes Laboratory, the Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Mathilde Richard
- Department of Viroscience, Postgraduate School of Molecular Medicine, Erasmus MC University Medical Center, 3015GE, Rotterdam, the Netherlands
| | - Ryan McBride
- Departments of Molecular Medicine, Immunology and Microbiology, the Scripps Research Institute, La Jolla, CA 92037, USA
| | - Pascal Lexmond
- Department of Viroscience, Postgraduate School of Molecular Medicine, Erasmus MC University Medical Center, 3015GE, Rotterdam, the Netherlands
| | - Theo M Bestebroer
- Department of Viroscience, Postgraduate School of Molecular Medicine, Erasmus MC University Medical Center, 3015GE, Rotterdam, the Netherlands
| | - Monique I J Spronken
- Department of Viroscience, Postgraduate School of Molecular Medicine, Erasmus MC University Medical Center, 3015GE, Rotterdam, the Netherlands
| | - Dennis de Meulder
- Department of Viroscience, Postgraduate School of Molecular Medicine, Erasmus MC University Medical Center, 3015GE, Rotterdam, the Netherlands
| | - Judith M van den Brand
- Department of Viroscience, Postgraduate School of Molecular Medicine, Erasmus MC University Medical Center, 3015GE, Rotterdam, the Netherlands
| | - Miruna E Rosu
- Department of Viroscience, Postgraduate School of Molecular Medicine, Erasmus MC University Medical Center, 3015GE, Rotterdam, the Netherlands
| | - Stephen R Martin
- Structural Biology of Disease Processes Laboratory, the Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Steve J Gamblin
- Structural Biology of Disease Processes Laboratory, the Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Xiaoli Xiong
- Structural Biology of Disease Processes Laboratory, the Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Wenjie Peng
- Departments of Molecular Medicine, Immunology and Microbiology, the Scripps Research Institute, La Jolla, CA 92037, USA
| | - Rogier Bodewes
- Department of Viroscience, Postgraduate School of Molecular Medicine, Erasmus MC University Medical Center, 3015GE, Rotterdam, the Netherlands
| | - Erhard van der Vries
- Department of Viroscience, Postgraduate School of Molecular Medicine, Erasmus MC University Medical Center, 3015GE, Rotterdam, the Netherlands
| | - Albert D M E Osterhaus
- Research Centre for Emerging Infections and Zoonoses, University of Veterinary Medicine, 30559, Hannover, Germany
| | - James C Paulson
- Departments of Molecular Medicine, Immunology and Microbiology, the Scripps Research Institute, La Jolla, CA 92037, USA
| | - John J Skehel
- Structural Biology of Disease Processes Laboratory, the Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Ron A M Fouchier
- Department of Viroscience, Postgraduate School of Molecular Medicine, Erasmus MC University Medical Center, 3015GE, Rotterdam, the Netherlands.
| |
Collapse
|
33
|
Durgan J, Lystad AH, Sloan K, Carlsson SR, Wilson MI, Marcassa E, Ulferts R, Webster J, Lopez-Clavijo AF, Wakelam MJ, Beale R, Simonsen A, Oxley D, Florey O. Non-canonical autophagy drives alternative ATG8 conjugation to phosphatidylserine. Mol Cell 2021; 81:2031-2040.e8. [PMID: 33909989 PMCID: PMC8122138 DOI: 10.1016/j.molcel.2021.03.020] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 01/15/2021] [Accepted: 03/16/2021] [Indexed: 01/22/2023]
Abstract
Autophagy is a fundamental catabolic process that uses a unique post-translational modification, the conjugation of ATG8 protein to phosphatidylethanolamine (PE). ATG8 lipidation also occurs during non-canonical autophagy, a parallel pathway involving conjugation of ATG8 to single membranes (CASM) at endolysosomal compartments, with key functions in immunity, vision, and neurobiology. It is widely assumed that CASM involves the same conjugation of ATG8 to PE, but this has not been formally tested. Here, we discover that all ATG8s can also undergo alternative lipidation to phosphatidylserine (PS) during CASM, induced pharmacologically, by LC3-associated phagocytosis or influenza A virus infection, in mammalian cells. Importantly, ATG8-PS and ATG8-PE adducts are differentially delipidated by the ATG4 family and bear different cellular dynamics, indicating significant molecular distinctions. These results provide important insights into autophagy signaling, revealing an alternative form of the hallmark ATG8 lipidation event. Furthermore, ATG8-PS provides a specific "molecular signature" for the non-canonical autophagy pathway.
Collapse
Affiliation(s)
- Joanne Durgan
- Signalling Programme, Babraham Institute, Cambridge, UK
| | - Alf H Lystad
- Department of Molecular Medicine, University of Oslo, Oslo, Norway
| | | | - Sven R Carlsson
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
| | | | | | | | - Judith Webster
- Mass Spectrometry Facility, Babraham Institute, Cambridge, UK
| | | | - Michael J Wakelam
- Signalling Programme, Babraham Institute, Cambridge, UK; Lipidomics Facility, Babraham Institute, Cambridge, UK
| | | | - Anne Simonsen
- Department of Molecular Medicine, University of Oslo, Oslo, Norway
| | - David Oxley
- Mass Spectrometry Facility, Babraham Institute, Cambridge, UK
| | - Oliver Florey
- Signalling Programme, Babraham Institute, Cambridge, UK.
| |
Collapse
|
34
|
Neumann G. Influenza Reverse Genetics-Historical Perspective. Cold Spring Harb Perspect Med 2021; 11:cshperspect.a038547. [PMID: 31964649 DOI: 10.1101/cshperspect.a038547] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The generation of wild-type, mutant, and reassortant influenza viruses from viral cDNAs (reverse genetics) is now a basic molecular virology technique in many influenza virus laboratories. Here, I describe the original RNA polymerase I reverse genetics system and the modifications that have been developed in past years. Together, these technologies have made possible many advances in basic and applied influenza virology that would not have been otherwise attainable, including the revival and study of extinct influenza viruses, the rapid characterization of emerging influenza viruses, the generation of conventional influenza vaccines, and the development of novel influenza vaccines.
