1
|
Sun S, Wang L, Tang Q, Yi J, Yu X, Cao Y, Jiang L, Liu J. Myocardial infarction in rats was alleviated by MSCs derived from the maternal segment of the human umbilical cord. Front Cell Dev Biol 2024; 12:1469541. [PMID: 39479514 PMCID: PMC11521943 DOI: 10.3389/fcell.2024.1469541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 09/25/2024] [Indexed: 11/02/2024] Open
Abstract
Background Mesenchymal stem cells (MSCs) are safe and effective in treating myocardial infarction (MI) and have broad application prospects. However, the heterogeneity of MSCs may affect their therapeutic effect on the disease. We recently found that MSCs derived from different segments of the same umbilical cord (UC) showed significant difference in the expression of genes that are related to heart development and injury repair. We therefore hypothesized that those MSCs with high expression of above genes are more effective to treat MI and tested it in this study. Methods MSCs were isolated from 3 cm-long segments of the maternal, middle and fetal segments of the UC (maternal-MSCs, middle-MSCs and fetal-MSCs, respectively). RNA-seq was used to analyze and compare the transcriptomes. We verified the effects of MSCs on oxygen-glucose deprivation (OGD)-induced cardiomyocyte apoptosis in vitro. In vivo, a rat MI model was established by ligating the left anterior descending coronary artery, and MSCs were injected into the myocardium surrounding the MI site. The therapeutic effects of MSCs derived from different segments of the UC were evaluated by examining cardiac function, histopathology, cardiomyocyte apoptosis, and angiogenesis. Results Compared to fetal-MSCs and middle-MSCs, maternal-MSCs exhibited significantly higher expression of genes that are associated with heart development, such as GATA-binding protein 4 (GATA4), and myocardin (MYOCD). Coculture with maternal-MSCs reduced OGD-induced cardiomyocyte apoptosis. In rats with MI, maternal-MSCs significantly restored cardiac contractile function and reduced the infarct size. Mechanistic experiments revealed that maternal-MSCs exerted cardioprotective effects by decreasing cardiomyocyte apoptosis, and promoting angiogenesis. Conclusion Our data demonstrated that maternal segment-derived MSCs were a superior cell source for regenerative repair after MI. Segmental localization of the entire UC when isolating hUCMSCs was necessary to improve the effectiveness of clinical applications.
Collapse
Affiliation(s)
- Shuifen Sun
- Regenerative Medicine Research Center, NHC Key Laboratory of Healthy Birth and Birth Defect Prevention in Western China, The First People’s Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
- Cell Therapy Engineering Research Center for Cardiovascular Diseases in Yunnan Province, Kunming, Yunnan, China
- Key Laboratory of Innovative Application for Traditional Chinese Medicine in Yunnan Province, Kunming, Yunnan, China
| | - Linping Wang
- Regenerative Medicine Research Center, NHC Key Laboratory of Healthy Birth and Birth Defect Prevention in Western China, The First People’s Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
- Cell Therapy Engineering Research Center for Cardiovascular Diseases in Yunnan Province, Kunming, Yunnan, China
- Key Laboratory of Innovative Application for Traditional Chinese Medicine in Yunnan Province, Kunming, Yunnan, China
| | - Qisheng Tang
- Regenerative Medicine Research Center, NHC Key Laboratory of Healthy Birth and Birth Defect Prevention in Western China, The First People’s Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
- Cell Therapy Engineering Research Center for Cardiovascular Diseases in Yunnan Province, Kunming, Yunnan, China
- Key Laboratory of Innovative Application for Traditional Chinese Medicine in Yunnan Province, Kunming, Yunnan, China
| | - Jialian Yi
- Regenerative Medicine Research Center, NHC Key Laboratory of Healthy Birth and Birth Defect Prevention in Western China, The First People’s Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
- Cell Therapy Engineering Research Center for Cardiovascular Diseases in Yunnan Province, Kunming, Yunnan, China
- Key Laboratory of Innovative Application for Traditional Chinese Medicine in Yunnan Province, Kunming, Yunnan, China
| | - Xin Yu
- Medicine School, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Yu Cao
- Cell Therapy Engineering Research Center for Cardiovascular Diseases in Yunnan Province, Kunming, Yunnan, China
- Key Laboratory of Innovative Application for Traditional Chinese Medicine in Yunnan Province, Kunming, Yunnan, China
- Department of Cardiovascular Surgery, The First People’s Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Lihong Jiang
- Regenerative Medicine Research Center, NHC Key Laboratory of Healthy Birth and Birth Defect Prevention in Western China, The First People’s Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
- Cell Therapy Engineering Research Center for Cardiovascular Diseases in Yunnan Province, Kunming, Yunnan, China
- Key Laboratory of Innovative Application for Traditional Chinese Medicine in Yunnan Province, Kunming, Yunnan, China
- Department of Cardiovascular Surgery, The First People’s Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Jie Liu
- Regenerative Medicine Research Center, NHC Key Laboratory of Healthy Birth and Birth Defect Prevention in Western China, The First People’s Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
- Cell Therapy Engineering Research Center for Cardiovascular Diseases in Yunnan Province, Kunming, Yunnan, China
- Key Laboratory of Innovative Application for Traditional Chinese Medicine in Yunnan Province, Kunming, Yunnan, China
| |
Collapse
|
2
|
Ouyang M, Yang Y, Yu G, Zhao J, Peng Y. BMSCs-derived Exosome CISH Alleviates Myocardial Infarction by Inactivating the NF-κB Pathway to Stimulate Macrophage M2 Polarization. Cardiovasc Toxicol 2024; 24:422-434. [PMID: 38512651 DOI: 10.1007/s12012-024-09847-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 03/02/2024] [Indexed: 03/23/2024]
Abstract
Current myocardial infarction (MI) treatments are suboptimal, necessitating deeper pathogenesis understanding of MI. This research explored how exosomes (Exo) derived from bone marrow mesenchymal stem cells (BMSCs) contribute to MI mitigation and their therapeutic potential. Isolated BMSCs was identified by microscope, flow cytometry, alizarin red and oil red O staining. Exo were identified by TEM, NTA and western blot. HE staining, masson staining, and cardiac function parameters were used to assess the cardiac function in MI mice. TUNEL staining, western blot and qRT-PCR were used to detect apoptosis, inflammatory factors and M1/M2 markers. The NF-κB pathway activation was detected through western blot assays. Immunofluorescence, qRT-PCR, western blot, and flow cytometry were employed to evaluate macrophage polarization. MI mice showed cardiac injury, increased apoptosis and inflammation, while BMSCs-Exo treatment alleviated these effects. In MI mice, the macrophage M1 polarization was increased and the NF-κB pathway was activated, whereas BMSCs-Exo treatment reversed these changes. Furthermore, CISH expression was reduced in MI mice, but was elevated with BMSCs-Exo treatment. In vitro, LPS shifted RAW264.7 cells to M1 phenotype and activated the NF-κB pathway, yet BMSCs-Exo shifted them to M2 phenotype and inhibited the NF-κB pathway. Mechanistically, BMSCs-Exo induced macrophage M2 polarization by transmitting CISH to inhibit NF-κB activation. BMSCs-Exo mitigates MI by transmitting CISH to inhibit the NF-κB pathway, promoting macrophages to M2 type. This implies BMSCs-Exo could be a useful treatment for MI, and CISH could be a potential therapy target.
Collapse
Affiliation(s)
- Minzhi Ouyang
- Department of Ultrasound Diagnosis, The Second Xiangya Hospital, Central South University, No 139 Renmin East Road, Furong District, Changsha City, 410011, Hunan Province, People's Republic of China
| | - Yang Yang
- Department of Ultrasound Diagnosis, The Second Xiangya Hospital, Central South University, No 139 Renmin East Road, Furong District, Changsha City, 410011, Hunan Province, People's Republic of China
| | - Guolong Yu
- Department of Cardiology, Xiangya Hospital, Central South University, Changsha City, 410000, Hunan Province, People's Republic of China
| | - Jiling Zhao
- Cardiovascular Medicine Centre, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi City, 445000, Hubei Province, China
| | - Yi Peng
- Department of Ultrasound Diagnosis, The Second Xiangya Hospital, Central South University, No 139 Renmin East Road, Furong District, Changsha City, 410011, Hunan Province, People's Republic of China.
| |
Collapse
|
3
|
Łabędź-Masłowska A, Vergori L, Kędracka-Krok S, Karnas E, Bobis-Wozowicz S, Sekuła-Stryjewska M, Sarna M, Andriantsitohaina R, Zuba-Surma EK. Mesenchymal stem cell-derived extracellular vesicles exert pro-angiogenic and pro-lymphangiogenic effects in ischemic tissues by transferring various microRNAs and proteins including ITGa5 and NRP1. J Nanobiotechnology 2024; 22:60. [PMID: 38347587 PMCID: PMC10863128 DOI: 10.1186/s12951-024-02304-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/22/2024] [Indexed: 02/15/2024] Open
Abstract
Mesenchymal stem cells/stromal cells (MSCs)-derived extracellular vesicles (EVs) mediate pro-regenerative effects in damaged ischemic tissues by regulating angiogenesis. MSCs-EVs modulate functions of cells including endogenous mature cells, progenitors and stem cells, resulting in restoration of blood flow. However, the mechanisms underlying such MSC-EV activity still remain poorly understood. The present study analyzes biological effects of bone marrow (BM) MSC-EVs on endothelial cells (ECs) in ischemic tissues both in in vitro and in vivo conditions and elucidates the molecular mechanisms underlying the tissue repair. MSC-EVs were isolated from murine BM-derived MSCs and their morphological, antigenic and molecular composition regarding protein and microRNA levels were evaluated to examine their properties. Global proteomic analysis demonstrated the presence in MSC-EVs of proteins regulating pro-regenerative pathways, including integrin α5 (Itgα5) and neuropilin-1 (NRP1) involved in lymphangiogenesis. MSC-EVs were also enriched in microRNAs regulating angiogenesis, TGF-β signaling and processes guiding cellular adhesion and interactions with extracellular matrix. The functional effects of MSC-EVs on capillary ECs in vitro included the increase of capillary-like tube formation and cytoprotection under normal and inflammatory conditions by inhibiting apoptosis. Notably, MSC-EVs enhanced also capillary-like tube formation of lymphatic ECs, which may be regulated by Itgα5 and NRP1. Moreover, in a mouse model of critical hind limb ischemia, MSC-EVs increased the recovery of blood flow in ischemic muscle tissue, which was accompanied with increased vascular density in vivo. This pro-angiogenic effect was associated with an increase in nitric oxide (NO) production via endothelial NO-synthase activation in ischemic muscles. Interestingly, MSC-EVs enhanced lymphangiogenesis, which has never been reported before. The study provides evidence on pro-angiogenic and novel pro-lymphangiogenic role of MSC-EVs on ECs in ischemic tissue mediated by their protein and miRNA molecular cargos. The results highlight Itgα5 and NRP1 carried by MSC-EVs as potential therapeutic targets to boost lymphangiogenesis.
Collapse
Affiliation(s)
- Anna Łabędź-Masłowska
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Luisa Vergori
- INSERM U1063, Oxidative Stress and Metabolic Pathologies, Angers University, Angers, France
| | - Sylwia Kędracka-Krok
- Department of Physical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Elżbieta Karnas
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Sylwia Bobis-Wozowicz
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Małgorzata Sekuła-Stryjewska
- Laboratory of Stem Cell Biotechnology, Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Michał Sarna
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | | | - Ewa K Zuba-Surma
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland.
| |
Collapse
|
4
|
Pozzobon M, D’Agostino S, Roubelakis MG, Cargnoni A, Gramignoli R, Wolbank S, Gindraux F, Bollini S, Kerdjoudj H, Fenelon M, Di Pietro R, Basile M, Borutinskaitė V, Piva R, Schoeberlein A, Eissner G, Giebel B, Ponsaerts P. General consensus on multimodal functions and validation analysis of perinatal derivatives for regenerative medicine applications. Front Bioeng Biotechnol 2022; 10:961987. [PMID: 36263355 PMCID: PMC9574482 DOI: 10.3389/fbioe.2022.961987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 07/01/2022] [Indexed: 11/26/2022] Open
Abstract
Perinatal tissues, such as placenta and umbilical cord contain a variety of somatic stem cell types, spanning from the largely used hematopoietic stem and progenitor cells to the most recently described broadly multipotent epithelial and stromal cells. As perinatal derivatives (PnD), several of these cell types and related products provide an interesting regenerative potential for a variety of diseases. Within COST SPRINT Action, we continue our review series, revising and summarizing the modalities of action and proposed medical approaches using PnD products: cells, secretome, extracellular vesicles, and decellularized tissues. Focusing on the brain, bone, skeletal muscle, heart, intestinal, liver, and lung pathologies, we discuss the importance of potency testing in validating PnD therapeutics, and critically evaluate the concept of PnD application in the field of tissue regeneration. Hereby we aim to shed light on the actual therapeutic properties of PnD, with an open eye for future clinical application. This review is part of a quadrinomial series on functional/potency assays for validation of PnD, spanning biological functions, such as immunomodulation, anti-microbial/anti-cancer, anti-inflammation, wound healing, angiogenesis, and regeneration.
