1
|
Mahaki H, Nobari S, Tanzadehpanah H, Babaeizad A, Kazemzadeh G, Mehrabzadeh M, Valipour A, Yazdinezhad N, Manoochehri H, Yang P, Sheykhhasan M. Targeting VEGF signaling for tumor microenvironment remodeling and metastasis inhibition: Therapeutic strategies and insights. Biomed Pharmacother 2025; 186:118023. [PMID: 40164047 DOI: 10.1016/j.biopha.2025.118023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/18/2025] [Accepted: 03/27/2025] [Indexed: 04/02/2025] Open
Abstract
The tumor microenvironment (TME) plays a pivotal role in cancer progression and metastasis, with vascular endothelial growth factor (VEGF) signaling serving as a key regulator of tumor angiogenesis and immune evasion. VEGF induces abnormal blood vessel formation, promoting tumor growth, immune suppression, and metastasis through epithelialmesenchymal transition (EMT). As a result, VEGF signaling has become a critical therapeutic target in cancer treatment. This review examines the molecular mechanisms driving VEGF-mediated tumor growth and angiogenesis, with a focus on the interaction between tumor and endothelial cells and the dual role of VEGF in fostering vascularization and immune suppression. Current anti-VEGF therapies, including monoclonal antibodies (e.g., bevacizumab) and tyrosine kinase inhibitors (TKIs), have demonstrated efficacy and have received FDA approval for various cancers; however, therapeutic resistance remains a significant challenge. Strategies to overcome resistance, such as novel VEGF inhibitors, vascular normalization approaches, and combination therapies with immune checkpoint inhibitors, have been explored. Additionally, future directions emphasize the need for personalized approaches to improve treatment efficacy and reduce metastasis. A comprehensive understanding of VEGF signaling in the TME may pave the way for more effective cancer therapies.
Collapse
Affiliation(s)
- Hanie Mahaki
- Vascular and Endovascular Surgery Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sima Nobari
- Deputy of Health, Iran University of Medical Science, Tehran, Iran
| | - Hamid Tanzadehpanah
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Babaeizad
- Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Gholamhosein Kazemzadeh
- Vascular and Endovascular Surgery Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohsen Mehrabzadeh
- Vascular and Endovascular Surgery Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Arezoo Valipour
- Vascular and Endovascular Surgery Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Nader Yazdinezhad
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamed Manoochehri
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Piao Yang
- Department of Molecular Genetics, College of Arts and Sciences, The Ohio State University, Columbus, OH 43210, USA
| | - Mohsen Sheykhhasan
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran.
| |
Collapse
|
2
|
Muenzenberger MK, Klisch K, Menzies BR, Rieger J, Kaessmeyer S, Drews B. Histomorphometric comparison of the gravid and non-gravid uterus at the time of birth in the tammar wallaby ( Macropus eugenii): insights into the embryo-maternal interface. Reprod Fertil Dev 2025; 37:RD24118. [PMID: 40324058 DOI: 10.1071/rd24118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 03/25/2025] [Indexed: 05/07/2025] Open
Abstract
Context Tammar wallabies have a very short gestation which does not exceed the length of the estrus cycle. Direct contact between embryo and mother is established via a short-lived yolk sac placenta only in the last third of gestation. Therefore, an efficient embryo-maternal interface is required to ensure rapid embryonic growth. However, the morphology of the placenta at the time of birth is not well described in marsupials. Aims To study the morphology of the embryo-maternal interface, to compare the gravid and the non-gravid uterus at the time of birth and to examine the presence of polyploid trophoblast cells. Methods Histomorphometrical analysis of the uteri from light microscopic images. Quantification of the endometrial vascularization in samples stained with CD31 using AI machine learning. DNA content estimations of the giant trophoblast cell nuclei by Feulgen Image Analysis Densitometry. Key results In histological sections of the gravid endometrium, more tissue area was occupied by blood vessels than in the non-gravid endometrium, with subepithelial capillaries making up one-fourth of the vessel area in the gravid endometrium. The gravid uterus exhibited a 2.75-fold increase in surface area due to winding folds. Polyploidy of the giant trophoblast cells was confirmed. Giant trophoblast cells showed signs of degeneration. Conclusions The adaptations of the gravid uterus and the polyploidy of the trophoblast cells ensure sufficient embryo-maternal exchange. However, they seem to be self-limiting. Implications Morphology of the tammar wallaby trophoblast and endometrium prior birth is optimized for rapid embryonic growth during the brief interaction between maternal and fetal cells but the placenta seemingly cannot persist after the designated due time.
Collapse
Affiliation(s)
- Marie K Muenzenberger
- Department of Clinical Research and Veterinary Public Health, Division of Veterinary Anatomy, Vetsuisse Faculty Bern, University of Bern, Länggassstrasse 120, Bern 3012, Switzerland
| | - Karl Klisch
- Department of Clinical Research and Veterinary Public Health, Division of Veterinary Anatomy, Vetsuisse Faculty Bern, University of Bern, Länggassstrasse 120, Bern 3012, Switzerland
| | - Brandon R Menzies
- School of Bioscience, Faculty of Science G31, Biosciences 4, Royal Parade, The University of Melbourne, Parkville, Vic 3010, Australia
| | - Juliane Rieger
- Institute of Translational Medicine for Health Care Systems, Department of Human Medicine, Faculty of Medicine, MSB Medical School Berlin, Berlin, Germany
| | - Sabine Kaessmeyer
- Department of Clinical Research and Veterinary Public Health, Division of Veterinary Anatomy, Vetsuisse Faculty Bern, University of Bern, Länggassstrasse 120, Bern 3012, Switzerland
| | - Barbara Drews
- Department of Clinical Research and Veterinary Public Health, Division of Veterinary Anatomy, Vetsuisse Faculty Bern, University of Bern, Länggassstrasse 120, Bern 3012, Switzerland
| |
Collapse
|
3
|
Vara-Messler M, Trevisi L, Zulato E, Ramaschi GE, Risé P, Pinna C, Indraccolo S, Sala A, Bolego C. Aspirin-triggered DHA metabolites inhibit angiogenesis. Front Pharmacol 2025; 16:1524980. [PMID: 40070577 PMCID: PMC11893558 DOI: 10.3389/fphar.2025.1524980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 02/04/2025] [Indexed: 03/14/2025] Open
Abstract
Background and aim Blood vessels supply oxygen, nutrients and provide gateways for immune surveillance. Since this network nourishes all tissues, vessel abnormalities contribute to many diseases, such as cancer. One of the potential targets for Docosahexaenoic Acid (DHA) in cancer is suppressing angiogenesis, a process of new blood vessel formation within tumors. In addition, aspirin (ASA) has antineoplastic effects that may be mediated, at least in part, by metabolites derived from acetylated COX-2. We aimed at determining the effect of DHA as well as its metabolites in angiogenesis, using in vitro as well as in vivo models. Methods Endothelial cell (EC) proliferation, motility and capillary-like tube formation were determined by MTT, wound healing, Boyden and Matrigel assays, respectively. In vivo angiogenesis was measured by the Matrigel sponge model in mice. The biosynthesis of proresolving lipid mediators by ECs was determined by LC-MS-MS. Results and conclusion DHA, but not arachidonic acid (AA), at concentrations consistent with those reached in blood after fish oil supplementation, decreased EC migration in a time- and concentration-dependent manner. Pretreatment with ASA modulated cell migration already after 24 h, while both DHA and ASA decreased migration at longer incubation times without affecting viability. 17-hydroxy-DHA was detected upon incubation with DHA, and increased amounts were observed upon combined treatment with DHA and ASA, an increase that was associated to a synergic effect on EC migration. 17(R)-hydroxy-DHA (17R-HDHA), the metabolite resulting from acetylated COX-2 activity of DHA, reduced EC migration in a concentration-dependent manner. DHA in the presence of ASA, as well as 17R-HDHA, also reduced EC tube formation. These results were confirmed in vivo where both 17R-HDHA or its downstream metabolite 17RResolvinD1 were able to decrease microvessels density in a Matrigel sponge model. Overall, we demonstrated that DHA in the presence of ASA-dependent acetylation of COX-2 showed increased antiangiogenic effects, possibly resulting from its conversion to its hydroxylated derivatives.
Collapse
Affiliation(s)
- M. Vara-Messler
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain (UC Louvain), Brussels, Belgium
| | - L. Trevisi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - E. Zulato
- Basic and Translational Oncology Unit, Istituto Oncologico Veneto IOV-IRCCS, Padova, Italy
| | - G. E. Ramaschi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - P. Risé
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - C. Pinna
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - S. Indraccolo
- Basic and Translational Oncology Unit, Istituto Oncologico Veneto IOV-IRCCS, Padova, Italy
- Department of Surgery Oncology and Gastroenterology, University of Padova, Padova, Italy
| | - A. Sala
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - C. Bolego
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| |
Collapse
|
4
|
Greco G, Agafonova A, Cosentino A, Cardullo N, Muccilli V, Puglia C, Anfuso CD, Sarpietro MG, Lupo G. Solid Lipid Nanoparticles Encapsulating a Benzoxanthene Derivative in a Model of the Human Blood-Brain Barrier: Modulation of Angiogenic Parameters and Inflammation in Vascular Endothelial Growth Factor-Stimulated Angiogenesis. Molecules 2024; 29:3103. [PMID: 38999055 PMCID: PMC11243179 DOI: 10.3390/molecules29133103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/12/2024] [Accepted: 06/24/2024] [Indexed: 07/14/2024] Open
Abstract
Lignans, a class of secondary metabolites found in plants, along with their derivatives, exhibit diverse pharmacological activities, including antioxidant, antimicrobial, anti-inflammatory, and antiangiogenic ones. Angiogenesis, the formation of new blood vessels from pre-existing ones, is a crucial process for cancer growth and development. Several studies have elucidated the synergistic relationship between angiogenesis and inflammation in various inflammatory diseases, highlighting a correlation between inflammation and vascular endothelial growth factor (VEGF)-induced angiogenesis. Thus, the identification of novel molecules capable of modulating VEGF effects presents promising prospects for developing therapies aimed at stabilizing, reversing, or even arresting disease progression. Lignans often suffer from low aqueous solubility and, for their use, encapsulation in a delivery system is needed. In this research, a bioinspired benzoxantene has been encapsulated in solid lipid nanoparticles that have been characterized for their pharmacotechnical properties and their thermotropic behavior. The effects of these encapsulated nanoparticles on angiogenic parameters and inflammation in VEGF-induced angiogenesis were evaluated using human brain microvascular endothelial cells (HBMECs) as a human blood-brain barrier model.
