1
|
Guo J, He J, Liang Z, Huang S, Wen F. Birds as reservoirs: unraveling the global spread of Gamma- and Deltacoronaviruses. mBio 2024; 15:e0232424. [PMID: 39230281 PMCID: PMC11481860 DOI: 10.1128/mbio.02324-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024] Open
Abstract
Avian migration is a global phenomenon that transcends geographical boundaries. These migratory birds serve as unwitting carriers of diverse Gammacoronaviruses (γ-CoVs) and Deltacoronaviruses (δ-CoVs). While recombination events have been documented among γ-CoVs in avian species and β-CoVs in mammals, evidence for recombination between CoVs of distinct genera remains limited. This minireview examines the prevalence of CoVs in both domestic waterfowl (ducks and geese) and wild bird populations inhabiting various regions. We investigate the dissemination patterns of γ-CoVs and δ-CoVs among these populations, highlighting their shared characteristics. Furthermore, the review explores the intricate web of cross-species transmission of δ-CoVs from wild birds to mammals, with a particular focus on pigs. Understanding the distinct features of CoVs harbored by waterfowl and wild birds and their potential for cross-species transmission is crucial for preparedness and response to future CoV epidemics.
Collapse
Affiliation(s)
- Jinyue Guo
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
| | - Jieheng He
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
| | - Zhaoping Liang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China
| | - Shujian Huang
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
| | - Feng Wen
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
| |
Collapse
|
2
|
Kim DW, Kim JY, Lee DW, Lee HC, Song CS, Lee DH, Kwon JH. Detection of multiple recombinations of avian coronavirus in South Korea by whole-genome analysis. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2024; 118:105565. [PMID: 38309607 DOI: 10.1016/j.meegid.2024.105565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/05/2024]
Abstract
Infectious bronchitis virus (IBV), an avian coronavirus, has caused considerable damage to the poultry industry. In Korea, indigenous KM91-like and newly introduced QX-like lineages belonging to the GI-19 lineage have been prevalent despite constant vaccination. In this study, complete genome sequences of 23 IBV isolates in Korea from 2010 to 2020 were obtained using next-generation sequencing, and their phylogenetic relationship and recombination events were analyzed. Phylogenetic analysis based on the S1 gene showed that all isolates belonged to the GI-19 lineage and were divided into five subgroups (KM91-like, K40/09-like, and QX-like II to IV). Among the 23 isolates, 14 recombinants were found, including frequent recombination between KM91-like and QX-like strains. In addition, it was observed that other lineages, such as GI-1, GI-13, and GI-16, were involved in recombination. Most recombination breakpoints were detected in the ORF1ab gene, particularly nsp3. However, when considering the size of each genome, recombination occurred more frequently in the 3a, E and 5a genes. Taken together, genetic recombination frequently occurred throughout the entire genome between various IBV strains in Korea, including live attenuated vaccine strain. Our study suggests the necessity of further research on the contribution of recombination of genomes outside the spike region to the biological characteristics of IBV.
Collapse
Affiliation(s)
- Da-Won Kim
- College of Veterinary Medicine, Kyungpook National University, 80, Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
| | - Ji-Yun Kim
- College of Veterinary Medicine, Kyungpook National University, 80, Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
| | - Dong-Wook Lee
- College of Veterinary Medicine, Kyungpook National University, 80, Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
| | - Hyuk-Chae Lee
- College of Veterinary Medicine, Konkuk University, 120, Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Chang-Seon Song
- College of Veterinary Medicine, Konkuk University, 120, Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Dong-Hun Lee
- College of Veterinary Medicine, Konkuk University, 120, Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Jung-Hoon Kwon
- College of Veterinary Medicine, Kyungpook National University, 80, Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea.
| |
Collapse
|
3
|
Bermudez Y, Miles J, Muller M. Nonstructural protein 1 widespread RNA decay phenotype varies among coronaviruses. iScience 2023; 26:105887. [PMID: 36590901 PMCID: PMC9794394 DOI: 10.1016/j.isci.2022.105887] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 09/15/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022] Open
Abstract
Extensive remodeling of host gene expression by nonstructural protein 1 (nsp1) of coronaviruses is a well-documented and conserved aspect of coronavirus-host takeover. Using comparative transcriptomics we investigated the diversity of transcriptional targets between various nsp1 proteins. Additionally, affinity purification followed by mass spectrometry was implemented to identify common interactors between the different nsp1 proteins. Although we detected widespread RNA destabilization, closely related nsp1 showed little similarities in clustering of targeted genes. We observed a partial overlap in transcriptional targeting between α-CoV 229E and MERS nsp1, which may suggest a common targeting mechanism, as MERS nsp1 preferentially targets nuclear transcripts. Our interactome data show great variability between nsp1 interactions, with 229E nsp1, the smallest nsp1 tested here, interacting with the most number of host proteins. Although nsp1 is a rather well-conserved protein with conserved functions across different coronaviruses, our data indicate that its precise effects on the host cell are virus specific.
Collapse
Affiliation(s)
- Yahaira Bermudez
- Department of Microbiology, University of Massachusetts, Amherst, 639 North Pleasant street, Morrill IV North, MA 01003 USA
| | - Jacob Miles
- Department of Microbiology, University of Massachusetts, Amherst, 639 North Pleasant street, Morrill IV North, MA 01003 USA
| | - Mandy Muller
- Department of Microbiology, University of Massachusetts, Amherst, 639 North Pleasant street, Morrill IV North, MA 01003 USA,Corresponding author
| |
Collapse
|
4
|
Quinteros JA, Noormohammadi AH, Lee SW, Browning GF, Diaz‐Méndez A. Genomics and pathogenesis of the avian coronavirus infectious bronchitis virus. Aust Vet J 2022; 100:496-512. [PMID: 35978541 PMCID: PMC9804484 DOI: 10.1111/avj.13197] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 04/25/2022] [Accepted: 05/02/2022] [Indexed: 01/05/2023]
Abstract
Infectious bronchitis virus (IBV) is a member of the family Coronaviridae, together with viruses such as SARS-CoV, MERS-CoV and SARS-CoV-2 (the causative agent of the COVID-19 global pandemic). In this family of viruses, interspecies transmission has been reported, so understanding their pathobiology could lead to a better understanding of the emergence of new serotypes. IBV possesses a single-stranded, non-segmented RNA genome about 27.6 kb in length that encodes several non-structural and structural proteins. Most functions of these proteins have been confirmed in IBV, but some other proposed functions have been based on research conducted on other members of the family Coronaviridae. IBV has variable tissue tropism depending on the strain, and can affect the respiratory, reproductive, or urinary tracts; however, IBV can also replicate in other organs. Additionally, the pathogenicity of IBV is also variable, with some strains causing only mild clinical signs, while infection with others results in high mortality rates in chickens. This paper extensively and comprehensibly reviews general aspects of coronaviruses and, more specifically, IBV, with emphasis on protein functions and pathogenesis. The pathogenicity of the Australian strains of IBV is also reviewed, describing the variability between the different groups of strains, from the classical to the novel and recombinant strains. Reverse genetic systems, cloning and cell culture growth techniques applicable to IBV are also reviewed.
Collapse
Affiliation(s)
- JA Quinteros
- Asia‐Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary and Agricultural SciencesThe University of MelbourneParkvilleVictoriaAustralia
- Present address:
Escuela de Ciencias Agrícolas y VeterinariasUniversidad Viña del Mar, Agua Santa 7055 2572007Viña del MarChile
| | - AH Noormohammadi
- Asia‐Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary and Agricultural SciencesThe University of MelbourneWerribeeVictoriaAustralia
| | - SW Lee
- Asia‐Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary and Agricultural SciencesThe University of MelbourneParkvilleVictoriaAustralia
- College of Veterinary MedicineKonkuk UniversitySeoulRepublic of Korea
| | - GF Browning
- Asia‐Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary and Agricultural SciencesThe University of MelbourneParkvilleVictoriaAustralia
| | - A Diaz‐Méndez
- Asia‐Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary and Agricultural SciencesThe University of MelbourneParkvilleVictoriaAustralia
| |
Collapse
|
5
|
Bali K, Kaszab E, Marton S, Hamdiou SH, Bentaleb RK, Kiss I, Palya V, Bányai K. Novel Lineage of Infectious Bronchitis Virus from Sub-Saharan Africa Identified by Random Amplification and Next-Generation Sequencing of Viral Genome. Life (Basel) 2022; 12:life12040475. [PMID: 35454966 PMCID: PMC9028189 DOI: 10.3390/life12040475] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/18/2022] [Accepted: 03/19/2022] [Indexed: 11/21/2022] Open
Abstract
Avian infectious bronchitis (IB) is among the major viral respiratory and reproductive diseases of chickens caused by Avian coronavirus. In the African continent, IB was first described in countries located in the Mediterranean basin. In other parts of the continent, the epidemiological situation of IB remains unclear. In this study, the complete genome sequences of five IBV strains, originating from the sub-Saharan area were determined. Phylogenetic analysis based on the full-length S1 sequences identified three lineages (GI-14, GI-16, and GI-19) common in Africa and revealed that a strain, D2334/11/2/13/CI, isolated in Ivory Coast may represent a novel lineage within genotype GI. The maximum inter- and intragenotype sequence identities between this strain and other IBVs were 67.58% and 78.84% (nucleotide) and 64.44% and 78.6% (amino acid), respectively. The whole-genome nucleotide identity of the novel variant shared the highest values with a reference Belgian nephropathogenic strain (B1648, 92.4%) and with another study strain from Ivory Coast (D2334/12/2/13/CI, 94.6%). This study illustrates the importance of epidemiological monitoring of IBV in sub-Saharan Africa, as the area may serve as a focal point for newly emerging viral lineages.
Collapse
Affiliation(s)
- Krisztina Bali
- Veterinary Medical Research Institute, 1143 Budapest, Hungary; (E.K.); (S.M.)
