1
|
Seo GE, Mandes R, Wright ND, Hawkins JP, Landgraff A, Lidder R, Mohammed U, Mangat CS, Michel AS, Fafard J, Hole D, Tyler AD, Vlok M, Grudeski E, Booth TF, Majer A. Sporadic detection of vaccine-derived poliovirus type 2 using next-generation sequencing in Canadian wastewater in August of 2022. Sci Rep 2025; 15:12913. [PMID: 40234509 PMCID: PMC12000465 DOI: 10.1038/s41598-025-92912-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 03/03/2025] [Indexed: 04/17/2025] Open
Abstract
In July 2022, an unvaccinated young adult living in Rockland County, New York became paralyzed due to a vaccine-derived poliovirus type 2 (VDPV2) infection that was internationally transmitted. Wastewater surveillance in New York State uncovered VDPV2 in neighboring counties, showing silent community spread. These communities have strong epidemiological links to some vaccine-hesitant communities in Canada, spurring the need to monitor these populations for potential poliovirus importation. At the time, Canada did not have an established poliovirus wastewater method. We initiated this study to apply molecular methods to detect poliovirus in these communities and establish poliovirus wastewater surveillance capabilities in Canada. We sequence confirmed one poliovirus detection on August 30th, 2022 using both viral isolation and direct detection methods. Subsequent retrospective and prospective sampling was initiated, resulting in another sequence confirmed detection of VDPV2 in an overlapping catchment area collected on August 27th, 2022. Both VDPV2 detections were genetically linked to the New York clinical case. No clinical cases of poliomyelitis were detected in Canada during this study. The sporadic detection of VDPV2 in Canadian wastewater supports a travel-related shedding event without community transmission. Furthermore, we show that a direct detection method is sensitive to sequence confirm poliovirus in wastewater samples.
Collapse
Affiliation(s)
- Grace E Seo
- Enterovirus and Enteric Viruses Laboratory, Viral Diseases, National Microbiology Laboratory, Public Health Agency of Canada, 1015 Arlington Street, Winnipeg, MB, R3E 3R2, Canada
| | - Russell Mandes
- Enterovirus and Enteric Viruses Laboratory, Viral Diseases, National Microbiology Laboratory, Public Health Agency of Canada, 1015 Arlington Street, Winnipeg, MB, R3E 3R2, Canada
| | - Nathan D Wright
- Enterovirus and Enteric Viruses Laboratory, Viral Diseases, National Microbiology Laboratory, Public Health Agency of Canada, 1015 Arlington Street, Winnipeg, MB, R3E 3R2, Canada
| | - Justin P Hawkins
- Enterovirus and Enteric Viruses Laboratory, Viral Diseases, National Microbiology Laboratory, Public Health Agency of Canada, 1015 Arlington Street, Winnipeg, MB, R3E 3R2, Canada
| | - Anneliese Landgraff
- Enterovirus and Enteric Viruses Laboratory, Viral Diseases, National Microbiology Laboratory, Public Health Agency of Canada, 1015 Arlington Street, Winnipeg, MB, R3E 3R2, Canada
| | - Ravinder Lidder
- Wastewater Surveillance Unit, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Umar Mohammed
- Wastewater Surveillance Unit, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Chand S Mangat
- Wastewater Surveillance Unit, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
- Department of Medical Microbiology and Infectious Diseases, Faculty of Health Sciences, College of Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - Anne-Sophie Michel
- Ministère de la Santé et des services sociaux du Québec, Québec, Québec, Canada
| | - Judith Fafard
- Laboratoire de santé Publique du Québec, Institut national de santé publique du Québec, Ste-Anne-de-Bellevue, Québec, Canada
| | - Darian Hole
- Computational and Operational Genomics, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Andrea D Tyler
- Computational and Operational Genomics, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Marli Vlok
- Enterovirus and Enteric Viruses Laboratory, Viral Diseases, National Microbiology Laboratory, Public Health Agency of Canada, 1015 Arlington Street, Winnipeg, MB, R3E 3R2, Canada
| | - Elsie Grudeski
- Enterovirus and Enteric Viruses Laboratory, Viral Diseases, National Microbiology Laboratory, Public Health Agency of Canada, 1015 Arlington Street, Winnipeg, MB, R3E 3R2, Canada
| | - Tim F Booth
- Enterovirus and Enteric Viruses Laboratory, Viral Diseases, National Microbiology Laboratory, Public Health Agency of Canada, 1015 Arlington Street, Winnipeg, MB, R3E 3R2, Canada
- Department of Medical Microbiology and Infectious Diseases, Faculty of Health Sciences, College of Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - Anna Majer
- Enterovirus and Enteric Viruses Laboratory, Viral Diseases, National Microbiology Laboratory, Public Health Agency of Canada, 1015 Arlington Street, Winnipeg, MB, R3E 3R2, Canada.
- Department of Medical Microbiology and Infectious Diseases, Faculty of Health Sciences, College of Medicine, University of Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|
2
|
Mbani CJ, Nekoua MP, Moukassa D, Hober D. The Fight against Poliovirus Is Not Over. Microorganisms 2023; 11:1323. [PMID: 37317297 DOI: 10.3390/microorganisms11051323] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/13/2023] [Accepted: 05/14/2023] [Indexed: 06/16/2023] Open
Abstract
Poliovirus (PV), the virus that causes both acute poliomyelitis and post-polio syndrome, is classified within the Enterovirus C species, and there are three wild PV serotypes: WPV1, WPV2 and WPV3. The launch of the Global Polio Eradication Initiative (GPEI) in 1988 eradicated two of the three serotypes of WPV (WPV2 and WPV3). However, the endemic transmission of WPV1 persists in Afghanistan and Pakistan in 2022. There are cases of paralytic polio due to the loss of viral attenuation in the oral poliovirus vaccine (OPV), known as vaccine-derived poliovirus (VDPV). Between January 2021 and May 2023, a total of 2141 circulating VDPV (cVDPV) cases were reported in 36 countries worldwide. Because of this risk, inactivated poliovirus (IPV) is being used more widely, and attenuated PV2 has been removed from OPV formulations to obtain bivalent OPV (containing only types 1 and 3). In order to avoid the reversion of attenuated OPV strains, the new OPV, which is more stable due to genome-wide modifications, as well as sabin IPV and virus-like particle (VLP) vaccines, is being developed and offers promising solutions for eradicating WP1 and VDPV.
Collapse
Affiliation(s)
- Chaldam Jespère Mbani
- Laboratoire de Virologie URL3610, Université de Lille, CHU Lille, 59000 Lille, France
- Laboratoire de Biologie Cellulaire et Moléculaire, Faculté des Sciences et Technique, Université Marien Ngouabi, Brazzaville BP 69, Congo
| | | | - Donatien Moukassa
- Laboratoire de Biologie Cellulaire et Moléculaire, Faculté des Sciences et Technique, Université Marien Ngouabi, Brazzaville BP 69, Congo
| | - Didier Hober
- Laboratoire de Virologie URL3610, Université de Lille, CHU Lille, 59000 Lille, France
| |
Collapse
|
3
|
Fernandez-Garcia MD, Faye M, Diez-Fuertes F, Moreno-Docón A, Chirlaque-López MD, Faye O, Cabrerizo M. Metagenomic sequencing, molecular characterization, and Bayesian phylogenetics of imported type 2 vaccine-derived poliovirus, Spain, 2021. Front Cell Infect Microbiol 2023; 13:1168355. [PMID: 37201115 PMCID: PMC10185892 DOI: 10.3389/fcimb.2023.1168355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/11/2023] [Indexed: 05/20/2023] Open
Abstract
Introduction In 2021, a type 2 vaccine-derived poliovirus (VDPV2) was isolated from the stool of a patient with acute flaccid paralysis (AFP) admitted to Spain from Senegal. A virological investigation was conducted to characterize and trace the origin of VDPV2. Methods We used an unbiased metagenomic approach for the whole-genome sequencing of VDPV2 from the stool (pre-treated with chloroform) and from the poliovirus-positive supernatant. Phylogenetic analyses and molecular epidemiological analyses relying on the Bayesian Markov Chain Monte Carlo methodology were used to determine the geographical origin and estimate the date of the initiating dose of the oral poliovirus vaccine for the imported VDPV2. Results We obtained a high percentage of viral reads per total reads mapped to the poliovirus genome (69.5% for pre-treated stool and 75.8% for isolate) with a great depth of sequencing coverage (5,931 and 11,581, respectively) and complete genome coverage (100%). The two key attenuating mutations in the Sabin 2 strain had reverted (A481G in the 5'UTR and Ile143Thr in VP1). In addition, the genome had a recombinant structure between type-2 poliovirus and an unidentified non-polio enterovirus-C (NPEV-C) strain with a crossover point in the protease-2A genomic region. VP1 phylogenetic analysis revealed that this strain is closely related to VDPV2 strains circulating in Senegal in 2021. According to Bayesian phylogenetics, the most recent common ancestor of the imported VDPV2 could date back 2.6 years (95% HPD: 1.7-3.7) in Senegal. We suggest that all VDPV2s circulating in 2020-21 in Senegal, Guinea, Gambia, and Mauritania have an ancestral origin in Senegal estimated around 2015. All 50 stool samples from healthy case contacts collected in Spain (n = 25) and Senegal (n = 25) and four wastewater samples collected in Spain were poliovirus negative. Discussion By using a whole-genome sequencing protocol with unbiased metagenomics from the clinical sample and viral isolate with high sequence coverage, efficiency, and throughput, we confirmed the classification of VDPV as a circulating type. The close genomic linkage with strains from Senegal was consistent with their classification as imported. Given the scarce number of complete genome sequences for NPEV-C in public databases, this protocol could help expand poliovirus and NPEV-C sequencing capacity worldwide.
Collapse
Affiliation(s)
- Maria Dolores Fernandez-Garcia
- Enterovirus and Viral Gastroenteritis Unit/National Polio Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Madrid, Spain
- Consortium of Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
- *Correspondence: Maria Dolores Fernandez-Garcia,
| | - Martin Faye
- Virology Department, Institut Pasteur de Dakar, Dakar, Senegal
| | - Francisco Diez-Fuertes
- AIDS Immunopathogenesis Unit, Instituto de Salud Carlos III, Madrid, Spain
- Consortium of Infectious Diseases, Instituto de Salud Carlos III, Madrid, Spain
| | - Antonio Moreno-Docón
- Microbiology Department, Hospital U. Virgen de la Arrixaca, Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, Murcia University, Murcia, Spain
| | - Maria Dolores Chirlaque-López
- Consortium of Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
- Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, Murcia University, Murcia, Spain
- Department of Epidemiology, Murcia Regional Health Council, Murcia, Spain
| | - Ousmane Faye
- Virology Department, Institut Pasteur de Dakar, Dakar, Senegal
| | - Maria Cabrerizo
- Enterovirus and Viral Gastroenteritis Unit/National Polio Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Madrid, Spain
- Consortium of Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
4
|
Kitamura K, Shimizu H. The Molecular Evolution of Type 2 Vaccine-Derived Polioviruses in Individuals with Primary Immunodeficiency Diseases. Viruses 2021; 13:v13071407. [PMID: 34372613 PMCID: PMC8310373 DOI: 10.3390/v13071407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 07/17/2021] [Accepted: 07/17/2021] [Indexed: 12/28/2022] Open
Abstract
The oral poliovirus vaccine (OPV), which prevents person-to-person transmission of poliovirus by inducing robust intestinal immunity, has been a crucial tool for global polio eradication. However, polio outbreaks, mainly caused by type 2 circulating vaccine-derived poliovirus (cVDPV2), are increasing worldwide. Meanwhile, immunodeficiency-associated vaccine-derived poliovirus (iVDPV) is considered another risk factor during the final stage of global polio eradication. Patients with primary immunodeficiency diseases are associated with higher risks for long-term iVDPV infections. Although a limited number of chronic iVDPV excretors were reported, the recent identification of a chronic type 2 iVDPV (iVDPV2) excretor in the Philippines highlights the potential risk of inapparent iVDPV infection for expanding cVDPV outbreaks. Further research on the genetic characterizations and molecular evolution of iVDPV2, based on comprehensive iVDPV surveillance, will be critical for elucidating the remaining risk of iVDPV2 during the post-OPV era.