Collapse
Affiliation(s)
- Giuliana Greco
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy
| | - Aleksandra Agafonova
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy
| | - Alessia Cosentino
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy
| | - Nunzio Cardullo
- Department of Chemical Sciences, University of Catania, 95125 Catania, Italy
| | - Vera Muccilli
- Department of Chemical Sciences, University of Catania, 95125 Catania, Italy
| | - Carmelo Puglia
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy
- NANOMED-Research Center on Nanomedicine and Pharmaceutical Nanotechnology, University of Catania, 95125 Catania, Italy
| | - Carmelina Daniela Anfuso
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy
| | - Maria Grazia Sarpietro
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy
- NANOMED-Research Center on Nanomedicine and Pharmaceutical Nanotechnology, University of Catania, 95125 Catania, Italy
| | - Gabriella Lupo
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy
| |
Collapse
|
5
|
Chen T. Unveiling the significance of inducible nitric oxide synthase: Its impact on cancer progression and clinical implications. Cancer Lett 2024; 592:216931. [PMID: 38701892 DOI: 10.1016/j.canlet.2024.216931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/14/2024] [Accepted: 04/29/2024] [Indexed: 05/05/2024]
Abstract
The intricate role of inducible nitric oxide synthase (iNOS) in cancer pathophysiology has garnered significant attention, highlighting the complex interplay between tumorigenesis, immune response, and cellular metabolism. As an enzyme responsible for producing nitric oxide (NO) in response to inflammatory stimuli. iNOS is implicated in various aspects of cancer development, including DNA damage, angiogenesis, and evasion of apoptosis. This review synthesizes the current findings from both preclinical and clinical studies on iNOS across different cancer types, reflecting the variability depending on cellular context and tumor microenvironment. We explore the molecular mechanisms by which iNOS modulates cancer cell growth, survival, and metastasis, emphasizing its impact on immune surveillance and response to treatment. Additionally, the potential of targeting iNOS as a therapeutic strategy in cancer treatment is examined. By integrating insights from recent advances, this review aims to elucidate the significant role of iNOS in cancer and pave the way for novel diagnostic and therapeutic approaches.
Collapse
Affiliation(s)
- Tong Chen
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, OH, 43210, USA; The Ohio State University Comprehensive Cancer Center, Columbus, OH, 43210, USA.
| |
Collapse
|
6
|
Kanno K, Nakayama K, Razia S, Islam SH, Farzana ZU, Sonia SB, Yamashita H, Ishikawa M, Ishibashi T, Imamura K, Kiyono T, Kyo S. Association between KRAS and PIK3CA Mutations and Progesterone Resistance in Endometriotic Epithelial Cell Line. Curr Issues Mol Biol 2024; 46:3579-3594. [PMID: 38666954 PMCID: PMC11049223 DOI: 10.3390/cimb46040224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Although endometriosis is a benign disease, it is associated with cancer-related gene mutations, such as KRAS or PIK3CA. Endometriosis is associated with elevated levels of inflammatory factors that cause severe pain. In a previous study, we demonstrated that KRAS or PIK3CA mutations are associated with the activation of cell proliferation, migration, and invasion in a patient-derived immortalized endometriotic cell line, HMOsisEC10. In this study, we investigated the effects of these mutations on progesterone resistance. Since the HMOsisEC10 had suppressed progesterone receptor (PR) expression, we transduced PR-B to HMOsisEc10 cell lines including KRAS mutant and PIK3CA mutant cell lines. We conducted a migration assay, invasion assay, and MTT assay using dienogest and medroxyprogestrone acetate. All cell lines showed progesterone sensitivity with or without mutations. Regarding inflammatory factors, real-time quantitative RT-PCR revealed that the KRAS mutation cell line exhibited no suppression of Cox-2 and mPGES-1 on progesterone treatment, whereas IL-6, MCP-1, VEGF, and CYP19A1 were significantly suppressed by progesterone in both mutated cell lines. Our results suggest that KRAS mutation and PIK3CA mutation in endometriotic cells may not be associated with progesterone resistance in terms of aggressiveness. However, KRAS mutations may be associated with progesterone resistance in the context of pain.
Collapse
Affiliation(s)
- Kosuke Kanno
- Department of Obstetrics and Gynecology, Faculty of Medicine, Shimane University, Izumo 693-0021, Japan; (K.K.); (S.H.I.); (Z.U.F.); (S.B.S.); (H.Y.); (M.I.)
| | - Kentaro Nakayama
- Department of Obstetrics and Gynecology, Nagoya City University East Medical Center, Nagoya 464-8547, Japan;
| | - Sultana Razia
- Department of Legal Medicine, Faculty of Medicine, Shimane University, Izumo 693-0021, Japan;
| | - Sohel Hasibul Islam
- Department of Obstetrics and Gynecology, Faculty of Medicine, Shimane University, Izumo 693-0021, Japan; (K.K.); (S.H.I.); (Z.U.F.); (S.B.S.); (H.Y.); (M.I.)
| | - Zahan Umme Farzana
- Department of Obstetrics and Gynecology, Faculty of Medicine, Shimane University, Izumo 693-0021, Japan; (K.K.); (S.H.I.); (Z.U.F.); (S.B.S.); (H.Y.); (M.I.)
| | - Shahataj Begum Sonia
- Department of Obstetrics and Gynecology, Faculty of Medicine, Shimane University, Izumo 693-0021, Japan; (K.K.); (S.H.I.); (Z.U.F.); (S.B.S.); (H.Y.); (M.I.)
| | - Hitomi Yamashita
- Department of Obstetrics and Gynecology, Faculty of Medicine, Shimane University, Izumo 693-0021, Japan; (K.K.); (S.H.I.); (Z.U.F.); (S.B.S.); (H.Y.); (M.I.)
| | - Masako Ishikawa
- Department of Obstetrics and Gynecology, Faculty of Medicine, Shimane University, Izumo 693-0021, Japan; (K.K.); (S.H.I.); (Z.U.F.); (S.B.S.); (H.Y.); (M.I.)
| | - Tomoka Ishibashi
- Department of Obstetrics and Gynecology, Nagoya City University East Medical Center, Nagoya 464-8547, Japan;
| | - Kayo Imamura
- Department of Obstetrics and Gynecology, Unnan City Hospital, Unnan 699-1221, Japan;
| | - Tohru Kiyono
- Project for Prevention of HPV-Related Cancer, National Cancer Center, Exploratory Oncology Research and Clinical Trial Center (EPOC), Kashiwa 277-8577, Japan;
| | - Satoru Kyo
- Department of Obstetrics and Gynecology, Faculty of Medicine, Shimane University, Izumo 693-0021, Japan; (K.K.); (S.H.I.); (Z.U.F.); (S.B.S.); (H.Y.); (M.I.)
| |
Collapse
|
7
|
The effect of prostaglandins E2 and F2α on orexin system expression in the porcine uterus during the peri-implantation period. ANNALS OF ANIMAL SCIENCE 2022. [DOI: 10.2478/aoas-2022-0018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
The aim of this study was to evaluate the effect of prostaglandins E2 (PGE2) and F2α (PGF2α) on orexins (OXA and OXB) secretion (ELISA), prepro-orexin (PPO) gene expression and the content of orexin receptors (OX1R, OX2R) mRNA (qPCR) and proteins (Western blot) in porcine endometrial and myometrial tissue slices during early pregnancy (days 10–28) and on days 10–11 of the oestrous cycle. On days 10–11 of pregnancy, prostaglandins (PGs) decreased the expression of the PPO gene and OXR gene and protein in the endometrium. On days 12– 13, PGs increased OXB secretion, PGE2 enhanced OXA secretion, and PGF2α suppressed PPO expression. On days 15–16, both PGs inhibited PPO expression and OXB secretion, and PGF2α increased OXA release. On days 27–28, PGs decreased PPO mRNA and OX1R protein levels, PGE2 decreased OX2R protein content, and PGF2α decreased OXB secretion. On days 10-11 of the cycle PGs increased the expression of PPO mRNA and OX2R protein, whereas PGE2 increased OX1R protein content. The effect of PGs on orexin system expression in the porcine myometrium was dependent on the animal physiological status and the concentrations of specific PGs. The study demonstrated that PGs exert regulatory effects on orexin system expression in the porcine uterus, which suggests that a local regulatory mechanism could be responsible for modulating uterine metabolism. The observed differences in PGs’ influence on orexin system expression could be attributed to changes in the sensitivity of the studied tissues, associated with the phase of the oestrous cycle, the stage of early pregnancy or PGs concentration.
Collapse
|
8
|
Altered mechanotransduction in adolescent idiopathic scoliosis osteoblasts: an exploratory in vitro study. Sci Rep 2022; 12:1846. [PMID: 35115632 PMCID: PMC8813918 DOI: 10.1038/s41598-022-05918-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 01/14/2022] [Indexed: 11/16/2022] Open
Abstract
Adolescent idiopathic scoliosis (AIS) is the most prevalent pediatric spinal deformity. We previously demonstrated elongated cilia and an altered molecular mechanosensory response in AIS osteoblasts. The purpose of this exploratory study was to characterize the mechanosensory defect occurring in AIS osteoblasts. We found that cilia length dynamics in response to flow significantly differ in AIS osteoblasts compared to control cells. In addition, strain-induced rearrangement of actin filaments was compromised resulting in a failure of AIS osteoblasts to position or elongate in function of the bidirectional-applied flow. Contrary to control osteoblasts, fluid flow had an inhibitory effect on AIS cell migration. Moreover, flow induced an increase in secreted VEGF-A and PGE2 in control but not AIS cells. Collectively our data demonstrated that in addition to the observed primary cilium defects, there are cytoskeletal abnormalities correlated to impaired mechanotransduction in AIS. Thus, we propose that the AIS etiology could be a result of generalized defects in cellular mechanotransduction given that an adolescent growing spine is under constant stimulation for growth and bone remodeling in response to applied mechanical forces. Recognition of an altered mechanotransduction as part of the AIS pathomechanism must be considered in the conception and development of more effective bracing treatments.