- Correspondence: (K.B.); (K.B.)
| | - Eszter Kaszab
- Veterinary Medical Research Institute, 1143 Budapest, Hungary; (E.K.); (S.M.)
| | - Szilvia Marton
- Veterinary Medical Research Institute, 1143 Budapest, Hungary; (E.K.); (S.M.)
| | | | | | - István Kiss
- Ceva-Phylaxia Veterinary Biologicals Co., Ltd., 1107 Budapest, Hungary; (I.K.); (V.P.)
| | - Vilmos Palya
- Ceva-Phylaxia Veterinary Biologicals Co., Ltd., 1107 Budapest, Hungary; (I.K.); (V.P.)
| | - Krisztián Bányai
- Veterinary Medical Research Institute, 1143 Budapest, Hungary; (E.K.); (S.M.)
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, 1078 Budapest, Hungary
- Correspondence: (K.B.); (K.B.)
| |
Collapse
|
6
|
Nakagawa K, Makino S. Mechanisms of Coronavirus Nsp1-Mediated Control of Host and Viral Gene Expression. Cells 2021; 10:cells10020300. [PMID: 33540583 PMCID: PMC7912902 DOI: 10.3390/cells10020300] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/27/2021] [Accepted: 01/29/2021] [Indexed: 12/20/2022] Open
Abstract
Many viruses disrupt host gene expression by degrading host mRNAs and/or manipulating translation activities to create a cellular environment favorable for viral replication. Often, virus-induced suppression of host gene expression, including those involved in antiviral responses, contributes to viral pathogenicity. Accordingly, clarifying the mechanisms of virus-induced disruption of host gene expression is important for understanding virus–host cell interactions and virus pathogenesis. Three highly pathogenic human coronaviruses (CoVs), including severe acute respiratory syndrome (SARS)-CoV, Middle East respiratory syndrome (MERS)-CoV, and SARS-CoV-2, have emerged in the past two decades. All of them encode nonstructural protein 1 (nsp1) in their genomes. Nsp1 of SARS-CoV and MERS-CoV exhibit common biological functions for inducing endonucleolytic cleavage of host mRNAs and inhibition of host translation, while viral mRNAs evade the nsp1-induced mRNA cleavage. SARS-CoV nsp1 is a major pathogenic determinant for this virus, supporting the notion that a viral protein that suppresses host gene expression can be a virulence factor, and further suggesting the possibility that SARS-CoV-2 nsp1, which has high amino acid identity with SARS-CoV nsp1, may serve as a major virulence factor. This review summarizes the gene expression suppression functions of nsp1 of CoVs, with a primary focus on SARS-CoV nsp1 and MERS-CoV nsp1.
Collapse
Affiliation(s)
- Keisuke Nakagawa
- Laboratory of Veterinary Microbiology, Joint Department of Veterinary Medicine, Gifu University, Gifu 501-1193, Japan;
| | - Shinji Makino
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, TX 77555-1019, USA
- Center for Biodefense and Emerging Infectious Diseases, The University of Texas Medical Branch, Galveston, TX 77555-1019, USA
- UTMB Center for Tropical Diseases, The University of Texas Medical Branch, Galveston, TX 77555-1019, USA
- Sealy Center for Vaccine Development, The University of Texas Medical Branch, Galveston, TX 77555-1019, USA
- Institute for Human Infections and Immunity, The University of Texas Medical Branch, Galveston, TX 77555-1019, USA
- Correspondence: ; Tel.: +1-409-772-2323
| |
Collapse
|
7
|
Wang Y, Cui X, Chen X, Yang S, Ling Y, Song Q, Zhu S, Sun L, Li C, Li Y, Deng X, Delwart E, Zhang W. A recombinant infectious bronchitis virus from a chicken with a spike gene closely related to that of a turkey coronavirus. Arch Virol 2020; 165:703-707. [PMID: 31982944 PMCID: PMC7087231 DOI: 10.1007/s00705-019-04488-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 10/31/2019] [Indexed: 12/21/2022]
Abstract
Using viral metagenomics, the complete genome sequence of an infectious bronchitis virus (IBV) strain (named ahysx-1) from a fecal sample from a healthy chicken in Anhui province, China, was determined. The genome sequence of ahysx-1 was found to be very similar to that of IBV strain ck/CH/LLN/131040 (KX252787), except for the spike gene region, which is similar to that of a turkey coronavirus strain (EU022526), suggesting that ahysx-1 is a recombinant. Recombination analysis and phylogenetic analysis based on the genomic sequences of ahysx-1 and other related strains confirmed that ahysx-1 appears to be a recombinant resulting from a recombination event that occurred between a chicken coronavirus and a turkey coronavirus. Further studies need to be performed to determine whether this recombinant IBV strain is pathogenic and whether it is transmitted between chickens and turkeys.
Collapse
Affiliation(s)
- Yan Wang
- College of Animal Sciences and Technologies, Anhui Agricultural University, Hefei, 230036, China.,School of Medicine, Jiangsu University, 310 Xuefu Road, Zhenjiang, 202103, Jiangsu, China
| | - Xuejiao Cui
- College of Animal Sciences and Technologies, Anhui Agricultural University, Hefei, 230036, China
| | - Xu Chen
- School of Medicine, Jiangsu University, 310 Xuefu Road, Zhenjiang, 202103, Jiangsu, China
| | - Shixing Yang
- School of Medicine, Jiangsu University, 310 Xuefu Road, Zhenjiang, 202103, Jiangsu, China
| | - Yu Ling
- School of Medicine, Jiangsu University, 310 Xuefu Road, Zhenjiang, 202103, Jiangsu, China
| | - Qianben Song
- School of Medicine, Jiangsu University, 310 Xuefu Road, Zhenjiang, 202103, Jiangsu, China
| | - Su Zhu
- School of Medicine, Jiangsu University, 310 Xuefu Road, Zhenjiang, 202103, Jiangsu, China
| | - Luying Sun
- School of Medicine, Jiangsu University, 310 Xuefu Road, Zhenjiang, 202103, Jiangsu, China
| | - Chuang Li
- School of Medicine, Jiangsu University, 310 Xuefu Road, Zhenjiang, 202103, Jiangsu, China
| | - Yu Li
- College of Animal Sciences and Technologies, Anhui Agricultural University, Hefei, 230036, China.
| | - Xutao Deng
- Vitalant Research Institute, 270 Masonic Avenue, San Francisco, CA, 941187, USA.,Department of Laboratory Medicine, University of California, San Francisco, CA, 94143, USA
| | - Eric Delwart
- Vitalant Research Institute, 270 Masonic Avenue, San Francisco, CA, 941187, USA.,Department of Laboratory Medicine, University of California, San Francisco, CA, 94143, USA
| | - Wen Zhang
- School of Medicine, Jiangsu University, 310 Xuefu Road, Zhenjiang, 202103, Jiangsu, China.
| |
Collapse
|
8
|
Dinan AM, Keep S, Bickerton E, Britton P, Firth AE, Brierley I. Comparative Analysis of Gene Expression in Virulent and Attenuated Strains of Infectious Bronchitis Virus at Subcodon Resolution. J Virol 2019; 93:e00714-19. [PMID: 31243124 PMCID: PMC6714804 DOI: 10.1128/jvi.00714-19] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 06/17/2019] [Indexed: 12/27/2022] Open
Abstract
Like all coronaviruses, avian infectious bronchitis virus (IBV) possesses a long, single-stranded, positive-sense RNA genome (∼27 kb) and has a complex replication strategy that includes the production of a nested set of subgenomic mRNAs (sgmRNAs). Here, we used whole-transcriptome sequencing (RNASeq) and ribosome profiling (RiboSeq) to delineate gene expression in the IBV M41-CK and Beau-R strains at subcodon resolution. RNASeq facilitated a comparative analysis of viral RNA synthesis and revealed two novel transcription junction sites in the attenuated Beau-R strain, one of which would generate a sgmRNA encoding a ribosomally occupied open reading frame (dORF) located downstream of the nucleocapsid coding region. RiboSeq permitted quantification of the translational efficiency of virus gene expression and identified, for the first time, sites of ribosomal pausing on the genome. Quantification of reads flanking the programmed ribosomal frameshifting (PRF) signal at the genomic RNA ORF1a/ORF1b junction revealed that PRF in IBV is highly efficient (33 to 40%). Triplet phasing of RiboSeq data allowed precise determination of reading frames and revealed the translation of two ORFs (ORF4b and ORF4c on sgmRNA IR), which are widely conserved across IBV isolates. Analysis of differential gene expression in infected primary chick kidney cells indicated that the host cell response to IBV occurs primarily at the level of transcription, with global upregulation of immune-related mRNA transcripts following infection and comparatively modest changes in the translation efficiencies of host genes. Cellular genes and gene networks differentially expressed during virus infection were also identified, giving insights into the host cell response to IBV infection.IMPORTANCE IBV is a major avian pathogen and presents a substantial economic burden to the poultry industry. Improved vaccination strategies are urgently needed to curb the global spread of this virus, and the development of suitable vaccine candidates will be aided by an improved understanding of IBV molecular biology. Our high-resolution data have enabled a precise study of transcription and translation in cells infected with both pathogenic and attenuated forms of IBV and expand our understanding of gammacoronaviral gene expression. We demonstrate that gene expression shows considerable intraspecies variation, with single nucleotide polymorphisms being associated with altered production of sgmRNA transcripts, and our RiboSeq data sets enabled us to uncover novel ribosomally occupied ORFs in both strains. The numerous cellular genes and gene networks found to be differentially expressed during virus infection provide insights into the host cell response to IBV infection.
Collapse
Affiliation(s)
- Adam M Dinan
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Sarah Keep
- The Pirbright Institute, Woking, Surrey, United Kingdom
| | | | - Paul Britton
- The Pirbright Institute, Woking, Surrey, United Kingdom
| | - Andrew E Firth
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Ian Brierley
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
9
|
Genome Organization of Canada Goose Coronavirus, A Novel Species Identified in a Mass Die-off of Canada Geese. Sci Rep 2019; 9:5954. [PMID: 30976080 PMCID: PMC6459860 DOI: 10.1038/s41598-019-42355-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 03/25/2019] [Indexed: 11/08/2022] Open
Abstract
The complete genome of a novel coronavirus was sequenced directly from the cloacal swab of a Canada goose that perished in a die-off of Canada and Snow geese in Cambridge Bay, Nunavut, Canada. Comparative genomics and phylogenetic analysis indicate it is a new species of Gammacoronavirus, as it falls below the threshold of 90% amino acid similarity in the protein domains used to demarcate Coronaviridae. Additional features that distinguish the genome of Canada goose coronavirus include 6 novel ORFs, a partial duplication of the 4 gene and a presumptive change in the proteolytic processing of polyproteins 1a and 1ab.