Collapse
|
5
|
A new application of TMR: A study on implicit self-esteem. CURRENT PSYCHOLOGY 2021. [DOI: 10.1007/s12144-021-01883-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
6
|
Muslin C, Mac Kain A, Bessaud M, Blondel B, Delpeyroux F. Recombination in Enteroviruses, a Multi-Step Modular Evolutionary Process. Viruses 2019; 11:E859. [PMID: 31540135 PMCID: PMC6784155 DOI: 10.3390/v11090859] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 09/05/2019] [Accepted: 09/06/2019] [Indexed: 01/15/2023] Open
Abstract
RNA recombination is a major driving force in the evolution and genetic architecture shaping of enteroviruses. In particular, intertypic recombination is implicated in the emergence of most pathogenic circulating vaccine-derived polioviruses, which have caused numerous outbreaks of paralytic poliomyelitis worldwide. Recent experimental studies that relied on recombination cellular systems mimicking natural genetic exchanges between enteroviruses provided new insights into the molecular mechanisms of enterovirus recombination and enabled to define a new model of genetic plasticity for enteroviruses. Homologous intertypic recombinant enteroviruses that were observed in nature would be the final products of a multi-step process, during which precursor nonhomologous recombinant genomes are generated through an initial inter-genomic RNA recombination event and can then evolve into a diversity of fitter homologous recombinant genomes over subsequent intra-genomic rearrangements. Moreover, these experimental studies demonstrated that the enterovirus genome could be defined as a combination of genomic modules that can be preferentially exchanged through recombination, and enabled defining the boundaries of these recombination modules. These results provided the first experimental evidence supporting the theoretical model of enterovirus modular evolution previously elaborated from phylogenetic studies of circulating enterovirus strains. This review summarizes our current knowledge regarding the mechanisms of recombination in enteroviruses and presents a new evolutionary process that may apply to other RNA viruses.
Collapse
Affiliation(s)
- Claire Muslin
- One Health Research Group, Faculty of Health Sciences, Universidad de las Américas, Quito EC170125, Pichincha, Ecuador.
| | - Alice Mac Kain
- Institut Pasteur, Viral Populations and Pathogenesis Unit, CNRS UMR 3569, 75015 Paris, France.
| | - Maël Bessaud
- Institut Pasteur, Viral Populations and Pathogenesis Unit, CNRS UMR 3569, 75015 Paris, France.
| | - Bruno Blondel
- Institut Pasteur, Biology of Enteric Viruses Unit, 75015 Paris, France.
- INSERM U994, Institut National de la Santé et de la Recherche Médicale, 75015 Paris, France.
| | - Francis Delpeyroux
- Institut Pasteur, Biology of Enteric Viruses Unit, 75015 Paris, France.
- INSERM U994, Institut National de la Santé et de la Recherche Médicale, 75015 Paris, France.
| |
Collapse
|
7
|
Fernandez-Garcia MD, Majumdar M, Kebe O, Fall AD, Kone M, Kande M, Dabo M, Sylla MS, Sompare D, Howard W, Faye O, Martin J, Ndiaye K. Emergence of Vaccine-Derived Polioviruses during Ebola Virus Disease Outbreak, Guinea, 2014-2015. Emerg Infect Dis 2017; 24:65-74. [PMID: 29260690 PMCID: PMC5749474 DOI: 10.3201/eid2401.171174] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
During the 2014-2015 outbreak of Ebola virus disease in Guinea, 13 type 2 circulating vaccine-derived polioviruses (cVDPVs) were isolated from 6 polio patients and 7 healthy contacts. To clarify the genetic properties of cVDPVs and their emergence, we combined epidemiologic and virologic data for polio cases in Guinea. Deviation of public health resources to the Ebola outbreak disrupted polio vaccination programs and surveillance activities, which fueled the spread of neurovirulent VDPVs in an area of low vaccination coverage and immunity. Genetic properties of cVDPVs were consistent with their capacity to cause paralytic disease in humans and capacity for sustained person-to-person transmission. Circulation ceased when coverage of oral polio vaccine increased. A polio outbreak in the context of the Ebola virus disease outbreak highlights the need to consider risks for polio emergence and spread during complex emergencies and urges awareness of the challenges in polio surveillance, vaccination, and diagnosis.
Collapse
|
8
|
Korotkova E, Laassri M, Zagorodnyaya T, Petrovskaya S, Rodionova E, Cherkasova E, Gmyl A, Ivanova OE, Eremeeva TP, Lipskaya GY, Agol VI, Chumakov K. Pressure for Pattern-Specific Intertypic Recombination between Sabin Polioviruses: Evolutionary Implications. Viruses 2017; 9:v9110353. [PMID: 29165333 PMCID: PMC5707560 DOI: 10.3390/v9110353] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 11/15/2017] [Accepted: 11/20/2017] [Indexed: 11/29/2022] Open
Abstract
Complete genomic sequences of a non-redundant set of 70 recombinants between three serotypes of attenuated Sabin polioviruses as well as location (based on partial sequencing) of crossover sites of 28 additional recombinants were determined and compared with the previously published data. It is demonstrated that the genomes of Sabin viruses contain distinct strain-specific segments that are eliminated by recombination. The presumed low fitness of these segments could be linked to mutations acquired upon derivation of the vaccine strains and/or may have been present in wild-type parents of Sabin viruses. These “weak” segments contribute to the propensity of these viruses to recombine with each other and with other enteroviruses as well as determine the choice of crossover sites. The knowledge of location of such segments opens additional possibilities for the design of more genetically stable and/or more attenuated variants, i.e., candidates for new oral polio vaccines. The results also suggest that the genome of wild polioviruses, and, by generalization, of other RNA viruses, may harbor hidden low-fitness segments that can be readily eliminated only by recombination.
Collapse
Affiliation(s)
- Ekaterina Korotkova
- AN Belozersky Institute of Physical-Chemical Biology, MV Lomonosov Moscow State University, Moscow 119899, Russia.
- Institute of Poliomyelitis and Viral Encephalitides of MP Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow 108819, Russia.
| | - Majid Laassri
- US Food and Drug Administration, Silver Spring, MD 20993, USA.
| | | | | | | | - Elena Cherkasova
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20895, USA.
| | - Anatoly Gmyl
- Institute of Poliomyelitis and Viral Encephalitides of MP Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow 108819, Russia.
- IM Sechenov First Moscow State Medical University, Moscow 119991, Russia.
| | - Olga E Ivanova
- Institute of Poliomyelitis and Viral Encephalitides of MP Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow 108819, Russia.
- IM Sechenov First Moscow State Medical University, Moscow 119991, Russia.
| | - Tatyana P Eremeeva
- Institute of Poliomyelitis and Viral Encephalitides of MP Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow 108819, Russia.
| | - Galina Y Lipskaya
- AN Belozersky Institute of Physical-Chemical Biology, MV Lomonosov Moscow State University, Moscow 119899, Russia.
| | - Vadim I Agol
- AN Belozersky Institute of Physical-Chemical Biology, MV Lomonosov Moscow State University, Moscow 119899, Russia.
- Institute of Poliomyelitis and Viral Encephalitides of MP Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow 108819, Russia.
| | | |
Collapse
|
9
|
Kyriakopoulou Z, Amoutzias GD, Dimitriou TG, Tsakogiannis D, Mossialos D, Markoulatos P. Intra- and inter-serotypic recombinations in the 5΄ UTR-VP4 region of Echovirus 30 strains. Arch Virol 2017; 163:365-375. [DOI: 10.1007/s00705-017-3600-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 09/06/2017] [Indexed: 12/23/2022]
|
10
|
Detection of Emerging Vaccine-Related Polioviruses by Deep Sequencing. J Clin Microbiol 2017; 55:2162-2171. [PMID: 28468861 PMCID: PMC5483918 DOI: 10.1128/jcm.00144-17] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 04/19/2017] [Indexed: 12/13/2022] Open
Abstract
Oral poliovirus vaccine can mutate to regain neurovirulence. To date, evaluation of these mutations has been performed primarily on culture-enriched isolates by using conventional Sanger sequencing. We therefore developed a culture-independent, deep-sequencing method targeting the 5′ untranslated region (UTR) and P1 genomic region to characterize vaccine-related poliovirus variants. Error analysis of the deep-sequencing method demonstrated reliable detection of poliovirus mutations at levels of <1%, depending on read depth. Sequencing of viral nucleic acids from the stool of vaccinated, asymptomatic children and their close contacts collected during a prospective cohort study in Veracruz, Mexico, revealed no vaccine-derived polioviruses. This was expected given that the longest duration between sequenced sample collection and the end of the most recent national immunization week was 66 days. However, we identified many low-level variants (<5%) distributed across the 5′ UTR and P1 genomic region in all three Sabin serotypes, as well as vaccine-related viruses with multiple canonical mutations associated with phenotypic reversion present at high levels (>90%). These results suggest that monitoring emerging vaccine-related poliovirus variants by deep sequencing may aid in the poliovirus endgame and efforts to ensure global polio eradication.
Collapse
|
11
|
Bessaud M, Joffret ML, Blondel B, Delpeyroux F. Exchanges of genomic domains between poliovirus and other cocirculating species C enteroviruses reveal a high degree of plasticity. Sci Rep 2016; 6:38831. [PMID: 27958320 PMCID: PMC5153852 DOI: 10.1038/srep38831] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 11/14/2016] [Indexed: 11/30/2022] Open
Abstract
The attenuated Sabin strains contained in the oral poliomyelitis vaccine are genetically unstable, and their circulation in poorly immunized populations can lead to the emergence of pathogenic circulating vaccine-derived polioviruses (cVDPVs). The recombinant nature of most cVDPV genomes and the preferential presence of genomic sequences from certain cocirculating non-polio enteroviruses of species C (EV-Cs) raise questions about the permissiveness of genetic exchanges between EV-Cs and the phenotypic impact of such exchanges. We investigated whether functional constraints limited genetic exchanges between Sabin strains and other EV-Cs. We bypassed the natural recombination events by constructing 29 genomes containing a Sabin 2 capsid-encoding sequence and other sequences from Sabin 2 or from non-polio EV-Cs. Most genomes were functional. All recombinant viruses replicated similarly in vitro, but recombination modulated plaque size and temperature sensitivity. All viruses with a 5′UTR from Sabin 2 were attenuated in mice, whereas almost all viruses with a non-polio 5′UTR caused disease. These data highlight the striking conservation of functional compatibility between different genetic domains of cocirculating EV-Cs. This aspect is only one of the requirements for the generation of recombinant cVDPVs in natural conditions, but it may facilitate the generation of viable intertypic recombinants with diverse phenotypic features, including pathogenicity.
