1
|
de Melo Junior AF, Escouto L, Pimpão AB, Peixoto P, Brasil G, Ronchi SN, Pereira SA, Bissoli NS. Anabolic-androgen steroids: A possible independent risk factor to Cardiovascular, Kidney and Metabolic Syndrome. Toxicol Appl Pharmacol 2025; 495:117238. [PMID: 39855308 DOI: 10.1016/j.taap.2025.117238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/11/2024] [Accepted: 01/18/2025] [Indexed: 01/27/2025]
Abstract
Millions of individuals make illicit use of anabolic-androgenic steroids (AAS), remaining a public health issue. It often leads to detrimental effects, including cardiovascular and renal diseases, besides hormonal and metabolic imbalances. The objective of this review is to emphasize the contribution of oxidative stress and inflammation to these effects and connect the findings of experimental animal studies with the alterations found in clinical contexts, in AAS users. The study's results showed that AAS promotes a redox disruption and a pro-inflammatory state on organs that are involved in important physiologic processes. These drugs increase inflammatory high-sensitivity C-reactive protein (hs-CRP) and cytokines that contribute to the progression of atherosclerosis, cardiovascular disease risk or endpoints, including stroke, myocardial infarction and death. In the kidney, the AAS increase proteinuria and structural damage. Studies have linked AAS abuse with high BP, low HDL-C levels, high triglyceride levels and impaired fasting blood glucose that characterize Metabolic syndrome. Overall, the studies indicate that oxidative stress, apoptosis, and AAS-mediated inflammation play a significant role in tissue damage, regardless of the dose and duration of exposure, and we point it as a putative independent risk factor to Cardiovascular, Kidney and Metabolic syndrome.
Collapse
Affiliation(s)
- Antonio Ferreira de Melo Junior
- iNOVA4HEALTH, NOVA Medical School, Faculdade de Ciências Médicas (NMS/FCM), Universidade Nova de Lisboa, 1159-056 Lisboa, Portugal; Centro Clínico e Académico de Lisboa, 1156-056 Lisboa, Portugal.
| | - Leonardo Escouto
- Department of Physiological Sciences, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil
| | - António B Pimpão
- iNOVA4HEALTH, NOVA Medical School, Faculdade de Ciências Médicas (NMS/FCM), Universidade Nova de Lisboa, 1159-056 Lisboa, Portugal; Centro Clínico e Académico de Lisboa, 1156-056 Lisboa, Portugal.
| | - Pollyana Peixoto
- Department of Physiological Sciences, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil
| | | | - Silas Nascimento Ronchi
- Department of Physiological Sciences, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil
| | - Sofia Azeredo Pereira
- iNOVA4HEALTH, NOVA Medical School, Faculdade de Ciências Médicas (NMS/FCM), Universidade Nova de Lisboa, 1159-056 Lisboa, Portugal; Centro Clínico e Académico de Lisboa, 1156-056 Lisboa, Portugal.
| | - Nazaré Souza Bissoli
- iNOVA4HEALTH, NOVA Medical School, Faculdade de Ciências Médicas (NMS/FCM), Universidade Nova de Lisboa, 1159-056 Lisboa, Portugal; Department of Physiological Sciences, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil
| |
Collapse
|
2
|
Totoń-Żurańska J, Mikolajczyk TP, Saju B, Guzik TJ. Vascular remodelling in cardiovascular diseases: hypertension, oxidation, and inflammation. Clin Sci (Lond) 2024; 138:817-850. [PMID: 38920058 DOI: 10.1042/cs20220797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 06/08/2024] [Accepted: 06/10/2024] [Indexed: 06/27/2024]
Abstract
Optimal vascular structure and function are essential for maintaining the physiological functions of the cardiovascular system. Vascular remodelling involves changes in vessel structure, including its size, shape, cellular and molecular composition. These changes result from multiple risk factors and may be compensatory adaptations to sustain blood vessel function. They occur in diverse cardiovascular pathologies, from hypertension to heart failure and atherosclerosis. Dynamic changes in the endothelium, fibroblasts, smooth muscle cells, pericytes or other vascular wall cells underlie remodelling. In addition, immune cells, including macrophages and lymphocytes, may infiltrate vessels and initiate inflammatory signalling. They contribute to a dynamic interplay between cell proliferation, apoptosis, migration, inflammation, and extracellular matrix reorganisation, all critical mechanisms of vascular remodelling. Molecular pathways underlying these processes include growth factors (e.g., vascular endothelial growth factor and platelet-derived growth factor), inflammatory cytokines (e.g., interleukin-1β and tumour necrosis factor-α), reactive oxygen species, and signalling pathways, such as Rho/ROCK, MAPK, and TGF-β/Smad, related to nitric oxide and superoxide biology. MicroRNAs and long noncoding RNAs are crucial epigenetic regulators of gene expression in vascular remodelling. We evaluate these pathways for potential therapeutic targeting from a clinical translational perspective. In summary, vascular remodelling, a coordinated modification of vascular structure and function, is crucial in cardiovascular disease pathology.
Collapse
Affiliation(s)
- Justyna Totoń-Żurańska
- Center for Medical Genomics OMICRON, Jagiellonian University Medical College, Krakow, Poland
| | - Tomasz P Mikolajczyk
- Center for Medical Genomics OMICRON, Jagiellonian University Medical College, Krakow, Poland
- Department of Internal Medicine, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Blessy Saju
- BHF Centre for Research Excellence, Centre for Cardiovascular Sciences, The University of Edinburgh, Edinburgh, U.K
| | - Tomasz J Guzik
- Center for Medical Genomics OMICRON, Jagiellonian University Medical College, Krakow, Poland
- Department of Internal Medicine, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland
- BHF Centre for Research Excellence, Centre for Cardiovascular Sciences, The University of Edinburgh, Edinburgh, U.K
| |
Collapse
|
3
|
Alvarado-Ojeda ZA, Trejo-Moreno C, Ferat-Osorio E, Méndez-Martínez M, Fragoso G, Rosas-Salgado G. Role of Angiotensin II in Non-Alcoholic Steatosis Development. Arch Med Res 2024; 55:102986. [PMID: 38492325 DOI: 10.1016/j.arcmed.2024.102986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 02/23/2024] [Accepted: 03/05/2024] [Indexed: 03/18/2024]
Abstract
Fatty liver is a multifactorial disease characterized by excessive accumulation of lipids in hepatocytes (steatosis), insulin resistance, oxidative stress, and inflammation. This disease has a major public health impact because it is the first stage of a chronic and degenerative process in the liver that can lead to steatohepatitis, cirrhosis, and liver cancer. Although this disease is mainly diagnosed in patients with obesity, type 2 diabetes mellitus, and dyslipidemia, recent evidence indicates that vasoactive hormones such as angiotensin II (ANGII) not only promote endothelial dysfunction (ED) and hypertension, but also cause fatty liver, increase adipose tissue, and develop a pro-steatotic environment characterized by a low-grade systemic pro-inflammatory and pro-oxidant state, with elevated blood lipid levels. The role of ANGII in lipid accumulation has been little studied, so this review aims to summarize existing reports on the possible mechanism of action of ANGII in inducing lipid accumulation in hepatocytes.
Collapse
Affiliation(s)
| | - Celeste Trejo-Moreno
- Facultad de Medicina, Universidad Autónoma del Estado de Morelos, Cuernavaca Morelos, Mexico
| | - Eduardo Ferat-Osorio
- División de Investigación en Salud, Unidad de Investigación en Epidemiología Clínica, Hospital de Especialidades, Dr. Bernardo Sepúlveda Gutiérrez, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Marisol Méndez-Martínez
- Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana-Xochimilco, Mexico City, Mexico
| | - Gladis Fragoso
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Gabriela Rosas-Salgado
- Facultad de Medicina, Universidad Autónoma del Estado de Morelos, Cuernavaca Morelos, Mexico.
| |
Collapse
|
4
|
Herb M. NADPH Oxidase 3: Beyond the Inner Ear. Antioxidants (Basel) 2024; 13:219. [PMID: 38397817 PMCID: PMC10886416 DOI: 10.3390/antiox13020219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Reactive oxygen species (ROS) were formerly known as mere byproducts of metabolism with damaging effects on cellular structures. The discovery and description of NADPH oxidases (Nox) as a whole enzyme family that only produce this harmful group of molecules was surprising. After intensive research, seven Nox isoforms were discovered, described and extensively studied. Among them, the NADPH oxidase 3 is the perhaps most underrated Nox isoform, since it was firstly discovered in the inner ear. This stigma of Nox3 as "being only expressed in the inner ear" was also used by me several times. Therefore, the question arose whether this sentence is still valid or even usable. To this end, this review solely focuses on Nox3 and summarizes its discovery, the structural components, the activating and regulating factors, the expression in cells, tissues and organs, as well as the beneficial and detrimental effects of Nox3-mediated ROS production on body functions. Furthermore, the involvement of Nox3-derived ROS in diseases progression and, accordingly, as a potential target for disease treatment, will be discussed.
Collapse
Affiliation(s)
- Marc Herb
- Institute for Medical Microbiology, Immunology and Hygiene, Faculty of Medicine, University Hospital Cologne, University of Cologne, 50935 Cologne, Germany;
- German Centre for Infection Research, Partner Site Bonn-Cologne, 50931 Cologne, Germany
- Cologne Cluster of Excellence on Cellular Stress Responses in Aging-Associated Diseases (CECAD), 50931 Cologne, Germany
| |
Collapse
|
5
|
Mudgal R, Singh S. Xanthine Oxidoreductase in the Pathogenesis of Endothelial Dysfunction: An Update. Curr Hypertens Rev 2024; 20:10-22. [PMID: 38318826 DOI: 10.2174/0115734021277772240124075120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 12/04/2023] [Accepted: 12/19/2023] [Indexed: 02/07/2024]
Abstract
Xanthine oxidoreductase (XOR) is a rate-limiting enzyme in the formation of uric acid (UA) and is involved in the generation of reactive oxygen species (ROS). Overproduction of ROS has been linked to the pathogenesis of hypertension, atherosclerosis, and cardiovascular disease, with multiple studies over the last 30 years demonstrating that XOR inhibition is beneficial. The involvement of XOR and its constituents in the advancement of chronic inflammation and ROS, which are responsible for endothelial dysfunction, is the focus of this evidence-based review. An overabundance of XOR products and ROS appears to drive the inflammatory response, resulting in significant endothelium damage. It has also been demonstrated that XOR activity and ED are connected. Diabetes, hypertension, and cardiovascular disease are all associated with endothelial dysfunction. ROS mainly modifies the activity of vascular cells and can be important in normal vascular physiology as well as the development of vascular disease. Suppressing XOR activity appears to decrease endothelial dysfunction, probably because it lessens the generation of reactive oxygen species and the oxidative stress brought on by XOR. Although there has long been a link between higher vascular XOR activity and worse clinical outcomes, new research suggests a different picture in which positive results are mediated by XOR enzymatic activity. Here in this study, we aimed to review the association between XOR and vascular endothelial dysfunction. The prevention and treatment approaches against vascular endothelial dysfunction in atherosclerotic disease.
Collapse
Affiliation(s)
- Rajat Mudgal
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, Bihar, India
| | - Sanjiv Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, Bihar, India
| |
Collapse
|
6
|
Kazaleh M, Gioscia-Ryan R, Ailawadi G, Salmon M. Oxidative Stress and the Pathogenesis of Aortic Aneurysms. Biomedicines 2023; 12:3. [PMID: 38275364 PMCID: PMC10813769 DOI: 10.3390/biomedicines12010003] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/13/2023] [Accepted: 12/15/2023] [Indexed: 01/27/2024] Open
Abstract
Aortic aneurysms are responsible for significant morbidity and mortality. Despite their clinical significance, there remain critical knowledge gaps in the pathogenesis of aneurysm disease and the mechanisms involved in aortic rupture. Recent studies have drawn attention to the role of reactive oxygen species (ROS) and their down-stream effectors in chronic cardiovascular diseases and specifically in the pathogenesis of aortic aneurysm formation. This review will discuss current mechanisms of ROS in mediating aortic aneurysms, the failure of endogenous antioxidant systems in chronic vascular diseases, and their relation to the development of aortic aneurysms.
Collapse
Affiliation(s)
- Matthew Kazaleh
- Department of Cardiac Surgery, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA; (M.K.); (G.A.)
| | - Rachel Gioscia-Ryan
- Department of Anesthesiology, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Gorav Ailawadi
- Department of Cardiac Surgery, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA; (M.K.); (G.A.)
- Frankel Cardiovascular Center, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Morgan Salmon
- Department of Cardiac Surgery, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA; (M.K.); (G.A.)
- Frankel Cardiovascular Center, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
7
|
Reddy SM, Suresh V, Pitchiah S, Subramanian B. Anti-inflammatory Activities of Sulfated Polysaccharides From Ethanol Crude Extract of Spyrida Species Red Seaweed. Cureus 2023; 15:e50284. [PMID: 38205502 PMCID: PMC10776340 DOI: 10.7759/cureus.50284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 12/10/2023] [Indexed: 01/12/2024] Open
Abstract
INTRODUCTION The extracts derived from red seaweed have shown characteristics that may reduce inflammation. The abovementioned effects can potentially provide positive outcomes in managing inflammatory illnesses, including arthritis, inflammatory bowel disease, and other skin problems. AIM The polysaccharides were isolated from the Spyrida species. The water-soluble polysaccharides were extracted and fractionated from several Indian seaweeds (Red) using a simple, cost-effective approach. Anti-inflammatory effects were further evaluated and validated by FTIR and FESEM analyses. MATERIALS AND METHODS FT-IR and FESEM were used to assess the structural features of polysaccharides and the surface morphology. In addition, the red seaweed species of the genus Spyrida, which includes polysaccharides, was shown to significantly inhibit the denaturation of bovine serum albumin (BSA), further proving that the substance has anti-inflammatory qualities. RESULTS In this work, an assay to suppress protein activity was utilized to investigate the potential anti-inflammatory effects of polysaccharides derived from Spyrida. As predicted, increasing concentrations of the extract, ranging from 25 to 100 µg/ml, led to a rise in the percentage of inhibited protein denaturation. CONCLUSION A statistically significant difference was found between these findings and those obtained with aspirin, a commonly used non-steroidal anti-inflammatory medicine (NSAID). The red algae that grow in the shallow waters of the southern Indian Ocean may be used in medicine.
Collapse
Affiliation(s)
- Shweta Mary Reddy
- Physiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Vasugi Suresh
- Physiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Sivaperumal Pitchiah
- Prosthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Balachandran Subramanian
- Physiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| |
Collapse
|
8
|
Goh BH, Cheng HS, Alexandra PTAA, Ting KN, Palanisamy UD, Tan JBL. Geraniin Ameliorates Hypertensive Vascular Remodelling in a Diet-Induced Obese Animal Model through Antioxidant and Anti-Inflammatory Effects. Nutrients 2023; 15:2696. [PMID: 37375598 DOI: 10.3390/nu15122696] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/24/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
Geraniin, an ellagitannin, has shown a potent blood pressure-lowering effect in vivo. Therefore, this study aims to further characterize the ability of geraniin to attenuate hypertensive vascular dysfunction, a key feature of cardiovascular disease (CVD) development. Hypertension was induced in male Sprague-Dawley rats through feeding a high-fat diet (HFD) for eight weeks, followed by oral administration of 25 mg/kg/day geraniin for four weeks. The parameters of vascular dysfunction such as the structure and function of blood vessels as well as the vascular oxidative stress and inflammation were evaluated. The outcomes of geraniin-treated rats were compared with those of untreated rats on either a normal diet (ND) or HFD and with HFD-fed rats treated with captopril (40 mg/kg/day). We found that geraniin supplementation effectively ameliorated HFD-induced hypertension and abnormal remodelling of the thoracic aorta by suppressing excessive vascular superoxide (O2-) radical generation and overexpression of pro-inflammatory mediators in the circulating leukocytes. Furthermore, compared to the ND-fed rats, geraniin also independently promoted the significant enlargement of the thoracic aortic lumen for blood pressure reduction. Notably, the vascular benefits of geraniin were comparable to that of captopril. Collectively, these data suggest that geraniin can mitigate hypertensive vascular remodelling caused by overnutrition, which potentially abrogates the further development of CVDs.