Collapse
Affiliation(s)
- Michela Pozzobon
- Department of Women’s and Children’s Health, University of Padova, Padova, Italy
| | - Stefania D’Agostino
- Department of Women’s and Children’s Health, University of Padova, Padova, Italy
| | - Maria G. Roubelakis
- Laboratory of Biology, Medical School of Athens, National and Kapodistrian University of Athens, Athens, Greece
| | - Anna Cargnoni
- Centro di Ricerca E. Menni, Fondazione Poliambulanza Istituto Ospedaliero, Brescia, Italy
| | - Roberto Gramignoli
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Susanne Wolbank
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, The Research Center in Cooperation with AUVA Trauma Research Center, Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Florelle Gindraux
- Service de Chirurgie Orthopédique, Traumatologique et plastique, CHU Besançon, Laboratoire de Nanomédecine, Imagerie, Thérapeutique EA 4662, University Bourgogne Franche-Comté, Besançon, France
| | - Sveva Bollini
- Department of Experimental Medicine (DIMES), School of Medical and Pharmaceutical Sciences, University of Genova, Genova, Italy
| | - Halima Kerdjoudj
- University of Reims Champagne Ardenne, EA 4691 BIOS “Biomatériaux et Inflammation en Site Osseux”, UFR d’Odontologie, Reims, France
| | | | - Roberta Di Pietro
- Department of Medicine and Ageing Sciences, Section of Biomorphology, G. d'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Mariangela Basile
- Department of Medicine and Ageing Sciences, Section of Biomorphology, G. d'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Veronika Borutinskaitė
- Department of Molecular Cell Biology, Institute of Biochemistry, Vilnius University, Vilnius, Lithuania
| | - Roberta Piva
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| | - Andreina Schoeberlein
- Department of Obstetrics and Feto-maternal Medicine, Inselspital, Bern University Hospital, Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Guenther Eissner
- Systems Biology Ireland, School of Medicine, Conway Institute, University College Dublin, Dublin, Ireland
| | - Bernd Giebel
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Peter Ponsaerts
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Antwerp, Belgium
| |
Collapse
|
5
|
Wan H, Sun C, Zhang J, Hu X, Wang Y. Recent advances in implantable hydrogels for treating heart failure. J Appl Polym Sci 2022. [DOI: 10.1002/app.53156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Huining Wan
- National Engineering Research Center for Biomaterials Sichuan University Chengdu Sichuan China
| | - Chenwei Sun
- National Engineering Research Center for Biomaterials Sichuan University Chengdu Sichuan China
- School of Chemical Engineering Hebei University of Technology Tianjin China
| | - Jieyu Zhang
- National Engineering Research Center for Biomaterials Sichuan University Chengdu Sichuan China
| | - Xuefeng Hu
- National Engineering Research Center for Biomaterials Sichuan University Chengdu Sichuan China
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials Sichuan University Chengdu Sichuan China
| |
Collapse
|
6
|
Wei B, Zeng M, Yang J, Li S, Zhang J, Ding N, Jiang Z. N6-Methyladenosine RNA Modification: A Potential Regulator of Stem Cell Proliferation and Differentiation. Front Cell Dev Biol 2022; 10:835205. [PMID: 35445023 PMCID: PMC9013802 DOI: 10.3389/fcell.2022.835205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 03/09/2022] [Indexed: 11/30/2022] Open
Abstract
Stem cell transplantation (SCT) holds great promise for overcoming diseases by regenerating damaged cells, tissues and organs. The potential for self-renewal and differentiation is the key to SCT. RNA methylation, a dynamic and reversible epigenetic modification, is able to regulate the ability of stem cells to differentiate and regenerate. N6-methyladenosine (m6A) is the richest form of RNA methylation in eukaryotes and is regulated by three classes of proteins: methyltransferase complexes, demethylase complexes and m6A binding proteins. Through the coordination of these proteins, RNA methylation precisely modulates the expression of important target genes by affecting mRNA stability, translation, selective splicing, processing and microRNA maturation. In this review, we summarize the most recent findings on the regulation of m6A modification in embryonic stem cells, induced pluripotent stem cells and adult stem cells, hoping to provide new insights into improving SCT technology.
Collapse
Affiliation(s)
- Bo Wei
- Research Lab of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, China
- Key Laboratory for Arteriosclerology of Hunan Province, Human International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Institute of Cardiovascular Disease, Hengyang Medical College, University of South China, Hengyang, China
| | - Meiyu Zeng
- Research Lab of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, China
| | - Jing Yang
- Research Lab of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, China
| | - Shuainan Li
- Research Lab of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, China
| | - Jiantao Zhang
- Institution of Pathogenic Biology, Hengyang Medical School, University of South China, Hengyang, China
| | - Nan Ding
- Institution of Pathogenic Biology, Hengyang Medical School, University of South China, Hengyang, China
- *Correspondence: Nan Ding, ; Zhisheng Jiang,
| | - Zhisheng Jiang
- Key Laboratory for Arteriosclerology of Hunan Province, Human International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Institute of Cardiovascular Disease, Hengyang Medical College, University of South China, Hengyang, China
- *Correspondence: Nan Ding, ; Zhisheng Jiang,
| |
Collapse
|
7
|
Nanomaterials as Ultrasound Theragnostic Tools for Heart Disease Treatment/Diagnosis. Int J Mol Sci 2022; 23:ijms23031683. [PMID: 35163604 PMCID: PMC8835969 DOI: 10.3390/ijms23031683] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/25/2022] [Accepted: 01/26/2022] [Indexed: 01/27/2023] Open
Abstract
A variety of different nanomaterials (NMs) such as microbubbles (MBs), nanobubbles (NBs), nanodroplets (NDs), and silica hollow meso-structures have been tested as ultrasound contrast agents for the detection of heart diseases. The inner part of these NMs is made gaseous to yield an ultrasound contrast, which arises from the difference in acoustic impedance between the interior and exterior of such a structure. Furthermore, to specifically achieve a contrast in the diseased heart region (DHR), NMs can be designed to target this region in essentially three different ways (i.e., passively when NMs are small enough to diffuse through the holes of the vessels supplying the DHR, actively by being associated with a ligand that recognizes a receptor of the DHR, or magnetically by applying a magnetic field orientated in the direction of the DHR on a NM responding to such stimulus). The localization and resolution of ultrasound imaging can be further improved by applying ultrasounds in the DHR, by increasing the ultrasound frequency, or by using harmonic, sub-harmonic, or super-resolution imaging. Local imaging can be achieved with other non-gaseous NMs of metallic composition (i.e., essentially made of Au) by using photoacoustic imaging, thus widening the range of NMs usable for cardiac applications. These contrast agents may also have a therapeutic efficacy by carrying/activating/releasing a heart disease drug, by triggering ultrasound targeted microbubble destruction or enhanced cavitation in the DHR, for example, resulting in thrombolysis or helping to prevent heart transplant rejection.
Collapse
|
8
|
Kumar S, Verma R, Tyagi N, Gangenahalli G, Verma YK. Therapeutics effect of mesenchymal stromal cells in reactive oxygen species-induced damages. Hum Cell 2022; 35:37-50. [PMID: 34800267 PMCID: PMC8605474 DOI: 10.1007/s13577-021-00646-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 11/10/2021] [Indexed: 12/16/2022]
Abstract
Reactive Oxygen Species are chemically unstable molecules generated during aerobic respiration, especially in the electron transport chain. ROS are involved in various biological functions; any imbalance in their standard level results in severe damage, for instance, oxidative damage, inflammation in a cellular system, and cancer. Oxidative damage activates signaling pathways, which result in cell proliferation, oncogenesis, and metastasis. Since the last few decades, mesenchymal stromal cells have been explored as therapeutic agents against various pathologies, such as cardiovascular diseases, acute and chronic kidney disease, neurodegenerative diseases, macular degeneration, and biliary diseases. Recently, the research community has begun developing several anti-tumor drugs, but these therapeutic drugs are ineffective. In this present review, we would like to emphasize MSCs-based targeted therapy against pathologies induced by ROS as cells possess regenerative potential, immunomodulation, and migratory capacity. We have also focused on how MSCs can be used as next-generation drugs with no side effects.
Collapse
Affiliation(s)
- Subodh Kumar
- Stem Cell & Gene Therapy Research Group, Institute of Nuclear Medicine & Allied Sciences (INMAS), Defence Research and Development Organisation (DRDO), Lucknow Road, Timarpur, Delhi, 110054, India
| | - Ranjan Verma
- Stem Cell & Gene Therapy Research Group, Institute of Nuclear Medicine & Allied Sciences (INMAS), Defence Research and Development Organisation (DRDO), Lucknow Road, Timarpur, Delhi, 110054, India
| | - Nishant Tyagi
- Stem Cell & Gene Therapy Research Group, Institute of Nuclear Medicine & Allied Sciences (INMAS), Defence Research and Development Organisation (DRDO), Lucknow Road, Timarpur, Delhi, 110054, India
| | - Gurudutta Gangenahalli
- Stem Cell & Gene Therapy Research Group, Institute of Nuclear Medicine & Allied Sciences (INMAS), Defence Research and Development Organisation (DRDO), Lucknow Road, Timarpur, Delhi, 110054, India
| | - Yogesh Kumar Verma
- Stem Cell & Gene Therapy Research Group, Institute of Nuclear Medicine & Allied Sciences (INMAS), Defence Research and Development Organisation (DRDO), Lucknow Road, Timarpur, Delhi, 110054, India.
| |
Collapse
|
9
|
ZENG L, DING T, CHEN X, XIA Y, YANG N, XIAN W. Therapeutic value of bone marrow mesenchymal stem cell transplantation incorporated with milrinone on restoring cardiac function. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.15322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | | | - Xi CHEN
- Qiqihar Medical College, China
| | | | - Na YANG
- Qiqihar Medical College, China
| | | |
Collapse
|
10
|
Szydlak R. Biological, chemical and mechanical factors regulating migration and homing of mesenchymal stem cells. World J Stem Cells 2021; 13:619-631. [PMID: 34249231 PMCID: PMC8246245 DOI: 10.4252/wjsc.v13.i6.619] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/03/2021] [Accepted: 05/17/2021] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are a population of primary and non-specialized cells, which can be isolated from various tissues. Currently, MSCs are key players in cellular therapy and regenerative medicine. However, the possibility of using MSCs in the treatment of many diseases needs to be preceded, though, by in-depth analysis of their properties, especially by determining the mechanism of tissue homing as well as the mechanism, due to which cells contribute to tissue regeneration. This review is intended to present information on recent findings regarding the mechanism of recruitment and tissue homing by MSCs and discuss current hypotheses for how MSCs can reach target tissues.
Collapse
Affiliation(s)
- Renata Szydlak
- Department of Medical Biochemistry, Faculty of Medicine, Jagiellonian University Medical College, Kraków 31-034, Poland
| |
Collapse
|
11
|
Gugerell A, Gouya-Lechner G, Hofbauer H, Laggner M, Trautinger F, Almer G, Peterbauer-Scherb A, Seibold M, Hoetzenecker W, Dreschl C, Mildner M, Ankersmit HJ. Safety and clinical efficacy of the secretome of stressed peripheral blood mononuclear cells in patients with diabetic foot ulcer-study protocol of the randomized, placebo-controlled, double-blind, multicenter, international phase II clinical trial MARSYAS II. Trials 2021; 22:10. [PMID: 33407796 PMCID: PMC7789696 DOI: 10.1186/s13063-020-04948-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 12/07/2020] [Indexed: 12/13/2022] Open
Abstract
Background Diabetes and its sequelae such as diabetic foot ulcer are rising health hazards not only in western countries but all over the world. Effective, yet safe treatments are desperately sought for by physicians, healthcare providers, and of course patients. Methods/design APOSEC, a novel, innovative drug, is tested in the phase I/II study MARSYAS II, where its efficacy to promote healing of diabetic foot ulcers will be determined. To this end, the cell-free secretome of peripheral blood mononuclear cells (APOSEC) blended with a hydrogel will be applied topically three times weekly for 4 weeks. APOSEC is predominantly effective in hypoxia-induced tissue damages by modulating the immune system and enhancing angiogenesis, whereby its anti-microbial ability and neuro-regenerative capacity will exert further positive effects. In total, 132 patients will be enrolled in the multicenter, randomized, double-blind, placebo-controlled, parallel group, dose-ranging phase I/II study and treated with APOSEC at three dose levels or placebo for 4 weeks, followed by an 8-week follow-up period to evaluate safety and efficacy of the drug. Wound area reduction after 4 weeks of treatment will serve as the primary endpoint. Conclusion We consider our study protocol to be suitable to test topically administered APOSEC in patients suffering from diabetic foot ulcers in a clinical phase I/II trial. Trial registration EudraCT 2018-001653-27. Registered on 30 July 2019. ClinicalTrials.gov NCT04277598. Registered on 20 February 2020. Title: “A randomized, placebo-controlled, double-blind study to evaluate safety and dose-dependent clinical efficacy of APO-2 at three different doses in patients with diabetic foot ulcer (MARSYAS II)” Supplementary Information The online version contains supplementary material available at 10.1186/s13063-020-04948-1.
Collapse
Affiliation(s)
- Alfred Gugerell
- Division of Thoracic Surgery, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria.,Aposcience AG, Vienna, Austria
| | | | - Helmut Hofbauer
- Division of Thoracic Surgery, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria.,Aposcience AG, Vienna, Austria
| | - Maria Laggner
- Division of Thoracic Surgery, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria.,Aposcience AG, Vienna, Austria
| | - Franz Trautinger
- Clinical Department for Skin and Venereal Diseases, Universitaetsklinikum St.Poelten, St. Poelten, Austria
| | | | | | - Marcus Seibold
- Aposcience AG, Vienna, Austria.,Austrian Red Cross Blood Transfusion Service of Upper Austria, Linz, Austria
| | - Wolfram Hoetzenecker
- Department of Dermatology and Venerology, Kepler University Hospital, Linz, Austria
| | - Christiane Dreschl
- Department of Surgery, Krankenhaus der Elisabethinen Klagenfurt, Klagenfurt, Austria
| | - Michael Mildner
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Hendrik Jan Ankersmit
- Division of Thoracic Surgery, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria. .,Aposcience AG, Vienna, Austria.
| |
Collapse
|
12
|
Maslovaric M, Fatic N, Delević E. State of the art of stem cell therapy for ischaemic cardiomyopathy. Part 2. ANGIOLOGII︠A︡ I SOSUDISTAI︠A︡ KHIRURGII︠A︡ = ANGIOLOGY AND VASCULAR SURGERY 2020; 25:7-26. [PMID: 31855197 DOI: 10.33529/angio2019414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Ischemic cardiomyopathy is becoming a leading cause of morbidity and mortality in the whole world. Stem cell-based therapy is emerging as a promising option for treatment of ischemic cardiomyopathy. Several stem cell types, including cardiac-derived stem cells, bone marrow-derived stem cells, mesenchymal stem cells, skeletal myoblasts, CD34+ and CD133+ stem cells have been used in clinical trials. Clinical effects mostly depend on transdifferentiation and paracrine factors. One important issue is that a low survival and residential rate of transferred stem cells blocks the effective advances in cardiac improvement. Many other factors associated with the efficacy of cell replacement therapy for ischemic cardiomyopathy mainly including the route of delivery, the type and number of stem cell infusion, the timing of injection, patient's physical conditions, the particular microenvironment onto which the cells are delivered, and clinical conditions remain to be addressed. Here we provide an overview of modern methods of stem cell delivery, types of stem cells and discuss the current state of their therapeutic potential.