Collapse
|
9
|
Pals J, Mensink HW, Brosens E, Verdijk RM, Naus NC, Paridaens DA, Kilic E, Ramdas WD. The Effect of Intraocular Pressure-Lowering Medication on Metastatic Uveal Melanomas. Cancers (Basel) 2021; 13:cancers13225657. [PMID: 34830810 PMCID: PMC8616129 DOI: 10.3390/cancers13225657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/19/2021] [Accepted: 11/05/2021] [Indexed: 11/20/2022] Open
Abstract
Simple Summary The most lethal tumor in the eye is metastatic uveal melanomas, while the most common cause of irreversible blindness is glaucoma. Glaucoma is treated by prescribing intraocular pressure-lowering drugs. Theoretically, these drugs may affect the risk of metastasis of intraocular tumors (uveal melanomas). Using data of a long-running and ongoing study on uveal melanomas, we found that eye drops that lower the intraocular pressure by stimulating outflow of fluid (aqueous humor) may increase the risk of metastasis, and subsequent mortality. Therefore, in patients at risk or suspect for uveal melanoma, we recommend choosing ophthalmic drugs with a working mechanism that is not based on the increase of outflow of aqueous humor from the eye. Abstract Background: There has been speculation that IOP-lowering medication, which increases aqueous humor outflow, increases the risk of metastatic uveal melanoma (UM). This hypothesis has not been studied previously but is relevant for UM patients who use IOP-lowering medication. The aim of the current study is to assess the association between the use of intraocular pressure (IOP)-lowering medication and the risk of metastatic UM, and mortality. Methods: A retrospective cohort study, in which patients from the Rotterdam Ocular Melanoma Study were included from 1986 onwards. Medical records were evaluated for use of IOP-lowering medication at baseline (i.e., before diagnosis). For each IOP-lowering medication, we divided patients into two groups for comparison (e.g., patients with alpha2-agonist use and patients without alpha2-agonist use). All patients underwent regular ophthalmic examinations and routine screening for metastasis. Survival analyses were initiated to compare groups in each IOP-lowering medication group. In addition, secondary analyses were performed to examine the association between IOP and the development of metastatic UM, and mortality. Results: A total of 707 patients were included of whom 13 patients used prostaglandin or pilocarpine at baseline. For alpha2-agonist, beta-blocker, carbonic anhydrase inhibitor, and oral IOP-lowering medication these were 4, 14, 11, and 12 patients, respectively. The risk of metastatic UM (choroid and ciliary body melanoma) among the prostaglandin/pilocarpine users was significantly higher than controls (HR [95% CI]: 4.840 [1.452–16.133]). Mortality did not differ significantly among the IOP-lowering medications groups, except for the prostaglandin or pilocarpine group (HR [95% CI]: 7.528 [1.836–30.867]). If we combined all IOP-lowering medication that increase aqueous humor outflow, the risk (HR [95% CI]) of metastatic UM and mortality was 6.344 (1.615–24.918) and 9.743 (2.475–38.353), respectively. There was an association between IOP and mortality, but not for the onset of metastatic UM. Conclusion: The use of topical prostaglandin or pilocarpine may increase the risk of metastatic UM and mortality compared to patients without prostaglandin or pilocarpine use. Therefore, use of IOP-lowering medication which increases aqueous humor outflow, should be avoided in patients with (presumed) UM.
Collapse
Affiliation(s)
- Jan Pals
- Department of Ophthalmology, Erasmus University Medical Center, 3015 CA Rotterdam, The Netherlands; (J.P.); (N.C.N.); (D.A.P.); (E.K.)
| | | | - Erwin Brosens
- Department of Clinical Genetics, Erasmus University Medical Center, 3015 CA Rotterdam, The Netherlands;
| | - Robert M. Verdijk
- Department of Pathology, Section Ophthalmic Pathology, Erasmus University Medical Center, 3015 CA Rotterdam, The Netherlands;
- Department of Pathology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Nicole C. Naus
- Department of Ophthalmology, Erasmus University Medical Center, 3015 CA Rotterdam, The Netherlands; (J.P.); (N.C.N.); (D.A.P.); (E.K.)
| | - Dion A. Paridaens
- Department of Ophthalmology, Erasmus University Medical Center, 3015 CA Rotterdam, The Netherlands; (J.P.); (N.C.N.); (D.A.P.); (E.K.)
- The Rotterdam Eye Hospital, 3011 BH Rotterdam, The Netherlands;
| | - Emine Kilic
- Department of Ophthalmology, Erasmus University Medical Center, 3015 CA Rotterdam, The Netherlands; (J.P.); (N.C.N.); (D.A.P.); (E.K.)
| | - Wishal D. Ramdas
- Department of Ophthalmology, Erasmus University Medical Center, 3015 CA Rotterdam, The Netherlands; (J.P.); (N.C.N.); (D.A.P.); (E.K.)
- Correspondence: ; Tel.: +31-10-7033691; Fax: +31-10-7035105
| |
Collapse
|
10
|
Du Y, Taylor CG, Aukema HM, Zahradka P. Role of oxylipins generated from dietary PUFAs in the modulation of endothelial cell function. Prostaglandins Leukot Essent Fatty Acids 2020; 160:102160. [PMID: 32717531 DOI: 10.1016/j.plefa.2020.102160] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/17/2020] [Accepted: 07/17/2020] [Indexed: 12/13/2022]
Abstract
Oxylipins, which are circulating bioactive lipids generated from polyunsaturated fatty acids (PUFAs) by cyclooxygenase, lipooxygenase and cytochrome P450 enzymes, have diverse effects on endothelial cells. Although studies of the effects of oxylipins on endothelial cell function are accumulating, a review that provides a comprehensive compilation of current knowledge and recent advances in the context of vascular homeostasis is lacking. This is the first compilation of the various in vitro, ex vivo and in vivo reports to examine the effects and potential mechanisms of action of oxylipins on endothelial cells. The aggregate data indicate docosahexaenoic acid-derived oxylipins consistently show beneficial effects related to key endothelial cell functions, whereas oxylipins derived from other PUFAs exhibit both positive and negative effects. Furthermore, information is lacking for certain oxylipin classes, such as those derived from α-linolenic acid, which suggests additional studies are required to achieve a full understanding of how oxylipins affect endothelial cells.
Collapse
Affiliation(s)
- Youjia Du
- Canadian Centre for Agri-Food Research in Health and Medicine, St Boniface Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada; Department of Physiology and Pathophysiology, University of Manitoba, MB R3E 0J9, Canada
| | - Carla G Taylor
- Canadian Centre for Agri-Food Research in Health and Medicine, St Boniface Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada; Department of Physiology and Pathophysiology, University of Manitoba, MB R3E 0J9, Canada; Department of Food and Human Nutritional Sciences, University of Manitoba, MB R3T 2N2, Canada
| | - Harold M Aukema
- Canadian Centre for Agri-Food Research in Health and Medicine, St Boniface Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada; Department of Food and Human Nutritional Sciences, University of Manitoba, MB R3T 2N2, Canada
| | - Peter Zahradka
- Canadian Centre for Agri-Food Research in Health and Medicine, St Boniface Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada; Department of Physiology and Pathophysiology, University of Manitoba, MB R3E 0J9, Canada; Department of Food and Human Nutritional Sciences, University of Manitoba, MB R3T 2N2, Canada.
| |
Collapse
|
11
|
Perrot CY, Herrera JL, Fournier-Goss AE, Komatsu M. Prostaglandin E2 breaks down pericyte-endothelial cell interaction via EP1 and EP4-dependent downregulation of pericyte N-cadherin, connexin-43, and R-Ras. Sci Rep 2020; 10:11186. [PMID: 32636414 PMCID: PMC7341885 DOI: 10.1038/s41598-020-68019-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 06/05/2020] [Indexed: 12/13/2022] Open
Abstract
A close association between pericytes and endothelial cells (ECs) is crucial to the stability and function of capillary blood vessels and microvessels. The loss or dysfunction of pericytes results in significant disruption of these blood vessels as observed in pathological conditions, including cancer, diabetes, stroke, and Alzheimer’s disease. Prostaglandin E2 (PGE2) is a lipid mediator of inflammation, and its tissue concentration is elevated in cancer and neurological disorders. Here, we show that the exposure to PGE2 switches pericytes to a fast-migrating, loosely adhered phenotype that fails to intimately interact with ECs. N-cadherin and connexin-43 in adherens junction and gap junction between pericytes and ECs are downregulated by EP-4 and EP-1-dependent mechanisms, leading to breakdown of the pericyte–EC interaction. Furthermore, R-Ras, a small GTPase important for vascular normalization and vessel stability, is transcriptionally repressed by PGE2 in an EP4-dependent manner. Mouse dermal capillary vessels lose pericyte coverage substantially upon PGE2 injection into the skin. Our results suggest that EP-mediated direct disruption of pericytes by PGE2 is a key process for vascular destabilization. Restoring pericyte–EC interaction using inhibitors of PGE2 signaling may offer a therapeutic strategy in cancer and neurological disorders, in which pericyte dysfunction contributes to the disease progression.
