1
|
Garduño-González KA, Peña-Benavides SA, Araújo RG, Castillo-Zacarías C, Melchor-Martínez EM, Oyervides-Muñoz MA, Sosa-Hernández JE, Purton S, Iqbal HM, Parra-Saldívar R. Current challenges for modern vaccines and perspectives for novel treatment alternatives. J Drug Deliv Sci Technol 2022; 70:103222. [DOI: 10.1016/j.jddst.2022.103222] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
2
|
Dadar M, Chakraborty S, Dhama K, Prasad M, Khandia R, Hassan S, Munjal A, Tiwari R, Karthik K, Kumar D, Iqbal HMN, Chaicumpa W. Advances in Designing and Developing Vaccines, Drugs and Therapeutic Approaches to Counter Human Papilloma Virus. Front Immunol 2018; 9:2478. [PMID: 30483247 PMCID: PMC6240620 DOI: 10.3389/fimmu.2018.02478] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 10/08/2018] [Indexed: 02/05/2023] Open
Abstract
Human papillomavirus (HPV) is a viral infection with skin-to-skin based transmission mode. HPV annually caused over 500,000 cancer cases including cervical, anogenital and oropharyngeal cancer among others. HPV vaccination has become a public-health concern, worldwide, to prevent the cases of HPV infections including precancerous lesions, cervical cancers, and genital warts especially in adolescent female and male population by launching national programs with international alliances. Currently, available prophylactic and therapeutic vaccines are expensive to be used in developing countries for vaccination programs. The recent progress in immunotherapy, biotechnology, recombinant DNA technology and molecular biology along with alternative and complementary medicinal systems have paved novel ways and valuable opportunities to design and develop effective prophylactic and therapeutic vaccines, drugs and treatment approach to counter HPV effectively. Exploration and more researches on such advances could result in the gradual reduction in the incidences of HPV cases across the world. The present review presents a current global scenario and futuristic prospects of the advanced prophylactic and therapeutic approaches against HPV along with recent patents coverage of the progress and advances in drugs, vaccines and therapeutic regimens to effectively combat HPV infections and its cancerous conditions.
Collapse
Affiliation(s)
- Maryam Dadar
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization, Karaj, Iran
| | - Sandip Chakraborty
- Department of Veterinary Microbiology, College of Veterinary Sciences and Animal Husbandry, West Tripura, India
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Minakshi Prasad
- Department of Animal Biotechnology, LLR University of Veterinary and Animal Sciences, Hisar, India
| | - Rekha Khandia
- Department of Genetics, Barkatullah University, Bhopal, India
| | - Sameer Hassan
- Department of Biomedical Informatics, National Institute for Research in Tuberculosis, Indian Council of Medical Research, Chennai, India
| | - Ashok Munjal
- Department of Genetics, Barkatullah University, Bhopal, India
| | - Ruchi Tiwari
- Department of Veterinary Microbiology and Immunology, College of Veterinary Sciences, U P Pt. Deen Dayal Upadhayay Pashu Chikitsa Vigyan Vishwavidyalay Evum Go-Anusandhan Sansthan, Mathura, India
| | - Kumaragurubaran Karthik
- Central University Laboratory, Tamil Nadu Veterinary and Animal Sciences University, Chennai, India
| | - Deepak Kumar
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Hafiz M. N. Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, Mexico
| | - Wanpen Chaicumpa
- Department of Parasitology, Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Faculty of Medicine SIriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
3
|
Panatto D, Amicizia D, Bragazzi NL, Rizzitelli E, Tramalloni D, Valle I, Gasparini R. Human Papillomavirus Vaccine. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2015:231-322. [DOI: 10.1016/bs.apcsb.2015.08.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
4
|
Walch-Rückheim B, Schmitt MJ, Breinig F. Schizosaccharomyces pombe: A novel transport vehicle of functional DNA and mRNA into mammalian antigen-presenting cells. Vaccine 2014; 32:6029-33. [DOI: 10.1016/j.vaccine.2014.09.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 09/01/2014] [Accepted: 09/04/2014] [Indexed: 11/17/2022]
|
5
|
The immune complex CTA1-DD/IgG adjuvant specifically targets connective tissue mast cells through FcγRIIIA and augments anti-HPV immunity after nasal immunization. Mucosal Immunol 2013; 6:1168-78. [PMID: 23571505 DOI: 10.1038/mi.2013.16] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Revised: 02/19/2013] [Accepted: 02/25/2013] [Indexed: 02/04/2023]
Abstract
We have previously reported that CTA1-DD/IgG immune complexes augment antibody responses in a mast cell-dependent manner following intranasal (IN) immunizations. However, from a safety perspective, mast cell activation could preclude clinical use. Therefore, we have extended these studies and demonstrate that CTA1-DD/IgG immune complexes administered IN did not trigger an anaphylactic reaction. Importantly, CTA1-DD/IgE immune complexes did not activate mast cells. Interestingly, only connective tissue, but not mucosal, mast cells could be activated by CTA1-DD/IgG immune complexes. This effect was mediated by FcγRIIIA, only expressed on connective tissue mast cells, and found in the nasal submucosa. FcγRIIIA-deficient mice had compromised responses to immunization adjuvanted by CTA1-DD/IgG. Proof-of-concept studies revealed that IN immunized mice with human papillomavirus (HPV) type 16 L1 virus-like particles (VLP) and CTA1-DD/IgG immune complexes demonstrated strong and sustained specific antibody titers in serum and vaginal secretions. From a mast cell perspective, CTA1-DD/IgG immune complexes appear to be safe and effective mucosal adjuvants.