Collapse
Affiliation(s)
- Milica Maslovaric
- Prona-Montenegrin Science Promotion Foundation, Podgorica, Montenegro
| | - Nikola Fatic
- Department of Vascular Surgery, Clinical Centre of Montenegro, Podgorica, Montenegro
| | - Emilija Delević
- Medical Faculty in Podgorica, University of Montenegro, Podgorica, Montenegro
| |
Collapse
|
13
|
Maslovaric M, Fatic N, Delević E. State of the art of stem cell therapy for ischaemic cardiomyopathy. Part 1. ANGIOLOGII︠A︡ I SOSUDISTAI︠A︡ KHIRURGII︠A︡ = ANGIOLOGY AND VASCULAR SURGERY 2019; 25:39-52. [PMID: 31503246 DOI: 10.33529/angio2019324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Ischemic cardiomyopathy is becoming a leading cause of morbidity and mortality in the whole world. Stem cell-based therapy is emerging as a promising option for treatment of ischemic cardiomyopathy. Several stem cell types, including cardiac-derived stem cells, bone marrow-derived stem cells, mesenchymal stem cells, skeletal myoblasts, CD34+ and CD133+ stem cells have been used in clinical trials. Clinical effects mostly depend on transdifferentiation and paracrine factors. One important issue is that a low survival and residential rate of transferred stem cells blocks the effective advances in cardiac improvement. Many other factors associated with the efficacy of cell replacement therapy for ischemic cardiomyopathy mainly including the route of delivery, the type and number of stem cell infusion, the timing of injection, patient's physical conditions, the particular microenvironment onto which the cells are delivered, and clinical conditions remain to be addressed. Here we provide an overview of modern methods of stem cell delivery, types of stem cells and discuss the current state of their therapeutic potential.
Collapse
Affiliation(s)
- Milica Maslovaric
- Prona-Montenegrin Science Promotion Foundation, Podgorica, Montenegro
| | - Nikola Fatic
- Department of Vascular Surgery, Clinical Centre of Montenegro, Podgorica, Montenegro
| | - Emilija Delević
- Medical Faculty in Podgorica, University of Montenegro, Podgorica, Montenegro
| |
Collapse
|
14
|
Xu R, Zhang F, Chai R, Zhou W, Hu M, Liu B, Chen X, Liu M, Xu Q, Liu N, Liu S. Exosomes derived from pro-inflammatory bone marrow-derived mesenchymal stem cells reduce inflammation and myocardial injury via mediating macrophage polarization. J Cell Mol Med 2019; 23:7617-7631. [PMID: 31557396 PMCID: PMC6815833 DOI: 10.1111/jcmm.14635] [Citation(s) in RCA: 188] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 07/16/2019] [Accepted: 07/30/2019] [Indexed: 12/15/2022] Open
Abstract
Exosomes are served as substitutes for stem cell therapy, playing important roles in mediating heart repair during myocardial infarction injury. Evidence have indicated that lipopolysaccharide (LPS) pre-conditioning bone marrow-derived mesenchymal stem cells (BMSCs) and their secreted exosomes promote macrophage polarization and tissue repair in several inflammation diseases; however, it has not been fully elucidated in myocardial infarction (MI). This study aimed to investigate whether LPS-primed BMSC-derived exosomes could mediate inflammation and myocardial injury via macrophage polarization after MI. Here, we found that exosomes derived from BMSCs, in both Exo and L-Exo groups, increased M2 macrophage polarization and decreased M1 macrophage polarization under LPS stimulation, which strongly depressed LPS-dependent NF-κB signalling pathway and partly activated the AKT1/AKT2 signalling pathway. Compared with Exo, L-Exo had superior therapeutic effects on polarizing M2 macrophage in vitro and attenuated the post-infarction inflammation and cardiomyocyte apoptosis by mediating macrophage polarization in mice MI model. Consequently, we have confidence in the perspective that low concentration of LPS pre-conditioning BMSC-derived exosomes may develop into a promising cell-free treatment strategy for clinical treatment of MI.
Collapse
Affiliation(s)
- Ruqin Xu
- Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Fangcheng Zhang
- Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Renjie Chai
- Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Wenyi Zhou
- Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Ming Hu
- Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Bin Liu
- Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xuke Chen
- Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Mingke Liu
- Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Qiong Xu
- Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Ningning Liu
- Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Shiming Liu
- Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
15
|
Han Y, Li X, Zhang Y, Han Y, Chang F, Ding J. Mesenchymal Stem Cells for Regenerative Medicine. Cells 2019; 8:E886. [PMID: 31412678 PMCID: PMC6721852 DOI: 10.3390/cells8080886] [Citation(s) in RCA: 716] [Impact Index Per Article: 119.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 08/05/2019] [Accepted: 08/06/2019] [Indexed: 02/06/2023] Open
Abstract
In recent decades, the biomedical applications of mesenchymal stem cells (MSCs) have attracted increasing attention. MSCs are easily extracted from the bone marrow, fat, and synovium, and differentiate into various cell lineages according to the requirements of specific biomedical applications. As MSCs do not express significant histocompatibility complexes and immune stimulating molecules, they are not detected by immune surveillance and do not lead to graft rejection after transplantation. These properties make them competent biomedical candidates, especially in tissue engineering. We present a brief overview of MSC extraction methods and subsequent potential for differentiation, and a comprehensive overview of their preclinical and clinical applications in regenerative medicine, and discuss future challenges.
Collapse
Affiliation(s)
- Yu Han
- Department of Orthopedics, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun 130041, China
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China
| | - Xuezhou Li
- Department of Orthopedics, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun 130041, China
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China
| | - Yanbo Zhang
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun 130033, China.
| | - Yuping Han
- Department of Urology, China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun 130033, China.
| | - Fei Chang
- Department of Orthopedics, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun 130041, China.
| | - Jianxun Ding
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China
| |
Collapse
|
16
|
Zamani P, Fereydouni N, Butler AE, Navashenaq JG, Sahebkar A. The therapeutic and diagnostic role of exosomes in cardiovascular diseases. Trends Cardiovasc Med 2019; 29:313-323. [PMID: 30385010 DOI: 10.1016/j.tcm.2018.10.010] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 10/17/2018] [Accepted: 10/17/2018] [Indexed: 12/20/2022]
Abstract
Exosomes are nano-sized membranous vesicles that are secreted by cells. They have an important role in transferring proteins, mRNA, miRNA and other bioactive molecules between cells and regulate gene expression in recipient cells. Therefore, exosomes are a mechanism by which communication between cells is achieved and they are involved in a wide range of physiological processes, especially those requiring cell-cell communication. In the cardiovascular system, exosomes are associated with endothelial cells, cardiac myocytes, vascular cells, stem and progenitor cells, and play an essential role in development, injury and disease of the cardiovascular system. In recent years, accumulating evidence implicates exosomes in the development and progression of cardiovascular disease. Additionally, exosomal microRNAs are considered to be key players in cardiac regeneration and confer cardioprotective and regenerative properties on both cardiac and non-cardiac cells and, additionally, stem and progenitor cells. Notably, miRNAs may be isolated from blood and offer a potential source of novel diagnostic and prognostic biomarkers for cardiovascular disease. In this review, we summarize and assess the functional roles of exosomes in cardiovascular physiology, cell-to-cell communication and cardio-protective effects in cardiovascular disease.
Collapse
Affiliation(s)
- Parvin Zamani
- Nanotechnology Research Center, Student Research Committee, Department of Medical biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Narges Fereydouni
- Student Research Committee, Department of Modern Sciences and Technologies, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alexandra E Butler
- Diabetes Research Center, Qatar Biomedical Research Institute, Doha, Qatar
| | | | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
17
|
Baez-Jurado E, Hidalgo-Lanussa O, Barrera-Bailón B, Sahebkar A, Ashraf GM, Echeverria V, Barreto GE. Secretome of Mesenchymal Stem Cells and Its Potential Protective Effects on Brain Pathologies. Mol Neurobiol 2019; 56:6902-6927. [PMID: 30941733 DOI: 10.1007/s12035-019-1570-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 03/18/2019] [Indexed: 02/06/2023]
Abstract
Previous studies have indicated that mesenchymal stem cells (MSCs) have a fundamental role in the repair and regeneration of damaged tissues. There is strong evidence showing that much of the beneficial effects of these cells are due to the secretion of bioactive molecules-besides microRNAs, hormones, and neurotrophins-with anti-inflammatory, immunoregulatory, angiogenic, and trophic effects. These factors have been reported by many studies to possess protective effects on the nervous tissue. Although the beneficial effects of the secretory factors of MSCs have been suggested for various neurological diseases, their actions on astrocytic cells are not well understood. Hence, it is important to recognize the specific effects of MSCs derived from adipose tissue, in addition to the differences presented by the secretome, depending on the source and methods of analysis. In this paper, the different sources of MSCs and their main characteristics are described, as well as the most significant advances in regeneration and protection provided by the secretome of MSCs. Also, we discuss the possible neuroprotective mechanisms of action of the MSC-derived biomolecules, with special emphasis on the effect of MSCs derived from adipose tissue and their impact on glial cells and brain pathologies.
Collapse
Affiliation(s)
- Eliana Baez-Jurado
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, DC, Colombia
| | - Oscar Hidalgo-Lanussa
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, DC, Colombia
| | - Biviana Barrera-Bailón
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, DC, Colombia
| | - Amirhossein Sahebkar
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ghulam Md Ashraf
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Valentina Echeverria
- Facultad de Ciencias de la Salud, Universidad San Sebastian, Lientur 1457, 4080871, Concepción, Chile.,Research & Development Service, Bay Pines VA Healthcare System, Bay Pines, FL, 33744, USA
| | - George E Barreto
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, DC, Colombia.
| |
Collapse
|
18
|
Cheng XX, Yang QY, Qi YL, Liu ZZ, Liu D, He S, Yang LH, Xie J. Apoptosis of mesenchymal stem cells is regulated by Rspo1 via the Wnt/β-catenin signaling pathway. Chronic Dis Transl Med 2019; 5:53-63. [PMID: 30993264 PMCID: PMC6450805 DOI: 10.1016/j.cdtm.2019.02.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Indexed: 01/19/2023] Open
Abstract
Objective The aim of this study was to investigate the effect and possible mechanism of action of roof plate-specific spondin1 (Rspo1) in the apoptosis of rat bone marrow mesenchymal stem cells (BMSCs). Methods Osteogenic and adipogenic differentiation of BMSCs was identified by Alizarin Red and Oil Red O staining, respectively. BMSC surface markers (cluster of differentiation 29 [CD29], CD90, and CD45) were detected using flow cytometry. BMSCs were transfected with an adenoviral vector encoding Rspo1 (BMSCs-Rspo1 group). The expression levels of Rspo1 gene and Rspo1 protein in the BMSCs-Rspo1 group and the two control groups (untransfected BMSCs group and BMSCs-green fluorescent protein [GFP] group) were analyzed and compared by quantitative polymerase chain reaction and Western blot. The occurrence of apoptosis in the three groups was detected by flow cytometry and acridine orange-ethidium bromide (AO-EB) double dyeing. The activity of the Wnt/β-catenin signaling pathway was evaluated by measuring the expression levels of the key proteins of the pathway (β-catenin, c-Jun N-terminal kinase [JNK], and phospho-JNK). Results Osteogenic and adipogenic differentiation was confirmed in cultured BMSCs by the positive expression of CD29 and CD90 and the negative expression of CD45. Significantly increased expression levels of Rspo1 protein in the BMSCs-Rspo1 group compared to those in the BMSCs (0.60 ± 0.05 vs. 0.13 ± 0.02; t=95.007, P=0.001) and BMSCs-GFP groups (0.60 ± 0.05 vs. 0.10 ± 0.02; t=104.842, P=0.001) were observed. The apoptotic rate was significantly lower in the BMSCs-Rspo1 group compared with those in the BMSCs group ([24.06 ± 2.37]% vs. [40.87 ± 2.82]%; t = 49.872, P = 0.002) and the BMSCs-GFP group ([24.06 ± 2.37]% vs. [42.34 ± 0.26]%; t = 62.358, P = 0.001). In addition, compared to the BMSCs group, the protein expression levels of β-catenin (2.67 ± 0.19 vs. 1.14 ± 0.14; t = −9.217, P = 0.000) and JNK (1.87 ± 0.17 vs. 0.61 ± 0.07; t = −22.289, P = 0.000) were increased in the BMSCs-Rspo1 group. Compared to the BMSCs-GFP group, the protein expression levels of β-catenin (2.67 ± 0.19 vs. 1.44 ± 0.14; t = −5.692, P = 0.000) and JNK (1.87 ± 0.17 vs. 0.53 ± 0.06; t = −10.589, P = 0.000) were also upregulated in the BMSCs-Rspo1 group. Moreover, the protein expression levels of phospho-JNK were increased in the BMSCs-Rspo1 group compared to those in the BMSCs group (1.89 ± 0.10 vs. 0.63 ± 0.09; t = −8.975, P = 0.001) and the BMSCs-GFP group (1.89 ± 0.10 vs. 0.69 ± 0.08; t = −9.483, P = 0.001). Conclusion The Wnt/β-catenin pathway could play a vital role in the Rspo1-mediated inhibition of apoptosis in BMSCs.
Collapse
Affiliation(s)
- Xiao-Xia Cheng
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Qiao-Yan Yang
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, Shanxi 030001, China.,The First Affiliated Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Yong-Li Qi
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, Shanxi 030001, China.,Huaihe Hospital of Henan University, Kaifeng, Henan 475000, China
| | - Zhi-Zhen Liu
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Dan Liu
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Sheng He
- The First Affiliated Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Li-Hong Yang
- Department of Pathology, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Jun Xie
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| |
Collapse
|
19
|
Pfeiffer D, Wankhammer K, Stefanitsch C, Hingerl K, Huppertz B, Dohr G, Desoye G, Lang I. Amnion-derived mesenchymal stem cells improve viability of endothelial cells exposed to shear stress in ePTFE grafts. Int J Artif Organs 2018; 42:80-87. [PMID: 30585116 DOI: 10.1177/0391398818815470] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
PURPOSE: Blood vessel reconstruction is an increasing need of patients suffering from cardiovascular diseases. For the development of microvascular prostheses, efficient endothelialization is mandatory to prevent graft occlusion. Here, we assessed the impact of amnion-derived mesenchymal stem/stromal cells (hAMSC), known for their important angiogenic potential, on the integrity and stability of endothelial cells exposed to shear stress in vascular grafts. METHODS: Human placental endothelial cells (hPEC) were cultured at the inner surface of an expanded polytetrafluoroethylene (ePTFE) graft positioned within a bioreactor and exposed to a minimal shear stress of 0.015 dyne/cm2 or a physiological shear stress of 0.92 dyne/cm2. hAMSC attached to the outer graft surface were able to interact with human placental endothelial cells by paracrine factors. RESULTS: Microscopical analysis and evaluation of glucose/lactate metabolism evidenced successful cell seeding of the graft: hPEC formed a stable monolayer, hAMSC showed a continuous growth during 72 h incubation. hAMSC improved the viability of hPEC exposed to 0.015 dyne/cm2 as shown by a decreased lactate dehydrogenase release of 13% after 72 h compared to hPEC single culture. The viability-enhancing effect of hAMSC on hPEC was further improved by 13% under physiological shear stress. Angiogenesis array analysis revealed that hPEC exposed to physiological shear stress and hAMSC co-culture reduced the secretion of angiogenin, GRO, MCP-1, and TIMP-2. CONCLUSION: hAMSC exerted best survival-enhancing effects on hPEC under exposure to physiological shear stress and modulated endothelial function by paracrine factors. Our data support further studies on the development of grafts functionalized with hAMSC-derived secretomes to enable fast clinical application.