Collapse
Affiliation(s)
- Boon Hee Goh
- School of Science, Monash University Malaysia, Bandar Sunway 47500, Malaysia
| | - Hong Sheng Cheng
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 637551, Singapore
| | | | - Kang-Nee Ting
- School of Pharmacy, University of Nottingham Malaysia Campus, Semenyih 43500, Malaysia
| | - Uma Devi Palanisamy
- Jeffrey Cheah School of Medicine and Health Science, Monash University Malaysia, Subang Jaya 47500, Malaysia
| | - Joash Ban Lee Tan
- School of Science, Monash University Malaysia, Bandar Sunway 47500, Malaysia
| |
Collapse
|
9
|
Aboukhater D, Morad B, Nasrallah N, Nasser SA, Sahebkar A, Kobeissy F, Boudaka A, Eid AH. Inflammation and hypertension: Underlying mechanisms and emerging understandings. J Cell Physiol 2023; 238:1148-1159. [PMID: 37039489 DOI: 10.1002/jcp.31019] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 03/24/2023] [Indexed: 04/12/2023]
Abstract
Hypertension remains a major contributor to cardiovascular disease (CVD), a leading cause of global death. One of the major insults that drive increased blood pressure is inflammation. While it is the body's defensive response against some homeostatic imbalances, inflammation, when dysregulated, can be very deleterious. In this review, we highlight and discuss the causative relationship between inflammation and hypertension. We critically discuss how the interplay between inflammation and reactive oxygen species evokes endothelial damage and dysfunction, ultimately leading to narrowing and stiffness of blood vessels. This, along with phenotypic switching of the vascular smooth muscle cells and the abnormal increase in extracellular matrix deposition further exacerbates arterial stiffness and noncompliance. We also discuss how hyperhomocysteinemia and microRNA act as links between inflammation and hypertension. The premises we discuss suggest that the blue-sky scenarios for targeting the underlying mechanisms of hypertension necessitate further research.
Collapse
Affiliation(s)
- Diana Aboukhater
- Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Bassel Morad
- Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Nadim Nasrallah
- Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | | | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Firas Kobeissy
- Department of Neurobiology and Neuroscience, Morehouse School of Medicine, Atlanta, Georgia, USA
| | - Ammar Boudaka
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Ali H Eid
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
10
|
Xu X, Zhang B, Wang Y, Shi S, Lv J, Fu Z, Gao X, Li Y, Wu H, Song Q. Renal fibrosis in type 2 cardiorenal syndrome: An update on mechanisms and therapeutic opportunities. Biomed Pharmacother 2023; 164:114901. [PMID: 37224755 DOI: 10.1016/j.biopha.2023.114901] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/13/2023] [Accepted: 05/16/2023] [Indexed: 05/26/2023] Open
Abstract
Cardiorenal syndrome (CRS) is a state of coexisting heart failure and renal insufficiency in which acute or chronic dysfunction of the heart or kidney lead to acute or chronic dysfunction of the other organ.It was found that renal fibrosis is an important pathological process in the progression of type 2 CRS to end-stage renal disease, and progressive renal impairment accelerates the deterioration of cardiac function and significantly increases the hospitalization and mortality rates of patients. Previous studies have found that Hemodynamic Aiteration, RAAS Overactivation, SNS Dysfunction, Endothelial Dysfunction and Imbalance of natriuretic peptide system contribute to the development of renal disease in the decompensated phase of heart failure, but the exact mechanisms is not clear. Therefore, in this review, we focus on the molecular pathways involved in the development of renal fibrosis due to heart failure and identify the canonical and non-canonical TGF-β signaling pathways and hypoxia-sensing pathways, oxidative stress, endoplasmic reticulum stress, pro-inflammatory cytokines and chemokines as important triggers and regulators of fibrosis development, and summarize the therapeutic approaches for the above signaling pathways, including SB-525334 Sfrp1, DKK1, IMC, rosarostat, 4-PBA, etc. In addition, some potential natural drugs for this disease are also summarized, including SQD4S2, Wogonin, Astragaloside, etc.
Collapse
Affiliation(s)
- Xia Xu
- Department of General Internal Medicine, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Bingxuan Zhang
- Department of General Internal Medicine, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yajiao Wang
- College of Traditional Chinese Medicine, China Academy of Chinese Medical Science, Beijing, China
| | - Shuqing Shi
- Department of General Internal Medicine, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiayu Lv
- Department of General Internal Medicine, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhenyue Fu
- College of Traditional Chinese Medicine, Beijing University of Traditional Chinese Medicine, Beijing, China
| | - Xiya Gao
- College of Traditional Chinese Medicine, Beijing University of Traditional Chinese Medicine, Beijing, China
| | - Yumeng Li
- Department of General Internal Medicine, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Huaqin Wu
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Qingqiao Song
- Department of General Internal Medicine, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
11
|
Sharma GP, Frei A, Fish B, Gasperetti T, Veley D, Szalewski N, Nissen A, Himburg HA. Biological sex differences in renin angiotensin system enzymes ACE and ACE2 regulate normal tissue response to radiation injury. Front Physiol 2023; 14:1191237. [PMID: 37275232 PMCID: PMC10235526 DOI: 10.3389/fphys.2023.1191237] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/05/2023] [Indexed: 06/07/2023] Open
Abstract
Introduction: In experimental animal models, biological sex-differences in the manifestation and severity of normal tissue radiation injury have been well-documented. Previously we demonstrated male and female rats have differential and highly reproducible responses to high-dose partial body irradiation (PBI) with male rats having greater susceptibility to both gastrointestinal acute radiation syndrome (GI-ARS) and radiation pneumonitis than female rats. Methods: In the current study, we have investigated whether differential expression of the renin-angiotensin system (RAS) enzymes angiotensin converting enzyme (ACE) and ACE2 contribute to the observed sex-related differences in radiation response. Results: During the period of symptomatic pneumonitis, the relative ratio of ACE to ACE2 (ACE/ACE2) protein in the whole lung was significantly increased by radiation in male rats alone. Systemic treatment with small molecule ACE2 agonist diminazene aceturate (DIZE) increased lung ACE2 activity and reduced morbidity during radiation pneumonitis in both sexes. Notably DIZE treatment also abrogated morbidity in male rats during GI-ARS. We then evaluated the contribution of the irradiated bone marrow (BM) compartment on lung immune cell infiltration and ACE imbalance during pneumonitis. Transplantation of bone marrow from irradiated donors increased both ACE-expressing myeloid cell infiltration and immune ACE activity in the lung during pneumonitis compared to non-irradiated donors. Discussion: Together, these data demonstrate radiation induces a sex-dependent imbalance in the renin-angiotensin system enzymes ACE and ACE2. Additionally, these data suggest a role for ACE-expressing myeloid cells in the pathogenesis of radiation pneumonitis. Finally, the observed sex-differences underscore the need for consideration of sex as a biological variable in the development of medical countermeasures for radiation exposure.
Collapse
Affiliation(s)
- Guru Prasad Sharma
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Anne Frei
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Brian Fish
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Tracy Gasperetti
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Dana Veley
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Nathan Szalewski
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Austen Nissen
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Heather A. Himburg
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, United States
- Cancer Center, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
12
|
Fibroblast growth factor 18 alleviates stress-induced pathological cardiac hypertrophy in male mice. Nat Commun 2023; 14:1235. [PMID: 36871047 PMCID: PMC9985628 DOI: 10.1038/s41467-023-36895-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 02/22/2023] [Indexed: 03/06/2023] Open
Abstract
Fibroblast growth factor-18 (FGF18) has diverse organ development and damage repair roles. However, its role in cardiac homeostasis following hypertrophic stimulation remains unknown. Here we investigate the regulation and function of the FGF18 in pressure overload (PO)-induced pathological cardiac hypertrophy. FGF18 heterozygous (Fgf18+/-) and inducible cardiomyocyte-specific FGF18 knockout (Fgf18-CKO) male mice exposed to transverse aortic constriction (TAC) demonstrate exacerbated pathological cardiac hypertrophy with increased oxidative stress, cardiomyocyte death, fibrosis, and dysfunction. In contrast, cardiac-specific overexpression of FGF18 alleviates hypertrophy, decreased oxidative stress, attenuates cardiomyocyte apoptosis, and ameliorates fibrosis and cardiac function. Tyrosine-protein kinase FYN (FYN), the downstream factor of FGF18, was identified by bioinformatics analysis, LC-MS/MS and experiment validation. Mechanistic studies indicate that FGF18/FGFR3 promote FYN activity and expression and negatively regulate NADPH oxidase 4 (NOX4), thereby inhibiting reactive oxygen species (ROS) generation and alleviating pathological cardiac hypertrophy. This study uncovered the previously unknown cardioprotective effect of FGF18 mediated by the maintenance of redox homeostasis through the FYN/NOX4 signaling axis in male mice, suggesting a promising therapeutic target for the treatment of cardiac hypertrophy.
Collapse
|
13
|
Connolly K, Batacan R, Jackson D, Vella R, Fenning A. Perindopril prevents development of obesity and hypertension in middle aged diet-induced obese rat models of metabolic syndrome. Life Sci 2023; 314:121291. [PMID: 36535403 DOI: 10.1016/j.lfs.2022.121291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/07/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
AIMS The therapeutic properties of anti-hypertensive medications that extend beyond blood pressure lowering have started to become important clinical targets in recent years. This study aimed to assess the cardioprotective effects of perindopril in attenuating complications associated with metabolic syndrome in diet induced obese rats. MAIN METHODS Male Wistar-Kyoto (WKY) rats aged 16 weeks were fed either standard rat chow (SC) or given a high-fat-high-carbohydrate (HFHC) diet for 20 weeks. Perindopril treatment (1 mg/kg/day) was administered to a subset of WKY rats commencing at week 8 of the 20 week HFHC feeding period. Body weights, food, water and energy intakes, blood pressure, heart rate and glucose tolerance were measured throughout the treatment period. Oxidative stress and inflammatory markers, lipid levels, cardiac collagen deposition, vascular function, aortic and cardiac electrical function were examined after the treatment. KEY FINDINGS WKY rats developed metabolic syndrome after 20 weeks of HFHC feeding, evidenced by the presence of abdominal obesity, dyslipidaemia, glucose intolerance and hypertension. Perindopril treatment prevented the development of obesity and hypertension in WKY-HFHC. Perindopril improved blood lipid profiles in HFHC rats with decreases in LDL cholesterol, triglycerides and total cholesterol. Type I collagen levels were decreased in WKY-HFHC rats along with decreases in left ventricle mass. Perindopril treated rats also showed improved cardiac electrical function indicated by decreases in action potential at 90 % of repolarisation in WKY-HFHC rats. SIGNIFICANCE These results show that perindopril has a profound effect on preventing the development of metabolic syndrome in animals fed a HFHC diet.
Collapse
Affiliation(s)
- Kylie Connolly
- School of Health, Medical and Applied Sciences, Central Queensland University, Bruce Highway, Rockhampton, QLD 4701, Australia
| | - Romeo Batacan
- School of Health, Medical and Applied Sciences, Central Queensland University, Bruce Highway, Rockhampton, QLD 4701, Australia.
| | - Douglas Jackson
- Australian Catholic University, 40 Edward St, North Sydney, NSW 2060, Australia
| | - Rebecca Vella
- School of Health, Medical and Applied Sciences, Central Queensland University, Bruce Highway, Rockhampton, QLD 4701, Australia
| | - Andrew Fenning
- School of Health, Medical and Applied Sciences, Central Queensland University, Bruce Highway, Rockhampton, QLD 4701, Australia
| |
Collapse
|
14
|
Natural Bioactive Compounds Targeting NADPH Oxidase Pathway in Cardiovascular Diseases. Molecules 2023; 28:molecules28031047. [PMID: 36770715 PMCID: PMC9921542 DOI: 10.3390/molecules28031047] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/04/2022] [Accepted: 12/10/2022] [Indexed: 01/21/2023] Open
Abstract
Cardiovascular disease (CVD) is the leading cause of death worldwide, in both developed and developing countries. According to the WHO report, the morbidity and mortality caused by CVD will continue to rise with the estimation of death going up to 22.2 million in 2030. NADPH oxidase (NOX)-derived reactive oxygen species (ROS) production induces endothelial nitric oxide synthase (eNOS) uncoupling and mitochondrial dysfunction, resulting in sustained oxidative stress and the development of cardiovascular diseases. Seven distinct members of the family have been identified of which four (namely, NOX1, 2, 4 and 5) may have cardiovascular functions. Currently, the treatment and management plan for patients with CVDs mainly depends on the drugs. However, prolonged use of prescribed drugs may cause adverse drug reactions. Therefore, it is crucial to find alternative treatment options with lesser adverse effects. Natural products have been gaining interest as complementary therapy for CVDs over the past decade due to their wide range of medicinal properties, including antioxidants. These might be due to their potent active ingredients, such as flavonoid and phenolic compounds. Numerous natural compounds have been demonstrated to have advantageous effects on cardiovascular disease via NADPH cascade. This review highlights the potential of natural products targeting NOX-derived ROS generation in treating CVDs. Emphasis is put on the activation of the oxidases, including upstream or downstream signalling events.
Collapse
|
15
|
Liu Y, Liang S, Shi D, Zhang Y, Bai C, Ye RD. A predicted structure of NADPH Oxidase 1 identifies key components of ROS generation and strategies for inhibition. PLoS One 2023; 18:e0285206. [PMID: 37134122 PMCID: PMC10155968 DOI: 10.1371/journal.pone.0285206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 04/17/2023] [Indexed: 05/04/2023] Open
Abstract
NADPH oxidase 1 (NOX1) is primarily expressed in epithelial cells and responsible for local generation of reactive oxygen species (ROS). By specifically manipulating the local redox microenvironment, NOX1 actively engages in epithelial immunity, especially in colorectal and pulmonary epithelia. To unravel the structural basis of NOX1 engaged epithelial immune processes, a predicted structure model was established using RaptorX deep learning models. The predicted structure model illustrates a 6-transmembrane domain structure, a FAD binding domain, and an NADPH binding/NOXO1 interacting region. The substrate/cofactor binding scheme with respect to this proposed model highly correlates with published reports and is verified in our site-directed mutagenesis assays. An electron transport chain, from NADPH to FAD and the two heme groups, was well supported by the predicted model. Through molecular docking analysis of various small molecule NOX1 inhibitors and subsequent experimental validation, we identified pronounced active sites for potent NOX1 inhibition. Specifically, LEU60, VAL71, MET181, LEU185, HIS208, PHE211, TYR214, and TYR280 in the transmembrane domain form an active pocket for insertion of the small molecule inhibitors to inhibit electron transfer between the heme groups, thus affecting extracellular ROS generation. Altogether, our study provides structural information to help elucidate the role of NOX1 in epithelial generation of ROS and sheds light on the development of therapeutics for NOX1 related illnesses.
Collapse
Affiliation(s)
- Yezhou Liu
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
- Shenzhen Bay Laboratory, Shenzhen, Guangdong, China
| | - Shiyu Liang
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
| | - Danfeng Shi
- Warshel Institute of Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
| | - Yue Zhang
- Warshel Institute of Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
| | - Chen Bai
- Warshel Institute of Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
| | - Richard D Ye
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
- The Chinese University of Hong Kong, Shenzhen Futian Biomedical Innovation R&D Center, Shenzhen, China
| |
Collapse
|
16
|
Ponnampalam EN, Kiani A, Santhiravel S, Holman BWB, Lauridsen C, Dunshea FR. The Importance of Dietary Antioxidants on Oxidative Stress, Meat and Milk Production, and Their Preservative Aspects in Farm Animals: Antioxidant Action, Animal Health, and Product Quality-Invited Review. Animals (Basel) 2022; 12:ani12233279. [PMID: 36496798 PMCID: PMC9738477 DOI: 10.3390/ani12233279] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/18/2022] [Accepted: 11/19/2022] [Indexed: 11/27/2022] Open
Abstract
The biological effects of oxidative stress and associated free radicals on farm animal performance, productivity, and product quality may be managed via dietary interventions-specifically, the provision of feeds, supplements, and forages rich in antioxidants. To optimize this approach, it is important first to understand the development of free radicals and their contributions to oxidative stress in tissue systems of farm animals or the human body. The interactions between prooxidants and antioxidants will impact redox homeostasis and, therefore, the well-being of farm animals. The impact of free radical formation on the oxidation of lipids, proteins, DNA, and biologically important macromolecules will likewise impact animal performance, meat and milk quality, nutritional value, and longevity. Dietary antioxidants, endogenous antioxidants, and metal-binding proteins contribute to the 'antioxidant defenses' that control free radical formation within the biological systems. Different bioactive compounds of varying antioxidant potential and bio-accessibility may be sourced from tailored feeding systems. Informed and successful provision of dietary antioxidants can help alleviate oxidative stress. However, knowledge pertaining to farm animals, their unique biological systems, and the applications of novel feeds, specialized forages, bioactive compounds, etc., must be established. This review summarized current research to direct future studies towards more effective controls for free radical formation/oxidative stress in farm animals so that productivity and quality of meat and milk can be optimized.