Collapse
Affiliation(s)
- Maël Bessaud
- Institut Pasteur, Unité de biologie des virus entériques, Paris, France.,INSERM, U994, Paris, France
| | - Marie-Line Joffret
- Institut Pasteur, Unité de biologie des virus entériques, Paris, France.,INSERM, U994, Paris, France
| | - Bruno Blondel
- Institut Pasteur, Unité de biologie des virus entériques, Paris, France.,INSERM, U994, Paris, France
| | - Francis Delpeyroux
- Institut Pasteur, Unité de biologie des virus entériques, Paris, France.,INSERM, U994, Paris, France
| |
Collapse
|
12
|
A Cluster of Paralytic Poliomyelitis Cases Due to Transmission of Slightly Diverged Sabin 2 Vaccine Poliovirus. J Virol 2016; 90:5978-88. [PMID: 27099315 DOI: 10.1128/jvi.00277-16] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 04/12/2016] [Indexed: 12/14/2022] Open
Abstract
UNLABELLED Four cases of acute flaccid paralysis caused by slightly evolved (Sabin-like) vaccine polioviruses of serotype 2 were registered in July to August 2010 in an orphanage of Biysk (Altai Region, Russia). The Biysk cluster of vaccine-associated paralytic poliomyelitis (VAPP) had several uncommon, if not unique, features. (i) Until this outbreak, Sabin-like viruses (in distinction to more markedly evolved vaccine-derived polioviruses [VDPVs]) were reported to cause only sporadic cases of VAPP. Consequently, VAPP cases were not considered to require outbreak-type responses. However, the Biysk outbreak completely blurred the borderline between Sabin-like viruses and VDPVs in epidemiological terms. (ii) The outbreak demonstrated a very high disease/infection ratio, apparently exceeding even that reported for wild polioviruses. The viral genome structures did not provide any substantial hints as to the underlying reason(s) for such pathogenicity. (iii) The replacement of intestinal poliovirus lineages by other Sabin-like lineages during short intervals after the disease onsets was observed in two patients. Again, the sequences of the respective genomes provided no clues to explain these events. (iv) The polioviruses isolated from the patients and their contacts demonstrated a striking heterogeneity as well as rapid and uneven evolution of the whole genomes and their parts, apparently due to extensive interpersonal contacts in a relatively small closed community, multiple bottlenecking, and recombination. Altogether, the results demonstrate several new aspects of pathogenicity, epidemiology, and evolution of vaccine-related polioviruses and underscore several serious gaps in understanding these problems. IMPORTANCE The oral poliovirus vaccine largely contributed to the nearly complete disappearance of poliovirus-caused poliomyelitis. Being generally safe, it can, in some cases, result in a paralytic disease. Two types of such outcomes are distinguished: those caused by slightly diverged (Sabin-like) viruses on the one hand and those caused by significantly diverged VDPVs on the other. This classification is based on the number of mutations in the viral genome region encoding a viral structural protein. Until now, only sporadic poliomyelitis cases due to Sabin-like polioviruses had been described, and in distinction from the VDPV-triggered outbreaks, they did not require broad-scale epidemiological responses. Here, an unusual outbreak of poliomyelitis caused by a Sabin-like virus is reported, which had an exceptionally high disease/infection ratio. This outbreak blurred the borderline between Sabin-like polioviruses and VDPVs both in pathogenicity and in the kind of responses required, as well as underscoring important gaps in understanding the pathogenicity, epidemiology, and evolution of vaccine-derived polioviruses.
Collapse
|
13
|
Cassemiro KMSDM, Burlandy FM, Barbosa MRF, Chen Q, Jorba J, Hachich EM, Sato MIZ, Burns CC, da Silva EE. Molecular and Phenotypic Characterization of a Highly Evolved Type 2 Vaccine-Derived Poliovirus Isolated from Seawater in Brazil, 2014. PLoS One 2016; 11:e0152251. [PMID: 27019095 PMCID: PMC4809597 DOI: 10.1371/journal.pone.0152251] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Accepted: 03/11/2016] [Indexed: 02/06/2023] Open
Abstract
A type 2 vaccine-derived poliovirus (VDPV), differing from the Sabin 2 strain at 8.6% (78/903) of VP1 nucleotide positions, was isolated from seawater collected from a seaport in São Paulo State, Brazil. The P1/capsid region is related to the Sabin 2 strain, but sequences within the 5'-untranslated region and downstream of the P1 region were derived from recombination with other members of Human Enterovirus Species C (HEV-C). The two known attenuating mutations had reverted to wild-type (A481G in the 5'-UTR and Ile143Thr in VP1). The VDPV isolate had lost the temperature sensitive phenotype and had accumulated amino acid substitutions in neutralizing antigenic (NAg) sites 3a and 3b. The date of the initiating OPV dose, estimated from the number of synonymous substitutions in the capsid region, was approximately 8.5 years before seawater sampling, a finding consistent with a long time of virus replication and possible transmission among several individuals. Although no closely related type 2 VDPVs were detected in Brazil or elsewhere, this VDPV was found in an area with a mobile population, where conditions may favor both viral infection and spread. Environmental surveillance serves as an important tool for sensitive and early detection of circulating poliovirus in the final stages of global polio eradication.
Collapse
Affiliation(s)
| | - Fernanda M. Burlandy
- Enterovirus Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mikaela R. F. Barbosa
- Environmental Analysis Department, Environmental Company of São Paulo State, São Paulo, São Paulo, Brazil
| | - Qi Chen
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of Americaa
| | - Jaume Jorba
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of Americaa
| | - Elayse M. Hachich
- Environmental Analysis Department, Environmental Company of São Paulo State, São Paulo, São Paulo, Brazil
| | - Maria I. Z. Sato
- Environmental Analysis Department, Environmental Company of São Paulo State, São Paulo, São Paulo, Brazil
| | - Cara C. Burns
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of Americaa
| | - Edson E. da Silva
- Enterovirus Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Rio de Janeiro, Brazil
- * E-mail:
| |
Collapse
|
14
|
Faleye TOC, Adewumi MO, Adeniji JA. Defining the Enterovirus Diversity Landscape of a Fecal Sample: A Methodological Challenge? Viruses 2016; 8:E18. [PMID: 26771630 PMCID: PMC4728578 DOI: 10.3390/v8010018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 12/24/2015] [Accepted: 01/04/2016] [Indexed: 01/27/2023] Open
Abstract
Enteroviruses are a group of over 250 naked icosahedral virus serotypes that have been associated with clinical conditions that range from intrauterine enterovirus transmission withfataloutcome through encephalitis and meningitis, to paralysis. Classically, enterovirus detection was done by assaying for the development of the classic enterovirus-specific cytopathic effect in cell culture. Subsequently, the isolates were historically identified by a neutralization assay. More recently, identification has been done by reverse transcriptase-polymerase chain reaction (RT-PCR). However, in recent times, there is a move towards direct detection and identification of enteroviruses from clinical samples using the cell culture-independent RT semi-nested PCR (RT-snPCR) assay. This RT-snPCR procedure amplifies the VP1 gene, which is then sequenced and used for identification. However, while cell culture-based strategies tend to show a preponderance of certain enterovirus species depending on the cell lines included in the isolation protocol, the RT-snPCR strategies tilt in a different direction. Consequently, it is becoming apparent that the diversity observed in certain enterovirus species, e.g., enterovirus species B(EV-B), might not be because they are the most evolutionarily successful. Rather, it might stem from cell line-specific bias accumulated over several years of use of the cell culture-dependent isolation protocols. Furthermore, it might also be a reflection of the impact of the relative genome concentration on the result of pan-enterovirus VP1 RT-snPCR screens used during the identification of cell culture isolates. This review highlights the impact of these two processes on the current diversity landscape of enteroviruses and the need to re-assess enterovirus detection and identification algorithms in a bid to better balance our understanding of the enterovirus diversity landscape.
Collapse
Affiliation(s)
| | - Moses Olubusuyi Adewumi
- Department of Virology, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria.
| | - Johnson Adekunle Adeniji
- WHO National Polio Laboratory, Department of Virology, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria.
| |
Collapse
|
15
|
Cakmak E, Duksal F, Altinkaya E, Acibucu F, Dogan OT, Yonem O, Yilmaz A. Association Between the Severity of Nocturnal Hypoxia in Obstructive Sleep Apnea and Non-Alcoholic Fatty Liver Damage. HEPATITIS MONTHLY 2015; 15:e32655. [PMID: 26834793 PMCID: PMC4719120 DOI: 10.5812/hepatmon.32655] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Revised: 09/20/2015] [Accepted: 09/22/2015] [Indexed: 02/07/2023]
Abstract
BACKGROUND Obstructive sleep apnea (OSA) is a major disease that can cause significant mortality and morbidity. Chronic intermittent hypoxia is a potential causal factor in the progression from fatty liver to nonalcoholic steatohepatitis. OBJECTIVES This study evaluated the association between the degree of liver steatosis and severity of nocturnal hypoxia. PATIENTS AND METHODS In this study, between December 2011 and December 2013, patients with ultrasound-diagnosed NAFLD evaluated by standart polysomnography were subsequentally recorded. Patients with alcohol use, viral hepatitis and other chronic liver diseases were excluded. We analyzed polysomnographic parameters, steatosis level and severity of obstructive sleep apnea (OSA) in consideration of body mass index (BMI), biochemical tests and ultrasonographic liver data of 137 subjects. Patients with sleep apnea and AHI scores of < 5, 5 - 14, 15 - 29 and ≥30 are categorized as control, mild, moderate and severe, respectively. RESULTS One hundred and thirty-seven patients (76 women, 61 men) with a mean age of 55.75 ± 10.13 years who underwent polysomnography were included in the study. Of 118 patients diagnosed with OSA, 19 (16.1%) had mild OSA, 39 (33.1%) moderate OSA and 60 (50.8%) severe OSA. Nineteen cases formed the control group. Apnea/hypopnea index and oxygen desaturation index (ODI) values were significantly higher in moderate and severe non-alcoholic fatty liver disease (NAFLD) compared to the non-NAFLD group. Mean nocturnal SpO2 values were significantly lower in mild NAFLD and severe NAFLD compared to the non-NAFLD group. Lowest O2 saturation (LaSO2) was found low in mild, moderate and severe NAFLD compared to the non-NAFLD group in a statistically significant manner. CONCLUSIONS We assessed polysomnographic parameters of AHI, ODI, LaSO2 and mean nocturnal SpO2 levels, which are especially important in the association between NAFLD and OSAS. We think that it is necessary to be attentive regarding NAFLD development and progression in patients with OSA whose nocturnal hypoxia is severe.
Collapse
Affiliation(s)
- Erol Cakmak
- Department of Gastroenterology, Cumhuriyet University Faculty of Medicine, Sivas, Turkey
- Corresponding Author: Erol Cakmak, Department of Gastroenterology, Cumhuriyet University Faculty of Medicine, P. O. Box: 58140, Sivas, Turkey. Tel: +90-3464444458, Fax: +90-3462239530, E-mail:
| | - Faysal Duksal
- Department of Chest Diseases, Sivas Numune Hospital, Sivas, Turkey
| | - Engin Altinkaya
- Department of Gastroenterology, Kayseri Training and Research Hospital, Kayseri, Turkey
| | - Fettah Acibucu
- Department of Endocrinology, Sivas Numune Hospital, Sivas, Turkey
| | - Omer Tamer Dogan
- Department of Chest Diseases, Cumhuriyet University Faculty of Medicine, Sivas, Turkey
| | - Ozlem Yonem
- Department of Gastroenterology, Cumhuriyet University Faculty of Medicine, Sivas, Turkey
| | - Abdulkerim Yilmaz
- Department of Gastroenterology, Cumhuriyet University Faculty of Medicine, Sivas, Turkey
| |
Collapse
|
16
|
Muslin C, Joffret ML, Pelletier I, Blondel B, Delpeyroux F. Evolution and Emergence of Enteroviruses through Intra- and Inter-species Recombination: Plasticity and Phenotypic Impact of Modular Genetic Exchanges in the 5' Untranslated Region. PLoS Pathog 2015; 11:e1005266. [PMID: 26562151 PMCID: PMC4643034 DOI: 10.1371/journal.ppat.1005266] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 10/19/2015] [Indexed: 12/20/2022] Open
Abstract
Genetic recombination shapes the diversity of RNA viruses, including enteroviruses (EVs), which frequently have mosaic genomes. Pathogenic circulating vaccine-derived poliovirus (cVDPV) genomes consist of mutated vaccine poliovirus (PV) sequences encoding capsid proteins, and sequences encoding nonstructural proteins derived from other species’ C EVs, including certain coxsackieviruses A (CV-A) in particular. Many cVDPV genomes also have an exogenous 5’ untranslated region (5’ UTR). This region is involved in virulence and includes the cloverleaf (CL) and the internal ribosomal entry site, which play major roles in replication and the initiation of translation, respectively. We investigated the plasticity of the PV genome in terms of recombination in the 5’ UTR, by developing an experimental model involving the rescue of a bipartite PV/CV-A cVDPV genome rendered defective by mutations in the CL, following the co-transfection of cells with 5’ UTR RNAs from each of the four human EV species (EV-A to -D). The defective cVDPV was rescued by recombination with 5’ UTR sequences from the four EV species. Homologous and nonhomologous recombinants with large deletions or insertions in three hotspots were isolated, revealing a striking plasticity of the 5’ UTR. By contrast to the recombination of the cVDPV with the 5’ UTR of group II (EV-A and -B), which can decrease viral replication and virulence, recombination with the 5’ UTRs of group I (EV-C and -D) appeared to be evolutionarily neutral or associated with a gain in fitness. This study illustrates how the genomes of positive-strand RNA viruses can evolve into mosaic recombinant genomes through intra- or inter-species modular genetic exchanges, favoring the emergence of new recombinant lineages. Recombination shapes viral genomes, including those of the pathogenic circulating vaccine-derived polioviruses (cVDPVs), responsible for poliomyelitis outbreaks. The genomes of cVDPVs consist of sequences from vaccine poliovirus (PV) and other enteroviruses (EVs). We investigated the plasticity of cVDPV genomes and the effects of recombination in the 5’ untranslated region (5’ UTR), which is involved in replication, translation and virulence. We rescued a 5’ UTR-defective recombinant cVDPV genome by cotransfecting cells with 5’ UTR RNAs from human EV species EV-A to -D. Hundreds of recombinants were isolated, revealing striking plasticity in this region, with homologous and nonhomologous recombination sites mostly clustered in three hotspots. Recombination with EV-A and -B affected replication and virulence, whereas recombination with EV-C and -D was either neutral or improved viral fitness. This study illustrates how RNA viruses can acquire mosaic genomes through intra- or inter-species recombination, favoring the emergence of new recombinant strains.
