1
|
Feng Q, Ma J, Jiang X, Wei W, Xu D, Cao Y, Pei H. Therapeutic potential of fucoidan in atherosclerosis: a review. Food Funct 2025. [PMID: 40353291 DOI: 10.1039/d4fo05388e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
Abstract
Atherosclerosis (AS) is a slowly progressive disease that significantly increases the risk of cardiovascular diseases. The development of AS is closely associated with various factors, including disturbances in lipid metabolism, endothelial damage, inflammation, and the formation of unstable plaques. AS is strongly linked to diseases with high incidence and mortality, such as ischemic heart disease and stroke, which pose significant economic burdens. Recent studies have focused on identifying effective treatments for preventing and reversing AS. New evidence indicates that fucoidan, a polysaccharide derived from rockweed, possesses lipid-lowering, antioxidant, anti-inflammatory, endothelial-protective and prebiotic properties that align with the pathophysiology of AS, making it a promising therapeutic candidate. This review systematically presents recent progress in understanding the anti-atherosclerotic effects of fucoidan, particularly its underlying mechanisms. These mechanisms involve the regulation of lipid levels, reduction of vascular inflammation, enhancement of antioxidant defenses, and protection of the vascular endothelium. These insights are essential for improving cardiovascular and cerebrovascular health.
Collapse
Affiliation(s)
- Qiujian Feng
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
- Beijing University of Chinese Medicine, Beijing, China
| | - Jinye Ma
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xuefan Jiang
- Beijing University of Chinese Medicine, Beijing, China
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wei Wei
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Dongchen Xu
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yu Cao
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Hui Pei
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
2
|
Vajeethaveesin N, Kanitwithayanun J, Suriyo T, Chujan S, Satayavivad J. Perfluorooctane sulfonic acid: a possible risk factor of endothelial dysfunction based on in silico and in vitro studies. Arch Toxicol 2025:10.1007/s00204-025-04047-7. [PMID: 40244404 DOI: 10.1007/s00204-025-04047-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 03/27/2025] [Indexed: 04/18/2025]
Abstract
Perfluorooctane sulfonic acid (PFOS) is a fluorinated chemical utilized in a variety of industrial and household products. PFOS has been detected in human serum and is associated with multiple human adverse health effects. Epidemiological evidence has linked PFOS exposure to endothelial dysfunction, which is a key contributor to atherosclerosis. However, the underlying mechanisms of PFOS-induced endothelial dysfunction associated atherosclerosis has not been investigated. In the present study, human microvascular endothelial cells (HMEC-1) exposed to PFOS (15 μM) for 72 h, mimicking long-term exposure. We further employed integrated RNA-sequencing (RNA-seq) and transcriptomic analysis to identify differentially expressed genes (DEGs) for biological alterations: gene ontology (GO), pathway enrichment analysis (KEGG), protein-protein interaction network and modular clustering analysis. Furthermore, the Metascape database was used for disease association, tissue specificity, and transcription factor analysis. Hub genes were verified using atherosclerosis patient data sets from the GEO dataset. Alteration of hub genes in patients was then validated using immunoblotting and ELISA. Our results revealed that PFOS altered amino acid biosynthesis, lipid metabolism and induced the ER-stress response through the HRI/eIF2α/ATF4 pathway, leading to endothelial dysfunction. Interestingly, we found that PFOS induced inflammation by increasing COX-2, ICAM-1 and IL-6 expression through NF-κB and JAK2/STAT3 pathway in endothelial cells. Moreover, up-regulated C/EBPβ and ATF4 were observed in both patients and PFOS-exposed endothelium, which may use as an early biomarker and may have a potential role in PFOS-induced endothelial dysfunction. These findings provide novel insight into the underlying molecular mechanisms of PFOS-induced endothelial dysfunction associated with atherosclerosis.
Collapse
Affiliation(s)
- Nutsira Vajeethaveesin
- Environmental Toxicology Program, Chulabhorn Graduate Institute, Bangkok, 10210, Thailand
| | - Jantamas Kanitwithayanun
- Environmental Toxicology Program, Chulabhorn Graduate Institute, Bangkok, 10210, Thailand
- Laboratory of Pharmacology, Chulabhorn Research Institute, Bangkok, 10210, Thailand
- Center of Excellence On Environmental Health and Toxicology, Bangkok, 10400, Thailand
| | - Tawit Suriyo
- Laboratory of Pharmacology, Chulabhorn Research Institute, Bangkok, 10210, Thailand
- Center of Excellence On Environmental Health and Toxicology, Bangkok, 10400, Thailand
| | - Suthipong Chujan
- Laboratory of Pharmacology, Chulabhorn Research Institute, Bangkok, 10210, Thailand.
- Center of Excellence On Environmental Health and Toxicology, Bangkok, 10400, Thailand.
| | - Jutamaad Satayavivad
- Environmental Toxicology Program, Chulabhorn Graduate Institute, Bangkok, 10210, Thailand.
- Laboratory of Pharmacology, Chulabhorn Research Institute, Bangkok, 10210, Thailand.
- Center of Excellence On Environmental Health and Toxicology, Bangkok, 10400, Thailand.
| |
Collapse
|
3
|
Foreman KL, Gastfriend BD, Katt ME, Palecek SP, Shusta EV. Transcriptional Responses of In Vitro Blood-Brain Barrier Models to Shear Stress. Biomolecules 2025; 15:193. [PMID: 40001496 PMCID: PMC11853657 DOI: 10.3390/biom15020193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/19/2025] [Accepted: 01/22/2025] [Indexed: 02/27/2025] Open
Abstract
Endothelial cells throughout the body sense blood flow, eliciting transcriptional and phenotypic responses. The brain endothelium, known as the blood-brain barrier (BBB), possesses unique barrier and transport properties, which are in part regulated by blood flow. We utilized RNA sequencing to analyze the transcriptome of primary cultured rat brain microvascular endothelial cells (BMECs), as well as three human induced pluripotent stem cell-derived models. We compared the transcriptional responses of these cells to either low (0.5 dyne/cm2) or high (12 dyne/cm2) shear stresses, and subsequent analyses identified genes and pathways that were influenced by shear including key BBB-associated genes (SLC2A1, LSR, PLVAP) and canonical endothelial shear-stress-response transcription factors (KLF2, KLF4). In addition, our analysis suggests that shear alone is insufficient to rescue the de-differentiation caused by in vitro primary BMEC culture. Overall, these datasets and analyses provide new insights into the influence of shear on BBB models that will aid in model selection and guide further model development.
Collapse
Affiliation(s)
- Koji L. Foreman
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA; (K.L.F.); (B.D.G.); (M.E.K.)
| | - Benjamin D. Gastfriend
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA; (K.L.F.); (B.D.G.); (M.E.K.)
| | - Moriah E. Katt
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA; (K.L.F.); (B.D.G.); (M.E.K.)
| | - Sean P. Palecek
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA; (K.L.F.); (B.D.G.); (M.E.K.)
| | - Eric V. Shusta
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA; (K.L.F.); (B.D.G.); (M.E.K.)
- Department of Neurosurgery, University of Wisconsin-Madison, Madison, WI 53792, USA
| |
Collapse
|
4
|
Shi J, Liang Z, Liu Z, Pan L, Hu X, Tian Y, Jin H, Liu Y, Cheng Y, Zhang M. Identification of Novel Proteins Mediating Causal Association Between Smoking and Essential Hypertension: A Mendelian Randomization Study. J Am Heart Assoc 2024:e036202. [PMID: 39604029 DOI: 10.1161/jaha.124.036202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 09/06/2024] [Indexed: 11/29/2024]
Abstract
BACKGROUND Smoking is a factor for hypertension. We aim to reveal novel plasma proteins mediating the relationship of smoking with hypertension and identify potential drug targets for hypertension on the basis of Mendelian randomization design. METHODS AND RESULTS Data for smoking were selected from the largest genome-wide association study meta-analysis performed by the Genome-Wide Association Study and Sequencing Consortium of Alcohol and Nicotine Use. Data for plasma proteins were selected from the deCODE Health study and the UK Biobank Pharma Proteomics Project. Data for hypertension were extracted from the FinnGen Study. Moreover, proteome-wide Mendelian randomization and colocalization analyses, 2-step Mendelian randomization, and gene function and network prediction, as well as druggability assessment were performed. We finally identified 8 proteins (ANXA4 [annexin A4], DLK1 [protein delta homolog 1], KLB [β-klotho], MMP8 [matrix metallopeptidase 8], PLAT [tissue-type plasminogen activator], POSTN [periostin], SAT2 [thialysine N-ε-acetyltransferase], and IFNLR1 [interferon λ receptor 1]) mediating association of smoking with hypertension. PLAT and IFNLR1 were identified to be involved in the complement and coagulation cascades and the Janus kinase/signal transducer and activator of transcription signaling pathway. ANXA4, KLB, MMP8, PLAT, and IFNLR1 had druggability. Moreover, IFNLR1 had strong evidence of genetic colocalization, because the posterior probability for H4 of IFNLR1 was 91.3%. CONCLUSIONS This study identified the 8 proteins that mediate causal association between smoking and essential hypertension. Interferon λ receptor agonist targeting IFNLR1 may open a new avenue for treating hypertension. Our discoveries provide new insights into protein pathogenesis of hypertension and to better guide hypertension prevention and treatment among smokers.
Collapse
Affiliation(s)
- Jikang Shi
- Department of Clinical Nutrition Peking University Shenzhen Hospital Shenzhen China
| | - Zhuoshuai Liang
- Department of Epidemiology and Biostatistics School of Public Health of Jilin University Changchun China
| | - Zhantong Liu
- Department of Epidemiology and Biostatistics School of Public Health of Jilin University Changchun China
| | - Lingfeng Pan
- Clinic for Plastic, Reconstructive and Hand Surgery, Klinikum Rechts der Isar Technical University of Munich Munich Germany
| | - Xinmeng Hu
- Department of Epidemiology and Biostatistics School of Public Health of Jilin University Changchun China
| | - Yuyang Tian
- Department of Epidemiology and Biostatistics School of Public Health of Jilin University Changchun China
| | - Huizhen Jin
- Department of Epidemiology and Biostatistics School of Public Health of Jilin University Changchun China
| | - Yawen Liu
- Department of Epidemiology and Biostatistics School of Public Health of Jilin University Changchun China
| | - Yi Cheng
- The Cardiovascular Center The First Hospital of Jilin University Changchun Jilin China
| | - Ming Zhang
- Department of Clinical Nutrition Peking University Shenzhen Hospital Shenzhen China
| |
Collapse
|
5
|
Yang Y, Wang J, Tian Y, Li M, Xu S, Zhang L, Luo X, Tan Y, Liang H, Chen M. Equisetin protects from atherosclerosis in vivo by binding to STAT3 and inhibiting its activity. Pharmacol Res 2024; 206:107289. [PMID: 38960011 DOI: 10.1016/j.phrs.2024.107289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/21/2024] [Accepted: 06/28/2024] [Indexed: 07/05/2024]
Abstract
Atherosclerosis is a chronic inflammatory vascular disease characterized by lipid metabolism disorder and lipid accumulation. Equisetin (EQST) is a hemiterpene compound isolated from fungus of marine sponge origin, which has antibacterial, anti-inflammatory, lipid-lowering, and weight loss effects. Whether EQST has anti-atherosclerotic activity has not been reported. In this study, we revealed that EQST displayed anti- atherosclerosis effects through inhibiting macrophage inflammatory response, lipid uptake and foam cell formation in vitro, and finally ameliorated high-fat diet (HFD)-induced atherosclerosis in AopE-/- mice in vivo. Mechanistically, EQST directly bound to STAT3 with high-affinity by forming hydrophobic bonds at GLN247 and GLN326 residues, as well as hydrogen bonds at ARG325 and THR346 residues. EQST interacted with STAT3 physically, and functionally inhibited the transcription activity of STAT3, thereby regulating atherosclerosis. Therefore, these results supports EQST as a candidate for developing anti-atherosclerosis therapeutic agent.
Collapse
Affiliation(s)
- Yuting Yang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Jingzhu Wang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Yang Tian
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Min Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Shaohua Xu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Lijun Zhang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China; GXNU & GLHCWM Joint Medical Research Center, Guangxi Normal University, Guilin 541004, China
| | - Xiaowei Luo
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Yanhui Tan
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China.
| | - Hong Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China.
| | - Ming Chen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China; GXNU & GLHCWM Joint Medical Research Center, Guangxi Normal University, Guilin 541004, China.
| |
Collapse
|
6
|
Lu Q, Yang D, Li H, Niu T, Tong A. Multiple myeloma: signaling pathways and targeted therapy. MOLECULAR BIOMEDICINE 2024; 5:25. [PMID: 38961036 PMCID: PMC11222366 DOI: 10.1186/s43556-024-00188-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 05/21/2024] [Indexed: 07/05/2024] Open
Abstract
Multiple myeloma (MM) is the second most common hematological malignancy of plasma cells, characterized by osteolytic bone lesions, anemia, hypercalcemia, renal failure, and the accumulation of malignant plasma cells. The pathogenesis of MM involves the interaction between MM cells and the bone marrow microenvironment through soluble cytokines and cell adhesion molecules, which activate various signaling pathways such as PI3K/AKT/mTOR, RAS/MAPK, JAK/STAT, Wnt/β-catenin, and NF-κB pathways. Aberrant activation of these pathways contributes to the proliferation, survival, migration, and drug resistance of myeloma cells, making them attractive targets for therapeutic intervention. Currently, approved drugs targeting these signaling pathways in MM are limited, with many inhibitors and inducers still in preclinical or clinical research stages. Therapeutic options for MM include non-targeted drugs like alkylating agents, corticosteroids, immunomodulatory drugs, proteasome inhibitors, and histone deacetylase inhibitors. Additionally, targeted drugs such as monoclonal antibodies, chimeric antigen receptor T cells, bispecific T-cell engagers, and bispecific antibodies are being used in MM treatment. Despite significant advancements in MM treatment, the disease remains incurable, emphasizing the need for the development of novel or combined targeted therapies based on emerging theoretical knowledge, technologies, and platforms. In this review, we highlight the key role of signaling pathways in the malignant progression and treatment of MM, exploring advances in targeted therapy and potential treatments to offer further insights for improving MM management and outcomes.
Collapse
Affiliation(s)
- Qizhong Lu
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, Research Unit of Gene and Immunotherapy, Chinese Academy of Medical Sciences, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Donghui Yang
- College of Veterinary Medicine, Shaanxi Center of Stem Cells Engineering and Technology, Northwest A&F University, Yangling, 712100, China
| | - Hexian Li
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, Research Unit of Gene and Immunotherapy, Chinese Academy of Medical Sciences, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ting Niu
- Department of Hematology, State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Aiping Tong
- State Key Laboratory of Biotherapy and Cancer Center, Research Unit of Gene and Immunotherapy, Chinese Academy of Medical Sciences, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, 610212, China.
| |
Collapse
|
7
|
Zhang X, Chen S, Yin G, Liang P, Feng Y, Yu W, Meng D, Liu H, Zhang F. The Role of JAK/STAT Signaling Pathway and Its Downstream Influencing Factors in the Treatment of Atherosclerosis. J Cardiovasc Pharmacol Ther 2024; 29:10742484241248046. [PMID: 38656132 DOI: 10.1177/10742484241248046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Atherosclerosis is now widely considered to be a chronic inflammatory disease, with increasing evidence suggesting that lipid alone is not the main factor contributing to its development. Rather, atherosclerotic plaques contain a significant amount of inflammatory cells, characterized by the accumulation of monocytes and lymphocytes on the vessel wall. This suggests that inflammation may play a crucial role in the occurrence and progression of atherosclerosis. As research deepens, other pathological factors have also been found to influence the development of the disease. The Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathway is a recently discovered target of inflammation that has gained attention in recent years. Numerous studies have provided evidence for the causal role of this pathway in atherosclerosis, and its downstream signaling factors play a significant role in this process. This brief review aims to explore the crucial role of the JAK/STAT pathway and its representative downstream signaling factors in the development of atherosclerosis. It provides a new theoretical basis for clinically affecting the development of atherosclerosis by interfering with the JAK/STAT signaling pathway.