Collapse
Affiliation(s)
- Eric N. Ponnampalam
- Animal Production Sciences, Agriculture Victoria Research, Department of Jobs, Precincts and Regions, Bundoora, VIC 3083, Australia
- Correspondence:
| | - Ali Kiani
- Department of Animal Sciences, Faculty of Agriculture and Natural Resources, Lorestan University, Khorramabad P.O. Box 465, Iran
| | - Sarusha Santhiravel
- Department of Biochemistry, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada
| | - Benjamin W. B. Holman
- Wagga Wagga Agricultural Institute, NSW Department of Primary Industries, Wagga Wagga, NSW 2650, Australia
| | - Charlotte Lauridsen
- Department of Animal and Veterinary Sciences, Aarhus University, P.O. Box 50, DK-8830 Tjele, Denmark
| | - Frank R. Dunshea
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
- The Faculty of Biological Sciences, The University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
17
|
Graton ME, Ferreira BHSH, Troiano JA, Potje SR, Vale GT, Nakamune ACMS, Tirapelli CR, Miller FJ, Ximenes VF, Antoniali C. Comparative study between apocynin and protocatechuic acid regarding antioxidant capacity and vascular effects. Front Physiol 2022; 13:1047916. [PMID: 36457305 PMCID: PMC9707364 DOI: 10.3389/fphys.2022.1047916] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 10/18/2022] [Indexed: 03/14/2024] Open
Abstract
Reactive oxygen species (ROS) derived from NOX enzymes activity play an important role in the development of cardiovascular diseases. Compounds able to decrease oxidative stress damage are potential candidates as drugs and/or supplements for hypertension treatment. Here, we aimed to compare in vitro ROS scavenging potency, effective NOX inhibition and effects on vascular reactivity of apocynin to another phenolic compound, protocatechuic acid, in vascular cells from spontaneously hypertensive rat (SHR), where redox signaling is altered and contributes to the development and/or maintenance of hypertension. We evaluated the in vitro antioxidant capacity and free radical scavenging capacity of both phenolic compounds. Moreover, we investigated the effect of both compounds on lipid peroxidation, lucigenin chemiluminescence, nitric oxide (NO•) levels and ROS concentration in vascular cells of SHR or human umbilical vein endothelial cell (HUVEC). Apocynin and protocatechuic acid presented antioxidant capacity and ability as free radical scavengers, decreased thiobarbituric acid reactive substances (TBARS) in aortic cells from SHR, and increased NO• concentration in isolated HUVEC. Both compounds were able to reduce lucigenin chemiluminescence and increased the potency of acetylcholine in aorta of SHR. However, in SHR aortas, only apocynin diminished the contraction induced by phenylephrine. In conclusion, these results strongly reinforce the potential application of substances such as apocynin and protocatechuic acid that combine abilities as scavenging and/or prevention of ROS generation, establishment of NO bioactivity and modulation of vascular reactivity. Due to its phytochemical origin and low toxicity, its potential therapeutic use in vascular diseases should be considered.
Collapse
Affiliation(s)
- Murilo E. Graton
- Programa de Pós-graduação Multicêntrico em Ciências Fisiológicas, SBFis, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
- Department of Basic Sciences, School of Dentistry, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
| | - Bruno H. S. H. Ferreira
- Department of Support, Production and Animal Health, School of Veterinary Medicine, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
| | - Jéssica A. Troiano
- Programa de Pós-graduação Multicêntrico em Ciências Fisiológicas, SBFis, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
- Department of Basic Sciences, School of Dentistry, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
- Fundação Dracenense de Educação e Cultura (FUNDEC), Faculdades de Dracena (UNIFADRA), Dracena, São Paulo, Brazil
| | - Simone R. Potje
- Department of Biosciences, Minas Gerais State University (UEMG), Belo Horizonte, Minas Gerais, Brazil
| | - Gabriel T. Vale
- Department of Biosciences, Minas Gerais State University (UEMG), Belo Horizonte, Minas Gerais, Brazil
| | - Ana Cláudia M. S. Nakamune
- Programa de Pós-graduação Multicêntrico em Ciências Fisiológicas, SBFis, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
- Department of Basic Sciences, School of Dentistry, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
| | - Carlos R. Tirapelli
- Department of Psychiatry Nursing and Human Sciences, College of Nursing of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - Francis J. Miller
- Nashville VA Medical Center, Vanderbilt University, Nashville, TN, United States
| | - Valdecir F. Ximenes
- Department of Chemistry, Faculty of Sciences, São Paulo State University (UNESP), Bauru, São Paulo, Brazil
| | - Cristina Antoniali
- Programa de Pós-graduação Multicêntrico em Ciências Fisiológicas, SBFis, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
- Department of Basic Sciences, School of Dentistry, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
| |
Collapse
|
18
|
Yin YL, Wang HH, Gui ZC, Mi S, Guo S, Wang Y, Wang QQ, Yue RZ, Lin LB, Fan JX, Zhang X, Mao BY, Liu TH, Wan GR, Zhan HQ, Zhu ML, Jiang LH, Li P. Citronellal Attenuates Oxidative Stress-Induced Mitochondrial Damage through TRPM2/NHE1 Pathway and Effectively Inhibits Endothelial Dysfunction in Type 2 Diabetes Mellitus. Antioxidants (Basel) 2022; 11:2241. [PMID: 36421426 PMCID: PMC9686689 DOI: 10.3390/antiox11112241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 11/08/2022] [Indexed: 07/30/2023] Open
Abstract
In type 2 diabetes mellitus (T2DM), oxidative stress induces endothelial dysfunction (ED), which is closely related to the formation of atherosclerosis. However, there are few effective drugs to prevent and cure it. Citronellal (CT) is an aromatic active substance extracted from citronella plants. Recently, CT has been shown to prevent ED, but the underlying mechanism remains unclear. The purpose of this study was to investigate whether CT ameliorated T2DM-induced ED by inhibiting the TRPM2/NHE1 signal pathway. Transient receptor potential channel M2 (TRPM2) is a Ca2+-permeable cation channel activated by oxidative stress, which damages endothelial cell barrier function and further leads to ED or atherosclerosis in T2DM. The Na+/H+ exchanger 1 (NHE1), a transmembrane protein, also plays an important role in ED. Whether TRPM2 and NHE1 are involved in the mechanism of CT improving ED in T2DM still needs further study. Through the evaluations of ophthalmoscope, HE and Oil red staining, vascular function, oxidative stress level, and mitochondrial membrane potential evaluation, we observed that CT not only reduced the formation of lipid deposition but also inhibited ED and suppressed oxidative stress-induced mitochondrial damage in vasculature of T2DM rats. The expressions of NHE1 and TRPM2 was up-regulated in the carotid vessels of T2DM rats; NHE1 expression was also upregulated in endothelial cells with overexpression of TRPM2, but CT reversed the up-regulation of NHE1 in vivo and in vitro. In contrast, CT had no inhibitory effect on the expression of NHE1 in TRPM2 knockout mice. Our study show that CT suppressed the expression of NHE1 and TPRM2, alleviated oxidative stress-induced mitochondrial damage, and imposed a protective effect on ED in T2DM rats.
Collapse
Affiliation(s)
- Ya-Ling Yin
- Sino-UK Joint Laboratory of Brain Function and Injury and Department of Physiology and Neurobiology, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China
| | - Huan-Huan Wang
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China
| | - Zi-Chen Gui
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shan Mi
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China
| | - Shuang Guo
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning 437100, China
| | - Yue Wang
- Sanquan College, Xinxiang Medical University, Xinxiang 453003, China
| | - Qian-Qian Wang
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China
| | - Rui-Zhu Yue
- Sino-UK Joint Laboratory of Brain Function and Injury and Department of Physiology and Neurobiology, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China
| | - Lai-Biao Lin
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China
| | - Jia-Xin Fan
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China
| | - Xue Zhang
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China
| | - Bing-Yan Mao
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China
| | - Tian-Heng Liu
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China
| | - Guang-Rui Wan
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China
| | - He-Qin Zhan
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China
| | - Mo-Li Zhu
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China
| | - Lin-Hua Jiang
- Sino-UK Joint Laboratory of Brain Function and Injury and Department of Physiology and Neurobiology, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Peng Li
- Sino-UK Joint Laboratory of Brain Function and Injury and Department of Physiology and Neurobiology, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning 437100, China
| |
Collapse
|
19
|
Epigenetic Mechanisms Involved in Inflammaging-Associated Hypertension. Curr Hypertens Rep 2022; 24:547-562. [PMID: 35796869 DOI: 10.1007/s11906-022-01214-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/22/2022] [Indexed: 01/31/2023]
Abstract
PURPOSE OF REVIEW This review summarizes the involvement of inflammaging in vascular damage with focus on the epigenetic mechanisms by which inflammaging-induced hypertension is triggered. RECENT FINDINGS Inflammaging in hypertension is a complex condition associated with the production of inflammatory mediators by the immune cells, enhancement of oxidative stress, and tissue remodeling in vascular smooth muscle cells and endothelial cells. Cellular processes are numerous, including inflammasome assembly and cell senescence which may involve mitochondrial dysfunction, autophagy, DNA damage response, dysbiosis, and many others. More recently, a series of noncoding RNAs, mainly microRNAs, have been described as possessing epigenetic actions on the regulation of inflammasome-related hypertension, emerging as a promising therapeutic strategy. Although there are a variety of pharmacological agents that effectively regulate inflammaging-related hypertension, a deeper understanding of the epigenetic events behind the control of vessel deterioration is needed for the treatment or even to prevent the disease onset.
Collapse
|
20
|
NADPH Oxidases in Aortic Aneurysms. Antioxidants (Basel) 2022; 11:antiox11091830. [PMID: 36139902 PMCID: PMC9495752 DOI: 10.3390/antiox11091830] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/08/2022] [Accepted: 09/12/2022] [Indexed: 12/02/2022] Open
Abstract
Abdominal aortic aneurysms (AAAs) are a progressive dilation of the infrarenal aorta and are characterized by inflammatory cell infiltration, smooth muscle cell migration and proliferation, and degradation of the extracellular matrix. Oxidative stress and the production of reactive oxygen species (ROS) have been shown to play roles in inflammatory cell infiltration, and smooth muscle cell migration and apoptosis in AAAs. In this review, we discuss the principles of nicotinamide adenine dinucleotide phosphate oxidase (NADPH oxidase/NOX) signaling and activation. We also discuss the effects of some of the major mediators of NOX signaling in AAAs. Separately, we also discuss the influence of genetic or pharmacologic inhibitors of NADPH oxidases on experimental pre-clinical AAAs. Experimental evidence suggests that NADPH oxidases may be a promising future therapeutic target for developing pharmacologic treatment strategies for halting AAA progression or rupture prevention in the management of clinical AAAs.
Collapse
|
21
|
Zhang Q, Fu H, Gong W, Cao F, Wu T, Hu F. Plumbagin protects H9c2 cardiomyocytes against TBHP‑induced cytotoxicity by alleviating ROS‑induced apoptosis and modulating autophagy. Exp Ther Med 2022; 24:501. [PMID: 35837065 DOI: 10.3892/etm.2022.11428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/24/2022] [Indexed: 11/06/2022] Open
Affiliation(s)
- Qianrui Zhang
- Department of Pharmacy, General Hospital of the Yangtze River Shipping, Wuhan Brain Hospital, Wuhan, Hubei 430014, P.R. China
| | - Haitan Fu
- Department of Pharmacy, General Hospital of the Yangtze River Shipping, Wuhan Brain Hospital, Wuhan, Hubei 430014, P.R. China
| | - Wenjuan Gong
- Department of Pharmacy, General Hospital of the Yangtze River Shipping, Wuhan Brain Hospital, Wuhan, Hubei 430014, P.R. China
| | - Feng Cao
- Department of Pharmacy, General Hospital of the Yangtze River Shipping, Wuhan Brain Hospital, Wuhan, Hubei 430014, P.R. China
| | - Tao Wu
- Department of Pharmacy, Wuhan Fourth Hospital, Wuhan, Hubei 430000, P.R. China
| | - Fei Hu
- Department of Neurosurgery, General Hospital of the Yangtze River Shipping, Wuhan Brain Hospital, Wuhan, Hubei 430014, P.R. China
| |
Collapse
|
22
|
Sorkina O, Zaitseva O, Khudyakov A. The effect of long-term alcohol intoxication on the morphological structures and enzymatic activity of rat salivary glands. Alcohol 2022; 99:23-33. [PMID: 34883230 DOI: 10.1016/j.alcohol.2021.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 10/27/2021] [Accepted: 11/30/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND To study changes in the morphological structures and enzymatic activity of the submandibular salivary gland (SMG) and parotid salivary gland (PG) in rats after prolonged alcohol intoxication. METHODS Sexually mature male Wistar rats consumed 20% ethanol (6.9 g/kg/day) for 180 consecutive days. The PG and SMG were collected for morphometric and histochemical analyses (nonparametric Mann-Whitney U test, p < 0.05). RESULTS After exposure to ethanol for 180 days, the PG showed a change in the shape of the acini and the secretory cells that formed them, uneven expansion of the interlobular excretory ducts, and moderate fatty infiltration in the stroma. After exposure to ethanol for 180 days, the SMG showed fatty infiltration and stromal edema, and changes in acinar cells, intercalated ducts, and striated ducts. There was a significant decrease in the relative and absolute weight of the SMG. The number of mast cells in the PG and SMG and their degranulation index increased 2-fold after exposure to ethanol. All mast cells were highly active. After ethanol exposure, the activity of alkaline phosphatase increased significantly in the myoepithelial cells of the SMG and PG; the activity of NADPH oxidase increased only in the acini SMG, and the activity of succinate dehydrogenase remained at the control level in the acini of both glands. In the ducts of these glands, the activity of other enzymes did not change. CONCLUSIONS Changes in the morphological structures, morphometric parameters, and enzymatic activity of the rat salivary glands after 180 days of ethanol intoxication are shown for the first time. The most pronounced changes were found in the SMG.
Collapse
Affiliation(s)
- Olga Sorkina
- Chuvash State University, 428015, 15 Moskovsky Prospect, Chuvash Republic, Cheboksary, Russia
| | - Oksana Zaitseva
- Institute of Physiology of Komi Science Centre of the Ural Branch of the Russian Academy of Sciences, FRC Komi SC UB RAS, 167982, 50 Pervomayskaya str., Komi Republic, Syktyvkar, Russia.
| | - Andrey Khudyakov
- Institute of Physiology of Komi Science Centre of the Ural Branch of the Russian Academy of Sciences, FRC Komi SC UB RAS, 167982, 50 Pervomayskaya str., Komi Republic, Syktyvkar, Russia
| |
Collapse
|
23
|
Sharma GP, Fish BL, Frei AC, Narayanan J, Gasperetti T, Scholler D, Pierce L, Szalewski N, Blue N, Medhora M, Himburg HA. Pharmacological ACE-inhibition Mitigates Radiation-Induced Pneumonitis by Suppressing ACE-expressing Lung Myeloid Cells. Int J Radiat Oncol Biol Phys 2022; 113:177-191. [PMID: 35093482 PMCID: PMC9018504 DOI: 10.1016/j.ijrobp.2022.01.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 01/12/2022] [Accepted: 01/15/2022] [Indexed: 12/30/2022]
Abstract
PURPOSE Radiation-induced lung injury is a major dose-limiting toxicity for thoracic radiotherapy patients. In experimental models, treatment with angiotensin converting enzyme (ACE) inhibitors mitigates radiation pneumonitis; however, the mechanism of action is not well understood. Here, we evaluate the direct role of ACE inhibition on lung immune cells. METHODS AND MATERIALS ACE expression and activity were determined in the lung immune cell compartment of irradiated adult rats following either high dose fractionated radiation therapy (RT) to the right lung (5 fractions x 9 Gy) or a single dose of 13.5 Gy partial body irradiation (PBI). Mitigation of radiation-induced pneumonitis with the ACE-inhibitor lisinopril was evaluated in the 13.5 Gy rat PBI model. During pneumonitis, we characterized inflammation and immune cell content in the lungs and bronchoalveolar lavage fluid (BALF). In vitro mechanistic studies were performed using primary human monocytes and the human monocytic THP-1 cell line. RESULTS In both the PBI and fractionated RT models, radiation increased ACE activity in lung immune cells. Treatment with lisinopril improved survival during radiation pneumonitis (p=0.0004). Lisinopril abrogated radiation-induced increases in BALF MCP-1 (CCL2) and MIP-1α cytokine levels (p < 0.0001). Treatment with lisinopril reduced both ACE expression (p=0.006) and frequency of CD45+CD11b+ lung myeloid cells (p=0.004). In vitro, radiation injury acutely increased ACE activity (p=0.045) and reactive oxygen species (ROS) generation (p=0.004) in human monocytes, whereas treatment with lisinopril blocked radiation-induced increases in both ACE and ROS. Interestingly, radiation-induced ROS generation was blocked by pharmacological inhibition of either NADPH oxidase 2 (NOX2) (p=0.012) or the type 1 angiotensin receptor (AGTR1) (p=0.013). CONCLUSIONS These data demonstrate radiation-induced ACE activation within the immune compartment promotes the pathogenesis of radiation pneumonitis, while ACE inhibition suppresses activation of pro-inflammatory immune cell subsets. Mechanistically, our in vitro data demonstrate radiation directly activates the ACE/AGTR1 pathway in immune cells and promotes generation of ROS via Nox2.