Collapse
|
10
|
Feng KY, Chen T, Zhang X, Shao GM, Cao Y, Chen DK, Lin WC, Chen F, Xie QM. Molecular characteristic and pathogenicity analysis of a virulent recombinant avain infectious bronchitis virus isolated in China. Poult Sci 2018; 97:3519-3531. [PMID: 29917155 PMCID: PMC7107092 DOI: 10.3382/ps/pey237] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 05/24/2018] [Indexed: 12/05/2022] Open
Abstract
A virulent infectious bronchitis virus (IBV), designated as CK/CH/GD/QY16 (referred as QY16), was isolated from a diseased chicken farm in Guangdong province, China, in 2016. The complete genome of the strain was sequenced and analyzed. The results show that the genome of QY16 consists of 27,670 nucleotides, excluding poly (A) tail, and that its genome organization is 5’ UTR-1a-1b-S-3a-3b-E-M-4b-4c-5a-5b-N-6b-3’ UTR-poly (A) tail. Sequence comparison among QY16 and other IBV strains was conducted and its results demonstrate that the S1 gene of QY16 has the highest nucleotide sequence identity with that of 4/91, and the other part of its genome is highly similar to that of YX10. The results of the phylogenic analysis show that the entire genome of QY16 and most of the QY16 genes are located in the same cluster as those of YX10, except for the S1 gene which is located in the same cluster with that of 4/91. It has been further confirmed by the RDP and SimPlot analysis that QY16 is a recombinant strain deriving from YX10 (as the major parental sequence) and 4/91 (as the minor parental sequence), and that the recombination occurs in a region which includes the 3’-terminal 1b sequence (85 nt) and the 5’-terminal S1 protein gene sequence (1,466 nt). The results of the vaccination-challenge test suggest that QY16 is a nephropathogenic strain of IBV and that the vaccine strains–H120 and 4/91—cannot provide effective protection against it. These results indicate that the continuing evolution of IBV strains by genetic drift and genetic recombination may lead to IBV outbreaks even among the vaccinated chickens in China.
Collapse
Affiliation(s)
- K Y Feng
- College of Animal Science, South China Agricultural University & Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding & Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, 510642, P. R. China.,Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou 510642, PR China.,Guangdong Animal Virus Vector Vaccine Engineering Research Center, Guangzhou 510642, PR China.,South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510640, PR China
| | - T Chen
- College of Animal Science, South China Agricultural University & Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding & Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, 510642, P. R. China.,Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou 510642, PR China
| | - X Zhang
- College of Animal Science, South China Agricultural University & Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding & Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, 510642, P. R. China
| | - G M Shao
- College of Animal Science, South China Agricultural University & Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding & Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, 510642, P. R. China
| | - Y Cao
- College of Animal Science, South China Agricultural University & Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding & Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, 510642, P. R. China
| | - D K Chen
- College of Animal Science, South China Agricultural University & Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding & Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, 510642, P. R. China
| | - W C Lin
- College of Animal Science, South China Agricultural University & Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding & Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, 510642, P. R. China.,Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou 510642, PR China.,Guangdong Animal Virus Vector Vaccine Engineering Research Center, Guangzhou 510642, PR China.,South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510640, PR China
| | - F Chen
- College of Animal Science, South China Agricultural University & Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding & Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, 510642, P. R. China.,Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou 510642, PR China
| | - Q M Xie
- College of Animal Science, South China Agricultural University & Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding & Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, 510642, P. R. China.,Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou 510642, PR China.,Guangdong Animal Virus Vector Vaccine Engineering Research Center, Guangzhou 510642, PR China.,South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510640, PR China
| |
Collapse
|
11
|
Hauck R, Gallardo RA, Woolcock PR, Shivaprasad HL. A Coronavirus Associated with Runting Stunting Syndrome in Broiler Chickens. Avian Dis 2017; 60:528-34. [PMID: 27309300 DOI: 10.1637/11353-122215-case] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Runting stunting syndrome (RSS) is a disease condition that affects broilers and causes impaired growth and poor feed conversion because of enteritis characterized by pale and distended small intestines with watery contents. The etiology of the disease is multifactorial, and a large variety of viral agents have been implicated. Here we describe the detection and isolation of an infectious bronchitis virus (IBV) -like coronavirus from the intestines of a flock of 60,000 14-day-old brown/red broiler chicks. The birds showed typical clinical signs of RSS including stunting and uneven growth. At necropsy, the small intestines were pale and distended with watery contents. Histopathology of the intestines revealed increased cellularity of the lamina propria, blunting of villi, and cystic changes in the crypts. Negative stain electron microscopy of the intestinal contents revealed coronavirus particles. Transmission electron microscopy of the intestine confirmed coronavirus in the cytoplasm of enterocytes. Using immunohistochemistry (IHC), IBV antigen was detected in the intestinal epithelial cells as well as in the proventriculus and pancreas. There were no lesions in the respiratory system, and no IBV antigen was detected in trachea, lung, air sac, conjunctiva, and cecal tonsils. A coronavirus was isolated from the intestine of chicken embryos but not from the allantoic sac inoculated with the intestinal contents of the broiler chicks. Sequencing of the S1 gene showed nucleic acid sequence identities of 93.8% to the corresponding region of IBV California 99 and of 85.7% to IBV Arkansas. Nucleic acid sequence identities to other IBV genotypes were lower. The histopathologic lesions in the intestines were reproduced after experimental infection of specific-pathogen-free chickens inoculated in the conjunctiva and nares. Five days after infection, six of nine investigated birds showed enteritis associated with IBV antigen as detected by IHC. In contrast to the field infection, birds in the experimental group showed clear respiratory signs and lesions in the upper respiratory tract. The results suggest a broader tissue tropism of this isolate, which might be related to the mutations in the S1 gene.
Collapse
Affiliation(s)
- Rüdiger Hauck
- A Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA
| | - Rodrigo A Gallardo
- A Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA
| | - Peter R Woolcock
- B University of California, California Animal Health and Food Safety Laboratory System, 620 West Health Science Dr., Davis, CA 95616
| | - H L Shivaprasad
- C University of California, California Animal Health and Food Safety Laboratory System, 18830 Rd. 112, Tulare, CA 93274
| |
Collapse
|
12
|
Abozeid HH, Paldurai A, Khattar SK, Afifi MA, El-Kady MF, El-Deeb AH, Samal SK. Complete genome sequences of two avian infectious bronchitis viruses isolated in Egypt: Evidence for genetic drift and genetic recombination in the circulating viruses. INFECTION GENETICS AND EVOLUTION 2017; 53:7-14. [PMID: 28495648 DOI: 10.1016/j.meegid.2017.05.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 05/05/2017] [Accepted: 05/07/2017] [Indexed: 12/13/2022]
Abstract
Avian infectious bronchitis virus (IBV) is highly prevalent in chicken populations and is responsible for severe economic losses to poultry industry worldwide. In this study, we report the complete genome sequences of two IBV field strains, CU/1/2014 and CU/4/2014, isolated from vaccinated chickens in Egypt in 2014. The genome lengths of the strains CU/1/2014 and CU/4/2014 were 27,615 and 27,637 nucleotides, respectively. Both strains have a common genome organization in the order of 5'-UTR-1a-1b-S-3a-3b-E-M-4b-4c-5a-5b-N-6b-UTR-poly(A) tail-3'. Interestingly, strain CU/1/2014 showed a novel 15-nt deletion in the 4b-4c gene junction region. Phylogenetic analysis of the full S1 genes showed that the strains CU/1/2014 and CU/4/2014 belonged to IBV genotypes GI-1 lineage and GI-23 lineage, respectively. The genome of strain CU/1/2014 is closely related to vaccine strain H120 but showed genome-wide point mutations that lead to 27, 14, 11, 1, 1, 2, 2, and 2 amino acid differences between the two strains in 1a, 1b, S, 3a, M, 4b, 4c, and N proteins, respectively, suggesting that strain CU/1/2014 is probably a revertant of the vaccine strain H120 and evolved by accumulation of point mutations. Recombination analysis of strain CU/4/2014 showed evidence for recombination from at least three different IBV strains, namely, the Italian strain 90254/2005 (QX-like strain), 4/91, and H120. These results indicate the continuing evolution of IBV field strains by genetic drift and by genetic recombination leading to outbreaks in the vaccinated chicken populations in Egypt.
