1
|
Niu J, Li G, Liu Y, Wan C, Li Y, Dai Y, Hu H, Peng L, Fang R, Ye C. The important role of TLR2/MyD88/JNK in regulating the pathogenesis and inflammation induced by pseudorabies virus in mice. Vet Microbiol 2025; 304:110496. [PMID: 40156971 DOI: 10.1016/j.vetmic.2025.110496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/20/2025] [Accepted: 03/22/2025] [Indexed: 04/01/2025]
Abstract
The host innate immune response plays a critical role in regulating and controlling viral infections by releasing inflammatory cytokines. Pseudorabies virus (PRV), a swine alphaherpesvirus, can cause severe encephalitis in piglets and various non-natural hosts. Previous studies demonstrated that PRV infection induced the significant elevation of pro-inflammatory cytokines levels and lethal inflammatory response in the mouse model. However, the underlying mechanisms responsible for activation and production of pro-inflammatory cytokines during PRV infection remain to be fully elucidated. In this study, we confirmed that PRV induced significant inflammatory response in C57BL/6 mice during its acute infection. Furthermore, TLR2/MyD88 axis was shown to be associated with the pathogenesis of PRV in mice. Specifically, TLR2/MyD88 axis was required for PRV-induced activation of NF-κB pathway and the subsequent pro-inflammatory cytokines expression. Meanwhile, MAPK/JNK and PI3K/Akt signaling pathways were also activated by TLR2/MyD88 axis and involved in regulating pro-inflammatory cytokines expression induced by PRV infection, respectively. Notably, administration of the JNK inhibitor (SP600125) could reduce clinical symptoms, alleviate pathological damage and prolong survival time of mice infected by PRV. Overall, this study strengthens our understanding upon the mechanism of host inflammatory response induced by PRV, and suggests that JNK signaling may act as a therapeutic target in controlling of PRV infection.
Collapse
Affiliation(s)
- Jingyi Niu
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing 400715, China
| | - Gang Li
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing 400715, China
| | - Yiyu Liu
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing 400715, China
| | - Chao Wan
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing 400715, China
| | - Yixuan Li
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing 400715, China
| | - Yu Dai
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing 400715, China
| | - Haixia Hu
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing 400715, China
| | - Lianci Peng
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing 400715, China
| | - Rendong Fang
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing 400715, China.
| | - Chao Ye
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing 400715, China.
| |
Collapse
|
2
|
Zhao W, Pang S, Zhang J, Yao Z, Song Y, Sun Y. AFB1 exposure promotes SIV replication and lung damage via RIG-I- and p38-mediated RETREG1/FAM134B-dependent endoplasmic reticulum autophagy. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 292:117970. [PMID: 40009944 DOI: 10.1016/j.ecoenv.2025.117970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 02/16/2025] [Accepted: 02/23/2025] [Indexed: 02/28/2025]
Abstract
Aflatoxin B1 (AFB1) contamination is common worldwide and highly harmful to humans and animals. Our previous studies suggested that AFB1 exposure promotes the replication of H1N1 swine influenza virus (SIV). However, its mechanism is not clear. Here, TCID50, qRT-PCR, and WB assays were used to detect SIV replication, after which proteomic detection was used to screen key proteins and pathways. Thirty piglets were subsequently randomly divided into 6 groups. The low-pathogenicity SIV was inoculated to establish a piglet model of SIV infection. Different doses of AFB1 were administered daily to SIV-infected piglets for 14 d. The in vitro results revealed that 0.02-0.04 μg/mL AFB1 markedly promoted SIV replication. Proteomic analysis revealed that reticulophagy regulator 1 (RETREG1/FAM134B) and p38 signaling were markedly upregulated, whereas RIG-I signaling was significantly downregulated. The above results were confirmed by qRT-PCR and WB assays. Transmission electron microscopy was used to further prove that AFB1 promoted endoplasmic reticulum autophagy (ER-phagy) in SIV-infected PAMs. RIG-I activator and p38 inhibitor reversed the upregulation of RETREG1 and AFB1-promoted SIV replication, and RETREG1 inhibitor reversed the AFB1-promoted SIV replication. In vivo experiments confirmed that AFB1 upregulated RETREG1 and p38, downregulated RIG-I, and promoted SIV replication and lung damage. Taken together, our results reveal that AFB1 promotes SIV replication and lung damage via RIG-I- and p38-mediated RETREG1/FAM134B-dependent ER-phagy and suggest the therapeutic potential of RETREG1-, RIG-I-, and p38-related drugs for influenza. Our findings also provide insights into why the occurrence of other infectious diseases is increasing.
Collapse
Affiliation(s)
- Wenshuo Zhao
- College of Animal Science and Medicine, Shenyang Agricultural University, Shenyang 110866, China; Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Shenyang Agricultural University, Shenyang 110866, China; Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, P.R. China
| | - Siyao Pang
- College of Animal Science and Medicine, Shenyang Agricultural University, Shenyang 110866, China; Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Shenyang Agricultural University, Shenyang 110866, China; Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, P.R. China
| | - Jinlong Zhang
- College of Animal Science and Medicine, Shenyang Agricultural University, Shenyang 110866, China; Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Shenyang Agricultural University, Shenyang 110866, China; Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, P.R. China
| | - Zhaoran Yao
- College of Animal Science and Medicine, Shenyang Agricultural University, Shenyang 110866, China; Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Shenyang Agricultural University, Shenyang 110866, China; Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, P.R. China
| | - Yuqi Song
- College of Animal Science and Medicine, Shenyang Agricultural University, Shenyang 110866, China; Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Shenyang Agricultural University, Shenyang 110866, China; Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, P.R. China
| | - Yuhang Sun
- College of Animal Science and Medicine, Shenyang Agricultural University, Shenyang 110866, China; Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Shenyang Agricultural University, Shenyang 110866, China; Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, P.R. China.
| |
Collapse
|
3
|
Qiao WT, Yao X, Lu WH, Zhang YQ, Malhi KK, Li HX, Li JL. Matrine exhibits antiviral activities against PEDV by directly targeting Spike protein of the virus and inducing apoptosis via the MAPK signaling pathway. Int J Biol Macromol 2024; 270:132408. [PMID: 38754683 DOI: 10.1016/j.ijbiomac.2024.132408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/12/2024] [Accepted: 05/13/2024] [Indexed: 05/18/2024]
Abstract
Porcine Epidemic Diarrhea Virus (PEDV) is a highly contagious virus that causes Porcine Epidemic Diarrhea (PED). This enteric disease results in high mortality rates in piglets, leading to significant financial losses in the pig industry. However, vaccines cannot provide sufficient protection against epidemic strains. Spike (S) protein exposed on the surface of virion mediates PEDV entry into cells. Our findings imply that matrine (MT), a naturally occurring alkaloid, inhibits PEDV infection targeting S protein of virions and biological process of cells. The GLY434 residue in the autodocking site of the S protein and MT conserved based on sequence comparison. This study provides a comprehensive analysis of viral attachment, entry, and virucidal effects to investigate how that MT inhibits virus replication. MT inhibits PEDV attachment and entry by targeting S protein. MT was added to cells before, during, or after infection, it exhibits anti-PEDV activities and viricidal effects. Network pharmacology focuses on addressing causal mechanisms rather than just treating symptoms. We identified the key genes and screened the cell apoptosis involved in the inhibition of MT on PEDV infection in network pharmacology. MT significantly promotes cell apoptosis in PEDV-infected cells to inhibit PEDV infection by activating the MAPK signaling pathway. Collectively, we provide the biological foundations for the development of single components of traditional Chinese medicine to inhibit PEDV infection and spread.
Collapse
Affiliation(s)
- Wen-Ting Qiao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Xin Yao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Wei-Hong Lu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Yu-Qian Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Kanwar Kumar Malhi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Hui-Xin Li
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, PR China.
| | - Jin-Long Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, PR China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
4
|
Yu R, Dong S, Chen B, Si F, Li C. Developing Next-Generation Live Attenuated Vaccines for Porcine Epidemic Diarrhea Using Reverse Genetic Techniques. Vaccines (Basel) 2024; 12:557. [PMID: 38793808 PMCID: PMC11125984 DOI: 10.3390/vaccines12050557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 05/26/2024] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) is the etiology of porcine epidemic diarrhea (PED), a highly contagious digestive disease in pigs and especially in neonatal piglets, in which a mortality rate of up to 100% will be induced. Immunizing pregnant sows remains the most promising and effective strategy for protecting their neonatal offspring from PEDV. Although half a century has passed since its first report in Europe and several prophylactic vaccines (inactivated or live attenuated) have been developed, PED still poses a significant economic concern to the swine industry worldwide. Hence, there is an urgent need for novel vaccines in clinical practice, especially live attenuated vaccines (LAVs) that can induce a strong protective lactogenic immune response in pregnant sows. Reverse genetic techniques provide a robust tool for virological research from the function of viral proteins to the generation of rationally designed vaccines. In this review, after systematically summarizing the research progress on virulence-related viral proteins, we reviewed reverse genetics techniques for PEDV and their application in the development of PED LAVs. Then, we probed into the potential methods for generating safe, effective, and genetically stable PED LAV candidates, aiming to provide new ideas for the rational design of PED LAVs.
Collapse
Affiliation(s)
| | | | | | - Fusheng Si
- Institute of Animal Husbandry and Veterinary Medicine, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai Engineering Research Center of Breeding Pig, Shanghai Academy of Agricultural Sciences (SAAS), Shanghai 201106, China; (R.Y.); (S.D.); (B.C.)
| | - Chunhua Li
- Institute of Animal Husbandry and Veterinary Medicine, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai Engineering Research Center of Breeding Pig, Shanghai Academy of Agricultural Sciences (SAAS), Shanghai 201106, China; (R.Y.); (S.D.); (B.C.)
| |
Collapse
|
5
|
Hai S, Zhao J, Chen C, Wang C, Ma L, Rahman SU, Zhao C, Feng S, Wu J, Wang X. Zearalenone promotes porcine ESCs apoptosis by enhancing Drp1-mediated mitochondrial fragmentation and activating the JNK pathway. Food Chem Toxicol 2023; 182:114110. [PMID: 37879531 DOI: 10.1016/j.fct.2023.114110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/30/2023] [Accepted: 10/16/2023] [Indexed: 10/27/2023]
Abstract
Zearalenone (ZEA) is widely present in food and feed, and pigs are susceptible to its effects. This study explored the underlying function of ZEA-induced apoptosis in porcine endometrial stromal cells (ESCs) through activation of the JNK signaling pathway and mitochondrial division. This study utilized ESCs to explore the impact of exposure to ZEA. A mitochondrial division inhibitor (Mdivi) was also included as a reference. The results indicated a gradual decrease in cell viability with increasing ZEA concentration. In addition, ZEA can modify the growth status of porcine ESCs, disrupt their ultrastructure, and lead to apoptosis of porcine ESCs via the mitochondrial division pathway and JNK signaling pathway. In summary, our study found the critical targets of ZEA infected with pig ESCs, which provided a conceptual foundation to prevent and control ZEA.