Collapse
Affiliation(s)
- Xin Zhang
- The First Clinical Medical College of Shandong University of Traditional Chinese Medicine, Jinan City, Shandong Province, China
| | - Suwen Chen
- The First Clinical Medical College of Shandong University of Traditional Chinese Medicine, Jinan City, Shandong Province, China
| | - Guoliang Yin
- The First Clinical Medical College of Shandong University of Traditional Chinese Medicine, Jinan City, Shandong Province, China
| | - Pengpeng Liang
- The First Clinical Medical College of Shandong University of Traditional Chinese Medicine, Jinan City, Shandong Province, China
| | - Yanan Feng
- The First Clinical Medical College of Shandong University of Traditional Chinese Medicine, Jinan City, Shandong Province, China
| | - Wenfei Yu
- The First Clinical Medical College of Shandong University of Traditional Chinese Medicine, Jinan City, Shandong Province, China
| | - Decheng Meng
- The First Clinical Medical College of Shandong University of Traditional Chinese Medicine, Jinan City, Shandong Province, China
| | - Hongshuai Liu
- The First Clinical Medical College of Shandong University of Traditional Chinese Medicine, Jinan City, Shandong Province, China
| | - Fengxia Zhang
- Hospital of Shandong University of Traditional Chinese Medicine, Jinan City, Shandong Province, China
| |
Collapse
|
8
|
Butnariu I, Antonescu-Ghelmez D, Moraru A, Anghel DN, Cojocaru FM, Tuță S, Ciobanu AM, Antonescu F. Chorea and Cognitive Impairment in JAK2V617F-Positive Myeloproliferative Disorders: A Case Report and Literature Review. MEDICINA (KAUNAS, LITHUANIA) 2023; 60:18. [PMID: 38276052 PMCID: PMC10817622 DOI: 10.3390/medicina60010018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 12/14/2023] [Accepted: 12/19/2023] [Indexed: 01/27/2024]
Abstract
Chorea is a hyperkinetic movement disorder, accompanied by dystonia, myoclonus, tics, stereotypies, and tremors. It is characterized by excessive, purposeless movements that are distressing, irregularly timed, and randomly distributed. Chorea can be present in many diseases, such as hereditary, metabolic disturbance, drug-induced, and functional disorders, and, rarely, genetic, autoimmune, and infectious diseases. Primary myelofibrosis (PMF) is a myeloproliferative neoplasm that leads to ineffective clonal hematopoiesis, fibrous tissue deposits in the bone marrow, extramedullary hematopoiesis, and splenomegaly. In rare cases, following uncertain pathological mechanisms, it can present with chorea, particularly affecting the limbs, head, and orofaciolingual muscles. We present a case of a male patient with evolving PMF over several years who was admitted for progressive cognitive impairment and generalized involuntary movement disorder. We also present a review of all cases of myeloproliferative disorders presenting with chorea published in the last 40 years.
Collapse
Affiliation(s)
- Ioana Butnariu
- Department of Clinical Neurosciences, “Carol Davila” University of Medicine and Pharmacy, 020023 Bucharest, Romania
- Neurology Department, National Institute of Neurology and Neurovascular Diseases, 041915 Bucharest, Romania
| | - Dana Antonescu-Ghelmez
- Department of Clinical Neurosciences, “Carol Davila” University of Medicine and Pharmacy, 020023 Bucharest, Romania
- Neurology Department, National Institute of Neurology and Neurovascular Diseases, 041915 Bucharest, Romania
| | - Adriana Moraru
- Neurology Department, National Institute of Neurology and Neurovascular Diseases, 041915 Bucharest, Romania
| | - Daniela Nicoleta Anghel
- Neurology Department, National Institute of Neurology and Neurovascular Diseases, 041915 Bucharest, Romania
| | | | - Sorin Tuță
- Department of Clinical Neurosciences, “Carol Davila” University of Medicine and Pharmacy, 020023 Bucharest, Romania
- Neurology Department, National Institute of Neurology and Neurovascular Diseases, 041915 Bucharest, Romania
| | - Adela Magdalena Ciobanu
- Department of Clinical Neurosciences, “Carol Davila” University of Medicine and Pharmacy, 020023 Bucharest, Romania
- “Prof. Dr. Alexandru Obregia” Clinical Psychiatry Hospital, 041914 Bucharest, Romania
| | - Florian Antonescu
- Department of Clinical Neurosciences, “Carol Davila” University of Medicine and Pharmacy, 020023 Bucharest, Romania
- Neurology Department, National Institute of Neurology and Neurovascular Diseases, 041915 Bucharest, Romania
| |
Collapse
|
9
|
Wang S, Jiang D, Huang F, Qian Y, Qi M, Li H, Wang X, Wang Z, Wang K, Wang Y, Du P, Zhan B, Zhou R, Chu L, Yang X. Therapeutic effect of Echinococcus granulosus cyst fluid on bacterial sepsis in mice. Parasit Vectors 2023; 16:450. [PMID: 38066526 PMCID: PMC10709918 DOI: 10.1186/s13071-023-06021-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/18/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND The primary pathophysiological process of sepsis is to stimulate a massive release of inflammatory mediators to trigger systemic inflammatory response syndrome (SIRS), the major cause of multi-organ dysfunction and death. Like other helminths, Echinococcus granulosus induces host immunomodulation. We sought to determine whether E. granulosus cyst fluid (EgCF) displays a therapeutic effect on sepsis-induced inflammation and tissue damage in a mouse model. METHODS The anti-inflammatory effects of EgCF were determined by in vitro culture with bone marrow-derived macrophages (BMDMs) and in vivo treatment of BALB/C mice with cecal ligation and puncture (CLP)-induced sepsis. The macrophage phenotypes were determined by flow cytometry, and the levels of cytokines in cell supernatants or in sera of mice were measured (ELISA). The therapeutic effect of EgCF on sepsis was evaluated by observing the survival rates of mice for 72 h after CLP, and the pathological injury to the liver, kidney, and lung was measured under a microscope. The expression of TLR-2/MyD88 in tissues was measured by western blot to determine whether TLR-2/MyD88 is involved in the sepsis-induced inflammatory signaling pathway. RESULTS In vitro culture with BMDMs showed that EgCF promoted macrophage polarization to M2 type and inhibited lipopolysaccharide (LPS)-induced M1 macrophages. EgCF treatment provided significant therapeutic effects on CLP-induced sepsis in mice, with increased survival rates and alleviation of tissue injury. The EgCF conferred therapeutic efficacy was associated with upregulated anti-inflammatory cytokines (IL-10 and TGF-β) and reduced pro-inflammatory cytokines (TNF-α and INF-γ). Treatment with EgCF induced Arg-1-expressed M2, and inhibited iNOS-expressed M1 macrophages. The expression of TLR-2 and MyD88 in EgCF-treated mice was reduced. CONCLUSIONS The results demonstrated that EgCF confers a therapeutic effect on sepsis by inhibiting the production of pro-inflammatory cytokines and inducing regulatory cytokines. The anti-inflammatory effect of EgCF is carried out possibly through inducing macrophage polarization from pro-inflammatory M1 to regulatory M2 phenotype to reduce excessive inflammation of sepsis and subsequent multi-organ damage. The role of EgCF in regulating macrophage polarization may be achieved by inhibiting the TLR2/MyD88 signaling pathway.
Collapse
Affiliation(s)
- Shuying Wang
- First Affiliated Hospital of Bengbu Medical College, Bengbu, 233000, China
- Anhui Key Laboratory of Infection and Immunity of Bengbu Medical College, Bengbu, 233000, China
- Department of Pediatrics, Anqing First People's Hospital of Anhui Medical University, Anqing, 246000, China
| | - Donghui Jiang
- Department of Critical Care Medicine, Affiliated Hospital of Jiangnan University, Wuxi, 214122, China
| | - Feifei Huang
- First Affiliated Hospital of Bengbu Medical College, Bengbu, 233000, China
- Anhui Key Laboratory of Infection and Immunity of Bengbu Medical College, Bengbu, 233000, China
| | - Yayun Qian
- First Affiliated Hospital of Bengbu Medical College, Bengbu, 233000, China
- Anhui Key Laboratory of Infection and Immunity of Bengbu Medical College, Bengbu, 233000, China
| | - Meitao Qi
- Department of Pediatrics, Anqing First People's Hospital of Anhui Medical University, Anqing, 246000, China
| | - Huihui Li
- Anhui Key Laboratory of Infection and Immunity of Bengbu Medical College, Bengbu, 233000, China
| | - Xiaoli Wang
- Anhui Key Laboratory of Infection and Immunity of Bengbu Medical College, Bengbu, 233000, China
| | - Zhi Wang
- Anhui Key Laboratory of Infection and Immunity of Bengbu Medical College, Bengbu, 233000, China
| | - Kaigui Wang
- Anhui Key Laboratory of Infection and Immunity of Bengbu Medical College, Bengbu, 233000, China
| | - Yin Wang
- Department of Critical Care Medicine, Affiliated Hospital of Jiangnan University, Wuxi, 214122, China
| | - Pengfei Du
- Department of Critical Care Medicine, Affiliated Hospital of Jiangnan University, Wuxi, 214122, China
| | - Bin Zhan
- National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Rui Zhou
- First Affiliated Hospital of Bengbu Medical College, Bengbu, 233000, China
| | - Liang Chu
- Anhui Key Laboratory of Infection and Immunity of Bengbu Medical College, Bengbu, 233000, China.
- Second Affiliated Hospital of Bengbu Medical College, Bengbu, 233000, China.
| | - Xiaodi Yang
- Anhui Key Laboratory of Infection and Immunity of Bengbu Medical College, Bengbu, 233000, China.
| |
Collapse
|
10
|
Alhazzani K, Almangour A, Alsalem A, Alqinyah M, Alhamed AS, Alhamami HN, Alanazi AZ. Examining the Effects of Dasatinib, Sorafenib, and Nilotinib on Vascular Smooth Muscle Cells: Insights into Proliferation, Migration, and Gene Expression Dynamics. Diseases 2023; 11:147. [PMID: 37873791 PMCID: PMC10594443 DOI: 10.3390/diseases11040147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/17/2023] [Accepted: 10/21/2023] [Indexed: 10/25/2023] Open
Abstract
BACKGROUND Dasatinib, nilotinib, and sorafenib are clinically proven tyrosine kinase inhibitors (TKIs) used for the treatment of leukemia and hepatocellular carcinoma. However, there is a growing concern regarding cardiotoxicity associated with their use. The impact of these TKIs on vascular smooth muscle cells (VSMCs) remains unexplored. This study aims to investigate the effects of TKIs on VSMC proliferation and migration, as well as to elucidate the underlying mechanisms involving inflammatory and apoptotic pathways. METHODS VSMCs were extracted from albino rats and cultured in vitro. The cells were divided into four experimental groups: control, dasatinib, sorafenib, and nilotinib. The MTT assay was employed to assess the cytotoxic effects of TKIs on VSMCs. A scratch assay was conducted to evaluate the inhibitory potential of TKIs on VSMC migration. Flow cytometry analysis was used to detect apoptotic cells. Real-Time PCR expression was utilized to determine the differential gene expression of apoptotic and inflammatory markers. RESULTS Dasatinib, nilotinib, and sorafenib demonstrated significant inhibitory effects on VSMC viability and migration at low concentrations (<1 µmol/L, p < 0.05). Furthermore, gene expression analysis revealed up-regulation of inflammatory biomarkers (TNF-α, IL-6, and IL-1β) and apoptotic markers (P53, BAX), along with down-regulation of the anti-apoptotic biomarker BCL-2 in response to all TKIs. CONCLUSIONS This study demonstrates that dasatinib, nilotinib, and sorafenib inhibit VSMC proliferation and migration, suggesting their potential to induce vascular injury and remodeling by activating inflammation and apoptosis pathways. These findings highlight the need for further investigation into the cardiotoxic effects of these TKIs and the development of strategies to mitigate their adverse vascular effects.
Collapse
Affiliation(s)
- Khalid Alhazzani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | | | | | | | | | | | | |
Collapse
|
11
|
Wiejak J, Murphy FA, Maffia P, Yarwood SJ. Vascular smooth muscle cells enhance immune/vascular interplay in a 3-cell model of vascular inflammation. Sci Rep 2023; 13:15889. [PMID: 37741880 PMCID: PMC10517978 DOI: 10.1038/s41598-023-43221-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/21/2023] [Indexed: 09/25/2023] Open
Abstract
Atherosclerosis is a serious cardiovascular disease that is characterised by the development of atheroma, which are lipid-laden plaques that build up within arterial walls due to chronic inflammatory processes. These lesions are fundamentally attributed to a complex cellular crosstalk between vascular smooth muscle cells (VSMCs), vascular endothelial cells (VECs) and central immune cells, such as macrophages (Mɸs), which promote vascular inflammation. The presence of VSMCs exerts both positive and negative effects during atheroma development, which can be attributed to their phenotypic plasticity. Understanding the interactions between these key cell types during the development of vascular inflammation and atheroma will enhance the scope for new therapeutic interventions. This study aims to determine the importance of VSMCs for shaping the extracellular cytokine/chemokine profile and transcriptional responses of VECs (human coronary artery endothelial cells; HCAECs) to activated lipopolysaccharide (LPS)-stimulated THP1 Mɸs, in a 3-cell model of human vascular inflammation. It is evident that within the presence of VSMCs, enhanced cytokine production was associated with up-regulation of genes associated with vascular inflammation t. Results demonstrate that the presence of VSMCs in co-culture experiments enhanced cytokine production (including CXCL1/GROα, IL-6, IL-8 and CCL2/MCP1) and inflammatory gene expression (including genes involved in JAK/STAT, Jun and NFκB signalling) in HCAECs co-cultured with LPS-stimulated THP1 Mɸs. Our results highlight the importance of VSMCs in immune/endothelial cell interplay and indicate that 3-cell, rather than 2-cell co-culture, may be more appropriate for the study of cellular crosstalk between immune and vascular compartments in response to inflammatory and atherogenic stimuli.
Collapse
Affiliation(s)
- Jolanta Wiejak
- Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University, Edinburgh, EH14 4AS, UK
| | - Fiona A Murphy
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, G4 0RE, UK
| | - Pasquale Maffia
- School of Infection & Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK
- School of Cardiovascular & Metabolic Health, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, 80131, Naples, Italy
| | - Stephen J Yarwood
- Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University, Edinburgh, EH14 4AS, UK.
| |
Collapse
|
12
|
Tang XE, Cheng YQ, Tang CK. Protein tyrosine phosphatase non-receptor type 2 as the therapeutic target of atherosclerotic diseases: past, present and future. Front Pharmacol 2023; 14:1219690. [PMID: 37670950 PMCID: PMC10475599 DOI: 10.3389/fphar.2023.1219690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 08/03/2023] [Indexed: 09/07/2023] Open
Abstract
Tyrosine-protein phosphatase non-receptor type 2(PTPN2), an important member of the protein tyrosine phosphatase family, can regulate various signaling pathways and biological processes by dephosphorylating receptor protein tyrosine kinases. Accumulating evidence has demonstrated that PTPN2 is involved in the occurrence and development of atherosclerotic cardiovascular disease. Recently, it has been reported that PTPN2 exerts an anti-atherosclerotic effect by regulating vascular endothelial injury, monocyte proliferation and migration, macrophage polarization, T cell polarization, autophagy, pyroptosis, and insulin resistance. In this review, we summarize the latest findings on the role of PTPN2 in the pathogenesis of atherosclerosis to provide a rationale for better future research and therapeutic interventions.