Collapse
Affiliation(s)
- Claire Muslin
- Institut Pasteur, Biologie des Virus Entériques, Paris, France
- INSERM U994, Institut National de Santé et de La Recherche Médicale, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Cellule Pasteur, Paris, France
| | - Marie-Line Joffret
- Institut Pasteur, Biologie des Virus Entériques, Paris, France
- INSERM U994, Institut National de Santé et de La Recherche Médicale, Paris, France
| | - Isabelle Pelletier
- Institut Pasteur, Biologie des Virus Entériques, Paris, France
- INSERM U994, Institut National de Santé et de La Recherche Médicale, Paris, France
| | - Bruno Blondel
- Institut Pasteur, Biologie des Virus Entériques, Paris, France
- INSERM U994, Institut National de Santé et de La Recherche Médicale, Paris, France
| | - Francis Delpeyroux
- Institut Pasteur, Biologie des Virus Entériques, Paris, France
- INSERM U994, Institut National de Santé et de La Recherche Médicale, Paris, France
- * E-mail:
| |
Collapse
|
17
|
Kaliner E, Kopel E, Anis E, Mendelson E, Moran-Gilad J, Shulman LM, Singer SR, Manor Y, Somekh E, Rishpon S, Leventhal A, Rubin L, Tasher D, Honovich M, Moerman L, Shohat T, Bassal R, Sofer D, Gdalevich M, Lev B, Gamzu R, Grotto I. The Israeli public health response to wild poliovirus importation. THE LANCET. INFECTIOUS DISEASES 2015. [PMID: 26213249 DOI: 10.1016/s1473-3099(15)00064-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In 2013, a silent wild poliovirus type 1 importation and sustained transmission event occurred in southern Israel. With the aim of preventing clinical poliomyelitis and ensuring virus re-elimination, the public health response to the importation event included intensification of clinical and environmental surveillance activities, enhancement of vaccine coverage, and supplemental immunisation with a bivalent oral polio vaccine against wild poliovirus types 1 and 3. A national campaign launched in August, 2013, resulted in vaccination of 943,587 children younger than 10 years (79% of the eligible target population). Expanded environmental surveillance (roughly 80% population coverage) documented a gradual disappearance of wild poliovirus type 1 in the country from September, 2013, to April, 2014. No paralytic poliomyelitis case was detected. A prompt extensive and coordinated national public health response, implemented on the basis of evidence-based decision making, successfully contained this serious importation and sustained transmission event of wild poliovirus to Israel. On April 28, 2015, WHO officially declared Israel as a polio-free country.
Collapse
Affiliation(s)
- Ehud Kaliner
- Public Health Services, Ministry of Health, Jerusalem, Israel
| | - Eran Kopel
- Public Health Services, Ministry of Health, Jerusalem, Israel; The Division of Epidemiology, Public Health Services, Ministry of Health, Jerusalem, Israel.
| | - Emilia Anis
- Public Health Services, Ministry of Health, Jerusalem, Israel; The Division of Epidemiology, Public Health Services, Ministry of Health, Jerusalem, Israel; Braun School of Public Health and Community Medicine, Hebrew University Hadassah Faculty of Medicine, Jerusalem, Israel
| | - Ella Mendelson
- Central Virology Laboratory, Public Health Services, Ministry of Health, The Chaim Sheba Medical Center, Tel Hashomer, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Jacob Moran-Gilad
- Public Health Services, Ministry of Health, Jerusalem, Israel; Faculty for Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Lester M Shulman
- Central Virology Laboratory, Public Health Services, Ministry of Health, The Chaim Sheba Medical Center, Tel Hashomer, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Shepherd R Singer
- Public Health Services, Ministry of Health, Jerusalem, Israel; The Division of Epidemiology, Public Health Services, Ministry of Health, Jerusalem, Israel
| | - Yossi Manor
- Central Virology Laboratory, Public Health Services, Ministry of Health, The Chaim Sheba Medical Center, Tel Hashomer, Israel
| | - Eli Somekh
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Pediatric Infectious Diseases Unit, Wolfson Medical Center, Holon, Israel
| | - Shmuel Rishpon
- Haifa District Health Office, Ministry of Health, Haifa, Israel; School of Public Health, Faculty of Health and Welfare Studies, University of Haifa, Haifa, Israel
| | | | - Lisa Rubin
- Public Health Services, Ministry of Health, Jerusalem, Israel; School of Public Health, Faculty of Health and Welfare Studies, University of Haifa, Haifa, Israel
| | - Diana Tasher
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Pediatric Infectious Diseases Unit, Wolfson Medical Center, Holon, Israel
| | - Mira Honovich
- Public Health Services, Ministry of Health, Jerusalem, Israel
| | - Larisa Moerman
- Public Health Services, Ministry of Health, Jerusalem, Israel; The Division of Epidemiology, Public Health Services, Ministry of Health, Jerusalem, Israel
| | - Tamy Shohat
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Israel Center for Disease Control, Ministry of Health, Tel Hashomer, Israel
| | - Ravit Bassal
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Israel Center for Disease Control, Ministry of Health, Tel Hashomer, Israel
| | - Danit Sofer
- Central Virology Laboratory, Public Health Services, Ministry of Health, The Chaim Sheba Medical Center, Tel Hashomer, Israel
| | - Michael Gdalevich
- Faculty for Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel; South District Health Office, Ministry of Health, Beer-Sheva, Israel
| | - Boaz Lev
- Ministry of Health, Jerusalem, Israel
| | - Ronni Gamzu
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Ministry of Health, Jerusalem, Israel
| | - Itamar Grotto
- Public Health Services, Ministry of Health, Jerusalem, Israel; Faculty for Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| |
Collapse
|
18
|
Adeniji JA, Faleye TOC. Enterovirus C strains circulating in Nigeria and their contribution to the emergence of recombinant circulating vaccine-derived polioviruses. Arch Virol 2015; 160:675-83. [PMID: 25559670 DOI: 10.1007/s00705-014-2322-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 12/18/2014] [Indexed: 01/17/2023]
Abstract
Between 2005 and 2011, 23 lineages of circulating vaccine-derived polioviruses (cVDPVs) were detected in Nigeria with nonstructural region (NSR) of non-polio enterovirus C (NPEV-C) origin. However, no information exists on NPEV-C strains recombining with oral poliovirus type 2 vaccine strains (OPV2) to make type 2 cVDPVs (cVDPV2s) in Nigeria. This study was therefore designed to investigate the probable contribution of NPEV-Cs recently isolated in the region to the emergence of cVDPV2s. Eleven enterovirus C (EV-C) strains (8 NPEV-Cs and 3 PV2s) previously isolated by the authors were analysed in this study. All 11 isolates were assayed for cell-line-dependent growth restriction in four cell lines (LLC-MK2, MCF-7, RD and L20B). Subsequently, the isolates were subjected to RT-PCR specific for VP1 and 3Dpol/3'-UTR of EV-C. All PCR products were sequenced, and phylogenetic analysis was performed. All eight NPEV-Cs replicated exclusively in the MCF-7 cell line, while the three PV2s replicated in all four cell lines. The eight NPEV-Cs were identified as CVA13 (7 isolates) and CVA20 (1 isolate) by VP1 analysis, while all 11 isolates were confirmed to be EV-Cs by 3Dpol/3'-UTR analysis. In addition, phylogeny violations suggested that some cVDPVs might have recombined with common ancestors of the NPEV-Cs described in this study. This was confirmed by the scatter plot of divergence in VP1 against that of 3Dpol/3'-UTR sequences for pairs of isolates. The results of this study showed that the NSR of unknown origin found in cVDPVs from the region might have come from NPEV-Cs (e.g., CVA13 and CVA20) circulating in Nigeria.
Collapse
|
19
|
Recombination among human non-polio enteroviruses: implications for epidemiology and evolution. Virus Genes 2014; 50:177-88. [PMID: 25537948 DOI: 10.1007/s11262-014-1152-y] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 12/01/2014] [Indexed: 12/21/2022]
Abstract
Human enteroviruses (EV) belong to the Picornaviridae family and are among the most common viruses infecting humans. They consist of up to 100 immunologically and genetically distinct types: polioviruses, coxsackieviruses A and B, echoviruses, and the more recently characterized 43 EV types. Frequent recombinations and mutations in enteroviruses have been recognized as the main mechanisms for the observed high rate of evolution, thus enabling them to rapidly respond and adapt to new environmental challenges. The first signs of genetic exchanges between enteroviruses came from polioviruses many years ago, and since then recombination has been recognized, along with mutations, as the main cause for reversion of vaccine strains to neurovirulence. More recently, non-polio enteroviruses became the focus of many studies, where recombination was recognized as a frequent event and was correlated with the appearance of new enterovirus lineages and types. The accumulation of multiple inter- and intra-typic recombination events could also explain the series of successive emergences and disappearances of specific enterovirus types that could in turn explain the epidemic profile of circulation of several types. This review focuses on recombination among human non-polio enteroviruses from all four species (EV-A, EV-B, EV-C, and EV-D) and discusses the recombination effects on enterovirus epidemiology and evolution.
Collapse
|
20
|
Abstract
The attenuated oral poliovirus vaccine (OPV) has many properties favoring its use in polio eradication: ease of administration, efficient induction of intestinal immunity, induction of durable humoral immunity, and low cost. Despite these advantages, OPV has the disadvantage of genetic instability, resulting in rare and sporadic cases of vaccine-associated paralytic poliomyelitis (VAPP) and the emergence of genetically divergent vaccine-derived polioviruses (VDPVs). Whereas VAPP is an adverse event following exposure to OPV, VDPVs are polioviruses whose genetic properties indicate prolonged replication or transmission. Three categories of VDPVs are recognized: (1) circulating VDPVs (cVDPVs) from outbreaks in settings of low OPV coverage, (2) immunodeficiency-associated VDPVs (iVDPVs) from individuals with primary immunodeficiencies, and (3) ambiguous VDPVs (aVDPVs), which cannot be definitively assigned to either of the first 2 categories. Because most VDPVs are type 2, the World Health Organization's plans call for coordinated worldwide replacement of trivalent OPV with bivalent OPV containing poliovirus types 1 and 3.