Collapse
Affiliation(s)
- Guru Prasad Sharma
- Department of Radiation Oncology, Medical College of Wisconsin, Cancer Center, Medical College of Wisconsin
| | - Brian L Fish
- Department of Radiation Oncology, Medical College of Wisconsin, Cancer Center, Medical College of Wisconsin
| | - Anne C Frei
- Department of Radiation Oncology, Medical College of Wisconsin, Cancer Center, Medical College of Wisconsin
| | - Jayashree Narayanan
- Department of Radiation Oncology, Medical College of Wisconsin, Cancer Center, Medical College of Wisconsin
| | - Tracy Gasperetti
- Department of Radiation Oncology, Medical College of Wisconsin, Cancer Center, Medical College of Wisconsin
| | - Dana Scholler
- Department of Radiation Oncology, Medical College of Wisconsin, Cancer Center, Medical College of Wisconsin
| | - Lauren Pierce
- Department of Radiation Oncology, Medical College of Wisconsin, Cancer Center, Medical College of Wisconsin
| | - Nathan Szalewski
- Department of Radiation Oncology, Medical College of Wisconsin, Cancer Center, Medical College of Wisconsin
| | - Noah Blue
- Department of Radiation Oncology, Medical College of Wisconsin, Cancer Center, Medical College of Wisconsin
| | - Meetha Medhora
- Department of Radiation Oncology, Medical College of Wisconsin, Cancer Center, Medical College of Wisconsin
| | - Heather A Himburg
- Department of Radiation Oncology, Medical College of Wisconsin, Cancer Center, Medical College of Wisconsin.
| |
Collapse
|
24
|
Kumar G, Saini M, Kundu S. Therapeutic enzymes as non-conventional targets in cardiovascular impairments:A Comprehensive Review. Can J Physiol Pharmacol 2021; 100:197-209. [PMID: 34932415 DOI: 10.1139/cjpp-2020-0732] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Over the last few decades, substantial progress has been made towards the understanding of cardiovascular diseases (CVDs). In-depth mechanistic insights have also provided opportunities to explore novel therapeutic targets and treatment regimens to be discovered. Therapeutic enzymes are an example of such opportunities. The balanced functioning of such enzymes protects against a variety of CVDs while on the other hand, even a small shift in the normal functioning of these enzymes may lead to deleterious outcomes. Owing to the great versatility of these enzymes, inhibition and activation are key regulatory approaches to counter the onset and progression of several cardiovascular impairments. While cardiovascular remedies are already available in excess and of course they are efficacious, a comprehensive description of novel therapeutic enzymes to combat CVDs is the need of the hour. In light of this, the regulation of the functional activity of these enzymes also opens a new avenue for the treatment approaches to be employed. This review describes the importance of non-conventional enzymes as potential candidates in several cardiovascular disorders while highlighting some of the recently targeted therapeutic enzymes in CVDs.
Collapse
Affiliation(s)
- Gaurav Kumar
- University of Delhi - South Campus, 93081, Biochemistry, New Delhi, Delhi, India;
| | - Manisha Saini
- University of Delhi - South Campus, 93081, Biochemistry, New Delhi, Delhi, India;
| | - Suman Kundu
- University of Delhi - South Campus, 93081, Biochemistry, New Delhi, Delhi, India;
| |
Collapse
|
25
|
Lee H, Jose PA. Coordinated Contribution of NADPH Oxidase- and Mitochondria-Derived Reactive Oxygen Species in Metabolic Syndrome and Its Implication in Renal Dysfunction. Front Pharmacol 2021; 12:670076. [PMID: 34017260 PMCID: PMC8129499 DOI: 10.3389/fphar.2021.670076] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 04/14/2021] [Indexed: 12/16/2022] Open
Abstract
Metabolic syndrome (MetS), a complex of interrelated risk factors for cardiovascular disease and diabetes, is comprised of central obesity (increased waist circumference), hyperglycemia, dyslipidemia (high triglyceride blood levels, low high-density lipoprotein blood levels), and increased blood pressure. Oxidative stress, caused by the imbalance between pro-oxidant and endogenous antioxidant systems, is the primary pathological basis of MetS. The major sources of reactive oxygen species (ROS) associated with MetS are nicotinamide-adenine dinucleotide phosphate (NADPH) oxidases and mitochondria. In this review, we summarize the current knowledge regarding the generation of ROS from NADPH oxidases and mitochondria, discuss the NADPH oxidase- and mitochondria-derived ROS signaling and pathophysiological effects, and the interplay between these two major sources of ROS, which leads to chronic inflammation, adipocyte proliferation, insulin resistance, and other metabolic abnormalities. The mechanisms linking MetS and chronic kidney disease are not well known. The role of NADPH oxidases and mitochondria in renal injury in the setting of MetS, particularly the influence of the pyruvate dehydrogenase complex in oxidative stress, inflammation, and subsequent renal injury, is highlighted. Understanding the molecular mechanism(s) underlying MetS may lead to novel therapeutic approaches by targeting the pyruvate dehydrogenase complex in MetS and prevent its sequelae of chronic cardiovascular and renal diseases.
Collapse
Affiliation(s)
- Hewang Lee
- Department of Medicine, The George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| | - Pedro A Jose
- Department of Medicine, The George Washington University School of Medicine and Health Sciences, Washington, DC, United States.,Department of Pharmacology and Physiology, The George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| |
Collapse
|
26
|
Zhao G, Chang Z, Zhao Y, Guo Y, Lu H, Liang W, Rom O, Wang H, Sun J, Zhu T, Fan Y, Chang L, Yang B, Garcia-Barrio MT, Chen YE, Zhang J. KLF11 protects against abdominal aortic aneurysm through inhibition of endothelial cell dysfunction. JCI Insight 2021; 6:141673. [PMID: 33507881 PMCID: PMC8021107 DOI: 10.1172/jci.insight.141673] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 01/27/2021] [Indexed: 12/13/2022] Open
Abstract
Abdominal aortic aneurysm (AAA) is a life-threatening degenerative vascular disease. Endothelial cell (EC) dysfunction is implicated in AAA. Our group recently demonstrated that Krüppel-like factor 11 (KLF11) plays an essential role in maintaining vascular homeostasis, at least partially through inhibition of EC inflammatory activation. However, the functions of endothelial KLF11 in AAA remain unknown. Here we found that endothelial KLF11 expression was reduced in the ECs from human aneurysms and was time dependently decreased in the aneurysmal endothelium from both elastase- and Pcsk9/AngII-induced AAA mouse models. KLF11 deficiency in ECs markedly aggravated AAA formation, whereas EC-selective KLF11 overexpression markedly inhibited AAA formation. Mechanistically, KLF11 not only inhibited the EC inflammatory response but also diminished MMP9 expression and activity and reduced NADPH oxidase 2-mediated production of reactive oxygen species in ECs. In addition, KLF11-deficient ECs induced smooth muscle cell dedifferentiation and apoptosis. Overall, we established endothelial KLF11 as a potentially novel factor protecting against AAA and a potential target for intervention in aortic aneurysms.
Collapse
Affiliation(s)
- Guizhen Zhao
- Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Ziyi Chang
- Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, Michigan, USA
- Department of Pathology, China-Japan Friendship Hospital, Beijing, China
| | - Yang Zhao
- Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Yanhong Guo
- Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Haocheng Lu
- Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Wenying Liang
- Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Oren Rom
- Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Huilun Wang
- Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Jinjian Sun
- Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, Michigan, USA
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Tianqing Zhu
- Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Yanbo Fan
- Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, Michigan, USA
- Department of Cancer Biology, College of Medicine, University of Cincinnati, Cincinnati, Ohio. USA
| | - Lin Chang
- Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Bo Yang
- Department of Cardiac Surgery, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Minerva T. Garcia-Barrio
- Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Y. Eugene Chen
- Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, Michigan, USA
- Department of Cardiac Surgery, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Jifeng Zhang
- Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| |
Collapse
|
27
|
Carresi C, Mollace R, Macrì R, Scicchitano M, Bosco F, Scarano F, Coppoletta AR, Guarnieri L, Ruga S, Zito MC, Nucera S, Gliozzi M, Musolino V, Maiuolo J, Palma E, Mollace V. Oxidative Stress Triggers Defective Autophagy in Endothelial Cells: Role in Atherothrombosis Development. Antioxidants (Basel) 2021; 10:antiox10030387. [PMID: 33807637 PMCID: PMC8001288 DOI: 10.3390/antiox10030387] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 02/18/2021] [Accepted: 03/01/2021] [Indexed: 02/06/2023] Open
Abstract
Atherothrombosis, a multifactorial and multistep artery disorder, represents one of the main causes of morbidity and mortality worldwide. The development and progression of atherothrombosis is closely associated with age, gender and a complex relationship between unhealthy lifestyle habits and several genetic risk factors. The imbalance between oxidative stress and antioxidant defenses is the main biological event leading to the development of a pro-oxidant phenotype, triggering cellular and molecular mechanisms associated with the atherothrombotic process. The pathogenesis of atherosclerosis and its late thrombotic complications involve multiple cellular events such as inflammation, endothelial dysfunction, proliferation of vascular smooth muscle cells (SMCs), extracellular matrix (ECM) alterations, and platelet activation, contributing to chronic pathological remodeling of the vascular wall, atheromatous plague formation, vascular stenosis, and eventually, thrombus growth and propagation. Emerging studies suggest that clotting activation and endothelial cell (EC) dysfunction play key roles in the pathogenesis of atherothrombosis. Furthermore, a growing body of evidence indicates that defective autophagy is closely linked to the overproduction of reactive oxygen species (ROS) which, in turn, are involved in the development and progression of atherosclerotic disease. This topic represents a large field of study aimed at identifying new potential therapeutic targets. In this review, we focus on the major role played by the autophagic pathway induced by oxidative stress in the modulation of EC dysfunction as a background to understand its potential role in the development of atherothrombosis.
Collapse
Affiliation(s)
- Cristina Carresi
- Research for Food Safety & Health IRC-FSH, Department of Health Sciences, University Magna Graecia, 88100 Catanzaro, Italy; (R.M.); (R.M.); (M.S.); (F.B.); (F.S.); (A.R.C.); (L.G.); (S.R.); (M.C.Z.); (S.N.); (M.G.); (V.M.); (J.M.); (E.P.); (V.M.)
- Correspondence: ; Tel.: +39-09613694128; Fax: +39-09613695737
| | - Rocco Mollace
- Research for Food Safety & Health IRC-FSH, Department of Health Sciences, University Magna Graecia, 88100 Catanzaro, Italy; (R.M.); (R.M.); (M.S.); (F.B.); (F.S.); (A.R.C.); (L.G.); (S.R.); (M.C.Z.); (S.N.); (M.G.); (V.M.); (J.M.); (E.P.); (V.M.)
| | - Roberta Macrì
- Research for Food Safety & Health IRC-FSH, Department of Health Sciences, University Magna Graecia, 88100 Catanzaro, Italy; (R.M.); (R.M.); (M.S.); (F.B.); (F.S.); (A.R.C.); (L.G.); (S.R.); (M.C.Z.); (S.N.); (M.G.); (V.M.); (J.M.); (E.P.); (V.M.)
| | - Miriam Scicchitano
- Research for Food Safety & Health IRC-FSH, Department of Health Sciences, University Magna Graecia, 88100 Catanzaro, Italy; (R.M.); (R.M.); (M.S.); (F.B.); (F.S.); (A.R.C.); (L.G.); (S.R.); (M.C.Z.); (S.N.); (M.G.); (V.M.); (J.M.); (E.P.); (V.M.)
| | - Francesca Bosco
- Research for Food Safety & Health IRC-FSH, Department of Health Sciences, University Magna Graecia, 88100 Catanzaro, Italy; (R.M.); (R.M.); (M.S.); (F.B.); (F.S.); (A.R.C.); (L.G.); (S.R.); (M.C.Z.); (S.N.); (M.G.); (V.M.); (J.M.); (E.P.); (V.M.)
| | - Federica Scarano
- Research for Food Safety & Health IRC-FSH, Department of Health Sciences, University Magna Graecia, 88100 Catanzaro, Italy; (R.M.); (R.M.); (M.S.); (F.B.); (F.S.); (A.R.C.); (L.G.); (S.R.); (M.C.Z.); (S.N.); (M.G.); (V.M.); (J.M.); (E.P.); (V.M.)
| | - Anna Rita Coppoletta
- Research for Food Safety & Health IRC-FSH, Department of Health Sciences, University Magna Graecia, 88100 Catanzaro, Italy; (R.M.); (R.M.); (M.S.); (F.B.); (F.S.); (A.R.C.); (L.G.); (S.R.); (M.C.Z.); (S.N.); (M.G.); (V.M.); (J.M.); (E.P.); (V.M.)
| | - Lorenza Guarnieri
- Research for Food Safety & Health IRC-FSH, Department of Health Sciences, University Magna Graecia, 88100 Catanzaro, Italy; (R.M.); (R.M.); (M.S.); (F.B.); (F.S.); (A.R.C.); (L.G.); (S.R.); (M.C.Z.); (S.N.); (M.G.); (V.M.); (J.M.); (E.P.); (V.M.)
| | - Stefano Ruga
- Research for Food Safety & Health IRC-FSH, Department of Health Sciences, University Magna Graecia, 88100 Catanzaro, Italy; (R.M.); (R.M.); (M.S.); (F.B.); (F.S.); (A.R.C.); (L.G.); (S.R.); (M.C.Z.); (S.N.); (M.G.); (V.M.); (J.M.); (E.P.); (V.M.)
| | - Maria Caterina Zito
- Research for Food Safety & Health IRC-FSH, Department of Health Sciences, University Magna Graecia, 88100 Catanzaro, Italy; (R.M.); (R.M.); (M.S.); (F.B.); (F.S.); (A.R.C.); (L.G.); (S.R.); (M.C.Z.); (S.N.); (M.G.); (V.M.); (J.M.); (E.P.); (V.M.)
| | - Saverio Nucera
- Research for Food Safety & Health IRC-FSH, Department of Health Sciences, University Magna Graecia, 88100 Catanzaro, Italy; (R.M.); (R.M.); (M.S.); (F.B.); (F.S.); (A.R.C.); (L.G.); (S.R.); (M.C.Z.); (S.N.); (M.G.); (V.M.); (J.M.); (E.P.); (V.M.)
| | - Micaela Gliozzi
- Research for Food Safety & Health IRC-FSH, Department of Health Sciences, University Magna Graecia, 88100 Catanzaro, Italy; (R.M.); (R.M.); (M.S.); (F.B.); (F.S.); (A.R.C.); (L.G.); (S.R.); (M.C.Z.); (S.N.); (M.G.); (V.M.); (J.M.); (E.P.); (V.M.)
| | - Vincenzo Musolino
- Research for Food Safety & Health IRC-FSH, Department of Health Sciences, University Magna Graecia, 88100 Catanzaro, Italy; (R.M.); (R.M.); (M.S.); (F.B.); (F.S.); (A.R.C.); (L.G.); (S.R.); (M.C.Z.); (S.N.); (M.G.); (V.M.); (J.M.); (E.P.); (V.M.)
| | - Jessica Maiuolo
- Research for Food Safety & Health IRC-FSH, Department of Health Sciences, University Magna Graecia, 88100 Catanzaro, Italy; (R.M.); (R.M.); (M.S.); (F.B.); (F.S.); (A.R.C.); (L.G.); (S.R.); (M.C.Z.); (S.N.); (M.G.); (V.M.); (J.M.); (E.P.); (V.M.)
| | - Ernesto Palma
- Research for Food Safety & Health IRC-FSH, Department of Health Sciences, University Magna Graecia, 88100 Catanzaro, Italy; (R.M.); (R.M.); (M.S.); (F.B.); (F.S.); (A.R.C.); (L.G.); (S.R.); (M.C.Z.); (S.N.); (M.G.); (V.M.); (J.M.); (E.P.); (V.M.)
- Nutramed S.c.a.r.l., Complesso Ninì Barbieri, Roccelletta di Borgia, 88100 Catanzaro, Italy
| | - Vincenzo Mollace
- Research for Food Safety & Health IRC-FSH, Department of Health Sciences, University Magna Graecia, 88100 Catanzaro, Italy; (R.M.); (R.M.); (M.S.); (F.B.); (F.S.); (A.R.C.); (L.G.); (S.R.); (M.C.Z.); (S.N.); (M.G.); (V.M.); (J.M.); (E.P.); (V.M.)
- Nutramed S.c.a.r.l., Complesso Ninì Barbieri, Roccelletta di Borgia, 88100 Catanzaro, Italy
| |
Collapse
|
28
|
Carrasco R, Castillo RL, Gormaz JG, Carrillo M, Thavendiranathan P. Role of Oxidative Stress in the Mechanisms of Anthracycline-Induced Cardiotoxicity: Effects of Preventive Strategies. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8863789. [PMID: 33574985 PMCID: PMC7857913 DOI: 10.1155/2021/8863789] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 11/29/2020] [Accepted: 12/31/2020] [Indexed: 12/15/2022]
Abstract
Anthracycline-induced cardiotoxicity (AIC) persists as a significant cause of morbidity and mortality in cancer survivors. Although many protective strategies have been evaluated, cardiotoxicity remains an ongoing threat. The mechanisms of AIC remain unclear; however, several pathways have been proposed, suggesting a multifactorial origin. When the central role of topoisomerase 2β in the pathophysiology of AIC was described some years ago, the classical reactive oxygen species (ROS) hypothesis shifted to a secondary position. However, new insights have reemphasized the importance of the role of oxidative stress-mediated signaling as a common pathway and a critical modulator of the different mechanisms involved in AIC. A better understanding of the mechanisms of cardiotoxicity is crucial for the development of treatment strategies. It has been suggested that the available therapeutic interventions for AIC could act on the modulation of oxidative balance, leading to a reduction in oxidative stress injury. These indirect antioxidant effects make them an option for the primary prevention of AIC. In this review, our objective is to provide an update of the accumulated knowledge on the role of oxidative stress in AIC and the modulation of the redox balance by potential preventive strategies.