Collapse
Affiliation(s)
- Xiao-Er Tang
- Department of Pathophysiology, Shaoyang University, Shaoyang, Hunan, China
| | - Ya-Qiong Cheng
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan, China
| | - Chao-Ke Tang
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan, China
| |
Collapse
|
13
|
Dennis MR, Pires PW, Banek CT. Vascular Dysfunction in Polycystic Kidney Disease: A Mini-Review. J Vasc Res 2023; 60:125-136. [PMID: 37536302 PMCID: PMC10947982 DOI: 10.1159/000531647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 06/10/2023] [Indexed: 08/05/2023] Open
Abstract
Polycystic kidney disease (PKD) is one of the most common hereditary kidney diseases, which is characterized by progressive cyst growth and secondary hypertension. In addition to cystogenesis and renal abnormalities, patients with PKD can develop vascular abnormalities and cardiovascular complications. Progressive cyst growth substantially alters renal structure and culminates into end-stage renal disease. There remains no cure beyond renal transplantation, and treatment options remain largely limited to chronic renal replacement therapy. In addition to end-stage renal disease, patients with PKD also present with hypertension and cardiovascular disease, yet the timing and interactions between the cardiovascular and renal effects of PKD progression are understudied. Here, we review the vascular dysfunction found in clinical and preclinical models of PKD, including the clinical manifestations and relationship to hypertension, stroke, and related cardiovascular diseases. Finally, our discussion also highlights the critical questions and emerging areas in vascular research in PKD.
Collapse
Affiliation(s)
- Melissa R Dennis
- Department of Physiology, University of Arizona Health Sciences Center, Tucson, Arizona, USA
| | - Paulo W Pires
- Department of Physiology, University of Arizona Health Sciences Center, Tucson, Arizona, USA
| | - Christopher T Banek
- Department of Physiology, University of Arizona Health Sciences Center, Tucson, Arizona, USA
| |
Collapse
|
14
|
Bao H, Li B, You Q, Dun X, Zhang Z, Liang Y, Li Y, Jiang Q, Zhang R, Chen R, Chen W, Zheng Y, Li D, Cui L. Exposure to real-ambient particulate matter induced vascular hypertrophy through activation of PDGFRβ. JOURNAL OF HAZARDOUS MATERIALS 2023; 449:130985. [PMID: 36801716 DOI: 10.1016/j.jhazmat.2023.130985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 01/10/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Vascular toxicity induced by particulate matter (PM) exposure exacerbates the onset and development of cardiovascular diseases; however, its detailed mechanism remains unclear. Platelet-derived growth factor receptor β (PDGFRβ) acts as a mitogen for vascular smooth muscle cells (VSMCs) and is therefore essential for normal vasoformation. However, the potential effects of PDGFRβ on VSMCs in PM-induced vascular toxicity have not yet been elucidated. METHODS To reveal the potential roles of PDGFRβ signalling in vascular toxicity, individually ventilated cage (IVC)-based real-ambient PM exposure system mouse models and PDGFRβ overexpression mouse models were established in vivo, along with in vitro VSMCs models. RESULTS Vascular hypertrophy was observed following PM-induced PDGFRβ activation in C57/B6 mice, and the regulation of hypertrophy-related genes led to vascular wall thickening. Enhanced PDGFRβ expression in VSMCs aggravated PM-induced smooth muscle hypertrophy, which was attenuated by inhibiting the PDGFRβ and janus kinase 2 /signal transducer and activator of transcription 3 (JAK2/STAT3) pathways. CONCLUSION Our study identified the PDGFRβ gene as a potential biomarker of PM-induced vascular toxicity. PDGFRβ induced hypertrophic effects through the activation of the JAK2/STAT3 pathway, which may be a biological target for the vascular toxic effects caused by PM exposure.
Collapse
Affiliation(s)
- Hongxu Bao
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Benying Li
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Qing You
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Xinyu Dun
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Zhen Zhang
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Yanan Liang
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Yahui Li
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Qixiao Jiang
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Rong Zhang
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, China
| | - Rui Chen
- Department of Toxicology, School of Public Health, Capital Medical University, Beijing, China
| | - Wen Chen
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Yuxin Zheng
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Daochuan Li
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China.
| | - Lianhua Cui
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China.
| |
Collapse
|
15
|
Hu Q, Chen Y, Deng X, Li Y, Ma X, Zeng J, Zhao Y. Diabetic nephropathy: Focusing on pathological signals, clinical treatment, and dietary regulation. Biomed Pharmacother 2023; 159:114252. [PMID: 36641921 DOI: 10.1016/j.biopha.2023.114252] [Citation(s) in RCA: 84] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/04/2023] [Accepted: 01/12/2023] [Indexed: 01/15/2023] Open
Abstract
Diabetic nephropathy (DN) is one of the most severe complications of diabetes. However, due to its complex pathological mechanisms, no effective therapeutic methods (other than ACEIs and ARBs) have been applied, which have been used for many years in clinical practice. Recent studies have shown that emerging therapeutics, including novel target-based pharmacotherapy, cell therapies, and dietary regulation, are leading to new hopes for DN management. This review aims to shed new light on the treatment of DN by describing the important pathological mechanisms of DN and by analysing recent advances in clinical treatment, including drug therapy, cell therapy, and dietary regulation. In pathological mechanisms, RAAS activation, AGE accumulation, and EMT are involved in inflammation, cellular stress, apoptosis, pyroptosis, and autophagy. In pharmacotherapy, several new therapeutics, including SGLT2 inhibitors, GLP-1 agonists, and MRAs, are receiving public attention. In addition, stem cell therapies and dietary regulation are also being emphasized. Herein, we highlight the importance of combining therapy and dietary regulation in the treatment of DN and anticipate more basic research or clinical trials to verify novel strategies.
Collapse
Affiliation(s)
- Qichao Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Department of Pharmacy, the Fifth Medical Center of PLA General Hospital, Beijing 100039, China.
| | - Yuan Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Xinyu Deng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Yubing Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Xiao Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Jinhao Zeng
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Yanling Zhao
- Department of Pharmacy, the Fifth Medical Center of PLA General Hospital, Beijing 100039, China.
| |
Collapse
|
16
|
Rafiq M, Dandare A, Javed A, Liaquat A, Raja AA, Awan HM, Khan MJ, Naeem A. Competing Endogenous RNA Regulatory Networks of hsa_circ_0126672 in Pathophysiology of Coronary Heart Disease. Genes (Basel) 2023; 14:550. [PMID: 36980823 PMCID: PMC10047999 DOI: 10.3390/genes14030550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/08/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
Coronary heart disease (CHD) is a global health concern, and its molecular origin is not fully elucidated. Dysregulation of ncRNAs has been linked to many metabolic and infectious diseases. This study aimed to explore the role of circRNAs in the pathogenesis of CHD and predicted a candidate circRNA that could be targeted for therapeutic approaches to the disease. circRNAs associated with CHD were identified and CHD gene expression profiles were obtained, and analyzed with GEO2R. In addition, differentially expressed miRNA target genes (miR-DEGs) were identified and subjected to functional enrichment analysis. Networks of circRNA/miRNA/mRNA and the miRNA/affected pathways were constructed. Furthermore, a miRNA/mRNA homology study was performed. We identified that hsa_circ_0126672 was strongly associated with the CHD pathology by competing for endogenous RNA (ceRNA) mechanisms. hsa_circ_0126672 characteristically sponges miR-145-5p, miR-186-5p, miR-548c-3p, miR-7-5p, miR-495-3p, miR-203a-3p, and miR-21. Up-regulation of has_circ_0126672 affected various CHD-related cellular functions, such as atherosclerosis, JAK/STAT, and Apelin signaling pathways. Our results also revealed a perfect and stable interaction for the hybrid of miR-145-5p with NOS1 and RPS6KB1. Finally, miR-145-5p had the highest degree of interaction with the validated small molecules. Henchashsa_circ_0126672 and target miRNAs, notably miR-145-5p, could be good candidates for the diagnosis and therapeutic approaches to CHD.
Collapse
Affiliation(s)
- Muhammad Rafiq
- Department of Biosciences, COMSATS University Islamabad, Islamabad 45550, Pakistan
- Department of Biochemistry, Shifa College of Medicine, Shifa Tameer-e-Millat University, Islamabad 45550, Pakistan
| | - Abdullahi Dandare
- Department of Biosciences, COMSATS University Islamabad, Islamabad 45550, Pakistan
- Department of Biochemistry, Usmanu Danfodiyo University Sokoto, Sokoto P.M.B 2346, Nigeria
| | - Arham Javed
- Department of Biosciences, COMSATS University Islamabad, Islamabad 45550, Pakistan
- Department of Biochemistry, Shifa College of Medicine, Shifa Tameer-e-Millat University, Islamabad 45550, Pakistan
| | - Afrose Liaquat
- Department of Biochemistry, Shifa College of Medicine, Shifa Tameer-e-Millat University, Islamabad 45550, Pakistan
| | - Afraz Ahmad Raja
- Department of Biosciences, COMSATS University Islamabad, Islamabad 45550, Pakistan
| | - Hassaan Mehboob Awan
- Department of Biosciences, COMSATS University Islamabad, Islamabad 45550, Pakistan
| | - Muhammad Jawad Khan
- Department of Biosciences, COMSATS University Islamabad, Islamabad 45550, Pakistan
| | - Aisha Naeem
- Health Research Governance Department, Ministry of Public Health, Doha P.O. Box 42, Qatar
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| |
Collapse
|
17
|
Wu A, Zhao C, Mou S, Li S, Cui X, Zhang R. Integrated analysis identifies the IL6/JAK/STAT signaling pathway and the estrogen response pathway associated with the pathogenesis of intracranial aneurysms. Front Immunol 2022; 13:1046765. [PMID: 36451838 PMCID: PMC9702531 DOI: 10.3389/fimmu.2022.1046765] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 10/28/2022] [Indexed: 08/15/2024] Open
Abstract
OBJECTIVE We intended to identify the potential key biomarker and pathways that correlated with infiltrating immune cells during the pathogenesis of intracranial aneurysms (IA), to develop a diagnostic model, and to predict therapeutic drugs. METHODS Three datasets containing intracranial aneurysm tissue samples and normal artery control samples from Gene Expression Omnibus (GEO) were included. Gene-set variation analysis(GSVA) and gene set enrichment analysis (GSEA) were conducted to find the significant differentially expressed pathways in IA formation. The least absolute shrinkage and selection operator (LASSO) regression and the multivariate logistic regression analysis were performed to identify the characteristic genes in the IL6/JAK/STAT signaling pathway (ISP) and the estrogen response pathway (ERP). A diagnostic model was constructed. xCell was used to identify immune cell types in IA pathogenesis. We used the weighted gene co-expression network analysis (WGCNA) algorithm to explore the correlations between the key modules and the four traits. Potential therapeutic drugs were investigated in Enrichr and Drugbank database. RESULTS The ISP is significant positively correlated with IA onset. The biological function of the ISP is positively correlated with that of the ERP, and is significantly associated with immune cells activities. CSF2RB, FAS, IL6, PTPN1, STAT2, TGFB1 of the ISP gene set and ALDH3A2, COX6C, IGSF1, KRT18, MICB, NPY1R of the ERP gene set were proved to be the characteristic genes. The STAT2 gene can be the potential biomarker of IA onset. The immune score of IA samples was significantly higher than the controls. The STAT2 gene expression is associated with infiltration of immune cells. The WGCNA results were consistent with our finds. Acetaminophen can be a potential therapeutic drug for IA targeting STAT2. CONCLUSIONS We identified that the ISP was one of the most significant positively correlated pathways in IA onset, and it was activated in this process concordant with the ERP and immune responses. Except for beneficial effects, complex and multiple roles of estrogen may be involved in IA formation. STAT2 could be a potential biomarker and a promising therapeutic target of IA pathogenesis.
Collapse
Affiliation(s)
- Aihong Wu
- Library, Qufu Normal University, Rizhao, Shandong, China
| | - Chao Zhao
- Department of Neurosurgery, The Affiliated Rizhao People´s Hospital of Jining Medical University, Rizhao, Shandong, China
- School of Computer Science, Qufu Normal University, Rizhao, Shandong, China
| | - Shanling Mou
- Department of Laboratory, The Affiliated Rizhao People´s Hospital of Jining Medical University, Rizhao, Shandong, China
| | - Shengjun Li
- School of Computer Science, Qufu Normal University, Rizhao, Shandong, China
| | - Xinchun Cui
- School of Computer Science, Qufu Normal University, Rizhao, Shandong, China
| | - Ronghua Zhang
- Department of Laboratory, The Affiliated Rizhao People´s Hospital of Jining Medical University, Rizhao, Shandong, China
| |
Collapse
|
18
|
Zhu D, Jia C, Cai T, Li J, Feng X, Chen N, Zhao C, Wang Y, Cao Y, Cao Y. Ruan Jian Qing Mai Recipe Inhibits the Inflammatory Response in Acute Lower Limb Ischemic Mice through the JAK2/STAT3 Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:2481022. [PMID: 36034959 PMCID: PMC9410777 DOI: 10.1155/2022/2481022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 07/21/2022] [Indexed: 11/17/2022]
Abstract
Ruan jian qing mai recipe (RJQM) is an empirical prescription for treating arteriosclerosis obliterans (ASO). However, the mechanism of RJQM recipe-mediated ASO attenuation has not yet been elucidated. Therefore, this study aimed to explore the mechanism by which the RJQM recipe relieves ASO in a mouse model of lower limb ischemia, which was established by ligating and breaking the femoral artery of the left lower limb. The surgical groups were divided into the ischemic group, beraprost sodium group, low-dose RJQM group, medium-dose RJQM group, and high-dose RJQM group. Normal mice were set as the control group. The blood flow of the lower limb was examined on days 7 and 14. At the end of animal procedures, blood samples were collected, and the rectus femoris of the left lower limb were harvested. Results revealed that mice in the ischemic group demonstrated low blood flow. Additionally, hematoxylin and eosin, and Masson staining results showed that inflammation of the rectus femoris was obvious in the ischemia group, and the level of fibrosis was increased. Blood flow was recovered in all treatment groups compared to the ischemic group, and the inflammatory infiltration and fibrosis of the rectus femoris were relieved after RJQM treatment. The serum levels of interleukin (IL)-17A and IL-21 were decreased, and the expression of JAK2/STAT3 proteins was inhibited in all RJQM treatment groups compared to the ischemia group. Furthermore, the improvement of IL-17A, IL-21, and rectus femoris fibrosis was more obvious with increasing treatment time. In conclusion, RJQM can effectively alleviate ASO and promote the recovery of lower limb blood flow by regulating the JAK2/STAT3 signaling pathway to reduce the inflammatory response.