Collapse
Affiliation(s)
- Gabriele Neumann
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin 53711, USA
| |
Collapse
|
35
|
Colaço HG, Barros A, Neves-Costa A, Seixas E, Pedroso D, Velho T, Willmann KL, Faisca P, Grabmann G, Yi HS, Shong M, Benes V, Weis S, Köcher T, Moita LF. Tetracycline Antibiotics Induce Host-Dependent Disease Tolerance to Infection. Immunity 2020; 54:53-67.e7. [PMID: 33058782 PMCID: PMC7840524 DOI: 10.1016/j.immuni.2020.09.011] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 06/16/2020] [Accepted: 09/16/2020] [Indexed: 12/25/2022]
Abstract
Several classes of antibiotics have long been known to have beneficial effects that cannot be explained strictly on the basis of their capacity to control the infectious agent. Here, we report that tetracycline antibiotics, which target the mitoribosome, protected against sepsis without affecting the pathogen load. Mechanistically, we found that mitochondrial inhibition of protein synthesis perturbed the electron transport chain (ETC) decreasing tissue damage in the lung and increasing fatty acid oxidation and glucocorticoid sensitivity in the liver. Using a liver-specific partial and acute deletion of Crif1, a critical mitoribosomal component for protein synthesis, we found that mice were protected against sepsis, an observation that was phenocopied by the transient inhibition of complex I of the ETC by phenformin. Together, we demonstrate that mitoribosome-targeting antibiotics are beneficial beyond their antibacterial activity and that mitochondrial protein synthesis inhibition leading to ETC perturbation is a mechanism for the induction of disease tolerance. Doxycycline protects from sepsis beyond its direct antibacterial activity Doxycycline protection from infection is microbiome-independent Inhibition of mitochondrial protein synthesis induces disease tolerance Mild and transient perturbations of the mitochondrial ETC induce disease tolerance
Collapse
Affiliation(s)
- Henrique G Colaço
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal
| | - André Barros
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal
| | - Ana Neves-Costa
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal
| | - Elsa Seixas
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal
| | - Dora Pedroso
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal
| | - Tiago Velho
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal
| | - Katharina L Willmann
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal
| | - Pedro Faisca
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal
| | | | - Hyon-Seung Yi
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, Daejeon 35015, Korea
| | - Minho Shong
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, Daejeon 35015, Korea
| | - Vladimir Benes
- EMBL Genomics Core Facilities, D-69117 Heidelberg, Germany
| | - Sebastian Weis
- Institute for Infectious Diseases and Infection Control, Jena University Hospital, 07747 Jena, Germany; Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, 07747 Jena, Germany; Center for Sepsis Control and Care, Jena University Hospital, 07747 Jena, Germany
| | - Thomas Köcher
- Vienna BioCenter Core Facilities GmbH, 1030 Vienna, Austria
| | - Luís F Moita
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal; Instituto de Histologia e Biologia do Desenvolvimento, Faculdade de Medicina, Universidade de Lisboa, Portugal.
| |
Collapse
|
36
|
Abstract
Influenza A virus (IAV) causes annual epidemics and sporadic pandemics of respiratory disease. Secondary bacterial coinfection by organisms such as Staphylococcus aureus is the most common complication of primary IAV infection and is associated with high levels of morbidity and mortality. Here, we report the first identified S. aureus factor (lipase 1) that enhances IAV replication during infection via positive modulation of virus budding. The effect is observed in vivo in embryonated hen’s eggs and greatly enhances the yield of a vaccine strain, a finding that could be applied to address global shortages of influenza vaccines. Influenza A virus (IAV) causes annual epidemics of respiratory disease in humans, often complicated by secondary coinfection with bacterial pathogens such as Staphylococcus aureus. Here, we report that the S. aureus secreted protein lipase 1 enhances IAV replication in vitro in primary cells, including human lung fibroblasts. The proviral activity of lipase 1 is dependent on its enzymatic function, acts late in the viral life cycle, and results in increased infectivity through positive modulation of virus budding. Furthermore, the proviral effect of lipase 1 on IAV is exhibited during in vivo infection of embryonated hen’s eggs and, importantly, increases the yield of a vaccine strain of IAV by approximately 5-fold. Thus, we have identified the first S. aureus protein to enhance IAV replication, suggesting a potential role in coinfection. Importantly, this activity may be harnessed to address global shortages of influenza vaccines.
Collapse
|
37
|
Ho JSY, Angel M, Ma Y, Sloan E, Wang G, Martinez-Romero C, Alenquer M, Roudko V, Chung L, Zheng S, Chang M, Fstkchyan Y, Clohisey S, Dinan AM, Gibbs J, Gifford R, Shen R, Gu Q, Irigoyen N, Campisi L, Huang C, Zhao N, Jones JD, van Knippenberg I, Zhu Z, Moshkina N, Meyer L, Noel J, Peralta Z, Rezelj V, Kaake R, Rosenberg B, Wang B, Wei J, Paessler S, Wise HM, Johnson J, Vannini A, Amorim MJ, Baillie JK, Miraldi ER, Benner C, Brierley I, Digard P, Łuksza M, Firth AE, Krogan N, Greenbaum BD, MacLeod MK, van Bakel H, Garcìa-Sastre A, Yewdell JW, Hutchinson E, Marazzi I. Hybrid Gene Origination Creates Human-Virus Chimeric Proteins during Infection. Cell 2020; 181:1502-1517.e23. [PMID: 32559462 PMCID: PMC7323901 DOI: 10.1016/j.cell.2020.05.035] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 02/26/2020] [Accepted: 05/18/2020] [Indexed: 01/12/2023]
Abstract
RNA viruses are a major human health threat. The life cycles of many highly pathogenic RNA viruses like influenza A virus (IAV) and Lassa virus depends on host mRNA, because viral polymerases cleave 5'-m7G-capped host transcripts to prime viral mRNA synthesis ("cap-snatching"). We hypothesized that start codons within cap-snatched host transcripts could generate chimeric human-viral mRNAs with coding potential. We report the existence of this mechanism of gene origination, which we named "start-snatching." Depending on the reading frame, start-snatching allows the translation of host and viral "untranslated regions" (UTRs) to create N-terminally extended viral proteins or entirely novel polypeptides by genetic overprinting. We show that both types of chimeric proteins are made in IAV-infected cells, generate T cell responses, and contribute to virulence. Our results indicate that during infection with IAV, and likely a multitude of other human, animal and plant viruses, a host-dependent mechanism allows the genesis of hybrid genes.