Collapse
|
6
|
Production of recombinant proteins by yeast cells. Biotechnol Adv 2012; 30:1108-18. [DOI: 10.1016/j.biotechadv.2011.09.011] [Citation(s) in RCA: 234] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Revised: 09/12/2011] [Accepted: 09/17/2011] [Indexed: 01/14/2023]
|
7
|
Baek JO, Seo JW, Kwon O, Park SM, Kim CH, Kim IH. Production of human papillomavirus type 33 L1 major capsid protein and virus-like particles from Bacillus subtilis to develop a prophylactic vaccine against cervical cancer. Enzyme Microb Technol 2011; 50:173-80. [PMID: 22305172 DOI: 10.1016/j.enzmictec.2011.11.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Revised: 09/17/2011] [Accepted: 11/13/2011] [Indexed: 01/09/2023]
Abstract
We developed a bacterial expression system to produce human papillomavirus (HPV) type 33 L1 major capsid protein and virus-like particles from a recombinant Bacillus subtilis strain. For the first time, we have isolated self-assembled virus-like particles (VLPs) of HPV type 33 from B. subtilis, a strain generally recognized as safe (GRAS). The gene encoding the major capsid protein L1 of HPV type 33 was amplified from viral DNA isolated from a Korean patient and expressed in B. subtilis; a xylose-induction system was used to control gene activity. HPV33 L1 protein was partially purified by 40% (w/v) sucrose cushion centrifugation and strong cation exchange column chromatography. Eluted samples exhibited immunosignaling in fractions of 0.5-1.0 M NaCl. The HPV33 L1 protein was shown to be approximately 56 kDa in size by SDS-PAGE and Western blotting; recovery and purity were quantified by indirect immuno-ELISA assay. The final yield and purity were approximately 20.4% and 10.3%, respectively. Transmission electron microscopic analysis of fractions immunoactive by ELISA revealed that the L1 protein formed self-assembled VLPs with a diameter of approximately 20-40 nm. Humoral and cellular immune responses provoked by the B. subtilis/HPV33 L1 strain were approximately 100- and 3-fold higher than those of the empty B. subtilis strain as a negative control, respectively. Development of a VLP production and delivery system using B. subtilis will be helpful, in that the vaccine may be convenient production as an antigen delivery system. VLPs thus produced will be safer for human use than those purified from Gram-negative strains such as Escherichia coli. Also, use of B. subtilis as a host may aid in the development of either live or whole cell vaccines administered by antigen delivery system.
Collapse
Affiliation(s)
- J O Baek
- Microbe-Based Fusion Technology Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup, Jeonbuk 580-185, South Korea
| | | | | | | | | | | |
Collapse
|
8
|
Gersch ED, Gissmann L, Garcea RL. New approaches to prophylactic human papillomavirus vaccines for cervical cancer prevention. Antivir Ther 2011; 17:425-34. [PMID: 22293302 DOI: 10.3851/imp1941] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/09/2011] [Indexed: 12/12/2022]
Abstract
The currently licensed human papillomavirus (HPV) vaccines are safe and highly effective at preventing HPV infection for a select number of papillomavirus types, thus decreasing the incidence of precursors to cervical cancer. It is expected that vaccination will also ultimately reduce the incidence of this cancer. The licensed HPV vaccines are, however, type restricted and expensive, and also require refrigeration, multiple doses and intramuscular injection. Second-generation vaccines are currently being developed to address these shortcomings. New expression systems, viral and bacterial vectors for HPV L1 capsid protein delivery, and use of the HPV L2 capsid protein will hopefully aid in decreasing cost and increasing ease of use and breadth of protection. These second-generation vaccines could also allow affordable immunization of women in developing countries, where the incidence of cervical cancer is high.