Collapse
Affiliation(s)
- Di Zhu
- Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Department of Vascular Diseases, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
- Institute of Vascular Diseases, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Chenglin Jia
- Institute of Vascular Diseases, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Tongkai Cai
- PLA Naval Medical University, Shanghai 200433, China
| | - Jiacheng Li
- Institute of Vascular Diseases, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Xia Feng
- Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Department of Vascular Diseases, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
- Institute of Vascular Diseases, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Nan Chen
- Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Institute of Vascular Diseases, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Cheng Zhao
- Department of Vascular Diseases, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
- Institute of Vascular Diseases, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Yuzhen Wang
- Department of Vascular Diseases, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
- Institute of Vascular Diseases, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Yongbing Cao
- Institute of Vascular Diseases, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Yemin Cao
- Department of Vascular Diseases, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
- Institute of Vascular Diseases, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| |
Collapse
|
19
|
Yang J, Li H, Hao Z, Jing X, Zhao Y, Cheng X, Ma H, Wang J, Wang J. Mitigation Effects of Selenium Nanoparticles on Depression-Like Behavior Induced by Fluoride in Mice via the JAK2-STAT3 Pathway. ACS APPLIED MATERIALS & INTERFACES 2022; 14:3685-3700. [PMID: 35023338 DOI: 10.1021/acsami.1c18417] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Depression is a mental health problem with typically high levels of distress and dysfunction, and 150 mg/L fluoride (F) can induce depression-like behavior. The development of depression is correlated with neuronal atrophy, insufficient secretion of monoamine neurotransmitters, extreme deviations from the normal microglial activation status, and immune-inflammatory response. Studies found that Se supplementation was related to the improvement of depression. In this study, we applied selenium nanoparticles (SeNPs) for F-induced depression disease mitigation by regulating the histopathology, metabolic index, genes, and protein expression related to the JAK2-STAT3 signaling pathway in vivo. Results showed that F and 2 mg Se/kg BW/day SeNPs lowered the dopamine (DA) content (P < 0.05), altered the microglial morphology, ramification index as well as solidity, and triggered the microglial neuroinflammatory response by increasing the p-STAT3 nuclear translocation (P < 0.01). Furthermore, F reduced the cortical Se content and the number of surviving neurons (P < 0.05), increasing the protein expressions of p-JAK2/JAK2 and p-STAT3/STAT3 of the cortex (P < 0.01), accompanied by the depression-like behavior. Importantly, 1 mg Se/kg BW/day SeNPs alleviated the microglial ramification index as well as solidity changes and decreased the interleukin-1β secretion induced by F by suppressing the p-STAT3 nuclear translocation (P < 0.01). Likewise, 1 mg Se/kg BW/day SeNPs restored the F-disturbed dopamine and noradrenaline secretion, increased the number of cortical surviving neurons, and reduced the vacuolation area, ultimately suppressing the occurrence of depression-like behavior through inhibiting the JAK2-STAT3 pathway activation. In conclusion, 1 mg Se/kg BW/day SeNPs have mitigation effects on the F-induced depression-like behavior. The mechanism of how SeNPs repair neural functions will benefit depression mitigation. This study also indicates that inhibiting the JAK/STAT pathway can be a promising novel treatment for depressive disorders.
Collapse
Affiliation(s)
- Jiarong Yang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, P.R. China
- Shanxi Key Laboratory of Environmental Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, P.R. China
| | - Haojie Li
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, P.R. China
- Shanxi Key Laboratory of Environmental Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, P.R. China
| | - Zijun Hao
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, P.R. China
- Shanxi Key Laboratory of Environmental Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, P.R. China
| | - Xiaoyuan Jing
- College of Life Sciences, Shanxi Agricultural University, Taigu 030801, Shanxi, P.R. China
| | - Yangfei Zhao
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, P.R. China
- Shanxi Key Laboratory of Environmental Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, P.R. China
| | - Xiaofang Cheng
- Department of Basic Science, Shanxi Agricultural University, Taigu 030801, Shanxi, P.R. China
| | - Haili Ma
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, P.R. China
| | - Jundong Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, P.R. China
- Shanxi Key Laboratory of Environmental Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, P.R. China
| | - Jinming Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, P.R. China
- Shanxi Key Laboratory of Environmental Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, P.R. China
| |
Collapse
|
20
|
Xi Y, Wen X, Zhang Y, Jiao L, Bai S, Shi S, Chang G, Wu R, Sun F, Hao J, Li H. DR1 Activation Inhibits the Proliferation of Vascular Smooth Muscle Cells through Increasing Endogenous H 2S in Diabetes. Aging Dis 2022; 13:910-926. [PMID: 35656112 PMCID: PMC9116912 DOI: 10.14336/ad.2021.1104] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 11/04/2021] [Indexed: 11/09/2022] Open
Abstract
Tissue ischemia and hypoxia caused by the abnormal proliferation of smooth muscle cells (SMCs) in the diabetic state is an important pathological basis for diabetic microangiopathy. Studies in recent years have shown that the chronic complications of diabetes are related to the decrease of endogenous hydrogen sulfide (H2S) in diabetic patients, and it has been proven that H2S can inhibit the proliferation of vascular SMCs (VSMCs). Our study showed that the endogenous H2S content and the expression of cystathionine gamma-lyase (CSE), which is the key enzyme of H2S production, were decreased in arterial SMCs of diabetic mice. The expression of PCNA and Cyclin D1 was increased, and the expression of p21 was decreased in the diabetic state. After administration of dopamine 1-like receptors (DR1) agonist SKF38393 and exogenous H2S donor NaHS, the expression of CSE was increased and the change in proliferation-related proteins caused by diabetes was reversed. It was further verified by cell experiments that SKF38393 activated calmodulin (CaM) by increasing the intracellular calcium ([Ca2+]i) concentration, which activated the CSE/H2S pathway, enhancing the H2S content in vivo. We also found that SKF38393 and NaHS inhibited insulin-like growth factor-1 (IGF-1)/IGF-1R and heparin-binding EGF-like growth factor (HB-EGF)/EGFR, as well as their downstream PI3K/Akt, JAK2/STAT3 and ERK1/2 pathways. Taken together, our results suggest that DR1 activation up-regulates the CSE/H2S system by increasing Ca2+-CaM binding, which inhibits the IGF-1/IGF-1R and HB-EGF/EGFR pathways, thereby decreasing their downstream PI3K/Akt, JAK2/STAT3 and ERK1/2 pathways to achieve the effect of inhibiting HG-induced VSMCs proliferation.
Collapse
Affiliation(s)
- Yuxin Xi
- Department of Pathophysiology, Harbin Medical University, Harbin, Heilongjiang, China.
| | - Xin Wen
- Department of Pathophysiology, Harbin Medical University, Harbin, Heilongjiang, China.
| | - Yuanzhou Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lijie Jiao
- School of Medicine, Xiamen University, Xiamen, Fujian, China.
| | - Shuzhi Bai
- Department of Pathophysiology, Harbin Medical University, Harbin, Heilongjiang, China.
| | - Sa Shi
- Department of Pathophysiology, Harbin Medical University, Harbin, Heilongjiang, China.
| | - Guiquan Chang
- Department of Pathophysiology, Harbin Medical University, Harbin, Heilongjiang, China.
| | - Ren Wu
- Department of Pathophysiology, Harbin Medical University, Harbin, Heilongjiang, China.
| | - Fengqi Sun
- Department of Pathophysiology, Harbin Medical University, Harbin, Heilongjiang, China.
| | - Jinghui Hao
- Department of Pathophysiology, Harbin Medical University, Harbin, Heilongjiang, China.
| | - Hongzhu Li
- Department of Pathophysiology, Harbin Medical University, Harbin, Heilongjiang, China.
- School of Medicine, Xiamen University, Xiamen, Fujian, China.
- Correspondence should be addressed to: Dr. Hongzhu Li, School of Medicine, Xiamen University, Xiamen, Fujian, China. .
| |
Collapse
|
21
|
Roudsari NM, Lashgari NA, Momtaz S, Roufogalis B, Abdolghaffari AH, Sahebkar A. Ginger: A complementary approach for management of cardiovascular diseases. Biofactors 2021; 47:933-951. [PMID: 34388275 DOI: 10.1002/biof.1777] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 07/26/2021] [Indexed: 12/20/2022]
Abstract
Cardiovascular disease (CVD) is a leading cause of morbidity and mortality worldwide. Inflammation and oxidative stress play critical roles in progression of various types of CVD. Broad pharmacological properties of ginger (the rhizome of Zingiber officinale) and its bioactive components have been reported, suggesting that they can be a therapeutic choice for clinical use. Consistent with its rich phenolic content, the anti-inflammatory and antioxidant properties of ginger have been confirmed in many studies. Ginger modifies many cellular processes and in particular was shown to have potent inhibitory effects against nuclear factor kappa B (NF-κB); signal transducer and activator of transcription; NOD-, LRR-, and pyrin domain-containing proteins; toll-like receptors; mitogen-activated protein kinase; and mammalian target of rapamycin signaling pathways. Ginger also blocks pro-inflammatory cytokines and the activation of the immune system. Ginger suppresses the activity of oxidative molecules such as reactive oxygen species, inducible nitric oxide synthase, superoxide dismutase, glutathione, heme oxygenase, and GSH-Px. In this report, we summarize the biochemical pathologies underpinning a variety of CVDs and the effects of ginger and its bioactive components, including 6-shogaol, 6-gingerol, and 10-dehydrogingerdione. The properties of ginger and its phenolic components, mechanism of action, biological functions, side effects, and methods for enhanced cell delivery are also discussed. Together with preclinical and clinical studies, the positive biological effects of ginger and its bioactive components in CVD support the undertaking of further in vivo and especially clinical studies.
Collapse
Affiliation(s)
- Nazanin Momeni Roudsari
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Naser-Aldin Lashgari
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Saeideh Momtaz
- Medicinal Plants Research Center, Institute of Medicinal Plants, Academic Center for Education, Culture and Research, Tehran, Iran
- Toxicology and Disease Group, Pharmaceutical Sciences Research Center, Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Gastrointestinal Pharmacology Interest Group, Universal Scientific Education and Research Network, Tehran, Iran
| | - Basil Roufogalis
- Discipline of Pharmacology, School of Medical Sciences, University of Sydney, Sydney, Australia
- National Institute of Complementary Medicine, Western Sydney University, Westmead, Australia
| | - Amir Hossein Abdolghaffari
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Medicinal Plants Research Center, Institute of Medicinal Plants, Academic Center for Education, Culture and Research, Tehran, Iran
- Toxicology and Disease Group, Pharmaceutical Sciences Research Center, Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Gastrointestinal Pharmacology Interest Group, Universal Scientific Education and Research Network, Tehran, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Medicine, The University of Western Australia, Perth, Australia
| |
Collapse
|
22
|
Comparative Mutational Profiling of Hematopoietic Progenitor Cells and Circulating Endothelial Cells (CECs) in Patients with Primary Myelofibrosis. Cells 2021; 10:cells10102764. [PMID: 34685741 PMCID: PMC8534986 DOI: 10.3390/cells10102764] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/06/2021] [Accepted: 10/07/2021] [Indexed: 01/08/2023] Open
Abstract
A role of endothelial cells (ECs) in Primary Myelofibrosis (PMF) was supposed since JAK2 mutation was found in endothelial precursor cells (EPCs) and in ECs captured by laser microdissection. By Cell Search method, the circulating endothelial cells (CECs) from 14 PMF patients and 5 healthy controls have been isolated and compared by NGS with CD34+Hematopoietic stem and progenitors cells (HSPCs) for panel of 54 myeloid-associated mutations. PMF patients had higher levels of CECs. No mutation was found in HSPCs and CECs from controls, while CECs from PMF patients presented several somatic mutations. 72% of evaluable patients shared at least one mutation between HSPCs and CECs. 2 patients shared the JAK2 mutation, together with ABL1, IDH1, TET2 and ASXL1, KMT2A, respectively. 6 out of 8 shared only NON MPN-driver mutations: TET2 and NOTCH1 in one case; individual paired mutations in TP53, KIT, SRSF2, NOTCH1 and WT1, in the other cases. In conclusion, 70% of PMF patients shared at least one mutation between HSPCs and CECs. These latter harbored several myeloid-associated mutations, besides JAK2V617F mutation. Our results support a primary involvement of EC in PMF and provide a new methodological approach for further studies exploring the role of the “neoplastic” vascular niche.
Collapse
|
23
|
Su JH, Luo MY, Liang N, Gong SX, Chen W, Huang WQ, Tian Y, Wang AP. Interleukin-6: A Novel Target for Cardio-Cerebrovascular Diseases. Front Pharmacol 2021; 12:745061. [PMID: 34504432 PMCID: PMC8421530 DOI: 10.3389/fphar.2021.745061] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 08/09/2021] [Indexed: 12/18/2022] Open
Abstract
Cardio-Cerebrovascular Disease is a collective term for cardiovascular disease and cerebrovascular disease, being a serious threat to human health. A growing number of studies have proved that the content of inflammatory factors or mediators determines the stability of vascular plaque and the incidence of cardio-cerebrovascular event, and involves in the process of Cardio-Cerebrovascular Diseases. Interleukin-6 is a widely used cytokine that causes inflammation and oxidative stress, which would further result in cardiac and cerebral injury. The increased expression of interleukin-6 is closely related to atherosclerosis, myocardial infarction, heart failure and ischemic stroke. It is a key risk factor for these diseases by triggering inflammatory reaction and inducing other molecules release. Therefore, interleukin-6 may become a potential target for Cardio-Cerebrovascular Diseases in the future. This paper is aimed to discuss the expression changes and pathological mechanisms of interleukin-6 in Cardio-Cerebrovascular Diseases, and to provide a novel strategy for the prevention and treatment of Cardio-Cerebrovascular Diseases.
Collapse
Affiliation(s)
- Jian-Hui Su
- Institute of Clinical Research, Affiliated Nanhua Hospital, Hengyang Medical College, University of South China, Hengyang, China
- Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Department of Physiology, Institute of Neuroscience Research, Hengyang Medical College, University of South China, Hengyang, China
| | - Meng-Yi Luo
- Institute of Clinical Research, Affiliated Nanhua Hospital, Hengyang Medical College, University of South China, Hengyang, China
- Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Department of Physiology, Institute of Neuroscience Research, Hengyang Medical College, University of South China, Hengyang, China
| | - Na- Liang
- Department of Anesthesiology, Affiliated Nanhua Hospital, Hengyang Medical College, University of South China, Hengyang, China
| | - Shao-Xin Gong
- Department of Pathology, First Affiliated Hospital, Hengyang Medical College, University of South China, Hengyang, China
| | - Wei Chen
- Institute of Clinical Research, Affiliated Nanhua Hospital, Hengyang Medical College, University of South China, Hengyang, China
- Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Department of Physiology, Institute of Neuroscience Research, Hengyang Medical College, University of South China, Hengyang, China
| | - Wen-Qian Huang
- Institute of Clinical Research, Affiliated Nanhua Hospital, Hengyang Medical College, University of South China, Hengyang, China
- Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Department of Physiology, Institute of Neuroscience Research, Hengyang Medical College, University of South China, Hengyang, China
| | - Ying Tian
- Institute of Clinical Research, Affiliated Nanhua Hospital, Hengyang Medical College, University of South China, Hengyang, China
| | - Ai-Ping Wang
- Institute of Clinical Research, Affiliated Nanhua Hospital, Hengyang Medical College, University of South China, Hengyang, China
- Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Department of Physiology, Institute of Neuroscience Research, Hengyang Medical College, University of South China, Hengyang, China
| |
Collapse
|
24
|
Betulinic acid in the treatment of tumour diseases: Application and research progress. Biomed Pharmacother 2021; 142:111990. [PMID: 34388528 DOI: 10.1016/j.biopha.2021.111990] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 07/11/2021] [Accepted: 07/30/2021] [Indexed: 02/07/2023] Open
Abstract
Betulinic acid (BA) is a pentacyclic triterpene compound that can be obtained by separation, chemical synthesis and biotransformation from birch. BA has antitumour activity, and its mechanisms of action mainly include the induction of mitochondrial oxidative stress; the regulation of specificity protein transcription factors, and the inhibition of signal transducer and activator of transcription 3 and nuclear factor-κB signalling pathways. In addition, BA can increase the sensitivity of cancer cells to other chemotherapy drugs. Recent studies have shown that BA plays an anticancer role in several kinds of tumour diseases. In this article, the anticancer mechanism of BA and its application in the treatment of tumour diseases are reviewed.