Collapse
Affiliation(s)
- Dagmar Pfeiffer
- 1 Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Karin Wankhammer
- 1 Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Christina Stefanitsch
- 1 Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Kerstin Hingerl
- 1 Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Berthold Huppertz
- 1 Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Gottfried Dohr
- 1 Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Gernot Desoye
- 2 Department of Obstetrics and Gynecology, Medical University of Graz, Graz, Austria
| | - Ingrid Lang
- 1 Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| |
Collapse
|
20
|
Akbay E, Onur MA. Investigation of survival and migration potential of differentiated cardiomyocytes transplanted with decellularized heart scaffold. J Biomed Mater Res A 2018; 107:561-570. [DOI: 10.1002/jbm.a.36572] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 09/17/2018] [Accepted: 10/27/2018] [Indexed: 12/26/2022]
Affiliation(s)
- Esin Akbay
- Faculty of Science, Department of Biology; University of Hacettepe; Beytepe Ankara Turkey
| | - Mehmet Ali Onur
- Faculty of Science, Department of Biology; University of Hacettepe; Beytepe Ankara Turkey
| |
Collapse
|
21
|
Roberts EG, Piekarski BL, Huang K, Emani S, Wong JY, Emani SM. Evaluation of Placental Mesenchymal Stem Cell Sheets for Myocardial Repair and Regeneration. Tissue Eng Part A 2018; 25:867-877. [PMID: 30122114 DOI: 10.1089/ten.tea.2018.0035] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
IMPACT STATEMENT This work explores placental tissue as a cell source for fabrication of tissue-engineered surgical patches for myocardial repair of congenital heart defects. This study demonstrates promising findings for the clinically driven evaluation of the cell source as defined by potential cardiac benefit, compatibility, cell source availability, and implant deliverability. It documents methods for the isolation of mesenchymal stem cells from human placental amnion and chorion tissues, characterization of these cells, and eventual cell sheet growth that can be leveraged going forward for patch fabrication. It establishes support to continue pursuing the placenta as a valuable cell source for myocardial repair.
Collapse
Affiliation(s)
- Erin G Roberts
- 1 Department of Materials Science and Engineering, Boston University, Boston, Massachusetts.,2 Department of Cardiovascular Surgery, Children's Hospital, Boston, Massachusetts
| | - Breanna L Piekarski
- 2 Department of Cardiovascular Surgery, Children's Hospital, Boston, Massachusetts
| | - Kevin Huang
- 3 Department of Biomedical Engineering, Boston University, Boston, Massachusetts
| | - Sirisha Emani
- 2 Department of Cardiovascular Surgery, Children's Hospital, Boston, Massachusetts
| | - Joyce Y Wong
- 1 Department of Materials Science and Engineering, Boston University, Boston, Massachusetts.,3 Department of Biomedical Engineering, Boston University, Boston, Massachusetts
| | - Sitaram M Emani
- 2 Department of Cardiovascular Surgery, Children's Hospital, Boston, Massachusetts
| |
Collapse
|
22
|
Abd El-Fattah AI, Zaghloul MS, Eltablawy NA, Rashed LA. α-Lipoic acid and amlodipine/perindopril combination potentiate the therapeutic effect of mesenchymal stem cells on isoproterenol induced cardiac injury in rats. Biochimie 2018; 156:59-68. [PMID: 30308238 DOI: 10.1016/j.biochi.2018.10.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 10/06/2018] [Indexed: 12/27/2022]
Abstract
Cardiac injury is a dangerous disease and become a greater issue in the forthcoming decades. The ultimate goal is to prevent the progression of heart failure and apoptotic processes. Cardiac tissue may regenerate itself but to certain extent depending on the number of resident stem cells that is limited. Thus, research had been focused on bone marrow derived stem cells (BM-MSCs) as a promising therapy in different types of tissues, including the heart. This study is designed not only to assess the therapeutic effect of BM-MSCs but also to improve their therapeutic effect in combination with antioxidant α-lipoic acid (ALA) and antihypertensive therapeutic drug form (AP) against isoproterenol-induced cardiac injury and compared with that of BM-MSCs alone. Cardiac injury was induced in 70 male rats by Isoproterenol (ISO was injected s.c. for four consecutive days). Experimental animals were divided into six ISO-treated groups beside a control non treated one. The six ISO-treated groups were divided into: ISO group, ISO+BM-MSCs group, ISO+ALA group, ISO+AP group, ISO+ALA+AP group and ISO+ALA+AP+BM-MSCs group, the last five groups were treated with the examined materials after one week of ISO injection. Isoproterenol significantly increased serum CK-MB, LDH activities, Troponin1 and TNF-α. Oxidative stress is evidenced by the increased MDA, NO and Caspase-3 activity associated with significant reduction of GSH content and SOD activity in cardiac tissue. Furthermore, mRNA expression of NFκB and iNOS were significantly up regulated and eNOS mRNA expression was down regulated. Administration of BM-MSCs, ALA and AP alone significantly mitigated the induced cardiac injury. Concomitant administration of ALA and AP after BM-MSCs induced a more pronounced improving effect on cardiac functions. In conclusion, the concomitant administration of ALA and AP after BM-MSCs infusion increases the cellular antioxidant levels of cardiac tissue that improves the repairing function of BM-MSCs.
Collapse
Affiliation(s)
- Abeer I Abd El-Fattah
- Department of Biochemistry, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - M S Zaghloul
- Biochemistry Division, National Organization for Drug Control and Research (NODCAR), Egypt.
| | - N A Eltablawy
- Biochemistry Division, National Organization for Drug Control and Research (NODCAR), Egypt
| | - L A Rashed
- Medical Biochemistry Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
23
|
Bahsoun S, Coopman K, Forsyth NR, Akam EC. The Role of Dissolved Oxygen Levels on Human Mesenchymal Stem Cell Culture Success, Regulatory Compliance, and Therapeutic Potential. Stem Cells Dev 2018; 27:1303-1321. [DOI: 10.1089/scd.2017.0291] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Soukaina Bahsoun
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, United Kingdom
| | - Karen Coopman
- Centre for Biological Engineering, Loughborough University, Loughborough, United Kingdom
| | - Nicholas R. Forsyth
- Guy Hilton Research Centre, Institute for Science and Technology in Medicine, Keele University, Keele, United Kingdom
| | - Elizabeth C. Akam
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, United Kingdom
| |
Collapse
|
24
|
Joshi J, Brennan D, Beachley V, Kothapalli CR. Cardiomyogenic differentiation of human bone marrow-derived mesenchymal stem cell spheroids within electrospun collagen nanofiber mats. J Biomed Mater Res A 2018; 106:3303-3312. [PMID: 30242963 DOI: 10.1002/jbm.a.36530] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 07/26/2018] [Accepted: 08/16/2018] [Indexed: 12/18/2022]
Abstract
Collagen is the major structural protein in myocardium and contributes to tissue strength and integrity, cellular orientation, and cell-cell and cell-matrix interactions. Significant post-myocardial infarction related loss of cardiomyocytes and cardiac tissue, and their subsequent replacement with fibrous scar tissue, negatively impacts endogenous tissue repair and regeneration capabilities. To overcome such limitations, tissue engineers are working toward developing a 3D cardiac patch which not only mimics the structural, functional, and biological hierarchy of the native cardiac tissue, but also could deliver autologous stem cells and encourage their homing and differentiation. In this study, we examined the utility of electrospun, randomly-oriented, type-I collagen nanofiber (dia = 789 ± 162 nm) mats on the cardiomyogenic differentiation of human bone marrow-derived mesenchymal stem cells (BM-MSC) spheroids, in the presence or absence of 10 μM 5-azacytidine (aza). Results showed that these scaffolds are biocompatible and enable time-dependent evolution of early (GATA binding protein 4: GATA4), late (cardiac troponin I: cTnI), and mature (myosin heavy chain: MHC) cardiomyogenic markers, with a simultaneous reduction in CD90 (stemness) expression, independent of aza-treatment. Aza-exposure improved connexin-4 expression and sustained sarcomeric α-actin expression, but provided only transient improvement in cardiac troponin T (cTnT) expression. Cell orientation and alignment significantly improved in these nanofiber scaffolds over time and with aza-exposure. Although further quantitative in vitro and in vivo studies are needed to establish the clinical applicability of such stem-cell laden collagen nanofiber mats as cardiac patches for cardiac tissue regeneration, our results underscore the benefits of 3D milieu provided by electrospun collagen nanofiber mats, aza, and spheroids on the survival, cardiac differentiation and maturation of human BM-MSCs. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 3303-3312, 2018.
Collapse
Affiliation(s)
- Jyotsna Joshi
- Department of Chemical and Biomedical Engineering, Cleveland State University, Cleveland, Ohio, 44115
| | - David Brennan
- Department of Biomedical Engineering, Rowan University, Glassboro, New Jersey, 08028
| | - Vince Beachley
- Department of Biomedical Engineering, Rowan University, Glassboro, New Jersey, 08028
| | | |
Collapse
|
25
|
Šponer P, Kučera T, Brtková J, Urban K, Kočí Z, Měřička P, Bezrouk A, Konrádová Š, Filipová A, Filip S. Comparative Study on the Application of Mesenchymal Stromal Cells Combined with Tricalcium Phosphate Scaffold into Femoral Bone Defects. Cell Transplant 2018; 27:1459-1468. [PMID: 30203687 PMCID: PMC6180724 DOI: 10.1177/0963689718794918] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
This prospective study sought to evaluate the healing quality of implanted ultraporous β-tricalcium phosphate sown with expanded autologous mesenchymal stromal cells (MSCs) into femoral defects during revision hip arthroplasty. A total of 37 osseous defects in 37 patients were treated and evaluated concerning bone regeneration. Nineteen subjects received β-tricalcium phosphate graft material serving as a carrier of expanded autologous MSCs (the trial group A), nine subjects received β-tricalcium phosphate graft material only (the study group B) and nine subjects received cancellous allografts only (the control group C). Clinical and radiographic evaluations were scheduled at 6 weeks, 3, 6, and 12 months post-operatively, and performed at the most recent visit as well. All observed complications were recorded during follow-up to assess the use of an ultraporous β-tricalcium phosphate synthetic graft material combined with expanded MSCs in bone defect repair. The resulting data from participants with accomplished follow-up were processed and statistically evaluated with a Freeman–Halton modification of the Fischer’s exact test, a P < 0.05 value was considered to be significant. Whereas no significant difference was observed between the trial group A with β-tricalcium phosphate synthetic graft material serving as a carrier of expanded autologous MSCs and control group C with cancellous impaction allografting in terms of the bone defect healing, significant differences were documented between the study group B with β-tricalcium phosphate graft material only and control group C. Regarding adverse effects, six serious events were recorded during the clinical trial with no causal relationship to the cell product. β-tricalcium phosphate synthetic graft material serving as a carrier of expanded autologous MSCs appears safe and promotes the healing of bone defects in a jeopardized and/or impaired microenvironment. This clinical trial was registered at the EU Clinical Trials Register before patient recruitment (Registration number: EudraCT number 2012-005599-33; Date of registration: 2013-02-04).
Collapse
Affiliation(s)
- Pavel Šponer
- 1 Department of Orthopaedic Surgery, University Hospital, Hradec Králové, Czech Republic
| | - Tomáš Kučera
- 1 Department of Orthopaedic Surgery, University Hospital, Hradec Králové, Czech Republic
| | - Jindra Brtková
- 2 Department of Radiology, University Hospital, Hradec Králové, Czech Republic
| | - Karel Urban
- 1 Department of Orthopaedic Surgery, University Hospital, Hradec Králové, Czech Republic
| | - Zuzana Kočí
- 3 Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Pavel Měřička
- 4 Tissue Bank, University Hospital, Hradec Králové, Czech Republic
| | - Aleš Bezrouk
- 5 Department of Medical Biophysics, Charles University, Faculty of Medicine Hradec Králové, Czech Republic
| | - Šimona Konrádová
- 3 Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Alžběta Filipová
- 6 Department of Radiobiology, Faculty of Military Health Sciences in Hradec Králové, University of Defence in Brno, Czech Republic
| | - Stanislav Filip
- 7 Department of Oncology and Radiotherapy, Charles University, Faculty of Medicine Hradec Králové, Czech Republic
| |
Collapse
|
26
|
Pelagalli A, Nardelli A, Lucarelli E, Zannetti A, Brunetti A. Autocrine signals increase ovine mesenchymal stem cells migration through Aquaporin-1 and CXCR4 overexpression. J Cell Physiol 2018; 233:6241-6249. [PMID: 29345324 DOI: 10.1002/jcp.26493] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 01/17/2018] [Indexed: 12/13/2022]
Abstract
Sheep is a relevant large animal model that is frequently used to test innovative tissue engineering (TE) approaches especially for bone reconstruction. Mesenchymal stem cells (MSCs) are used in TE applications because they represent key component of adult tissue repair. Importantly, MSCs from different species show similar characteristics, which facilitated their application in translational studies using animal models. Nowadays, many researches are focusing on the use of ovine mesenchymal stem cells (oMSCs) in orthopedic preclinical settings for regenerative medicine purposes. Therefore, there is a need to amplify our knowledge on the mechanisms underlying the behaviour of these cells. Recently, several studies have shown that MSC function is largely dependent on factors that MSCs release in the environment, as well as, in conditioned medium (CM). It has been demonstrated that MSCs through autocrine and paracrine signals are able to stimulate proliferation, migration, and differentiation of different type of cells including themselves. In this study, we investigated the effects of the CM produced by oMSCs on oMSCs themselves and we explored the signal pathways involved. We observed that CM caused an enhancement of oMSC migration. Furthermore, we found that CM increased levels of two membrane proteins involved in cell migration, Aquaporin 1 (AQP1), and C-X-C chemokine receptor type 4 (CXCR4), and activated Akt and Erk intracellular signal pathways. In conclusion, taken together our results suggest the high potential of autologous CM as a promising tool to modulate behaviour of MSCs thus improving their use in therapeutically approaches.