Collapse
Affiliation(s)
- Jessica Sook Yuin Ho
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Matthew Angel
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Yixuan Ma
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Elizabeth Sloan
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK
| | - Guojun Wang
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Carles Martinez-Romero
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Marta Alenquer
- Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal
| | - Vladimir Roudko
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Medicine, Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Liliane Chung
- The Roslin Institute, University of Edinburgh, Edinburgh EH25 9PS, UK
| | - Simin Zheng
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Max Chang
- Department of Medicine, School of Medicine, University of California San Diego, La Jolla, CA 92037, USA
| | - Yesai Fstkchyan
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sara Clohisey
- The Roslin Institute, University of Edinburgh, Edinburgh EH25 9PS, UK
| | - Adam M Dinan
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge CB2 0SP, UK
| | - James Gibbs
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Robert Gifford
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK
| | - Rong Shen
- Division of Structural Biology, The Institute of Cancer Research, London SW7 3RP, UK
| | - Quan Gu
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK
| | - Nerea Irigoyen
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge CB2 0SP, UK
| | - Laura Campisi
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Cheng Huang
- Department of Pathology, the University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Nan Zhao
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Joshua D Jones
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge CB2 0SP, UK
| | | | - Zeyu Zhu
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Natasha Moshkina
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Léa Meyer
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK
| | - Justine Noel
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Zuleyma Peralta
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Veronica Rezelj
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK
| | - Robyn Kaake
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Brad Rosenberg
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Bo Wang
- The Roslin Institute, University of Edinburgh, Edinburgh EH25 9PS, UK
| | - Jiajie Wei
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Slobodan Paessler
- Department of Pathology, the University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Helen M Wise
- The Roslin Institute, University of Edinburgh, Edinburgh EH25 9PS, UK
| | - Jeffrey Johnson
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Alessandro Vannini
- Division of Structural Biology, The Institute of Cancer Research, London SW7 3RP, UK; Fondazione Human Technopole, Structural Biology Research Centre, 20157 Milan, Italy
| | | | - J Kenneth Baillie
- The Roslin Institute, University of Edinburgh, Edinburgh EH25 9PS, UK
| | - Emily R Miraldi
- Divisions of Immunobiology and Biomedical Informatics, Cincinnati Children's Hospital, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45257, USA
| | - Christopher Benner
- Department of Medicine, School of Medicine, University of California San Diego, La Jolla, CA 92037, USA
| | - Ian Brierley
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge CB2 0SP, UK
| | - Paul Digard
- The Roslin Institute, University of Edinburgh, Edinburgh EH25 9PS, UK
| | - Marta Łuksza
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Andrew E Firth
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge CB2 0SP, UK
| | - Nevan Krogan
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Benjamin D Greenbaum
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Medicine, Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Megan K MacLeod
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8QQ, UK
| | - Harm van Bakel
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Adolfo Garcìa-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jonathan W Yewdell
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Edward Hutchinson
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK.
| | - Ivan Marazzi
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
38
|
Phenotypic Effects of Substitutions within the Receptor Binding Site of Highly Pathogenic Avian Influenza H5N1 Virus Observed during Human Infection. J Virol 2020; 94:JVI.00195-20. [PMID: 32321815 DOI: 10.1128/jvi.00195-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 03/20/2020] [Indexed: 12/13/2022] Open
Abstract
Highly pathogenic avian influenza (HPAI) viruses are enzootic in wild birds and poultry and continue to cause human infections with high mortality. To date, more than 850 confirmed human cases of H5N1 virus infection have been reported, of which ∼60% were fatal. Global concern persists that these or similar avian influenza viruses will evolve into viruses that can transmit efficiently between humans, causing a severe influenza pandemic. It was shown previously that a change in receptor specificity is a hallmark for adaptation to humans and evolution toward a transmittable virus. Substantial genetic diversity was detected within the receptor binding site of hemagglutinin of HPAI A/H5N1 viruses, evolved during human infection, as detected by next-generation sequencing. Here, we investigated the functional impact of substitutions that were detected during these human infections. Upon rescue of 21 mutant viruses, most substitutions in the receptor binding site (RBS) resulted in viable virus, but virus replication, entry, and stability were often impeded. None of the tested substitutions individually resulted in a clear switch in receptor preference as measured with modified red blood cells and glycan arrays. Although several combinations of the substitutions can lead to human-type receptor specificity, accumulation of multiple amino acid substitutions within a single hemagglutinin during human infection is rare, thus reducing the risk of virus adaptation to humans.IMPORTANCE H5 viruses continue to be a threat for public health. Because these viruses are immunologically novel to humans, they could spark a pandemic when adapted to transmit between humans. Avian influenza viruses need several adaptive mutations to bind to human-type receptors, increase hemagglutinin (HA) stability, and replicate in human cells. However, knowledge on adaptive mutations during human infections is limited. A previous study showed substantial diversity within the receptor binding site of H5N1 during human infection. We therefore analyzed the observed amino acid changes phenotypically in a diverse set of assays, including virus replication, stability, and receptor specificity. None of the tested substitutions resulted in a clear step toward a human-adapted virus capable of aerosol transmission. It is notable that acquiring human-type receptor specificity needs multiple amino acid mutations, and that variability at key position 226 is not tolerated, reducing the risk of them being acquired naturally.