Collapse
Affiliation(s)
- Hassanein H Abozeid
- Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, MD, USA; Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Anandan Paldurai
- Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, MD, USA
| | - Sunil K Khattar
- Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, MD, USA
| | - Manal A Afifi
- Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Magdy F El-Kady
- Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Ayman H El-Deeb
- Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Siba K Samal
- Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, MD, USA.
| |
Collapse
|
13
|
Infectious Bronchitis Coronavirus Limits Interferon Production by Inducing a Host Shutoff That Requires Accessory Protein 5b. J Virol 2016; 90:7519-7528. [PMID: 27279618 DOI: 10.1128/jvi.00627-16] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Accepted: 06/01/2016] [Indexed: 01/08/2023] Open
Abstract
UNLABELLED During infection of their host cells, viruses often inhibit the production of host proteins, a process that is referred to as host shutoff. By doing this, viruses limit the production of antiviral proteins and increase production capacity for viral proteins. Coronaviruses from the genera Alphacoronavirus and Betacoronavirus, such as severe acute respiratory syndrome coronavirus (SARS-CoV), establish host shutoff via their nonstructural protein 1 (nsp1). The Gammacoronavirus and Deltacoronavirus genomes, however, do not encode nsp1, and it has been suggested that these viruses do not induce host shutoff. Here, we show that the Gammacoronavirus infectious bronchitis virus (IBV) does induce host shutoff, and we find that its accessory protein 5b is indispensable for this function. Importantly, we found that 5b-null viruses, unlike wild-type viruses, induce production of high concentrations of type I interferon protein in vitro, indicating that host shutoff by IBV plays an important role in antagonizing the host's innate immune response. Altogether, we demonstrate that 5b is a functional equivalent of nsp1, thereby answering the longstanding question of whether lack of nsp1 in gammacoronaviruses is compensated for by another viral protein. As such, our study is a significant step forward in the understanding of coronavirus biology and closes a gap in the understanding of some IBV virulence strategies. IMPORTANCE Many viruses inhibit protein synthesis by their host cell to enhance virus replication and to antagonize antiviral defense mechanisms. This process is referred to as host shutoff. We studied gene expression and protein synthesis in chicken cells infected with the important poultry pathogen infectious bronchitis virus (IBV). We show that IBV inhibits synthesis of host proteins, including that of type I interferon, a key component of the antiviral response. The IBV-induced host shutoff, however, does not require degradation of host RNA. Furthermore, we demonstrate that accessory protein 5b of IBV plays a crucial role in the onset of host shutoff. Our findings suggest that inhibition of host protein synthesis is a common feature of coronaviruses and primarily serves to inhibit the antiviral response of the host.
Collapse
|
14
|
Loa CC, Wu CC, Lin TL. A Multiplex Polymerase Chain Reaction for Differential Detection of Turkey Coronavirus from Chicken Infectious Bronchitis Virus and Bovine Coronavirus. SPRINGER PROTOCOLS HANDBOOKS 2016. [PMCID: PMC7122580 DOI: 10.1007/978-1-4939-3414-0_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
A multiplex polymerase chain reaction (PCR) method for differential detection of turkey coronavirus (TCoV), infectious bronchitis virus (IBV), and bovine coronavirus (BCoV) is presented in this chapter. Primers are designed from the conserved or variable regions of nucleocapsid (N) or spike (S) protein genes of TCoV, IBV, and BCoV and used in the same PCR reaction. Reverse transcription followed by PCR reaction is used to amplify a portion of N or S gene of the corresponding coronaviruses. Two PCR products, a 356-bp band corresponding to N gene and a 727-bp band corresponding to S gene, are obtained for TCoV. In contrast, one PCR product of 356 bp corresponding to a fragment of N gene is obtained for IBV strains and one PCR product of 568 bp corresponding to a fragment of S gene is obtained for BCoV.
Collapse
|
15
|
PCR Amplification and Sequencing Analysis of Full-Length Turkey Coronavirus Spike Gene. SPRINGER PROTOCOLS HANDBOOKS 2016. [PMCID: PMC7122697 DOI: 10.1007/978-1-4939-3414-0_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Turkey coronaviral enteritis caused by turkey coronavirus (TCoV) continues to infect turkey flocks, resulting in significant economic loss. Determining and understanding genetic relationships among different TCoV isolates or strains is important for controlling the disease. Using two-step RT-PCR assays that amplify the full length of TCoV spike (S) gene, TCoV isolates can be sequenced, analyzed, and genotyped. Described in this chapter is the protocol on PCR amplification and sequencing analysis of full-length TCoV S gene. Such protocol is useful in molecular epidemiology for establishing an effective strategy to control the transmission of TCoV among turkey flocks.
Collapse
|
16
|
Brown PA, Touzain F, Briand FX, Gouilh AM, Courtillon C, Allée C, Lemaitre E, De Boisséson C, Blanchard Y, Eterradossi N. First complete genome sequence of European turkey coronavirus suggests complex recombination history related with US turkey and guinea fowl coronaviruses. J Gen Virol 2015; 97:110-120. [PMID: 26585962 PMCID: PMC7081074 DOI: 10.1099/jgv.0.000338] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
A full-length genome sequence of 27 739 nt was determined for the only known European turkey coronavirus (TCoV) isolate. In general, the order, number and size of ORFs were consistent with other gammacoronaviruses. Three points of recombination were predicted, one towards the end of 1a, a second in 1b just upstream of S and a third in 3b. Phylogenetic analysis of the four regions defined by these three points supported the previous notion that European and American viruses do indeed have different evolutionary pathways. Very close relationships were revealed between the European TCoV and the European guinea fowl coronavirus in all regions except one, and both were shown to be closely related to the European infectious bronchitis virus (IBV) Italy 2005. None of these regions of sequence grouped European and American TCoVs. The region of sequence containing the S gene was unique in grouping all turkey and guinea fowl coronaviruses together, separating them from IBVs. Interestingly the French guinea fowl virus was more closely related to the North American viruses. These data demonstrate that European turkey and guinea fowl coronaviruses share a common genetic backbone (most likely an ancestor of IBV Italy 2005) and suggest that this recombined in two separate events with different, yet related, unknown avian coronaviruses, acquiring their S-3a genes. The data also showed that the North American viruses do not share a common backbone with European turkey and guinea fowl viruses; however, they do share similar S-3a genes with guinea fowl virus.
Collapse
Affiliation(s)
- P A Brown
- EPICOREM Consortium, Université de Caen, Unité de Recherche Risques Microbiens (U2RM), F-14000 Caen, France.,VIPAC Unit, Agence Nationale de Sécurité Sanitaire (ANSES), Laboratoire de Ploufragan-Plouzané, Université Européenne de Bretagne, BP 53-22440 Ploufragan, France
| | - F Touzain
- VB Unit, Agence Nationale de Sécurité Sanitaire (Anses), Laboratoire de Ploufragan-Plouzané, Université Européenne de Bretagne, G, BP 53-22440 Ploufragan, France
| | - F X Briand
- VIPAC Unit, Agence Nationale de Sécurité Sanitaire (ANSES), Laboratoire de Ploufragan-Plouzané, Université Européenne de Bretagne, BP 53-22440 Ploufragan, France.,EPICOREM Consortium, Université de Caen, Unité de Recherche Risques Microbiens (U2RM), F-14000 Caen, France
| | - A M Gouilh
- EPICOREM Consortium, Université de Caen, Unité de Recherche Risques Microbiens (U2RM), F-14000 Caen, France.,Institut Pasteur, Environment and Infectious Risks Research and Expertise Unit, 25-28 rue du Docteur Roux, F-75724 Paris Cedex 15, France.,Université de Caen, Unité de Recherche Risques Microbiens (U2RM), F-14000 Caen, France
| | - C Courtillon
- VIPAC Unit, Agence Nationale de Sécurité Sanitaire (ANSES), Laboratoire de Ploufragan-Plouzané, Université Européenne de Bretagne, BP 53-22440 Ploufragan, France.,EPICOREM Consortium, Université de Caen, Unité de Recherche Risques Microbiens (U2RM), F-14000 Caen, France
| | - C Allée
- VIPAC Unit, Agence Nationale de Sécurité Sanitaire (ANSES), Laboratoire de Ploufragan-Plouzané, Université Européenne de Bretagne, BP 53-22440 Ploufragan, France.,EPICOREM Consortium, Université de Caen, Unité de Recherche Risques Microbiens (U2RM), F-14000 Caen, France
| | - E Lemaitre
- VIPAC Unit, Agence Nationale de Sécurité Sanitaire (ANSES), Laboratoire de Ploufragan-Plouzané, Université Européenne de Bretagne, BP 53-22440 Ploufragan, France.,EPICOREM Consortium, Université de Caen, Unité de Recherche Risques Microbiens (U2RM), F-14000 Caen, France
| | - C De Boisséson
- VB Unit, Agence Nationale de Sécurité Sanitaire (Anses), Laboratoire de Ploufragan-Plouzané, Université Européenne de Bretagne, G, BP 53-22440 Ploufragan, France
| | - Y Blanchard
- VB Unit, Agence Nationale de Sécurité Sanitaire (Anses), Laboratoire de Ploufragan-Plouzané, Université Européenne de Bretagne, G, BP 53-22440 Ploufragan, France
| | - N Eterradossi
- VIPAC Unit, Agence Nationale de Sécurité Sanitaire (ANSES), Laboratoire de Ploufragan-Plouzané, Université Européenne de Bretagne, BP 53-22440 Ploufragan, France.,EPICOREM Consortium, Université de Caen, Unité de Recherche Risques Microbiens (U2RM), F-14000 Caen, France
| |
Collapse
|
17
|
Genotyping of turkey coronavirus field isolates from various geographic locations in the Unites States based on the spike gene. Arch Virol 2015; 160:2719-26. [PMID: 26254026 PMCID: PMC7086652 DOI: 10.1007/s00705-015-2556-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 07/27/2015] [Indexed: 11/22/2022]
Abstract
Turkey flocks have experienced turkey coronaviral enteritis sporadically in the United States since the 1990s. Twenty-four field isolates of turkey coronavirus (TCoV) from multiple states in the United States were recovered from 1994 to 2010 to determine the genetic relationships among them. The entire spike (S) gene of each TCoV isolate was amplified and sequenced. Pairwise comparisons were performed using the Clustal W program, revealing 90.0 % to 98.4 % sequence identity in the full-length S protein, 77.6 % to 96.6 % in the amino terminus of the S1 subunit (containing one hypervariable region in S1a), and 92.1 % to 99.3 % in the S2 subunit at the deduced amino acid sequence level. The conserved motifs, including two cleavage recognition sequences of the S protein, two heptad repeats, the transmembrane domain, and the Golgi retention signal were identified in all TCoV isolates. Phylogenetic analysis based on the full-length S gene was used to distinguish North American TCoV isolates from French TCoV isolates. Among the North American TCoV isolates, three distinct genetic groups with 100 % bootstrap support were observed. North Carolina isolates formed group I, Texas isolates formed group II, and Minnesota isolates formed Group III. The S genes of 24 TCoV isolates from the United States remained conserved because they contained predominantly synonymous substitutions. The findings of the present study suggest endemic circulation of distinct TCoV genotypes in different geographic locations.