Collapse
Affiliation(s)
- Elizabeth D Gersch
- Department of Molecular, Cellular & Developmental Biology, University of Colorado, Boulder, CO, USA
| | | | | |
Collapse
|
9
|
Baek JO, Seo JW, Kim IH, Kim CH. Production and purification of human papillomavirus type 33 L1 virus-like particles from Spodoptera frugiperda 9 cells using two-step column chromatography. Protein Expr Purif 2011; 75:211-7. [DOI: 10.1016/j.pep.2010.08.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Revised: 08/11/2010] [Accepted: 08/11/2010] [Indexed: 01/02/2023]
|
10
|
Cho HJ, Oh YK, Kim YB. Advances in human papilloma virus vaccines: a patent review. Expert Opin Ther Pat 2011; 21:295-309. [PMID: 21250872 DOI: 10.1517/13543776.2011.551114] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
INTRODUCTION Human papilloma virus (HPV) infection is the main factor associated with the development of cervical cancer. The currently available HPV vaccines, Gardasil and Cervarix, can prevent infection by certain HPV types, but not all. At present, research efforts are being devoted to developing more broad spectrum preventative vaccines, as well as therapeutic vaccines. AREAS COVERED Recent advances in HPV vaccine development are reviewed in this paper, with a focus on worldwide patents and patent applications. In principle, patents that have been granted since 2002 are covered. Exceptions are the patents pending at PCT stage and recent patent applications since 2009. Readers will gain insights into the cutting-edge technologies being used in the development and production of vaccines, as well as adjuvant systems. EXPERT OPINION In the future, the use of mosaic virus-like particles (VLPs,) comprising at least one L1 protein of each HPV type, may be able to prevent infection by all HPV types while patented codon-optimization techniques and the use of edible or DNA-based vaccines may be good places to start for reducing costs. Future vaccines should ideally have both preventive and therapeutic efficacies. Enhanced immunogenicity could be achieved by the use of more effective adjuvants, such as nanoparticle-based delivery systems, or new classes of adjuvants.
Collapse
Affiliation(s)
- Hee-Jeong Cho
- Seoul National University, College of Pharmacy, Daehak-dong, Gwanank-gu, Seoul, South Korea
| | | | | |
Collapse
|
11
|
Bazan SB, de Alencar Muniz Chaves A, Aires KA, Cianciarullo AM, Garcea RL, Ho PL. Expression and characterization of HPV-16 L1 capsid protein in Pichia pastoris. Arch Virol 2009; 154:1609-17. [PMID: 19756360 DOI: 10.1007/s00705-009-0484-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2009] [Accepted: 07/24/2009] [Indexed: 11/25/2022]
Abstract
Human papillomaviruses (HPVs) are responsible for the most common human sexually transmitted viral infections. Infection with high-risk HPVs, particularly HPV16, is associated with the development of cervical cancer. The papillomavirus L1 major capsid protein, the basis of the currently marketed vaccines, self-assembles into virus-like particles (VLPs). Here, we describe the expression, purification and characterization of recombinant HPV16 L1 produced by a methylotrophic yeast. A codon-optimized HPV16 L1 gene was cloned into a non-integrative expression vector under the regulation of a methanol-inducible promoter and used to transform competent Pichia pastoris cells. Purification of L1 protein from yeast extracts was performed using heparin-sepharose chromatography, followed by a disassembly/reassembly step. VLPs could be assembled from the purified L1 protein, as demonstrated by electron microscopy. The display of conformational epitopes on the VLPs surface was confirmed by hemagglutination and hemagglutination inhibition assays and by immuno-electron microscopy. This study has implications for the development of an alternative platform for the production of a papillomavirus vaccine that could be provided by public health programs, especially in resource-poor areas, where there is a great demand for low-cost vaccines.