Collapse
|
39
|
Outbreak Severity of Highly Pathogenic Avian Influenza A(H5N8) Viruses Is Inversely Correlated to Polymerase Complex Activity and Interferon Induction. J Virol 2020; 94:JVI.00375-20. [PMID: 32238581 DOI: 10.1128/jvi.00375-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 03/04/2020] [Indexed: 12/21/2022] Open
Abstract
Highly pathogenic avian influenza A(H5N8) viruses first emerged in China in 2010 and in 2014 spread throughout Asia and to Europe and the United States via migrating birds. Influenza A(H5N8) viruses were first detected in the Netherlands in 2014 and caused five outbreaks in poultry farms but were infrequently detected in wild birds. In 2016, influenza A(H5N8) viruses were reintroduced into the Netherlands, resulting in eight poultry farm outbreaks. This outbreak resulted in numerous dead wild birds with severe pathology. Phylogenetic analysis showed that the polymerase genes of these viruses had undergone extensive reassortment between outbreaks. Here, we investigated the differences in virulence between the 2014-15 and the 2016-17 outbreaks by characterizing the polymerase complex of influenza A(H5N8) viruses from both outbreaks. We found that viruses from the 2014-15 outbreak had significantly higher polymerase complex activity in both human and avian cell lines than did those from the 2016-17 outbreak. No apparent differences in the balance between transcription and replication of the viral genome were observed. Interestingly, the 2014-15 polymerase complexes induced significantly higher levels of interferon beta (IFN-β) than the polymerase complexes of the 2016-17 outbreak viruses, mediated via retinoic acid-inducible gene I (RIG-I). Inoculation of primary duck cells with recombinant influenza A(H5N8) viruses, including viruses with reassorted polymerase complexes, showed that the polymerase complexes from the 2014-15 outbreak induced higher levels of IFN-β despite relatively minor differences in replication capacity. Together, these data suggest that despite the lower levels of polymerase activity, the higher 2016-17 influenza A(H5N8) virus virulence may be attributed to the lower level of activation of the innate immune system.IMPORTANCE Compared to the 2014-15 outbreak, the 2016-17 outbreak of influenza A(H5N8) viruses in the Netherlands and Europe was more virulent; the number of dead or diseased wild birds found and the severity of pathological changes were higher during the 2016-17 outbreak. The polymerase complex plays an important role in influenza virus virulence, and the gene segments of influenza A(H5N8) viruses reassorted extensively between the outbreaks. In this study, the 2014-15 polymerase complexes were found to be more active, which is counterintuitive with the observed higher virulence of the 2016-17 outbreak viruses. Interestingly, the 2014-15 polymerase complexes also induced higher levels of IFN-β. These findings suggest that the higher virulence of influenza A(H5N8) viruses from the 2016-17 outbreak may be related to the lower induction of IFN-β. An attenuated interferon response could lead to increased dissemination, pathology, and mortality, as observed in (wild) birds infected during the 2016-2017 outbreak.
Collapse
|
40
|
Guo L, Li N, Li W, Zhou J, Ning R, Hou M, Liu L. New hemagglutinin dual-receptor-binding pattern of a human-infecting influenza A (H7N9) virus isolated after fifth epidemic wave. Virus Evol 2020; 6:veaa021. [PMID: 32337071 PMCID: PMC7169767 DOI: 10.1093/ve/veaa021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Since 2013, influenza H7N9 virus has caused five epidemic waves of human infection. The virus evolved from low pathogenic to highly pathogenic in wave 5, 2017, while the prevalence of host receptor-binding tropism in human-infecting viruses maintained dual-receptor-binding property with preference for avian receptor. A human-infecting H7N9 virus was isolated after the fifth epidemic wave and possessed an avian and human dual-receptor specificity, with a moderately higher affinity for human receptor binding. A V186I (H3 numbering) substitution in the receptor-binding site of the hemagglutinin (HA) molecule is responsible for the alteration of the dual-receptor-binding tropism. Viral strains which contain I186 amino acid of avian- and human-infecting H7N9 viruses were all isolated during or after wave 5, and their HA genes clustered in a same phylogenetic clade together with 2018–9 H7N9 isolates, highlights a new evolutionary path for human adaption of natural H7N9 viruses.
Collapse
Affiliation(s)
- Lei Guo
- Institute of Medical Biology, Chinese Academy of Medical Science, 935# Jiaoling Road, Kunming, Yunnan 650118, China
| | - Nan Li
- Institute of Medical Biology, Chinese Academy of Medical Science, 935# Jiaoling Road, Kunming, Yunnan 650118, China
| | - Wenlong Li
- Kunming City Center for Disease Control and Prevention, 4# Ziyun Road, Kunming, Yunnan 650228, China
| | - Jienan Zhou
- Yunan Center for Disease Control and Prevention, 158# Dongsi Street, Kunming, Yunnan 650022, China
| | - Ruotong Ning
- Institute of Medical Biology, Chinese Academy of Medical Science, 935# Jiaoling Road, Kunming, Yunnan 650118, China
| | - Min Hou
- Kunming City Center for Disease Control and Prevention, 4# Ziyun Road, Kunming, Yunnan 650228, China
| | - Longding Liu
- Institute of Medical Biology, Chinese Academy of Medical Science, 935# Jiaoling Road, Kunming, Yunnan 650118, China
| |
Collapse
|
41
|
Richard M, van den Brand JMA, Bestebroer TM, Lexmond P, de Meulder D, Fouchier RAM, Lowen AC, Herfst S. Influenza A viruses are transmitted via the air from the nasal respiratory epithelium of ferrets. Nat Commun 2020; 11:766. [PMID: 32034144 PMCID: PMC7005743 DOI: 10.1038/s41467-020-14626-0] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 01/23/2020] [Indexed: 12/29/2022] Open
Abstract
Human influenza A viruses are known to be transmitted via the air from person to person. It is unknown from which anatomical site of the respiratory tract influenza A virus transmission occurs. Here, pairs of genetically tagged and untagged influenza A/H1N1, A/H3N2 and A/H5N1 viruses that are transmissible via the air are used to co-infect donor ferrets via the intranasal and intratracheal routes to cause an upper and lower respiratory tract infection, respectively. In all transmission cases, we observe that the viruses in the recipient ferrets are of the same genotype as the viruses inoculated intranasally, demonstrating that they are expelled from the upper respiratory tract of ferrets rather than from trachea or the lower airways. Moreover, influenza A viruses that are transmissible via the air preferentially infect ferret and human nasal respiratory epithelium. These results indicate that virus replication in the upper respiratory tract, the nasal respiratory epithelium in particular, of donors is a driver for transmission of influenza A viruses via the air.