Collapse
Affiliation(s)
- Sirao Hai
- College of Animal Science and Technology, Anhui Agricultural University, 130 West Changjiang Road, Hefei, 230036, China
| | - Jie Zhao
- College of Animal Science and Technology, Anhui Agricultural University, 130 West Changjiang Road, Hefei, 230036, China
| | - Chuangjiang Chen
- College of Animal Science and Technology, Anhui Agricultural University, 130 West Changjiang Road, Hefei, 230036, China
| | - Chenlong Wang
- College of Animal Science and Technology, Anhui Agricultural University, 130 West Changjiang Road, Hefei, 230036, China
| | - Li Ma
- College of Animal Science and Technology, Anhui Agricultural University, 130 West Changjiang Road, Hefei, 230036, China
| | - Sajid Ur Rahman
- College of Animal Science and Technology, Anhui Agricultural University, 130 West Changjiang Road, Hefei, 230036, China; Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Chang Zhao
- College of Animal Science and Technology, Anhui Agricultural University, 130 West Changjiang Road, Hefei, 230036, China
| | - Shibin Feng
- College of Animal Science and Technology, Anhui Agricultural University, 130 West Changjiang Road, Hefei, 230036, China
| | - Jinjie Wu
- College of Animal Science and Technology, Anhui Agricultural University, 130 West Changjiang Road, Hefei, 230036, China; Anhui Province Engineering Laboratory for Animal Food Quality and Bio-safety, Hefei, 230036, China.
| | - Xichun Wang
- College of Animal Science and Technology, Anhui Agricultural University, 130 West Changjiang Road, Hefei, 230036, China; Anhui Province Engineering Laboratory for Animal Food Quality and Bio-safety, Hefei, 230036, China.
| |
Collapse
|
6
|
Song S, Park GN, Shin J, Kim KS, An BH, Choe S, Kim SY, Hyun BH, An DJ. Rescue of a Live-Attenuated Porcine Epidemic Diarrhea Virus HSGP Strain Using a Virulent Strain and a Partially Attenuated Strain. Viruses 2023; 15:1601. [PMID: 37515287 PMCID: PMC10383568 DOI: 10.3390/v15071601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
In South Korea in 2013, the G1-based vaccine failed to prevent an outbreak of G2b-type porcine epidemic diarrhea virus (PEDV), which is more pathogenic than the traditional G1-type strain, thereby allowing the virus to spread. In 2017 and 2018, field samples were cultured sequentially on Vero cells to isolate HS (virulent) and SGP-M1 (partially attenuated) strains, respectively, of the G2b type. The HS strain harbors a single amino acid (aa) change and two aa deletions in the N-terminal domain of S1 (55I56G57E→55K56Δ57Δ). The SGP-M1 strain harbors a seven aa deletion in the C-terminal domain of S2 (1380~1386ΔFEKVHVQ). By co-infecting various animal cells with these two strains (HS and SGP-M1), we succeeded in cloning strain HSGP, which harbors the mutations present in the two original viruses. The CPE pattern of the HSGP strain was different from that of the HS and SGP-M1 strains, with higher viral titers. Studies in piglets showed attenuated pathogenicity of the HSGP strain, with no clinical symptoms or viral shedding, and histopathologic lesions similar to those in negative controls. These findings confirm that deletion of specific sequences from the S gene attenuates the pathogenicity of PEDV. In addition, HSGP strains created by combining two different strains have the potential for use as novel attenuated live vaccine candidates.
Collapse
Affiliation(s)
- Sok Song
- Virus Disease Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Gyeongsangbuk-do, Republic of Korea
| | - Gyu-Nam Park
- Virus Disease Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Gyeongsangbuk-do, Republic of Korea
| | - Jihye Shin
- Virus Disease Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Gyeongsangbuk-do, Republic of Korea
| | - Ki-Sun Kim
- Virus Disease Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Gyeongsangbuk-do, Republic of Korea
| | - Byung-Hyun An
- College of Veterinary Medicine, Seoul University, Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - SeEun Choe
- Virus Disease Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Gyeongsangbuk-do, Republic of Korea
| | - Song-Yi Kim
- Virus Disease Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Gyeongsangbuk-do, Republic of Korea
| | - Bang-Hun Hyun
- Virus Disease Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Gyeongsangbuk-do, Republic of Korea
| | - Dong-Jun An
- Virus Disease Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Gyeongsangbuk-do, Republic of Korea
| |
Collapse
|
7
|
Niu TM, Yu LJ, Zhao JH, Zhang RR, Ata EB, Wang N, Zhang D, Yang YL, Qian JH, Chen QD, Yang GL, Huang HB, Shi CW, Jiang YL, Wang JZ, Cao X, Zeng Y, Wang N, Yang WT, Wang CF. Characterization and pathogenicity of the porcine epidemic diarrhea virus isolated in China. Microb Pathog 2023; 174:105924. [PMID: 36473667 DOI: 10.1016/j.micpath.2022.105924] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
Piglet diarrhea caused by the porcine epidemic diarrhea virus (PEDV) is a common problem on pig farms in China associated with high morbidity and mortality rates. In this study, three PEDV isolates were successfully detected after the fourth blind passage in Vero cells. The samples were obtained from infected piglet farms in Jilin (Changchun), and Shandong (Qingdao) Provinces of China and were designated as CH/CC-1/2018, CH/CC-2/2018, and CH/QD/2018. According to the analysis of the complete S protein gene sequence, the CH/CC-1/2018 and CH/CC-2/2018 were allocated to the G2b branch, while CH/QD/2018 was located in the G1a interval and was closer to the vaccine strain CV777. Successful detection and identification of the isolated strains were carried out using electron microscopy and indirect immunofluorescence. Meanwhile, animal challenge experiments and viral RNA copies determination were used to compare the pathogenicity. The results showed that CH/CC-1/2018 in Changchun was more pathogenic than CH/QD/2018 in Qingdao. In conclusion, the discovery of these new strains is conducive to the development of vaccines to prevent the pandemic of PEDV, especially that the CH/CC-1/2018, and CH/CC-2/2018 were not related to the classical vaccine strain CV777.
Collapse
Affiliation(s)
- Tian-Ming Niu
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of the Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Ling-Jiao Yu
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of the Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Jin-Hui Zhao
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of the Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Rong-Rong Zhang
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of the Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Emad Beshir Ata
- Parasitology and Animal Diseases Dep, Vet. Res. Institute, National Research Centre, 12622, Dokki, Cairo, Egypt
| | - Nan Wang
- Jilin Province Animal Disease Prevention and Control Center, Changchun, China
| | - Di Zhang
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of the Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Yong-Lei Yang
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of the Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Jia-Hao Qian
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of the Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Qiao-Dan Chen
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of the Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Gui-Lian Yang
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of the Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Hai-Bin Huang
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of the Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Chun-Wei Shi
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of the Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Yan-Long Jiang
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of the Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Jian-Zhong Wang
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of the Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Xin Cao
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of the Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Yan Zeng
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of the Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Nan Wang
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of the Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Wen-Tao Yang
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of the Ministry of Education, Jilin Agricultural University, Changchun, China.
| | - Chun-Feng Wang
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of the Ministry of Education, Jilin Agricultural University, Changchun, China.
| |
Collapse
|
8
|
Zhao W, Wang W, Xiao Y, Cui F. c-Jun regulates flotillin 2 transcription to benefit viral accumulation in insect vectors. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2023; 152:103894. [PMID: 36535580 DOI: 10.1016/j.ibmb.2022.103894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
The c-Jun N-terminal kinase (JNK) signaling pathway plays a critical role in viral infection in host cells. In addition to triggering immune reactions against pathogens, the JNK signaling pathway has also been found to benefit viral infection. Our previous work showed that JNK activation facilitated rice stripe virus (RSV) accumulation in the insect vector small brown planthopper, but the underlying mechanisms remain elusive. Here, we revealed a link between JNK activation and the transcriptional upregulation of the plasma membrane protein flotillin 2, which mediates RSV cell entry. c-Jun, a downstream substrate of JNKs, was identified as a transcription factor that targets the promoter of flotillin 2 at three binding sites. Phosphorylated c-Jun, especially at the serine 63 site, promoted the transcriptional activity of c-Jun on flotillin 2. JNK activation or inhibition affected c-Jun phosphorylation status and flotillin 2 expression. In the midguts of planthoppers, RSV infection significantly increased flotillin 2 expression and the phosphorylation level of JNKs and c-Jun. Manipulation of JNK status impacted viral acquisition in midgut cells. These findings reveal a new regulatory mechanism of the JNK signaling pathway and shed light on the virus-supportive effect of this pathway.
Collapse
Affiliation(s)
- Wan Zhao
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wei Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yan Xiao
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Feng Cui
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
9
|
Li M, Guo L, Feng L. Interplay between swine enteric coronaviruses and host innate immune. Front Vet Sci 2022; 9:1083605. [PMID: 36619958 PMCID: PMC9814124 DOI: 10.3389/fvets.2022.1083605] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022] Open
Abstract
Swine enteric coronavirus (SeCoV) causes acute diarrhea, vomiting, dehydration, and high mortality in neonatal piglets, causing severe losses worldwide. SeCoV includes the following four members: transmissible gastroenteritis virus (TGEV), porcine epidemic diarrhea virus (PEDV), porcine delta coronavirus (PDCoV), and swine acute diarrhea syndrome coronavirus (SADS-CoV). Clinically, mixed infections with several SeCoVs, which are more common in global farms, cause widespread infections. It is worth noting that PDCoV has a broader host range, suggesting the risk of PDCoV transmission across species, posing a serious threat to public health and global security. Studies have begun to focus on investigating the interaction between SeCoV and its host. Here, we summarize the effects of viral proteins on apoptosis, autophagy, and innate immunity induced by SeCoV, providing a theoretical basis for an in-depth understanding of the pathogenic mechanism of coronavirus.
Collapse
|
10
|
Wang J, Kan X, Li X, Sun J, Xu X. Porcine epidemic diarrhoea virus (PEDV) infection activates AMPK and JNK through TAK1 to induce autophagy and enhance virus replication. Virulence 2022; 13:1697-1712. [PMID: 36168145 PMCID: PMC9543055 DOI: 10.1080/21505594.2022.2127192] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Autophagy plays an important role in defending against invading microbes. However, numerous viruses can subvert autophagy to benefit their replication. Porcine epidemic diarrhoea virus (PEDV) is an aetiological agent that causes severe porcine epidemic diarrhoea. How PEDV infection regulates autophagy and its role in PEDV replication are inadequately understood. Herein, we report that PEDV induced complete autophagy in Vero and IPEC-DQ cells, as evidenced by increased LC3 lipidation, p62 degradation, and the formation of autolysosomes. The lysosomal protease inhibitors chloroquine (CQ) or bafilomycin A and Beclin-1 or ATG5 knockdown blocked autophagic flux and inhibited PEDV replication. PEDV infection activated AMP-activated protein kinase (AMPK) and c-Jun terminal kinase (JNK) by activating TGF-beta-activated kinase 1 (TAK1). Compound C (CC), an AMPK inhibitor, and SP600125, a JNK inhibitor, inhibited PEDV-induced autophagy and virus replication. AMPK activation led to increased ULK1S777 phosphorylation and activation. Inhibition of ULK1 activity by SBI-0206965 (SBI) and TAK1 activity by 5Z-7-Oxozeaenol (5Z) or by TAK1 siRNA led to the suppression of autophagy and virus replication. Our study provides mechanistic insights into PEDV-induced autophagy and how PEDV infection leads to JNK and AMPK activation.