Collapse
Affiliation(s)
- Cara C Burns
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | | | | | - Olen M Kew
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| |
Collapse
|
21
|
Adeniji JA, Faleye TOC. Impact of cell lines included in enterovirus isolation protocol on perception of nonpolio enterovirus species C diversity. J Virol Methods 2014; 207:238-47. [PMID: 25064357 DOI: 10.1016/j.jviromet.2014.07.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 06/15/2014] [Accepted: 07/15/2014] [Indexed: 01/24/2023]
Abstract
There has been under-reporting of nonpolio enterovirus species Cs (NPESCs) in Nigeria despite the fact that most isolates recovered from the Nigerian vaccine derived poliovirus serotype 2 (VDPV2) outbreak were recombinants with nonstructural region of NPESC origin. It has been suggested that cell lines included in enterovirus isolation protocols might account for this phenomenon and this study examined this suggestion. Fifteen environmental samples concentrated previously and analysed using L20B and RD cell lines as part of the poliovirus environmental surveillance (ES) program in Nigeria were randomly selected and inoculated into two cell lines (MCF-7 and LLC-MK2). Isolates were identified as enteroviruses and species C members using different RT-PCR assays, culture in L20B cell line and sequencing of partial VP1. Forty-eight (48) isolates were recovered from the 15 samples, 47 (97.9%) of which were enteroviruses. Of the enteroviruses, 32 (68.1%) belonged to enterovirus species C (EC) of which 19 (40.4%) were polioviruses and 13 (27.7%) were NPESC members. All 13 NPESC isolates were recovered on MCF-7. Results of the study show that NPESCs are circulating in Nigeria and their under-reporting was due to the combination of cell lines used for enterovirus isolation in previous reports.
Collapse
Affiliation(s)
- Johnson Adekunle Adeniji
- Department of Virology, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria; WHO National Polio Laboratory, University of Ibadan, Ibadan, Oyo State, Nigeria.
| | | |
Collapse
|
22
|
Lowry K, Woodman A, Cook J, Evans DJ. Recombination in enteroviruses is a biphasic replicative process involving the generation of greater-than genome length 'imprecise' intermediates. PLoS Pathog 2014; 10:e1004191. [PMID: 24945141 PMCID: PMC4055744 DOI: 10.1371/journal.ppat.1004191] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 05/02/2014] [Indexed: 01/29/2023] Open
Abstract
Recombination in enteroviruses provides an evolutionary mechanism for acquiring extensive regions of novel sequence, is suggested to have a role in genotype diversity and is known to have been key to the emergence of novel neuropathogenic variants of poliovirus. Despite the importance of this evolutionary mechanism, the recombination process remains relatively poorly understood. We investigated heterologous recombination using a novel reverse genetic approach that resulted in the isolation of intermediate chimeric intertypic polioviruses bearing genomes with extensive duplicated sequences at the recombination junction. Serial passage of viruses exhibiting such imprecise junctions yielded progeny with increased fitness which had lost the duplicated sequences. Mutations or inhibitors that changed polymerase fidelity or the coalescence of replication complexes markedly altered the yield of recombinants (but did not influence non-replicative recombination) indicating both that the process is replicative and that it may be possible to enhance or reduce recombination-mediated viral evolution if required. We propose that extant recombinants result from a biphasic process in which an initial recombination event is followed by a process of resolution, deleting extraneous sequences and optimizing viral fitness. This process has implications for our wider understanding of ‘evolution by duplication’ in the positive-strand RNA viruses. The rapid evolution of most positive-sense RNA viruses enables them to escape immune surveillance and adapt to new hosts. Genetic variation arises due to their error-prone RNA polymerases and by recombination of viral genomes in co-infected cells. We have developed a novel approach to analyse the poorly understood mechanism of recombination using a poliovirus model system. We characterised the initial viable recombinants and demonstrate the majority are longer than genome length due to an imprecise crossover event that duplicates part of the genome. These viruses are unfit, but rapidly lose the duplicated material and regain full fitness upon serial passage, a process we term resolution. We show this is a replicative recombination process by modifying the fidelity of the viral polymerase, or replication complex coalescence, using methods that have no influence on a previously reported, less efficient, non-replicative recombination mechanism. We conclude that recombination is a biphasic process involving separate generation and resolution events. These new insights into an important evolutionary mechanism have implications for our understanding of virus evolution through partial genome duplication, they suggest ways in which recombination might be modified and provides an approach that may be exploited to analyse recombination in other RNA viruses.
Collapse
Affiliation(s)
- Kym Lowry
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Andrew Woodman
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Jonathan Cook
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - David J. Evans
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
- * E-mail:
| |
Collapse
|
23
|
Dong H, Guo HC, Sun SQ. Virus-like particles in picornavirus vaccine development. Appl Microbiol Biotechnol 2014; 98:4321-9. [PMID: 24647496 DOI: 10.1007/s00253-014-5639-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 02/20/2014] [Accepted: 02/23/2014] [Indexed: 12/19/2022]
Abstract
Virus-like particles (VLP), which are similar to natural virus particles but do not contain viral genes, have brought about significant breakthroughs in many research fields because of their unique advantages. The ordered repeating epitopes of VLP can induce immunity responses similar to those prompted by natural viral infection; thus, VLP vaccines are regarded as candidate alternatives to whole-virus vaccines. As picornavirus has serious impacts on human and animal health, the development of efficient and safe vaccines is a key endeavor in preventing virus infections. The characteristics of picornavirus capsid proteins allow the development of VLP vaccines. This paper investigates research scenarios and progress on picornavirus VLP vaccines with the aim of providing a reference for researchers focusing on virology and vaccinology.
Collapse
Affiliation(s)
- Hu Dong
- State Key Laboratory of Veterinary Etiological Biology, OIE/National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou, 730046, People's Republic of China
| | | | | |
Collapse
|
24
|
Burns CC, Shaw J, Jorba J, Bukbuk D, Adu F, Gumede N, Pate MA, Abanida EA, Gasasira A, Iber J, Chen Q, Vincent A, Chenoweth P, Henderson E, Wannemuehler K, Naeem A, Umami RN, Nishimura Y, Shimizu H, Baba M, Adeniji A, Williams AJ, Kilpatrick DR, Oberste MS, Wassilak SG, Tomori O, Pallansch MA, Kew O. Multiple independent emergences of type 2 vaccine-derived polioviruses during a large outbreak in northern Nigeria. J Virol 2013; 87:4907-22. [PMID: 23408630 PMCID: PMC3624331 DOI: 10.1128/jvi.02954-12] [Citation(s) in RCA: 123] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Accepted: 02/07/2013] [Indexed: 01/15/2023] Open
Abstract
Since 2005, a large poliomyelitis outbreak associated with type 2 circulating vaccine-derived poliovirus (cVDPV2) has occurred in northern Nigeria, where immunization coverage with trivalent oral poliovirus vaccine (tOPV) has been low. Phylogenetic analysis of P1/capsid region sequences of isolates from each of the 403 cases reported in 2005 to 2011 resolved the outbreak into 23 independent type 2 vaccine-derived poliovirus (VDPV2) emergences, at least 7 of which established circulating lineage groups. Virus from one emergence (lineage group 2005-8; 361 isolates) was estimated to have circulated for over 6 years. The population of the major cVDPV2 lineage group expanded rapidly in early 2009, fell sharply after two tOPV rounds in mid-2009, and gradually expanded again through 2011. The two major determinants of attenuation of the Sabin 2 oral poliovirus vaccine strain (A481 in the 5'-untranslated region [5'-UTR] and VP1-Ile143) had been replaced in all VDPV2 isolates; most A481 5'-UTR replacements occurred by recombination with other enteroviruses. cVDPV2 isolates representing different lineage groups had biological properties indistinguishable from those of wild polioviruses, including efficient growth in neuron-derived HEK293 cells, the capacity to cause paralytic disease in both humans and PVR-Tg21 transgenic mice, loss of the temperature-sensitive phenotype, and the capacity for sustained person-to-person transmission. We estimate from the poliomyelitis case count and the paralytic case-to-infection ratio for type 2 wild poliovirus infections that ∼700,000 cVDPV2 infections have occurred during the outbreak. The detection of multiple concurrent cVDPV2 outbreaks in northern Nigeria highlights the risks of cVDPV emergence accompanying tOPV use at low rates of coverage in developing countries.
Collapse
Affiliation(s)
- Cara C Burns
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Duintjer Tebbens RJ, Pallansch MA, Kim JH, Burns CC, Kew OM, Oberste MS, Diop OM, Wassilak SGF, Cochi SL, Thompson KM. Oral poliovirus vaccine evolution and insights relevant to modeling the risks of circulating vaccine-derived polioviruses (cVDPVs). RISK ANALYSIS : AN OFFICIAL PUBLICATION OF THE SOCIETY FOR RISK ANALYSIS 2013; 33:680-702. [PMID: 23470192 PMCID: PMC7890645 DOI: 10.1111/risa.12022] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The live, attenuated oral poliovirus vaccine (OPV) provides a powerful tool for controlling and stopping the transmission of wild polioviruses (WPVs), although the risks of vaccine-associated paralytic polio (VAPP) and circulating vaccine-derived poliovirus (cVDPV) outbreaks exist as long as OPV remains in use. Understanding the dynamics of cVDPV emergence and outbreaks as a function of population immunity and other risk factors may help to improve risk management and the development of strategies to respond to possible outbreaks. We performed a comprehensive review of the literature related to the process of OPV evolution and information available from actual experiences with cVDPV outbreaks. Only a relatively small fraction of poliovirus infections cause symptoms, which makes direct observation of the trajectory of OPV evolution within a population impractical and leads to significant uncertainty. Despite a large global surveillance system, the existing genetic sequence data largely provide information about transmitted virulent polioviruses that caused acute flaccid paralysis, and essentially no data track the changes that occur in OPV sequences as the viruses transmit largely asymptomatically through real populations with suboptimal immunity. We updated estimates of cVDPV risks based on actual experiences and identified the many limitations in the existing data on poliovirus transmission and immunity and OPV virus evolution that complicate modeling. Modelers should explore the space of potential model formulations and inputs consistent with the available evidence and future studies should seek to improve our understanding of the OPV virus evolution process to provide better information for policymakers working to manage cVDPV risks.
Collapse
|
26
|
Identification and manipulation of the molecular determinants influencing poliovirus recombination. PLoS Pathog 2013; 9:e1003164. [PMID: 23408891 PMCID: PMC3567174 DOI: 10.1371/journal.ppat.1003164] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Accepted: 12/14/2012] [Indexed: 11/19/2022] Open
Abstract
The control and prevention of communicable disease is directly impacted by the genetic mutability of the underlying etiological agents. In the case of RNA viruses, genetic recombination may impact public health by facilitating the generation of new viral strains with altered phenotypes and by compromising the genetic stability of live attenuated vaccines. The landscape of homologous recombination within a given RNA viral genome is thought to be influenced by several factors; however, a complete understanding of the genetic determinants of recombination is lacking. Here, we utilize gene synthesis and deep sequencing to create a detailed recombination map of the poliovirus 1 coding region. We identified over 50 thousand breakpoints throughout the genome, and we show the majority of breakpoints to be concentrated in a small number of specific "hotspots," including those associated with known or predicted RNA secondary structures. Nucleotide base composition was also found to be associated with recombination frequency, suggesting that recombination is modulated across the genome by predictable and alterable motifs. We tested the predictive utility of the nucleotide base composition association by generating an artificial hotspot in the poliovirus genome. Our results imply that modification of these motifs could be extended to whole genome re-designs for the development of recombination-deficient, genetically stable live vaccine strains.