Collapse
Affiliation(s)
- Mathilde Richard
- Department of Viroscience, Erasmus MC University Medical Center, Center for Research on Influenza Pathogenesis (CRIP) Center of Excellence for Influenza Research and Surveillance (CEIRS), Rotterdam, the Netherlands
| | - Judith M A van den Brand
- Department of Viroscience, Erasmus MC University Medical Center, Center for Research on Influenza Pathogenesis (CRIP) Center of Excellence for Influenza Research and Surveillance (CEIRS), Rotterdam, the Netherlands
| | - Theo M Bestebroer
- Department of Viroscience, Erasmus MC University Medical Center, Center for Research on Influenza Pathogenesis (CRIP) Center of Excellence for Influenza Research and Surveillance (CEIRS), Rotterdam, the Netherlands
| | - Pascal Lexmond
- Department of Viroscience, Erasmus MC University Medical Center, Center for Research on Influenza Pathogenesis (CRIP) Center of Excellence for Influenza Research and Surveillance (CEIRS), Rotterdam, the Netherlands
| | - Dennis de Meulder
- Department of Viroscience, Erasmus MC University Medical Center, Center for Research on Influenza Pathogenesis (CRIP) Center of Excellence for Influenza Research and Surveillance (CEIRS), Rotterdam, the Netherlands
| | - Ron A M Fouchier
- Department of Viroscience, Erasmus MC University Medical Center, Center for Research on Influenza Pathogenesis (CRIP) Center of Excellence for Influenza Research and Surveillance (CEIRS), Rotterdam, the Netherlands
| | - Anice C Lowen
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Emory-UGA Center of Excellence for Influenza Research and Surveillance (CEIRS), Atlanta, GA, 30322, USA
| | - Sander Herfst
- Department of Viroscience, Erasmus MC University Medical Center, Center for Research on Influenza Pathogenesis (CRIP) Center of Excellence for Influenza Research and Surveillance (CEIRS), Rotterdam, the Netherlands.
| |
Collapse
|
42
|
Rihn SJ, Aziz MA, Stewart DG, Hughes J, Turnbull ML, Varela M, Sugrue E, Herd CS, Stanifer M, Sinkins SP, Palmarini M, Wilson SJ. TRIM69 Inhibits Vesicular Stomatitis Indiana Virus. J Virol 2019; 93:e00951-19. [PMID: 31375575 PMCID: PMC6798119 DOI: 10.1128/jvi.00951-19] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 07/24/2019] [Indexed: 12/20/2022] Open
Abstract
Vesicular stomatitis Indiana virus (VSIV), formerly known as vesicular stomatitis virus (VSV) Indiana (VSVIND), is a model virus that is exceptionally sensitive to the inhibitory action of interferons (IFNs). Interferons induce an antiviral state by stimulating the expression of hundreds of interferon-stimulated genes (ISGs). These ISGs can constrain viral replication, limit tissue tropism, reduce pathogenicity, and inhibit viral transmission. Since VSIV is used as a backbone for multiple oncolytic and vaccine strategies, understanding how ISGs restrict VSIV not only helps in understanding VSIV-induced pathogenesis but also helps us evaluate and understand the safety and efficacy of VSIV-based therapies. Thus, there is a need to identify and characterize the ISGs that possess anti-VSIV activity. Using arrayed ISG expression screening, we identified TRIM69 as an ISG that potently inhibits VSIV. This inhibition was highly specific as multiple viruses, including influenza A virus, HIV-1, Rift Valley fever virus, and dengue virus, were unaffected by TRIM69. Indeed, just one amino acid substitution in VSIV can govern sensitivity/resistance to TRIM69. Furthermore, TRIM69 is highly divergent in human populations and exhibits signatures of positive selection that are consistent with this gene playing a key role in antiviral immunity. We propose that TRIM69 is an IFN-induced inhibitor of VSIV and speculate that TRIM69 could be important in limiting VSIV pathogenesis and might influence the specificity and/or efficacy of vesiculovirus-based therapies.IMPORTANCE Vesicular stomatitis Indiana virus (VSIV) is a veterinary pathogen that is also used as a backbone for many oncolytic and vaccine strategies. In natural and therapeutic settings, viral infections like VSIV are sensed by the host, and as a result the host cells make proteins that can protect them from viruses. In the case of VSIV, these antiviral proteins constrain viral replication and protect most healthy tissues from virus infection. In order to understand how VSIV causes disease and how healthy tissues are protected from VSIV-based therapies, it is crucial that we identify the proteins that inhibit VSIV. Here, we show that TRIM69 is an antiviral defense that can potently and specifically block VSIV infection.