Collapse
Affiliation(s)
- Carole Y Perrot
- Cancer and Blood Disorders Institute and Institute for Fundamental Biomedical Research, Johns Hopkins All Children's Hospital, St. Petersburg, FL, 33701, USA.,Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Jose L Herrera
- Cancer and Blood Disorders Institute and Institute for Fundamental Biomedical Research, Johns Hopkins All Children's Hospital, St. Petersburg, FL, 33701, USA.,Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Ashley E Fournier-Goss
- Cancer and Blood Disorders Institute and Institute for Fundamental Biomedical Research, Johns Hopkins All Children's Hospital, St. Petersburg, FL, 33701, USA.,Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Masanobu Komatsu
- Cancer and Blood Disorders Institute and Institute for Fundamental Biomedical Research, Johns Hopkins All Children's Hospital, St. Petersburg, FL, 33701, USA. .,Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
| |
Collapse
|
12
|
Abstract
Tumor tissue is composed of tumor cells and surrounding non-tumor endothelial and immune cells, collectively known as the tumor microenvironment. Tumor cells manipulate tumor microenvironment to obtain sufficient oxygen and nutrient supply, and evade anti-tumor immunosurveillance. Various types of signaling molecules, including cytokines, chemokines, growth factors, and lipid mediators, are secreted, which co-operate to make up the complex tumor microenvironment. Prostaglandins, cyclooxygenase metabolites of arachidonic acid, are abundantly produced in tumor tissues. Ever since treatment with nonsteroidal anti-inflammatory drugs showed anti-tumor effect in mouse models and human patients by inhibiting whole prostaglandin production, investigators have focused on the importance of prostaglandins in tumor malignancies. However, most studies that followed focused on the role of an eminent prostaglandin, prostaglandin E2, in tumor onset, growth, and metastasis. It remained unclear how other prostaglandin species affected tumor malignancies. Recently, we identified prostaglandin D2, a well-known sleep-inducing prostaglandin, as a factor with strong anti-angiogenic and anti-tumor properties, in genetically modified mice. In this review, we summarize recent studies focusing on the importance of prostaglandins and their metabolites in the tumor microenvironment.
Collapse
Affiliation(s)
- Koji Kobayashi
- Department of Animal Radiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Keisuke Omori
- Department of Animal Radiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Takahisa Murata
- Department of Animal Radiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan.
| |
Collapse
|
13
|
Nawaz IM, Rezzola S, Cancarini A, Russo A, Costagliola C, Semeraro F, Presta M. Human vitreous in proliferative diabetic retinopathy: Characterization and translational implications. Prog Retin Eye Res 2019; 72:100756. [PMID: 30951889 DOI: 10.1016/j.preteyeres.2019.03.002] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 03/26/2019] [Accepted: 03/28/2019] [Indexed: 02/07/2023]
Abstract
Diabetic retinopathy (DR) is one of the leading causes of visual impairment in the working-age population. DR is a progressive eye disease caused by long-term accumulation of hyperglycaemia-mediated pathological alterations in the retina of diabetic patients. DR begins with asymptomatic retinal abnormalities and may progress to advanced-stage proliferative diabetic retinopathy (PDR), characterized by neovascularization or preretinal/vitreous haemorrhages. The vitreous, a transparent gel that fills the posterior cavity of the eye, plays a vital role in maintaining ocular function. Structural and molecular alterations of the vitreous, observed during DR progression, are consequences of metabolic and functional modifications of the retinal tissue. Thus, vitreal alterations reflect the pathological events occurring at the vitreoretinal interface. These events are caused by hypoxic, oxidative, inflammatory, neurodegenerative, and leukostatic conditions that occur during diabetes. Conversely, PDR vitreous can exert pathological effects on the diabetic retina, resulting in activation of a vicious cycle that contributes to disease progression. In this review, we recapitulate the major pathological features of DR/PDR, and focus on the structural and molecular changes that characterize the vitreal structure and composition during DR and progression to PDR. In PDR, vitreous represents a reservoir of pathological signalling molecules. Therefore, in this review we discuss how studying the biological activity of the vitreous in different in vitro, ex vivo, and in vivo experimental models can provide insights into the pathogenesis of PDR. In addition, the vitreous from PDR patients can represent a novel tool to obtain preclinical experimental evidences for the development and characterization of new therapeutic drug candidates for PDR therapy.
Collapse
Affiliation(s)
- Imtiaz M Nawaz
- Department of Molecular and Translational Medicine, University of Brescia, Italy
| | - Sara Rezzola
- Department of Molecular and Translational Medicine, University of Brescia, Italy
| | - Anna Cancarini
- Department of Ophthalmology, University of Brescia, Italy
| | - Andrea Russo
- Department of Ophthalmology, University of Brescia, Italy
| | - Ciro Costagliola
- Department of Medicine and Health Sciences, University of Molise, Campobasso, Italy
| | | | - Marco Presta
- Department of Molecular and Translational Medicine, University of Brescia, Italy.
| |
Collapse
|
14
|
Westerik N, Reid G, Sybesma W, Kort R. The Probiotic Lactobacillus rhamnosus for Alleviation of Helicobacter pylori-Associated Gastric Pathology in East Africa. Front Microbiol 2018; 9:1873. [PMID: 30154777 PMCID: PMC6102400 DOI: 10.3389/fmicb.2018.01873] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 07/25/2018] [Indexed: 12/16/2022] Open
Abstract
The probiotic Lactobacillus rhamnosus GG (LGG) can play a role in establishing a harmless relationship with Helicobacter pylori and reduce gastric pathology in East African populations. H. pylori has the ability to inhabit the surface of the mucous layer of the human stomach and duodenum. In the developing world, an estimated 51% of the population is carrier of H. pylori, while in some Western countries these numbers dropped below 20%, which is probably associated with improved sanitation and smaller family sizes. Colonization by H. pylori can be followed by inflammation of the gastric mucus layer, and is a risk factor in the development of atrophic gastritis, peptic ulcers and gastric cancer. Notwithstanding the higher prevalence of H. pylori carriers in developing countries, no equal overall increase in gastric pathology is found. This has been attributed to a less pro-inflammatory immune response to H. pylori in African compared to Caucasian populations. In addition, a relatively low exposure to other risk factors in certain African populations may play a role, including the use of non-steroidal anti-inflammatory drugs, smoking, and diets without certain protective factors. A novel approach to the reduction of H. pylori associated gastric pathology is found in the administration of the probiotic bacterium Lactobacillus rhamnosus yoba 2012 (LRY), the generic variant of LGG. This gastro-intestinal isolate inhibits H. pylori by competition for substrate and binding sites as well as production of antimicrobial compounds such as lactic acid. In addition, it attenuates the host's H. pylori-induced apoptosis and inflammation responses and stimulates angiogenesis in the gastric and duodenal epithelium. The probiotic LRY is not able to eradicate H. pylori completely, but its co-supplementation in antibiotic eradication therapy has been shown to relieve side effects of this therapy. In Uganda, unlike other African countries, gastric pathology is relatively common, presumably resulting from the lack of dietary protective factors in the traditional diet. Supplementation with LRY through local production of probiotic yogurt, could be a solution to establish a harmless relationship with H. pylori and reduce gastric pathology and subsequent eradication therapy treatment.
Collapse
Affiliation(s)
- Nieke Westerik
- Department of Molecular Cell Biology, VU University Amsterdam, Amsterdam, Netherlands
- Yoba for Life Foundation, Amsterdam, Netherlands
| | - Gregor Reid
- Canadian R&D Centre for Human Microbiome and Probiotics, Lawson Health Research Institute, London, ON, Canada
- Department of Microbiology and Immunology, and Surgery, Western University, London, ON, Canada
| | | | - Remco Kort
- Department of Molecular Cell Biology, VU University Amsterdam, Amsterdam, Netherlands
- Yoba for Life Foundation, Amsterdam, Netherlands
- Department of Microbiology and Systems Biology, Netherlands Organization for Applied Scientific Research, Zeist, Netherlands
- ARTIS-Micropia, Amsterdam, Netherlands
| |
Collapse
|
15
|
Lamy S, Ben Saad A, Zgheib A, Annabi B. Olive oil compounds inhibit the paracrine regulation of TNF-α-induced endothelial cell migration through reduced glioblastoma cell cyclooxygenase-2 expression. J Nutr Biochem 2016; 27:136-145. [PMID: 26410343 DOI: 10.1016/j.jnutbio.2015.08.026] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 08/19/2015] [Accepted: 08/21/2015] [Indexed: 11/25/2022]
Abstract
The established causal relationship between the chronic inflammatory microenvironment, tumor development and cancer recurrence has provided leads for developing novel preventive strategies. Accumulating experimental, clinical and epidemiological data has provided support for the chemopreventive properties of olive oil compounds traditionally found within the Mediterranean diet. In this study, we investigated whether tyrosol (Tyr), hydroxytyrosol, oleuropein and oleic acid (OA), four compounds contained in extra virgin olive oil, can prevent tumor necrosis factor (TNF)-α-induced expression of cyclooxygenase (COX)-2 (an inflammation biomarker) in a human glioblastoma cell (U-87 MG) model. We found that Tyr and OA significantly inhibited TNF-α-induced COX-2 gene and protein expression, as well as PGE2 secretion. Both compounds also inhibited TNF-α-induced JNK and ERK phosphorylation, whereas only Tyr inhibited TNF-α-induced NF-κB phosphorylation. Paracrine-regulated migration of human brain microvascular endothelial cells (HBMECs) was assessed using growth factor-enriched conditioned media (CM) isolated from U-87 MG cells. We found that while PGE2 triggered HBMEC migration, the CM isolated from U-87 MG cells, where either COX-2 or NF-κB had been silenced or had been treated with Tyr or OA, exhibited decreased chemotactic properties. These observations demonstrate that olive oil compounds inhibit the effect of the chronic inflammatory microenvironment on glioblastoma progression through TNF-α actions and may be useful in cancer chemoprevention.