Collapse
|
27
|
Sutter RW, Kew OM, Cochi SL, Aylward RB. Poliovirus vaccine—live. Vaccines (Basel) 2013. [DOI: 10.1016/b978-1-4557-0090-5.00035-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023] Open
|
28
|
Adedeji AO, Okonko IO, Adu FD. Comparative study of molecular and antigenic characterization for intratypic differentiation (ITD) of poliovirus strains. J Med Virol 2012; 84:1975-9. [PMID: 23080505 DOI: 10.1002/jmv.23408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This study was designed to compare the sensitivity of a Sabin vaccine strain-specific PCR assay and an enzyme-linked immunosorbent assay with polyclonal cross-absorbed antisera (PAb-E) for intratypic differentiation (ITD) of polioviruses (PVs). These were used for the definitive characterization of the strains. Poliovirus strains isolated in L20B and RD cell lines were subjected to both PCR and ELISA. Both PCR and ELISA identified 3 (13.6%) out of 22 isolates, respectively as poliovirus Sabin 1. PCR identified 4 (18.2%) out of 22 isolates as poliovirus Sabin 2 and ELISA identified 2 (9.1%) out of 22 isolates as poliovirus Sabin 2. None of the two assay identified poliovirus Sabin 3. Both PCR and ELISA identified 12 (54.5%) out of 22 isolates, respectively as wild poliovirus (WPV) 1. None of the assays identified any of the isolates as WPV 2 and 3. Only PCR assay was able to identify the mixture of two poliovirus Sabin serotypes (a mixture of Sabin 1 and 2) and two mixtures of poliovirus Sabin 2 and 3. In this study, only ELISA was able to identified two invalid results. Invalid results observed in this study are of important practical implication to the emergence of vaccine-derived poliovirus. This may have epidemic potential. Hence, the two ITD assays are of paramount importance for identification of PVs. It is therefore recommended in line with WHO guideline that at least two methods be used for the ITD of poliovirus isolates, and each method should be based on a different principle (i.e., antigenic and genetic properties).
Collapse
Affiliation(s)
- A O Adedeji
- Faculty of Veterinary Medicine, Department of Veterinary Microbiology & Parasitology, University of Ibadan, Ibadan, Nigeria
| | | | | |
Collapse
|
29
|
Pliaka V, Kyriakopoulou Z, Markoulatos P. Risks associated with the use of live-attenuated vaccine poliovirus strains and the strategies for control and eradication of paralytic poliomyelitis. Expert Rev Vaccines 2012; 11:609-28. [PMID: 22827246 DOI: 10.1586/erv.12.28] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The Global Polio Eradication Initiative was launched in 1988 with the aim to eliminate paralytic poliomyelitis. Two effective vaccines are available: inactivated polio vaccine (IPV) and oral polio vaccine (OPV). Since 1964, OPV has been used instead of IPV in most countries due to several economic and biological advantages. However, in rare cases, the live-attenuated Sabin strains of OPV revert to neurovirulence and cause vaccine-associated paralytic poliomyelitis in vaccinees or lead to emergence of vaccine-derived poliovirus strains. Attenuating mutations and recombination events have been associated with the reversion of vaccine strains to neurovirulence. The substitution of OPV with an improved new-generation IPV and the availability of new specific drugs against polioviruses are considered as future strategies for outbreak control and the eradication of paralytic poliomyelitis worldwide.
Collapse
Affiliation(s)
- Vaia Pliaka
- University of Thessaly, School of Health Sciences, Department of Biochemistry and Biotechnology, Microbiology-Virology Laboratory, Larissa, Greece.
| | | | | |
Collapse
|
30
|
Combined 5′ UTR RFLP analysis and VP1 sequencing for epidemic investigation of enteroviruses. Arch Virol 2012; 158:103-11. [DOI: 10.1007/s00705-012-1472-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 07/30/2012] [Indexed: 11/25/2022]
|
31
|
Adedeji AO, Okonko IO, Adu FD. Sabin and wild type polioviruses from children who presented with acute flaccid paralysis in Nigeria. Afr Health Sci 2012; 12:345-54. [PMID: 23382751 PMCID: PMC3557676 DOI: 10.4314/ahs.v12i3.16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Sensitive poliovirus surveillance to detect vaccine-derived-polioviruses will continue to increase in importance. OBJECTIVE Isolating and identifying poliovirus strains from children of pediatrics age in Nigeria. METHODS A total of 120 fecal samples were randomly collected from children under the age of five who presented with acute flaccid paralysis. Samples were tested by tissue culture technique and further characterized by intratypic differentiation testing using ELISA and PCR methods. RESULTS The study confirmed the presence of 22(18.3%) enteroviral isolates comprising 19(86.4%) polioviruses and 3(13.6%) non-polio enteroviruses. These 19 polioviruses include: Sabin-type poliovirus-1 (15.8%), poliovirus-2 (10.5%), poliovirus-3 (10.5%) and wild-type poliovirus-1 (63.2%) isolates. It showed that poliovirus infection was higher in children ages 6-11 months (18.9%), females (18.4%), northern states (91.0%) with no vaccination record (75.0%). Wild-type poliovirus-1 was isolated from the stool samples of 12(54.6%) children from northern states and in all age groups except 18-23 months. No significant differences (P >0.05) between poliovirus infection and age (18.9% vs. 17.7%; 81.9% vs. 18.2%) and sex (18.3% vs. 18.4%). There was significant differences (P<0.05) between poliovirus infection and location (91.0% vs. 9.0%) and history of polio vaccination (75.0% vs. 0.0%). No wild-type poliovirus was found in those with complete vaccination. CONCLUSION This study further confirms the presence of Sabin and wild-type poliovirus among children in Nigeria. The isolation of Sabin strain of poliovirus is advantageous to the polio eradication program as it is capable of inducing natural immunity in susceptible hosts. Transmission of wild-type poliovirus among children with incomplete vaccination poses a serious threat to polio eradication program in Nigeria. Environmental and serological surveillance with larger sample size are important for monitoring poliovirus circulation in Nigeria.
Collapse
Affiliation(s)
- A O Adedeji
- Department of Veterinary Microbiology & Parasitology, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | | | | |
Collapse
|
32
|
Abstract
Poliomyelitis is an acute paralytic disease caused by three poliovirus (PV) serotypes. Less than 1% of PV infections result in acute flaccid paralysis. The disease was controlled using the formalin-inactivated Salk polio vaccine (IPV) and the Sabin oral polio vaccine (OPV). Global poliomyelitis eradication was proposed in 1988 by the World Health Organization to its member states. The strategic plan established the activities required for polio eradication, certification for regions, OPV cessation phase and post-OPV phase. OPV is the vaccine of choice for the poliomyelitis eradication program because it induces both a systemic and mucosal immune response. The major risks of OPV vaccination are the appearance of Vaccine-Associated Paralytic Poliomyelitis cases (VAPP) and the emergence of Vaccine Derived Polioviruses strains. The supplementary immunization with monovalent strains of OPV type 1 or type 3 or with a new bivalent oral polio vaccine bOPV (containing type 1 and type 3 PV) has been introduced in those regions where the virus has been difficult to control. Most countries have switched the schedule of vaccination by using IPV instead of OPV because it poses no risk of vaccine-related disease. Until 2008, poliomyelitis was controlled in Romania, an Eastern European country, predominantly using OPV. The alternative vaccination schedule (IPV/OPV) was implemented starting in September 2008, while beginning in 2009, the vaccination was IPV only. The risk of VAPP will disappear worldwide with the cessation of use of OPV. The immunization for polio must be maintained for at least 5 to 10 years using IPV.
Collapse
Affiliation(s)
- Anda Baicus
- Anda Baicus, National Institute of Research and Development for Microbiology and Immunology Cantacuzino, University of Medicine and Pharmacy "Carol Davila", 050096 Bucharest, Romania
| |
Collapse
|
33
|
Baba MM, Haruna BA, Ogunmola O, Ambe JP, Shidali NN, Oderinde B, Marcello A, Talle M. A survey for neutralizing antibodies to the three types of poliovirus among children in Maiduguri, Nigeria. J Med Virol 2012; 84:691-6. [PMID: 22337311 DOI: 10.1002/jmv.23228] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The milestone in polio eradication program is to protect effectively children aged 0-5 years against the three serotypes of poliovirus. It became necessary to measure the level of neutralizing antibodies to the three poliovirus types in an endemic State in Nigeria. Neutralizing antibodies to the poliovirus types among children aged 0-5 years was estimated using micro neutralization assay. Of 129 children, 99 (76.8%), 95 (73.6%), and 95 (73.6%) had neutralizing antibodies with the geometric mean titer of 42.7, 31.3, and 33.2 for the poliovirus type 1, 2, and 3, respectively. Fifty-three percent of the children were protected against the three types of poliovirus. Combination of poliovirus types 1 and 2, 1 and 3, and 2 and 3 were neutralized by 62.8, 58.9, and 61.2% of the children studied, respectively. Only poliovirus type 1 induced antibody titres ≥1:1,024. The number of children with neutralizing antibodies after receiving three doses was significantly higher than those who received one or two doses of oral polio vaccine (P ≤ 0.05). However, those who received more than three doses of oral polio vaccine showed no significant difference in their antibody response. The existence of immunity gap poses a risk of re-emergence of the paralytic poliovirus. The existence of unimmunized and unprotected children along with high birth rate could impede the success of polio vaccination in Nigeria. Elimination of non-compliance to polio vaccine, promotion of health education and documented evidence of vaccination of each child with the parents may facilitate the success of polio eradication program in Nigeria.
Collapse
Affiliation(s)
- M M Baba
- World Health Organization National Polio Laboratory, University of Maiduguri Teaching Hospital, Maiduguri, Nigeria.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Bessaud M, Joffret ML, Holmblat B, Razafindratsimandresy R, Delpeyroux F. Genetic relationship between cocirculating Human enteroviruses species C. PLoS One 2011; 6:e24823. [PMID: 21931857 PMCID: PMC3171481 DOI: 10.1371/journal.pone.0024823] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Accepted: 08/18/2011] [Indexed: 01/19/2023] Open
Abstract
Recombination events between human enteroviruses (HEV) are known to occur frequently and to participate in the evolution of these viruses. In a previous study, we reported the isolation of a panel of viruses belonging to the Human enterovirus species C (HEV-C) that had been cocirculating in a small geographic area of Madagascar in 2002. This panel included type 2 vaccine-derived polioviruses (PV) that had caused several cases of acute flaccid paralysis in humans. Previous partial sequencing of the genome of these HEV-C isolates revealed considerable genetic diversity, mostly due to recombination. In the work presented herein, we carried out a more detailed characterization of the genomes of viruses from this collection. First, we determined the full VP1 sequence of 41 of these isolates of different types. These sequences were compared with those of HEV-C isolates obtained from other countries or in other contexts. The sequences of the Madagascan isolates of a given type formed specific clusters clearly differentiated from those formed by other strains of the same type isolated elsewhere. Second, we sequenced the entire genome of 10 viruses representing most of the lineages present in this panel. All but one of the genomes appeared to be mosaic assemblies of different genomic fragments generated by intra- and intertypic recombination. The location of the breakpoints suggested potential preferred genomic regions for recombination. Our results also suggest that recombination between type HEV-99 and other HEV-C may be quite rare. This first exhaustive genomic analysis of a panel of non-PV HEV-C cocirculating in a small human population highlights the high frequency of inter and intra-typic genetic recombination, constituting a widespread mechanism of genetic plasticity and continually shifting the HEV-C biodiversity.
Collapse
Affiliation(s)
- Maël Bessaud
- Institut Pasteur, Unité Postulante de Biologie des Virus Entériques, Paris, France.
| | | | | | | | | |
Collapse
|
35
|
Recombination between poliovirus and coxsackie A viruses of species C: a model of viral genetic plasticity and emergence. Viruses 2011; 3:1460-84. [PMID: 21994791 PMCID: PMC3185806 DOI: 10.3390/v3081460] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Revised: 08/03/2011] [Accepted: 08/03/2011] [Indexed: 12/18/2022] Open
Abstract
Genetic recombination in RNA viruses was discovered many years ago for poliovirus (PV), an enterovirus of the Picornaviridae family, and studied using PV or other picornaviruses as models. Recently, recombination was shown to be a general phenomenon between different types of enteroviruses of the same species. In particular, the interest for this mechanism of genetic plasticity was renewed with the emergence of pathogenic recombinant circulating vaccine-derived polioviruses (cVDPVs), which were implicated in poliomyelitis outbreaks in several regions of the world with insufficient vaccination coverage. Most of these cVDPVs had mosaic genomes constituted of mutated poliovaccine capsid sequences and part or all of the non-structural sequences from other human enteroviruses of species C (HEV-C), in particular coxsackie A viruses. A study in Madagascar showed that recombinant cVDPVs had been co-circulating in a small population of children with many different HEV-C types. This viral ecosystem showed a surprising and extensive biodiversity associated to several types and recombinant genotypes, indicating that intertypic genetic recombination was not only a mechanism of evolution for HEV-C, but an usual mode of genetic plasticity shaping viral diversity. Results suggested that recombination may be, in conjunction with mutations, implicated in the phenotypic diversity of enterovirus strains and in the emergence of new pathogenic strains. Nevertheless, little is known about the rules and mechanisms which govern genetic exchanges between HEV-C types, as well as about the importance of intertypic recombination in generating phenotypic variation. This review summarizes our current knowledge of the mechanisms of evolution of PV, in particular recombination events leading to the emergence of recombinant cVDPVs.