Collapse
Affiliation(s)
- Silvia Boschi Bazan
- Centro de Biotecnologia, Instituto Butantan, Av. Vital Brasil, Sao Paulo, SP, Brazil
| | | | | | | | | | | |
Collapse
|
12
|
Bucarey SA, Noriega J, Reyes P, Tapia C, Sáenz L, Zuñiga A, Tobar JA. The optimized capsid gene of porcine circovirus type 2 expressed in yeast forms virus-like particles and elicits antibody responses in mice fed with recombinant yeast extracts. Vaccine 2009; 27:5781-90. [PMID: 19664739 DOI: 10.1016/j.vaccine.2009.07.061] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2009] [Revised: 06/21/2009] [Accepted: 07/19/2009] [Indexed: 10/20/2022]
Abstract
Porcine circovirus type 2 (PCV2)-associated diseases are considered to be the biggest problem for the worldwide swine industry. The PCV2 capsid protein (Cap) is an important antigen for development of vaccines. At present, most anti-PCV2 vaccines are produced as injectable formulations. Although effective, these vaccines have certain drawbacks, including stress with concomitant immunosuppresion, and involve laborious and time-consuming procedures. In this study, Saccharomyces cerevisiae was used as a vehicle to deliver PCV2 antigen in a preliminary attempt to develop an oral vaccine, and its immunogenic potential in mice was tested after oral gavage-mediated delivery. The cap gene with a yeast-optimized codon usage sequence (opt-cap) was chemically synthesized and cloned into Escherichia coli/Saccharomyces cerevisiae shuttle vector, pYES2, under the control of the Gal1 promoter. Intracellular expression of the Cap protein was confirmed by Western blot analysis and its antigenic properties were compared with those of baculovirus/insect cell-produced Cap protein derived from the native PCV2 cap gene. It was further demonstrated by electron micrography that the yeast-derived PCV2 Cap protein self-assembles into virus-like particles (VLPs) that are morphologically and antigenically similar to insect cell-derived VLPs. Feeding raw yeast extract containing Cap protein to mice elicited both serum- and fecal-specific antibodies against the antigen. These results show that it is feasible to use S. cerevisiae as a safe and simple system to produce PCV2 virus-like particles, and that oral yeast-mediated antigen delivery is an alternative strategy to efficiently induce anti-PCV2 antibodies in a mouse model, which is worthy of further investigation in swine.
Collapse
Affiliation(s)
- Sergio A Bucarey
- Centro Biotecnológico Veterinario Biovetec, Departamento de Ciencias Biológicas Animales, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Chile.
| | | | | | | | | | | | | |
Collapse
|
13
|
Production of heterologous proteins using the fission-yeast (Schizosaccharomyces pombe) expression system. Biotechnol Appl Biochem 2009; 53:227-35. [PMID: 19531030 DOI: 10.1042/ba20090048] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The fission yeast Schizosaccharomyces pombe is a particularly useful model for studying the function and regulation of genes from higher eukaryotes. The genome of Sc. pombe has been sequenced, and DNA microarray, proteome and transcriptome analyses have been carried out. Among the well-characterized yeast species, Sc. pombe is considered an attractive host for the production of heterologous proteins. Expression vectors for high-level expression in Sc. pombe have been developed and many foreign proteins have been successfully expressed. However, further improvements in the protein-expressing host systems are still required for the production of heterologous proteins involved in post-translational modification, metabolism and intracellular trafficking. This minireview focuses on recent advances in heterologous protein production by use of engineered fission-yeast strains.
Collapse
|
14
|
Mustafa W, Maciag PC, Pan ZK, Weaver JR, Xiao Y, Isaacs SN, Paterson Y. Listeria monocytogenes delivery of HPV-16 major capsid protein L1 induces systemic and mucosal cell-mediated CD4+ and CD8+ T-cell responses after oral immunization. Viral Immunol 2009; 22:195-204. [PMID: 19435416 DOI: 10.1089/vim.2008.0071] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Neutralizing antibodies are thought to be required at mucosal surfaces to prevent human papillomavirus (HPV) transmission. However, the potential for cell-mediated immunity in mediating protection against HPV infection has not been well explored. We generated recombinant Listeria monocytogenes (Lm) constructs that secrete listeriolysin O (LLO) fused with overlapping N-terminal (LLO-L1(1-258)) or C-terminal (LLO-L1(238-474)) fragments of HPV type 16 major capsid protein L1 (HPV-16-L1). Oral immunization of mice with either construct induced IFN-gamma-producing CD8+ and CD4+ T cells in the spleen and in the Peyer's patches with the C-terminal construct. Oral immunization with both constructs resulted in diminished viral titers in the cervix and uterus of mice after intravaginal challenge with vaccinia virus expressing HPV-16-L1.