Collapse
Affiliation(s)
- Sylvie Lamy
- Laboratoire d'Oncologie Moléculaire, Centre de Recherche BioMed, Université du Québec à Montréal, C.P. 8888, Succ. Centre-ville, Montréal, QC, Canada H3C 3P8.
| | - Aroua Ben Saad
- Laboratoire d'Oncologie Moléculaire, Centre de Recherche BioMed, Université du Québec à Montréal, C.P. 8888, Succ. Centre-ville, Montréal, QC, Canada H3C 3P8.
| | - Alain Zgheib
- Laboratoire d'Oncologie Moléculaire, Centre de Recherche BioMed, Université du Québec à Montréal, C.P. 8888, Succ. Centre-ville, Montréal, QC, Canada H3C 3P8.
| | - Borhane Annabi
- Laboratoire d'Oncologie Moléculaire, Centre de Recherche BioMed, Université du Québec à Montréal, C.P. 8888, Succ. Centre-ville, Montréal, QC, Canada H3C 3P8.
| |
Collapse
|
16
|
Trau HA, Davis JS, Duffy DM. Angiogenesis in the primate ovulatory follicle is stimulated by luteinizing hormone via prostaglandin E2. Biol Reprod 2014; 92:15. [PMID: 25376231 DOI: 10.1095/biolreprod.114.123711] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Rapid angiogenesis occurs as the ovulatory follicle is transformed into the corpus luteum. To determine if luteinizing hormone (LH)-stimulated prostaglandin E2 (PGE2) regulates angiogenesis in the ovulatory follicle, cynomolgus macaques received gonadotropins to stimulate multiple follicular development and chorionic gonadotropin (hCG) substituted for the LH surge to initiate ovulatory events. Before hCG, vascular endothelial cells were present in the perifollicular stroma but not amongst granulosa cells. Endothelial cells entered the granulosa cell layer 24-36 h after hCG, concomitant with the rise in follicular PGE2 and prior to ovulation, which occurs about 40 h after hCG. Intrafollicular administration of the PG synthesis inhibitor indomethacin was coupled with PGE2 replacement to demonstrate that indomethacin blocked and PGE2 restored follicular angiogenesis in a single, naturally developed monkey follicle in vivo. Intrafollicular administration of indomethacin plus an agonist selective for a single PGE2 receptor showed that PTGER1 and PTGER2 agonists most effectively stimulated angiogenesis within the granulosa cell layer. Endothelial cell tracing and three-dimensional reconstruction indicated that these capillary networks form via branching angiogenesis. To further explore how PGE2 mediates follicular angiogenesis, monkey ovarian microvascular endothelial cells (mOMECs) were isolated from ovulatory follicles. The mOMECs expressed all four PGE2 receptors in vitro. PGE2 and all PTGER agonists increased mOMEC migration. PTGER1 and PTGER2 agonists promoted sprout formation while the PTGER3 agonist inhibited sprouting in vitro. While PTGER1 and PTGER2 likely promote the formation of new capillaries, each PGE2 receptor may mediate aspects of PGE2's actions and, therefore, LH's ability to regulate angiogenesis in the primate ovulatory follicle.
Collapse
Affiliation(s)
- Heidi A Trau
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, Virginia
| | - John S Davis
- Veterans Affairs Nebraska-Western Iowa Health Care System and Department of Obstetrics and Gynecology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Diane M Duffy
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, Virginia
| |
Collapse
|
17
|
Tamura K, Yoshie M, Hashimoto K, Tachikawa E. Inhibitory effect of insulin-like growth factor-binding protein-7 (IGFBP7) on in vitro angiogenesis of vascular endothelial cells in the rat corpus luteum. J Reprod Dev 2014; 60:447-53. [PMID: 25212428 PMCID: PMC4284319 DOI: 10.1262/jrd.2014-069] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Angiogenesis in the developing corpus luteum (CL) is a prerequisite for establishment and maintenance of an early pregnancy. To explore the physiological significance of insulin-like growth factor-binding protein-7 (IGFBP7) in the developing CL, the effects of IGFBP7 on vascular endothelial growth factor (VEGFA)- and luteinizing hormone (LH)-induced in vitro tube formation were tested using isolated luteal microvascular endothelial cells (LECs). Capillary-like tube formation of LECs and their proliferation were stimulated by both VEGFA and LH. IGFBP7 treatment suppressed VEGFA- or LH-induced tube formation. The proliferation and migration of LECs, and phosphorylation of mitogen-activated protein kinase kinase and extracellular signal-regulated kinase 1/2 were inhibited by IGFBP7. Furthermore, IGFBP7 attenuated VEGFA-enhanced cyclooxygenase (COX)-2 mRNA expression and prostaglandin E2 secretion. These findings suggest the possibility that
luteal IGFBP7 secretion may suppress the stimulatory effect of VEGFA on angiogenesis in the early CL.
Collapse
Affiliation(s)
- Kazuhiro Tamura
- Department of Endocrine and Neural Pharmacology, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan
| | | | | | | |
Collapse
|
18
|
Tsuji T, Yamaguchi K, Kikuchi R, Itoh M, Nakamura H, Nagai A, Aoshiba K. Promotion of adipogenesis by an EP2 receptor agonist via stimulation of angiogenesis in pulmonary emphysema. Prostaglandins Other Lipid Mediat 2014; 112:9-15. [PMID: 24911647 DOI: 10.1016/j.prostaglandins.2014.05.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 05/15/2014] [Accepted: 05/15/2014] [Indexed: 02/07/2023]
Abstract
Body weight loss is a common manifestation in patients with chronic obstructive pulmonary disease (COPD), particularly those with severe emphysema. Adipose angiogenesis is a key mediator of adipogenesis and use of pro-angiogenic agents may serve as a therapeutic option for lean COPD patients. Since angiogenesis is stimulated by PGE2, we examined whether ONO-AE1-259, a selective E-prostanoid (EP) 2 receptor agonist, might promote adipose angiogenesis and adipogenesis in a murine model of elastase-induced pulmonary emphysema (EIE mice). Mice were intratracheally instilled with elastase or saline, followed after 4 weeks by intraperitoneal administration of ONO-AE1-259 for 4 weeks. The subcutaneous adipose tissue (SAT) weight decreased in the EIE mice, whereas in the EIE mice treated with ONO-AE1-259, the SAT weight was largely restored, which was associated with significant increases in SAT adipogenesis, angiogenesis, and VEGF protein production. In contrast, ONO-AE1-259 administration induced no alteration in the weight of the visceral adipose tissue. These results suggest that in EIE mice, ONO-AE1-259 stimulated adipose angiogenesis possibly via VEGF production, and thence, adipogenesis. Our data pave the way for the development of therapeutic interventions for weight loss in emphysema patients, e.g., use of pro-angiogenic agents targeting the adipose tissue vascular component.
Collapse
Affiliation(s)
- Takao Tsuji
- Department of Respiratory Medicine, Tokyo Medical University Ibaraki Medical Center, 3-20-1 Chuou, Ami, Inashiki, Ibaraki 300-0395, Japan.
| | - Kazuhiro Yamaguchi
- Comprehensive and Internal Medicine, Tokyo Women's Medical University Medical Center East, 2-1-10 Nishi-ogu, Arakawa-ku 116-8567, Japan.
| | - Ryota Kikuchi
- Department of Respiratory Medicine, Tokyo Medical University Ibaraki Medical Center, 3-20-1 Chuou, Ami, Inashiki, Ibaraki 300-0395, Japan.
| | - Masayuki Itoh
- Department of Respiratory Medicine, Tokyo Medical University Ibaraki Medical Center, 3-20-1 Chuou, Ami, Inashiki, Ibaraki 300-0395, Japan.
| | - Hiroyuki Nakamura
- Department of Respiratory Medicine, Tokyo Medical University Ibaraki Medical Center, 3-20-1 Chuou, Ami, Inashiki, Ibaraki 300-0395, Japan.
| | - Atsushi Nagai
- The First Department of Medicine, Tokyo Women's Medical University, 8-1 Kawata-cho, Shinjyuku-ku 162-8666, Japan.
| | - Kazutetsu Aoshiba
- Department of Respiratory Medicine, Tokyo Medical University Ibaraki Medical Center, 3-20-1 Chuou, Ami, Inashiki, Ibaraki 300-0395, Japan.
| |
Collapse
|
19
|
Abu El-Asrar AM, Al-Mezaine HS, Ola MS. Pathophysiology and management of diabetic retinopathy. EXPERT REVIEW OF OPHTHALMOLOGY 2014. [DOI: 10.1586/eop.09.52] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
20
|
Huang CS, Chuang CH, Lo TF, Hu ML. Anti-angiogenic effects of lycopene through immunomodualtion of cytokine secretion in human peripheral blood mononuclear cells. J Nutr Biochem 2013; 24:428-34. [DOI: 10.1016/j.jnutbio.2012.01.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Revised: 12/20/2011] [Accepted: 01/06/2012] [Indexed: 01/03/2023]
|
21
|
Abu El-Asrar AM, Nawaz MI, Kangave D, Mairaj Siddiquei M, Geboes K. Angiogenic and vasculogenic factors in the vitreous from patients with proliferative diabetic retinopathy. J Diabetes Res 2013; 2013:539658. [PMID: 23671874 PMCID: PMC3647558 DOI: 10.1155/2013/539658] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2012] [Accepted: 02/12/2013] [Indexed: 01/26/2023] Open
Abstract
This study was conducted to determine levels of angiogenic and endothelial progenitor cell mobilizing (vasculogenic) factors in vitreous fluid from proliferative diabetic retinopathy (PDR) patients and correlate their levels with clinical disease activity. Vascular endothelial growth factor (VEGF), soluble vascular endothelial growth factor receptor-2 (sVEGFR-2), stem cell factor (SCF), soluble c-kit (s-kit), endothelial nitric oxide synthase (eNOS), and prostaglandin E2 (PGE2) levels were measured by ELISA in vitreous samples from 34 PDR and 15 nondiabetic patients. eNOS was not detected. VEGF, sVEGFR-2, SCF, and s-kit levels were significantly higher in PDR with active neovascularization compared with quiescent PDR and nondiabetic patients (P < 0.001; 0.007; 0.001; <0.001, resp.). In contrast, PGE2 levels were significantly higher in nondiabetic patients compared with PDR patients (P < 0.001). There were significant correlations between levels of sVEGFR-2 versus SCF (r = 0.950, P < 0.001), sVEGFR-2 versus s-kit (r = 0.941, P < 0.001), and SCF versus s-kit (r = 0.970, P < 0.001). Our findings suggest that upregulation of VEGF, sVEGFR-2, SCF, and s-kit supports the contributions of angiogenesis and vasculogenesis in pathogenesis of PDR.