Collapse
Affiliation(s)
- Rodrigo Carrasco
- Division of Cardiology, Peter Munk Cardiac Centre and the Ted Rogers Centre for Heart Research, University Health Network, Toronto, Ontario, Canada
| | - Rodrigo L. Castillo
- Medicine Department, East Division, Faculty of Medicine, University of Chile. Santiago, Chile; Critical Care Patient Unit, Hospital Salvador, Santiago, Chile
| | - Juan G. Gormaz
- Faculty of Medicine, University of Chile, Santiago, Chile
| | - Montserrat Carrillo
- Division of Cardiology, Peter Munk Cardiac Centre and the Ted Rogers Centre for Heart Research, University Health Network, Toronto, Ontario, Canada
| | - Paaladinesh Thavendiranathan
- Division of Cardiology, Peter Munk Cardiac Centre and the Ted Rogers Centre for Heart Research, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
29
|
Justo AFO, de Oliveira MG, Calmasini FB, Alexandre EC, Bertollotto GM, Jacintho FF, Antunes E, Mónica FZ. Preserved activity of soluble guanylate cyclase (sGC) in iliac artery from middle-aged rats: Role of sGC modulators. Nitric Oxide 2021; 106:9-16. [PMID: 33122152 DOI: 10.1016/j.niox.2020.10.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 10/08/2020] [Accepted: 10/20/2020] [Indexed: 12/28/2022]
Abstract
Vascular aging leads to structural and functional changes. Iliac arteries (IA) provide blood flow to lower urinary tract and pelvic ischemia has been reported as an important factor for bladder remodeling and overactivity. Dysfunction of the nitric oxide (NO)-cyclic guanosine monophosphate pathway (cGMP) is one factor involved in the development of lower urinary tract (LUT) disorders. Therefore, we hypothesized that ageing-associated LUT disorders is a consequence of lower cGMP productions due to an oxidation of soluble guanylate cylase (sGC) that results in local ischemia. In the present study IA from middle-aged and young rats were isolated and the levels of NO, reactive oxygen species (ROS), the gene expression of the enzymes involved in the NO-pathway and concentration-response curves to the soluble guanylate (sGC) stimulator (BAY 41-2272), sGC activator (BAY 58-2667), tadalafil, acetylcholine (ACh) and sodium nitroprusside (SNP) were determined. In IA from middle-aged rats the gene expression for endothelial nitric oxide synthase and the ROS were lower and higher, respectively than the young group. The relaxations induced by ACh and SNP were significantly lower in IA from middle-aged rats. In IA from middle-aged rats the mRNA expression of PDE5 was 55% higher, accompanied by lower relaxation induced by tadalafil. On the other hand, the gene expression for sGCα1 were similar in IA from both groups. Both BAY 41-2272 and BAY 58-2667 produced concentration-dependent relaxations in IA from both groups, however, the latter was 9-times more potent than BAY 41-2272 and produced similar relaxations in IA in both middle-aged and young groups. Yet, the sGC oxidant, ODQ increased the relaxation and the cGMP levels induced by BAY 58-2667. On the other hand, in tissues stimulated with SNP, tadalafil and BAY-2272, the intracellular levels of cGMP were lower in IA from middle-aged than young rats. In conclusion, our results clearly showed that the relaxations induced by the endothelium-dependent and -independent agents, by the PDE5 inhibitor and by sGC stimulator were impaired in IA from aged rats, while that induced by sGC activator was preserved. It suggests that sGC activator may be advantageous in treating ischemia-related functional changes in the lower urinary tract organs in situations where the NO levels are reduced.
Collapse
Affiliation(s)
- Alberto Fernando O Justo
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Brazil
| | - Mariana G de Oliveira
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Brazil
| | - Fabiano B Calmasini
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Brazil
| | - Eduardo C Alexandre
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Brazil
| | | | | | - Edson Antunes
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Brazil
| | - Fabíola Z Mónica
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Brazil.
| |
Collapse
|
30
|
Casas AI, Nogales C, Mucke HAM, Petraina A, Cuadrado A, Rojo AI, Ghezzi P, Jaquet V, Augsburger F, Dufrasne F, Soubhye J, Deshwal S, Di Sante M, Kaludercic N, Di Lisa F, Schmidt HHHW. On the Clinical Pharmacology of Reactive Oxygen Species. Pharmacol Rev 2020; 72:801-828. [PMID: 32859763 DOI: 10.1124/pr.120.019422] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2025] Open
Abstract
Reactive oxygen species (ROS) have been correlated with almost every human disease. Yet clinical exploitation of these hypotheses by pharmacological modulation of ROS has been scarce to nonexistent. Are ROS, thus, irrelevant for disease? No. One key misconception in the ROS field has been its consideration as a rather detrimental metabolic by-product of cell metabolism, and thus, any approach eliminating ROS to a certain tolerable level would be beneficial. We now know, instead, that ROS at every concentration, low or high, can serve many essential signaling and metabolic functions. This likely explains why systemic, nonspecific antioxidants have failed in the clinic, often with neutral and sometimes even detrimental outcomes. Recently, drug development has focused, instead, on identifying and selectively modulating ROS enzymatic sources that in a given constellation cause disease while leaving ROS physiologic signaling and metabolic functions intact. As sources, the family of NADPH oxidases stands out as the only enzyme family solely dedicated to ROS formation. Selectively targeting disease-relevant ROS-related proteins is already quite advanced, as evidenced by several phase II/III clinical trials and the first drugs having passed registration. The ROS field is expanding by including target enzymes and maturing to resemble more and more modern, big data-enhanced drug discovery and development, including network pharmacology. By defining a disease based on a distinct mechanism, in this case ROS dysregulation, and not by a symptom or phenotype anymore, ROS pharmacology is leaping forward from a clinical underperformer to a proof of concept within the new era of mechanism-based precision medicine. SIGNIFICANCE STATEMENT: Despite being correlated to almost every human disease, nearly no ROS modulator has been translated to the clinics yet. Here, we move far beyond the old-fashioned misconception of ROS as detrimental metabolic by-products and suggest 1) novel pharmacological targeting focused on selective modulation of ROS enzymatic sources, 2) mechanism-based redefinition of diseases, and 3) network pharmacology within the ROS field, altogether toward the new era of ROS pharmacology in precision medicine.
Collapse
Affiliation(s)
- Ana I Casas
- Department of Pharmacology and Personalized Medicine, Maastricht University, School of Mental Health and Neuroscience (MHeNS), Maastricht, The Netherlands (A.I.C., C.N., A.P., H.H.H.W.S.); H. M. Pharma Consultancy, Wien, Austria (H.A.M.M.); Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Instituto de Investigaciones Biomédicas "Alberto Sols" UAM-CSIC, Instituto de Investigación Sanitaria La Paz (IdiPaz), Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain (A.C., A.I.R.); Brighton and Sussex Medical School, Falmer, United Kingdom (P.G.); Department of Pathology and Immunology, Medical School, University of Geneva, Geneva, Switzerland (V.J., F.A.); Microbiology, Bioorganic and Macromolecular Chemistry, RD3, Faculty of Pharmacy, Université Libre de Bruxelles (ULB), Bruxelles, Belgium (F.D., J.S.); and Department of Biomedical Sciences (S.D., M.D.S., F.D.L.) and CNR Neuroscience Institute (N.K., F.D.L.), University of Padova, Padova, Italy
| | - Cristian Nogales
- Department of Pharmacology and Personalized Medicine, Maastricht University, School of Mental Health and Neuroscience (MHeNS), Maastricht, The Netherlands (A.I.C., C.N., A.P., H.H.H.W.S.); H. M. Pharma Consultancy, Wien, Austria (H.A.M.M.); Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Instituto de Investigaciones Biomédicas "Alberto Sols" UAM-CSIC, Instituto de Investigación Sanitaria La Paz (IdiPaz), Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain (A.C., A.I.R.); Brighton and Sussex Medical School, Falmer, United Kingdom (P.G.); Department of Pathology and Immunology, Medical School, University of Geneva, Geneva, Switzerland (V.J., F.A.); Microbiology, Bioorganic and Macromolecular Chemistry, RD3, Faculty of Pharmacy, Université Libre de Bruxelles (ULB), Bruxelles, Belgium (F.D., J.S.); and Department of Biomedical Sciences (S.D., M.D.S., F.D.L.) and CNR Neuroscience Institute (N.K., F.D.L.), University of Padova, Padova, Italy
| | - Hermann A M Mucke
- Department of Pharmacology and Personalized Medicine, Maastricht University, School of Mental Health and Neuroscience (MHeNS), Maastricht, The Netherlands (A.I.C., C.N., A.P., H.H.H.W.S.); H. M. Pharma Consultancy, Wien, Austria (H.A.M.M.); Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Instituto de Investigaciones Biomédicas "Alberto Sols" UAM-CSIC, Instituto de Investigación Sanitaria La Paz (IdiPaz), Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain (A.C., A.I.R.); Brighton and Sussex Medical School, Falmer, United Kingdom (P.G.); Department of Pathology and Immunology, Medical School, University of Geneva, Geneva, Switzerland (V.J., F.A.); Microbiology, Bioorganic and Macromolecular Chemistry, RD3, Faculty of Pharmacy, Université Libre de Bruxelles (ULB), Bruxelles, Belgium (F.D., J.S.); and Department of Biomedical Sciences (S.D., M.D.S., F.D.L.) and CNR Neuroscience Institute (N.K., F.D.L.), University of Padova, Padova, Italy
| | - Alexandra Petraina
- Department of Pharmacology and Personalized Medicine, Maastricht University, School of Mental Health and Neuroscience (MHeNS), Maastricht, The Netherlands (A.I.C., C.N., A.P., H.H.H.W.S.); H. M. Pharma Consultancy, Wien, Austria (H.A.M.M.); Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Instituto de Investigaciones Biomédicas "Alberto Sols" UAM-CSIC, Instituto de Investigación Sanitaria La Paz (IdiPaz), Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain (A.C., A.I.R.); Brighton and Sussex Medical School, Falmer, United Kingdom (P.G.); Department of Pathology and Immunology, Medical School, University of Geneva, Geneva, Switzerland (V.J., F.A.); Microbiology, Bioorganic and Macromolecular Chemistry, RD3, Faculty of Pharmacy, Université Libre de Bruxelles (ULB), Bruxelles, Belgium (F.D., J.S.); and Department of Biomedical Sciences (S.D., M.D.S., F.D.L.) and CNR Neuroscience Institute (N.K., F.D.L.), University of Padova, Padova, Italy
| | - Antonio Cuadrado
- Department of Pharmacology and Personalized Medicine, Maastricht University, School of Mental Health and Neuroscience (MHeNS), Maastricht, The Netherlands (A.I.C., C.N., A.P., H.H.H.W.S.); H. M. Pharma Consultancy, Wien, Austria (H.A.M.M.); Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Instituto de Investigaciones Biomédicas "Alberto Sols" UAM-CSIC, Instituto de Investigación Sanitaria La Paz (IdiPaz), Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain (A.C., A.I.R.); Brighton and Sussex Medical School, Falmer, United Kingdom (P.G.); Department of Pathology and Immunology, Medical School, University of Geneva, Geneva, Switzerland (V.J., F.A.); Microbiology, Bioorganic and Macromolecular Chemistry, RD3, Faculty of Pharmacy, Université Libre de Bruxelles (ULB), Bruxelles, Belgium (F.D., J.S.); and Department of Biomedical Sciences (S.D., M.D.S., F.D.L.) and CNR Neuroscience Institute (N.K., F.D.L.), University of Padova, Padova, Italy
| | - Ana I Rojo
- Department of Pharmacology and Personalized Medicine, Maastricht University, School of Mental Health and Neuroscience (MHeNS), Maastricht, The Netherlands (A.I.C., C.N., A.P., H.H.H.W.S.); H. M. Pharma Consultancy, Wien, Austria (H.A.M.M.); Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Instituto de Investigaciones Biomédicas "Alberto Sols" UAM-CSIC, Instituto de Investigación Sanitaria La Paz (IdiPaz), Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain (A.C., A.I.R.); Brighton and Sussex Medical School, Falmer, United Kingdom (P.G.); Department of Pathology and Immunology, Medical School, University of Geneva, Geneva, Switzerland (V.J., F.A.); Microbiology, Bioorganic and Macromolecular Chemistry, RD3, Faculty of Pharmacy, Université Libre de Bruxelles (ULB), Bruxelles, Belgium (F.D., J.S.); and Department of Biomedical Sciences (S.D., M.D.S., F.D.L.) and CNR Neuroscience Institute (N.K., F.D.L.), University of Padova, Padova, Italy
| | - Pietro Ghezzi
- Department of Pharmacology and Personalized Medicine, Maastricht University, School of Mental Health and Neuroscience (MHeNS), Maastricht, The Netherlands (A.I.C., C.N., A.P., H.H.H.W.S.); H. M. Pharma Consultancy, Wien, Austria (H.A.M.M.); Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Instituto de Investigaciones Biomédicas "Alberto Sols" UAM-CSIC, Instituto de Investigación Sanitaria La Paz (IdiPaz), Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain (A.C., A.I.R.); Brighton and Sussex Medical School, Falmer, United Kingdom (P.G.); Department of Pathology and Immunology, Medical School, University of Geneva, Geneva, Switzerland (V.J., F.A.); Microbiology, Bioorganic and Macromolecular Chemistry, RD3, Faculty of Pharmacy, Université Libre de Bruxelles (ULB), Bruxelles, Belgium (F.D., J.S.); and Department of Biomedical Sciences (S.D., M.D.S., F.D.L.) and CNR Neuroscience Institute (N.K., F.D.L.), University of Padova, Padova, Italy
| | - Vincent Jaquet
- Department of Pharmacology and Personalized Medicine, Maastricht University, School of Mental Health and Neuroscience (MHeNS), Maastricht, The Netherlands (A.I.C., C.N., A.P., H.H.H.W.S.); H. M. Pharma Consultancy, Wien, Austria (H.A.M.M.); Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Instituto de Investigaciones Biomédicas "Alberto Sols" UAM-CSIC, Instituto de Investigación Sanitaria La Paz (IdiPaz), Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain (A.C., A.I.R.); Brighton and Sussex Medical School, Falmer, United Kingdom (P.G.); Department of Pathology and Immunology, Medical School, University of Geneva, Geneva, Switzerland (V.J., F.A.); Microbiology, Bioorganic and Macromolecular Chemistry, RD3, Faculty of Pharmacy, Université Libre de Bruxelles (ULB), Bruxelles, Belgium (F.D., J.S.); and Department of Biomedical Sciences (S.D., M.D.S., F.D.L.) and CNR Neuroscience Institute (N.K., F.D.L.), University of Padova, Padova, Italy
| | - Fiona Augsburger
- Department of Pharmacology and Personalized Medicine, Maastricht University, School of Mental Health and Neuroscience (MHeNS), Maastricht, The Netherlands (A.I.C., C.N., A.P., H.H.H.W.S.); H. M. Pharma Consultancy, Wien, Austria (H.A.M.M.); Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Instituto de Investigaciones Biomédicas "Alberto Sols" UAM-CSIC, Instituto de Investigación Sanitaria La Paz (IdiPaz), Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain (A.C., A.I.R.); Brighton and Sussex Medical School, Falmer, United Kingdom (P.G.); Department of Pathology and Immunology, Medical School, University of Geneva, Geneva, Switzerland (V.J., F.A.); Microbiology, Bioorganic and Macromolecular Chemistry, RD3, Faculty of Pharmacy, Université Libre de Bruxelles (ULB), Bruxelles, Belgium (F.D., J.S.); and Department of Biomedical Sciences (S.D., M.D.S., F.D.L.) and CNR Neuroscience Institute (N.K., F.D.L.), University of Padova, Padova, Italy
| | - Francois Dufrasne
- Department of Pharmacology and Personalized Medicine, Maastricht University, School of Mental Health and Neuroscience (MHeNS), Maastricht, The Netherlands (A.I.C., C.N., A.P., H.H.H.W.S.); H. M. Pharma Consultancy, Wien, Austria (H.A.M.M.); Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Instituto de Investigaciones Biomédicas "Alberto Sols" UAM-CSIC, Instituto de Investigación Sanitaria La Paz (IdiPaz), Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain (A.C., A.I.R.); Brighton and Sussex Medical School, Falmer, United Kingdom (P.G.); Department of Pathology and Immunology, Medical School, University of Geneva, Geneva, Switzerland (V.J., F.A.); Microbiology, Bioorganic and Macromolecular Chemistry, RD3, Faculty of Pharmacy, Université Libre de Bruxelles (ULB), Bruxelles, Belgium (F.D., J.S.); and Department of Biomedical Sciences (S.D., M.D.S., F.D.L.) and CNR Neuroscience Institute (N.K., F.D.L.), University of Padova, Padova, Italy
| | - Jalal Soubhye
- Department of Pharmacology and Personalized Medicine, Maastricht University, School of Mental Health and Neuroscience (MHeNS), Maastricht, The Netherlands (A.I.C., C.N., A.P., H.H.H.W.S.); H. M. Pharma Consultancy, Wien, Austria (H.A.M.M.); Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Instituto de Investigaciones Biomédicas "Alberto Sols" UAM-CSIC, Instituto de Investigación Sanitaria La Paz (IdiPaz), Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain (A.C., A.I.R.); Brighton and Sussex Medical School, Falmer, United Kingdom (P.G.); Department of Pathology and Immunology, Medical School, University of Geneva, Geneva, Switzerland (V.J., F.A.); Microbiology, Bioorganic and Macromolecular Chemistry, RD3, Faculty of Pharmacy, Université Libre de Bruxelles (ULB), Bruxelles, Belgium (F.D., J.S.); and Department of Biomedical Sciences (S.D., M.D.S., F.D.L.) and CNR Neuroscience Institute (N.K., F.D.L.), University of Padova, Padova, Italy