Collapse
|
25
|
Sun X, Deng K, Zang Y, Zhang Z, Zhao B, Fan J, Huang L. Exploring the regulatory roles of circular RNAs in the pathogenesis of atherosclerosis. Vascul Pharmacol 2021; 141:106898. [PMID: 34302990 DOI: 10.1016/j.vph.2021.106898] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 01/04/2021] [Accepted: 07/19/2021] [Indexed: 01/19/2023]
Abstract
Circular RNAs (circRNAs) are a class of noncoding RNAs with a covalently closed loop structure. Recent evidence has shown that circRNAs can regulate gene transcription, alternative splicing, microRNA (miRNA) "molecular sponges", RNA-binding proteins and protein translation. Atherosclerosis is one of the leading causes of death worldwide, and more studies have indicated that circRNAs are related to atherosclerosis pathogenesis, including vascular endothelial cells, vascular smooth muscle cells, inflammation and lipid metabolism. In this review, we systematically summarize the biogenesis, characteristics and functions of circRNAs with a focus on their roles in the pathogenesis of atherosclerosis.
Collapse
Affiliation(s)
- Xueyuan Sun
- Department of Clinical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, People's Republic of China
| | - Kaiyuan Deng
- Department of Clinical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, People's Republic of China
| | - Yunhui Zang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, People's Republic of China
| | - Zhiyong Zhang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, People's Republic of China
| | - Boxin Zhao
- Department of Clinical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, People's Republic of China
| | - Jingyao Fan
- Department of Clinical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, People's Republic of China
| | - Lijuan Huang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, People's Republic of China.
| |
Collapse
|
26
|
Han JH, Heo KS, Myung CS. Cytokine-induced apoptosis inhibitor 1 (CIAPIN1) accelerates vascular remodelling via p53 and JAK2-STAT3 regulation in vascular smooth muscle cells. Br J Pharmacol 2021; 178:4533-4551. [PMID: 34289085 DOI: 10.1111/bph.15631] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 07/08/2021] [Accepted: 07/08/2021] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND AND PURPOSE Abnormal vascular smooth muscle cell (VSMC) proliferation and migration lead to neointima formation, which eventually results in cardiovascular hyperplastic diseases. The molecular mechanisms underlying these cellular processes have not been fully understood. Cytokine-induced apoptosis inhibitor 1 (CIAPIN1) has been identified as an anti-apoptotic molecule, but little is known about its target genes and related pathways in VSMC dysfunction or its clinical implication in neointima formation following vascular injury. EXPERIMENTAL APPROACH Determination, using loss/gain-of-function approaches by gene delivery, of whether CIAPIN1 modulates VSMC proliferation, migration and neointima formation and the underlying mechanisms was carried out. Balloon injury or ligation and local delivery of lentivirus were performed on rat or mouse carotid arteries. Rat aortic smooth muscle cells, the primary cell, was used as the model to evaluate the effect of CIAPIN1 on proliferation and migration. KEY RESULTS CIAPIN1 was overexpressed in the neointimal region of rat arteries. CIAPIN1 deficiency markedly inhibited injury-induced or ligation-induced intimal hyperplasia and suppressed PDGF-BB-induced VSMC proliferation, migration and cell cycle progression, while overexpression promoted proliferation, migration and neointima formation. CIAPIN1 negatively regulated Tp53 transcription, which promoted cell cycle progression and migration via cyclin E1-CDK2/pRb/PCNA and the MMP2 pathway. CIAPIN1 also increased JAK2 expression, enhancing JAK2 and STAT3 phosphorylation by vascular injury, which forced phenotypic switching from contractile to synthetic state in injured arteries. CONCLUSIONS AND IMPLICATIONS These findings provide new insights into the mechanism by which CIAPIN1 regulates vascular remodelling and suggest a novel therapeutic target for treating vascular proliferative diseases.
Collapse
Affiliation(s)
- Joo-Hui Han
- Department of Pharmacology, Chungnam National University College of Pharmacy, Daejeon, Republic of Korea
| | - Kyung-Sun Heo
- Department of Pharmacology, Chungnam National University College of Pharmacy, Daejeon, Republic of Korea
| | - Chang-Seon Myung
- Department of Pharmacology, Chungnam National University College of Pharmacy, Daejeon, Republic of Korea
| |
Collapse
|
27
|
Im Y, Gwon M, Yun J. Protective effects of phenethyl isothiocyanate on foam cell formation by combined treatment of oxidized low-density lipoprotein and lipopolysaccharide in THP-1 macrophage. Food Sci Nutr 2021; 9:3269-3279. [PMID: 34136191 PMCID: PMC8194743 DOI: 10.1002/fsn3.2293] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/12/2021] [Accepted: 04/05/2021] [Indexed: 12/15/2022] Open
Abstract
Accumulation of cholesterol-laden macrophage foam cells characteristic of early stage atherosclerotic lesions. Phenethyl isothiocyanate (PEITC) is a naturally occurring isothiocyanate found in cruciferous vegetables that has reported a variety of activities including antioxidant and anti-inflammatory properties. However, the protective effect of PEITC on foam cell formation and its precise mechanism is not yet clear. Therefore, we investigated whether PEITC suppresses foam cell formation and regulates the expression of genes related to lipid accumulation, cholesterol efflux, and inflammation in THP-1 derived-macrophages. We exposed THP-1 derived-macrophages to oxidized low-density lipoprotein (ox-LDL) (20 μg/mL) and lipopolysaccharide (LPS) (500 ng/ml) to mimic foam cell formation. Here, PEITC downregulated the expression of lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1), cluster of differentiation 36 (CD36), scavenger receptor A1 (SR-A1), and nuclear factor-κB (NF-κB), while upregulated ATP binding cassette subfamily A member 1 (ABCA1)/liver-X-receptor α (LXR-α)/peroxisome proliferator-activated receptor gamma (PPARγ) and sirtuin 1 (SIRT1) expression compared to co-treated with ox-LDL and LPS. Taken together, PEITC, at least in part, inhibits foam cell formation and reduces lipid accumulation in foam cells. Therefore, we suggest that PEITC may be a potential candidate for the treatment and prevention of vascular inflammation and atherosclerosis.
Collapse
Affiliation(s)
- Young‐Sun Im
- Department of Food and NutritionChonnam National UniversityGwangjuKorea
| | - Min‐Hee Gwon
- Nutrition Education MajorGraduate School of EducationChonnam National UniversityGwangjuKorea
| | - Jung‐Mi Yun
- Department of Food and NutritionChonnam National UniversityGwangjuKorea
| |
Collapse
|
28
|
Xu F, Wang H, Tian J, Xu H. Down-Regulation of ID2-AS1 Alleviates the Neuronal Injury Induced by 1-Methy1-4-Phenylpyridinium in Human Neuroblastoma Cell Line SH-SY5Y Cells Through Regulating miR-199a-5p/IFNAR1/JAK2/STAT1 Axis. Neurochem Res 2021; 46:2192-2203. [PMID: 34050453 DOI: 10.1007/s11064-021-03356-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 05/13/2021] [Accepted: 05/15/2021] [Indexed: 11/30/2022]
Abstract
We aimed to illustrate the roles and molecular mechanisms of ID2-AS1 in parkinson's disease (PD). Methods: qRT-PCR detected the expression of ID2-AS1. CCK-8, LDH release assays the effect of ID2-AS1 knockdown on PD cells. Flow cytometry and Western Blot were used to detect the effect of ID2-AS1 inhibition on PD cell apoptosis. ELISA analysis showed that ID2-AS1 inhibition can reduce the inflammation of PD cells. ROS activity assay showed that inhibiting ID2-AS1 attenuated the oxidative stress induced by 1-methy1-4-phenylpyridinium (MPP+). RNA binding protein immunoprecipitation assay showed that ID2-AS1 is mainly located in the cytoplasm. The luciferase reporter assay is used to verify the interaction. In our study, ID2-AS1 was concentration-dependently and time-dependently up-regulated in MPP+ -treated human neuroblastoma cell line SH-SY5Y. ID2-AS1 knockdown enhanced cell proliferation and decreased cell death in PD cells. Knockdown of ID2-AS1 attenuates MPP+ -induced cytotoxicity in SH-SY5Y cells. ID2-AS1 is a sponge of miR-199a-5p. IFNAR1 is a target of miR-199a-5p. Inhibition of miR-199a-5p and overexpression of IFNAR1 alleviate the inhibitory effect of ID2-AS1 knockdown on MPP+ triggered neuronal injury. Inhibition of miR-199a-5p and overexpression of IFNAR1 alleviate the inhibitory effect of ID2-AS1 knockdown on MPP+ -triggered JAK2/STAT1 activation. Overall, down-regulation of ID2-AS1 alleviated the neuronal injury in PD through regulating miR-199a-5p/IFNAR1/JAK2/STAT1 axis.
Collapse
Affiliation(s)
- Furong Xu
- Department of Neurology, Chengdu Seventh People's Hospital, Chengdu, 610000, Sichuan, People's Republic of China
| | - Hui Wang
- Department of Neurology, Liaocheng People's Hospital, Liaocheng, 252000, Shandong, People's Republic of China
| | - Ju Tian
- Department of Functional Inspection, Qingdao 8th People's Hospital, Qingdao, 266000, Shandong, People's Republic of China
| | - Haiyan Xu
- Department of Gastroenterology, Wuhan Fourth Hospital, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, 473 Han Zheng street Qiaokou District, Wuhan, 430033, Hubei, People's Republic of China.
| |
Collapse
|
29
|
Chen S, Wang Q, Han B, Wu J, Liu DK, Zou JD, Wang M, Liu ZH. Effects of leptin-modified human placenta-derived mesenchymal stem cells on angiogenic potential and peripheral inflammation of human umbilical vein endothelial cells (HUVECs) after X-ray radiation. J Zhejiang Univ Sci B 2021; 21:327-340. [PMID: 32253842 DOI: 10.1631/jzus.b1900598] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Combined radiation-wound injury (CRWI) is characterized by blood vessel damage and pro-inflammatory cytokine deficiency. Studies have identified that the direct application of leptin plays a significant role in angiogenesis and inflammation. We established a sustained and stable leptin expression system to study the mechanism. A lentivirus method was employed to explore the angiogenic potential and peripheral inflammation of irradiated human umbilical vein endothelial cells (HUVECs). Leptin was transfected into human placenta-derived mesenchymal stem cells (HPMSCs) with lentiviral vectors. HUVECs were irradiated by X-ray at a single dose of 20 Gy. Transwell migration assay was performed to assess the migration of irradiated HUVECs. Based on the Transwell systems, co-culture systems of HPMSCs and irradiated HUVECs were established. Cell proliferation was measured by cell counting kit-8 (CCK-8) assay. The secretion of pro-inflammatory cytokines (human granulocyte macrophage-colony stimulating factor (GM-CSF), interleukin (IL)-1α, IL-6, and IL-8) was detected by enzyme-linked immunosorbent assay (ELISA). The expression of pro-angiogenic factors (vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF)) mRNA was detected by real-time quantitative polymerase chain reaction (RT-qPCR) assay. Relevant molecules of the nuclear factor-κB (NF-κB) and Janus kinase (JAK)/signal transducer and activator of transcription (STAT) signaling pathways were detected by western blot assay. Results showed that leptin-modified HPMSCs (HPMSCs/ leptin) exhibited better cell proliferation, migration, and angiogenic potential (expressed more VEGF and bFGF). In both the single HPMSCs/leptin and the co-culture systems of HPMSCs/leptin and irradiated HUVECs, the increased secretion of pro-inflammatory cytokines (human GM-CSF, IL-1α, and IL-6) was associated with the interaction of the NF-κB and JAK/STAT signaling pathways. We conclude that HPMSCs/leptin could promote angiogenic potential and peripheral inflammation of HUVECs after X-ray radiation.
Collapse
Affiliation(s)
- Shu Chen
- Department of Thoracic Surgery, the Second Hospital of Jilin University, Changchun 130041, China
| | - Qian Wang
- Department of Prosthodontics, Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Bing Han
- Department of Radiology, the Second Hospital of Jilin University, Changchun 130041, China
| | - Jia Wu
- Department of Prosthodontics, Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Ding-Kun Liu
- Department of Prosthodontics, Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Jun-Dong Zou
- Department of Prosthodontics, Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Mi Wang
- Department of Prosthodontics, Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Zhi-Hui Liu
- Department of Prosthodontics, Hospital of Stomatology, Jilin University, Changchun 130021, China
| |
Collapse
|
30
|
Hossain E, Li Y, Anand-Srivastava MB. Role of the JAK2/STAT3 pathway in angiotensin II-induced enhanced expression of Giα proteins and hyperproliferation of aortic vascular smooth muscle cells. Can J Physiol Pharmacol 2021; 99:237-246. [PMID: 33002365 DOI: 10.1139/cjpp-2020-0415] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We earlier showed that angiotensin (Ang) II-induced overexpression of Giα proteins contributes to the hyperproliferation of vascular smooth muscle cells (VSMC). In addition, the implication of the JAK2/STAT3 pathway in Ang II-induced hyperproliferation of VSMC has also been reported. However, the role of the JAK2/STAT3 pathway in Ang II-induced overexpression of Giα proteins and hyperproliferation of VSMC remains unexplored. In the present study, we show that inhibition or knockdown of the JAK2/STAT3 pathway by a specific inhibitor "cucurbitacin I" (CuI) or siRNAs attenuated Ang II-induced overexpression of Giα proteins and hyperproliferation of VSMC. In addition, the enhanced expression of cell cycle proteins induced by Ang II was also attenuated by CuI. Furthermore, Ang II-induced enhanced production of the superoxide anion (O2 -), H2O2, and NADPH oxidase activity, as well as the enhanced expression of NADPH oxidase subunits implicated in enhanced expression of Giα proteins and hyperproliferation, were also attenuated by inhibition of the JAK2/STAT3 pathway. On the other hand, Ang II-induced inhibition and augmentation of the levels of nitric oxide and peroxynitrite, respectively, in VSMC were restored to control levels by CuI. In summary, our results demonstrate that Ang II through the JAK2/STAT3 pathway increases nitroxidative stress, which contributes to the overexpression of Giα proteins and cell cycle proteins and the hyperproliferation of VSMC.