Collapse
|
36
|
DeVries AS, Harper J, Murray A, Lexau C, Bahta L, Christensen J, Cebelinski E, Fuller S, Kline S, Wallace GS, Shaw JH, Burns CC, Lynfield R. Vaccine-derived poliomyelitis 12 years after infection in Minnesota. N Engl J Med 2011; 364:2316-23. [PMID: 21675890 DOI: 10.1056/nejmoa1008677] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A 44-year-old woman with long-standing common variable immunodeficiency who was receiving intravenous immune globulin suddenly had paralysis of all four limbs and the respiratory muscles, resulting in death. Type 2 vaccine-derived poliovirus was isolated from stool. The viral capsid protein VP1 region had diverged from the vaccine strain at 12.3% of nucleotide positions, and the two attenuating substitutions had reverted to the wild-type sequence. Infection probably occurred 11.9 years earlier (95% confidence interval [CI], 10.9 to 13.2), when her child received the oral poliovirus vaccine. No secondary cases were identified among close contacts or 2038 screened health care workers. Patients with common variable immunodeficiency can be chronically infected with poliovirus, and poliomyelitis can develop despite treatment with intravenous immune globulin.
Collapse
|
37
|
Wassilak S, Pate MA, Wannemuehler K, Jenks J, Burns C, Chenoweth P, Abanida EA, Adu F, Baba M, Gasasira A, Iber J, Mkanda P, Williams AJ, Shaw J, Pallansch M, Kew O. Outbreak of type 2 vaccine-derived poliovirus in Nigeria: emergence and widespread circulation in an underimmunized population. J Infect Dis 2011; 203:898-909. [PMID: 21402542 PMCID: PMC3068031 DOI: 10.1093/infdis/jiq140] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Accepted: 10/22/2010] [Indexed: 11/25/2022] Open
Abstract
Wild poliovirus has remained endemic in northern Nigeria because of low coverage achieved in the routine immunization program and in supplementary immunization activities (SIAs). An outbreak of infection involving 315 cases of type 2 circulating vaccine-derived poliovirus (cVDPV2; >1% divergent from Sabin 2) occurred during July 2005-June 2010, a period when 23 of 34 SIAs used monovalent or bivalent oral poliovirus vaccine (OPV) lacking Sabin 2. In addition, 21 "pre-VDPV2" (0.5%-1.0% divergent) cases occurred during this period. Both cVDPV and pre-VDPV cases were clinically indistinguishable from cases due to wild poliovirus. The monthly incidence of cases increased sharply in early 2009, as more children aged without trivalent OPV SIAs. Cumulative state incidence of pre-VDPV2/cVDPV2 was correlated with low childhood immunization against poliovirus type 2 assessed by various means. Strengthened routine immunization programs in countries with suboptimal coverage and balanced use of OPV formulations in SIAs are necessary to minimize risks of VDPV emergence and circulation.
Collapse
Affiliation(s)
- Steven Wassilak
- Centers for Disease Control and Prevention, Atlanta, Georgia, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Zhou F, Kong F, Wang B, McPhie K, Gilbert GL, Dwyer DE. Molecular characterization of enterovirus 71 and coxsackievirus A16 using the 5′ untranslated region and VP1 region. J Med Microbiol 2011; 60:349-358. [DOI: 10.1099/jmm.0.025056-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Enterovirus 71 (EV71) and coxsackievirus A16 (CVA16) are members of the species Human enterovirus
A, and are both major and independent aetiological agents of hand-foot-and-mouth disease. The human enterovirus (HEV) 5′ untranslated region (UTR) is fundamentally important for efficient virus replication and for virulence, whilst the VP1 region correlates well with antigenic typing by neutralization, and can be used for virus identification and evolutionary studies. A comparison was undertaken of the 5′UTR and VP1 nucleotide sequences of five EV71 clinical isolates and 10 CVA16 clinical isolates from one laboratory with the 5′UTR and VP1 sequences of 104 EV71 strains and 45 CVA16 strains available in GenBank. The genetic relationships were analysed using standard phylogenetic methods. The EV71 phylogenetic analysis showed that the VP1 sequences were clustered into three genogroups, A, B and C, with genogroups B and C further divided into five subgenogroups, B1–B5 and C1–C5, respectively. All EV71 strains were clustered similarly in the 5′UTR and VP1 trees, except for one Taiwanese strain, which demonstrated different clustering in the two trees, suggesting a recombination event in the phylogeny. The CVA16 phylogenetic analysis showed that the VP1 sequences were clustered into two genogroups, A and B, with genogroup B further divided into B1 (B1a and B1b), B2 and a possible B3; and that a similar pattern and grouping of all strains were displayed in the 5′UTR tree. This study demonstrated that comparing the two regions provides evidence of epidemiological linkage of HEV-A strains, and that mutation in the two regions plays a vital role in the evolution of these viruses. The combination of molecular typing and phylogenetic sequence analysis will be beneficial in both individual patient diagnosis and public health measures.
Collapse
Affiliation(s)
- Fei Zhou
- The University of Sydney, New South Wales, Australia
- Centre for Infectious Diseases and Microbiology (CIDM), Institute of Clinical Pathology and Medical Research (ICPMR), Westmead Hospital, Westmead, New South Wales, Australia
| | - Fanrong Kong
- Centre for Infectious Diseases and Microbiology (CIDM), Institute of Clinical Pathology and Medical Research (ICPMR), Westmead Hospital, Westmead, New South Wales, Australia
| | - Bin Wang
- Retroviral Genetics Laboratory, Centre for Virus Research, Westmead Millennium Institute, The University of Sydney, Sydney, New South Wales, Australia
| | - Kenneth McPhie
- Centre for Infectious Diseases and Microbiology (CIDM), Institute of Clinical Pathology and Medical Research (ICPMR), Westmead Hospital, Westmead, New South Wales, Australia
| | - Gwendolyn L. Gilbert
- The University of Sydney, New South Wales, Australia
- Centre for Infectious Diseases and Microbiology (CIDM), Institute of Clinical Pathology and Medical Research (ICPMR), Westmead Hospital, Westmead, New South Wales, Australia
| | - Dominic E. Dwyer
- The University of Sydney, New South Wales, Australia
- Centre for Infectious Diseases and Microbiology (CIDM), Institute of Clinical Pathology and Medical Research (ICPMR), Westmead Hospital, Westmead, New South Wales, Australia
| |
Collapse
|
39
|
Savolainen-Kopra C, Blomqvist S. Mechanisms of genetic variation in polioviruses. Rev Med Virol 2011; 20:358-71. [PMID: 20949639 DOI: 10.1002/rmv.663] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Polioviruses, as with all RNA viruses, are in a constant process of evolution driven by different mechanisms. With multiple mechanisms for genetic variability, they are successful conformists, adapting to changes in their habitat. The evolution of polioviruses may occur with generation of point mutations followed by genetic drift and selection. The mutation rate of polioviruses based on several studies is approximately 3 × 10(-2) mutations/synonymous site/year in the gene encoding viral protein 1. Genetic variation in polioviruses may also be increased by sharing of genetic data of two different poliovirus lineages by means of homologous recombination. According to the current view, recombination is considered usually to occur by strand-switching, but a non-replicative model has also been described. In recombination, polioviruses may either gain a set of advantageous mutations selected and fixed in previous generations of the parental viruses or get rid of deleterious ones. The prerequisites and constraints of the evolution mechanisms will be discussed. Furthermore, consequences of poliovirus evolution will be reviewed in the light of observations made on currently circulating polioviruses. We will also describe how polioviruses strike back: as wild type polioviruses approach eradication, vaccine derived strains increase their occurrence and genetic variability.
Collapse
Affiliation(s)
- Carita Savolainen-Kopra
- National Institute for Health and Welfare (THL), Department of Infectious Disease Surveillance and Control, Unit of Intestinal Viruses, Helsinki, Finland.
| | | |
Collapse
|
40
|
Bailly JL, Mirand A, Henquell C, Archimbaud C, Chambon M, Regagnon C, Charbonné F, Peigue-Lafeuille H. Repeated genomic transfers from echovirus 30 to echovirus 6 lineages indicate co-divergence between co-circulating populations of the two human enterovirus serotypes. INFECTION GENETICS AND EVOLUTION 2010; 11:276-89. [PMID: 20615482 DOI: 10.1016/j.meegid.2010.06.019] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2010] [Revised: 06/07/2010] [Accepted: 06/25/2010] [Indexed: 10/19/2022]
Abstract
Human echovirus types 6 (E-6) and 30 (E-30) cause seasonal epidemics of aseptic meningitis. These two enteroviruses are frequently observed in co-circulation, an epidemiological pattern that is prerequisite for the occurrence of dual infections, which can lead to recombination between co-infecting virus strains. Viral sequences were determined at loci 1D (VP1 capsid protein) and 3CD (non structural proteins) in 49 E-6 strains recovered in a single geographical region in France from 1999 to 2007, during the epidemiological survey of enterovirus infections. They were compared with previously recorded sequences of E-30 strains to investigate their evolutionary histories and possible recombination patterns. Phylogenetic analyses identified two distinct E-6 populations and different subpopulations. Assuming a relaxed molecular clock model and a Bayesian skyline demographic model in coalescent analyses with the BEAST program, the substitution rate in E-6 was estimated at 8.597×10(-3) and 6.252×10(-3) substitution/site/year for loci 1D and 3CD respectively. Consistent estimates of divergence times (t(MRCA)) were obtained for loci 1D and 3CD indicating that two distinct E-6 populations originated in 1997 and 1999. Incongruent phylogenetic patterns inferred for the two loci were indicative of recombination events between the two populations. Phylogenies including the E-30 3CD sequences showed close genetic relationships between E-6 and discrete E-30 subpopulations. Recombination breakpoints were located with statistical significance in E-6 and E-30 genomes. Estimates of t(MRCA) of phylogenetic recombinant clades indicated directional genetic transfers from E-30 to E-6 populations and their co-divergence over the time period studied.
Collapse
Affiliation(s)
- J-L Bailly
- Clermont Université, Université d'Auvergne, EA 3843, BP 10448, F-63000 Clermont-Ferrand, France.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Zhang Y, Zhang F, Zhu S, Chen L, Yan D, Wang D, Tang R, Zhu H, Hou X, An H, Zhang H, Xu W. A Sabin 2-related poliovirus recombinant contains a homologous sequence of human enterovirus species C in the viral polymerase coding region. Arch Virol 2009; 155:197-205. [PMID: 19946714 DOI: 10.1007/s00705-009-0564-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2009] [Accepted: 11/04/2009] [Indexed: 10/20/2022]
Abstract
A type 2 vaccine-related poliovirus (strain CHN3024), differing from the Sabin 2 strain by 0.44% in the VP1 coding region was isolated from a patient with vaccine-associated paralytic poliomyelitis. Sequences downstream of nucleotide position 6735 (3D(pol) coding region) were derived from an unidentified sequence; no close match for a potential parent was found, but it could be classified into a non-polio human enteroviruses species C (HEV-C) phylogeny. The virus differed antigenically from the parental Sabin strain, having an amino acid substitution in the neutralizing antigenic site 1. The similarity between CHN3024 and Sabin 2 sequences suggests that the recombination was recent; this is supported by the estimation that the initiating OPV dose was given only 36-75 days before sampling. The patient's clinical manifestations, intratypic differentiation examination, and whole-genome sequencing showed that this recombinant exhibited characteristics of neurovirulent vaccine-derived polioviruses (VDPV), which may, thus, pose a potential threat to a polio-free world.