| | - Soni Deshwal
- Department of Pharmacology and Personalized Medicine, Maastricht University, School of Mental Health and Neuroscience (MHeNS), Maastricht, The Netherlands (A.I.C., C.N., A.P., H.H.H.W.S.); H. M. Pharma Consultancy, Wien, Austria (H.A.M.M.); Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Instituto de Investigaciones Biomédicas "Alberto Sols" UAM-CSIC, Instituto de Investigación Sanitaria La Paz (IdiPaz), Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain (A.C., A.I.R.); Brighton and Sussex Medical School, Falmer, United Kingdom (P.G.); Department of Pathology and Immunology, Medical School, University of Geneva, Geneva, Switzerland (V.J., F.A.); Microbiology, Bioorganic and Macromolecular Chemistry, RD3, Faculty of Pharmacy, Université Libre de Bruxelles (ULB), Bruxelles, Belgium (F.D., J.S.); and Department of Biomedical Sciences (S.D., M.D.S., F.D.L.) and CNR Neuroscience Institute (N.K., F.D.L.), University of Padova, Padova, Italy
| | - Moises Di Sante
- Department of Pharmacology and Personalized Medicine, Maastricht University, School of Mental Health and Neuroscience (MHeNS), Maastricht, The Netherlands (A.I.C., C.N., A.P., H.H.H.W.S.); H. M. Pharma Consultancy, Wien, Austria (H.A.M.M.); Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Instituto de Investigaciones Biomédicas "Alberto Sols" UAM-CSIC, Instituto de Investigación Sanitaria La Paz (IdiPaz), Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain (A.C., A.I.R.); Brighton and Sussex Medical School, Falmer, United Kingdom (P.G.); Department of Pathology and Immunology, Medical School, University of Geneva, Geneva, Switzerland (V.J., F.A.); Microbiology, Bioorganic and Macromolecular Chemistry, RD3, Faculty of Pharmacy, Université Libre de Bruxelles (ULB), Bruxelles, Belgium (F.D., J.S.); and Department of Biomedical Sciences (S.D., M.D.S., F.D.L.) and CNR Neuroscience Institute (N.K., F.D.L.), University of Padova, Padova, Italy
| | - Nina Kaludercic
- Department of Pharmacology and Personalized Medicine, Maastricht University, School of Mental Health and Neuroscience (MHeNS), Maastricht, The Netherlands (A.I.C., C.N., A.P., H.H.H.W.S.); H. M. Pharma Consultancy, Wien, Austria (H.A.M.M.); Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Instituto de Investigaciones Biomédicas "Alberto Sols" UAM-CSIC, Instituto de Investigación Sanitaria La Paz (IdiPaz), Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain (A.C., A.I.R.); Brighton and Sussex Medical School, Falmer, United Kingdom (P.G.); Department of Pathology and Immunology, Medical School, University of Geneva, Geneva, Switzerland (V.J., F.A.); Microbiology, Bioorganic and Macromolecular Chemistry, RD3, Faculty of Pharmacy, Université Libre de Bruxelles (ULB), Bruxelles, Belgium (F.D., J.S.); and Department of Biomedical Sciences (S.D., M.D.S., F.D.L.) and CNR Neuroscience Institute (N.K., F.D.L.), University of Padova, Padova, Italy
| | - Fabio Di Lisa
- Department of Pharmacology and Personalized Medicine, Maastricht University, School of Mental Health and Neuroscience (MHeNS), Maastricht, The Netherlands (A.I.C., C.N., A.P., H.H.H.W.S.); H. M. Pharma Consultancy, Wien, Austria (H.A.M.M.); Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Instituto de Investigaciones Biomédicas "Alberto Sols" UAM-CSIC, Instituto de Investigación Sanitaria La Paz (IdiPaz), Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain (A.C., A.I.R.); Brighton and Sussex Medical School, Falmer, United Kingdom (P.G.); Department of Pathology and Immunology, Medical School, University of Geneva, Geneva, Switzerland (V.J., F.A.); Microbiology, Bioorganic and Macromolecular Chemistry, RD3, Faculty of Pharmacy, Université Libre de Bruxelles (ULB), Bruxelles, Belgium (F.D., J.S.); and Department of Biomedical Sciences (S.D., M.D.S., F.D.L.) and CNR Neuroscience Institute (N.K., F.D.L.), University of Padova, Padova, Italy
| | - Harald H H W Schmidt
- Department of Pharmacology and Personalized Medicine, Maastricht University, School of Mental Health and Neuroscience (MHeNS), Maastricht, The Netherlands (A.I.C., C.N., A.P., H.H.H.W.S.); H. M. Pharma Consultancy, Wien, Austria (H.A.M.M.); Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Instituto de Investigaciones Biomédicas "Alberto Sols" UAM-CSIC, Instituto de Investigación Sanitaria La Paz (IdiPaz), Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain (A.C., A.I.R.); Brighton and Sussex Medical School, Falmer, United Kingdom (P.G.); Department of Pathology and Immunology, Medical School, University of Geneva, Geneva, Switzerland (V.J., F.A.); Microbiology, Bioorganic and Macromolecular Chemistry, RD3, Faculty of Pharmacy, Université Libre de Bruxelles (ULB), Bruxelles, Belgium (F.D., J.S.); and Department of Biomedical Sciences (S.D., M.D.S., F.D.L.) and CNR Neuroscience Institute (N.K., F.D.L.), University of Padova, Padova, Italy
| |
Collapse
|
31
|
Paus R, Ramot Y, Kirsner RS, Tomic-Canic M. Topical L-thyroxine: The Cinderella among hormones waiting to dance on the floor of dermatological therapy? Exp Dermatol 2020; 29:910-923. [PMID: 32682336 PMCID: PMC7722149 DOI: 10.1111/exd.14156] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/28/2020] [Accepted: 07/13/2020] [Indexed: 12/15/2022]
Abstract
Topical hormone therapy with natural or synthetic ligands of nuclear hormone receptors such as glucocorticoids, vitamin D analogues and retinoids has a long and highly successful tradition in dermatology. Yet the dermatological potential of thyroid hormone receptor (TR) agonists has been widely ignored, despite abundant clinical, cell and molecular biology, mouse in vivo, and human skin and hair follicle organ culture data documenting a role of TR-mediated signalling in skin physiology and pathology. Here, we review this evidence, with emphasis on wound healing and hair growth, and specifically highlight the therapeutic potential of repurposing topical L-thyroxine (T4) for selected applications in future dermatological therapy. We underscore the known systemic safety and efficacy profile of T4 in clinical medicine, and the well-documented impact of thyroid hormones on, for example, human epidermal and hair follicle physiology, hair follicle epithelial stem cells and pigmentation, keratin expression, mitochondrial energy metabolism and wound healing. On this background, we argue that short-term topical T4 treatment deserves careful further preclinical and clinical exploration for repurposing as a low-cost, effective and widely available dermatotherapeutic, namely in the management of skin ulcers and telogen effluvium, and that its predictable adverse effects are well-manageable.
Collapse
Affiliation(s)
- Ralf Paus
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
- Centre for Dermatology Research, University of Manchester & NIHR Manchester Biomedical Research Centre, Manchester, UK
- Monasterium Laboratory, Münster, Germany
| | - Yuval Ramot
- Department of Dermatology, Hadassah Medical Center, The Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Robert S. Kirsner
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Marjana Tomic-Canic
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
32
|
Ataei Ataabadi E, Golshiri K, Jüttner A, Krenning G, Danser AHJ, Roks AJM. Nitric Oxide-cGMP Signaling in Hypertension: Current and Future Options for Pharmacotherapy. Hypertension 2020; 76:1055-1068. [PMID: 32829664 DOI: 10.1161/hypertensionaha.120.15856] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
For the treatment of systemic hypertension, pharmacological intervention in nitric oxide-cyclic guanosine monophosphate signaling is a well-explored but unexploited option. In this review, we present the identified drug targets, including oxidases, mitochondria, soluble guanylyl cyclase, phosphodiesterase 1 and 5, and protein kinase G, important compounds that modulate them, and the current status of (pre)clinical development. The mode of action of these compounds is discussed, and based upon this, the clinical opportunities. We conclude that drugs that directly target the enzymes of the nitric oxide-cyclic guanosine monophosphate cascade are currently the most promising compounds, but that none of these compounds is under investigation as a treatment option for systemic hypertension.
Collapse
Affiliation(s)
- Ehsan Ataei Ataabadi
- From the Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus MC, Rotterdam, the Netherlands (E.A.A., K.G., A.J., A.H.J.D., A.J.M.R.)
| | - Keivan Golshiri
- From the Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus MC, Rotterdam, the Netherlands (E.A.A., K.G., A.J., A.H.J.D., A.J.M.R.)
| | - Annika Jüttner
- From the Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus MC, Rotterdam, the Netherlands (E.A.A., K.G., A.J., A.H.J.D., A.J.M.R.)
| | - Guido Krenning
- Sulfateq B.V., Groningen, the Netherlands (G.K.).,Cardiovascular Regenerative Medicine, Department Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, the Netherlands (G.K.)
| | - A H Jan Danser
- From the Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus MC, Rotterdam, the Netherlands (E.A.A., K.G., A.J., A.H.J.D., A.J.M.R.)
| | - Anton J M Roks
- From the Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus MC, Rotterdam, the Netherlands (E.A.A., K.G., A.J., A.H.J.D., A.J.M.R.)
| |
Collapse
|
33
|
Venil CK, Dufossé L, Renuka Devi P. Bacterial Pigments: Sustainable Compounds With Market Potential for Pharma and Food Industry. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2020. [DOI: 10.3389/fsufs.2020.00100] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
34
|
Poznyak AV, Grechko AV, Orekhova VA, Khotina V, Ivanova EA, Orekhov AN. NADPH Oxidases and Their Role in Atherosclerosis. Biomedicines 2020; 8:biomedicines8070206. [PMID: 32664404 PMCID: PMC7399834 DOI: 10.3390/biomedicines8070206] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/06/2020] [Accepted: 07/08/2020] [Indexed: 02/06/2023] Open
Abstract
The current view on atherosclerosis positions it as a multifactorial disorder that results from the interplay between lipid metabolism disturbances and inflammatory processes. Oxidative stress is proven to be one of the initiating factors in atherosclerosis development, being implicated both in the inflammatory response and in atherogenic modifications of lipoproteins that facilitate lipid accumulation in the arterial wall. The hallmark of oxidative stress is the elevated level of reactive oxygen species (ROS). Correspondingly, the activity of major ROS-generating enzymes, including nicotinamide adenine dinucleotide phosphate (NADPH) oxidases, xanthine oxidases, and cyclooxygenases, is an important element in atherosclerosis development. In particular, the role of NADPH oxidases in atherosclerosis development has become a subject of intensive research. Aberrant activity of NADPH oxidases was shown to be associated with cardiovascular disease in humans. With regard to atherosclerosis, several important pathological components of the disease development, including endothelial dysfunction, inflammation, and vascular remodeling, involve aberrations in NADPH oxidases functioning. In humans, NADPH oxidases are represented by four isoforms expressed in vascular tissues, where they serve as the main source of ROS during atherogenesis. Moreover, recent studies have demonstrated their impact on vascular remodeling processes. Interestingly, one of the NADPH oxidase isoforms, NOX4, was shown to have an atheroprotective effect. Despite the growing evidence of the crucial involvement of NADPH oxidases in atherosclerosis pathogenesis, the available data still remains controversial. In this narrative review, we summarize the current knowledge of the role of NADPH oxidases in atherosclerosis and outline the future directions of research.
Collapse
Affiliation(s)
- Anastasia V. Poznyak
- Department of Basic Research, Institute for Atherosclerosis Research, Skolkovo Innovative Center, 121609 Moscow, Russia; (A.V.P.); (E.A.I.)
| | - Andrey V. Grechko
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, 14-3 Solyanka Street, 109240 Moscow, Russia;
| | - Varvara A. Orekhova
- Laboratory of Medical Genetics, National Medical Research Center of Cardiology, 15A 3-rd Cherepkovskaya Street, 121552 Moscow, Russia;
| | - Victoria Khotina
- Laboratory of Infectious Pathology and Molecular Microecology, Institute of Human Morphology, 3 Tsyurupa Street, 117418 Moscow, Russia;
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 8, Baltiyskaya St., 125315 Moscow, Russia
| | - Ekaterina A. Ivanova
- Department of Basic Research, Institute for Atherosclerosis Research, Skolkovo Innovative Center, 121609 Moscow, Russia; (A.V.P.); (E.A.I.)
| | - Alexander N. Orekhov
- Laboratory of Infectious Pathology and Molecular Microecology, Institute of Human Morphology, 3 Tsyurupa Street, 117418 Moscow, Russia;
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 8, Baltiyskaya St., 125315 Moscow, Russia
- Correspondence: ; Tel./Fax: +7-(495)-4159594
| |
Collapse
|
35
|
Karimzadeh K, Ramzanpoor M, Keihankhadiv S. Antinociceptive and Anti-inflammatory Effects of Methanolic Extract of Laurencia caspica. INTERNATIONAL JOURNAL OF BASIC SCIENCE IN MEDICINE 2020. [DOI: 10.34172/ijbsm.2020.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Introduction: Seaweeds are valuable resources for the discovery of efficient and safe drugs for pain treatment. In the present investigation, we evaluated the antinociceptive and anti-inflammatory properties of, methanolic extract of Laurencia caspica, a red algae, in mice models. Methods: The analgesic effect of methanolic extract of L. caspica was assessed by hot-plate and acetic acid-induced writhing tests in male Swiss albino mice (weight = 20-25 g). The anti-inflammatory activity of methanolic extract of L. caspica was also evaluated by formalin-induced ear edema and xylene-induced paw edema tests. Results: The total flavonoid content of the extract was estimated as 0.0537 mg quercetin/g extract. Both first and second phases of the nociception were significantly inhibited at a dose of 120 mg/kg of methanolic extract of L. caspica. The observed anti-inflammatory effect was dose-dependent. Acetic acid-induced writhing test and hot plate test showed that the extract significantly reduced pain in all evaluated doses (15, 30, 60, and 120 mg/kg). The antinociceptive activity of the methanolic extract was significantly reduced by naloxone (4 mg/kg). Moreover, the extract significantly reduced paw edema at the dose of 120 mg/kg in all the animals. Conclusion: Methanolic extract of L. caspica exhibited central analgesic effect, as well as anti-inflammatory activity probably due to the presence of constituents like flavonoids and triterpenoids.
Collapse
Affiliation(s)
- Katayoon Karimzadeh
- Department of Biology, Lahijan Branch, Islamic Azad University, Lahijan, Iran
| | - Mahdiyeh Ramzanpoor
- Department of Biology, Lahijan Branch, Islamic Azad University, Lahijan, Iran
| | - Shadi Keihankhadiv
- Department of Chemistry, Pharmaceutical Sciences Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
36
|
Unveiling the Role of Inflammation and Oxidative Stress on Age-Related Cardiovascular Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:1954398. [PMID: 32454933 PMCID: PMC7232723 DOI: 10.1155/2020/1954398] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/12/2020] [Accepted: 04/03/2020] [Indexed: 12/14/2022]
Abstract
The global population above 60 years has been growing exponentially in the last decades, which is accompanied by an increase in the prevalence of age-related chronic diseases, highlighting cardiovascular diseases (CVDs), such as hypertension, atherosclerosis, and heart failure. Aging is the main risk factor for these diseases. Such susceptibility to disease is explained, at least in part, by the increase of oxidative stress, in which it damages cellular components such as proteins, DNA, and lipids. In addition, the chronic inflammatory process in aging “inflammaging” also contributes to cell damage, creating a stressful environment which drives to the development of CVDs. Taken together, it is possible to identify the molecular connection between oxidative stress and the inflammatory process, especially by the crosstalk between the transcription factors Nrf-2 and NF-κB which are mediated by redox signalling and are involved in aging. Therapies that control this process are key targets in the prevention/combat of age-related CVDs. In this review, we show the basics of inflammation and oxidative stress, including the crosstalk between them, and the implications on age-related CVDs.