Collapse
MESH Headings
- Animals
- Rats
- Angiotensin II/pharmacology
- Aorta/drug effects
- Aorta/metabolism
- Aorta/cytology
- Cell Proliferation/drug effects
- Cells, Cultured
- GTP-Binding Protein alpha Subunits, Gi-Go/metabolism
- Janus Kinase 2/metabolism
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/cytology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/drug effects
- NADPH Oxidases/metabolism
- Rats, Sprague-Dawley
- Signal Transduction/drug effects
- STAT3 Transcription Factor/metabolism
- Male
Collapse
Affiliation(s)
- Ekhtear Hossain
- Department of Pharmacology and Physiology, Faculty of Medicine, University of Montreal, Montreal, QC, Canada
- Department of Pharmacology and Physiology, Faculty of Medicine, University of Montreal, Montreal, QC, Canada
| | - Yuan Li
- Department of Pharmacology and Physiology, Faculty of Medicine, University of Montreal, Montreal, QC, Canada
- Department of Pharmacology and Physiology, Faculty of Medicine, University of Montreal, Montreal, QC, Canada
| | - Madhu B Anand-Srivastava
- Department of Pharmacology and Physiology, Faculty of Medicine, University of Montreal, Montreal, QC, Canada
- Department of Pharmacology and Physiology, Faculty of Medicine, University of Montreal, Montreal, QC, Canada
| |
Collapse
|
31
|
Bazedoxifene Plays a Protective Role against Inflammatory Injury of Endothelial Cells by Targeting CD40. Cardiovasc Ther 2020; 2020:1795853. [PMID: 33381228 PMCID: PMC7755478 DOI: 10.1155/2020/1795853] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 11/24/2020] [Accepted: 11/27/2020] [Indexed: 02/06/2023] Open
Abstract
The inflammatory response and oxidative stress play key roles in the formation and development of atherosclerosis. Bazedoxifene is a new IL6/GP130 inhibitor recommended by the FDA for clinical use as a selective estrogen receptor modulator. However, its role in cardiovascular diseases has been poorly studied. In our study, we explored the mechanism of bazedoxifene's protective effect against inflammatory injury of vascular endothelial cells (VECs) stimulated by TNF-α. Various methods were used to verify the effect of bazedoxifene on VECs, including a cell viability assay, a wound healing assay, immunofluorescence staining, and western blotting. Our results showed that TNF-α could induce inflammatory damage to VECs, which manifested as upregulated expression of CD40, increased production of ROS, enhanced adhesion of THP-1 cells to VECs, and impaired viability and migration of VECs, while bazedoxifene could significantly reduce the endothelial damage caused by TNF-α. In addition, we found that an siRNA targeting CD40 dramatically alleviated the VEC damage induced by TNF-α. Therefore, we explored the potential relationship between bazedoxifene and CD40. Our data suggest that bazedoxifene has a protective effect against VEC damage induced by TNF-α and that its underlying mechanism may be related to the regulation of CD40.
Collapse
|
32
|
Malik M, Britten J, DeAngelis A, Catherino WH. Cross-talk between Janus kinase-signal transducer and activator of transcription pathway and transforming growth factor beta pathways and increased collagen1A1 production in uterine leiomyoma cells. F&S SCIENCE 2020; 1:206-220. [PMID: 35559929 DOI: 10.1016/j.xfss.2020.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/01/2020] [Accepted: 07/31/2020] [Indexed: 06/15/2023]
Abstract
OBJECTIVE To characterize the potential interaction between interleukin-6 (IL6), Janus kinase (JAK)-signal transducer and activator of transcription (STAT)-3 (JAK/STAT3) pathway, and Transforming growth factor beta (TGFβ)-3 , and to determine whether such cross-talk was a contributing factor in the dysregulation of type I collagen production in leiomyomas. DESIGN Laboratory study. SETTING University research laboratory. PATIENTS None. INTERVENTIONS Exposure of leiomyoma and myometrial cell lines to IL6 and STAT3 activators/inhibitors. Western immunoblot analysis and immunohistochemistry. MAIN OUTCOME MEASURES Expression of STAT3, pSTAT3, SOCS3, COL1A1, and TGFb3. RESULTS We observed that IL6 increased pSTAT3 as well as collagen1A1 in uterine leiomyoma cells. Direct activation of the JAK/STAT3 pathway increased collagen1A1 production in leiomyoma cells, whereas inhibition of the pathway significantly decreased collagen1A1 production. We further observed that modulation of the JAK/STAT3 pathway also increased the expression of TGFβ3 protein. Leiomyoma cells exposed to TGFβ3 demonstrated a significant decrease in pSTAT3 protein. Myometrial cells demonstrated a less sensitive response to STAT3 modulation and collagen production. CONCLUSION Cross-talk between the TGFβ pathway and JAK/STAT3 pathway contributes to the fibrotic nature of uterine leiomyomas.
Collapse
Affiliation(s)
- Minnie Malik
- Department of Obstetrics and Gynecology, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Joy Britten
- Department of Obstetrics and Gynecology, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Anthony DeAngelis
- Department of Obstetrics and Gynecology, Uniformed Services University of the Health Sciences, Bethesda, Maryland; Program in Reproductive Endocrinology and Gynecology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
| | - William H Catherino
- Department of Obstetrics and Gynecology, Uniformed Services University of the Health Sciences, Bethesda, Maryland; Program in Reproductive Endocrinology and Gynecology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
33
|
Kang Y, Zhan F, He M, Liu Z, Song X. Anti-inflammatory effects of sodium-glucose co-transporter 2 inhibitors on atherosclerosis. Vascul Pharmacol 2020; 133-134:106779. [PMID: 32814163 DOI: 10.1016/j.vph.2020.106779] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 06/14/2020] [Accepted: 08/12/2020] [Indexed: 02/06/2023]
Abstract
Atherosclerosis is a very common macrovascular complication in type 2 diabetes mellitus, and cardiovascular disease is the primary cause of death in diabetes patients. Sodium-glucose cotransporter 2 inhibitors (SGLT-2i) are a newly identified class of drugs targeting the renal proximal tubules to increase glucose excretion. Large-scale clinical trials have confirmed the cardiovascular protective effects of SGLT inhibitors in patients with diabetes diagnosed with or at a higher risk of atherosclerotic cardiovascular disease. In addition to its direct effect on glycemic control, the function of SGLT-2i in the alleviation of volume load, renal protection, and reduction of inflammation plays an essential role in its therapeutic effect on atherosclerosis. SGLT-2i are known to decrease the levels of inflammatory factors in circulation and in arteries in situ, inhibit foam cell formation and macrophage infiltration, and sustain plaque stability, ultimately blocking the development and progression of atherosclerosis.
Collapse
Affiliation(s)
- Yingxiu Kang
- Department of Endocrinology and Metabolism, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 88 Jiefang Rd, Zhejiang 310009, PR China.
| | - Fenfen Zhan
- Department of Endocrinology and Metabolism, Sanmen Hospital of Traditional Chinese Medicine, Sanmen, 287 Xinxing Rd, Zhejiang 317100, PR China
| | - Minzhi He
- Department of Vascular Surgery, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 88 Jiefang Rd, Zhejiang 310009, PR China
| | - Zhenjie Liu
- Department of Vascular Surgery, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 88 Jiefang Rd, Zhejiang 310009, PR China.
| | - Xiaoxiao Song
- Department of Endocrinology and Metabolism, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 88 Jiefang Rd, Zhejiang 310009, PR China.
| |
Collapse
|
34
|
Sato-Okabayashi Y, Isoda K, Heissig B, Kadoguchi T, Akita K, Kitamura K, Shimada K, Hattori K, Daida H. Low-dose oral cyclophosphamide therapy reduces atherosclerosis progression by decreasing inflammatory cells in a murine model of atherosclerosis. IJC HEART & VASCULATURE 2020; 28:100529. [PMID: 32577494 PMCID: PMC7300380 DOI: 10.1016/j.ijcha.2020.100529] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 04/28/2020] [Accepted: 04/30/2020] [Indexed: 01/09/2023]
Abstract
Background Atherosclerosis is a chronic inflammatory disease responsible for most cases of heart disease and stroke in Western countries. The cytotoxic drug cyclophosphamide (CPA) can modulate immune functions, and it has therefore been used to treat patients with autoimmune diseases. Extension of survival of patients with severe atherosclerosis has been reported after CPA treatment, but the underlying mechanism is still poorly understood. Methods and results We have investigated the effects of CPA in a murine model of atherosclerosis. Continuous oral administration of low-dose CPA (20 mg/kg/day) prevented atherosclerosis in apolipoprotein E-deficient (apoE-/-) mice fed with a high fat diet. After 12 weeks, CPA treatment delayed progression of atherosclerosis in the mice (9.92% vs 3.32%, P < 0.05, n = 7) and reduced the macrophage content of plaques (1.228 vs 0.2975 mm2, P < 0.001). Flow cytometry (FACS) showed that, in peripheral blood and spleen cells, the numbers of B cells and inflammatory T cells (Th1 cells) decreased, and inflammatory monocytes also decreased. However, there were no differences in the bone marrow cells between the two groups. The mRNA levels in the aorta showed significantly decreased inflammatory cytokine (interleukin-6) (P < 0.05), and tended to increase anti-inflammatory cytokine (argininase-1), but no significant differences between the two groups. High dose CPA has cardiotoxicity, but the dose used in this study did not show significant cardiotoxicity. Conclusions The results demonstrate that oral treatment with CPA inhibits initiation and progression of atherosclerosis in the apoE-/- mouse model through immunomodulatory effects on lymphoid and inflammatory cells.
Collapse
Affiliation(s)
- Yayoi Sato-Okabayashi
- Department of Cardiovascular Medicine, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Kikuo Isoda
- Department of Cardiovascular Medicine, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Beate Heissig
- Department of Immunological Diagnosis, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Tomoyasu Kadoguchi
- Department of Cardiovascular Medicine, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Koji Akita
- Department of Cardiovascular Medicine, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Kenichi Kitamura
- Department of Cardiovascular Medicine, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Kazunori Shimada
- Department of Cardiovascular Medicine, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Koichi Hattori
- Center for Genomic & Regenerative Medicine, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Hiroyuki Daida
- Department of Cardiovascular Medicine, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| |
Collapse
|
35
|
Xu D, Liu T, He L, Han D, Ma Y, Du J. LncRNA MEG3 inhibits HMEC-1 cells growth, migration and tube formation via sponging miR-147. Biol Chem 2020; 401:601-615. [PMID: 31863691 DOI: 10.1515/hsz-2019-0230] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 12/17/2019] [Indexed: 12/25/2022]
Abstract
Abstract
Long non-coding RNA (lncRNA) maternally expressed gene 3 (MEG3) has been identified as a regulatory molecule in angiogenesis. The goal of this study was to illustrate how MEG3 affects the angiogenesis of vascular endothelial cells. Expression of MEG3, miR-147 and intracellular cell adhesion molecule-1 (ICAM-1) in human microvascular endothelial cell line (HMEC-1) was altered by transfection, then cell viability, apoptosis, migration, tube formation, as well as the correlation among MEG3, miR-147 and ICAM-1 were explored. MEG3 was down-regulated during tube formation of HMEC-1 cells. MEG3 expression suppressed cells viability, migration and tube formation, while it induced apoptosis. MEG3 could bind with miR-147 and repress miR-147 expression. MiR-147 induced ICAM-1 expression, and contained ICAM-1 target sequences. The anti-atherogenic actions of MEG3 were inhibited by miR-147, and the anti-atherogenic actions of miR-147 suppression were also inhibited when ICAM-1 was overexpressed. Further, ICAM-1 overexpression showed activated roles in Wnt/β-catenin and Jak/Stat signaling pathways. In low-density lipoprotein receptor (Ldlr)−/− mice, MEG3 overexpression reduced CD68+, CD3+ and ICAM-1 areas in lesions and increased collagen content. MEG3 inhibited HMEC-1 cell growth, migration and tube formation. The anti-atherogenic actions of MEG3 might be mediated via sponging miR-147, and thereby repressing the expression of ICAM-1.
Collapse
Affiliation(s)
- Dejun Xu
- Department of Vascular Surgery, China-Japan Union Hospital of Jilin University, No. 126 Xiantai Street, Changchun130033, China
| | - Tianji Liu
- Department of Emergency Medicine, China-Japan Union Hospital of Jilin University, Changchun130033, China
| | - Liu He
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun130033, China
| | - Dongmei Han
- Department of Vascular Surgery, China-Japan Union Hospital of Jilin University, No. 126 Xiantai Street, Changchun130033, China
| | - Ying Ma
- Department of Vascular Surgery, China-Japan Union Hospital of Jilin University, No. 126 Xiantai Street, Changchun130033, China
| | - Jianshi Du
- Department of Vascular Surgery, China-Japan Union Hospital of Jilin University, No. 126 Xiantai Street, Changchun130033, China
| |
Collapse
|
36
|
Zhao L, Feng S, Wang S, Fan M, Jin W, Li X, Wang C, Yang Y. Production of bioactive recombinant human myeloid-derived growth factor in Escherichia coli and its mechanism on vascular endothelial cell proliferation. J Cell Mol Med 2020; 24:1189-1199. [PMID: 31758636 PMCID: PMC6991672 DOI: 10.1111/jcmm.14602] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 07/25/2019] [Accepted: 07/26/2019] [Indexed: 12/22/2022] Open
Abstract
Myeloid-derived growth factor (MYDGF) is a novel protein secreted by bone marrow cells that features important physiological functions. In recent years, MYDGF has gained considerable interest due to their extensive beneficial effect on cardiac repair and protects cardiomyocytes from cell death. However, its precise molecular mechanisms have not been well elucidated. The purpose of this study was to produce sufficient amount of biologically active recombinant human (rh) MYDGF more economically and effectively by using in vitro molecular cloning techniques to study its clinical application. The prokaryotic expression system of Escherichia coli was established for the preparation of rhMYDGF. Finally, a large amount of high biologically active and purified form of recombinant protein was obtained. Moreover, we investigated the potential mechanism of rhMYDGF-mediated proliferation and survival in human coronary artery endothelial cells (HCAECs). Mechanistically, the results suggested that MAPK/STAT3 and the cyclin D1 signalling pathways are indispensable for rhMYDGF-mediated HCAEC proliferation and survival. Therefore, this study successfully established a preparation protocol for biologically active rhMYDGF and it may be a most economical way to produce high-quality active rhMYDGF for future clinical application.
Collapse
Affiliation(s)
- Longwei Zhao
- School of Life Science and TechnologyChina Pharmaceutical UniversityNanjingChina
- Center for New Drug Safety Evaluation and ResearchChina Pharmaceutical UniversityNanjingChina
| | - Shuang Feng
- Center for New Drug Safety Evaluation and ResearchChina Pharmaceutical UniversityNanjingChina
| | - Shen Wang
- School of Life Science and TechnologyChina Pharmaceutical UniversityNanjingChina
| | - Miaojuan Fan
- School of Pharmaceutical Sciences & Center for Structural BiologyWenzhou Medical UniversityWenzhouZhejiangChina
| | - Wei Jin
- School of Pharmaceutical Sciences & Center for Structural BiologyWenzhou Medical UniversityWenzhouZhejiangChina
| | - Xianjing Li
- School of Life Science and TechnologyChina Pharmaceutical UniversityNanjingChina
- Center for New Drug Safety Evaluation and ResearchChina Pharmaceutical UniversityNanjingChina
| | - Chen Wang
- School of Life Science and TechnologyChina Pharmaceutical UniversityNanjingChina
| | - Yong Yang
- School of Life Science and TechnologyChina Pharmaceutical UniversityNanjingChina
- Center for New Drug Safety Evaluation and ResearchChina Pharmaceutical UniversityNanjingChina
| |
Collapse
|
37
|
Yang X, Wan M, Cheng Z, Wang Z, Wu Q. Tofacitinib inhibits ox-LDL-induced adhesion of THP-1 monocytes to endothelial cells. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:2775-2782. [PMID: 31284768 DOI: 10.1080/21691401.2019.1573740] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Atherosclerosis is a chronic inflammatory disease of the blood vasculature. Endothelial dysfunction is an early event in the development of atherosclerosis and the endothelium plays an important role in the innate immune defense in the pathology of cardiovascular diseases. New therapies are being developed based on the involvement of the immune system in atherosclerosis. In this study, we demonstrate that a commonly used anti-rheumatic drug, tofacitinib, possesses vascular protective properties in cultured primary human aortic endothelial cells (HAECs). Tofacitinib ameliorates oxidized low-density lipoprotein (ox-LDL)-induced adhesion of THP-1 cells to HAECs, suppresses the expression of vascular adhesion molecules and production of cytokines, including vascular cell adhesion molecule 1 (VCAM-1), intercellular cell adhesion molecule-1 (ICAM-1), tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β). Moreover, tofacitinib inhibits elevation of endothelial lectin-like ox-LDL receptor-1 (LOX-1) and production of reactive oxygen species (ROS) triggered by ox-LDL. As a result, the presence of tofacitinib reduces ox-LDL-induced cytotoxicity and improves endothelial viability. Mechanistically, we demonstrate that tofacitinib suppresses ox-LDL-mediated activation of NF-κB inhibitor α (IκB-α), accumulation of nuclear p65 and activation of nuclear factor κB (NF-κB) promoter, indicating that tofacitinib inhibits NF-κB activation. Collectively, our data support that tofacitinib possesses a novel protective function in endothelial cells, implying that tofacitinib could have the therapeutic potential to modulate inflammation in cardiovascular diseases.