Collapse
Affiliation(s)
- Jingxiang Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu Province, P. R. China
| | - Xianjin Kan
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu Province, P. R. China
| | - Xiaomei Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu Province, P. R. China
| | - Jing Sun
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu Province, P. R. China.,Institute of Comparative Medicine, Yangzhou University, Yangzhou, Jiangsu Province, P. R. China
| | - Xiulong Xu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu Province, P. R. China.,Institute of Comparative Medicine, Yangzhou University, Yangzhou, Jiangsu Province, P. R. China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu Province, China
| |
Collapse
|
11
|
A Review of Bioactive Compounds against Porcine Enteric Coronaviruses. Viruses 2022; 14:v14102217. [PMID: 36298772 PMCID: PMC9607050 DOI: 10.3390/v14102217] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/06/2022] [Accepted: 10/07/2022] [Indexed: 11/15/2022] Open
Abstract
Pig diarrhea is a universal problem in the process of pig breeding, which seriously affects the development of the pig industry. Porcine enteric coronaviruses (PECoVs) are common pathogens causing diarrhea in pigs, currently including transmissible gastroenteritis virus (TGEV), porcine epidemic diarrhea virus (PEDV), porcine deltacoronavirus (PDCoV) and swine acute diarrhea syndrome coronavirus (SADS-CoV). With the prosperity of world transportation and trade, the spread of viruses is becoming wider and faster, making it even more necessary to prevent PECoVs. In this paper, the host factors required for the efficient replication of these CoVs and the compounds that exhibit inhibitory effects on them were summarized to promote the development of drugs against PECoVs. This study will be also helpful in discovering general host factors that affect the replication of CoVs and provide references for the prevention and treatment of other CoVs.
Collapse
|
12
|
Yin X, Zhuang X, Luo W, Liao M, Huang L, Cui Q, Huang J, Yan C, Jiang Z, Liu Y, Wang W. Andrographolide promote the growth and immunity of Litopenaeus vannamei, and protects shrimps against Vibrio alginolyticus by regulating inflammation and apoptosis via a ROS-JNK dependent pathway. Front Immunol 2022; 13:990297. [PMID: 36159825 PMCID: PMC9505992 DOI: 10.3389/fimmu.2022.990297] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 08/23/2022] [Indexed: 11/17/2022] Open
Abstract
Vibrio alginolyticus (V. alginolyticus) is one of the major pathogens causing mass mortality of shrimps worldwide, affecting energy metabolism, immune response and development of shrimps. In the context of the prohibition of antibiotics, it is necessary to develop a drug that can protect shrimp from V. alginolyticus. Andrographolide (hereinafter called Andr), a traditional drug used in Chinese medicine, which possesses diverse biological effects including anti-bacteria, antioxidant, immune regulation. In this study, we investigated the effect of Andr on growth, immunity, and resistance to V. alginolyticus infection of Litopenaeus vannamei (L. vannamei) and elucidate the underlying molecular mechanisms. Four diets were formulated by adding Andr at the dosage of 0 g/kg (Control), 0.5 g/kg, 1 g/kg, and 2 g/kg in the basal diet, respectively. Each diet was randomly fed to one group with three replicates of shrimps in a 4-week feeding trial. The results showed that dietary Andr improved the growth performance and non-specific immune function of shrimps. L. vannamei fed with Andr diets showed lower mortality after being challenged by V. alginolyticus. After 6 h of V. alginolyticus infection, reactive oxygen species (ROS) production, tissue injury, apoptosis, expression of inflammatory factors (IL-1 β and TNFα) and apoptosis-related genes (Bax, caspase3 and p53) were increased in hemocytes and hepatopancreas, while feeding diet with 0.5 g/kg Andr could inhibit the increase. Considering that JNK are important mediators of apoptosis, we examined the influence of Andr on JNK activity during V. alginolyticus infection. We found that Andr inhibited JNK activation induced by V. alginolyticus infection on L. vannamei. The ROS scavenger N-acetyl-l-cysteine (NAC) suppressed V. alginolyticus-induced inflammation and apoptosis, suggesting that ROS play an important role in V. alginolyticus-induced inflammation and apoptosis. Treated cells with JNK specific activator anisomycin, the inflammation and apoptosis inhibited by Andr were counteracted. Collectively, Andr promote the growth and immunity of L. vannamei, and protects shrimps against V. alginolyticus by regulating inflammation and apoptosis via a ROS-JNK dependent pathway. These results improve the understanding of the pathogenesis of V. alginolyticus infection and provide clues to the development of effective drugs against V. alginolyticus.
Collapse
|
13
|
Li R, Shu M, Liu X, Nei Z, Ye B, Wang H, Gong Y. Genome-wide identification of mitogen-activated protein kinase (MAPK) gene family in yellow catfish (Pelteobagrus fulviadraco) and their expression profiling under the challenge of Aeromonas hydrophila. JOURNAL OF FISH BIOLOGY 2022; 101:699-710. [PMID: 35751135 DOI: 10.1111/jfb.15141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/19/2022] [Indexed: 06/15/2023]
Abstract
As serine/threonine protein kinases, mitogen-activated protein kinases (MAPK) take part in cellular metabolism. This work found 14 MAPK genes in the yellow catfish (Pelteobagrus fulviadraco) genome and evaluated their taxonomy, conserved domains and evolutionary linkages for a better understanding of the MAPK gene family's evolutionary relationship and antibacterial immune response. The findings revealed that several MAPK genes are activated in response to immunological and inflammatory responses. Collinearity research revealed that in yellow catfish and zebrafish, there are six pairs of highly similar MAPK genes, indicating that these genes have been more conserved throughout evolution. The MAPK gene quantification findings revealed that JNK1a, JNK1b, p38delta and p38alpha b expression levels were considerably upregulated, indicating that they act in fish innate immunity. The findings implied that MAPK genes may involve in defence against detrimental microbe in yellow catfish, which will help researchers better understand how MAPK genes work in the innate immune system.
Collapse
Affiliation(s)
- Ronghui Li
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo, China
| | - Mingyu Shu
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo, China
| | - Xuanxuan Liu
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo, China
| | - Zhiwei Nei
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo, China
| | - Ben Ye
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo, China
| | - Heyu Wang
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| | - Yifu Gong
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo, China
| |
Collapse
|
14
|
Chen YM, Burrough E. The Effects of Swine Coronaviruses on ER Stress, Autophagy, Apoptosis, and Alterations in Cell Morphology. Pathogens 2022; 11:pathogens11080940. [PMID: 36015060 PMCID: PMC9416022 DOI: 10.3390/pathogens11080940] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/14/2022] [Accepted: 08/15/2022] [Indexed: 11/17/2022] Open
Abstract
Swine coronaviruses include the following six members, namely porcine epidemic diarrhea virus (PEDV), transmissible gastroenteritis virus (TGEV), porcine delta coronavirus (PDCoV), swine acute diarrhea syndrome coronavirus (SADS-CoV), porcine hemagglutinating encephalomyelitis virus (PHEV), and porcine respiratory coronavirus (PRCV). Clinically, PEDV, TGEV, PDCoV, and SADS-CoV cause enteritis, whereas PHEV induces encephalomyelitis, and PRCV causes respiratory disease. Years of studies reveal that swine coronaviruses replicate in the cellular cytoplasm exerting a wide variety of effects on cells. Some of these effects are particularly pertinent to cell pathology, including endoplasmic reticulum (ER) stress, unfolded protein response (UPR), autophagy, and apoptosis. In addition, swine coronaviruses are able to induce cellular changes, such as cytoskeletal rearrangement, alterations of junctional complexes, and epithelial-mesenchymal transition (EMT), that render enterocytes unable to absorb nutrients normally, resulting in the loss of water, ions, and protein into the intestinal lumen. This review aims to describe the cellular changes in swine coronavirus-infected cells and to aid in understanding the pathogenesis of swine coronavirus infections. This review also explores how the virus exerted subcellular and molecular changes culminating in the clinical and pathological findings observed in the field.
Collapse
Affiliation(s)
- Ya-Mei Chen
- College of Veterinary Medicine, National Pingtung University of Science and Technology, Neipu, Pingtung County 912301, Taiwan
- Correspondence:
| | - Eric Burrough
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
15
|
Li L, Li P, Chen A, Li H, Liu Z, Yu L, Hou X. Quantitative proteomic analysis shows involvement of the p38 MAPK pathway in bovine parainfluenza virus type 3 replication. Virol J 2022; 19:116. [PMID: 35831876 PMCID: PMC9281021 DOI: 10.1186/s12985-022-01834-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 06/03/2022] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Bovine parainfluenza virus type 3 (BPIV3) infection often causes respiratory tissue damage and immunosuppression and further results in bovine respiratory disease complex (BRDC), one of the major diseases in dairy cattle, caused huge economical losses every year. However, the pathogenetic and immunoregulatory mechanisms involved in the process of BPIV3 infection remain unknown. However, the pathogenetic and immunoregulatory mechanisms involved in the process of BPIV3 infection remain unknown. Proteomics is a powerful tool for high-throughput identification of proteins, which has been widely used to understand how viruses interact with host cells. METHODS In the present study, we report a proteomic analysis to investigate the whole cellular protein alterations of MDBK cells infected with BPIV3. To investigate the infection process of BPIV3 and the immune response mechanism of MDBK cells, isobaric tags for relative and absolute quantitation analysis (iTRAQ) and Q-Exactive mass spectrometry-based proteomics were performed. The differentially expressed proteins (DEPs) involved in the BPIV3 invasion process in MDBK cells were identified, annotated, and quantitated. RESULTS A total of 116 proteins, which included 74 upregulated proteins and 42 downregulated proteins, were identified as DEPs between the BPIV3-infected and the mock-infected groups. These DEPs included corresponding proteins related to inflammatory response, immune response, and lipid metabolism. These results might provide some insights for understanding the pathogenesis of BPIV3. Fluorescent quantitative PCR and western blotting analysis showed results consistent with those of iTRAQ identification. Interestingly, the upregulated protein MKK3 was associated with the p38 MAPK signaling pathway. CONCLUSIONS The results of proteomics analysis indicated BPIV3 infection could activate the p38 MAPK pathway to promote virus replication.