Collapse
|
37
|
Ramadan R, Vromans E, Anang DC, Goetschalckx I, Hoorelbeke D, Decrock E, Baatout S, Leybaert L, Aerts A. Connexin43 Hemichannel Targeting With TAT-Gap19 Alleviates Radiation-Induced Endothelial Cell Damage. Front Pharmacol 2020; 11:212. [PMID: 32210810 PMCID: PMC7066501 DOI: 10.3389/fphar.2020.00212] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 02/14/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Emerging evidence indicates an excess risk of late occurring cardiovascular diseases, especially atherosclerosis, after thoracic cancer radiotherapy. Ionizing radiation (IR) induces cellular effects which may induce endothelial cell dysfunction, an early marker for atherosclerosis. In addition, intercellular communication through channels composed of transmembrane connexin proteins (Cxs), i.e. Gap junctions (direct cell-cell coupling) and hemichannels (paracrine release/uptake pathway) can modulate radiation-induced responses and therefore the atherosclerotic process. However, the role of endothelial hemichannel in IR-induced atherosclerosis has never been described before. MATERIALS AND METHODS Telomerase-immortalized human Coronary Artery/Microvascular Endothelial cells (TICAE/TIME) were exposed to X-rays (0.1 and 5 Gy). Production of reactive oxygen species (ROS), DNA damage, cell death, inflammatory responses, and senescence were assessed with or without applying a Cx43 hemichannel blocker (TAT-Gap19). RESULTS We report here that IR induces an increase in oxidative stress, cell death, inflammatory responses (IL-8, IL-1β, VCAM-1, MCP-1, and Endothelin-1) and premature cellular senescence in TICAE and TIME cells. These effects are significantly reduced in the presence of the Cx43 hemichannel-targeting peptide TAT-Gap19. CONCLUSION Our findings suggest that endothelial Cx43 hemichannels contribute to various IR-induced processes, such as ROS, cell death, inflammation, and senescence, resulting in an increase in endothelial cell damage, which could be protected by blocking these hemichannels. Thus, targeting Cx43 hemichannels may potentially exert radioprotective effects.
Collapse
Affiliation(s)
- Raghda Ramadan
- Radiobiology Unit, Belgian Nuclear Research Centre (SCK•CEN), Mol, Belgium
- Department of Fundamental and Basic Medical Sciences, Physiology Group, Ghent University, Ghent, Belgium
| | - Els Vromans
- Centre for Environmental Health Sciences, Hasselt University, Hasselt, Belgium
| | - Dornatien Chuo Anang
- Biomedical Research Institute and Transnational University of Limburg, Hasselt University, Hasselt, Belgium
| | - Ines Goetschalckx
- Protein Chemistry, Proteomics and Epigenetic Signaling Group, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Delphine Hoorelbeke
- Department of Fundamental and Basic Medical Sciences, Physiology Group, Ghent University, Ghent, Belgium
| | - Elke Decrock
- Department of Fundamental and Basic Medical Sciences, Physiology Group, Ghent University, Ghent, Belgium
| | - Sarah Baatout
- Radiobiology Unit, Belgian Nuclear Research Centre (SCK•CEN), Mol, Belgium
- Department of Molecular Biotechnology, Ghent University, Ghent, Belgium
| | - Luc Leybaert
- Department of Fundamental and Basic Medical Sciences, Physiology Group, Ghent University, Ghent, Belgium
| | - An Aerts
- Radiobiology Unit, Belgian Nuclear Research Centre (SCK•CEN), Mol, Belgium
| |
Collapse
|
38
|
Dei Zotti F, Verdoy R, Brusa D, Lobysheva II, Balligand JL. Redox regulation of nitrosyl-hemoglobin in human erythrocytes. Redox Biol 2019; 34:101399. [PMID: 31838004 PMCID: PMC7327715 DOI: 10.1016/j.redox.2019.101399] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 11/28/2019] [Accepted: 12/03/2019] [Indexed: 01/01/2023] Open
Abstract
Oxidative stress perturbs vascular homeostasis leading to endothelial dysfunction and cardiovascular diseases. Vascular reactive oxygen species (ROS) reduce nitric oxide (NO) bioactivity, a hallmark of cardiovascular and metabolic diseases. We measured steady-state vascular NO levels through the quantification of heme nitrosylated hemoglobin (5-coordinate-α-HbNO) in venous erythrocytes of healthy human subjects using electron paramagnetic resonance (EPR) spectroscopy. To examine how ROS may influence HbNO complex formation and stability, we identified the pro- and anti-oxidant enzymatic sources in human erythrocytes and their relative impact on intracellular redox state and steady-state HbNO levels. We demonstrated that pro-oxidant enzymes such as NADPH oxidases are expressed and produce a significant amount of ROS at the membrane of healthy erythrocytes. In addition, the steady-state levels of HbNO were preserved when NOX (e.g. NOX1 and NOX2) activity was inhibited. We next evaluated the impact of selective antioxidant enzymatic systems on HbNO stability. Peroxiredoxin 2 and catalase, in particular, played an important role in endogenous and exogenous H2O2 degradation, respectively. Accordingly, inhibitors of peroxiredoxin 2 and catalase significantly decreased erythrocyte HbNO concentration. Conversely, steady-state levels of HbNO were preserved upon supplying erythrocytes with exogenous catalase. These findings support HbNO measurements as indicators of vascular oxidant stress and of NO bioavailability and potentially, as useful biomarkers of early endothelial dysfunction.
Collapse
Affiliation(s)
- Flavia Dei Zotti
- Institut de Recherche Experimentale et Clinique (IREC), Pole of Pharmacology and Therapeutics (FATH), Cliniques Universitaires Saint-Luc and Université Catholique de Louvain, Brussels, Belgium
| | - Roxane Verdoy
- Institut de Recherche Experimentale et Clinique (IREC), Pole of Pharmacology and Therapeutics (FATH), Cliniques Universitaires Saint-Luc and Université Catholique de Louvain, Brussels, Belgium
| | - Davide Brusa
- Institut de Recherche Experimentale et Clinique (IREC), Flow Cytometry Platform, Cliniques Universitaires Saint-Luc and Université Catholique de Louvain, Brussels, Belgium
| | - Irina I Lobysheva
- Institut de Recherche Experimentale et Clinique (IREC), Pole of Pharmacology and Therapeutics (FATH), Cliniques Universitaires Saint-Luc and Université Catholique de Louvain, Brussels, Belgium.
| | - Jean-Luc Balligand
- Institut de Recherche Experimentale et Clinique (IREC), Pole of Pharmacology and Therapeutics (FATH), Cliniques Universitaires Saint-Luc and Université Catholique de Louvain, Brussels, Belgium.
| |
Collapse
|
39
|
Barton M, Meyer MR, Prossnitz ER. Nox1 downregulators: A new class of therapeutics. Steroids 2019; 152:108494. [PMID: 31518594 PMCID: PMC6891104 DOI: 10.1016/j.steroids.2019.108494] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 08/29/2019] [Accepted: 09/06/2019] [Indexed: 02/07/2023]
Abstract
Chronic non-communicable diseases share the pathomechanism of increased reactive oxygen species (ROS) production by nicotinamide adenine dinucleotide phosphate (NADPH) oxidases, known as Nox. The recent discovery that expression of Nox1, a Nox isoform that has been implicated in the pathogenesis of cardiovascular and kidney disease and cancer is regulated by the expression and activity of G protein-coupled estrogen receptor (GPER) led to the identification of orally active small-molecule GPER blockers as selective Nox1 downregulators (NDRs). Preclinical studies using NDRs have demonstrated beneficial effects in vascular disease, hypertension, and glomerular renal injury. These findings suggest the therapeutic potential of NDRs, which reduce Nox1 protein levels, not only for cardiovascular disease conditions including arterial hypertension, pulmonary hypertension, heart failure with preserved ejection fraction (HFpEF), and chronic renal disease, but also for other non-communicable diseases, such as cerebrovascular disease and vascular dementia, Alzheimer's disease, autoimmune diseases and cancer, in which elevated Nox1-derived ROS production plays a causal role.
Collapse
Affiliation(s)
- Matthias Barton
- Molecular Internal Medicine, University of Zürich, Zürich, Switzerland; Andreas Grüntzig Foundation, Zürich, Switzerland.
| | - Matthias R Meyer
- Division of Cardiology, Triemli City Hospital, Zürich, Switzerland; Institute of Primary Care, University of Zürich, Zürich, Switzerland
| | - Eric R Prossnitz
- Division of Molecular Medicine, Department of Internal Medicine, Health Sciences Center, Albuquerque, NM, USA; University of New Mexico Comprehensive Cancer Center, University of New Mexico, Health Sciences Center, Albuquerque, NM, USA
| |
Collapse
|
40
|
Hua J, Malinski T. Variable Effects Of LDL Subclasses Of Cholesterol On Endothelial Nitric Oxide/Peroxynitrite Balance - The Risks And Clinical Implications For Cardiovascular Disease. Int J Nanomedicine 2019; 14:8973-8987. [PMID: 31819413 PMCID: PMC6874513 DOI: 10.2147/ijn.s223524] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 10/09/2019] [Indexed: 11/23/2022] Open
Abstract
Background Elevated levels of low density lipoprotein (LDL), “bad cholesterol”, is not an accurate indicator of coronary disease. About 75% of patients with heart attacks have cholesterol levels that do not indicate a high risk for a cardiovascular event. LDL is comprised of three subclasses, with particles of different size and density. We used nanomedical systems to elucidate the noxious effects of LDL subclasses on endothelium. Experimental Nanosensors were employed to measure the concentrations of nitric oxide (NO) and peroxynitrite (ONOO−) stimulated by LDL subclasses in HUVECs. N-LDL and ox-LDL (subclass A: 1.016–1.019 g/mL, subclass I: 1.024–1.029 g/mL, and subclass B: 1.034–1.053 g/mL) stimulated NO and ONOO− release. The concentrations ratio of (NO)/(ONOO−) was used to evaluate the noxious effects of the subclasses on endothelium. Results In HUVECs, the (NO)/(ONOO−) ratio for normal endothelium is about 5, but shifts to 2.7±0.4, 0.5±0.1, and 0.9±0.1 for subclasses A, B, and I, respectively. Ratios below 1.0 indicate an imbalance between NO and ONOO−, affecting endothelial function. LDL of 50% B and 50% I produced the most severe imbalance (0.45±0.04), whereas LDL of 60% A, 20% B, and 20% I had the most favorable balance of 5.66±0.69. Subclass B significantly elevated the adhesion of molecules and monocytes. The noxious effect was significantly higher for ox-LDL than n-LDL. Conclusion Subclass B of “bad cholesterol” is the most damaging to endothelial function and can contribute to the development of atherosclerosis. Contrary to the current national guidelines, this study suggests that it’s not the total LDL, rather it is the concentration of subclass B in relation to subclasses A and/or I, that should be used for diagnosis of atherosclerosis and the risk of heart attack. By utilizing specific pharmacological therapy to address the concentration of subclass B, there is a potential to significantly reduce the risk of heart attack and atherosclerosis.
Collapse
Affiliation(s)
- Jiangzhou Hua
- Nanomedical Research Laboratory, Ohio University, Athens, OH, USA
| | - Tadeusz Malinski
- Nanomedical Research Laboratory, Ohio University, Athens, OH, USA
| |
Collapse
|
41
|
NADPH oxidases and oxidase crosstalk in cardiovascular diseases: novel therapeutic targets. Nat Rev Cardiol 2019; 17:170-194. [PMID: 31591535 DOI: 10.1038/s41569-019-0260-8] [Citation(s) in RCA: 370] [Impact Index Per Article: 61.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/19/2019] [Indexed: 02/07/2023]
Abstract
Reactive oxygen species (ROS)-dependent production of ROS underlies sustained oxidative stress, which has been implicated in the pathogenesis of cardiovascular diseases such as hypertension, aortic aneurysm, hypercholesterolaemia, atherosclerosis, diabetic vascular complications, cardiac ischaemia-reperfusion injury, myocardial infarction, heart failure and cardiac arrhythmias. Interactions between different oxidases or oxidase systems have been intensively investigated for their roles in inducing sustained oxidative stress. In this Review, we discuss the latest data on the pathobiology of each oxidase component, the complex crosstalk between different oxidase components and the consequences of this crosstalk in mediating cardiovascular disease processes, focusing on the central role of particular NADPH oxidase (NOX) isoforms that are activated in specific cardiovascular diseases. An improved understanding of these mechanisms might facilitate the development of novel therapeutic agents targeting these oxidase systems and their interactions, which could be effective in the prevention and treatment of cardiovascular disorders.
Collapse
|
42
|
Martinez CS, Piagette JT, Escobar AG, Martín Á, Palacios R, Peçanha FM, Vassallo DV, Exley C, Alonso MJ, Salaices M, Miguel M, Wiggers GA. Egg White Hydrolysate: A new putative agent to prevent vascular dysfunction in rats following long-term exposure to aluminum. Food Chem Toxicol 2019; 133:110799. [PMID: 31493463 DOI: 10.1016/j.fct.2019.110799] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 08/20/2019] [Accepted: 08/30/2019] [Indexed: 02/07/2023]
Abstract
Aluminum (Al) is toxic for humans and animals. Here, we have tested the potential for Egg White Hydrolysate (EWH) to protect against cardiovascular changes in rats exposed to both high and low dietary levels of Al. Indeed, EWH has been previously shown to improve cardio metabolic dysfunctions induced by chronic exposure to heavy metals. Male Wistar rats received orally: Group 1) Low aluminum level (AlCl3 at a dose of 8.3 mg/kg b.w. during 60 days) with or without EWH treatment (1 g/kg/day); Group 2) High aluminum level (AlCl3 at a dose of 100 mg/kg b.w. during 42 days) with or without EWH treatment. After Al treatment, rats co-treated with EWH did not show vascular dysfunction or increased blood pressure as was observed in non EWH-cotreated animals. Indeed, co-treatment with EWH prevented the following effects observed in both aorta and mesenteric arteries: the increased vascular responses to phenylephrine (Phe), the decreased ACh-induced relaxation, the reduction on endothelial modulation of vasoconstrictor responses and the nitric oxide bioavailability, as well as the increased reactive oxygen species production from NAD(P)H oxidase. Altogether, our results suggest that EWH could be used as a protective agent against the harmful vascular effects after long term exposure to Al.