Collapse
Affiliation(s)
- Suzannah J Rihn
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Muhamad Afiq Aziz
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Douglas G Stewart
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Joseph Hughes
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Matthew L Turnbull
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Mariana Varela
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Elena Sugrue
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Christie S Herd
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Megan Stanifer
- Department of Infectious Diseases, Virology, Heidelberg University Hospital, Heidelberg, Germany
| | - Steven P Sinkins
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Massimo Palmarini
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Sam J Wilson
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| |
Collapse
|
43
|
Development and Characterization of a Reverse-Genetics System for Influenza D Virus. J Virol 2019; 93:JVI.01186-19. [PMID: 31413133 DOI: 10.1128/jvi.01186-19] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 08/07/2019] [Indexed: 01/23/2023] Open
Abstract
Influenza D virus (IDV) of the Orthomyxoviridae family has a wide host range and a broad geographical distribution. Recent IDV outbreaks in swine along with serological and genetic evidence of IDV infection in humans have raised concerns regarding the zoonotic potential of this virus. To better study IDV at the molecular level, a reverse-genetics system (RGS) is urgently needed, but to date, no RGS had been described for IDV. In this study, we rescued the recombinant influenza D/swine/Oklahoma/1314/2011 (D/OK) virus by using a bidirectional seven-plasmid-based system and further characterized rescued viruses in terms of growth kinetics, replication stability, and receptor-binding capacity. Our results collectively demonstrated that RGS-derived viruses resembled the parental viruses for these properties, thereby supporting the utility of this RGS to study IDV infection biology. In addition, we developed an IDV minigenome replication assay and identified the E697K mutation in PB1 and the L462F mutation in PB2 that directly affected the activity of the IDV ribonucleoprotein (RNP) complex, resulting in either attenuated or replication-incompetent viruses. Finally, by using the minigenome replication assay, we demonstrated that a single nucleotide polymorphism at position 5 of the 3' conserved noncoding region in IDV and influenza C virus (ICV) resulted in the inefficient cross-recognition of the heterotypic promoter by the viral RNP complex. In conclusion, we successfully developed a minigenome replication assay and a robust reverse-genetics system that can be used to further study replication, tropism, and pathogenesis of IDV.IMPORTANCE Influenza D virus (IDV) is a new type of influenza virus that uses cattle as the primary reservoir and infects multiple agricultural animals. Increased outbreaks in pigs and serological and genetic evidence of human infection have raised concerns about potential IDV adaptation in humans. Here, we have developed a plasmid-based IDV reverse-genetics system that can generate infectious viruses with replication kinetics similar to those of wild-type viruses following transfection of cultured cells. Further characterization demonstrated that viruses rescued from the described RGS resembled the parental viruses in biological and receptor-binding properties. We also developed and validated an IDV minireplicon reporter system that specifically measures viral RNA polymerase activity. In summary, the reverse-genetics system and minireplicon reporter assay described in this study should be of value in identifying viral determinants of cross-species transmission and pathogenicity of novel influenza D viruses.
Collapse
|
44
|
Chen KY, Santos Afonso ED, Enouf V, Isel C, Naffakh N. Influenza virus polymerase subunits co-evolve to ensure proper levels of dimerization of the heterotrimer. PLoS Pathog 2019; 15:e1008034. [PMID: 31581279 PMCID: PMC6776259 DOI: 10.1371/journal.ppat.1008034] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 08/18/2019] [Indexed: 12/18/2022] Open
Abstract
The influenza A virus RNA-dependent RNA polymerase complex consists in three subunits, PB2, PB1 and PA, that perform transcription and replication of the viral genome through very distinct mechanisms. Biochemical and structural studies have revealed that the polymerase can adopt multiple conformations and form oligomers. However so far it remained unclear whether the available oligomeric crystal structures represent a functional state of the polymerase. Here we gained new insights into this question, by investigating the incompatibility between non-cognate subunits of influenza polymerase brought together through genetic reassortment. We observed that a 7:1 reassortant virus whose PB2 segment derives from the A/WSN/33 (WSN) virus in an otherwise A/PR/8/34 (PR8) backbone is attenuated, despite a 97% identity between the PR8-PB2 and WSN-PB2 proteins. Independent serial passages led to the selection of phenotypic revertants bearing distinct second-site mutations on PA, PB1 and/or PB2. The constellation of mutations present on one revertant virus was studied extensively using reverse genetics and cell-based reconstitution of the viral polymerase. The PA-E349K mutation appeared to play a major role in correcting the initial defect in replication (cRNA -> vRNA) of the PR8xWSN-PB2 reassortant. Strikingly the PA-E349K mutation, and also the PB2-G74R and PB1-K577G mutations present on other revertants, are located at a dimerization interface of the polymerase. All three restore wild-type-like polymerase activity in a minigenome assay while decreasing the level of polymerase dimerization. Overall, our data show that the polymerase subunits co-evolve to ensure not only optimal inter-subunit interactions within the heterotrimer, but also proper levels of dimerization of the heterotrimer which appears to be essential for efficient viral RNA replication. Our findings point to influenza polymerase dimerization as a feature that is controlled by a complex interplay of genetic determinants, can restrict genetic reassortment, and could become a target for antiviral drug development.