Collapse
Affiliation(s)
- Liyang Li
- Heilongjiang Bayi Agricultural University, Daqing, 163319, China.,Daqing Center of Inspection and Testing for Rural Affairs Agricultural Products and Processed Products, Ministry of Agriculture and Rural Affairs, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Pengfei Li
- Department of Nephrology, Fifth Affiliated Hospital of Harbin Medical University, Daqing, 163319, China
| | - Ao Chen
- Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Hanbing Li
- Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Zhe Liu
- Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Liyun Yu
- Heilongjiang Bayi Agricultural University, Daqing, 163319, China.
| | - Xilin Hou
- Heilongjiang Bayi Agricultural University, Daqing, 163319, China.
| |
Collapse
|
16
|
Dai J, Wang H, Liao Y, Tan L, Sun Y, Song C, Liu W, Qiu X, Ding C. Coronavirus Infection and Cholesterol Metabolism. Front Immunol 2022; 13:791267. [PMID: 35529872 PMCID: PMC9069556 DOI: 10.3389/fimmu.2022.791267] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 03/21/2022] [Indexed: 12/19/2022] Open
Abstract
Host cholesterol metabolism remodeling is significantly associated with the spread of human pathogenic coronaviruses, suggesting virus-host relationships could be affected by cholesterol-modifying drugs. Cholesterol has an important role in coronavirus entry, membrane fusion, and pathological syncytia formation, therefore cholesterol metabolic mechanisms may be promising drug targets for coronavirus infections. Moreover, cholesterol and its metabolizing enzymes or corresponding natural products exert antiviral effects which are closely associated with individual viral steps during coronavirus replication. Furthermore, the coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 infections are associated with clinically significant low cholesterol levels, suggesting cholesterol could function as a potential marker for monitoring viral infection status. Therefore, weaponizing cholesterol dysregulation against viral infection could be an effective antiviral strategy. In this review, we comprehensively review the literature to clarify how coronaviruses exploit host cholesterol metabolism to accommodate viral replication requirements and interfere with host immune responses. We also focus on targeting cholesterol homeostasis to interfere with critical steps during coronavirus infection.
Collapse
Affiliation(s)
- Jun Dai
- College of Animal Science and Technology, Guangxi University, Nanning, China
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Experimental Animal Center, Zunyi Medical University, Zunyi City, China
| | - Huan Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Ying Liao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Lei Tan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Yingjie Sun
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Cuiping Song
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Weiwei Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Xusheng Qiu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- *Correspondence: Xusheng Qiu, ; Chan Ding,
| | - Chan Ding
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- *Correspondence: Xusheng Qiu, ; Chan Ding,
| |
Collapse
|
17
|
Feng Z, Xu L, Xie Z. Receptors for Respiratory Syncytial Virus Infection and Host Factors Regulating the Life Cycle of Respiratory Syncytial Virus. Front Cell Infect Microbiol 2022; 12:858629. [PMID: 35281439 PMCID: PMC8913501 DOI: 10.3389/fcimb.2022.858629] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 01/27/2022] [Indexed: 12/02/2022] Open
Abstract
Respiratory syncytial virus (RSV) is a common cause of lower respiratory tract infections and responsible for a large proportion of mortality in children and the elderly. There are no licensed vaccines available to date. Prophylaxis and therapeutic RSV-specific antibodies are limited to populations at high risk owing to high cost and uncertain clinical value. Receptors and host factors are two determinants important for virus entry and establishment of infection in vivo. The identification and understanding of viral receptors and host factors can help us to gain insight into the pathogenesis of RSV infection. Herein, we reviewed receptors and host factors that have been reported thus far. RSV could bind to CX3C chemokine receptor 1 and heparan sulfate proteoglycans via the G protein, and to nucleolin, insulin-like growth factor-1 receptor, epidermal growth factor, and intercellular adhesion molecule-1 via the F protein. Seven host restriction factors and 13 host factors essential for RSV infection were reviewed. We characterized the functions and their roles in the life cycle of RSV, trying to provide an update on the information of RSV-related receptors and host factors.
Collapse
Affiliation(s)
- Ziheng Feng
- Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics (Capital Medical University), Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
- Research Unit of Critical Infection in Children, Chinese Academy of Medical Sciences, Beijing, China
| | - Lili Xu
- Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics (Capital Medical University), Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
- Research Unit of Critical Infection in Children, Chinese Academy of Medical Sciences, Beijing, China
- *Correspondence: Lili Xu,
| | - Zhengde Xie
- Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics (Capital Medical University), Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
- Research Unit of Critical Infection in Children, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
18
|
Ding XM, Wang YF, Lyu Y, Zou Y, Wang X, Ruan SM, Wu WH, Liu H, Sun Y, Zhang RL, Zhao H, Han Y, Zhao BT, Pan J, Han XY, Wang CR, Zhao HL, Yang GL, Liu LZ, Fang SS. The effect of influenza A (H1N1) pdm09 virus infection on cytokine production and gene expression in BV2 microglial cells. Virus Res 2022; 312:198716. [DOI: 10.1016/j.virusres.2022.198716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 02/13/2022] [Accepted: 02/16/2022] [Indexed: 02/07/2023]
|
19
|
Abstract
The global coronavirus disease-19 (COVID-19) has affected more than 140 million and killed more than 3 million people worldwide as of April 20, 2021. The novel human severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has been identified as an etiological agent for COVID-19. Several kinases have been proposed as possible mediators of multiple viral infections, including life-threatening coronaviruses like SARS-CoV-1, Middle East syndrome coronavirus (MERS-CoV), and SARS-CoV-2. Viral infections hijack abundant cell signaling pathways, resulting in drastic phosphorylation rewiring in the host and viral proteins. Some kinases play a significant role throughout the viral infection cycle (entry, replication, assembly, and egress), and several of them are involved in the virus-induced hyperinflammatory response that leads to cytokine storm, acute respiratory distress syndrome (ARDS), organ injury, and death. Here, we highlight kinases that are associated with coronavirus infections and their inhibitors with antiviral and potentially anti-inflammatory, cytokine-suppressive, or antifibrotic activity.
Collapse
Affiliation(s)
- Thanigaimalai Pillaiyar
- Institute of Pharmacy, Pharmaceutical/Medicinal Chemistry
and Tuebingen Center for Academic Drug Discovery, Eberhard Karls University
Tübingen, Auf der Morgenstelle 8, 72076 Tübingen,
Germany
| | - Stefan Laufer
- Institute of Pharmacy, Pharmaceutical/Medicinal Chemistry
and Tuebingen Center for Academic Drug Discovery, Eberhard Karls University
Tübingen, Auf der Morgenstelle 8, 72076 Tübingen,
Germany
| |
Collapse
|
20
|
Hu Y, Xie X, Yang L, Wang A. A Comprehensive View on the Host Factors and Viral Proteins Associated With Porcine Epidemic Diarrhea Virus Infection. Front Microbiol 2021; 12:762358. [PMID: 34950116 PMCID: PMC8688245 DOI: 10.3389/fmicb.2021.762358] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 10/26/2021] [Indexed: 11/17/2022] Open
Abstract
Porcine epidemic diarrhea virus (PEDV), a coronavirus pathogen of the pig intestinal tract, can cause fatal watery diarrhea in piglets, thereby causing huge economic losses to swine industries around the world. The pathogenesis of PEDV has intensively been studied; however, the viral proteins of PEDV and the host factors in target cells, as well as their interactions, which are the foundation of the molecular mechanisms of viral infection, remain to be summarized and updated. PEDV has multiple important structural and functional proteins, which play various roles in the process of virus infection. Among them, the S and N proteins play vital roles in biological processes related to PEDV survival via interacting with the host cell proteins. Meanwhile, a number of host factors including receptors are required for the infection of PEDV via interacting with the viral proteins, thereby affecting the reproduction of PEDV and contributing to its life cycle. In this review, we provide an updated understanding of viral proteins and host factors, as well as their interactions in terms of PEDV infection. Additionally, the effects of cellular factors, events, and signaling pathways on PEDV infection are also discussed. Thus, these comprehensive and profound insights should facilitate for the further investigations, control, and prevention of PEDV infection.
Collapse
Affiliation(s)
- Yi Hu
- Laboratory of Animal Disease Prevention and Control and Animal Model, Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - Xiaohong Xie
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - Lingchen Yang
- Laboratory of Animal Disease Prevention and Control and Animal Model, Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - Aibing Wang
- Laboratory of Animal Disease Prevention and Control and Animal Model, Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University, Changsha, China.,PCB Biotechnology, LLC, Rockville, MD, United States
| |
Collapse
|
21
|
Radhi M, Ashraf S, Lawrence S, Tranholm AA, Wellham PAD, Hafeez A, Khamis AS, Thomas R, McWilliams D, de Moor CH. A Systematic Review of the Biological Effects of Cordycepin. Molecules 2021; 26:5886. [PMID: 34641429 PMCID: PMC8510467 DOI: 10.3390/molecules26195886] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/06/2021] [Accepted: 09/13/2021] [Indexed: 12/15/2022] Open
Abstract
We conducted a systematic review of the literature on the effects of cordycepin on cell survival and proliferation, inflammation, signal transduction and animal models. A total of 1204 publications on cordycepin were found by the cut-off date of 1 February 2021. After application of the exclusion criteria, 791 papers remained. These were read and data on the chosen subjects were extracted. We found 192 papers on the effects of cordycepin on cell survival and proliferation and calculated a median inhibitory concentration (IC50) of 135 µM. Cordycepin consistently repressed cell migration (26 papers) and cellular inflammation (53 papers). Evaluation of 76 papers on signal transduction indicated consistently reduced PI3K/mTOR/AKT and ERK signalling and activation of AMPK. In contrast, the effects of cordycepin on the p38 and Jun kinases were variable, as were the effects on cell cycle arrest (53 papers), suggesting these are cell-specific responses. The examination of 150 animal studies indicated that purified cordycepin has many potential therapeutic effects, including the reduction of tumour growth (37 papers), repression of pain and inflammation (9 papers), protecting brain function (11 papers), improvement of respiratory and cardiac conditions (8 and 19 papers) and amelioration of metabolic disorders (8 papers). Nearly all these data are consistent with cordycepin mediating its therapeutic effects through activating AMPK, inhibiting PI3K/mTOR/AKT and repressing the inflammatory response. We conclude that cordycepin has excellent potential as a lead for drug development, especially for age-related diseases. In addition, we discuss the remaining issues around the mechanism of action, toxicity and biodistribution of cordycepin.
Collapse
Affiliation(s)
- Masar Radhi
- Pain Centre Versus Arthritis, University of Nottingham, Nottingham NG7 2RD, UK; (M.R.); (A.A.T.); (D.M.)
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK; (S.L.); (P.A.D.W.); (A.H.); (A.S.K.)
| | - Sadaf Ashraf
- Aberdeen Centre for Arthritis and Musculoskeletal Health, Institute of Medical Sciences, Aberdeen AB25 2ZD, UK;
| | - Steven Lawrence
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK; (S.L.); (P.A.D.W.); (A.H.); (A.S.K.)
| | - Asta Arendt Tranholm
- Pain Centre Versus Arthritis, University of Nottingham, Nottingham NG7 2RD, UK; (M.R.); (A.A.T.); (D.M.)
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK; (S.L.); (P.A.D.W.); (A.H.); (A.S.K.)
| | - Peter Arthur David Wellham
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK; (S.L.); (P.A.D.W.); (A.H.); (A.S.K.)
| | - Abdul Hafeez
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK; (S.L.); (P.A.D.W.); (A.H.); (A.S.K.)
| | - Ammar Sabah Khamis
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK; (S.L.); (P.A.D.W.); (A.H.); (A.S.K.)
| | - Robert Thomas
- The Primrose Oncology Unit, Bedford Hospital NHS Trust, Bedford MK42 9DJ, UK;
- Department of Oncology, Addenbrooke’s Cambridge University Hospitals NHS Trust, Cambridge CB2 0QQ, UK
| | - Daniel McWilliams
- Pain Centre Versus Arthritis, University of Nottingham, Nottingham NG7 2RD, UK; (M.R.); (A.A.T.); (D.M.)