Collapse
Affiliation(s)
- Alessandra Pelagalli
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Naples, Italy
- Institute of Biostructure and Bioimaging, National Research Council, Naples, Italy
| | - Anna Nardelli
- Institute of Biostructure and Bioimaging, National Research Council, Naples, Italy
| | - Enrico Lucarelli
- Osteoarticolar Regeneration Laboratory, Rizzoli Orthopedic Institute, Bologna, Italy
| | - Antonella Zannetti
- Institute of Biostructure and Bioimaging, National Research Council, Naples, Italy
| | - Arturo Brunetti
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Naples, Italy
| |
Collapse
|
27
|
Ain QU, Woo YS, Chung JY, Kim YH. Regeneration of Anti-Hypoxic Myocardial Cells by Transduction of Mesenchymal Stem Cell-Derived Exosomes Containing Tat-Metallothionein Fusion Proteins. Macromol Res 2018. [DOI: 10.1007/s13233-018-6101-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
28
|
Eto S, Goto M, Soga M, Kaneko Y, Uehara Y, Mizuta H, Era T. Mesenchymal stem cells derived from human iPS cells via mesoderm and neuroepithelium have different features and therapeutic potentials. PLoS One 2018; 13:e0200790. [PMID: 30044827 PMCID: PMC6059447 DOI: 10.1371/journal.pone.0200790] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 07/03/2018] [Indexed: 02/07/2023] Open
Abstract
Mesenchymal stem cells (MSCs) isolated from adult human tissues are capable of proliferating in vitro and maintaining their multipotency, making them attractive cell sources for regenerative medicine. However, the availability and capability of self-renewal under current preparation regimes are limited. Induced pluripotent stem cells (iPSCs) now offer an alternative, similar cell source to MSCs. Herein, we established new methods for differentiating hiPSCs into MSCs via mesoderm-like and neuroepithelium-like cells. Both derived MSC populations exhibited self-renewal and multipotency, as well as therapeutic potential in mouse models of skin wounds, pressure ulcers, and osteoarthritis. Interestingly, the therapeutic effects differ between the two types of MSCs in the disease models, suggesting that the therapeutic effect depends on the cell origin. Our results provide valuable basic insights for the clinical application of such cells.
Collapse
Affiliation(s)
- Shinya Eto
- Department of Cell Modulation, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Mizuki Goto
- Department of Cell Modulation, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
- Department of Dermatology, Faculty of Medicine, Oita University, Yufu, Japan
- * E-mail: (TE); (MG)
| | - Minami Soga
- Department of Cell Modulation, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Yumi Kaneko
- Department of Cell Modulation, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Yusuke Uehara
- Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Hiroshi Mizuta
- Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Takumi Era
- Department of Cell Modulation, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
- * E-mail: (TE); (MG)
| |
Collapse
|
29
|
Joshi J, Mahajan G, Kothapalli CR. Three-dimensional collagenous niche and azacytidine selectively promote time-dependent cardiomyogenesis from human bone marrow-derived MSC spheroids. Biotechnol Bioeng 2018; 115:2013-2026. [PMID: 29665002 DOI: 10.1002/bit.26714] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 03/16/2018] [Accepted: 04/09/2018] [Indexed: 12/22/2022]
Abstract
Endogenous adult cardiac regenerative machinery is not capable of replacing the lost cells following myocardial infarction, often leading to permanent alterations in structure-function-mechanical properties. Regenerative therapies based on delivering autologous stem cells within an appropriate 3D milieu could meet such demand, by enabling homing and directed differentiation of the transplanted cells into lost specialized cell populations. Since type I collagen is the predominant cardiac tissue matrix protein, we here optimized the 3D niche which could promote time-dependent evolution of cardiomyogenesis from human bone marrow-derived mesenchymal stem cells (BM-MSC). 3D collagen gel physical and mechanical characteristics were assessed using SEM and AFM, respectively, while the standalone and combined effects of collagen concentration, culture duration, and 5-azacytidine (aza) dose on the phenotype and genotype of MSC spheroids were quantified using immunofluorescence labeling and RT-PCR analysis. Increasing collagen concentration led to a significant increase in Young's modulus (p < 0.01) but simultaneous decrease in the mean pore size, resulting in stiffer gels. Spheroid formation significantly modulated MSC differentiation and genotype, mostly due to better cell-cell interactions. Among the aza dosages tested, 10 μM appears to be optimal, while 3 mg/ml gels resulted in significantly lower cell viability compared to 1 or 2 mg/ml gels. Stiffer gels (2 and 3 mg/ml) and exposure to 10 μM aza upregulated early and late cardiac marker expressions in a time-dependent fashion. On the other hand, cell-cell signaling within the MSC spheroids seem to have a strong role in influencing mature cardiac markers expression, since neither aza nor gel stiffness seem to significantly improve their expression. Western blot analysis suggested that canonical Wnt/β-catenin signaling pathway might be primarily mediating the observed benefits of aza on cardiac differentiation of MSC spheroids. In conclusion, 2 mg/ml collagen and 10 μM aza appears to offer optimal 3D microenvironment in terms of cell viability and time-dependent evolution of cardiomyogenesis from human BM-MSCs, with significant applications in cardiac tissue engineering and stem cell transplantation for regenerating lost cardiac tissue.
Collapse
Affiliation(s)
- Jyotsna Joshi
- Department of Chemical and Biomedical Engineering, Cleveland State University, Cleveland, Ohio
| | - Gautam Mahajan
- Department of Chemical and Biomedical Engineering, Cleveland State University, Cleveland, Ohio
| | | |
Collapse
|
30
|
Zlabinger K, Lukovic D, Hemetsberger R, Gugerell A, Winkler J, Mandic L, Traxler D, Spannbauer A, Wolbank S, Zanoni G, Kaun C, Posa A, Gyenes A, Petrasi Z, Petnehazy Ö, Repa I, Hofer-Warbinek R, de Martin R, Gruber F, Charwat S, Huber K, Pavo N, Pavo IJ, Nyolczas N, Kraitchman DL, Gyöngyösi M. Matrix Metalloproteinase-2 Impairs Homing of Intracoronary Delivered Mesenchymal Stem Cells in a Porcine Reperfused Myocardial Infarction: Comparison With Intramyocardial Cell Delivery. Front Bioeng Biotechnol 2018; 6:35. [PMID: 29670878 PMCID: PMC5893806 DOI: 10.3389/fbioe.2018.00035] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 03/15/2018] [Indexed: 12/16/2022] Open
Abstract
Background Intracoronary (IC) injection of mesenchymal stem cells (MSCs) results in a prompt decrease of absolute myocardial blood flow (AMF) with late and incomplete recovery of myocardial tissue perfusion. Here, we investigated the effect of decreased AMF on oxidative stress marker matrix metalloproteinase-2 (MMP-2) and its influence on the fate and homing and paracrine character of MSCs after IC or intramyocardial cell delivery in a closed-chest reperfused myocardial infarction (MI) model in pigs. Methods Porcine MSCs were transiently transfected with Ad-Luc and Ad-green fluorescent protein (GFP). One week after MI, the GFP-Luc-MSCs were injected either IC (group IC, 11.00 ± 1.07 × 106) or intramyocardially (group IM, 9.88 ± 1.44 × 106). AMF was measured before, immediately after, and 24 h post GFP-Luc-MSC delivery. In vitro bioluminescence signal was used to identify tissue samples containing GFP-Luc-MSCs. Myocardial tissue MMP-2 and CXCR4 receptor expression (index of homing signal) were measured in bioluminescence positive and negative infarcted and border, and non-ischemic myocardial areas 1-day post cell transfer. At 7-day follow-up, myocardial homing (cadherin, CXCR4, and stromal derived factor-1alpha) and angiogenic [fibroblast growth factor 2 (FGF2) and VEGF] were quantified by ELISA of homogenized myocardial tissues from the bioluminescence positive and negative infarcted and border, and non-ischemic myocardium. Biodistribution of the implanted cells was quantified by using Luciferase assay and confirmed by fluorescence immunochemistry. Global left ventricular ejection fraction (LVEF) was measured at baseline and 1-month post cell therapy using magnet resonance image. Results AMF decreased immediately after IC cell delivery, while no change in tissue perfusion was found in the IM group (42.6 ± 11.7 vs. 56.9 ± 16.7 ml/min, p = 0.018). IC delivery led to a significant increase in myocardial MMP-2 64 kD expression (448 ± 88 vs. 315 ± 54 intensity × mm2, p = 0.021), and decreased expression of CXCR4 (592 ± 50 vs. 714 ± 54 pg/tissue/ml, p = 0.006), with significant exponential decay between MMP-2 and CXCR4 (r = 0.679, p < 0.001). FGF2 and VEGF of the bioluminescence infarcted and border zone of homogenized tissues were significantly elevated in the IM goups as compared to IC group. LVEF increase was significantly higher in IM group (0.8 ± 8.4 vs 5.3 ± 5.2%, p = 0.046) at the 1-month follow up. Conclusion Intracoronary stem cell delivery decreased AMF, with consequent increase in myocardial expression of MMP-2 and reduced CXCR4 expression with lower level of myocardial homing and angiogenic factor release as compared to IM cell delivery.
Collapse
Affiliation(s)
- Katrin Zlabinger
- Department of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Dominika Lukovic
- Department of Cardiology, Medical University of Vienna, Vienna, Austria
| | | | - Alfred Gugerell
- Department of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Johannes Winkler
- Department of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Ljubica Mandic
- Department of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Denise Traxler
- Department of Cardiology, Medical University of Vienna, Vienna, Austria
| | | | - Susanne Wolbank
- Ludwig Boltzmann Institute for Clinical and Experimental Traumatology/AUVA Research Center Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Gerald Zanoni
- Ludwig Boltzmann Institute for Clinical and Experimental Traumatology/AUVA Research Center Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Christoph Kaun
- Department of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Aniko Posa
- Institute of Biophysics, Biological Research Center, Szeged, Hungary
| | - Andrea Gyenes
- Institute of Biophysics, Biological Research Center, Szeged, Hungary
| | - Zsolt Petrasi
- Institute of Diagnostics and Radiation Oncology, University of Kaposvar, Kaposvar, Hungary
| | - Örs Petnehazy
- Institute of Diagnostics and Radiation Oncology, University of Kaposvar, Kaposvar, Hungary
| | - Imre Repa
- Institute of Diagnostics and Radiation Oncology, University of Kaposvar, Kaposvar, Hungary
| | - Renate Hofer-Warbinek
- Department of Biomolecular Medicine and Pharmacology, Institute of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
| | - Rainer de Martin
- Department of Biomolecular Medicine and Pharmacology, Institute of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
| | - Florian Gruber
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Silvia Charwat
- Department of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Kurt Huber
- 3rd Department of Medicine (Cardiology and Emergency Medicine), Wilhelminenhospital, Vienna, Austria
| | - Noemi Pavo
- Department of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Imre J Pavo
- Department of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Noemi Nyolczas
- Department of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Dara L Kraitchman
- Russell H. Morgan Department of Radiology and Radiological Science, School of Medicine, The Johns Hopkins University, Baltimore, MD, United States
| | - Mariann Gyöngyösi
- Department of Cardiology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
31
|
Ciuffreda MC, Malpasso G, Chokoza C, Bezuidenhout D, Goetsch KP, Mura M, Pisano F, Davies NH, Gnecchi M. Synthetic extracellular matrix mimic hydrogel improves efficacy of mesenchymal stromal cell therapy for ischemic cardiomyopathy. Acta Biomater 2018; 70:71-83. [PMID: 29341932 DOI: 10.1016/j.actbio.2018.01.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 12/28/2017] [Accepted: 01/08/2018] [Indexed: 01/09/2023]
Abstract
BACKGROUND Mesenchymal stromal cells (MSC) repair infarcted hearts mainly through paracrine mechanisms. Low cell engraftment limits the release of soluble paracrine factors (SF) over time and, consequently, MSC efficacy. We tested whether a synthetic extracellular matrix mimic, a hydrogel containing heparin (H-HG), could ameliorate MSC engraftment and binding/release of SF, thus improving MSC therapy efficacy. METHODS AND RESULTS In vitro, rat bone-marrow MSC (rBM-MSC) were seeded and grown into H-HG. Under normoxia, the hydrogel did not affect cell survival (rBM-MSC survival >90% at each time point tested); vice versa, under hypoxia the biomaterial resulted to be protective for the cells (p < .001 vs rBM-MSC alone). H-HG or control PEG hydrogels (HG) were incubated with VEGF or bFGF for binding/release quantification. Data showed significantly higher amount of VEGF and bFGF bound by H-HG compared with HG (p < .05) and a constant release over time. In vivo, myocardial infarction (MI) was induced in female Sprague Dawley rats by permanent coronary ligation. One week later, saline, rBM-MSC, H-HG or rBM-MSC/H-HG were injected in the infarct zone. The co-injection of rBM-MSC/H-HG into infarcted hearts significantly increased cardiac function. Importantly, we observed a significant gain in MSC engraftment, reduction of ventricular remodeling and stimulation of neo-vasculogenesis. We also documented higher amounts of several pro-angiogenic factors in hearts treated with rBM-MSC/H-HG. CONCLUSIONS Our data show that H-HG increases MSC engraftment, efficiently fine tunes the paracrine MSC actions and improves cardiac function in infarcted rat hearts. STATEMENT OF SIGNIFICANCE Transplantation of MSC is a promising treatment for ischemic heart disease, but low cell engraftment has so far limited its efficacy. The enzymatically degradable H-HG that we developed is able to increase MSC retention/engraftment and, at the same time, to fine-tune the paracrine effects mediated by the cells. Most importantly, the co-transplantation of MSC and H-HG in a rat model of ischemic cardiomyopathy improved heart function through a significant reduction in ventricular remodeling/scarring and amelioration in neo-vasculogenesis/endogenous cardiac regeneration. These beneficial effects are comparable to those obtained by others using a much greater number of cells, strengthening the efficacy of the biomaterial used in increasing the therapeutic effects of MSC. Given its efficacy and safety, documented by the absence of immunoreaction, our strategy appears readily translatable to clinical scenarios.