Collapse
Affiliation(s)
- Ahmed M. Abu El-Asrar
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
- Department of Ophthalmology, King Abdulaziz University Hospital, Old Airport Road, P.O. Box 245, Riyadh 11411, Saudi Arabia
- *Ahmed M. Abu El-Asrar:
| | - Mohd Imtiaz Nawaz
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Dustan Kangave
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | | | - Karel Geboes
- Laboratory of Histochemistry and Cytochemistry, University of Leuven, Belgium
| |
Collapse
|
22
|
El-Asrar AMA. Role of inflammation in the pathogenesis of diabetic retinopathy. Middle East Afr J Ophthalmol 2012; 19:70-4. [PMID: 22346117 PMCID: PMC3277027 DOI: 10.4103/0974-9233.92118] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Diabetic retinopathy (DR) remains a major cause of worldwide preventable blindness. The microvasculature of the retina responds to hyperglycemia through a number of biochemical changes, including activation of protein kinase C, increased advanced glycation end products formation, polyol pathway, and oxidative stress, and activation of the renin angiotensin system (RAS). There is an accumulating body of evidence that inflammation plays a prominent role in the pathogenesis of DR.
Collapse
Affiliation(s)
- Ahmed M Abu El-Asrar
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
23
|
HuR keeps an angiogenic switch on by stabilising mRNA of VEGF and COX-2 in tumour endothelium. Br J Cancer 2011; 104:819-29. [PMID: 21285980 PMCID: PMC3048211 DOI: 10.1038/bjc.2011.20] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background: Tumour stromal cells differ from its normal counterpart. We have shown that tumour endothelial cells (TECs) isolated from tumour tissues are also abnormal. Furthermore, we found that mRNAs of vascular endothelial growth factor-A (VEGF-A) and cyclooxygenase-2 (COX-2) were upregulated in TECs. Vascular endothelial growth factor-A and COX-2 are angiogenic factors and their mRNAs contain an AU-rich element (ARE). AU-rich element-containing mRNAs are reportedly stabilised by Hu antigen R (HuR), which is exported to the cytoplasm. Methods: Normal endothelial cell (NEC) and two types of TECs were isolated. We evaluated the correlation of HuR and accumulation of VEGF-A and COX-2 mRNAs in TECs and effects of HuR on biological phenotypes of TECs. Results: The HuR protein was accumulated in the cytoplasm of TECs, but not in NECs. Vascular endothelial growth factor-A and COX-2 mRNA levels decreased due to HuR knockdown and it was shown that these ARE-mRNA were bound to HuR in TECs. Furthermore, HuR knockdown inhibited cell survival, random motility, tube formation, and Akt phosphorylation in TECs. Conclusion: Hu antigen R is associated with the upregulation of VEGF-A and COX-2 mRNA in TECs, and has an important role in keeping an angiogenic switch on, through activating angiogenic phenotype in tumour endothelium.
Collapse
|
24
|
Kumar VBS, Viji RI, Kiran MS, Sudhakaran PR. Angiogenic effect of laminin involves modulation of cyclooxygenase-2 and prostaglandin levels. Exp Biol Med (Maywood) 2010; 236:44-51. [PMID: 21148739 DOI: 10.1258/ebm.2010.010155] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The molecular mechanism of the angiogenic effect of laminin (Ln) was studied using human umbilical vein endothelial cells (HUVECs) maintained in culture on Ln-1 substratum. High-pressure liquid chromatography analysis showed that in cells maintained on Ln, the levels of proangiogenic prostaglandin E(2) (PGE(2)) increased and that of antiangiogenic PGD(2) decreased. The angiogenic effect of PGE(2) and PGD(2) was confirmed by assessing the expression of CD31 and E-selectin in HUVECs. Immunoblot analysis, reverse transcription-polymerase chain reaction and cyclooxygenase (COX) assay showed increase in the expression and activity of COX-2 in cells maintained on Ln. Use of pharmacological inhibitors suggested that the modulation in the expression of COX-2 and thereby the levels of PGE(2) and PGD(2) in endothelial cells by Ln is mediated through the α(6)β(4) integrin-p38MAPK (mitogen-activated protein kinase)-NF-κB signaling pathway.
Collapse
Affiliation(s)
- V B Sameer Kumar
- Department of Biochemistry, University of Kerala, Thiruvananthapuram 695581, Kerala, India
| | | | | | | |
Collapse
|
25
|
Fujino H, Toyomura K, Chen XB, Regan JW, Murayama T. Prostaglandin E₂ regulates cellular migration via induction of vascular endothelial growth factor receptor-1 in HCA-7 human colon cancer cells. Biochem Pharmacol 2010; 81:379-87. [PMID: 21070749 DOI: 10.1016/j.bcp.2010.11.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Revised: 11/01/2010] [Accepted: 11/02/2010] [Indexed: 01/03/2023]
Abstract
An important event in the development of tumors is angiogenesis, or the formation of new blood vessels. Angiogenesis is also known to be involved in tumor cell metastasis and is dependent upon the activity of the vascular endothelial growth factor (VEGF) signaling pathway. Studies of mice in which the EP3 prostanoid receptors have been genetically deleted have shown a role for these receptors in cancer growth and angiogenesis. In the present study, human colon cancer HCA-7 cells were used as a model system to understand the potential role of EP3 receptors in tumor cell migration. We now show that stimulation of HCA-7 cells with PGE₂ enhanced the up-regulation of VEGF receptor-1 (VEGFR-1) expression by a mechanism involving EP3 receptor-mediated activation of phosphatidylinositol 3-kinase and the extracellular signal-regulated kinases. Moreover, the PGE₂ stimulated increase in VEGFR-1 expression was accompanied by an increase in the cellular migration of HCA-7 cells. Given the known involvement of VEGFR-1 in cellular migration, our results suggest that EP3 receptors may contribute to tumor cell metastasis by increasing cellular migration through the up-regulation of VEGFR-1 signaling.
Collapse
Affiliation(s)
- Hiromichi Fujino
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, Japan.
| | | | | | | | | |
Collapse
|
26
|
Tumor secretion of VEGF induces endothelial cells to suppress T cell functions through the production of PGE2. J Immunother 2010; 33:126-35. [PMID: 20145550 DOI: 10.1097/cji.0b013e3181b91c9c] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Endothelial cells are potent regulators of immune cell functions and have therefore been examined to determine their role in tumor-induced immune suppression. Previous studies by our laboratory showed that exposure to Lewis lung carcinoma (LLC)-secreted products induced endothelial cells to suppress T-cell functions in vitro. The current studies examined in vitro and in vivo the mechanism by which tumors induce the formation of suppressor endothelial cells and the means by which suppressor endothelial cells disrupt T-cell functions. In vitro studies demonstrated that inhibition of tumor-derived VEGF with neutralizing antibodies or treatment of endothelial cells with the VEGF receptor tyrosine kinase inhibitor, SU5416, prevented endothelial cells from being induced to suppress T-cell functions. Treatment of tumor-bearing mice with SU5416 blocked the development of endothelial cells that are suppressive to CD4 and CD8 T-cell functions. We next examined the role of suppressor endothelial cell-derived PGE2 in the inhibition of T-cell functions. Abrogation of endothelial cell PGE2 production in vitro with indomethacin prevented tumor-conditioned media from stimulating endothelial cell production of immune inhibitory activity toward T-cell functions. Similar treatment of endothelial cells from lungs of tumor-bearing mice blocked their capacity to produce T-cell-inhibitory mediators. These studies demonstrate that tumor-derived VEGF induces endothelial cells to upregulate production of PGE2 which, in turn, leads to suppression of T-cell functions.
Collapse
|
27
|
Kang JM, Kim N, Kim B, Kim JH, Lee BY, Park JH, Lee MK, Lee HS, Kim JS, Jung HC, Song IS. Enhancement of gastric ulcer healing and angiogenesis by cochinchina Momordica seed extract in rats. J Korean Med Sci 2010; 25:875-81. [PMID: 20514308 PMCID: PMC2877244 DOI: 10.3346/jkms.2010.25.6.875] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2009] [Accepted: 11/12/2009] [Indexed: 12/13/2022] Open
Abstract
Cochinchina momordica seed is the dried ripe seed of Momordica cochinchinensis, a perennial vine. The antiulcer effect of an extract from cochinchina momordica seeds (SK-MS10) was evaluated in a rat model of acetic acid-induced gastric ulcers. Gastric ulcers were produced by subserosal injection of acetic acid. SK-MS10 (200 mg/kg) or vehicle was administered orally once per day for 14 days after the acetic acid injection. The stomach was removed and the ulcer size measured at day 7 and 14 of the treatment. Expression of vascular endothelial growth factor (VEGF) was assessed by real-time RT-PCR and Western blot analysis. In addition, the microvasculature density (MVD) adjacent to the ulcer margin was examined by immunohistochemistry. The treatment with SK-MS10 for 7 and 14 days significantly accelerated ulcer healing and increased the expression of mRNA (at day 7) as well as VEGF protein (at day 14) compared to the vehicle-treated rats. The MVD for factor VIII was also higher in the SK-MS10 treatment group compared to the vehicle-treated rats; however, these differences were not statistically significant. These results suggest that SK-MS10 treatment accelerates the healing of gastric ulcers via upregulation of VEGF and angiogenesis in an acetic acid rat model.