Collapse
Affiliation(s)
- Caroline Silveira Martinez
- Cardiovascular Physiology Research Group, Universidade Federal do Pampa, BR 472 - Km 592 - PO box 118, 97500-970, Uruguaiana, Rio Grande do Sul, Brazil.
| | - Janaina Trindade Piagette
- Cardiovascular Physiology Research Group, Universidade Federal do Pampa, BR 472 - Km 592 - PO box 118, 97500-970, Uruguaiana, Rio Grande do Sul, Brazil
| | - Alyne Gourlart Escobar
- Cardiovascular Physiology Research Group, Universidade Federal do Pampa, BR 472 - Km 592 - PO box 118, 97500-970, Uruguaiana, Rio Grande do Sul, Brazil
| | - Ángela Martín
- Department of Ciencias Básicas de la Salud, Universidad Rey Juan Carlos, Avda. de Atenas s/n, Alcorcón, Spain; Instituto de Investigación Hospital La Paz, Spain and Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Cardiovasculares, Madrid, Spain
| | - Roberto Palacios
- Department of Ciencias Básicas de la Salud, Universidad Rey Juan Carlos, Avda. de Atenas s/n, Alcorcón, Spain; Instituto de Investigación Hospital La Paz, Spain and Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Cardiovasculares, Madrid, Spain
| | - Franck Maciel Peçanha
- Cardiovascular Physiology Research Group, Universidade Federal do Pampa, BR 472 - Km 592 - PO box 118, 97500-970, Uruguaiana, Rio Grande do Sul, Brazil
| | - Dalton Valentim Vassallo
- Departments of Physiological Sciences, Universidade Federal do Espírito Santo and School of Medicine of Santa Casa de Misericórdia (EMESCAM), Av. Marechal Campos 1468, 29040-090, Vitória, Espírito Santo, Brazil
| | - Christopher Exley
- The Birchall Centre, Lennard-Jones Laboratories, Keele University, Staffordshire, ST5 5BG, UK
| | - María Jesús Alonso
- Department of Ciencias Básicas de la Salud, Universidad Rey Juan Carlos, Avda. de Atenas s/n, Alcorcón, Spain; Instituto de Investigación Hospital La Paz, Spain and Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Cardiovasculares, Madrid, Spain
| | - Mercedes Salaices
- Instituto de Investigación Hospital La Paz, Spain and Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Cardiovasculares, Madrid, Spain; Department of Pharmacology, Universidad Autónoma de Madrid, C/ Arzobispo Morcillo 4, 28029, Madrid, Spain
| | - Marta Miguel
- Instituto de Investigación, Hospital La Paz, Spain; Bioactivity and Food Analysis Laboratory, Instituto de Investigación en Ciencias de la Alimentación, Nicolás Cabrera, 9, Campus Universitario de Cantoblanco, Madrid, Spain.
| | - Giulia Alessandra Wiggers
- Cardiovascular Physiology Research Group, Universidade Federal do Pampa, BR 472 - Km 592 - PO box 118, 97500-970, Uruguaiana, Rio Grande do Sul, Brazil
| |
Collapse
|
43
|
Hu X, Jiang W, Wang Z, Li L, Hu Z. NOX1 Negatively Modulates Fibulin-5 in Vascular Smooth Muscle Cells to Affect Aortic Dissection. Biol Pharm Bull 2019; 42:1464-1470. [DOI: 10.1248/bpb.b18-01012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Xiaoping Hu
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University
| | - Wanli Jiang
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University
| | - Zhiwei Wang
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University
| | - Luocheng Li
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University
| | - Zhipeng Hu
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University
| |
Collapse
|
44
|
Wang L, Zhou Y, Qin Y, Wang Y, Liu B, Fang R, Bai M. Methylophiopogonanone B of Radix Ophiopogonis protects cells from H2O2‑induced apoptosis through the NADPH oxidase pathway in HUVECs. Mol Med Rep 2019; 20:3691-3700. [PMID: 31485606 PMCID: PMC6755187 DOI: 10.3892/mmr.2019.10625] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 07/30/2019] [Indexed: 12/14/2022] Open
Abstract
Methylophiopogonanone B (MO-B), which belongs to a group of homoisoflavonoids, present in Ophiopogon japonicus, has been identified as an active component with antioxidative and anti-tumor properties. The present study investigated whether MO-B may exert protective effects on human umbilical vein endothelial cells (HUVECs) against H2O2-induced injury in vitro, and whether the MO-B effects may be modulated by the NADPH pathway. HUVECs were treated with MO-B in the presence or absence of H2O2. Malondialdehyde (MDA), reactive oxygen species (ROS) levels, and superoxide dismutase (SOD) activity were analyzed to evaluate cell injury and the antioxidative potential of MO-B. The results revealed that MO-B inhibited the production of MDA and ROS, but enhanced SOD activity. Furthermore, MO-B could alleviate H2O2-induced apoptosis in HUVECs, which is consistent with the expression of apoptosis-associated genes and proteins in cells, including Bax/Bcl-2 and caspase-3. To explore the potential mechanism, the present study investigated the effects of MO-B on NADPH-related signaling via the analysis of neutrophil cytochrome b light chain (p22phox) expression, which is the membrane-associated subunit of NADPH oxidase. MO-B could improve the survival of endothelial cells and therefore may be a potential drug in the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Liling Wang
- Zhejiang Academy of Forestry, Zhejiang University of Science and Technology, Hangzhou, Zhejiang 310023, P.R. China
| | - Yifeng Zhou
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, Zhejiang 310023, P.R. China
| | - Yuchuan Qin
- Zhejiang Academy of Forestry, Zhejiang University of Science and Technology, Hangzhou, Zhejiang 310023, P.R. China
| | - Yanbin Wang
- Zhejiang Academy of Forestry, Zhejiang University of Science and Technology, Hangzhou, Zhejiang 310023, P.R. China
| | - Bentong Liu
- Zhejiang Academy of Forestry, Zhejiang University of Science and Technology, Hangzhou, Zhejiang 310023, P.R. China
| | - Ru Fang
- Zhejiang Academy of Forestry, Zhejiang University of Science and Technology, Hangzhou, Zhejiang 310023, P.R. China
| | - Minge Bai
- Zhejiang Academy of Forestry, Zhejiang University of Science and Technology, Hangzhou, Zhejiang 310023, P.R. China
| |
Collapse
|
45
|
Systems Approach to Study Associations between OxLDL and Abdominal Aortic Aneurysms. Int J Mol Sci 2019; 20:ijms20163909. [PMID: 31405245 PMCID: PMC6721018 DOI: 10.3390/ijms20163909] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 08/04/2019] [Accepted: 08/08/2019] [Indexed: 12/12/2022] Open
Abstract
Although abdominal aortic aneurysm (AAA) is a common vascular disease and is associated with high mortality, the full pathogenesis of AAA remains unknown to researchers. Abdominal aortic aneurysms and atherosclerosis are strongly related. Currently, it is more often suggested that development of AAA is not a result of atherosclerosis, however, individual factors can act independently or synergistically with atherosclerosis. One of such factors is low-density lipoprotein (LDL) and its oxidized form (oxLDL). It is known that oxLDL plays an important role in the pathogenesis of atherosclerosis, thus, we decided to examine oxLDL impact on the development of AAA by creating two models using Petri-nets. The first, full model, contains subprocess of LDL oxidation and all subprocesses in which it participates, while the second, reduced model, does not contain them. The analysis of such models can be based on t-invariants. They correspond to subprocesses which do not change the state of the modeled system. Moreover, the knockout analysis has been used to estimate how crucial a selected transition (representing elementary subprocess) is, based on the number of excluded subprocesses as a result of its knockout. The results of the analysis of our models show that oxLDL affects 55.84% of subprocesses related to AAA development, but the analysis of the nets based on knockouts and simulation has shown that the influence of oxLDL on enlargement and rupture of AAA is negligible.
Collapse
|
46
|
Zhang Z, Xie X, Yao Q, Liu J, Tian Y, Yang C, Xiao L, Wang N. PPARδ agonist prevents endothelial dysfunction via induction of dihydrofolate reductase gene and activation of tetrahydrobiopterin salvage pathway. Br J Pharmacol 2019; 176:2945-2961. [PMID: 31144304 PMCID: PMC6637045 DOI: 10.1111/bph.14745] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 04/10/2019] [Accepted: 05/08/2019] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND AND PURPOSE Impaired endothelium-dependent relaxation (EDR) is a hallmark of endothelial dysfunction. A deficiency of tetrahydrobiopterin (BH4 ) causes endothelial NOS to produce ROS rather than NO. PPARδ is an emerging target for pharmacological intervention of endothelial dysfunction. Thus, the present study examined the role of PPARδ in the regulation of dihydrofolate reductase (DHFR), a key enzyme in the BH4 salvage pathway. EXPERIMENTAL APPROACH Gene expression was measured by using qRT-PCR and western blotting. Biopterins and ROS were determined by using HPLC. NO was measured with fluorescent dye and electron paramagnetic resonance spectroscopy. Vasorelaxation was measured by Multi Myograph System. KEY RESULTS The PPARδ agonist GW501516 increased DHFR and BH4 levels in endothelial cells (ECs). The effect was blocked by PPARδ antagonist GSK0660. Chromatin immunoprecipitation identified PPAR-responsive elements within the 5'-flanking region of the human DHFR gene. The promoter activity was examined with luciferase assays using deletion reporters. Importantly, DHFR expression was suppressed by palmitic acid (PA, a saturated fatty acid) but increased by docosahexaenoic acid (DHA, a polyunsaturated fatty acid). GSK0660 prevented DHA-induced increased DHFR expression. Conversely, the suppressive effect of PA was mitigated by GW501516. In mouse aortae, GW501516 ameliorated the PA-impaired EDR. However, this vasoprotective effect was attenuated by DHFR siRNA or methotrexate. In EC-specific Ppard knockout mice, GW501516 failed to improve vasorelaxation. CONCLUSION AND IMPLICATIONS PPARδ prevented endothelial dysfunction by increasing DHFR and activating the BH4 salvage pathway. These results provide a novel mechanism for the protective roles of PPARδ against vascular diseases.
Collapse
Affiliation(s)
- Zihui Zhang
- Cardiovascular Research Center, School of Basic Medical SciencesXi'an Jiaotong UniversityXi'anChina
| | - Xinya Xie
- Cardiovascular Research Center, School of Basic Medical SciencesXi'an Jiaotong UniversityXi'anChina
| | - Qinyu Yao
- Cardiovascular Research Center, School of Basic Medical SciencesXi'an Jiaotong UniversityXi'anChina
| | - Jia Liu
- Cardiovascular Research Center, School of Basic Medical SciencesXi'an Jiaotong UniversityXi'anChina
| | - Ying Tian
- Cardiovascular Research Center, School of Basic Medical SciencesXi'an Jiaotong UniversityXi'anChina
| | - Chunmiao Yang
- Cardiovascular Research Center, School of Basic Medical SciencesXi'an Jiaotong UniversityXi'anChina
| | - Lei Xiao
- Cardiovascular Research Center, School of Basic Medical SciencesXi'an Jiaotong UniversityXi'anChina
| | - Nanping Wang
- The Advanced Institute for Medical SciencesDalian Medical UniversityDalianChina
| |
Collapse
|
47
|
Ganguly A, Sharma K, Majumder K. Food-derived bioactive peptides and their role in ameliorating hypertension and associated cardiovascular diseases. ADVANCES IN FOOD AND NUTRITION RESEARCH 2019; 89:165-207. [PMID: 31351525 DOI: 10.1016/bs.afnr.2019.04.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Non-communicable diseases including cardiovascular diseases (CVDs) and associated metabolic disorders are responsible for nearly 40 million deaths globally per year. Hypertension or high blood pressure (BP) is one of the primary reasons for the development of CVDs. A healthy nutritional strategy complementing with physical activity can substantially reduce high BP and prevent the occurrence of CVD-associated morbidity and mortality. Bioactive peptides currently are the next wave of the promising bench to clinic options for potential targeting chronic and acute health issues including hypertension. Peptides demonstrating anti-inflammatory, anti-oxidant, and angiotensin-converting enzyme-I inhibitory activity are widely studied for the amelioration of hypertension and associated CVDs. Isolating these potent bioactive peptides from different food sources is a promising endeavor toward nutraceutical based dietary management and prevention of hypertension. Understanding the pathophysiology of hypertension and the action mechanisms of the bioactive peptides would complement in designing and characterizing more potent peptides and suitable comprehensive dietary plans for the prevention of hypertension and associated CVDs.
Collapse
Affiliation(s)
- Advaita Ganguly
- Comprehensive Tissue Centre, UAH Transplant Services, Alberta Health Services, Edmonton, AB, Canada
| | - Kumakshi Sharma
- Health, Safety and Environment Branch, National Research Council Canada, Edmonton, AB, Canada
| | - Kaustav Majumder
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, United States.
| |
Collapse
|
48
|
Sakurada R, Odagiri K, Hakamata A, Kamiya C, Wei J, Watanabe H. Calcium Release from Endoplasmic Reticulum Involves Calmodulin-Mediated NADPH Oxidase-Derived Reactive Oxygen Species Production in Endothelial Cells. Int J Mol Sci 2019; 20:ijms20071644. [PMID: 30987055 PMCID: PMC6480165 DOI: 10.3390/ijms20071644] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 04/02/2019] [Indexed: 12/31/2022] Open
Abstract
Background: Previous studies demonstrated that calcium/calmodulin (Ca2+/CaM) activates nicotinamide adenine dinucleotide phosphate oxidases (NOX). In endothelial cells, the elevation of intracellular Ca2+ level consists of two components: Ca2+ mobilization from the endoplasmic reticulum (ER) and the subsequent store-operated Ca2+ entry. However, little is known about which component of Ca2+ increase is required to activate NOX in endothelial cells. Here, we investigated the mechanism that regulates NOX-derived reactive oxygen species (ROS) production via a Ca2+/CaM-dependent pathway. Methods: We measured ROS production using a fluorescent indicator in endothelial cells and performed phosphorylation assays. Results: Bradykinin (BK) increased NOX-derived cytosolic ROS. When cells were exposed to BK with either a nominal Ca2+-free or 1 mM of extracellular Ca2+ concentration modified Tyrode’s solution, no difference in BK-induced ROS production was observed; however, chelating of cytosolic Ca2+ by BAPTA/AM or the depletion of ER Ca2+ contents by thapsigargin eliminated BK-induced ROS production. BK-induced ROS production was inhibited by a CaM inhibitor; however, a Ca2+/CaM-dependent protein kinase II (CaMKII) inhibitor did not affect BK-induced ROS production. Furthermore, BK stimulation did not increase phosphorylation of NOX2, NOX4, and NOX5. Conclusions: BK-induced NOX-derived ROS production was mediated via a Ca2+/CaM-dependent pathway; however, it was independent from NOX phosphorylation. This was strictly regulated by ER Ca2+ contents.
Collapse
Affiliation(s)
- Ryugo Sakurada
- Department of Clinical Pharmacology and Therapeutics, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Japan.
| | - Keiichi Odagiri
- Department of Clinical Pharmacology and Therapeutics, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Japan.
| | - Akio Hakamata
- Department of Clinical Pharmacology and Therapeutics, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Japan.
| | - Chiaki Kamiya
- Department of Clinical Pharmacology and Therapeutics, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Japan.
| | - Jiazhang Wei
- Department of Clinical Pharmacology and Therapeutics, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Japan.
| | - Hiroshi Watanabe
- Department of Clinical Pharmacology and Therapeutics, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Japan.
| |
Collapse
|
49
|
Moura J, Madureira P, Leal EC, Fonseca AC, Carvalho E. Immune aging in diabetes and its implications in wound healing. Clin Immunol 2019; 200:43-54. [PMID: 30735729 PMCID: PMC7322932 DOI: 10.1016/j.clim.2019.02.002] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 02/04/2019] [Accepted: 02/04/2019] [Indexed: 02/06/2023]
Abstract
Immune systems have evolved to recognize and eliminate pathogens and damaged cells. In humans, it is estimated to recognize 109 epitopes and natural selection ensures that clonally expanded cells replace unstimulated cells and overall immune cell numbers remain stationary. But, with age, it faces continuous repertoire restriction and concomitant accumulation of primed cells. Changes shaping the aging immune system have bitter consequences because, as inflammatory responses gain intensity and duration, tissue-damaging immunity and inflammatory disease arise. During inflammation, the glycolytic flux cannot cope with increasing ATP demands, limiting the immune response's extent. In diabetes, higher glucose availability stretches the glycolytic limit, dysregulating proteostasis and increasing T-cell expansion. Long-term hyperglycemia exerts an accumulating effect, leading to higher inflammatory cytokine levels and increased cytotoxic mediator secretion upon infection, a phenomenon known as diabetic chronic inflammation. Here we review the etiology of diabetic chronic inflammation and its consequences on wound healing.
Collapse
Affiliation(s)
- J Moura
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; INEB - Instituto Nacional de Engenharia Biomédica, University of Porto, Porto, Portugal; i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal.
| | - P Madureira
- i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal; IBMC - Instituto de Biologia Celular e Molecular, University of Porto, Porto, Portugal; Immunethep, Biocant Park, Cantanhede, Portugal
| | - E C Leal
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - A C Fonseca
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - E Carvalho
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; Instituto de Investigação Interdisciplinar, University of Coimbra, Coimbra, Portugal; Department of Geriatrics, University of Arkansas for Medical Sciences and Arkansas Children's Research Institute, Little Rock, AR, United States
| |
Collapse
|
50
|
Akoumianakis I, Antoniades C. Impaired Vascular Redox Signaling in the Vascular Complications of Obesity and Diabetes Mellitus. Antioxid Redox Signal 2019; 30:333-353. [PMID: 29084432 DOI: 10.1089/ars.2017.7421] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Significance: Oxidative stress, a crucial regulator of vascular disease pathogenesis, may be involved in the vascular complications of obesity, systemic insulin resistance (IR), and diabetes mellitus (DM). Recent Advances: Excessive production of reactive oxygen species in the vascular wall has been linked with vascular disease pathogenesis. Recent evidence has revealed that vascular redox state is dysregulated in cases of obesity, systemic IR, and DM, potentially participating in the well-known vascular complications of these disease entities. Critical Issues: The detrimental effects of obesity and the metabolic syndrome on vascular biology have been extensively described at a clinical level. Further, vascular oxidative stress has often been associated with the presence of obesity and IR as well as with a variety of detrimental vascular phenotypes. However, the mechanisms of vascular redox state regulation under conditions of obesity and systemic IR, as well as their clinical relevance, are not adequately explored. In addition, the notion of vascular IR, and its relationship with systemic parameters of obesity and systemic IR, is not fully understood. In this review, we present all the important components of vascular redox state and the evidence linking oxidative stress with obesity and IR. Future Directions: Future studies are required to describe the cellular effects and the translational potential of vascular redox state in the context of vascular disease. In addition, further elucidation of the direct vascular effects of obesity and IR is required for better management of the vascular complications of DM.
Collapse
Affiliation(s)
- Ioannis Akoumianakis
- Division of Cardiovascular Medicine, University of Oxford , Oxford, United Kingdom
| | | |
Collapse
|