- NIHR Nottingham Biomedical Research Centre (BRC), Nottingham NG5 1PB, UK
| | - Cornelia Huiberdina de Moor
- Pain Centre Versus Arthritis, University of Nottingham, Nottingham NG7 2RD, UK; (M.R.); (A.A.T.); (D.M.)
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK; (S.L.); (P.A.D.W.); (A.H.); (A.S.K.)
| |
Collapse
|
22
|
The Roles of c-Jun N-Terminal Kinase (JNK) in Infectious Diseases. Int J Mol Sci 2021; 22:ijms22179640. [PMID: 34502556 PMCID: PMC8431791 DOI: 10.3390/ijms22179640] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/03/2021] [Accepted: 09/03/2021] [Indexed: 01/12/2023] Open
Abstract
c-Jun N-terminal kinases (JNKs) are among the most crucial mitogen-activated protein kinases (MAPKs) and regulate various cellular processes, including cell proliferation, apoptosis, autophagy, and inflammation. Microbes heavily rely on cellular signaling pathways for their effective replication; hence, JNKs may play important roles in infectious diseases. In this review, we describe the basic signaling properties of MAPKs and JNKs in apoptosis, autophagy, and inflammasome activation. Furthermore, we discuss the roles of JNKs in various infectious diseases induced by viruses, bacteria, fungi, and parasites, as well as their potential to serve as targets for the development of therapeutic agents for infectious diseases. We expect this review to expand our understanding of the JNK signaling pathway’s role in infectious diseases and provide important clues for the prevention and treatment of infectious diseases.
Collapse
|
23
|
Duan C, Wang J, Liu Y, Zhang J, Si J, Hao Z, Wang J. Antiviral effects of ergosterol peroxide in a pig model of porcine deltacoronavirus (PDCoV) infection involves modulation of apoptosis and tight junction in the small intestine. Vet Res 2021; 52:86. [PMID: 34127062 PMCID: PMC8201433 DOI: 10.1186/s13567-021-00955-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 05/25/2021] [Indexed: 01/28/2023] Open
Abstract
Porcine deltacoronavirus (PDCoV) is a newly discovered swine enteropathogenic coronavirus with worldwide distribution. However, efficient strategies to prevent or treat the infection remain elusive. Our in vitro study revealed that ergosterol peroxide (EP) from the mushroom Cryptoporus volvatus has efficient anti-PDCoV properties. The aim of this study is to evaluate the potential of EP as a treatment for PDCoV in vivo and elucidate the possible mechanisms. Seven-day-old piglets were infected with PDCoV by oral administration in the presence or absence of EP. Piglets infected with PDCoV were most affected, whereas administration of EP reduced diarrhea incidence, alleviated intestinal lesion, and decreased viral load in feces and tissues. EP reduced PDCoV-induced apoptosis and enhanced tight junction protein expressions in the small intestine, maintaining the integrity of the intestinal barrier. EP showed immunomodulatory effect by suppressing PDCoV-induced pro-inflammatory cytokines and the activation of IκBα and NF-κB p65, and upregulating IFN-I expression. Knockdown of p38 inhibited PDCoV replication and alleviated PDCoV-induced apoptosis, implying that EP inhibited PDCoV replication and alleviated PDCoV-induced apoptosis via p38/MAPK signaling pathway. Collectively, ergosterol peroxide can protect piglets from PDCoV, revealing the potential of EP for development as a promising strategy for treating and controlling the infection of PDCoV.
Collapse
Affiliation(s)
- Cong Duan
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Junchi Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yi Liu
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jialu Zhang
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jianyong Si
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Zhihui Hao
- College of Veterinary Medicine, China Agricultural University, Beijing, China.
| | - Jiufeng Wang
- College of Veterinary Medicine, China Agricultural University, Beijing, China.
| |
Collapse
|
24
|
Chang B, Guan H, Wang X, Chen Z, Zhu W, Wei X, Li S. Cox4i2 Triggers an Increase in Reactive Oxygen Species, Leading to Ferroptosis and Apoptosis in HHV7 Infected Schwann Cells. Front Mol Biosci 2021; 8:660072. [PMID: 34026834 PMCID: PMC8138133 DOI: 10.3389/fmolb.2021.660072] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 04/14/2021] [Indexed: 11/21/2022] Open
Abstract
Emerging evidence suggests that reactive oxygen species (ROS) play a significant role in the pathogenesis of peripheral nerve damage. Our previous study indicated that human herpesvirus 7 (HHV7) induces Bell’s palsy. However, the specific mechanism underlying the effects of ROS in HHV7 infection-induced facial nerve damage is unknown. In this study, we established a rat FN model by inoculating an HHV7 virus solution. The facial grading score and LuxolFastBlue (LFB) staining were used to assess the success of the model. Using mRNA-sequencing analysis, we found that the expression of Complex IV Subunit 4 Isoform 2 (Cox4i2) increased in infected Schwann cells (SCs). Cox4i2 was suggested to increase COX activity, thereby promoting ROS production. The changes in the endogenous oxidant and antioxidant system were assessed, and the results showed that oxidative stress increased after HHV7 infection in vivo and in vitro. However, we found that oxidative injury was relieved after the transfection of shCox4i2 in HHV7-treated SCs by evaluating cell death, cell proliferation, and the ROS level as well as the levels of malondialdehyde (MDA), superoxide dismutase (SOD), and glutathione (GSH). Furthermore, we hypothesised that Cox4i2 loss would attenuate HHV7-induced ferroptosis and apoptosis, which are closely related to ROS in SCs. Our research illustrated that the knockdown of Cox4i2 suppresses HHV7-induced RSC96 cell ferroptosis as well as apoptosis via the ERK signalling pathway. Overall, several in vitro and in vivo methods were adopted in this study to reveal the new mechanism of ROS-induced and Cox4i2-mediated apoptosis and ferroptosis in HHV7 infected SCs.
Collapse
Affiliation(s)
- Bowen Chang
- Department of Neurosurgery, School of Medicine, Xinhua Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Haochen Guan
- Department of Nephrology, School of Medicine, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xueyi Wang
- Department of Neurosurgery, School of Medicine, Xinhua Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Zheng Chen
- Department of Neurosurgery, School of Medicine, Xinhua Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Wanchun Zhu
- Department of Neurosurgery, School of Medicine, Xinhua Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xiangyu Wei
- Department of Neurosurgery, School of Medicine, Xinhua Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Shiting Li
- Department of Neurosurgery, School of Medicine, Xinhua Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
25
|
Jeon JH, Lee C. Stress-activated protein kinases are involved in the replication of porcine deltacoronavirus. Virology 2021; 559:196-209. [PMID: 33964685 DOI: 10.1016/j.virol.2021.04.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/27/2021] [Accepted: 04/27/2021] [Indexed: 11/30/2022]
Abstract
This study was conducted to examine the role of stress-activated protein kinases (SAPKs), including c-Jun NH2-terminal kinases (JNK1/2) and p38 mitogen-activated protein kinase (MAPK), in porcine deltacoronavirus (PDCoV) infection. Results demonstrated the activation of JNK1/2 and p38 MAPK in PDCoV-infected cells, which occurred concomitant with viral biosynthesis and irrespective of cell type. Pharmacological inhibition or knockdown of either SAPK significantly attenuated PDCoV replication, whereas addition of a signaling activator augmented virus infectivity. Moreover, pharmacological inhibition of JNK1/2 or p38 MAPK activation was innocuous to viral entry but significantly detrimental to post uncoating stages of the replication cycle. Remarkably, cytokine gene expression in PDCoV-infected IPEC-J2 cells was modified by inhibiting the activation of either SAPK. Collectively, these data indicate that JNK1/2 and p38 MAPK signaling pathways contribute to viral biosynthesis and regulate immune responses, thereby favoring the replication of PDCoV.
Collapse
Affiliation(s)
- Ji Hyun Jeon
- Animal Virology Laboratory, School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, 702-701, Republic of Korea
| | - Changhee Lee
- Animal Virology Laboratory, School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, 702-701, Republic of Korea.
| |
Collapse
|
26
|
Ergosterol peroxide suppresses porcine deltacoronavirus (PDCoV)-induced autophagy to inhibit virus replication via p38 signaling pathway. Vet Microbiol 2021; 257:109068. [PMID: 33894664 PMCID: PMC8035807 DOI: 10.1016/j.vetmic.2021.109068] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 04/06/2021] [Indexed: 12/19/2022]
Abstract
Porcine deltacoronavirus (PDCoV) is a swine enteropathogenic coronavirus (CoV) that continues to spread globally, placing strain on economic and public health. Currently, the pathogenic mechanism of PDCoV remains largely unclear, and effective strategies to prevent or treat PDCoV infection are still limited. In this study, the interaction between autophagy and PDCoV replication in LLC-PK1 cells was investigated. We demonstrated that PDCoV infection induced a complete autophagy process. Pharmacologically induced autophagy with rapamycin increased the expression of PDCoV N, while pharmacologically inhibited autophagy with wortmannin decreased the expression of PDCoV N, suggesting that PDCoV-induced autophagy facilitates virus replication. Further experiments showed that PDCoV infection activated p38 signaling pathway to trigger autophagy. Besides, ergosterol peroxide (EP) alleviated PDCoV-induced activation of p38 to suppress autophagy, thus exerting its antiviral effects. Finally, we employed a piglet model of PDCoV infection to demonstrate that EP prevented PDCoV infection by suppressing PDCoV-induced autophagy via p38 signaling pathway in vivo. Collectively, these findings accelerate the understanding of the pathogenesis of PDCoV infection and provide new insights for the development of EP as an effective therapeutic strategy for PDCoV.
Collapse
|
27
|
Yuan C, Huang X, Zhai R, Ma Y, Xu A, Zhang P, Yang Q. In Vitro Antiviral Activities of Salinomycin on Porcine Epidemic Diarrhea Virus. Viruses 2021; 13:v13040580. [PMID: 33808275 PMCID: PMC8066218 DOI: 10.3390/v13040580] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/25/2021] [Accepted: 03/28/2021] [Indexed: 01/16/2023] Open
Abstract
Porcine epidemic diarrhea virus (PEDV), an enteropathogenic coronavirus, has catastrophic impacts on the global pig industry. Owing to the lack of effective vaccines and specific therapeutic options for PEDV, it is pertinent to develop new and available antivirals. This study identified, for the first time, a salinomycin that actively inhibited PEDV replication in Vero cells in a dose-dependent manner. Furthermore, salinomycin significantly inhibited PEDV infection by suppressing the entry and post-entry of PEDV in Vero cells. It did not directly interact with or inactivate PEDV particles, but it significantly ameliorated the activation of Erk1/2, JNK and p38MAPK signaling pathways that are associated with PEDV infection. This implied that salinomycin inhibits PEDV replication by altering MAPK pathway activation. Notably, the PEDV induced increase in reactive oxidative species (ROS) was not decreased, indicating that salinomycin suppresses PEDV replication through a pathway that is an independent pathway of viral-induced ROS. Therefore, salinomycin is a potential drug that can be used for treating PEDV infection.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Qian Yang
- Correspondence: ; Tel.: +86-02584395817
| |
Collapse
|
28
|
Raghuvanshi R, Bharate SB. Recent Developments in the Use of Kinase Inhibitors for Management of Viral Infections. J Med Chem 2021; 65:893-921. [PMID: 33539089 DOI: 10.1021/acs.jmedchem.0c01467] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Kinases are a group of therapeutic targets involved in the progression of numerous diseases, including cancer, rheumatoid arthritis, Alzheimer's disease, and viral infections. The majority of approved antiviral agents are inhibitors of virus-specific targets that are encoded by individual viruses. These inhibitors are narrow-spectrum agents that can cause resistance development. Viruses are dependent on host cellular proteins, including kinases, for progression of their life-cycle. Thus, targeting kinases is an important therapeutic approach to discovering broad-spectrum antiviral agents. As there are a large number of FDA approved kinase inhibitors for various indications, their repurposing for viral infections is an attractive and time-sparing strategy. Many kinase inhibitors, including baricitinib, ruxolitinib, imatinib, tofacitinib, pacritinib, zanubrutinib, and ibrutinib, are under clinical investigation for COVID-19. Herein, we discuss FDA approved kinase inhibitors, along with a repertoire of clinical/preclinical stage kinase inhibitors that possess antiviral activity or are useful in the management of viral infections.