Collapse
Affiliation(s)
- Waleed Mustafa
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
Human papillomavirus (HPV) is responsible for 99.7% of cervical cancer cases and an estimated 5% of all cancers worldwide. The largest burden from HPV-associated cervical cancers is in developing nations where effective cervical cancer screening programs are nonexistent. Even in developed nations, diagnosis and treatment of cervical precancers continue to be large economic burdens. Prophylactic vaccination against HPV is an ideal method for the prevention of cervical cancer and other HPV associated diseases. Safe and effective virus-like-particle-derived prophylactic vaccines are available to most nations. The high cost of the current vaccines makes it out of reach for most developing nations. Because millions of women are already infected with HPV and have serious disease, therapeutic HPV vaccines are being developed to treat these women. This article presents the natural history, oncogenesis, and host immune interactions of HPV and associated diseases. The article also discusses the safety and efficacy of commercially available prophylactic vaccines against HPV, as well as novel prophylactic and therapeutic vaccine delivery strategies in early clinical development.
Collapse
Affiliation(s)
- Anna-Barbara Moscicki
- Division of Adolescent Medicine, University of California, San Francisco, San Francisco, California 94118, USA.
| |
Collapse
|
16
|
Konno R, Shin HR, Kim YT, Song YS, Sasagawa T, Inoue M, Park JS. Human Papillomavirus Infection and Cervical Cancer Prevention in Japan and Korea. Vaccine 2008; 26 Suppl 12:M30-42. [DOI: 10.1016/j.vaccine.2008.05.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
17
|
Fusté P, Santamaría X, Carreras R. Nuevas estrategias terapéuticas para las lesiones anogenitales relacionadas con el virus del papiloma humano en pacientes con infección por el VIH: tratamiento antirretroviral de gran actividad y vacunas anti-VPH. Med Clin (Barc) 2008; 131:30-4. [DOI: 10.1157/13123038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
18
|
Fernández-San Millán A, Ortigosa SM, Hervás-Stubbs S, Corral-Martínez P, Seguí-Simarro JM, Gaétan J, Coursaget P, Veramendi J. Human papillomavirus L1 protein expressed in tobacco chloroplasts self-assembles into virus-like particles that are highly immunogenic. PLANT BIOTECHNOLOGY JOURNAL 2008; 6:427-41. [PMID: 18422886 DOI: 10.1111/j.1467-7652.2008.00338.x] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Cervical cancer is the second most prevalent cancer in women worldwide. It is linked to infection with human papillomavirus (HPV). As the virus cannot be propagated in culture, vaccines based on virus-like particles have been developed and recently marketed. However, their high costs constitute an important drawback for widespread use in developing countries, where the incidence of cervical cancer is highest. In a search for alternative production systems, the major structural protein of the HPV-16 capsid, L1, was expressed in tobacco chloroplasts. A very high yield of production was achieved in mature plants (approximately 3 mg L1/g fresh weight; equivalent to 24% of total soluble protein). This is the highest expression level of HPV L1 protein reported in plants. A single mature plant synthesized approximately 240 mg of L1. The chloroplast-derived L1 protein displayed conformation-specific epitopes and assembled into virus-like particles, visible by transmission electron microscopy. Furthermore, leaf protein extracts from L1 transgenic plants were highly immunogenic in mice after intraperitoneal injection, and neutralizing antibodies were detected. Taken together, these results predict a promising future for the development of a plant-based vaccine against HPV.
Collapse
|
19
|
Das BC, Hussain S, Nasare V, Bharadwaj M. Prospects and prejudices of human papillomavirus vaccines in India. Vaccine 2008; 26:2669-79. [PMID: 18455843 DOI: 10.1016/j.vaccine.2008.03.056] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2007] [Revised: 03/05/2008] [Accepted: 03/12/2008] [Indexed: 11/15/2022]
Abstract
Cervical cancer is the most common cancer and a leading cause of cancer deaths among women in developing countries. The disease is caused due to persistent infection of one or more of about 15 high-risk human papillomaviruses (HR-HPVs), most commonly by HPV types 16/18. In India, over 98% of cervical cancer cases harbor HPV infection and HPV 16 is the type exclusively (80-90%) prevalent. Unlike the West, HPV infection is most common in women in their third decade (26-35 years) of sexual activity and invasive cancer also arises much later with a peak at about 45-55 years of age. Recently, two successful prophylactic HPV vaccines, a quadrivalent (HPV16/18/6/11) 'Gardasil' by Merck and a bivalent (HPV16/18) 'Cervarix' by GSK have been developed. Several other approaches including plant-based edible, pentameric capsomere-based intranasal and DNA-based vaccines have also been employed to develop prophylactic vaccines. Also, several therapeutic vaccines either protein/peptide based or DNA based are in clinical trials but are yet to establish their efficacy. Though there are several issues regarding implementation of the already developed vaccines in resource limited countries, efforts are being made to develop cost-effective second-generation vaccines. If cost minimized, HPV related new technologies involved in screening tests and vaccines are expected to reduce incidence of cervical cancer and deaths it causes in women from developing countries.