Collapse
Affiliation(s)
- Jung Mook Kang
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Nayoung Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | | | - Joo-Hyon Kim
- Life Science R&D Center, SK Chemicals, Suwon, Korea
| | | | - Ji Hyun Park
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Mi Kyoung Lee
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Hye Seung Lee
- Department of Pathology, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Joo Sung Kim
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Hyun Chae Jung
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - In Sung Song
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
28
|
Bilotas M, Meresman G, Stella I, Sueldo C, Barañao RI. Effect of aromatase inhibitors on ectopic endometrial growth and peritoneal environment in a mouse model of endometriosis. Fertil Steril 2010; 93:2513-8. [DOI: 10.1016/j.fertnstert.2009.08.058] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2009] [Revised: 08/24/2009] [Accepted: 08/24/2009] [Indexed: 10/20/2022]
|
29
|
Keightley MC, Brown P, Jabbour HN, Sales KJ. F-Prostaglandin receptor regulates endothelial cell function via fibroblast growth factor-2. BMC Cell Biol 2010; 11:8. [PMID: 20092633 PMCID: PMC2824741 DOI: 10.1186/1471-2121-11-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2009] [Accepted: 01/21/2010] [Indexed: 11/25/2022] Open
Abstract
Background Prostaglandin (PG) F2α is a key regulator of endometrial function and exerts its biological action after coupling with its heptahelical G protein-coupled receptor (FP receptor). In endometrial adenocarcinoma the FP receptor expression is elevated. We have shown previously that PGF2α-FP receptor signalling in endometrial adenocarcinoma cells can upregulate several angiogenic factors including fibroblast growth factor-2 (FGF2). In the present study, we investigated the paracrine effect of conditioned medium produced via PGF2α-FP receptor signalling in endometrial adenocarcinoma cells stably expressing the FP receptor (Ishikawa FPS cells), on endothelial cell function. Results Conditioned medium (CM) was collected from FPS cells after 24 hrs treatment with either vehicle (V CM) or 100 nM PGF2α (P CM). Treatment of human umbilical vein endothelial cells (HUVECs) with P CM significantly enhanced endothelial cell differentiation (network formation) and proliferation. Using chemical inhibitors of intracellular signalling, we found that P CM-stimulated endothelial cell network formation was mediated by secretion of endothelial PGF2α and activation of endothelial FP receptors, following FGF2-FGFR1 signalling, phosphorylation of ERK1/2 and induction of COX-2. Whereas, P CM stimulation of endothelial cell proliferation occurred independently of PGF2α secretion via an FGF2-FGFR1-ERK1/2 dependent mechanism involving activation of the mTOR pathway. Conclusions Taken together, we have shown a novel mechanism whereby epithelial prostaglandin F2α-FP signalling regulates endothelial cell network formation and proliferation. In addition we provide novel in vitro evidence to suggest that prostaglandin F2α can directly regulate endothelial cell network formation but not endothelial cell proliferation. These findings have relevance for pathologies where the FP receptor is aberrantly expressed, such as endometrial adenocarcinoma, and provide in vitro evidence to suggest that targeting the FP receptor could provide an anti-angiogenic approach to reducing tumour vasculature and growth.
Collapse
Affiliation(s)
- Margaret C Keightley
- MRC Human Reproductive Sciences Unit, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH164TJ, UK
| | | | | | | |
Collapse
|
30
|
Antoniotti S, Fattori P, Tomatis C, Pessione E, Munaron L. Arachidonic acid and calcium signals in human breast tumor-derived endothelial cells: a proteomic study. J Recept Signal Transduct Res 2009; 29:257-65. [DOI: 10.1080/10799890903208039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
31
|
Eligini S, Arenaz I, Barbieri SS, Faleri ML, Crisci M, Tremoli E, Colli S. Cyclooxygenase-2 mediates hydrogen peroxide-induced wound repair in human endothelial cells. Free Radic Biol Med 2009; 46:1428-36. [PMID: 19269318 DOI: 10.1016/j.freeradbiomed.2009.02.026] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2008] [Revised: 02/09/2009] [Accepted: 02/25/2009] [Indexed: 01/07/2023]
Abstract
Cyclooxygenase-2 (Cox-2) metabolites produced by endothelial cells, particularly prostacyclin and prostaglandin E(2), profoundly affect vascular tone, regional blood flow, and angiogenesis. We have previously shown that reactive oxygen species induce Cox-2 expression in human endothelial cells (HUVEC), either on their own or as components of the signaling pathway triggered by TNFalpha, the prototypical inflammatory cytokine. Here we investigated the role of Cox-2 induced by hydrogen peroxide (H(2)O(2)), either exogenous or endogenously generated by TNFalpha, in the repair of a mechanically wounded HUVEC monolayer and probed the sources of H(2)O(2) that are involved in TNFalpha signaling and the pathways through which H(2)O(2) modulates Cox-2 expression. Results indicate that H(2)O(2)-induced Cox-2 activity participates in the repair of wounded monolayers. Both NADPH oxidase and the mitochondrial electron transport chain are involved in H(2)O(2) generation. Signaling triggered by H(2)O(2) for Cox-2 induction acts by increasing the protein tyrosine kinase phosphorylation that follows inhibition of protein phosphatase activity. The activation of p38 MAPK and its interaction in the inhibition of serine/threonine phosphatase activity are both critical steps in this event. We conclude that Cox-2 induced by H(2)O(2) plays an important role in promoting endothelial wound repair after injury, so that the cardioprotective effect of Cox-2 is due at least in part to its power of healing damaged endothelium.
Collapse
Affiliation(s)
- Sonia Eligini
- E. Grossi Paoletti Center, Department of Pharmacological Sciences, University of Milan, Italy
| | | | | | | | | | | | | |
Collapse
|
32
|
Park BC, Park SY, Lee JS, Mousa SA, Kim JT, Kwak MK, Kang KW, Lee ES, Choi HG, Yong CS, Kim JA. The anti-angiogenic effects of 1-furan-2-yl-3-pyridin-2-yl-propenone are mediated through the suppression of both VEGF production and VEGF-induced signaling. Vascul Pharmacol 2009; 50:123-31. [DOI: 10.1016/j.vph.2008.11.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2008] [Revised: 10/27/2008] [Accepted: 11/14/2008] [Indexed: 11/12/2022]
|
33
|
Tamura K, Hashimoto K, Suzuki K, Yoshie M, Kutsukake M, Sakurai T. Insulin-like growth factor binding protein-7 (IGFBP7) blocks vascular endothelial cell growth factor (VEGF)-induced angiogenesis in human vascular endothelial cells. Eur J Pharmacol 2009; 610:61-7. [PMID: 19374835 DOI: 10.1016/j.ejphar.2009.01.045] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2008] [Revised: 01/07/2009] [Accepted: 01/27/2009] [Indexed: 11/29/2022]
Abstract
Insulin-like growth factor binding protein-7 (IGFBP7) and vascular endothelial growth factor (VEGF) are expressed in vascular endothelial cells in several tumor types. In this study, we examined the effect of IGFBP7 on VEGF-induced tube formation in cultured human umbilical vein endothelial cells (HUVECs) and its potential action in the modulation of VEGF signaling in vascular cells. IGFBP7 treatment suppressed VEGF-induced tube formation, proliferation, and the phosphorylation of mitogen-activated protein kinase kinase (MEK) and extracellular signal-regulated kinase (ERK) 1/2 in HUVECs. IGFBP7 attenuated VEGF-enhanced cyclooxygenase (COX)-2 and VEGF mRNA expression, and prostaglandin E(2) secretion. Knocking down endogenous IGFBP7 enhanced COX-2 and VEGF mRNA expression. A significant increase in IGFBP7-induced caspases was not observed in the presence of VEGF. These findings indicate that IGFBP7 can modulate the stimulatory effect of VEGF on angiogenesis by interfering with VEGF expression as well as VEGF signaling and not by inducing apoptosis.
Collapse
Affiliation(s)
- Kazuhiro Tamura
- Department of Endocrine Pharmacology, Tokyo University of Pharmacy & Life Sciences, Horinouchi 1432-1, Hachioji, Tokyo, 192-0392, Japan.
| | | | | | | | | | | |
Collapse
|
34
|
Roles of cyclooxygenase-2 in microvascular endothelial cell proliferation induced by basic fibroblast growth factor. Chin Med J (Engl) 2008. [DOI: 10.1097/00029330-200812020-00023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
35
|
Human EP3I prostanoid receptor induces VEGF and VEGF receptor-1 mRNA expression. Biochem Biophys Res Commun 2008; 377:1173-8. [DOI: 10.1016/j.bbrc.2008.10.140] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2008] [Accepted: 10/22/2008] [Indexed: 01/01/2023]
|
36
|
Chen N, Scarpa R, Zhang L, Seiberg M, Lin CB. Nondenatured soy extracts reduce UVB-induced skin damage via multiple mechanisms. Photochem Photobiol 2008; 84:1551-9. [PMID: 18627522 DOI: 10.1111/j.1751-1097.2008.00383.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
UV irradiation results in DNA damage, inflammation and immunosuppression, leading to the development of basal and squamous cell carcinomas. Earlier data show that topical treatment with nondenatured soy extracts reduced the incidence and delayed the development/progression of already-initiated skin tumors in high-risk hairless mice. Here we show that pretreatment with nondenatured soy extracts reduced UVB-induced Thymine-Thymine (TT) dimer formation. In vitro, nondenatured soy extracts enhanced UVB-induced checkpoint kinase-1 (Chk1) activation, suggesting a delay in cell cycle progression that enables longer time for DNA repair. Soy also reduced UVB-induced cyclo-oxygenase-2 (COX-2) expression and prostaglandin E2 secretion, and inhibited p38 MAP kinase activation, suggesting its anti-inflammatory activity. Mice pretreated topically with nondenatured soy extracts had reduced levels of UVB-induced TT dimers and COX-2 expression in their skins compared to UVB alone. The nondenatured soy extracts also inhibited vascular endothelial growth factor-induced endothelial tube formation in Matrigel, suggesting a possible inhibitory effect on angiogenesis and tumor progression. Taken together, nondenatured soy extracts could prevent or reduce UVB-induced skin damage via multiple mechanisms, affecting both the initiation and the progression of skin cancer. These data suggest that topical application of nondenatured soy extracts could potentially reduce the incidence of skin cancer.
Collapse
Affiliation(s)
- Nannan Chen
- The Johnson & Johnson Skin Research Center, Consumer Products Worldwide, Johnson & Johnson Consumer Companies, Inc., Skillman, NJ, USA
| | | | | | | | | |
Collapse
|
37
|
Matsuzuka T, Miller K, Pickel L, Doi C, Ayuzawa R, Tamura M. The synergistic induction of cyclooxygenase-2 in lung fibroblasts by angiotensin II and pro-inflammatory cytokines. Mol Cell Biochem 2008; 320:163-71. [PMID: 18827978 DOI: 10.1007/s11010-008-9918-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2008] [Accepted: 09/15/2008] [Indexed: 01/06/2023]
Abstract
Although we have demonstrated that Angiotensin II (Ang II) signaling plays a role in colon and lung tumorigenesis, the precise mechanisms by which Ang II stimulates tumorigenesis remain unclear. The aim of this study was to investigate the synergistic induction of COX-2 by Ang II and pro-inflammatory cytokines in lung fibroblasts. We also compared the efficiencies of Ang II-dependent COX-2 induction in lung epithelial cells and stromal cells. Ang II induced COX-2 expression in lung fibroblasts in a dose-dependent manner (10(-9) to 10(-7) M) through the Ang II subtype 1 receptor (AT(1)). In addition, Ang II synergistically stimulated the induction of COX-2 by pro-inflammatory cytokines, IL-1beta, or TNF-alpha. Our results indicate that the pro-tumorigenic function of Ang II is attributable, in part, to its strong stimulatory effect of COX-2 expression in lung fibroblasts in which synergistic stimulation with pro-inflammatory cytokines was evident. It is also suggested that the AT(1) receptor in lung fibroblasts may be a rational target for chemoprevention of lung cancer.