Collapse
Affiliation(s)
- Rinky Raghuvanshi
- Medicinal Chemistry Division,CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India.,Academy of Scientific & Innovative Research, Ghaziabad 201002, India
| | - Sandip B Bharate
- Medicinal Chemistry Division,CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India.,Academy of Scientific & Innovative Research, Ghaziabad 201002, India
| |
Collapse
|
29
|
Duan C, Ge X, Wang J, Wei Z, Feng WH, Wang J. Ergosterol peroxide exhibits antiviral and immunomodulatory abilities against porcine deltacoronavirus (PDCoV) via suppression of NF-κB and p38/MAPK signaling pathways in vitro. Int Immunopharmacol 2021; 93:107317. [PMID: 33493866 PMCID: PMC9412180 DOI: 10.1016/j.intimp.2020.107317] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 12/10/2020] [Accepted: 12/15/2020] [Indexed: 12/24/2022]
Abstract
Porcine deltacoronavirus (PDCoV) is an emerging swine enteropathogenic coronavirus (CoV) that poses economic and public health burdens. Currently, there are no effective antiviral agents against PDCoV. Cryptoporus volvatus often serves as an antimicrobial agent in Traditional Chinese Medicines. This study aimed to evaluate the antiviral activities of ergosterol peroxide (EP) from C. volvatus against PDCoV infection. The inhibitory activity of EP against PDCoV was assessed by using virus titration and performing Quantitative Reverse transcription PCR (RT-qPCR), Western blotting and immunofluorescence assays in LLC-PK1 cells. The mechanism of EP against PDCoV was analyzed by flow cytometry, RT-qPCR and Western blotting. We found that EP treatment inhibited PDCoV infection in LLC-PK1 cells in a dose-dependent manner. Subsequently, we demonstrated that EP blocked virus attachment and entry using RT-qPCR. Time-of-addition assays indicated that EP mainly exerted its inhibitory effect at the early and middle stages in the PDCoV replication cycle. EP also inactivated PDCoV infectivity directly as well as suppressed PDCoV-induced apoptosis. Furthermore, EP treatment decreased the phosphorylation of IκBα and p38 MAPK induced by PDCoV infection as well as the mRNA levels of cytokines (IL-1β, IL-6, IL-12, TNF-α, IFN-α, IFN-β, Mx1 and PKR). These results imply that EP can inhibit PDCoV infection and regulate host immune responses by downregulating the activation of the NF-κB and p38/MAPK signaling pathways in vitro. EP can be used as a potential candidate for the development of a new anti-PDCoV therapy.
Collapse
Affiliation(s)
- Cong Duan
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Xinna Ge
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Junchi Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Zhanyong Wei
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, Henan, China
| | - Wen-Hai Feng
- State Key Laboratory for Agrobiotechnology, College of Biological Science, China Agricultural University, Beijing 100193, China.
| | - Jiufeng Wang
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
30
|
Upregulation of DUSP6 impairs infectious bronchitis virus replication by negatively regulating ERK pathway and promoting apoptosis. Vet Res 2021; 52:7. [PMID: 33431056 PMCID: PMC7798014 DOI: 10.1186/s13567-020-00866-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 11/02/2020] [Indexed: 11/10/2022] Open
Abstract
Elucidating virus-cell interactions is fundamental to understanding viral replication and identifying targets for therapeutic control of viral infection. The extracellular signal-regulated kinase (ERK) pathway has been shown to regulate pathogenesis during many viral infections, but its role during coronavirus infection is undetermined. Infectious bronchitis virus is the representative strain of Gammacoronavirus, which causes acute and highly contagious diseases in the poultry farm. In this study, we investigated the role of ERK1/2 signaling pathway in IBV infection. We found that IBV infection activated ERK1/2 signaling and the up-regulation of phosphatase DUSP6 formed a negative regulation loop. Pharmacological inhibition of MEK1/2-ERK1/2 signaling suppressed the expression of DUSP6, promoted cell death, and restricted virus replication. In contrast, suppression of DUSP6 by chemical inhibitor or siRNA increased the phosphorylation of ERK1/2, protected cells from apoptosis, and facilitated IBV replication. Overexpression of DUSP6 decreased the level of phospho-ERK1/2, promoted apoptosis, while dominant negative mutant DUSP6-DN lost the regulation function on ERK1/2 signaling and apoptosis. In conclusion, these data suggest that MEK-ERK1/2 signaling pathway facilitates IBV infection, probably by promoting cell survival; meanwhile, induction of DUSP6 forms a negative regulation loop to restrict ERK1/2 signaling, correlated with increased apoptosis and reduced viral load. Consequently, components of the ERK pathway, such as MEK1/2 and DUSP6, represent excellent targets for the development of antiviral drugs.
Collapse
|
31
|
Liao Y, Yang Y, Wang X, Wei M, Guo Q, Zhao L. Oroxyloside ameliorates acetaminophen-induced hepatotoxicity by inhibiting JNK related apoptosis and necroptosis. JOURNAL OF ETHNOPHARMACOLOGY 2020; 258:112917. [PMID: 32360799 DOI: 10.1016/j.jep.2020.112917] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 04/23/2020] [Accepted: 04/23/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Oroxyloside is a natural flavonoid isolated from Scutellaria baicalensis Georgi (Lamiaceae) which is a Chinese herb widely used for liver diseases. However, its mechanisms on protecting against drug induced liver injury has not been investigated yet. AIM OF THE STUDY To investigate the protecting effects and the primary mechanisms of oroxyloside on acetaminophen (APAP)-induced liver injury. MATERIALS AND METHODS After a 12 h fasting period with free access to water, C57BL/6 mice were injected with APAP (300 mg/kg) intragastrically (i.g.) and 1 h later with oroxyloside (100 mg/kg, i.g.). When mice sacrificed, blood samples were collected from fundus venous plexus and liver tissues were collected. In addition, cells were incubated with 10 mM APAP alone and 10 mM APAP combined with 100 μM oroxyloside for 24 h. ELISA, TUNEL assay, qRT-PCR et al. were used to assess the effect of oroxyloside on ameliorating APAP-induced hepatotoxicity in vitro and in vivo. Western bolt and immunohistochemistry were used in the signaling pathway analysis. RESULTS Oroxyloside administration significantly decreased the accumulations of CYP2E1, CYP1A2, IL-6, IL-1β, ALT and AST induced by APAP in vivo. In addition, oroxyloside inhibited the APAP-induced JNK related apoptosis by enhancing the antioxidant defenses, reversing ER-stress and keeping the mito-balance of liver cells in vivo and in vitro. Furthermore, oroxyloside protected the liver cells from necroptosis by affecting JNK pathway. CONCLUSION Oroxyloside acted as a protective agent against APAP-induced liver injury through inhibiting JNK-related apoptosis and necroptosis.
Collapse
Affiliation(s)
- Yan Liao
- School of Basic Medicine and Clinical Pharmacology, China Pharmaceutical University, Nanjing, 211100, China
| | - Yue Yang
- School of Basic Medicine and Clinical Pharmacology, China Pharmaceutical University, Nanjing, 211100, China
| | - Xiaoping Wang
- School of Basic Medicine and Clinical Pharmacology, China Pharmaceutical University, Nanjing, 211100, China
| | - Mian Wei
- School of Basic Medicine and Clinical Pharmacology, China Pharmaceutical University, Nanjing, 211100, China
| | - Qinglong Guo
- School of Basic Medicine and Clinical Pharmacology, China Pharmaceutical University, Nanjing, 211100, China
| | - Li Zhao
- School of Basic Medicine and Clinical Pharmacology, China Pharmaceutical University, Nanjing, 211100, China.
| |
Collapse
|
32
|
Porcine epidemic diarrhea virus infection blocks cell cycle and induces apoptosis in pig intestinal epithelial cells. Microb Pathog 2020; 147:104378. [PMID: 32653434 PMCID: PMC7347497 DOI: 10.1016/j.micpath.2020.104378] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 05/17/2020] [Accepted: 07/02/2020] [Indexed: 12/16/2022]
Abstract
Porcine epidemic diarrhea virus (PEDV) is responsible for the acute infectious swine disease porcine epidemic diarrhea (PED). PED causes damage to the intestine, including villus atrophy and shedding, leading to serious economic losses to the pig industry worldwide. We carried out an in vitro study to investigate cell apoptosis and the cell cycle in a PEDV-infected host using transcriptomic shotgun sequencing (RNA-Seq) to study gene responses to PEDV infection. Results revealed that the PEDV infection reduced proliferation activity, blocked the cell cycle at S-phase and induced apoptosis in IPEC-J2 cells. The expression of gene levels related to ribosome proteins and oxidative phosphorylation were significantly up-regulated post-PEDV infection. Although the significantly down-regulated on PI3K/Akt signaling pathway post-PEDV infection, the regulator-related genes of mTOR signaling pathway exerted significantly up-regulated or down-regulated in IPEC-J2 cells. These results indicated that ribosome proteins and oxidative phosphorylation process were widely involved in the pathological changes and regulation of host cells caused by PEDV infection, and PI3K/AKT and mTOR signaling pathways played a vital role in antiviral regulation in IPEC-J2 cells. These data might provide new insights into the specific pathogenesis of PEDV infection and pave the way for the development of effective therapeutic strategies.
Collapse
|
33
|
Xu X, Tao L, Wang A, Li L, Fan K, Shen Y, Li J. Genome-wide identification of JNK and p38 gene family in Ctenopharyngodon idella and their expression profiles in response to bacterial challenge. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2019; 33:100647. [PMID: 31794883 DOI: 10.1016/j.cbd.2019.100647] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 11/16/2019] [Accepted: 11/19/2019] [Indexed: 11/15/2022]
Abstract
c-Jun N-terminal kinases (JNKs) and p38s are central components of signal transduction pathways, which are stimulated mainly by environmental stress and inflammatory cytokines. Manipulation of JNK and p38 dependent immune responses either boosts or subdues immune responses to infectious diseases or inflammatory disorders. In this study, we analyzed the whole-genome database of the grass carp and identified 4 JNK and 6 p38 genes. JNK and p38 genes of grass carp were distributed in 7 out of 24 chromosomes. All JNK and p38 proteins contained characteristic dual-phosphorylation site. The JNKs contain a specific dual-phosphorylation consensus ((Thr-Pro-Tyr) that is different from that of the p38 proteins (Thr-Gly-Tyr). Deduced gene secondary structure analyses as well as the syntenic analyses further supported their annotation and orthologs. Results of tissue distribution detection revealed that JNK and p38 genes exhibited lower expression in health grass carp. The mRNA expression levels of JNK and p38 genes were significantly up-regulated in tissues and CIK cells after bacterial infection, indicating their potential roles in bacterial-regulated immune responses. These findings in our study will facilitate the further evolutionary characterization of JNK and p38 genes in teleost species and provide a theoretical basis for their functional study.