Collapse
Affiliation(s)
- Bhudev C Das
- Division of Molecular Oncology, Institute of Cytology & Preventive Oncology (ICMR), I-7, Sector-39, Noida 201301, India.
| | | | | | | |
Collapse
|
20
|
Abstract
As early as 900 years ago, the Bedouins of the Negev desert were reported to kill a rabid dog, roast its liver and feed it to a dog-bitten person for three to five days according to the size and number of bites [1] . In sixteenth century China, physicians routinely prescribed pills made from the fleas collected from sick cows, which purportedly prevented smallpox. One may dismiss the wisdom of the Bedouins or Chinese but the Nobel laureate, Charles Richet, demonstrated in 1900 that feeding raw meat can cure tuberculous dogs - an approach he termed zomotherapy. Despite historical clues indicating the feasibility of oral vaccination, this particular field is notoriously infamous for the abundance of dead-end leads. Today, most commercial vaccines are delivered by injection, which has the principal limitation that recipients do not like needles. In the last few years, there has been a sharp increase in interest in needle-free vaccine delivery; new data emerges almost daily in the literature. So far, there are very few licensed oral vaccines, but many more vaccine candidates are in development. Vaccines delivered orally have the potential to take immunization to a fundamentally new level. In this review, the authors summarize the recent progress in the area of oral vaccines.
Collapse
MESH Headings
- Adjuvants, Immunologic/administration & dosage
- Administration, Oral
- Animals
- Chemistry, Pharmaceutical
- Drug Carriers
- Drug Compounding
- Gastrointestinal Tract/immunology
- Humans
- Immune Tolerance
- Immunity, Mucosal
- Vaccination/methods
- Vaccination/trends
- Vaccines, Attenuated/administration & dosage
- Vaccines, Attenuated/chemistry
- Vaccines, Attenuated/immunology
- Vaccines, Edible/administration & dosage
- Vaccines, Edible/chemistry
- Vaccines, Edible/immunology
- Vaccines, Inactivated/administration & dosage
- Vaccines, Inactivated/chemistry
- Vaccines, Inactivated/immunology
Collapse
Affiliation(s)
- Dmytro S Silin
- Queen's University Belfast, Laboratory of Molecular Virology, Medical and Biology Center, School of Biomedical Sciences, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | | | | | | |
Collapse
|
21
|
Thönes N, Müller M. Oral immunization with different assembly forms of the HPV 16 major capsid protein L1 induces neutralizing antibodies and cytotoxic T-lymphocytes. Virology 2007; 369:375-88. [PMID: 17822733 DOI: 10.1016/j.virol.2007.08.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2007] [Revised: 07/03/2007] [Accepted: 08/01/2007] [Indexed: 11/17/2022]
Abstract
Human papillomaviruses have been recognized as the causative agent of anogenital cancer. In 2006, a commercial vaccine based on virus-like particles composed of the L1 major capsid protein of the papillomaviruses has been available. This vaccine induces virus-neutralizing antibody responses upon parenteral injection. Here we investigated the oral immunogenicity of different assembly forms of HPV 16 L1, that is: T7-VLPs, T1 particles and capsomeres. Our results show that all three assembly forms induce humoral and cellular immune responses after oral vaccination of mice. The anti-L1 antibodies were conformation-specific and showed neutralizing activity in a pseudovirion-based assay. We also investigated if adjuvants have an influence on the oral immunogenicity of the different L1 forms. For saponins we observed a significant toxicity if applied orally. Co-administration of either CpG DNA or Escherichia coli heat-labile enterotoxin LT(R192G) had no apparent enhancing effect on the production of anti-L1 antibodies. More pronounced was the effect of CpG administration on the long-term immunity as we observed a significantly stronger recall response 244 days after the first vaccination. Compared to capsomeres, VLPs induced stronger humoral immune responses while the CTL responses were induced at comparable levels. Finally, we were also able to induce neutralizing antibodies and L1-specific cytotoxic T-lymphocytes after oral administration of crude extracts of L1-expressing insect cells. In conclusion, all three assembly forms of the L1 protein are immunogenic when administered orally.