Collapse
|
18
|
Reddy VRAP, Theuns S, Roukaerts IDM, Zeller M, Matthijnssens J, Nauwynck HJ. Genetic Characterization of the Belgian Nephropathogenic Infectious Bronchitis Virus (NIBV) Reference Strain B1648. Viruses 2015; 7:4488-506. [PMID: 26262637 PMCID: PMC4576188 DOI: 10.3390/v7082827] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 07/24/2015] [Accepted: 08/03/2015] [Indexed: 12/21/2022] Open
Abstract
The virulent nephropathogenic infectious bronchitis virus (NIBV) strain B1648 was first isolated in 1984, in Flanders, Belgium. Despite intensive vaccination, B1648 and its variants are still circulating in Europe and North Africa. Here, the full-length genome of this Belgian NIBV reference strain was determined by next generation sequencing (NGS) to understand its evolutionary relationship with other IBV strains, and to identify possible genetic factors that may be associated with the nephropathogenicity. Thirteen open reading frames (ORFs) were predicted in the B1648 strain (5′UTR-1a-1b-S-3a-3b-E-M-4b-4c-5a-5b-N-6b-3′UTR). ORFs 4b, 4c and 6b, which have been rarely reported in literature, were present in B1648 and most of the other IBV complete genomes. According to phylogenetic analysis of the full-length genome, replicase transcriptase complex, spike protein, partial S1 gene and M protein, B1648 strain clustered with the non-Massachusetts type strains NGA/A116E7/2006, UKr 27-11, QX-like ITA/90254/2005, QX-like CK/SWE/0658946/10, TN20/00, RF-27/99, RF/06/2007 and SLO/266/05. Based on the partial S1 fragment, B1648 clustered with the strains TN20/00, RF-27/99, RF/06/2007 and SLO/266/05 and, further designated as B1648 genotype. The full-length genome of B1648 shared the highest sequence homology with UKr 27-11, Gray, JMK, and NGA/A116E7/2006 (91.2% to 91.6%) and was least related with the reference Beaudette and Massachusetts strains (89.7%). Nucleotide and amino acid sequence analyses indicated that B1648 strain may have played an important role in the evolution of IBV in Europe and North Africa. Further, the nephropathogenicity determinants might be located on the 1a, spike, M and accessory proteins (3a, 3b, 4b, 4c, 5a, 5b and 6b). Overall, strain B1648 is distinct from all the strains reported so far in Europe and other parts of the world.
Collapse
Affiliation(s)
- Vishwanatha R A P Reddy
- Laboratory of Virology, Department of Virology, Parasitology and Immunology,Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium.
| | - Sebastiaan Theuns
- Laboratory of Virology, Department of Virology, Parasitology and Immunology,Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium.
| | - Inge D M Roukaerts
- Laboratory of Virology, Department of Virology, Parasitology and Immunology,Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium.
| | - Mark Zeller
- Rega Institute for Medical Research, Laboratory of Clinical Virology, Department of Microbiologyand Immunology, KU Leuven-University of Leuven, Minderbroedersstraat 10, BE-3000 Leuven, Belgium.
| | - Jelle Matthijnssens
- Rega Institute for Medical Research, Laboratory of Clinical Virology, Department of Microbiologyand Immunology, KU Leuven-University of Leuven, Minderbroedersstraat 10, BE-3000 Leuven, Belgium.
- Rega Institute for Medical Research, Laboratory of Viral Metagenomics, Department ofMicrobiology and Immunology, KU Leuven-University of Leuven, Minderbroedersstraat 10, BE-3000 Leuven, Belgium.
| | - Hans J Nauwynck
- Laboratory of Virology, Department of Virology, Parasitology and Immunology,Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium.
| |
Collapse
|
19
|
Novel Receptor Specificity of Avian Gammacoronaviruses That Cause Enteritis. J Virol 2015; 89:8783-92. [PMID: 26063435 DOI: 10.1128/jvi.00745-15] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 06/07/2015] [Indexed: 12/15/2022] Open
Abstract
UNLABELLED Viruses exploit molecules on the target membrane as receptors for attachment and entry into host cells. Thus, receptor expression patterns can define viral tissue tropism and might to some extent predict the susceptibility of a host to a particular virus. Previously, others and we have shown that respiratory pathogens of the genus Gammacoronavirus, including chicken infectious bronchitis virus (IBV), require specific α2,3-linked sialylated glycans for attachment and entry. Here, we studied determinants of binding of enterotropic avian gammacoronaviruses, including turkey coronavirus (TCoV), guineafowl coronavirus (GfCoV), and quail coronavirus (QCoV), which are evolutionarily distant from respiratory avian coronaviruses based on the viral attachment protein spike (S1). We profiled the binding of recombinantly expressed S1 proteins of TCoV, GfCoV, and QCoV to tissues of their respective hosts. Protein histochemistry showed that the tissue binding specificity of S1 proteins of turkey, quail, and guineafowl CoVs was limited to intestinal tissues of each particular host, in accordance with the reported pathogenicity of these viruses in vivo. Glycan array analyses revealed that, in contrast to the S1 protein of IBV, S1 proteins of enteric gammacoronaviruses recognize a unique set of nonsialylated type 2 poly-N-acetyl-lactosamines. Lectin histochemistry as well as tissue binding patterns of TCoV S1 further indicated that these complex N-glycans are prominently expressed on the intestinal tract of various avian species. In conclusion, our data demonstrate not only that enteric gammacoronaviruses recognize a novel glycan receptor but also that enterotropism may be correlated with the high specificity of spike proteins for such glycans expressed in the intestines of the avian host. IMPORTANCE Avian coronaviruses are economically important viruses for the poultry industry. While infectious bronchitis virus (IBV), a respiratory pathogen of chickens, is rather well known, other viruses of the genus Gammacoronavirus, including those causing enteric disease, are hardly studied. In turkey, guineafowl, and quail, coronaviruses have been reported to be the major causative agent of enteric diseases. Specifically, turkey coronavirus outbreaks have been reported in North America, Europe, and Australia for several decades. Recently, a gammacoronavirus was isolated from guineafowl with fulminating disease. To date, it is not clear why these avian coronaviruses are enteropathogenic, whereas other closely related avian coronaviruses like IBV cause respiratory disease. A comprehensive understanding of the tropism and pathogenicity of these viruses explained by their receptor specificity and receptor expression on tissues was therefore needed. Here, we identify a novel glycan receptor for enteric avian coronaviruses, which will further support the development of vaccines.
Collapse
|
20
|
Abolnik C. Genomic and single nucleotide polymorphism analysis of infectious bronchitis coronavirus. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2015; 32:416-24. [PMID: 25843648 PMCID: PMC7106318 DOI: 10.1016/j.meegid.2015.03.033] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 03/13/2015] [Accepted: 03/26/2015] [Indexed: 01/03/2023]
Abstract
Infectious bronchitis virus (IBV) is a Gammacoronavirus that causes a highly contagious respiratory disease in chickens. A QX-like strain was analysed by high-throughput Illumina sequencing and genetic variation across the entire viral genome was explored at the sub-consensus level by single nucleotide polymorphism (SNP) analysis. Thirteen open reading frames (ORFs) in the order 5'-UTR-1a-1ab-S-3a-3b-E-M-4b-4c-5a-5b-N-6b-3'UTR were predicted. The relative frequencies of missense: silent SNPs were calculated to obtain a comparative measure of variability in specific genes. The most variable ORFs in descending order were E, 3b, 5'UTR, N, 1a, S, 1ab, M, 4c, 5a, 6b. The E and 3b protein products play key roles in coronavirus virulence, and RNA folding demonstrated that the mutations in the 5'UTR did not alter the predicted secondary structure. The frequency of SNPs in the Spike (S) protein ORF of 0.67% was below the genomic average of 0.76%. Only three SNPS were identified in the S1 subunit, none of which were located in hypervariable region (HVR) 1 or HVR2. The S2 subunit was considerably more variable containing 87% of the polymorphisms detected across the entire S protein. The S2 subunit also contained a previously unreported multi-A insertion site and a stretch of four consecutive mutated amino acids, which mapped to the stalk region of the spike protein. Template-based protein structure modelling produced the first theoretical model of the IBV spike monomer. Given the lack of diversity observed at the sub-consensus level, the tenet that the HVRs in the S1 subunit are very tolerant of amino acid changes produced by genetic drift is questioned.
Collapse
Affiliation(s)
- Celia Abolnik
- Poultry Section, Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Onderstepoort 0110, South Africa.
| |
Collapse
|
21
|
Quinteros JA, Markham PF, Lee SW, Hewson KA, Hartley CA, Legione AR, Coppo MJC, Vaz PK, Browning GF. Analysis of the complete genomic sequences of two virus subpopulations of the Australian infectious bronchitis virus vaccine VicS. Avian Pathol 2015; 44:182-91. [PMID: 25721384 PMCID: PMC7113897 DOI: 10.1080/03079457.2015.1022857] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Although sequencing of the 3' end of the genome of Australian infectious bronchitis viruses (IBVs) has shown that their structural genes are distinct from those of IBVs found in other countries, their replicase genes have not been analysed. To examine this, the complete genomic sequences of the two subpopulations of the VicS vaccine, VicS-v and VicS-del, were determined. Compared with VicS-v, the more attenuated VicS-del strain had two non-synonymous changes in the non-structural protein 6 (nsp6), a transmembrane (TM) domain that may participate in autocatalytic release of the 3-chymotrypsin-like protease, a polymorphic difference at the end of the S2 gene, which coincided with the body transcription-regulating sequence (B-TRS) of mRNA 3 and a truncated open reading frame for a peptide encoded by gene 4 (4b). These genetic differences could be responsible for the differences between these variants in pathogenicity in vivo, and replication in vitro. Phylogenetic analysis of the whole genome showed that VicS-v and VicS-del did not cluster with strains from other countries, supporting the hypothesis that Australian IBV strains have been evolving independently for some time, and analyses of individual polymerase peptide and S glycoprotein genes suggested a distant common ancestor with no recent recombination. This study suggests the potential role of the TM domain in nsp6, the integrity of the S2 protein and the B-TRS 3, and the putative accessory protein 4b, as well as the 3' untranslated region, in the virulence and replication of IBV and has provided a better understanding of relationships between the Australian vaccine strain of IBV and those used elsewhere.