Collapse
Affiliation(s)
- Xiaoyan Xu
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture, Shanghai Ocean University, Shanghai, China
| | - Lizhu Tao
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture, Shanghai Ocean University, Shanghai, China
| | - Anqi Wang
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture, Shanghai Ocean University, Shanghai, China
| | - Liuyang Li
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Kun Fan
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Yubang Shen
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Jiale Li
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China.
| |
Collapse
|
34
|
Dong W, Xie W, Liu Y, Sui B, Zhang H, Liu L, Tan Y, Tong X, Fu ZF, Yin P, Fang L, Peng G. Receptor tyrosine kinase inhibitors block proliferation of TGEV mainly through p38 mitogen-activated protein kinase pathways. Antiviral Res 2019; 173:104651. [PMID: 31751591 PMCID: PMC7114126 DOI: 10.1016/j.antiviral.2019.104651] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 11/13/2019] [Accepted: 11/16/2019] [Indexed: 01/05/2023]
Abstract
Emerging coronaviruses (CoVs) primarily cause severe gastroenteric or respiratory diseases in humans and animals, and no approved therapeutics are currently available. Here, A9, a receptor tyrosine kinase inhibitor (RTKI) of the tyrphostin class, is identified as a robust inhibitor of transmissible gastroenteritis virus (TGEV) infection in cell-based assays. Moreover, A9 exhibited potent antiviral activity against the replication of various CoVs, including murine hepatitis virus (MHV), porcine epidemic diarrhea virus (PEDV) and feline infectious peritonitis virus (FIPV). We further performed a comparative phosphoproteomic analysis to investigate the mechanism of action of A9 against TGEV infection in vitro. We specifically identified p38 and JNK1, which are the downstream molecules of receptor tyrosine kinases (RTKs) required for efficient TGEV replication, as A9 targets through plaque assays, qRT-PCR and Western blotting assays. p38 and JNK1 inhibitors and RNA interference further showed that the inhibitory activity of A9 against TGEV infection was mainly mediated by the p38 mitogen-activated protein kinase (MAPK) signaling pathway. All these findings indicated that the RTKI A9 directly inhibits TGEV replication and that its inhibitory activity against TGEV replication mainly occurs by targeting p38, which provides vital clues to the design of novel drugs against CoVs. We screened inhibitors against coronavirus replication using TGEV as a surrogate model through a high-throughput assay. A9, a receptor tyrosine kinase inhibitor (RTKI) of the tyrphostin class, was identified as a robust inhibitor of TGEV. A9 also exhibited potent antiviral activity against the replication of various coronaviruses. The inhibitory activity of A9 against TGEV replication is mainly regulated by targeting p38.
Collapse
Affiliation(s)
- Wanyu Dong
- The State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, China; National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China; Department of Veterinary Medicine, College of Animal Science and Technology, Zhejiang A&F University, Hangzhou, 311300, China
| | - Wenting Xie
- The State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yunbo Liu
- The State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, China
| | - Baokun Sui
- The State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hao Zhang
- The State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, China
| | - Liran Liu
- The State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yubei Tan
- The State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiaohan Tong
- The State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhen F Fu
- The State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, China; Departments of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA, 30602, USA
| | - Ping Yin
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Liurong Fang
- The State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, China
| | - Guiqing Peng
- The State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
35
|
Du J, Luo J, Yu J, Mao X, Luo Y, Zheng P, He J, Yu B, Chen D. Manipulation of Intestinal Antiviral Innate Immunity and Immune Evasion Strategies of Porcine Epidemic Diarrhea Virus. BIOMED RESEARCH INTERNATIONAL 2019; 2019:1862531. [PMID: 31781594 PMCID: PMC6874955 DOI: 10.1155/2019/1862531] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 10/10/2019] [Accepted: 10/14/2019] [Indexed: 12/25/2022]
Abstract
Porcine epidemic diarrhea virus (PEDV) infection causes watery diarrhea, dehydration, and high mortality in neonatal pigs, due to its clinical pathogenesis of the intestinal mucosal barrier dysfunction. The host's innate immune system is the first line of defence upon virus invasion of the small intestinal epithelial cells. In turn, the virus has evolved to modulate the host's innate immunity during infection, resulting in pathogen virulence, survival, and the establishment of successful infection. In this review, we gather current knowledge concerning the interplay between PEDV and components of host innate immunity, focusing on the role of cytokines and interferons in intestinal antiviral innate immunity, and the mechanisms underlying the immune evasion strategies of PEDV invasion. Finally, we provide some perspectives on the potential prevention and treatment for PEDV infection.
Collapse
Affiliation(s)
- Jian Du
- Institute of Animal Nutrition, Sichuan Agricultural University, and Key Laboratory of Animal Disease Resistance Nutrition Ministry of Education, Chengdu, Sichuan 611130, China
| | - Junqiu Luo
- Institute of Animal Nutrition, Sichuan Agricultural University, and Key Laboratory of Animal Disease Resistance Nutrition Ministry of Education, Chengdu, Sichuan 611130, China
| | - Jie Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, and Key Laboratory of Animal Disease Resistance Nutrition Ministry of Education, Chengdu, Sichuan 611130, China
| | - Xiangbing Mao
- Institute of Animal Nutrition, Sichuan Agricultural University, and Key Laboratory of Animal Disease Resistance Nutrition Ministry of Education, Chengdu, Sichuan 611130, China
| | - Yuheng Luo
- Institute of Animal Nutrition, Sichuan Agricultural University, and Key Laboratory of Animal Disease Resistance Nutrition Ministry of Education, Chengdu, Sichuan 611130, China
| | - Ping Zheng
- Institute of Animal Nutrition, Sichuan Agricultural University, and Key Laboratory of Animal Disease Resistance Nutrition Ministry of Education, Chengdu, Sichuan 611130, China
| | - Jun He
- Institute of Animal Nutrition, Sichuan Agricultural University, and Key Laboratory of Animal Disease Resistance Nutrition Ministry of Education, Chengdu, Sichuan 611130, China
| | - Bing Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, and Key Laboratory of Animal Disease Resistance Nutrition Ministry of Education, Chengdu, Sichuan 611130, China
| | - Daiwen Chen
- Institute of Animal Nutrition, Sichuan Agricultural University, and Key Laboratory of Animal Disease Resistance Nutrition Ministry of Education, Chengdu, Sichuan 611130, China
| |
Collapse
|
36
|
Xu X, Xu Y, Zhang Q, Yang F, Yin Z, Wang L, Li Q. Porcine epidemic diarrhea virus infections induce apoptosis in Vero cells via a reactive oxygen species (ROS)/p53, but not p38 MAPK and SAPK/JNK signalling pathways. Vet Microbiol 2019; 232:1-12. [PMID: 31030832 PMCID: PMC7117205 DOI: 10.1016/j.vetmic.2019.03.028] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/25/2019] [Accepted: 03/25/2019] [Indexed: 12/25/2022]
Abstract
p53 is activated, translocated to nucleus and involved in PEDV-induced apoptosis. ROS are accumulated during PEDV infection and involved in PEDV-induced apoptosis. ROS are the upper stream of p53 in PEDV infection. This is the first report that PEDV induce Vero cells apoptosis via ROS/p53 signal pathway.
Porcine epidemic diarrhea virus (PEDV) is a member of Coronavirus, which causes severe watery diarrhea in piglets with high morbidity and mortality. ROS and p53 play key roles in regulating many kinds of cell process during viral infection, however, the exact function in PEDV-induced apoptosis remains unclear. In this study, the pro-apoptotic effect of PEDV was examined in Vero cells and we observed that PEDV infection increased MDM2 and CBP, promoted p53 phosphorylation at serine 20 and, promoted p53 nuclear translocation, leading to p53 activation in Vero cells. Treatment with the p53 inhibitor PFT-α could significantly inhibit PEDV-induced apoptosis. We also observed PEDV infection induced time-dependent ROS accumulation. Treatment with antioxidants, such as pyrrolidine dithiocarbamate (PDTC) or N-acetylcysteine (NAC), significantly inhibited PEDV-induced apoptosis. Moreover, further inhibition tests were established to prove that p53 was regulated by ROS in PEDV-induced apoptosis. In addition, we also found that p38 MAPK and SAPK/JNK were activated in PEDV-infected Vero cells. However, treatment with the p38 MAPK inhibitor SB203580, and the SAPK/JNK inhibitor SP600125 reversed PEDV-induced apoptosis. Taken together, the results of this study demonstrate that activated p53 and accumulated ROS participated in PEDV-induced apoptosis and p53 could be regulated by ROS during PEDV infection. Activated p38 MAPK and SAPK/JNK exerted no influence on PEDV-induced apoptosis. These findings provide new insights into the function of p53 and ROS in the interaction of PEDV with Vero cells.
Collapse
Affiliation(s)
- Xingang Xu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Ying Xu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Qi Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Feng Yang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zheng Yin
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Lixiang Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Qinfan Li
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
37
|
Koonpaew S, Teeravechyan S, Frantz PN, Chailangkarn T, Jongkaewwattana A. PEDV and PDCoV Pathogenesis: The Interplay Between Host Innate Immune Responses and Porcine Enteric Coronaviruses. Front Vet Sci 2019; 6:34. [PMID: 30854373 PMCID: PMC6395401 DOI: 10.3389/fvets.2019.00034] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Accepted: 01/28/2019] [Indexed: 12/24/2022] Open
Abstract
Enteropathogenic porcine epidemic diarrhea virus (PEDV) and porcine deltacoronavirus (PDCoV), members of the coronavirus family, account for the majority of lethal watery diarrhea in neonatal pigs in the past decade. These two viruses pose significant economic and public health burdens, even as both continue to emerge and reemerge worldwide. The ability to evade, circumvent or subvert the host’s first line of defense, namely the innate immune system, is the key determinant for pathogen virulence, survival, and the establishment of successful infection. Unfortunately, we have only started to unravel the underlying viral mechanisms used to manipulate host innate immune responses. In this review, we gather current knowledge concerning the interplay between these viruses and components of host innate immunity, focusing on type I interferon induction and signaling in particular, and the mechanisms by which virus-encoded gene products antagonize and subvert host innate immune responses. Finally, we provide some perspectives on the advantages gained from a better understanding of host-pathogen interactions. This includes their implications for the future development of PEDV and PDCoV vaccines and how we can further our knowledge of the molecular mechanisms underlying virus pathogenesis, virulence, and host coevolution.