Collapse
Affiliation(s)
- Maria Chiara Ciuffreda
- Department of Medical Sciences and Infectious Diseases - Coronary Care Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy; Laboratory of Experimental Cardiology for Cell and Molecular Therapy, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy; Department of Molecular Medicine, Unit of Cardiology, University of Pavia, Italy
| | - Giuseppe Malpasso
- Department of Medical Sciences and Infectious Diseases - Coronary Care Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy; Laboratory of Experimental Cardiology for Cell and Molecular Therapy, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy; Department of Molecular Medicine, Unit of Cardiology, University of Pavia, Italy
| | - Cindy Chokoza
- Cardiovascular Research Unit, Chris Barnard Division of Cardiothoracic Surgery, University of Cape Town, Department of Health Sciences, Cape Town, South Africa
| | - Deon Bezuidenhout
- Cardiovascular Research Unit, Chris Barnard Division of Cardiothoracic Surgery, University of Cape Town, Department of Health Sciences, Cape Town, South Africa
| | - Kyle P Goetsch
- Cardiovascular Research Unit, Chris Barnard Division of Cardiothoracic Surgery, University of Cape Town, Department of Health Sciences, Cape Town, South Africa
| | - Manuela Mura
- Department of Medical Sciences and Infectious Diseases - Coronary Care Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy; Laboratory of Experimental Cardiology for Cell and Molecular Therapy, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy; Department of Molecular Medicine, Unit of Cardiology, University of Pavia, Italy
| | - Federica Pisano
- Department of Medical Sciences and Infectious Diseases - Coronary Care Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy; Laboratory of Experimental Cardiology for Cell and Molecular Therapy, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy; Department of Molecular Medicine, Unit of Cardiology, University of Pavia, Italy
| | - Neil H Davies
- Cardiovascular Research Unit, Chris Barnard Division of Cardiothoracic Surgery, University of Cape Town, Department of Health Sciences, Cape Town, South Africa
| | - Massimiliano Gnecchi
- Department of Medical Sciences and Infectious Diseases - Coronary Care Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy; Laboratory of Experimental Cardiology for Cell and Molecular Therapy, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy; Department of Molecular Medicine, Unit of Cardiology, University of Pavia, Italy; Department of Medicine, University of Cape Town, Cape Town, South Africa.
| |
Collapse
|
32
|
Bao R, Xu P, Wang Y, Wang J, Xiao L, Li G, Zhang C. Bone marrow derived mesenchymal stem cells transplantation rescues premature ovarian insufficiency induced by chemotherapy. Gynecol Endocrinol 2018; 34:320-326. [PMID: 29073798 DOI: 10.1080/09513590.2017.1393661] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Premature ovarian insufficiency (POI) is an important cause of infertility and also cause menopausal symptoms, which greatly reduced the quality of life for women. Hormone replacement therapy (HRT), as an important strategy, improved the quality of life for patients, however, the role of HRT in promoting fertility remains controversial. Therefore, seeking an optimal regime for POI becomes more urgent. In this study, we established POI model induced by CTX and BUS and utilized bone marrow derived mesenchymal stem cells (BM-MSCs) transplantation to treat the POI. We found that the decrease of estrogen and the increase of FSH induced by administration of CTX and BUS were rescued by BM-MSC transplantation. H&E staining and TUNEL assay showed that there were more healthy ovarian follicles and less apoptosis of ovarian cells after treatment with BM-MSCs. Further studies showed that there was an obvious decrease of Bax, p53, and p21 after transplantation, however, CyclinD2 was increased. In conclusion, our results demonstrated that BM-MSCs could restore injured ovarian function. Inhibiting apoptosis and promoting residual ovarian cell proliferation may contribute to the process.
Collapse
Affiliation(s)
- Riqiang Bao
- a Joint Programme of Nanchang University and Queen Mary University of London , Nanchang , Jiangxi , People's Republic of China
| | - Ping Xu
- b Second Clinical College , Nanchang University , Nanchang , Jiangxi , People's Republic of China
| | - Yishu Wang
- a Joint Programme of Nanchang University and Queen Mary University of London , Nanchang , Jiangxi , People's Republic of China
| | - Jing Wang
- c Department of Microbiology , Nanchang University , Nanchang , Jiangxi , People's Republic of China
| | - Li Xiao
- d Department of Cell Biology School of Medicine , Nanchang University , Nanchang , Jiangxi , People's Republic of China
| | - Gang Li
- d Department of Cell Biology School of Medicine , Nanchang University , Nanchang , Jiangxi , People's Republic of China
| | - Chunping Zhang
- d Department of Cell Biology School of Medicine , Nanchang University , Nanchang , Jiangxi , People's Republic of China
| |
Collapse
|
33
|
Selvasandran K, Makhoul G, Jaiswal PK, Jurakhan R, Li L, Ridwan K, Cecere R. A Tumor Necrosis Factor-α and Hypoxia-Induced Secretome Therapy for Myocardial Repair. Ann Thorac Surg 2017; 105:715-723. [PMID: 29258676 DOI: 10.1016/j.athoracsur.2017.09.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 07/23/2017] [Accepted: 09/11/2017] [Indexed: 12/20/2022]
Abstract
BACKGROUND Poor viability and retention of transplanted bone marrow mesenchymal stem cells (BM-MSC) remains an obstacle in promoting healing after myocardial infarction (MI). This study aimed to understand the migratory, angiogenic, and cardioprotective effects induced by tumor necrosis factor (TNF)-α and hypoxia through rat BM-MSC (rBM-MSC) paracrine secretions, collectively referred to as secretome, after MI. METHODS Secretome from rBM-MSC cultures treated with various combinations of H9c2 cardiomyoblast-conditioned medium, TNF-α, and hypoxia was initially collected. Immunocytochemistry, Western blot analyses, and transwell cell migration assays were conducted. In vivo, echocardiography was performed on rats with induced MI after their treatment with TNF-α and hypoxia-induced secretome. RESULTS Immunocytochemistry confirmed the presence of TNF receptors 1 and 2 on rBM-MSCs. Western blot analyses of rBM-MSCs treated with TNF-α and hypoxia showed an overall increasing trend in the expression of antiinflammatory proteins and angiogenic and migratory cytokines (transforming growth factor-β, fibroblast growth factor-2, angiopoietin-2, vascular endothelial growth factor-1). In addition, the TNF-α and hypoxia-induced secretome significantly increased the in vitro rBM-MSCs migration. In the rat MI model, the rats treated with the TNF-α and hypoxia-induced secretome had a significantly higher left ventricular fractional shortening than the control group. CONCLUSIONS Our data suggest that after MI, rBM-MSCs secrete paracrine factors in response to TNF-α and hypoxia that work together to manipulate the microenvironment and decrease inflammation. In addition, these signaling factors trigger angiogenic and migratory effects at the site of the infarct to promote myocardial healing and improve the cardiac function.
Collapse
Affiliation(s)
- Kaviyanka Selvasandran
- Department of Experimental Surgery, McGill University Health Centre, Montreal, Quebec, Canada
| | - Georges Makhoul
- Department of Experimental Surgery, McGill University Health Centre, Montreal, Quebec, Canada
| | - Prashant K Jaiswal
- Department of Experimental Surgery, McGill University Health Centre, Montreal, Quebec, Canada
| | - Rishi Jurakhan
- Department of Experimental Surgery, McGill University Health Centre, Montreal, Quebec, Canada
| | - Li Li
- Department of Experimental Surgery, McGill University Health Centre, Montreal, Quebec, Canada
| | - Khalid Ridwan
- Department of Experimental Surgery, McGill University Health Centre, Montreal, Quebec, Canada; Division of Cardiac Surgery, McGill University Health Centre, Montreal, Quebec, Canada
| | - Renzo Cecere
- Department of Experimental Surgery, McGill University Health Centre, Montreal, Quebec, Canada; Division of Cardiac Surgery, McGill University Health Centre, Montreal, Quebec, Canada.
| |
Collapse
|
34
|
Gnecchi M, Danieli P, Malpasso G, Ciuffreda MC. Paracrine Mechanisms of Mesenchymal Stem Cells in Tissue Repair. Methods Mol Biol 2017; 1416:123-46. [PMID: 27236669 DOI: 10.1007/978-1-4939-3584-0_7] [Citation(s) in RCA: 297] [Impact Index Per Article: 37.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Tissue regeneration from transplanted mesenchymal stromal cells (MSC) either through transdifferentiation or cell fusion was originally proposed as the principal mechanism underlying their therapeutic action. However, several studies have now shown that both these mechanisms are very inefficient. The low MSC engraftment rate documented in injured areas also refutes the hypothesis that MSC repair tissue damage by replacing cell loss with newly differentiated cells. Indeed, despite evidence of preferential homing of MSC to the site of myocardial ischemia, exogenously administered MSC show poor survival and do not persist in the infarcted area. Therefore, it has been proposed that the functional benefits observed after MSC transplantation in experimental models of tissue injury might be related to the secretion of soluble factors acting in a paracrine fashion. This hypothesis is supported by pre-clinical studies demonstrating equal or even improved organ function upon infusion of MSC-derived conditioned medium (MSC-CM) compared with MSC transplantation. Identifying key MSC-secreted factors and their functional role seems a reasonable approach for a rational design of nextgeneration MSC-based therapeutics. Here, we summarize the major findings regarding both different MSC-mediated paracrine actions and the identification of paracrine mediators.
Collapse
Affiliation(s)
- Massimiliano Gnecchi
- Department of Molecular Medicine, Unit of Cardiology, University of Pavia, Pavia, Italy. .,Department of Cardiothoracic and Vascular Sciences - Coronary Care Unit and Laboratory of Clinical and Experimental Cardiology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy. .,Laboratory of Experimental Cardiology for Cell and Molecular Therapy, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy. .,Department of Medicine, University of Cape Town, Cape Town, South Africa.
| | - Patrizia Danieli
- Department of Molecular Medicine, Unit of Cardiology, University of Pavia, Pavia, Italy.,Department of Cardiothoracic and Vascular Sciences - Coronary Care Unit and Laboratory of Clinical and Experimental Cardiology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy.,Laboratory of Experimental Cardiology for Cell and Molecular Therapy, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Giuseppe Malpasso
- Department of Molecular Medicine, Unit of Cardiology, University of Pavia, Pavia, Italy.,Department of Cardiothoracic and Vascular Sciences - Coronary Care Unit and Laboratory of Clinical and Experimental Cardiology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy.,Laboratory of Experimental Cardiology for Cell and Molecular Therapy, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Maria Chiara Ciuffreda
- Department of Molecular Medicine, Unit of Cardiology, University of Pavia, Pavia, Italy.,Department of Cardiothoracic and Vascular Sciences - Coronary Care Unit and Laboratory of Clinical and Experimental Cardiology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy.,Laboratory of Experimental Cardiology for Cell and Molecular Therapy, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| |
Collapse
|
35
|
Optimized lentiviral transduction of human amniotic mesenchymal stromal cells. Pharmacol Res 2017; 127:49-57. [PMID: 29155015 DOI: 10.1016/j.phrs.2017.11.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 11/03/2017] [Accepted: 11/13/2017] [Indexed: 01/14/2023]
Abstract
Mesenchymal stromal cells are excellent candidates for regenerative medicine since they are multipotent, easy to isolate, can be expanded to obtain clinically relevant numbers and are immunoprivileged. Stable genetic modification with viral vectors can improve mesenchymal stromal cell function and enhance their therapeutic potential. However, standard viral vectors achieve sub-optimal transduction efficiency with a single infection. On the other hand, multiple transduction cycles or antibiotic-based selection methods may alter the stem cell phenotype. We hypothesized that the use of lentiviral vectors containing specific regulatory sequences may result in improved transduction efficiency. Thus, we compared two types of third generation lentiviral vectors, one of which, the pLenti7.3 vector, contains the optimized sequences for Polypurine Tract and Woodchuck Post-transcriptional Regulatory Element. We demonstrated that with the pLenti7.3 it is possible to efficiently transduce human mesenchymal stromal cells with a single transduction cycle. Additionally, we successfully showed that by using the pLenti7.3 vector it is possible to efficiently over-express different growth factors, particularly relevant for cardiac protection and differentiation, in human mesenchymal stromal cells.
Collapse
|
36
|
Kim YJ, Park SG, Shin B, Kim J, Kim SW, Choo OS, Yin XY, Min BH, Choung YH. Osteogenesis for postoperative temporal bone defects using human ear adipose-derived stromal cells and tissue engineering: An animal model study. J Biomed Mater Res A 2017; 105:3493-3501. [PMID: 28875515 DOI: 10.1002/jbm.a.36194] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 07/12/2017] [Accepted: 08/16/2017] [Indexed: 02/06/2023]
Abstract
Mastoidectomy, the removal of infected mastoid bones, is a common surgical procedure for the treatment of chronic otitis media. Persistent and recurrent otorrhea and accumulation of keratin debris following open cavity mastoidectomy are still bothersome issues for both patients and otologists. In this study, we used human ear adipose-derived stromal cells (hEASCs) in combination with polycaprolactone (PCL) scaffolds and osteogenic differentiation medium (ODM) to regenerate temporal bone defects. The hEASCs showed stem cell phenotypes, and these characteristics were maintained up to passage 5. Mastoid bulla and cranial bone defects were induced in Sprague-Dawley rats using AgNO3 and burr hole drilling, respectively, and the rats were then divided into five groups: (1) control, (2) hEASCs, (3) hEASCs + ODM, (4) hEASCs + PCL scaffolds, and (5) hEASCs + PCL scaffolds + ODM. Osteogenesis was evaluated by micro-computed tomography and histology. Compared with the control group, the groups transplanted with hEASCs and PCL scaffolds had significantly higher bone formation along the periphery of the mastoid bulla area. Moreover, ODM synergistically enhanced bone formation in mastoid bulla defects. Our results suggest that combining hEASCs with PCL scaffolds represents a promising method for anatomical and functional reconstruction of postoperative temporal bone defects following mastoidectomy. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 3493-3501, 2017.