Collapse
Affiliation(s)
- José A Quinteros
- a Asia-Pacific Centre for Animal Health, Faculty of Veterinary and Agricultural Sciences , The University of Melbourne , Parkville , Victoria , Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Guionie O, Courtillon C, Allee C, Maurel S, Queguiner M, Eterradossi N. An experimental study of the survival of turkey coronavirus at room temperature and +4°C. Avian Pathol 2013; 42:248-52. [PMID: 23607441 PMCID: PMC7154299 DOI: 10.1080/03079457.2013.779364] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Turkey coronavirus (TCoV) is a gammacoronavirus (Coronaviridae, Nidovirales) responsible for digestive disorders in young turkeys. TCoV has been associated with poult enteritis complex, a syndrome that severely affects turkey production. No medical prophylaxis exists to control TCoV, therefore sanitary measures such as cleaning and disinfection are essential. It is thus important to evaluate temperatures that allow persistence of TCoV in the environment. Two series of aliquots of a suspension of a French isolate of TCoV (Fr TCoV) were stored at room temperature or +4°C for 0 to 40 days. As TCoV does not grow in cell culture, the presence of residual infectious TCoV in the stored samples was tested by inoculating embryonated specific pathogen free turkey eggs. As TCoV does not induce lesions in the embryo, virus replication in the jejunum and ileum of the embryos was detected 4 days post inoculation, using RNA extraction and a real-time reverse transcriptase-polymerase chain reaction based on the nucleocapsid gene. No surviving virus was detected after 10 days storage at +21.6±1.4°C or after 40 days storage at +4.1±1.6°C, these temperatures being representative of the mean summer and winter temperatures, respectively, in the major French poultry-producing region. The relatively short survival of the virus at room temperature should contribute to limited virus survival during summer months. However, infectious virus was still detected after 20 days storage at the cooler temperatures, a finding that suggests prolonged survival of Fr TCoV and easier transmission between poultry farms in a cool environment are possible.
Collapse
Affiliation(s)
- Olivier Guionie
- Anses-French Agency for Food, Environmental and Occupational Health Safety, Avian and Rabbit Virology, Immunology and Parasitology Unit, Ploufragan, France European University of Brittany UEB.
| | | | | | | | | | | |
Collapse
|
23
|
Chen YN, Wu CC, Yeo Y, Xu P, Lin TL. A DNA prime-protein boost vaccination strategy targeting turkey coronavirus spike protein fragment containing neutralizing epitope against infectious challenge. Vet Immunol Immunopathol 2013; 152:359-69. [PMID: 23428360 PMCID: PMC7112546 DOI: 10.1016/j.vetimm.2013.01.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Revised: 01/10/2013] [Accepted: 01/12/2013] [Indexed: 11/15/2022]
Abstract
The present study was undertaken to determine immune response and protection efficacy of a spike (S) protein fragment containing neutralizing epitopes (4F/4R) of turkey coronavirus (TCoV) by priming with DNA vaccine and boosting with the recombinant protein from the corresponding DNA vaccine gene segment. Turkeys were vaccinated by priming with either one dose (G1-750DP) or two doses (G3-750DDP) of 750 μg DNA vaccine expressing 4F/4R S fragment and boosting with one dose of 200 μg 4F/4R S fragment. One dose of 100 μg DNA vaccine mixed with polyethyleneimine (PEI) and sodium hyaluronate (HA) followed by one dose of 750 μg DNA vaccine and one dose of 200 μg 4F/4R S fragment were given to the turkeys in group G2-100DPH. After infectious challenge by TCoV, clinical signs and TCoV detected by immunofluorescence antibody (IFA) assay were observed in less number of turkeys in vaccination groups than that in challenge control groups. TCoV viral RNA loads measured by quantitative real-time reverse transcription-PCR were lower in vaccinated turkeys than those in challenge control turkeys. The turkeys in G3-750DDP produced the highest level of TCoV S protein-specific antibody and virus neutralization (VN) titer. Comparing to the turkeys in G1-750DP, significantly less TCoV were detected by IFA in the turkeys in G2-100DPH receiving an extra dose of 100 μg DNA mixed with PEI and HA. The results indicated that DNA-prime protein-boost DNA vaccination regimen targeting TCoV S fragment encompassing neutralizing epitopes induced humoral immune response and partially protected turkeys against infectious challenge by TCoV.
Collapse
Affiliation(s)
- Yi-Ning Chen
- Department of Comparative Pathobiology, Purdue University 406 South University Street, West Lafayette, IN 47907, USA
| | | | | | | | | |
Collapse
|
24
|
Identification of a noncanonically transcribed subgenomic mRNA of infectious bronchitis virus and other gammacoronaviruses. J Virol 2012; 87:2128-36. [PMID: 23221558 DOI: 10.1128/jvi.02967-12] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Coronavirus subgenomic mRNA (sgmRNA) synthesis occurs via a process of discontinuous transcription involving transcription regulatory sequences (TRSs) located in the 5' leader sequence (TRS-L) and upstream of each structural and group-specific gene (TRS-B). Several gammacoronaviruses including infectious bronchitis virus (IBV) contain a putative open reading frame (ORF), localized between the M gene and gene 5, which is controversial due to the perceived absence of a TRS. We have studied the transcription of a novel sgmRNA associated with this potential ORF and found it to be transcribed via a previously unidentified noncanonical TRS-B. Using an IBV reverse genetics system, we demonstrated that the template-switching event during intergenic region (IR) sgmRNA synthesis occurs at the 5' end of the noncanonical TRS-B and recombines between nucleotides 5 and 6 of the 8-nucleotide consensus TRS-L. Introduction of a complete TRS-B showed that higher transcription levels are achieved by increasing the number of nucleotide matches between TRS-L and TRS-B. Translation of a protein from the sgmRNA was demonstrated using enhanced green fluorescent protein, suggesting the translation of a fifth, novel, group-specific protein for IBV. This study has resolved an issue concerning the number of ORFs expressed by members of the Gammacoronavirus genus and proposes the existence of a fifth IBV accessory protein. We confirmed previous reports that coronaviruses can produce sgmRNAs from noncanonical TRS-Bs, which may expand their repertoire of proteins. We also demonstrated that noncanonical TRS-Bs may provide a mechanism by which coronaviruses can control protein expression levels by reducing sgmRNA synthesis.
Collapse
|
25
|
Han Z, Zhao F, Shao Y, Liu X, Kong X, Song Y, Liu S. Fine level epitope mapping and conservation analysis of two novel linear B-cell epitopes of the avian infectious bronchitis coronavirus nucleocapsid protein. Virus Res 2012; 171:54-64. [PMID: 23123213 PMCID: PMC7114416 DOI: 10.1016/j.virusres.2012.10.028] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2012] [Revised: 10/22/2012] [Accepted: 10/23/2012] [Indexed: 12/17/2022]
Abstract
The nucleocapsid (N) protein of the infectious bronchitis virus (IBV) may play an essential role in the replication and translation of viral RNA. The N protein can also induce high titers of cross-reactive antibodies and cell-mediated immunity, which protects chickens from acute infection. In this study, we generated two monoclonal antibodies (mAbs), designated as 6D10 and 4F10, which were directed against the N protein of IBV using the whole viral particles as immunogens. Both of the mAbs do not cross react with Newcastle disease virus (NDV), infectious laryngotracheitis virus (ILTV) and subtype H9 avian influenza virus (AIV). After screening a phage display peptide library and peptide scanning, we identified two linear B-cell epitopes that were recognized by the mAbs 6D10 and 4F10, which corresponded to the amino acid sequences (242)FGPRTK(247) and (195)DLIARAAKI(203), respectively, in the IBV N protein. Alignments of amino acid sequences from a large number of IBV isolates indicated that the two epitopes, especially (242)FGPRTK(247), were well conserved among IBV strains. This conclusion was further confirmed by the relationships of 18 heterologous sequences to the 2 mAbs. The novel mAbs and the epitopes identified will be useful for developing diagnostic assays for IBV infections.
Collapse
Affiliation(s)
- Zongxi Han
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin 150001, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
26
|
Ma H, Shao Y, Sun C, Han Z, Liu X, Guo H, Liu X, Kong X, Liu S. Genetic diversity of avian infectious bronchitis coronavirus in recent years in China. Avian Dis 2012; 56:15-28. [PMID: 22545524 DOI: 10.1637/9804-052011-reg.1] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Fifty-six isolates of avian infectious bronchitis virus (IBV) were obtained from different field outbreaks in China in 2010, and they were genotyped by comparison with 19 reference strains in the present study. The results showed that LX4-type isolates are still the predominant IBVs circulating in chicken flocks in China, and these isolates could be grouped further into two clusters. Viruses in each cluster had favored amino acid residues at different positions in the S1 subunit of the spike protein. In addition, a recombination event was observed to have occurred between LX4- and tl/CH/LDT3/03I-type strains, which contributed to the emergence of a new strain. The most important finding of the study is the isolation and identification of Taiwan II-type (TW II-type) strains of IBV in mainland China in recent years. The genome of TW II-type IBV strains isolated in mainland China has experienced mutations and deletions, as demonstrated by comparison of the entire genome sequence with those of IBV strains isolated in Taiwan. Pathogenicity testing and sequence analysis of the 3' terminal untranslated region revealed that TW II-type IBV strains isolated in mainland China have a close relationship with the embryo-passaged, attenuated TW2296/95.