Collapse
Affiliation(s)
- Xiaoyang Yang
- a Department of Hematology, Affiliated Haikou Hospital Xiangya School Central South University and Haikou Municipal Municipal People's Hospital , Haikou , Hainan , China
| | - Mengjie Wan
- a Department of Hematology, Affiliated Haikou Hospital Xiangya School Central South University and Haikou Municipal Municipal People's Hospital , Haikou , Hainan , China
| | - Zhiyong Cheng
- a Department of Hematology, Affiliated Haikou Hospital Xiangya School Central South University and Haikou Municipal Municipal People's Hospital , Haikou , Hainan , China
| | - Zhiming Wang
- a Department of Hematology, Affiliated Haikou Hospital Xiangya School Central South University and Haikou Municipal Municipal People's Hospital , Haikou , Hainan , China
| | - Qingxia Wu
- b Department of Nursing, Affiliated Haikou Hospital Xiangya School Central South University and Haikou Municipal Municipal People's Hospital , Haikou , Hainan , China
| |
Collapse
|
38
|
Iwashima T, Kudome Y, Kishimoto Y, Saita E, Tanaka M, Taguchi C, Hirakawa S, Mitani N, Kondo K, Iida K. Aronia berry extract inhibits TNF-α-induced vascular endothelial inflammation through the regulation of STAT3. Food Nutr Res 2019; 63:3361. [PMID: 31452653 PMCID: PMC6698673 DOI: 10.29219/fnr.v63.3361] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 07/04/2019] [Accepted: 07/15/2019] [Indexed: 12/19/2022] Open
Abstract
Background Inflammation in endothelial cells induces production of inflammatory cytokines and monocytes adhesion, which are crucial events in the initiation of atherosclerosis. Aronia berry (Aronia meranocalpa), also called black chokeberry, contains abundant anthocyanins that have received considerable interest for their possible relations to vascular health. Objective The aim of this study was to investigate whether an anthocyanin-rich extract obtained from aronia berry can attenuate inflammatory responses in vascular endothelial cells. Methods As a model of vascular endothelial inflammation, human umbilical vein endothelial cells (HUVECs) pretreated with aronia berry extract were stimulated with tumor necrosis factor-alpha (TNF-α). The expression levels of cytokines and adhesion molecules were analyzed. To investigate the effects of aronia berry extract on the adhesion of THP-1 monocytic cell, the static adhesion assay was carried out. The possible molecular mechanisms by which aronia berry extract regulated vascular inflammatory responses were explored. Results The mRNA expressions of interleukins (IL-1β, IL-6, and IL-8) and monocyte chemoattractant protein-1 (MCP-1) upregulated by TNF-α were significantly suppressed by pretreatment with aronia berry extract. Aronia berry extract decreased TNF-α-induced monocyte/endothelial adhesion and suppressed vascular cell adhesion molecule-1 (VCAM-1) expression, but did not affect intercellular adhesion molecule-1 (ICAM-1) expression. Moreover, aronia berry extract decreased the phosphorylation of signal transducer and activator of transcription 3 (STAT3) and the nuclear levels of STAT3 and interferon regulatory transcription factor-1 (IRF1). The nuclear translocation of nuclear factor-kappa B (NF-κB) was not inhibited by aronia berry extract. Conclusion Aronia berry extract could exert anti-atherosclerotic effects on TNF-α-induced inflammation through inhibition of STAT3/IRF1 pathway in vascular endothelial cells.
Collapse
Affiliation(s)
- Tomomi Iwashima
- Department of Food and Nutritional Sciences, Graduate School of Humanities and Sciences, Ochanomizu University, Tokyo, Japan
| | - Yuki Kudome
- Department of Food and Nutritional Sciences, Graduate School of Humanities and Sciences, Ochanomizu University, Tokyo, Japan
| | - Yoshimi Kishimoto
- Endowed Research Department "Food for Health," Ochanomizu University, Tokyo, Japan
| | - Emi Saita
- Endowed Research Department "Food for Health," Ochanomizu University, Tokyo, Japan
| | - Miori Tanaka
- Department of Food and Nutritional Sciences, Graduate School of Humanities and Sciences, Ochanomizu University, Tokyo, Japan
| | - Chie Taguchi
- Endowed Research Department "Food for Health," Ochanomizu University, Tokyo, Japan
| | | | - Nobu Mitani
- Pola Chemical Industries Inc., Kanagawa, Japan
| | - Kazuo Kondo
- Endowed Research Department "Food for Health," Ochanomizu University, Tokyo, Japan.,Institute of Life Innovation Studies, Toyo University, Gunma, Japan
| | - Kaoruko Iida
- Department of Food and Nutritional Sciences, Graduate School of Humanities and Sciences, Ochanomizu University, Tokyo, Japan.,Institute for Human Life Innovation, Ochanomizu University, Tokyo, Japan
| |
Collapse
|
39
|
Kitamura K, Isoda K, Akita K, Miyosawa K, Kadoguchi T, Shimada K, Daida H. Lack of IκBNS promotes cholate-containing high-fat diet-induced inflammation and atherogenesis in low-density lipoprotein (LDL) receptor-deficient mice. IJC HEART & VASCULATURE 2019; 23:100344. [PMID: 30976650 PMCID: PMC6439265 DOI: 10.1016/j.ijcha.2019.03.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 03/12/2019] [Indexed: 11/21/2022]
Abstract
Background IκBNS, a nuclear IκB protein, regulates a subset of Toll-like receptor (TLR) dependent genes. A cholate-containing high-fat diet (HFD(CA(+))) induces TLR4 mediated early inflammatory response. The present study aims to clarify that the lack of IκBNS promotes atherogenesis in low-density lipoprotein receptor-deficient (LDLr−/−) mice fed HFD(CA(+)) compared with those fed a cholate-free HFD (HFD(CA(−))). Methods and results Mice that lacked IκBNS (IκBNS−/−) were crossed with LDLr−/− mice and formation of atherosclerotic lesions was analyzed after 6-week consumption of HFD(CA(+)) or HFD(CA(−)). IκBNS−/−/LDLr−/− mice fed HFD(CA(+)) (IκBNS−/−/LDLr−/−(CA(+))) showed a 3.5-fold increase of atherosclerotic lesion size in the aorta compared with LDLr−/−(CA(+)) mice (p < 0.01), whereas there was no difference between LDLr−/−(CA(−)) and IκBNS−/−/LDLr−/−(CA(−)) mice. Immunohistochemical analysis of the aortic root revealed that HFD(CA(+)) significantly increased Mac-3 (macrophage)-positive area by 1.5-fold (p < 0.01) and TLR4, interleukin-6 (IL-6) expression by 1.7-fold (p < 0.05) and 1.5-fold (p < 0.05), respectively, in IκBNS−/−/LDLr−/−(CA(+)) compared with LDLr-/-−−(CA(+)) mice. Furthermore, active STAT3 (pSTAT3)-positive cells were significantly increased by 1.7-fold in the lesions of IκBNS−/−/LDLr−/−(CA(+)) compared with LDLr−/−(CA(+)) mice (p < 0.01). These findings suggest that IκBNS deficiency and HFD(CA(+)) promote atherogenesis in LDLr−/− mice via TLR4/IL-6/STAT3 pathway. Finally, we showed that the monocytes from peripheral blood of IκBNS−/−/LDLr−/−(CA(+)) mice were found to contain the highest proportion of Ly6Chi monocytes among the four groups, suggesting that lack of IκBNS enhanced inflammation in response to HFD(CA(+)) feeding. Conclusions The present study is the first to demonstrate that the activation of innate immune system using HFD(CA(+)) induced significant inflammation and atherogenesis in IκBNS−/−/LDLr−/− compared with LDLr−/− mice.
Collapse
Affiliation(s)
| | - Kikuo Isoda
- Corresponding author at: Department of Cardiovascular Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan.
| | | | | | | | | | | |
Collapse
|
40
|
Savira F, Magaye R, Hua Y, Liew D, Kaye D, Marwick T, Wang BH. Molecular mechanisms of protein-bound uremic toxin-mediated cardiac, renal and vascular effects: underpinning intracellular targets for cardiorenal syndrome therapy. Toxicol Lett 2019; 308:34-49. [PMID: 30872129 DOI: 10.1016/j.toxlet.2019.03.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 02/21/2019] [Accepted: 03/05/2019] [Indexed: 02/07/2023]
Abstract
Cardiorenal syndrome (CRS) remains a global health burden with a lack of definitive and effective treatment. Protein-bound uremic toxin (PBUT) overload has been identified as a non-traditional risk factor for cardiac, renal and vascular dysfunction due to significant albumin-binding properties, rendering these solutes non-dialyzable upon the state of irreversible kidney dysfunction. Although limited, experimental studies have investigated possible mechanisms in PBUT-mediated cardiac, renal and vascular effects. The ultimate aim is to identify relevant and efficacious targets that may translate beneficial outcomes in disease models and eventually in the clinic. This review will expand on detailed knowledge on mechanisms involved in detrimental effects of PBUT, specifically affecting the heart, kidney and vasculature, and explore potential effective intracellular targets to abolish their effects in CRS initiation and/or progression.
Collapse
Affiliation(s)
- Feby Savira
- Monash Centre of Cardiovascular Research and Education in Therapeutics, Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Ruth Magaye
- Monash Centre of Cardiovascular Research and Education in Therapeutics, Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Yue Hua
- Monash Centre of Cardiovascular Research and Education in Therapeutics, Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Danny Liew
- Monash Centre of Cardiovascular Research and Education in Therapeutics, Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - David Kaye
- Baker Heart and Diabetes Research Institute, Melbourne, Victoria, Australia
| | - Tom Marwick
- Baker Heart and Diabetes Research Institute, Melbourne, Victoria, Australia
| | - Bing Hui Wang
- Monash Centre of Cardiovascular Research and Education in Therapeutics, Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Victoria, Australia; Baker Heart and Diabetes Research Institute, Melbourne, Victoria, Australia.
| |
Collapse
|
41
|
Xu JY, Xiong YY, Lu XT, Yang YJ. Regulation of Type 2 Immunity in Myocardial Infarction. Front Immunol 2019; 10:62. [PMID: 30761134 PMCID: PMC6362944 DOI: 10.3389/fimmu.2019.00062] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 01/11/2019] [Indexed: 12/12/2022] Open
Abstract
Type 2 immunity participates in the pathogeneses of helminth infection and allergic diseases. Emerging evidence indicates that the components of type 2 immunity are also involved in maintaining metabolic hemostasis and facilitating the healing process after tissue injury. Numerous preclinical studies have suggested regulation of type 2 immunity-related cytokines, such as interleukin-4, -13, and -33, and cell types, such as M2 macrophages, mast cells, and eosinophils, affects cardiac functions after myocardial infarction (MI), providing new insights into the importance of immune modulation in the infarcted heart. This review provides an overview of the functions of these cytokines and cells in the setting of MI as well as their potential to predict the severity and prognosis of MI.
Collapse
Affiliation(s)
- Jun-Yan Xu
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Yu-Yan Xiong
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Xiao-Tong Lu
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yue-Jin Yang
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| |
Collapse
|
42
|
Therapeutic Targeting of the Proinflammatory IL-6-JAK/STAT Signalling Pathways Responsible for Vascular Restenosis in Type 2 Diabetes Mellitus. Cardiol Res Pract 2019; 2019:9846312. [PMID: 30719343 PMCID: PMC6334365 DOI: 10.1155/2019/9846312] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 11/21/2018] [Indexed: 12/17/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is increasing worldwide, and it is associated with increased risk of coronary artery disease (CAD). For T2DM patients, the main surgical intervention for CAD is autologous saphenous vein grafting. However, T2DM patients have increased risk of saphenous vein graft failure (SVGF). While the mechanisms underlying increased risk of vascular disease in T2DM are not fully understood, hyperglycaemia, insulin resistance, and hyperinsulinaemia have been shown to contribute to microvascular damage, whereas clinical trials have reported limited effects of intensive glycaemic control in the management of macrovascular complications. This suggests that factors other than glucose exposure may be responsible for the macrovascular complications observed in T2DM. SVGF is characterised by neointimal hyperplasia (NIH) arising from endothelial cell (EC) dysfunction and uncontrolled migration and proliferation of vascular smooth muscle cells (SMCs). This is driven in part by proinflammatory cytokines released from the activated ECs and SMCs, particularly interleukin 6 (IL-6). IL-6 stimulation of the Janus kinase (JAK)/signal transducer and activator of transcription 3 (STAT) pathway is a key mechanism through which EC inflammation, SMC migration, and proliferation are controlled and whose activation might therefore be enhanced in patients with T2DM. In this review, we investigate how proinflammatory cytokines, particularly IL-6, contribute to vascular damage resulting in SVGF and how suppression of proinflammatory cytokine responses via targeting the JAK/STAT pathway could be exploited as a potential therapeutic strategy. These include the targeting of suppressor of cytokine signalling (SOCS3), which appears to play a key role in suppressing unwanted vascular inflammation, SMC migration, and proliferation.
Collapse
|
43
|
Shemilt R, Bagabir H, Lang C, Khan F. Potential mechanisms for the effects of far-infrared on the cardiovascular system - a review. VASA 2018; 48:303-312. [PMID: 30421656 DOI: 10.1024/0301-1526/a000752] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Far-infrared (FIR) is a form of thermal radiation, which may have beneficial effects on cardiovascular health. Clinical studies suggest that FIR irradiation may have therapeutic effects in heart failure, myocardial ischaemia and may improve flow and survival of arteriovenous fistula. Animal studies have suggested a wide range of potential mechanisms involving endothelial nitric oxide synthase and nitric oxide bioavailability, oxidative stress, heat shock proteins and endothelial precursor cells. However, the exact cellular and molecular mechanism of FIR on the cardiovascular system remains elusive. The purpose of this review is to discuss the current literature, focusing on mechanistic studies involving the cardiovascular system, and with a view to highlighting areas for future investigation.