Collapse
Affiliation(s)
- Yeon Ju Kim
- Department of Otolaryngology, Ajou University School of Medicine, San 5 Woncheon-dong, Yeongtong-gu, Suwon, 443-721, Republic of Korea
| | - Seung Gu Park
- Department of Otolaryngology, Ajou University School of Medicine, San 5 Woncheon-dong, Yeongtong-gu, Suwon, 443-721, Republic of Korea
| | - Beomyong Shin
- Department of Otolaryngology, Ajou University School of Medicine, San 5 Woncheon-dong, Yeongtong-gu, Suwon, 443-721, Republic of Korea.,Department of Biomedical Sciences, BK21 Plus Research Center for Biomedical Sciences, Ajou University Graduate School of Medicine, San 5 Woncheon-dong, Yeongtong-gu, Suwon, 443-721, Republic of Korea
| | - Jangho Kim
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Seung Won Kim
- Department of Burns and Plastic Surgery, Affiliated Hospital of Yanbian University, 1327 Juzi Street, Yanji, Jilin, 133000, China
| | - Oak-Sung Choo
- Department of Otolaryngology, Ajou University School of Medicine, San 5 Woncheon-dong, Yeongtong-gu, Suwon, 443-721, Republic of Korea.,Department of Medical Sciences, Ajou University Graduate School of Medicine, San 5 Woncheon-dong, Yeongtong-gu, Suwon, 443-721, Republic of Korea
| | - Xiang Yun Yin
- Department of Orthopedic Surgery, Ajou University School of Medicine, San 5 Woncheon-dong, Yeongtong-gu, Suwon, 443-721, Republic of Korea
| | - Byoung Hyun Min
- Department of Orthopedic Surgery, Ajou University School of Medicine, San 5 Woncheon-dong, Yeongtong-gu, Suwon, 443-721, Republic of Korea
| | - Yun-Hoon Choung
- Department of Otolaryngology, Ajou University School of Medicine, San 5 Woncheon-dong, Yeongtong-gu, Suwon, 443-721, Republic of Korea.,Department of Biomedical Sciences, BK21 Plus Research Center for Biomedical Sciences, Ajou University Graduate School of Medicine, San 5 Woncheon-dong, Yeongtong-gu, Suwon, 443-721, Republic of Korea.,Department of Medical Sciences, Ajou University Graduate School of Medicine, San 5 Woncheon-dong, Yeongtong-gu, Suwon, 443-721, Republic of Korea
| |
Collapse
|
37
|
Mechanisms of stem cell based cardiac repair-gap junctional signaling promotes the cardiac lineage specification of mesenchymal stem cells. Sci Rep 2017; 7:9755. [PMID: 28852100 PMCID: PMC5574972 DOI: 10.1038/s41598-017-10122-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 08/01/2017] [Indexed: 02/06/2023] Open
Abstract
Different subtypes of bone marrow-derived stem cells are characterized by varying functionality and activity after transplantation into the infarcted heart. Improvement of stem cell therapeutics requires deep knowledge about the mechanisms that mediate the benefits of stem cell treatment. Here, we demonstrated that co-transplantation of mesenchymal stem cells (MSCs) and hematopoietic stem cells (HSCs) led to enhanced synergistic effects on cardiac remodeling. While HSCs were associated with blood vessel formation, MSCs were found to possess transdifferentiation capacity. This cardiomyogenic plasticity of MSCs was strongly promoted by a gap junction-dependent crosstalk between myocytes and stem cells. The inhibition of cell-cell coupling significantly reduced the expression of the cardiac specific transcription factors NKX2.5 and GATA4. Interestingly, we observed that small non-coding RNAs are exchanged between MSCs and cardiomyocytes in a GJ-dependent manner that might contribute to the transdifferentiation process of MSCs within a cardiac environment. Our results suggest that the predominant mechanism of HSCs contribution to cardiac regeneration is based on their ability to regulate angiogenesis. In contrast, transplanted MSCs have the capability for intercellular communication with surrounding cardiomyocytes, which triggers the intrinsic program of cardiogenic lineage specification of MSCs by providing cardiomyocyte-derived cues.
Collapse
|
38
|
Liang Y, Li X, Zhang Y, Yeung SC, Zhen Z, Ip MSM, Tse HF, Lian Q, Mak JCW. Induced Pluripotent Stem Cells-Derived Mesenchymal Stem Cells Attenuate Cigarette Smoke-Induced Cardiac Remodeling and Dysfunction. Front Pharmacol 2017; 8:501. [PMID: 28804458 PMCID: PMC5532447 DOI: 10.3389/fphar.2017.00501] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 07/14/2017] [Indexed: 12/11/2022] Open
Abstract
The strong relationship between cigarette smoking and cardiovascular disease (CVD) has been well-documented, but the mechanisms by which smoking increases CVD risk appear to be multifactorial and incompletely understood. Mesenchymal stem cells (MSCs) are regarded as an important candidate for cell-based therapy in CVD. We hypothesized that MSCs derived from induced pluripotent stem cell (iPSC-MSCs) or bone marrow (BM-MSCs) might alleviate cigarette smoke (CS)-induced cardiac injury. This study aimed to investigate the effects of BM-MSCs or iPSC-MSCs on CS-induced changes in serum and cardiac lipid profiles, oxidative stress and inflammation as well as cardiac function in a rat model of passive smoking. Male Sprague-Dawley rats were randomly selected for exposure to either sham air (SA) as control or 4% CS for 1 h per day for 56 days. On day 29 and 43, human adult BM-MSCs, iPSC-MSCs or PBS were administered intravenously to CS-exposed rats. Results from echocardiography, serum and cardiac lipid profiles, cardiac antioxidant capacity, cardiac pro- and anti-inflammatory cytokines and cardiac morphological changes were evaluated at the end of treatment. iPSC-MSC-treated group showed a greater effect in the improvement of CS-induced cardiac dysfunction over BM-MSCs-treated group as shown by increased percentage left ventricular ejection fraction and percentage fractional shortening, in line with the greater reversal of cardiac lipid abnormality. In addition, iPSC-MSCs administration attenuated CS-induced elevation of cardiac pro-inflammatory cytokines as well as restoration of anti-inflammatory cytokines and anti-oxidative markers, leading to ameliorate cardiac morphological abnormalities. These data suggest that iPSC-MSCs on one hand may restore CS-induced cardiac lipid abnormality and on the other hand may attenuate cardiac oxidative stress and inflammation via inhibition of CS-induced NF-κB activation, leading to improvement of cardiac remodeling and dysfunction. Thus, iPSC-MSCs may be a promising candidate in cell-based therapy to prevent cardiac complications in smokers.
Collapse
Affiliation(s)
- Yingmin Liang
- Department of Medicine, The University of Hong KongPok Fu Lam, Hong Kong.,Shenzhen Institute of Research and Innovation, The University of Hong KongPok Fu Lam, Hong Kong
| | - Xiang Li
- Department of Medicine, The University of Hong KongPok Fu Lam, Hong Kong.,Shenzhen Institute of Research and Innovation, The University of Hong KongPok Fu Lam, Hong Kong
| | - Yuelin Zhang
- Department of Medicine, The University of Hong KongPok Fu Lam, Hong Kong
| | - Sze Chun Yeung
- Department of Medicine, The University of Hong KongPok Fu Lam, Hong Kong.,Shenzhen Institute of Research and Innovation, The University of Hong KongPok Fu Lam, Hong Kong
| | - Zhe Zhen
- Department of Medicine, The University of Hong KongPok Fu Lam, Hong Kong
| | - Mary S M Ip
- Department of Medicine, The University of Hong KongPok Fu Lam, Hong Kong.,Shenzhen Institute of Research and Innovation, The University of Hong KongPok Fu Lam, Hong Kong.,Research Centre of Heart, Brain, Hormone and Healthy Aging, The University of Hong KongPok Fu Lam, Hong Kong
| | - Hung Fat Tse
- Department of Medicine, The University of Hong KongPok Fu Lam, Hong Kong
| | - Qizhou Lian
- Department of Medicine, The University of Hong KongPok Fu Lam, Hong Kong.,Shenzhen Institute of Research and Innovation, The University of Hong KongPok Fu Lam, Hong Kong.,Research Centre of Heart, Brain, Hormone and Healthy Aging, The University of Hong KongPok Fu Lam, Hong Kong.,Department of Ophthalmology, The University of Hong KongPok Fu Lam, Hong Kong
| | - Judith C W Mak
- Department of Medicine, The University of Hong KongPok Fu Lam, Hong Kong.,Shenzhen Institute of Research and Innovation, The University of Hong KongPok Fu Lam, Hong Kong.,Research Centre of Heart, Brain, Hormone and Healthy Aging, The University of Hong KongPok Fu Lam, Hong Kong.,Department of Pharmacology and Pharmacy, The University of Hong KongPok Fu Lam, Hong Kong
| |
Collapse
|
39
|
Yoon JK, Lee TI, Bhang SH, Shin JY, Myoung JM, Kim BS. Stretchable Piezoelectric Substrate Providing Pulsatile Mechanoelectric Cues for Cardiomyogenic Differentiation of Mesenchymal Stem Cells. ACS APPLIED MATERIALS & INTERFACES 2017; 9:22101-22111. [PMID: 28560866 DOI: 10.1021/acsami.7b03050] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Ex vivo induction of cardiomyogenic differentiation of mesenchymal stem cells (MSCs) before implantation would potentiate therapeutic efficacy of stem cell therapies for ischemic heart diseases because MSCs rarely undergo cardiomyogenic differentiation following implantation. In cardiac microenvironments, electric pulse and cyclic mechanical strain are sequentially produced. However, no study has applied the pulsatile mechanoelectric cues (PMEC) to stimulate cardiomyogenic differentiation of MSCs ex vivo. In this study, we developed a stretchable piezoelectric substrate (SPS) that can provide PMEC to human MSCs (hMSCs) for cardiomyogenic differentiation ex vivo. Our data showed that hMSCs subjected to PMEC by SPS underwent promoted cardiac phenotype development: cell alignment and the expression of cardiac markers (i.e., cardiac transcription factors, structural proteins, ion channel proteins, and gap junction proteins). The enhanced cardiac phenotype development was mediated by the upregulation of cardiomyogenic differentiation-related autocrine factor expression, focal adhesion kinase, and extracellular signal-regulated kinases signaling pathways. Thus, SPS providing electrical and mechanical regulation of stem cells may be utilized to potentiate hMSC therapies for myocardial infarction and provide a tool for the study of stem cell biology.
Collapse
Affiliation(s)
| | - Tae Il Lee
- Department of BioNano Technology, Gachon University , Seongnam 13557, Republic of Korea
| | - Suk Ho Bhang
- School of Chemical Engineering, Sungkyunkwan University , Suwon 16419, Republic of Korea
| | | | - Jae-Min Myoung
- Department of Materials Science and Engineering, Yonsei University , Seoul 03722, Republic of Korea
| | | |
Collapse
|
40
|
Aqmasheh S, Shamsasanjan K, Akbarzadehlaleh P, Pashoutan Sarvar D, Timari H. Effects of Mesenchymal Stem Cell Derivatives on Hematopoiesis and Hematopoietic Stem Cells. Adv Pharm Bull 2017; 7:165-177. [PMID: 28761818 PMCID: PMC5527230 DOI: 10.15171/apb.2017.021] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Revised: 04/08/2017] [Accepted: 04/18/2017] [Indexed: 12/11/2022] Open
Abstract
Hematopoiesis is a balance among quiescence, self-renewal, proliferation, and differentiation, which is believed to be firmly adjusted through interactions between hematopoietic stem and progenitor cells (HSPCs) with the microenvironment. This microenvironment is derived from a common progenitor of mesenchymal origin and its signals should be capable of regulating the cellular memory of transcriptional situation and lead to an exchange of stem cell genes expression. Mesenchymal stem cells (MSCs) have self-renewal and differentiation capacity into tissues of mesodermal origin, and these cells can support hematopoiesis through release various molecules that play a crucial role in migration, homing, self-renewal, proliferation, and differentiation of HSPCs. Studies on the effects of MSCs on HSPC differentiation can develop modern solutions in the treatment of patients with hematologic disorders for more effective Bone Marrow (BM) transplantation in the near future. However, considerable challenges remain on realization of how paracrine mechanisms of MSCs act on the target tissues, and how to design a therapeutic regimen with various paracrine factors in order to achieve optimal results for tissue conservation and regeneration. The aim of this review is to characterize and consider the related aspects of the ability of MSCs secretome in protection of hematopoiesis.
Collapse
Affiliation(s)
- Sara Aqmasheh
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Karim Shamsasanjan
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parvin Akbarzadehlaleh
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Hamze Timari
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
41
|
Gaafar T, Attia W, Mahmoud S, Sabry D, Aziz OA, Rasheed D, Hamza H. Cardioprotective Effects of Wharton Jelly Derived Mesenchymal Stem Cell Transplantation in a Rodent Model of Myocardial Injury. Int J Stem Cells 2017; 10:48-59. [PMID: 28446005 PMCID: PMC5488776 DOI: 10.15283/ijsc16063] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/04/2017] [Indexed: 01/03/2023] Open
Abstract
Background Whartons jelly-derived mesenchymal stem cells are a valuable alternative source that possess multipotent properties, easy to obtain and available in large scale compared to BMMSCs. We investigated the possibility of cardiac function improvement post isoproterenol induced cardiac injury in a rat model following human WJMSCs transplantation. Materials and Methods MSCs were extracted and cultured from cord WJ, characterized by morphology, Immunophenotyping and differentiation to osteoblast and adipocytes. WJMSCs were labeled with PKH2 linker dye. Wistar rats were divided into control group, ISO group (injected with 2 doses of isoproterenol) to induce myocardial injury and ISO group transplanted with labelled WJMSCs. ECG, electrocardiographic patterns, cardiac marker enzymes, tracing of labeled MSCs and immunohistochemical analysis of myocardial cryosections were studied. Results and Conclusions WJ derived MSCs were expanded for more than 14 passages while maintaining their undifferentiated state, were positive for MSC markers and were able to differentiate into adipocyte and osteoblast. We demonstrated that intravenously administered WJMSCs were capable of homing predominently in the ischemic myocardium. Cardiac markers were positively altered in stem cell treated group compared to ISO group. ECG and ECHO changes were improved with higher survival rate. WJMSCs could differentiate into cardiac-like cells (positive for cardiac specific proteins) in vivo. WJMSCs infusion promoted cardiac protection and reduced mortality, emphasizing a promising therapeutic role for myocardial insufficiency.
Collapse
Affiliation(s)
- Taghrid Gaafar
- Department of Clinical Pathology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Wael Attia
- Department of Pediatric Cardiology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Shereen Mahmoud
- Department of Clinical Pathology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Dina Sabry
- Department of Biochemistry, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Osama Abdel Aziz
- Department of Pediatric Cardiology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Dina Rasheed
- Department of Clinical Pathology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Hala Hamza
- Department of Pediatric Cardiology, Faculty of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
42
|
Jun I, Ahmad T, Bak S, Lee JY, Kim EM, Lee J, Lee YB, Jeong H, Jeon H, Shin H. Spatially Assembled Bilayer Cell Sheets of Stem Cells and Endothelial Cells Using Thermosensitive Hydrogels for Therapeutic Angiogenesis. Adv Healthc Mater 2017; 6. [PMID: 28230931 DOI: 10.1002/adhm.201601340] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Revised: 01/27/2017] [Indexed: 12/28/2022]
Abstract
Although the coculture of multiple cell types has been widely employed in regenerative medicine, in vivo transplantation of cocultured cells while maintaining the hierarchical structure remains challenging. Here, a spatially assembled bilayer cell sheet of human mesenchymal stem cells and human umbilical vein endothelial cells on a thermally expandable hydrogel containing fibronectin is prepared and its effect on in vitro proangiogenic functions and in vivo ischemic injury is investigated. The expansion of hydrogels in response to a temperature change from 37 to 4 °C allows rapid harvest and delivery of the bilayer cell sheet to two different targets (an in vitro model glass surface and in vivo tissue). The in vitro study confirms that the bilayer sheet significantly increases proangiogenic functions such as the release of nitric oxide and expression of vascular endothelial cell genes. In addition, transplantation of the cell sheet from the hydrogels into a hindlimb ischemia mice model demonstrates significant retardation of necrosis particularly in the group transplated with the bilayer sheet. Collectively, the bilayer cell sheet is readily transferrable from the thermally expandable hydrogel and represents an alternative approach for recovery from ischemic injury, potentially via improved cell-cell communication.