Collapse
Affiliation(s)
- Huijie Ma
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Hewson KA, Scott PC, Devlin JM, Ignjatovic J, Noormohammadi AH. The presence of viral subpopulations in an infectious bronchitis virus vaccine with differing pathogenicity--a preliminary study. Vaccine 2012; 30:4190-9. [PMID: 22542436 PMCID: PMC7115607 DOI: 10.1016/j.vaccine.2012.04.054] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Revised: 04/13/2012] [Accepted: 04/15/2012] [Indexed: 01/22/2023]
Abstract
There are currently four commercially available vaccines in Australia to protect chickens against infectious bronchitis virus (IBV). Predominantly, IBV causes clinical signs associated with respiratory or kidney disease, which subsequently cause an increase in mortality rate. Three of the current vaccines belong to the same subgroup (subgroup 1), however, the VicS vaccine has been reported to cause an increased vaccinal reaction compared to the other subgroup 1 vaccines. Molecular anomalies detected in VicS suggested the presence of two major subspecies, VicS-v and VicS-del, present in the commercial preparation of VicS. The most notable anomaly is the absence of a 40 bp sequence in the 3'UTR of VicS-del. In this investigation, the two subspecies were isolated and shown to grow independently and to similar titres in embryonated chicken eggs. An in vivo investigation involved 5 groups of 20 chickens each and found that VicS-del grew to a significantly lesser extent in the chicken tissues collected than did VicS-v. The group inoculated with an even ratio of the isolated subspecies scored the most severe clinical signs, with the longest duration. These results indicate the potential for a cooperative, instead of an expected competitive, relationship between VicS-v and VicS-del to infect a host, which is reminiscent of RNA viral quasi-species.
Collapse
Affiliation(s)
- Kylie A Hewson
- The University of Melbourne, Veterinary Science, 250 Princes Hwy, Werribee, 3030, Victoria, Australia.
| | | | | | | | | |
Collapse
|
28
|
Discovery of seven novel Mammalian and avian coronaviruses in the genus deltacoronavirus supports bat coronaviruses as the gene source of alphacoronavirus and betacoronavirus and avian coronaviruses as the gene source of gammacoronavirus and deltacoronavirus. J Virol 2012; 86:3995-4008. [PMID: 22278237 DOI: 10.1128/jvi.06540-11] [Citation(s) in RCA: 1120] [Impact Index Per Article: 86.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recently, we reported the discovery of three novel coronaviruses, bulbul coronavirus HKU11, thrush coronavirus HKU12, and munia coronavirus HKU13, which were identified as representatives of a novel genus, Deltacoronavirus, in the subfamily Coronavirinae. In this territory-wide molecular epidemiology study involving 3,137 mammals and 3,298 birds, we discovered seven additional novel deltacoronaviruses in pigs and birds, which we named porcine coronavirus HKU15, white-eye coronavirus HKU16, sparrow coronavirus HKU17, magpie robin coronavirus HKU18, night heron coronavirus HKU19, wigeon coronavirus HKU20, and common moorhen coronavirus HKU21. Complete genome sequencing and comparative genome analysis showed that the avian and mammalian deltacoronaviruses have similar genome characteristics and structures. They all have relatively small genomes (25.421 to 26.674 kb), the smallest among all coronaviruses. They all have a single papain-like protease domain in the nsp3 gene; an accessory gene, NS6 open reading frame (ORF), located between the M and N genes; and a variable number of accessory genes (up to four) downstream of the N gene. Moreover, they all have the same putative transcription regulatory sequence of ACACCA. Molecular clock analysis showed that the most recent common ancestor of all coronaviruses was estimated at approximately 8100 BC, and those of Alphacoronavirus, Betacoronavirus, Gammacoronavirus, and Deltacoronavirus were at approximately 2400 BC, 3300 BC, 2800 BC, and 3000 BC, respectively. From our studies, it appears that bats and birds, the warm blooded flying vertebrates, are ideal hosts for the coronavirus gene source, bats for Alphacoronavirus and Betacoronavirus and birds for Gammacoronavirus and Deltacoronavirus, to fuel coronavirus evolution and dissemination.
Collapse
|
29
|
Maurel S, Toquin D, Briand FX, Queguiner M, Allee C, Bertin J, Ravillion L, Retaux C, Turblin V, Morvan H, Eterradossi N. First full-length sequences of the S gene of European isolates reveal further diversity among turkey coronaviruses. Avian Pathol 2011; 40:179-89. [PMID: 21500038 DOI: 10.1080/03079457.2011.551936] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
An increasing incidence of enteric disorders clinically suggestive of the poult enteritis complex has been observed in turkeys in France since 2003. Using a newly designed real-time reverse transcriptase-polymerase chain reaction assay specific for the nucleocapsid (N) gene of infectious bronchitis virus (IBV) and turkey coronaviruses (TCoV), coronaviruses were identified in 37% of the intestinal samples collected from diseased turkey flocks. The full-length spike (S) gene of these viruses was amplified, cloned and sequenced from three samples. The French S sequences shared 98% identity at both the nucleotide and amino acid levels, whereas they were at most 65% and 60% identical with North American (NA) TCoV and at most 50% and 37% identical with IBV at the nucleotide and amino acid levels, respectively. Higher divergence with NA TCoV was observed in the S1-encoding domain. Phylogenetic analysis based on the S gene revealed that the newly detected viruses form a sublineage genetically related with, but significantly different from, NA TCoV. Additionally, the RNA-dependent RNA polymerase gene and the N gene, located on the 5' and 3' sides of the S gene in the coronavirus genome, were partially sequenced. Phylogenetic analysis revealed that both the NA TCoV and French TCoV (Fr TCoV) lineages included some IBV relatives, which were however different in the two lineages. This suggested that different recombination events could have played a role in the evolution of the NA and Fr TCoV. The present results provide the first S sequence for a European TCoV. They reveal extensive genetic variation in TCoV and suggest different evolutionary pathways in North America and Europe.
Collapse
Affiliation(s)
- S Maurel
- Anses-French Agency for Food, Environmental and Occupational Health Safety, Ploufragan-Plouzané Laboratory, Avian and Rabbit Virology, Immunology, and Parasitology Unit, Ploufragan, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Hewson KA, Ignjatovic J, Browning GF, Devlin JM, Noormohammadi AH. Infectious bronchitis viruses with naturally occurring genomic rearrangement and gene deletion. Arch Virol 2010; 156:245-52. [PMID: 21049275 PMCID: PMC7086917 DOI: 10.1007/s00705-010-0850-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Accepted: 10/22/2010] [Indexed: 12/11/2022]
Abstract
Infectious bronchitis viruses (IBVs) are group III coronaviruses that infect poultry worldwide. Genetic variations, including whole-gene deletions, are key to IBV evolution. Australian subgroup 2 IBVs contain sequence insertions and multiple gene deletions that have resulted in a substantial genomic divergence from international IBVs. The genomic variations present in Australian IBVs were investigated and compared to those of another group III coronavirus, turkey coronavirus (TCoV). Open reading frames (ORFs) found throughout the genome of Australian IBVs were analogous in sequence and position to TCoV ORFs, except for ORF 4b, which appeared to be translocated to a different position in the subgroup 2 strains. Subgroup 2 strains were previously reported to lack genes 3a, 3b and 5a, with some also lacking 5b. Of these, however, genes 3b and 5b were found to be present but contained various mutations that may affect transcription. In this study, it was found that subgroup 2 IBVs have undergone a more substantial genomic rearrangements than previously thought.
Collapse
Affiliation(s)
- Kylie A Hewson
- Faculty of Veterinary Science, Veterinary Clinical Centre, The University of Melbourne, 250 Princes Highway, Werribee, Victoria 3030, Australia.
| | | | | | | | | |
Collapse
|
31
|
Muradrasoli S, Bálint A, Wahlgren J, Waldenström J, Belák S, Blomberg J, Olsen B. Prevalence and phylogeny of coronaviruses in wild birds from the Bering Strait area (Beringia). PLoS One 2010; 5:e13640. [PMID: 21060827 PMCID: PMC2966397 DOI: 10.1371/journal.pone.0013640] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Accepted: 10/03/2010] [Indexed: 11/18/2022] Open
Abstract
Coronaviruses (CoVs) can cause mild to severe disease in humans and animals, their host range and environmental spread seem to have been largely underestimated, and they are currently being investigated for their potential medical relevance. Infectious bronchitis virus (IBV) belongs to gamma-coronaviruses and causes a costly respiratory viral disease in chickens. The role of wild birds in the epidemiology of IBV is poorly understood. In the present study, we examined 1,002 cloacal and faecal samples collected from 26 wild bird species in the Beringia area for the presence of CoVs, and then we performed statistical and phylogenetic analyses. We detected diverse CoVs by RT-PCR in wild birds in the Beringia area. Sequence analysis showed that the detected viruses are gamma-coronaviruses related to IBV. These findings suggest that wild birds are able to carry gamma-coronaviruses asymptomatically. We concluded that CoVs are widespread among wild birds in Beringia, and their geographic spread and frequency is higher than previously realised. Thus, Avian CoV can be efficiently disseminated over large distances and could be a genetic reservoir for future emerging pathogenic CoVs. Considering the great animal health and economic impact of IBV as well as the recent emergence of novel coronaviruses such as SARS-coronavirus, it is important to investigate the role of wildlife reservoirs in CoV infection biology and epidemiology.
Collapse
Affiliation(s)
- Shaman Muradrasoli
- Section of Clinical Virology, Department of Medical Sciences, Uppsala University, Uppsala, Sweden.
| | | | | | | | | | | | | |
Collapse
|
32
|
Coexistence of different genotypes in the same bat and serological characterization of Rousettus bat coronavirus HKU9 belonging to a novel Betacoronavirus subgroup. J Virol 2010; 84:11385-94. [PMID: 20702646 DOI: 10.1128/jvi.01121-10] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rousettus bat coronavirus HKU9 (Ro-BatCoV HKU9), a recently identified coronavirus of novel Betacoronavirus subgroup D, from Leschenault's rousette, was previously found to display marked sequence polymorphism among genomes of four strains. Among 10 bats with complete RNA-dependent RNA polymerase (RdRp), spike (S), and nucleocapsid (N) genes sequenced, three and two sequence clades for all three genes were codetected in two and five bats, respectively, suggesting the coexistence of two or three distinct genotypes of Ro-BatCoV HKU9 in the same bat. Complete genome sequencing of the distinct genotypes from two bats, using degenerate/genome-specific primers with overlapping sequences confirmed by specific PCR, supported the coexistence of at least two distinct genomes in each bat. Recombination analysis using eight Ro-BatCoV HKU9 genomes showed possible recombination events between strains from different bat individuals, which may have allowed for the generation of different genotypes. Western blot assays using recombinant N proteins of Ro-BatCoV HKU9, Betacoronavirus subgroup A (HCoV-HKU1), subgroup B (SARSr-Rh-BatCoV), and subgroup C (Ty-BatCoV HKU4 and Pi-BatCoV HKU5) coronaviruses were subgroup specific, supporting their classification as separate subgroups under Betacoronavirus. Antibodies were detected in 75 (43%) of 175 and 224 (64%) of 350 tested serum samples from Leschenault's rousette bats by Ro-BatCoV HKU9 N-protein-based Western blot and enzyme immunoassays, respectively. This is the first report describing coinfection of different coronavirus genotypes in bats and coronavirus genotypes of diverse nucleotide variation in the same host. Such unique phenomena, and the unusual instability of ORF7a, are likely due to recombination which may have been facilitated by the dense roosting behavior and long foraging range of Leschenault's rousette.