Collapse
Affiliation(s)
- Richard Shemilt
- 1 Division of Molecular and Clinical Medicine, University of Dundee
| | - Hala Bagabir
- 1 Division of Molecular and Clinical Medicine, University of Dundee
| | - Chim Lang
- 1 Division of Molecular and Clinical Medicine, University of Dundee
| | - Faisel Khan
- 1 Division of Molecular and Clinical Medicine, University of Dundee
| |
Collapse
|
44
|
Plens-Galaska M, Szelag M, Collado A, Marques P, Vallejo S, Ramos-González M, Wesoly J, Sanz MJ, Peiró C, Bluyssen HAR. Genome-Wide Inhibition of Pro-atherogenic Gene Expression by Multi-STAT Targeting Compounds as a Novel Treatment Strategy of CVDs. Front Immunol 2018; 9:2141. [PMID: 30283459 PMCID: PMC6156247 DOI: 10.3389/fimmu.2018.02141] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 08/30/2018] [Indexed: 12/21/2022] Open
Abstract
Cardiovascular diseases (CVDs), including atherosclerosis, are globally the leading cause of death. Key factors contributing to onset and progression of atherosclerosis include the pro-inflammatory cytokines Interferon (IFN)α and IFNγ and the Pattern Recognition Receptor (PRR) Toll-like receptor 4 (TLR4). Together, they trigger activation of Signal Transducer and Activator of Transcription (STAT)s. Searches for compounds targeting the pTyr-SH2 interaction area of STAT3, yielded many small molecules, including STATTIC and STX-0119. However, many of these inhibitors do not seem STAT3-specific. We hypothesized that multi-STAT-inhibitors that simultaneously block STAT1, STAT2, and STAT3 activity and pro-inflammatory target gene expression may be a promising strategy to treat CVDs. Using comparative in silico docking of multiple STAT-SH2 models on multi-million compound libraries, we identified the novel multi-STAT inhibitor, C01L_F03. This compound targets the SH2 domain of STAT1, STAT2, and STAT3 with the same affinity and simultaneously blocks their activity and expression of multiple STAT-target genes in HMECs in response to IFNα. The same in silico and in vitro multi-STAT inhibiting capacity was shown for STATTIC and STX-0119. Moreover, C01L_F03, STATTIC and STX-0119 were also able to affect genome-wide interactions between IFNγ and TLR4 by commonly inhibiting pro-inflammatory and pro-atherogenic gene expression directed by cooperative involvement of STATs with IRFs and/or NF-κB. Moreover, we observed that multi-STAT inhibitors could be used to inhibit IFNγ+LPS-induced HMECs migration, leukocyte adhesion to ECs as well as impairment of mesenteric artery contractility. Together, this implicates that application of a multi-STAT inhibitory strategy could provide great promise for the treatment of CVDs.
Collapse
Affiliation(s)
- Martyna Plens-Galaska
- Department of Human Molecular Genetics, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznan, Poland
| | - Malgorzata Szelag
- Department of Human Molecular Genetics, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznan, Poland
| | - Aida Collado
- Department of Pharmacology, Faculty of Medicine, University of Valencia, Valencia, Spain.,Institute of Health Research INCLIVA, University Clinic Hospital of Valencia, Valencia, Spain
| | - Patrice Marques
- Department of Pharmacology, Faculty of Medicine, University of Valencia, Valencia, Spain.,Institute of Health Research INCLIVA, University Clinic Hospital of Valencia, Valencia, Spain
| | - Susana Vallejo
- Department of Pharmacology, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain.,Instituto de Investigación Sanitaria Hospital Universitario La Paz (IdiPAZ), Madrid, Spain
| | - Mariella Ramos-González
- Department of Pharmacology, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain.,Instituto de Investigación Sanitaria Hospital Universitario La Paz (IdiPAZ), Madrid, Spain
| | - Joanna Wesoly
- Laboratory of High Throughput Technologies, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - María Jesus Sanz
- Department of Pharmacology, Faculty of Medicine, University of Valencia, Valencia, Spain.,Institute of Health Research INCLIVA, University Clinic Hospital of Valencia, Valencia, Spain
| | - Concepción Peiró
- Department of Pharmacology, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain.,Instituto de Investigación Sanitaria Hospital Universitario La Paz (IdiPAZ), Madrid, Spain
| | - Hans A R Bluyssen
- Department of Human Molecular Genetics, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznan, Poland
| |
Collapse
|
45
|
Research Progress on the Relationship between Atherosclerosis and Inflammation. Biomolecules 2018; 8:biom8030080. [PMID: 30142970 PMCID: PMC6163673 DOI: 10.3390/biom8030080] [Citation(s) in RCA: 547] [Impact Index Per Article: 78.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 08/03/2018] [Accepted: 08/17/2018] [Indexed: 12/13/2022] Open
Abstract
Atherosclerosis is a chronic inflammatory disease; unstable atherosclerotic plaque rupture, vascular stenosis, or occlusion caused by platelet aggregation and thrombosis lead to acute cardiovascular disease. Atherosclerosis-related inflammation is mediated by proinflammatory cytokines, inflammatory signaling pathways, bioactive lipids, and adhesion molecules. This review discusses the effects of inflammation and the systemic inflammatory signaling pathway on atherosclerosis, the role of related signaling pathways in inflammation, the formation of atherosclerosis plaques, and the prospects of treating atherosclerosis by inhibiting inflammation.
Collapse
|
46
|
Alikhah A, Pahlevan Kakhki M, Ahmadi A, Dehghanzad R, Boroumand MA, Behmanesh M. The role of lnc-DC long non-coding RNA and SOCS1 in the regulation of STAT3 in coronary artery disease and type 2 diabetes mellitus. J Diabetes Complications 2018; 32:258-265. [PMID: 29398326 DOI: 10.1016/j.jdiacomp.2017.12.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 11/09/2017] [Accepted: 12/02/2017] [Indexed: 01/05/2023]
Abstract
AIMS Coronary artery disease (CAD) can be classified as an inflammatory disease, which affected by type 2 diabetes mellitus (T2DM). Elevated levels of many inflammatory molecules were found in the serum of patients with CAD. STAT3 molecule as a transcription factor plays an important role in the cytokines expression. Here, we examined the expression levels of STAT3 and its important regulatory genes lnc-DC and SOCS1, in patients with CAD and T2DM. METHODS Blood samples were obtained from 37 CAD+ and 36 CAD- patients. These patients were enrolled in this study based on angiography findings and categorized based on T2DM status. The expression levels of STAT3, lnc-DC and SOCS1 genes were examined with Real time PCR method. RESULTS A significant increase was observed in expression of STAT3 and lnc-DC genes but not SOCS1 in CAD+ versus CAD- patients. These results replicated partially in some groups categorized based on T2DM and CAD status. However, severity of CAD had no effect on expressions of these genes. Moreover, we found some significant correlations between expressions of lnc-DC with SOCS1 and STAT3, which confirmed by in silico analysis. CONCLUSION Our results shed further light to the inflammatory aspects of CAD and T2DM with emphasis to JAK/STAT pathway and the regulatory role of long non-coding RNAs in the physiopathology of these diseases.
Collapse
Affiliation(s)
- Asieh Alikhah
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Majid Pahlevan Kakhki
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Amirhossain Ahmadi
- Department of Biology, Faculty of Basic Sciences, Persian Gulf University, Bushehr, Iran
| | - Reyhaneh Dehghanzad
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | | | - Mehrdad Behmanesh
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
47
|
Nifuroxazide, a STAT3 inhibitor, mitigates inflammatory burden and protects against diabetes-induced nephropathy in rats. Chem Biol Interact 2018; 281:111-120. [DOI: 10.1016/j.cbi.2017.12.030] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 11/30/2017] [Accepted: 12/26/2017] [Indexed: 01/17/2023]
|
48
|
Targeted inhibition of STATs and IRFs as a potential treatment strategy in cardiovascular disease. Oncotarget 2018; 7:48788-48812. [PMID: 27166190 PMCID: PMC5217051 DOI: 10.18632/oncotarget.9195] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 04/22/2016] [Indexed: 02/06/2023] Open
Abstract
Key factors contributing to early stages of atherosclerosis and plaque development include the pro-inflammatory cytokines Interferon (IFN)α, IFNγ and Interleukin (IL)-6 and Toll-like receptor 4 (TLR4) stimuli. Together, they trigger activation of Signal Transducer and Activator of Transcription (STAT) and Interferon Regulatory Factor (IRF) families. In particular, STAT1, 2 and 3; IRF1 and 8 have recently been recognized as prominent modulators of inflammation, especially in immune and vascular cells during atherosclerosis. Moreover, inflammation-mediated activation of these STATs and IRFs coordinates a platform for synergistic amplification leading to pro-atherogenic responses. Searches for STAT3-targeting compounds, exploring the pTyr-SH2 interaction area of STAT3, yielded many small molecules including natural products. Only a few inhibitors for other STATs, but none for IRFs, are described. Promising results for several STAT3 inhibitors in recent clinical trials predicts STAT3-inhibiting strategies may find their way to the clinic. However, many of these inhibitors do not seem STAT-specific, display toxicity and are not very potent. This illustrates the need for better models, and screening and validation tools for novel STAT and IRF inhibitors. This review presents a summary of these findings. It postulates STAT1, STAT2 and STAT3 and IRF1 and IRF8 as interesting therapeutic targets and targeted inhibition could be a potential treatment strategy in CVDs. In addition, it proposes a pipeline approach that combines comparative in silico docking of STAT-SH2 and IRF-DBD models with in vitro STAT and IRF activation inhibition validation, as a novel tool to screen multi-million compound libraries and identify specific inhibitors for STATs and IRFs.
Collapse
|
49
|
Ghatge M, Nair J, Sharma A, Vangala RK. Integrative gene ontology and network analysis of coronary artery disease associated genes suggests potential role of ErbB pathway gene EGFR. Mol Med Rep 2018; 17:4253-4264. [PMID: 29328373 PMCID: PMC5802197 DOI: 10.3892/mmr.2018.8393] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 11/14/2017] [Indexed: 12/27/2022] Open
Abstract
Coronary artery disease (CAD) is a major cause of mortality in India, more importantly the young Indians. Combinatorial and integrative approaches to evaluate pathways and genes to gain an improved understanding and potential biomarkers for risk assessment are required. Therefore, 608 genes from the CADgene database version 2.0, classified into 12 functional classes representing the atherosclerotic disease process, were analyzed. Homology analysis of the unique list of gene ontologies (GO) from each functional class gave 8 GO terms represented in 11 and 10 functional classes. Using disease ontology analysis 80 genes belonging to 8 GO terms, using FunDO suggested that 29 of them were identified to be associated with CAD. Extended network analysis of these genes using STRING version 9.1 gave 328 nodes and 4,525 interactions of which the top 5% had a node degree of ≥75 associated with pathways including the ErbB signaling pathway with epidermal growth factor receptor (EGFR) gene as the central hub. Evaluation of EFGR protein levels in age and gender-matched 342 CAD patients vs. 342 control subjects demonstrated significant differences [controls=149.76±2.47 pg/ml and CAD patients stratified into stable angina (SA)=161.65±3.40 pg/ml and myocardial infarction (MI)=171.51±4.26 pg/ml]. Logistic regression analysis suggested that increased EGFR levels exhibit 3-fold higher risk of CAD [odds ratio (OR) 3.51, 95% confidence interval [CI] 1.96–6.28, P≤0.001], upon adjustment for hypertension, diabetes and smoking. A unit increase in EGFR levels increased the risk by 2-fold for SA (OR 2.58, 95% CI 1.25–5.33, P=0.01) and 3.8-fold for MI (OR 3.82, 95% CI 1.94–7.52, P≤0.001) following adjustment. Thus, the use of ontology mapping and network analysis in an integrative manner aids in the prioritization of biomarkers of complex disease.
Collapse
Affiliation(s)
- Madankumar Ghatge
- Tata Proteomics and Coagulation Unit, Thrombosis Research Institute, Narayana Hrudayalaya Hospital, Bengaluru, Karnataka 560099, India
| | - Jiny Nair
- Mary and Garry Weston Functional Genomics Unit, Thrombosis Research Institute, Bengaluru, Karnataka 560099, India
| | - Ankit Sharma
- Manipal University, Manipal, Karnataka 576104, India
| | - Rajani Kanth Vangala
- Tata Proteomics and Coagulation Unit, Thrombosis Research Institute, Narayana Hrudayalaya Hospital, Bengaluru, Karnataka 560099, India
| |
Collapse
|
50
|
Zhang L, Shao J, Zhou Y, Chen H, Qi H, Wang Y, Chen L, Zhu Y, Zhang M, Chen L, Du Y, Zhong M, Shi X, Li Q. Inhibition of PDGF-BB-induced proliferation and migration in VSMCs by proanthocyanidin A2: Involvement of KDR and Jak-2/STAT-3/cPLA 2 signaling pathways. Biomed Pharmacother 2018; 98:847-855. [PMID: 29571255 DOI: 10.1016/j.biopha.2018.01.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/29/2017] [Accepted: 01/03/2018] [Indexed: 12/21/2022] Open
Abstract
Proanthocyanidin A2 (PA2), one of A-type proanthocyanidins, has been shown to harbor a broad spectrum of pharmacological activities, including anti-inflammatory, antioxidant, anti-HIV, anti-CDV and anti-?-glucosidase activities. However, little is known about the role for PA2 in regulating PDGF-induced VSMC proliferation and migration. In the present study, we investigated the possible effects of PA2 on PDGF-BB-induced proliferation, migration and inflammation in VSMCs in vitro to mimic a postangioplasty PDGF shedding condition. Herein, the data clearly show that PA2 markedly inhibited proliferation, migration and inflammatory responses at 0-30??g/ml concentration in VSMCs in vitro. 10-30??g/ml PA2 inhibited PDGF-mediated NAD(P)H oxidase activation and intracellular ROS formation in VSMCs. Furthermore, the effects exerted by PA2 involve the participation of KDR and Jak-2/STAT-3/cPLA2 signaling pathways. These data also highlight the possible therapeutic use of PA2 in vascular proliferative diseases, where abnormal proliferation and migration play important pathological roles.
Collapse
Affiliation(s)
- Liudi Zhang
- Department of Pharmacy, Huashan Hospital North, Shanghai 201907, China
| | - Jie Shao
- Department of General Surgery, Huashan Hospital North, Shanghai 201907, China
| | - Yufu Zhou
- Department of Pharmacy, Huashan Hospital North, Shanghai 201907, China
| | - Haifei Chen
- Department of Pharmacy, Huashan Hospital North, Shanghai 201907, China
| | - Huijie Qi
- Department of Pharmacy, Huashan Hospital North, Shanghai 201907, China
| | - Yi Wang
- Department of Pharmacy, Huashan Hospital North, Shanghai 201907, China
| | - Lu Chen
- Department of Pharmacy, Huashan Hospital North, Shanghai 201907, China
| | - Yongjun Zhu
- Department of Cardio-thoracic surgery, Huashan Hospital, Shanghai 200040, China.
| | - Meng Zhang
- Brunswick Laboratories (China), Suzhou Industrial Park 215021, China
| | - Li Chen
- Pharmacy Department, Xuhui district Central Hospital, 966 Huai Hai M Road, Shanghai 200031, China
| | - Yongli Du
- School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology, Jinan 250353, China
| | - Mingkang Zhong
- Department of Pharmacy, Huashan Hospital North, Shanghai 201907, China
| | - Xiaojin Shi
- Department of Pharmacy, Huashan Hospital North, Shanghai 201907, China
| | - Qunyi Li
- Department of Pharmacy, Huashan Hospital North, Shanghai 201907, China.
| |
Collapse
|