Collapse
Affiliation(s)
- Surapong Koonpaew
- Virology and Cell Technology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathumthani, Thailand
| | - Samaporn Teeravechyan
- Virology and Cell Technology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathumthani, Thailand
| | - Phanramphoei Namprachan Frantz
- Virology and Cell Technology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathumthani, Thailand
| | - Thanathom Chailangkarn
- Virology and Cell Technology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathumthani, Thailand
| | - Anan Jongkaewwattana
- Virology and Cell Technology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathumthani, Thailand
| |
Collapse
|
38
|
Zhang W, Wu J, Zhang F, Dou X, Ma A, Zhang X, Shao H, Zhao S, Ling P, Liu F, Han G. Lower range of molecular weight of xanthan gum inhibits apoptosis of chondrocytes through MAPK signaling pathways. Int J Biol Macromol 2019; 130:79-87. [PMID: 30659877 DOI: 10.1016/j.ijbiomac.2019.01.071] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 01/14/2019] [Accepted: 01/16/2019] [Indexed: 01/04/2023]
Abstract
LRWXG has previously been reported to have a protective effect on chondrocytes, preventing apoptosis induced by oxidative stress. In this study, we were aimed at determining whether LRWXG exerts its anti-apoptotic activity through the MAPK signaling pathways in chondrocytes. Our results show that, at the cellular level, apoptosis of chondrocytes in the groups treated by LRWXG decreases compared with groups treated by inhibitors alone and model group under conditions of oxidative stress in a dose-dependent manner. Mechanistically at the molecular level, LRWXG regulates the MAPK pathway induced by oxidative stress: The levels of phosphorylation of JNK and p38 proteins in the groups treated by LRWXG are lower than model group, while compared with corresponding groups of inhibitors, there are no significant difference; For other related proteins, LRWXG reduces the levels of the apoptosis-related proteins BAX and cleaved caspase-3, and increases the level of anti-apoptotic protein BCL2. In addition, LRWXG can significantly reduce the levels of inflammatory-related factors such as COX2, PEG2, TNFα and IL1β, and inhibits the expression of MMPs, increasing the content of type II collagen. The results of this research strongly suggest that LRWXG exerts its anti-apoptotic activity via regulating the MAPK signaling pathways in vitro.
Collapse
Affiliation(s)
- Wei Zhang
- Jinzhou Medical University, Jinzhou 121001, China; The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121001, China; Shandong Academy of Pharmaceutical Science, Key Laboratory of Biopharmaceuticals, Engineering Laboratory of Polysaccharide Drugs, National-Local Joint Engineering Laboratory of Polysaccharide Drugs, Jinan 250101, China
| | - Jixu Wu
- Shandong Academy of Pharmaceutical Science, Key Laboratory of Biopharmaceuticals, Engineering Laboratory of Polysaccharide Drugs, National-Local Joint Engineering Laboratory of Polysaccharide Drugs, Jinan 250101, China; School of Pharmaceutical Sciences, Shandong University, Jinan 250101, China
| | - Fangfang Zhang
- Shandong Academy of Pharmaceutical Science, Key Laboratory of Biopharmaceuticals, Engineering Laboratory of Polysaccharide Drugs, National-Local Joint Engineering Laboratory of Polysaccharide Drugs, Jinan 250101, China; School of Pharmaceutical Sciences, Shandong University, Jinan 250101, China
| | - Xixi Dou
- Shandong Academy of Pharmaceutical Science, Key Laboratory of Biopharmaceuticals, Engineering Laboratory of Polysaccharide Drugs, National-Local Joint Engineering Laboratory of Polysaccharide Drugs, Jinan 250101, China
| | - Aibin Ma
- Shandong Academy of Pharmaceutical Science, Key Laboratory of Biopharmaceuticals, Engineering Laboratory of Polysaccharide Drugs, National-Local Joint Engineering Laboratory of Polysaccharide Drugs, Jinan 250101, China; School of Pharmaceutical Sciences, Shandong University, Jinan 250101, China
| | - Xiaogang Zhang
- Shandong Academy of Pharmaceutical Science, Key Laboratory of Biopharmaceuticals, Engineering Laboratory of Polysaccharide Drugs, National-Local Joint Engineering Laboratory of Polysaccharide Drugs, Jinan 250101, China
| | - Huarong Shao
- Shandong Academy of Pharmaceutical Science, Key Laboratory of Biopharmaceuticals, Engineering Laboratory of Polysaccharide Drugs, National-Local Joint Engineering Laboratory of Polysaccharide Drugs, Jinan 250101, China
| | - Shuo Zhao
- The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121001, China
| | - Peixue Ling
- Shandong Academy of Pharmaceutical Science, Key Laboratory of Biopharmaceuticals, Engineering Laboratory of Polysaccharide Drugs, National-Local Joint Engineering Laboratory of Polysaccharide Drugs, Jinan 250101, China; School of Pharmaceutical Sciences, Shandong University, Jinan 250101, China
| | - Fei Liu
- Shandong Academy of Pharmaceutical Science, Key Laboratory of Biopharmaceuticals, Engineering Laboratory of Polysaccharide Drugs, National-Local Joint Engineering Laboratory of Polysaccharide Drugs, Jinan 250101, China.
| | - Guanying Han
- Jinzhou Medical University, Jinzhou 121001, China; The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121001, China.
| |
Collapse
|
39
|
Fung TS, Liu DX. Activation of the c-Jun NH 2-terminal kinase pathway by coronavirus infectious bronchitis virus promotes apoptosis independently of c-Jun. Cell Death Dis 2017; 8:3215. [PMID: 29238080 PMCID: PMC5870581 DOI: 10.1038/s41419-017-0053-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 09/28/2017] [Accepted: 10/11/2017] [Indexed: 12/16/2022]
Abstract
Mitogen-activated protein kinases (MAPKs) are conserved protein kinases that regulate a variety of important cellular signaling pathways. Among them, c-Jun N-terminal kinases (JNK) are known to be activated by various environmental stresses including virus infections. Previously, activation of the JNK pathway has been detected in cells infected with several coronaviruses. However, detailed characterization of the pathway as well as its implication in host-virus interactions has not been fully investigated. Here we report that the JNK pathway was activated in cells infected with the avian coronavirus infectious bronchitis virus (IBV). Of the two known upstream MAPK kinases (MKK), MKK7, but not MKK4, was shown to be responsible for IBV-induced JNK activation. Moreover, knockdown and overexpression experiments demonstrated that JNK served as a pro-apoptotic protein during IBV infection. Interestingly, pro-apoptotic activity of JNK was not mediated via c-Jun, but involved modulation of the anti-apoptotic protein B-cell lymphoma 2 (Bcl2). Taken together, JNK constitutes an important aspect of coronavirus-host interaction, along with other MAPKs.
Collapse
Affiliation(s)
- To Sing Fung
- 0000 0000 9546 5767grid.20561.30South China Agricultural University, Guangdong Province Key Laboratory Microbial Signals & Disease Co, and Integrative Microbiology Research Centre, Guangzhou, 510642 Guangdong, People’s Republic of China
| | - Ding Xiang Liu
- 0000 0000 9546 5767grid.20561.30South China Agricultural University, Guangdong Province Key Laboratory Microbial Signals & Disease Co, and Integrative Microbiology Research Centre, Guangzhou, 510642 Guangdong, People’s Republic of China ,0000 0001 2224 0361grid.59025.3bSchool of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 63755 Singapore
| |
Collapse
|
40
|
Cellular cholesterol is required for porcine nidovirus infection. Arch Virol 2017; 162:3753-3767. [PMID: 28884395 PMCID: PMC7086867 DOI: 10.1007/s00705-017-3545-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 08/12/2017] [Indexed: 12/14/2022]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) and porcine epidemic diarrhea virus (PEDV) are porcine nidoviruses that are considered emerging and re-emerging viral pathogens of pigs that pose a significant economic threat to the global pork industry. Although cholesterol is known to affect the replication of a broad range of viruses in vitro, its significance and role in porcine nidovirus infection remains to be elucidated. Therefore, the present study was conducted to determine whether cellular or/and viral cholesterol levels play a role in porcine nidovirus infection. Our results showed that depletion of cellular cholesterol by treating cells with methyl-β-cyclodextrin (MβCD) dose-dependently suppressed the replication of both nidoviruses. Conversely, cholesterol depletion from the viral envelope had no inhibitory effect on porcine nidovirus production. The addition of exogenous cholesterol to MβCD-treated cells moderately restored the infectivity of porcine nidoviruses, indicating that the presence of cholesterol in the target cell membrane is critical for viral replication. The antiviral activity of MβCD on porcine nidovirus infection was found to be predominantly exerted when used as a treatment pre-infection or prior to the viral entry process. Furthermore, pharmacological sequestration of cellular cholesterol efficiently blocked both virus attachment and internalization and, accordingly, markedly affected subsequent post-entry steps of the replication cycle, including viral RNA and protein biosynthesis and progeny virus production. Taken together, our data indicate that cell membrane cholesterol is required for porcine nidovirus entry into cells, and pharmacological drugs that hamper cholesterol-dependent virus entry may have antiviral potential against porcine nidoviruses.
Collapse
|
41
|
iTRAQ-based quantitative proteomics analysis of molecular mechanisms associated with Bombyx mori (Lepidoptera) larval midgut response to BmNPV in susceptible and near-isogenic strains. J Proteomics 2017. [PMID: 28624519 DOI: 10.1016/j.jprot.2017.06.007] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Bombyx mori nucleopolyhedrovirus (BmNPV) has been identified as a major pathogen responsible for severe economic loss. Most silkworm strains are susceptible to BmNPV, with only a few highly resistant strains thus far identified. Here we investigated the molecular basis of silkworm resistance to BmNPV using susceptible (the recurrent parent P50) and resistant (near-isogenic line BC9) strains and a combination of iTRAQ-based quantitative proteomics, reverse-transcription quantitative PCR and Western blotting. By comparing the proteomes of infected and non-infected P50 and BC9 silkworms, we identified 793 differentially expressed proteins (DEPs). By gene ontology and KEGG enrichment analyses, we found that these DEPs are preferentially involved in metabolism, catalytic activity, amino sugar and nucleotide sugar metabolism and carbon metabolism. 114 (14.38%) DEPs were associated with the cytoskeleton, immune response, apoptosis, ubiquitination, translation, ion transport, endocytosis and endopeptidase activity. After removing the genetic background and individual immune stress response proteins, we identified 84 DEPs were found that are potentially involved in resistance to BmNPV. Further studies showed that a serine protease was down-regulated in P50 and up-regulated in BC9 after BmNPV infection. Taken together, these results provide insights into the molecular mechanism of silkworm response to BmNPV. BIOLOGICAL SIGNIFICANCE Bombyx mori nucleopolyhedrovirus (BmNPV) is highly pathogenic, causing serious losses in sericulture every year. However, the molecular mechanisms of BmNPV infection and host defence remain unclear. Here we combined quantitative proteomic, bioinformatics, RT-qPCR and Western blotting analyses and found that BmNPV invasion causes complex protein alterations in the larval midgut, and that these changes are related to cytoskeleton, immune response, apoptosis, ubiquitination, translation, ion transport, endocytosis and endopeptidase activity. Five important differentially expression proteins were validation by independent approaches. These finding will help address the molecular mechanisms of silkworm resistance to BmNPV and provide a molecular target for resisting BmNPV.
Collapse
|