Collapse
Affiliation(s)
- Yong Zhang
- WHO WPRO Regional Polio Reference Laboratory and State Key Laboratory for Molecular Virology and Genetic Engineering, Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No. 27, Nanwei Road, Xuanwu District, 100050, Beijing, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Reemergence of enterovirus 71 in 2008 in taiwan: dynamics of genetic and antigenic evolution from 1998 to 2008. J Clin Microbiol 2009; 47:3653-62. [PMID: 19776232 DOI: 10.1128/jcm.00630-09] [Citation(s) in RCA: 165] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In recent years, enterovirus 71 (EV71) has been a cause of numerous outbreaks of hand-foot-and-mouth disease, with severe neurological complications in the Asia-Pacific region. The reemergence in Taiwan of EV71 genotype B5 in 2008 resulted in the largest outbreak of EV71 in Taiwan in the past 11 years. Phylogenetic analyses indicated that dominant genotype changes from B to C or C to B occurred at least three times between 1986 and 2008. Furthermore, antigenic cartography of EV71 by using neutralization tests revealed that the reemerging EV71 genotype B5 strains formed a separate cluster which was antigenically distinct from the B4 and C genotypes. Moreover, analyses of full-length genomic sequences of EV71 circulating in Taiwan during this period showed the occurrence of intra- and interserotypic recombination. Therefore, continuous surveillance of EV71 including the monitoring of genetic evolution and antigenic changes is recommended and may contribute to the development of a vaccine for EV71.
Collapse
|
43
|
Abstract
Over the past half-century, global use of highly effective vaccines against poliomyelitis brought this disease to the brink of elimination. Mounting evidence supports the argument that a high level of population immunity must be maintained after wild poliovirus circulation is stopped to preserve a polio-free status worldwide. Shifting factors in the risk-benefit-cost equation favor the creation of new poliovirus vaccines for use in the foreseeable future. Genetically stable attenuated virus strains could be developed for an improved oral poliovirus vaccine, but proving their safety and efficacy would be impractical owing to the enormous size of the clinical trials required. Novel versions of inactivated poliovirus vaccine that could be used globally should be developed. An improved inactivated poliovirus vaccine must be efficacious, inexpensive, safe to manufacture and easy to administer. Combination products containing inactivated poliovirus vaccine and other protective antigens should become part of routine childhood immunizations around the world.
Collapse
Affiliation(s)
- Ellie Ehrenfeld
- National Institute of Allergy & Infectious Diseases, NIH, Bethesda, MD 20892, USA.
| | | | | |
Collapse
|
44
|
Jegouic S, Joffret ML, Blanchard C, Riquet FB, Perret C, Pelletier I, Colbere-Garapin F, Rakoto-Andrianarivelo M, Delpeyroux F. Recombination between polioviruses and co-circulating Coxsackie A viruses: role in the emergence of pathogenic vaccine-derived polioviruses. PLoS Pathog 2009; 5:e1000412. [PMID: 19412342 PMCID: PMC2669712 DOI: 10.1371/journal.ppat.1000412] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2008] [Accepted: 04/06/2009] [Indexed: 11/30/2022] Open
Abstract
Ten outbreaks of poliomyelitis caused by pathogenic circulating vaccine-derived polioviruses (cVDPVs) have recently been reported in different regions of the world. Two of these outbreaks occurred in Madagascar. Most cVDPVs were recombinants of mutated poliovaccine strains and other unidentified enteroviruses of species C. We previously reported that a type 2 cVDPV isolated during an outbreak in Madagascar was co-circulating with coxsackieviruses A17 (CA17) and that sequences in the 3′ half of the cVDPV and CA17 genomes were related. The goal of this study was to investigate whether these CA17 isolates can act as recombination partners of poliovirus and subsequently to evaluate the major effects of recombination events on the phenotype of the recombinants. We first cloned the infectious cDNA of a Madagascar CA17 isolate. We then generated recombinant constructs combining the genetic material of this CA17 isolate with that of the type 2 vaccine strain and that of the type 2 cVDPV. Our results showed that poliovirus/CA17 recombinants are viable. The recombinant in which the 3′ half of the vaccine strain genome had been replaced by that of the CA17 genome yielded larger plaques and was less temperature sensitive than its parental strains. The virus in which the 3′ portion of the cVDPV genome was replaced by the 3′ half of the CA17 genome was almost as neurovirulent as the cVDPV in transgenic mice expressing the poliovirus cellular receptor gene. The co-circulation in children and genetic recombination of viruses, differing in their pathogenicity for humans and in certain other biological properties such as receptor usage, can lead to the generation of pathogenic recombinants, thus constituting an interesting model of viral evolution and emergence. Following intense vaccination campaigns with Sabin's trivalent live-attenuated oral poliovirus vaccine, poliomyelitis caused by wild polioviruses has disappeared from large parts of the world. However, poliomyelitis outbreaks due to pathogenic circulating vaccine-derived polioviruses (cVDPVs) have recently been reported in countries with low vaccine coverage. Most of these cVDPVs seem to be recombinants of mutated vaccine strains and undetermined coxsackieviruses. We have previously shown a cVDPV isolated during an outbreak in Madagascar to be co-circulating with coxsackievirus A17 (CA17) strains with 3′ genomic sequences related to those of the cVDPV. In this study, we determined whether these CA17 isolates can act as recombination partners of poliovirus. Using genetic engineering techniques, we constructed a variety of recombinant viruses derived from a CA17 isolate, the cVDPV and the corresponding original vaccine strain. Our results showed that poliovirus/CA17 recombinants are viable. Moreover, the recombinant virus resulting from the replacement of the 3′ half of the cVDPV genome by that of the CA17 genome was almost as pathogenic as the cVDPV. This supports the notion that co-circulation and co-evolution through the recombination of polioviruses and coxsackieviruses contribute to the emergence of epidemic cVDPVs. This constitutes an interesting model of viral evolution and emergence.
Collapse
Affiliation(s)
- Sophie Jegouic
- Institut Pasteur, Unité de Biologie des Virus Entériques, Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Evolution of the Sabin vaccine into pathogenic derivatives without appreciable changes in antigenic properties: need for improvement of current poliovirus surveillance. J Virol 2009; 83:3402-6. [PMID: 19129444 DOI: 10.1128/jvi.02122-08] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Sabin oral polio vaccine (OPV) may evolve into pathogenic viruses, causing sporadic cases and outbreaks of poliomyelitis. Such vaccine-derived polioviruses (VDPV) generally exhibit altered antigenicity. The current paradigm to distinguish VDPV from OPV and wild polioviruses is to characterize primarily those poliovirus isolates that demonstrate deviations from OPV in antigenic and genetic intratypic differentiation (ITD) tests. Here we report on two independent cases of poliomyelitis caused by VDPVs with "Sabin-like" properties in several ITD assays. The results suggest the existence of diverse pathways of OPV evolution and necessitate improvement of poliovirus surveillance, which currently potentially misses this class of VDPV.
Collapse
|
46
|
Rakoto-Andrianarivelo M, Guillot S, Iber J, Balanant J, Blondel B, Riquet F, Martin J, Kew O, Randriamanalina B, Razafinimpiasa L, Rousset D, Delpeyroux F. Co-circulation and evolution of polioviruses and species C enteroviruses in a district of Madagascar. PLoS Pathog 2008; 3:e191. [PMID: 18085822 PMCID: PMC2134956 DOI: 10.1371/journal.ppat.0030191] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2007] [Accepted: 10/29/2007] [Indexed: 11/30/2022] Open
Abstract
Between October 2001 and April 2002, five cases of acute flaccid paralysis (AFP) associated with type 2 vaccine-derived polioviruses (VDPVs) were reported in the southern province of the Republic of Madagascar. To determine viral factors that favor the emergence of these pathogenic VDPVs, we analyzed in detail their genomic and phenotypic characteristics and compared them with co-circulating enteroviruses. These VDPVs appeared to belong to two independent recombinant lineages with sequences from the type 2 strain of the oral poliovaccine (OPV) in the 5′-half of the genome and sequences derived from unidentified species C enteroviruses (HEV-C) in the 3′-half. VDPV strains showed characteristics similar to those of wild neurovirulent viruses including neurovirulence in poliovirus-receptor transgenic mice. We looked for other VDPVs and for circulating enteroviruses in 316 stools collected from healthy children living in the small area where most of the AFP cases occurred. We found vaccine PVs, two VDPVs similar to those found in AFP cases, some echoviruses, and above all, many serotypes of coxsackie A viruses belonging to HEV-C, with substantial genetic diversity. Several coxsackie viruses A17 and A13 carried nucleotide sequences closely related to the 2C and the 3Dpol coding regions of the VDPVs, respectively. There was also evidence of multiple genetic recombination events among the HEV-C resulting in numerous recombinant genotypes. This indicates that co-circulation of HEV-C and OPV strains is associated with evolution by recombination, resulting in unexpectedly extensive viral diversity in small human populations in some tropical regions. This probably contributed to the emergence of recombinant VDPVs. These findings give further insight into viral ecosystems and the evolutionary processes that shape viral biodiversity. Following extensive vaccination campaigns using the attenuated oral polio vaccine, wild polioviruses remain endemic in only a few countries. Nevertheless, several poliomyelitis outbreaks associated with vaccine-derived polioviruses (VDPVs) were reported in different parts of the world in recent years, particularly in Madagascar in 2002. We analyzed the molecular characteristics of Madagascar VDPVs and compared them with those of co-circulating enteroviruses. These VDPVs appear to be recombinant viruses between vaccine polioviruses and human enteroviruses of species C (HEV-C) and to present phenotypic characteristics similar to those of wild polioviruses including pathogenicity. Similar VDPVs and other enteroviruses, including several HEV-C of different types, were found in the stools of healthy children living in neighboring villages to where most of the poliomyelitis cases occurred. Some HEV-Cs showed sequences closely related to those of VDPVs, indicating genetic recombination between these viruses and vaccine polioviruses. There was also evidence of multiple genetic recombination events among other HEV-C isolates resulting in numerous different genotypes. These findings indicate that co-circulation of HEV-C and vaccine polioviruses and their evolution by recombination results in unexpectedly extensive viral diversity, at least in some small human populations, probably contributing to the emergence of recombinant VDPVs. Results of this study give further insight into the world of viruses and their biodiversity.
Collapse
Affiliation(s)
| | - Sophie Guillot
- Département Infection et Epidémiologie, PTMMH, Institut Pasteur, Paris, France
| | - Jane Iber
- National Center for Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Jean Balanant
- Département de Virologie, Biologie des Virus Entériques, Institut Pasteur, Paris, France
| | - Bruno Blondel
- Département de Virologie, Biologie des Virus Entériques, Institut Pasteur, Paris, France
| | - Franck Riquet
- Département de Virologie, Biologie des Virus Entériques, Institut Pasteur, Paris, France
| | - Javier Martin
- Division of Virology, National Institute for Biological Standards and Control, Potters Bar, Hertfordshire, United Kingdom
| | - Olen Kew
- National Center for Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Bakolalao Randriamanalina
- Programme Elargi de la Vaccination, Ministère de la Santé, du Planning Familial et de la Protection Sociale, Antananarivo, Madagascar
| | - Lalatiana Razafinimpiasa
- Direction Régionale de la Santé Atsimo Andrefana, Ministère de la Santé, du Planning Familial et de la Protection Sociale, Toliara, Madagascar
| | | | - Francis Delpeyroux
- Département de Virologie, Biologie des Virus Entériques, Institut Pasteur, Paris, France
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|