Collapse
Affiliation(s)
- Kuang-Yu Chen
- Unité de Génétique Moléculaire des Virus à ARN, Institut Pasteur, UMR 3569 CNRS, Paris, France
- Unité de Génétique Moléculaire des Virus à ARN, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | | | - Vincent Enouf
- Unité de Génétique Moléculaire des Virus à ARN, Institut Pasteur, UMR 3569 CNRS, Paris, France
- Unité de Génétique Moléculaire des Virus à ARN, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
- Unité de Génétique Moléculaire des Virus à ARN, Centre National de Référence des Virus des Infections Respiratoires, Institut Pasteur, Paris, France
- Pasteur International Bioresources network (PIBnet), Plateforme de Microbiologie Mutualisée (P2M), Institut Pasteur, Paris, France
| | - Catherine Isel
- Unité de Génétique Moléculaire des Virus à ARN, Institut Pasteur, UMR 3569 CNRS, Paris, France
- Unité de Génétique Moléculaire des Virus à ARN, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Nadia Naffakh
- Unité de Génétique Moléculaire des Virus à ARN, Institut Pasteur, UMR 3569 CNRS, Paris, France
- Unité de Génétique Moléculaire des Virus à ARN, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
- * E-mail:
| |
Collapse
|
45
|
Hussain S, Turnbull ML, Pinto RM, McCauley JW, Engelhardt OG, Digard P. Segment 2 from influenza A(H1N1) 2009 pandemic viruses confers temperature-sensitive haemagglutinin yield on candidate vaccine virus growth in eggs that can be epistatically complemented by PB2 701D. J Gen Virol 2019; 100:1079-1092. [PMID: 31169484 DOI: 10.1099/jgv.0.001279] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Candidate vaccine viruses (CVVs) for seasonal influenza A virus are made by reassortment of the antigenic virus with an egg-adapted strain, typically A/Puerto Rico/8/34 (PR8). Many 2009 A(H1N1) pandemic (pdm09) high-growth reassortants (HGRs) selected this way contain pdm09 segment 2 in addition to the antigenic genes. To investigate this, we made CVV mimics by reverse genetics (RG) that were either 6 : 2 or 5 : 3 reassortants between PR8 and two pdm09 strains, A/California/7/2009 (Cal7) and A/England/195/2009, differing in the source of segment 2. The 5 : 3 viruses replicated better in MDCK-SIAT1 cells than the 6 : 2 viruses, but the 6 : 2 CVVs gave higher haemagglutinin (HA) antigen yields from eggs. This unexpected phenomenon reflected temperature sensitivity conferred by pdm09 segment 2, as the egg HA yields of the 5 : 3 viruses improved substantially when viruses were grown at 35 °C compared with 37.5 °C, whereas the 6 : 2 virus yields did not. However, the authentic 5 : 3 pdm09 HGRs, X-179A and X-181, were not markedly temperature sensitive despite their PB1 sequences being identical to that of Cal7, suggesting compensatory mutations elsewhere in the genome. Sequence comparisons of the PR8-derived backbone genes identified polymorphisms in PB2, NP, NS1 and NS2. Of these, PB2 N701D affected the temperature dependence of viral transcription and, furthermore, improved and drastically reduced the temperature sensitivity of the HA yield from the 5 : 3 CVV mimic. We conclude that the HA yield of pdm09 CVVs can be affected by an epistatic interaction between PR8 PB2 and pdm09 PB1, but that this can be minimized by ensuring that the backbones used for vaccine manufacture in eggs contain PB2 701D.
Collapse
Affiliation(s)
- Saira Hussain
- 1 The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, EH25 9RG, UK.,2 The Francis Crick Institute, London, NW1 1AT, UK
| | - Matthew L Turnbull
- 1 The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, EH25 9RG, UK
| | - Rute M Pinto
- 1 The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, EH25 9RG, UK
| | | | - Othmar G Engelhardt
- 3 National Institute for Biological Standards and Control, South Mimms, Potters Bar, Hertfordshire, EN6 3QG, UK
| | - Paul Digard
- 1 The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, EH25 9RG, UK
| |
Collapse
|
46
|
Koel BF, Burke DF, van der Vliet S, Bestebroer TM, Rimmelzwaan GF, Osterhaus ADME, Smith DJ, Fouchier RAM. Epistatic interactions can moderate the antigenic effect of substitutions in haemagglutinin of influenza H3N2 virus. J Gen Virol 2019; 100:773-777. [PMID: 31017567 DOI: 10.1099/jgv.0.001263] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
We previously showed that single amino acid substitutions at seven positions in haemagglutinin determined major antigenic change of influenza H3N2 virus. Here, the impact of two such substitutions was tested in 11 representative H3 haemagglutinins to investigate context-dependence effects. The antigenic effect of substitutions introduced at haemagglutinin position 145 was fully independent of the amino acid context of the representative haemagglutinins. Antigenic change caused by substitutions introduced at haemagglutinin position 155 was variable and context-dependent. Our results suggest that epistatic interactions with contextual amino acids in the haemagglutinin can moderate the magnitude of antigenic change.
Collapse
Affiliation(s)
- Björn F Koel
- 1 Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands
| | - David F Burke
- 2 Center for Pathogen Evolution, Department of Zoology, University of Cambridge, Cambridge, UK
| | | | | | | | | | - Derek J Smith
- 1 Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands
- 2 Center for Pathogen Evolution, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Ron A M Fouchier
- 1 Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands
| |
Collapse
|
47
|
Abstract
This chapter describes a basic workflow for analyzing the protein composition of influenza virions. In order to obtain suitable material, the chapter describes how to concentrate influenza virions from the growth media of infected cells and to purify them by ultracentrifugation through a density gradient. This approach is also suitable for purifying influenza virions from the allantoic fluid of embryonated chicken eggs. As a small quantity of microvesicles are co-purified with virions, optional steps are included to increase the stringency of purification by enriching material with viral receptor binding and cleaving activity. Material purified in this way can be used for a variety of downstream applications, including proteomics. As a detailed example of this, the chapter also describes a standard workflow for analyzing the protein composition of concentrated virions by liquid chromatography and tandem mass spectrometry.
Collapse
Affiliation(s)
| | - Monika Stegmann
- University of Oxford Advanced Proteomics Facility, Oxford, UK
| |
Collapse
|
48
|
The Molecular Basis for Antigenic Drift of Human A/H2N2 Influenza Viruses. J Virol 2019; 93:JVI.01907-18. [PMID: 30700609 DOI: 10.1128/jvi.01907-18] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 01/21/2019] [Indexed: 11/20/2022] Open
Abstract
Influenza A/H2N2 viruses caused a pandemic in 1957 and continued to circulate in humans until 1968. The antigenic evolution of A/H2N2 viruses over time and the amino acid substitutions responsible for this antigenic evolution are not known. Here, the antigenic diversity of a representative set of human A/H2N2 viruses isolated between 1957 and 1968 was characterized. The antigenic change of influenza A/H2N2 viruses during the 12 years that this virus circulated was modest. Two amino acid substitutions, T128D and N139K, located in the head domain of the H2 hemagglutinin (HA) molecule, were identified as important determinants of antigenic change during A/H2N2 virus evolution. The rate of A/H2N2 virus antigenic evolution during the 12-year period after introduction in humans was half that of A/H3N2 viruses, despite similar rates of genetic change.IMPORTANCE While influenza A viruses of subtype H2N2 were at the origin of the Asian influenza pandemic, little is known about the antigenic changes that occurred during the twelve years of circulation in humans, the role of preexisting immunity, and the evolutionary rates of the virus. In this study, the antigenic map derived from hemagglutination inhibition (HI) titers of cell-cultured virus isolates and ferret postinfection sera displayed a directional evolution of viruses away from earlier isolates. Furthermore, individual mutations in close proximity to the receptor-binding site of the HA molecule determined the antigenic reactivity, confirming that individual amino acid substitutions in A/H2N2 viruses can confer major antigenic changes. This study adds to our understanding of virus evolution with respect to antigenic variability, rates of virus evolution, and potential escape mutants of A/H2N2.