Collapse
MESH Headings
- Administration, Oral
- Animals
- Antibodies, Viral/biosynthesis
- Antibody Specificity
- Antigens, Viral/administration & dosage
- Antigens, Viral/isolation & purification
- Capsid Proteins/administration & dosage
- Capsid Proteins/chemistry
- Capsid Proteins/immunology
- Female
- Human papillomavirus 16/immunology
- Human papillomavirus 16/pathogenicity
- Human papillomavirus 16/physiology
- Human papillomavirus 16/ultrastructure
- Humans
- Immunization
- Immunoglobulin A/biosynthesis
- Immunoglobulin G/biosynthesis
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Microscopy, Electron, Transmission
- Neutralization Tests
- Oncogene Proteins, Viral/administration & dosage
- Oncogene Proteins, Viral/chemistry
- Oncogene Proteins, Viral/immunology
- Papillomavirus Vaccines/administration & dosage
- Recombinant Proteins/administration & dosage
- Recombinant Proteins/immunology
- Recombinant Proteins/isolation & purification
- T-Lymphocytes, Cytotoxic/immunology
- Virion/immunology
- Virus Assembly
Collapse
Affiliation(s)
- Nadja Thönes
- Deutsches Krebsforschungszentrum, Forschungsschwerpunkt Angewandte Tumorvirologie, DKFZ-ATV F035, Im Neuenheimer Feld 242, 69120 Heidelberg, Germany
| | | |
Collapse
|
22
|
Berg M, Gambhira R, Siracusa M, Hoiczyk E, Roden R, Ketner G. HPV16 L1 capsid protein expressed from viable adenovirus recombinants elicits neutralizing antibody in mice. Vaccine 2007; 25:3501-10. [PMID: 16914239 DOI: 10.1016/j.vaccine.2006.06.080] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2006] [Revised: 06/23/2006] [Accepted: 06/30/2006] [Indexed: 12/01/2022]
Abstract
Immunization against human papillomavirus (HPV) infection promises to reduce the worldwide burden of cervical cancer. To evaluate the potential of live recombinant adenoviruses for induction of HPV infection-blocking immunity, we prepared viable adenovirus recombinants that express the HPV16 L1 gene from the adenovirus major late transcriptional unit. Adenovirus-produced HPV16 L1 assembles into virus-like particles (VLPs) in infected cells in culture. Purified HPV16 VLPs are recognized by HPV16 neutralizing antibodies and induce high neutralizing titers when injected intraperitoneally into mice. Canine oral papillomavirus VLPs derived from previously described recombinants also induce strong antibody responses in mice. These data support our suggestion that viable adenovirus recombinants will be able to induce protective immunity to papillomavirus infection during replication in human vaccinees.
Collapse
Affiliation(s)
- Michael Berg
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe Street, Baltimore, MD 21205, USA
| | | | | | | | | | | |
Collapse
|
23
|
Santi L, Huang Z, Mason H. Virus-like particles production in green plants. Methods 2007; 40:66-76. [PMID: 16997715 PMCID: PMC2677071 DOI: 10.1016/j.ymeth.2006.05.020] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2005] [Accepted: 05/03/2006] [Indexed: 12/13/2022] Open
Abstract
Viruses-like particles (VLPs), assembled from capsid structural subunits of several different viruses, have found a number of biomedical applications such as vaccines and novel delivery systems for nucleic acids and small molecules. Production of recombinant proteins in different plant systems has been intensely investigated and improved upon in the last two decades. Plant-derived antibodies, vaccines, and microbicides have received great attention and shown immense promise. In the case of mucosal vaccines, orally delivered plant-produced VLPs require minimal processing of the plant tissue, thus offering an inexpensive and safe alternative to more conventional live attenuated and killed virus vaccines. For other applications which require higher level of purification, recent progress in expression levels using plant viral vectors have shown that plants can compete with traditional fermentation systems. In this review, the different methods used in the production of VLPs in green plants are described. Specific examples of expression, assembly, and immunogenicity of several plant-derived VLPs are presented.