Collapse
|
33
|
Jackwood MW, Boynton TO, Hilt DA, McKinley ET, Kissinger JC, Paterson AH, Robertson J, Lemke C, McCall AW, Williams SM, Jackwood JW, Byrd LA. Emergence of a group 3 coronavirus through recombination. Virology 2010; 398:98-108. [PMID: 20022075 PMCID: PMC7111905 DOI: 10.1016/j.virol.2009.11.044] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2009] [Revised: 11/13/2009] [Accepted: 11/24/2009] [Indexed: 01/29/2023]
Abstract
Analyses of turkey coronavirus (TCoV), an enteric disease virus that is highly similar to infectious bronchitis virus (IBV) an upper-respiratory tract disease virus in chickens, were conducted to determine the adaptive potential, and genetic changes associated with emergence of this group 3 coronavirus. Strains of TCoV that were pathogenic in poults and nonpathogenic in chickens did not adapt to cause disease in chickens. Comparative genomics revealed two recombination sites that replaced the spike gene in IBV with an unidentified sequence likely from another coronavirus, resulting in cross-species transmission and a pathogenicity shift. Following emergence in turkeys, TCoV diverged to different serotypes through the accumulation of mutations within spike. This is the first evidence that recombination can directly lead to the emergence of new coronaviruses and new coronaviral diseases, emphasizing the importance of limiting exposure to reservoirs of coronaviruses that can serve as a source of genetic material for emerging viruses.
Collapse
Affiliation(s)
- Mark W Jackwood
- Department of Population Health, College of Veterinary Medicine, 953 College Station Road, University of Georgia, Athens, GA 30602, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Identification of a novel linear B-cell epitope in the M protein of avian infectious bronchitis coronaviruses. J Microbiol 2009; 47:589-99. [PMID: 19851732 PMCID: PMC7090873 DOI: 10.1007/s12275-009-0104-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Accepted: 06/05/2009] [Indexed: 12/29/2022]
Abstract
This report describes the identification of a novel linear B-cell epitope at the C-terminus of the membrane (M) protein of avian infectious bronchitis virus (IBV). A monoclonal antibody (MAb) (designated as 15E2) against the IBV M protein was prepared and a series of 14 partially-overlapping fragments of the IBV M gene were expressed with a GST tag. These peptides were subjected to enzyme-linked immunosorbent assay (ELISA) and western blotting analysis using MAb 15E2 to identify the epitope. A linear motif, 199FATFVYAK206, which was located at the C-terminus of the M protein, was identified by MAb 15E2. ELISA and western blotting also showed that this epitope could be recognized by IBV-positive serum from chicken. Given that 15E2 showed reactivity with the 199FATFVYAK206 motif, expressed as a GST fusion protein, in both western blotting and in an ELISA, we proposed that this motif represented a linear B-cell epitope of the M protein. The 199FATFVYAK206 motif was the minimal requirement for reactivity as demonstrated by analysis of the reactivity of 15E2 with several truncated peptides that were derived from the motif. Alignment and comparison of the 15E2-defined epitope sequence with the sequences of other corona-viruses indicated that the epitope is well conserved among chicken and turkey coronaviruses. The identified epitope should be useful in clinical applications and as a tool for the further study of the structure and function of the M protein of IBV.
Collapse
|
35
|
Armesto M, Cavanagh D, Britton P. The replicase gene of avian coronavirus infectious bronchitis virus is a determinant of pathogenicity. PLoS One 2009; 4:e7384. [PMID: 19816578 PMCID: PMC2754531 DOI: 10.1371/journal.pone.0007384] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2009] [Accepted: 09/16/2009] [Indexed: 01/08/2023] Open
Abstract
We have previously demonstrated that the replacement of the S gene from an avirulent strain (Beaudette) of infectious bronchitis virus (IBV) with an S gene from a virulent strain (M41) resulted in a recombinant virus (BeauR-M41(S)) with the in vitro cell tropism of the virulent virus but that was still avirulent. In order to investigate whether any of the other structural or accessory genes played a role in pathogenicity we have now replaced these from the Beaudette strain with those from M41. The recombinant IBV was in effect a chimaeric virus with the replicase gene derived from Beaudette and the rest of the genome from M41. This demonstrated that it is possible to exchange a large region of the IBV genome, approximately 8.4 kb, using our transient dominant selection method. Recovery of a viable recombinant IBV also demonstrated that it is possible to interchange a complete replicase gene as we had in effect replaced the M41 replicase gene with the Beaudette derived gene. Analysis of the chimaeric virus showed that it was avirulent indicating that none of the structural or accessory genes derived from a virulent isolate of IBV were able to restore virulence and that therefore, the loss of virulence associated with the Beaudette strain resides in the replicase gene.
Collapse
Affiliation(s)
- Maria Armesto
- Division of Microbiology, Institute for Animal Health, Compton Laboratory, Compton, Newbury, Berkshire, United Kingdom
| | - Dave Cavanagh
- Division of Microbiology, Institute for Animal Health, Compton Laboratory, Compton, Newbury, Berkshire, United Kingdom
| | - Paul Britton
- Division of Microbiology, Institute for Animal Health, Compton Laboratory, Compton, Newbury, Berkshire, United Kingdom
- * E-mail:
| |
Collapse
|
36
|
Cao J, Wu CC, Lin TL. Turkey coronavirus non-structure protein NSP15--an endoribonuclease. Intervirology 2008; 51:342-51. [PMID: 19023218 PMCID: PMC7179563 DOI: 10.1159/000175837] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2008] [Accepted: 09/18/2008] [Indexed: 11/19/2022] Open
Abstract
UNLABELLED Turkey coronavirus (TCoV) polyprotein was predicted to be cleaved into 15 non-structural proteins (nsp2 to nsp16), but none of these nsps have been characterized. TCoV nsp15 consists of 338 residues and shares 40% sequence similarity to U-specific Nidovirales endoribonuclease (NendoU) of severe acute respiratory syndrome coronavirus. OBJECTIVE The purpose of the present study was to characterize TCoV nsp15. METHODS The TCoV nsp15 gene was cloned into pTriEX1 and expressed as a C-terminal His-tagged recombinant protein in BL21 (DE3). The recombinant nsp15 was purified by Ni-NTA resin. Synthetic RNA substrates were used to determine the substrate specificity of the TCoV nsp15. RNA zymography was used to determine the active form of the nsp15. RESULTS The TCoV nsp15 did not cleave DNA but degraded total cellular RNA. The TCoV nsp15 cleaved single-stranded (ss) RNA at the uridylate site. The TCoV nsp15 cleaved hairpin RNA, pRNA, and double-stranded RNA (dsRNA) of infectious bursal disease virus very slowly, implying that dsRNA is not a good substrate for the TCoV nsp15. No divalent metal ion was required for in vitro enzymatic activity of the TCoV nsp15. The active form of the TCoV nsp15 was a homohexamer and disulfide bond was essential for the enzymatic activity. CONCLUSION The TCoV nsp15 is a NendoU but has some characteristics different from other NendoU.
Collapse
Affiliation(s)
- Jianzhong Cao
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, USA
| | | | | |
Collapse
|
37
|
Comparative analysis of complete genome sequences of three avian coronaviruses reveals a novel group 3c coronavirus. J Virol 2008; 83:908-17. [PMID: 18971277 DOI: 10.1128/jvi.01977-08] [Citation(s) in RCA: 174] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In this territory-wide molecular epidemiology study of coronaviruses (CoVs) in Hong Kong involving 1,541 dead wild birds, three novel CoVs were identified in three different bird families (bulbul CoV HKU11 [BuCoV HKU11], thrush CoV HKU12 [ThCoV HKU12], and munia CoV HKU13 [MuCoV HKU13]). Four complete genomes of the three novel CoVs were sequenced. Their genomes (26,396 to 26,552 bases) represent the smallest known CoV genomes. In phylogenetic trees constructed using chymotrypsin-like protease (3CL(pro)), RNA-dependent RNA polymerase (Pol), helicase, spike, and nucleocapsid proteins, BuCoV HKU11, ThCoV HKU12, and MuCoV HKU13 formed a cluster distantly related to infectious bronchitis virus and turkey CoV (group 3a CoVs). For helicase, spike, and nucleocapsid, they were also clustered with a CoV recently discovered in Asian leopard cats, for which the complete genome sequence was not available. The 3CL(pro), Pol, helicase, and nucleocapsid of the three CoVs possessed higher amino acid identities to those of group 3a CoVs than to those of group 1 and group 2 CoVs. Unique genomic features distinguishing them from other group 3 CoVs include a distinct transcription regulatory sequence and coding potential for small open reading frames. Based on these results, we propose a novel CoV subgroup, group 3c, to describe this distinct subgroup of CoVs under the group 3 CoVs. Avian CoVs are genetically more diverse than previously thought and may be closely related to some newly identified mammalian CoVs. Further studies would be important to delineate whether the Asian leopard cat CoV was a result of interspecies jumping from birds, a situation analogous to that of bat and civet severe acute respiratory syndrome CoVs.
Collapse
|