Collapse
|
49
|
Mutation of Influenza A Virus PA-X Decreases Pathogenicity in Chicken Embryos and Can Increase the Yield of Reassortant Candidate Vaccine Viruses. J Virol 2019; 93:JVI.01551-18. [PMID: 30381488 PMCID: PMC6321911 DOI: 10.1128/jvi.01551-18] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 10/25/2018] [Indexed: 01/08/2023] Open
Abstract
Influenza A virus is a widespread pathogen that affects both humans and a variety of animal species, causing regular epidemics and sporadic pandemics, with major public health and economic consequences. A better understanding of virus biology is therefore important. The primary control measure is vaccination, which for humans mostly relies on antigens produced in eggs from PR8-based viruses bearing the glycoprotein genes of interest. However, not all reassortants replicate well enough to supply sufficient virus antigen for demand. The significance of our research lies in identifying that mutation of the PA-X gene in the PR8 strain of virus can improve antigen yield, potentially by decreasing the pathogenicity of the virus in embryonated eggs. The PA-X protein of influenza A virus has roles in host cell shutoff and viral pathogenesis. While most strains are predicted to encode PA-X, strain-dependent variations in activity have been noted. We found that PA-X protein from the A/PR/8/34 (PR8) strain had significantly lower repressive activity against cellular gene expression than PA-X proteins from the avian strains A/turkey/England/50-92/91 (H5N1) (T/E) and A/chicken/Rostock/34 (H7N1). Loss of normal PA-X expression, either by mutation of the frameshift site or by truncating the X open reading frame (ORF), had little effect on the infectious virus titer of PR8 or PR8 7:1 reassortants with T/E segment 3 grown in embryonated hens’ eggs. However, in both virus backgrounds, mutation of PA-X led to decreased embryo mortality and lower overall pathology, effects that were more pronounced in the PR8 strain than in the T/E reassortant, despite the low shutoff activity of the PR8 PA-X. Purified PA-X mutant virus particles displayed an increased ratio of hemagglutinin (HA) to nucleoprotein (NP) and M1 compared to values for their wild-type (WT) counterparts, suggesting altered virion composition. When the PA-X gene was mutated in the background of poorly growing PR8 6:2 vaccine reassortant analogues containing the HA and neuraminidase (NA) segments from H1N1 2009 pandemic viruses or from an avian H7N3 strain, HA yield increased up to 2-fold. This suggests that the PR8 PA-X protein may harbor a function unrelated to host cell shutoff and that disruption of the PA-X gene has the potential to improve the HA yield of vaccine viruses. IMPORTANCE Influenza A virus is a widespread pathogen that affects both humans and a variety of animal species, causing regular epidemics and sporadic pandemics, with major public health and economic consequences. A better understanding of virus biology is therefore important. The primary control measure is vaccination, which for humans mostly relies on antigens produced in eggs from PR8-based viruses bearing the glycoprotein genes of interest. However, not all reassortants replicate well enough to supply sufficient virus antigen for demand. The significance of our research lies in identifying that mutation of the PA-X gene in the PR8 strain of virus can improve antigen yield, potentially by decreasing the pathogenicity of the virus in embryonated eggs.
Collapse
|
50
|
Wang S, Zhang L, Zhang R, Chi X, Yang Z, Xie Y, Shu S, Liao Y, Chen JL. Identification of two residues within the NS1 of H7N9 influenza A virus that critically affect the protein stability and function. Vet Res 2018; 49:98. [PMID: 30285871 PMCID: PMC6389221 DOI: 10.1186/s13567-018-0594-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 09/19/2018] [Indexed: 01/31/2023] Open
Abstract
The emerging avian-origin H7N9 influenza A virus, which causes mild to lethal human respiratory disease, continues to circulate in China, posing a great threat to public health. Influenza NS1 protein plays a key role in counteracting host innate immune responses, allowing the virus to efficiently replicate in the host. In this study, we compared NS1 amino acid sequences of H7N9 influenza A virus with those of other strains, and determined NS1 protein variability within the H7N9 virus and then evaluated the impact of amino acid substitutions on ability of the NS1 proteins to inhibit host innate immunity. Interestingly, the amino acid residue S212 was identified to have a profound effect on the primary function of NS1, since S212P substitution disabled H7N9 NS1 in suppressing the host RIG-I-dependent interferon response, as well as the ability to promote the virus replication. In addition, we identified another amino acid residue, I178, serving as a key site to keep NS1 protein high steady-state levels. When the isoleucine was replaced by valine at 178 site (I178V mutation), NS1 of H7N9 underwent rapid degradation through proteasome pathway. Furthermore, we observed that P212S and V178I mutation in NS1 of PR8 virus enhanced virulence and promoted the virus replication in vivo. Together, these results indicate that residues I178 and S212 within H7N9 NS1 protein are critical for stability and functioning of the NS1 protein respectively, and may contribute to the enhanced pathogenicity of H7N9 influenza virus.
Collapse
Affiliation(s)
- Song Wang
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Lanlan Zhang
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Rong Zhang
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaojuan Chi
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhou Yang
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yanhui Xie
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Sicheng Shu
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuan Liao
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ji-Long Chen
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China. .,CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|