Collapse
Affiliation(s)
- Luca Santi
- Biodesign Institute at Arizona State University, Tempe, 852878-5401, USA
| | | | | |
Collapse
|
24
|
Manickam A, Sivanandham M, Tourkova IL. Immunological role of dendritic cells in cervical cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 601:155-62. [PMID: 17713002 DOI: 10.1007/978-0-387-72005-0_16] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Cervical cancer is the second most frequent gynecological malignancy in the world. Human papillomavirus (HPV) infection is the primary etiologic agent of cervical cancer. However, HPV alone is not sufficient for tumor progression. The clinical manifestation of HPV infection depends also on the host's immune status. Both innate and adaptive immunity play a role in controlling HPV infection. In untransformed HPV-infected keratinocytes, the innate immunity is induced to eliminate the invading HPV pathogen through sensitization to HPV-related proteins by epithelial-residing Langerhans cells (LCs), macrophages, and other immune cells. Once the HPV infection escapes from initial patrolling by innate immunity, cellular immunity becomes in charge of killing the HPV-infected keratinocytes of the uterine cervix through systemic immune response developing by dendritic cells (DCs) in the regional lymphoid organs or through local immune response developing by LCs in the cervix. Thereby, DC/LC plays a critical role in eliciting innate and adaptive cellular immune responses against HPV infection. HPV-associated cervical malignancies might be prevented or treated by induction of the appropriate virus-specific immune responses in patients. Encouraging results from experimental vaccination systems in animal models have led to several prophylactic and therapeutic vaccine clinical trials.
Collapse
Affiliation(s)
- Alagar Manickam
- Department of Biotechnology, Government College of Technology, Tamil Nadu, India
| | | | | |
Collapse
|
25
|
Schiller JT, Nardelli-Haefliger D. Chapter 17: Second generation HPV vaccines to prevent cervical cancer. Vaccine 2006; 24 Suppl 3:S3/147-53. [PMID: 16950002 DOI: 10.1016/j.vaccine.2006.05.123] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2006] [Accepted: 05/19/2006] [Indexed: 11/26/2022]
Abstract
Prophylactic human papillomavirus (HPV) vaccines based on intramuscular injection of non-infectious L1 virus-like particles (VLPs) are undergoing intense clinical evaluation. As documented in preceding chapters of this monograph, clinical trials of these vaccines have demonstrated their safety and high efficacy at preventing type-specific persistent cervical HPV infection and the development of type-specific cervical intraepithelial neoplasia (CIN) cervical neoplasia. There is widespread optimism that VLP vaccines will become commercially available within the next few years. The prospects for development of alternative HPV vaccines must be considered in light of the likelihood that a safe and effective prophylactic HPV vaccine will soon be available. Three questions need to be addressed: (1) Is there sufficient need for a second generation vaccine? (2) Are there sufficiently attractive candidates for clinical trials? (3) Is there a realistic development/commercialization path?
Collapse
Affiliation(s)
- John T Schiller
- Laboratory of Cellular Oncology, National Cancer Institute, Bethesda, MD 20892, USA.
| | | |
Collapse
|
26
|
Wall SR, Scherf CF, Morison L, Hart KW, West B, Ekpo G, Fiander AN, Man S, Gelder CM, Walraven G, Borysiewicz LK. Cervical human papillomavirus infection and squamous intraepithelial lesions in rural Gambia, West Africa: viral sequence analysis and epidemiology. Br J Cancer 2005; 93:1068-76. [PMID: 16106268 PMCID: PMC2361674 DOI: 10.1038/sj.bjc.6602736] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The development of effective strategies against cervical cancer in Africa requires accurate type specific data on human papillomavirus (HPV) prevalence, including determination of DNA sequences in order to maximise local vaccine efficacy. We have investigated cervical HPV infection and squamous intraepithelial lesions (SIL) in an unselected cohort of 1061 women in a rural Gambian community. Squamous intraepithelial lesions was diagnosed using cytology and histology, HPV was typed by PCR-ELISA of DNA extracts, which were also DNA sequenced. The prevalence of cervical HPV infection was 13% and SIL were observed in 7% of subjects. Human papillomavirus-16 was most prevalent and most strongly associated with SIL. Also common were HPV-18, -33, -58 and, notably, -35. Human papillomavirus DNA sequencing revealed HPV-16 samples to be exclusively African type 1 (Af1). Subjects of the Wolof ethnic group had a lower prevalence of HPV infection while subjects aged 25-44 years had a higher prevalence of cervical precancer than older or younger subjects. This first report of HPV prevalence in an unselected, unscreened rural population confirms high rates of SIL and HPV infection in West Africa. This study has implications for the vaccination of Gambian and other African populations in the prevention of cervical cancer.
Collapse
Affiliation(s)
- S R Wall
- Infection and Immunity, Henry Wellcome Research Institute, Wales College of Medicine, Cardiff University, Cardiff CF14 4XX, Wales, UK.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|