Collapse
Affiliation(s)
- Takaya Matsuzuka
- Anatomy & Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | | | | | | | | | | |
Collapse
|
38
|
Falkenstein IA, Cheng L, Wong-Staal F, Tammewar AM, Barron EC, Silva GA, Li QX, Yu D, Hysell M, Liu G, Ke N, Macdonald JE, Freeman WR. Toxicity and intraocular properties of a novel long-acting anti-proliferative and anti-angiogenic compound IMS2186. Curr Eye Res 2008; 33:599-609. [PMID: 18600493 DOI: 10.1080/02713680802226582] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
PURPOSE To investigate the intraocular properties and toxicity of IMS2186, a small molecule developed as an anti-choroidal neovascularization (anti-CNV) drug. MATERIALS AND METHODS Cellular toxicity and mechanism of action was tested on cell lines in vitro. Intraocular studies used rabbits for drug dissolution as well as toxicity and rats for the treatment study as well as the toxicity confirmation study. Rabbits' eyes were injected with 2.5 mg of IMS2186 and observed for 36 weeks. Laser-induced CNV in rats was treated with IMS2186, Kenalog, or phosphate-buffered saline (pBS). Fluorescein angiography (FA) and immunohistochemical processing of the globes was performed. RESULTS The anti-proliferative IC(50) of IMS2186 for human fibroblast cells was 1.0-3.0 microM and 0.3-3.0 microM for human cancer cells; the IC(50) of IMS2186 to inhibit endothelial tube formation was 0.1-0.3 microM. The IC(50) of IMS2186 for inhibiting the production of pro-inflammatory cytokines was 0.3-1 microM. The IC(50) of IMS2186 for inhibiting macrophage migration was 1 micrM. These biological properties were not species specific. IMS2186 can be formulated as a suspension for long-lasting release and when delivered intraocularly, no intraocular toxicity was observed by slit lamp exam, fundus exam, intraocular pressure measurements, or by electroretinography. FA showed a reduction in the leakage in eyes treated with IMS2186 and triamcinolone acetonide; DAPI staining also showed significantly less cellularity in IMS2186-treated lesions as compared to PBS (p = 0.0025). CONCLUSION IMS2186 may be a safe intraocular therapeutic agent for intraocular proliferation and angiogenesis.
Collapse
Affiliation(s)
- Iryna A Falkenstein
- Joan and Irwin Jacobs Retina Center, Department of Ophthalmology, Shiley Eye Center, University of California, San Diego, California, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Olivares C, Bilotas M, Buquet R, Borghi M, Sueldo C, Tesone M, Meresman G. Effects of a selective cyclooxygenase-2 inhibitor on endometrial epithelial cells from patients with endometriosis. Hum Reprod 2008; 23:2701-8. [DOI: 10.1093/humrep/den315] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
|
40
|
Fiorio Pla A, Grange C, Antoniotti S, Tomatis C, Merlino A, Bussolati B, Munaron L. Arachidonic acid-induced Ca2+ entry is involved in early steps of tumor angiogenesis. Mol Cancer Res 2008; 6:535-45. [PMID: 18403634 DOI: 10.1158/1541-7786.mcr-07-0271] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Growth factor-induced intracellular calcium signals in endothelial cells regulate cytosolic and nuclear events involved in the angiogenic process. Among the intracellular messengers released after proangiogenic stimulation, arachidonic acid (AA) plays a key role and its effects are strictly related to calcium homeostasis and cell proliferation. Here, we studied AA-induced intracellular calcium signals in endothelial cells derived from human breast carcinomas (B-TEC). AA promotes B-TEC proliferation and organization of vessel-like structures in vitro. The effect is directly mediated by the fatty acid without a significant contribution of its metabolites. AA induces Ca(2+)(i) signals in the entire capillary-like structure during the early phases of tubulogenesis in vitro. No such responses are detectable in B-TECs organized in more structured tubules. In B-TECs growing in monolayer, AA induces two different signals: a Ca(2+)(i) increase due to Ca(2+) entry and an inhibition of store-dependent Ca(2+) entry induced by thapsigargin or ATP. An inhibitor of Ca(2+) entry and angiogenesis, carboxyamidotriazole, significantly and specifically decreases AA-induced B-TEC tubulogenesis, as well as AA-induced Ca(2+) signals in B-TECs. We conclude that (a) AA-activated Ca(2+) entry is associated with the progression through the early phases of angiogenesis, mainly involving proliferation and tubulogenesis, and it is down-regulated during the reorganization of tumor-derived endothelial cells in capillary-like structures; and (b) inhibition of AA-induced Ca(2+) entry may contribute to the antiangiogenic action of carboxyamidotriazole.
Collapse
Affiliation(s)
- Alessandra Fiorio Pla
- Department of Animal and Human Biology, University of Torino, Via Accademia Albertina 13, 10123 Turin, Italy.
| | | | | | | | | | | | | |
Collapse
|
41
|
Lam EKY, Yu L, Wong HPS, Wu WKK, Shin VY, Tai EKK, So WHL, Woo PCY, Cho CH. Probiotic Lactobacillus rhamnosus GG enhances gastric ulcer healing in rats. Eur J Pharmacol 2007; 565:171-9. [PMID: 17395175 DOI: 10.1016/j.ejphar.2007.02.050] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2006] [Revised: 02/09/2007] [Accepted: 02/13/2007] [Indexed: 12/19/2022]
Abstract
Probiotics are widely used as functional foods which have been advocated for the maintenance of gastrointestinal microflora equilibrium and treatment of gastrointestinal disorders. However, studying the role of probiotics in peptic ulcer disease is limited. The aim of the present study is to investigate the effect of a probiotic strain Lactobacillus rhamnosus GG on gastric ulcer and to elucidate the mechanisms involved. Gastric kissing ulcers were induced in rats by acetic acid (60% v/v). L. rhamnosus GG was given intragastrically at 10(8) cfu/day or 10(9) cfu/day for three consecutive days after ulcer induction. L. rhamnosus GG successfully colonized in the gastric mucosa especially at the ulcer margin. It also significantly and dose-dependently reduced gastric ulcer area. Cell apoptosis to cell proliferation ratio was strongly decreased and accompanied by significant up-regulation of ornithine decarboxylase (ODC) and B-cell lymphoma 2 (Bcl-2) protein expression at the ulcer margin. Angiogenesis was also significantly stimulated together with the induction of vascular endothelial growth factor (VEGF) expression. Furthermore, L. rhamnosus GG up-regulated the phosphorylation level of epidermal growth factor receptor (EGF receptor) without altering the total EGF receptor expression. These findings suggested that L. rhamnosus GG enhanced gastric ulcer healing via the attenuation of cell apoptosis to cell proliferation ratio and increase in angiogenesis. Regulators of these processes such as ODC, Bcl-2, VEGF and EGF receptor are likely to be involved in the healing action of L. rhamnosus GG for gastric ulcer.
Collapse
Affiliation(s)
- Emily K Y Lam
- Department of Pharmacology, The University of Hong Kong, China
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Zhao QT, Yue SQ, Cui Z, Wang Q, Cui X, Zhai HH, Zhang LH, Dou KF. Potential involvement of the cyclooxygenase-2 pathway in hepatocellular carcinoma-associated angiogenesis. Life Sci 2006; 80:484-92. [PMID: 17097688 DOI: 10.1016/j.lfs.2006.09.038] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2006] [Revised: 08/21/2006] [Accepted: 09/29/2006] [Indexed: 02/04/2023]
Abstract
Angiogenesis plays a crucial role in tumor development and growth. The present study was carried out to investigate the potential involvement of the cyclooxygenase-2 (Cox-2) pathway in the regulation of angiogenesis in hepatocellular carcinoma (HCC). We inhibited Cox-2 expression in HCC cell line HuH-7 by selective Cox-2 inhibitor (SC-58635) or Cox-2 siRNA. Conditioned media (CMs) from HuH-7 cells were used in angiogenic assays in vitro and in vivo. Compared with CMs from untreated and negative siRNA treated HuH-7 cells, CMs from SC-58635 and Cox-2 siRNA treated HuH-7 dramatically suppressed the proliferation, migration, and differentiation of human umbilical vein endothelial cells (HUVECs) in vitro and neovascularization in vivo. These inhibitory effects could be partially reversed by the addition of exogenous PGE2 to CMs. Furthermore, Cox-2 inhibition by SC-58635 resulted in PGE2 reduction accompanied by the down-regulation of four PGE2 receptor (EP receptor) subtypes. Treatment with SC-58635 led to the down-expression of proangiogenic factors such as VEGF, HGF, FGF2, ANGPT1 and ANGPT2 in HCC. An approximately 78% reduction of VEGF level has been found in the CM from SC-58635 treated HuH-7. Our results suggest an involvement of Cox-2 in the control of HCC-associated angiogenesis. PGE2 as a vital angiogenic factor may act directly on endothelial cells to promote HuH-7-stimulated angiogenic process. Moreover, Cox-2/PGE2/EP/VEGF pathway possibly also contributes to tumor angiogenesis in HCC. This study provides the rationale for clinical studies of Cox-2 inhibitors on the treatment or chemoprevention of HCC.
Collapse
Affiliation(s)
- Qing-Tao Zhao
- Department of Hepatobiliary Sugery, Xijing Hospital, the Fourth Military Medical University, Xi'an 710032, China
| | | | | | | | | | | | | | | |
Collapse
|