Collapse
Affiliation(s)
- Indong Jun
- Department of Bioengineering; Institute for Bioengineering and Biopharmaceutical Research; Hanyang University; Seoul 04763 Republic of Korea
- Center for Biomaterials; Biomedical Research Institute; Korea Institute of Science and Technology; Seoul 02792 Republic of Korea
| | - Taufiq Ahmad
- Department of Bioengineering; Institute for Bioengineering and Biopharmaceutical Research; Hanyang University; Seoul 04763 Republic of Korea
- BK21 Plus Future Biopharmaceutical Human Resources Training and Research Team; Hanyang University; Seoul 04763 Republic of Korea
| | - Seongwoo Bak
- Department of Bioengineering; Institute for Bioengineering and Biopharmaceutical Research; Hanyang University; Seoul 04763 Republic of Korea
- BK21 Plus Future Biopharmaceutical Human Resources Training and Research Team; Hanyang University; Seoul 04763 Republic of Korea
| | - Joong-Yup Lee
- Department of Bioengineering; Institute for Bioengineering and Biopharmaceutical Research; Hanyang University; Seoul 04763 Republic of Korea
- BK21 Plus Future Biopharmaceutical Human Resources Training and Research Team; Hanyang University; Seoul 04763 Republic of Korea
| | - Eun Mi Kim
- Department of Bioengineering; Institute for Bioengineering and Biopharmaceutical Research; Hanyang University; Seoul 04763 Republic of Korea
- BK21 Plus Future Biopharmaceutical Human Resources Training and Research Team; Hanyang University; Seoul 04763 Republic of Korea
| | - Jinkyu Lee
- Department of Bioengineering; Institute for Bioengineering and Biopharmaceutical Research; Hanyang University; Seoul 04763 Republic of Korea
- BK21 Plus Future Biopharmaceutical Human Resources Training and Research Team; Hanyang University; Seoul 04763 Republic of Korea
| | - Yu Bin Lee
- Department of Bioengineering; Institute for Bioengineering and Biopharmaceutical Research; Hanyang University; Seoul 04763 Republic of Korea
- BK21 Plus Future Biopharmaceutical Human Resources Training and Research Team; Hanyang University; Seoul 04763 Republic of Korea
| | - Hongsoo Jeong
- Center for Biomaterials; Biomedical Research Institute; Korea Institute of Science and Technology; Seoul 02792 Republic of Korea
| | - Hojeong Jeon
- Center for Biomaterials; Biomedical Research Institute; Korea Institute of Science and Technology; Seoul 02792 Republic of Korea
| | - Heungsoo Shin
- Department of Bioengineering; Institute for Bioengineering and Biopharmaceutical Research; Hanyang University; Seoul 04763 Republic of Korea
- BK21 Plus Future Biopharmaceutical Human Resources Training and Research Team; Hanyang University; Seoul 04763 Republic of Korea
| |
Collapse
|
43
|
Seo HH, Lee SY, Lee CY, Kim R, Kim P, Oh S, Lee H, Lee MY, Kim J, Kim LK, Hwang KC, Chang W. Exogenous miRNA-146a Enhances the Therapeutic Efficacy of Human Mesenchymal Stem Cells by Increasing Vascular Endothelial Growth Factor Secretion in the Ischemia/Reperfusion-Injured Heart. J Vasc Res 2017; 54:100-108. [DOI: 10.1159/000461596] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 02/08/2017] [Indexed: 11/19/2022] Open
|
44
|
Zorzopulos J, Opal SM, Hernando-Insúa A, Rodriguez JM, Elías F, Fló J, López RA, Chasseing NA, Lux-Lantos VA, Coronel MF, Franco R, Montaner AD, Horn DL. Immunomodulatory oligonucleotide IMT504: Effects on mesenchymal stem cells as a first-in-class immunoprotective/immunoregenerative therapy. World J Stem Cells 2017; 9:45-67. [PMID: 28396715 PMCID: PMC5368622 DOI: 10.4252/wjsc.v9.i3.45] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 10/12/2016] [Accepted: 12/19/2016] [Indexed: 02/06/2023] Open
Abstract
The immune responses of humans and animals to insults (i.e., infections, traumas, tumoral transformation and radiation) are based on an intricate network of cells and chemical messengers. Abnormally high inflammation immediately after insult or abnormally prolonged pro-inflammatory stimuli bringing about chronic inflammation can lead to life-threatening or severely debilitating diseases. Mesenchymal stem cell (MSC) transplant has proved to be an effective therapy in preclinical studies which evaluated a vast diversity of inflammatory conditions. MSCs lead to resolution of inflammation, preparation for regeneration and actual regeneration, and then ultimate return to normal baseline or homeostasis. However, in clinical trials of transplanted MSCs, the expectations of great medical benefit have not yet been fulfilled. As a practical alternative to MSC transplant, a synthetic drug with the capacity to boost endogenous MSC expansion and/or activation may also be effective. Regarding this, IMT504, the prototype of a major class of immunomodulatory oligonucleotides, induces in vivo expansion of MSCs, resulting in a marked improvement in preclinical models of neuropathic pain, osteoporosis, diabetes and sepsis. IMT504 is easily manufactured and has an excellent preclinical safety record. In the small number of patients studied thus far, IMT504 has been well-tolerated, even at very high dosage. Further clinical investigation is necessary to demonstrate the utility of IMT504 for resolution of inflammation and regeneration in a broad array of human diseases that would likely benefit from an immunoprotective/immunoregenerative therapy.
Collapse
|
45
|
Nigro P, Bassetti B, Cavallotti L, Catto V, Carbucicchio C, Pompilio G. Cell therapy for heart disease after 15 years: Unmet expectations. Pharmacol Res 2017; 127:77-91. [PMID: 28235633 DOI: 10.1016/j.phrs.2017.02.015] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 02/07/2017] [Accepted: 02/16/2017] [Indexed: 12/17/2022]
Abstract
Over the past two decades cardiac cell therapy (CCT) has emerged as a promising new strategy to cure heart diseases at high unmet need. Thousands of patients have entered clinical trials for acute or chronic heart conditions testing different cell types, including autologous or allogeneic bone marrow (BM)-derived mononuclear or selected cells, BM- or adipose tissue-derived mesenchymal cells, or cardiac resident progenitors based on their potential ability to regenerate scarred or dysfunctional myocardium. Nowadays, the original enthusiasm surrounding the regenerative medicine field has been cushioned by a cumulative body of evidence indicating an inefficient or modest efficacy of CCT in improving cardiac function, along with the continued lack of indisputable proof for long-term prognostic benefit. In this review, we have firstly comprehensively outlined the positive and negative results of cell therapy studies in patients with acute myocardial infarction, refractory angina and chronic heart failure. Next, we have discussed cell therapy- and patient-related variables (e.g. cell intrinsic and extrinsic characteristics as well as criteria of patient selection and proposed methodologies) that might have dampened the efficacy of past cell therapy trials. Finally, we have addressed critical factors to be considered before embarking on further clinical trials.
Collapse
Affiliation(s)
- Patrizia Nigro
- Vascular Biology and Regenerative Medicine Unit, Centro Cardiologico Monzino-IRCCS, via Carlo Parea 4, 20138, Milan, Italy
| | - Beatrice Bassetti
- Vascular Biology and Regenerative Medicine Unit, Centro Cardiologico Monzino-IRCCS, via Carlo Parea 4, 20138, Milan, Italy
| | - Laura Cavallotti
- Department of Cardiovascular Surgery, Centro Cardiologico Monzino-IRCCS, via Carlo Parea 4, 20138, Milan, Italy
| | - Valentina Catto
- Cardiac Arrhythmia Research Centre, Centro Cardiologico Monzino-IRCCS, via Carlo Parea 4, 20138, Milan, Italy
| | - Corrado Carbucicchio
- Cardiac Arrhythmia Research Centre, Centro Cardiologico Monzino-IRCCS, via Carlo Parea 4, 20138, Milan, Italy
| | - Giulio Pompilio
- Vascular Biology and Regenerative Medicine Unit, Centro Cardiologico Monzino-IRCCS, via Carlo Parea 4, 20138, Milan, Italy; Department of Clinical Sciences and Community Health, University of Milan, via Festa del Perdono 7, 20122, Milan, Italy.
| |
Collapse
|
46
|
Therapeutic Effects of Ischemic-Preconditioned Exosomes in Cardiovascular Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 998:271-281. [PMID: 28936746 DOI: 10.1007/978-981-10-4397-0_18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Despite years of researches, cardiovascular disease (CVD) remains the most common cause of death around the world. Lots of studies showed that by pretreating with short nonfatal ischemia in in situ organ or distant organ, one could develop tolerance to the following fatal ischemia. The process is called ischemic preconditioning (IPC). IPC prepare the heart for damage by producing inflammatory signals, miRNA, neuro system stimulation and exosomes. Among them, exosomes have been gaining increasing interest since it is characterized by its capability to carry information and its specific ligand-receptor system. Here we will discuss IPC induced exosomes and its protective effects during ischemic heart disease.
Collapse
|
47
|
Khater NA, Selim SA, Abd El-Baset SA, Abd El Hameed SH. Therapeutic effect of mesenchymal stem cells on experimentally induced hypertensive cardiomyopathy in adult albino rats. Ultrastruct Pathol 2016; 41:36-50. [PMID: 28029272 DOI: 10.1080/01913123.2016.1260080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Hypertensive heart diseases affect millions of people worldwide. We aimed to investigate the hypertensive left ventricular histological changes and assess the effectiveness of bone marrow derived mesenchymal stem cells (MSCs) therapy in the treatment of hypertensive cardiomyopathy. Adult male albino rats were assigned into two groups: group I (control), group II (Experimental) subdivided into subgroup IIa (hypertensive) and subgroup IIb (stem cell therapy). Left ventricles (LVs) were processed for light and electron microscope. Mallory's trichrome and immunostaining for caspase-3 and desmin were carried out. Hypertension caused left ventricular histological and immunohistochemical changes that had been effectively improved by MSCs therapy.
Collapse
Affiliation(s)
- Nariman A Khater
- a Department of Histology and Cell Biology, Faculty of Medicine , Zagazig University , Zagazig , Egypt
| | - Sally A Selim
- a Department of Histology and Cell Biology, Faculty of Medicine , Zagazig University , Zagazig , Egypt
| | - Samia A Abd El-Baset
- a Department of Histology and Cell Biology, Faculty of Medicine , Zagazig University , Zagazig , Egypt
| | - Samar H Abd El Hameed
- a Department of Histology and Cell Biology, Faculty of Medicine , Zagazig University , Zagazig , Egypt
| |
Collapse
|
48
|
Gallo S, Gili M, Lombardo G, Rossetti A, Rosso A, Dentelli P, Togliatto G, Deregibus MC, Taverna D, Camussi G, Brizzi MF. Stem Cell-Derived, microRNA-Carrying Extracellular Vesicles: A Novel Approach to Interfering with Mesangial Cell Collagen Production in a Hyperglycaemic Setting. PLoS One 2016; 11:e0162417. [PMID: 27611075 PMCID: PMC5017750 DOI: 10.1371/journal.pone.0162417] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 08/22/2016] [Indexed: 12/20/2022] Open
Abstract
Extracellular vesicles (EVs) that are derived from stem cells are proving to be promising therapeutic options. We herein investigate the therapeutic potential of EVs that have been derived from different stem cell sources, bone-marrow (MSC) and human liver (HLSC), on mesangial cells (MCs) exposed to hyperglycaemia. By expressing a dominant negative STAT5 construct (ΔNSTAT5) in HG-cultured MCs, we have demonstrated that miR-21 expression is under the control of STAT5, which translates into Transforming Growth Factor beta (TGFβ) expression and collagen production. A number of approaches have been used to show that both MSC- and HLSC-derived EVs protect MCs from HG-induced damage via the transfer of miR-222. This resulted in STAT5 down-regulation and a decrease in miR-21 content, TGFβ expression and matrix protein synthesis within MCs. Moreover, we demonstrate that changes in the balance between miR-21 and miR-100 in the recipient cell, which are caused by the transfer of EV cargo, further contribute to providing beneficial effects. Interestingly, these effects were only detected in HG-cultured cells. Finally, it was found that HG reduced the expression of the nuclear encoded mitochondrial electron transport chain (ETC) components, CoxIV. It is worth noting that EV administration can rescue CoxIV expression in HG-cultured MCs. These results thus demonstrate that both MSC- and HLSC-derived EVs transfer the machinery needed to preserve MCs from HG-mediated damage. This occurs via the horizontal transfer of functional miR-222 which directly interferes with damaging cues. Moreover, our data indicate that the release of EV cargo into recipient cells provides additional therapeutic advantages against harmful mitochondrial signals.
Collapse
Affiliation(s)
- Sara Gallo
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Maddalena Gili
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Giusy Lombardo
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Alberto Rossetti
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Arturo Rosso
- Department of Medical Sciences, University of Turin, Turin, Italy
| | | | | | | | - Daniela Taverna
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Giovanni Camussi
- Department of Medical Sciences, University of Turin, Turin, Italy
| | | |
Collapse
|
49
|
Zhou A, Li M, He B, Feng W, Huang F, Xu B, Dunker AK, Balch C, Li B, Liu Y, Wang Y. Lipopolysaccharide treatment induces genome-wide pre-mRNA splicing pattern changes in mouse bone marrow stromal stem cells. BMC Genomics 2016; 17 Suppl 7:509. [PMID: 27557078 PMCID: PMC5001229 DOI: 10.1186/s12864-016-2898-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Lipopolysaccharide (LPS) is a gram-negative bacterial antigen that triggers a series of cellular responses. LPS pre-conditioning was previously shown to improve the therapeutic efficacy of bone marrow stromal cells/bone-marrow derived mesenchymal stem cells (BMSCs) for repairing ischemic, injured tissue. RESULTS In this study, we systematically evaluated the effects of LPS treatment on genome-wide splicing pattern changes in mouse BMSCs by comparing transcriptome sequencing data from control vs. LPS-treated samples, revealing 197 exons whose BMSC splicing patterns were altered by LPS. Functional analysis of these alternatively spliced genes demonstrated significant enrichment of phosphoproteins, zinc finger proteins, and proteins undergoing acetylation. Additional bioinformatics analysis strongly suggest that LPS-induced alternatively spliced exons could have major effects on protein functions by disrupting key protein functional domains, protein-protein interactions, and post-translational modifications. CONCLUSION Although it is still to be determined whether such proteome modifications improve BMSC therapeutic efficacy, our comprehensive splicing characterizations provide greater understanding of the intracellular mechanisms that underlie the therapeutic potential of BMSCs.
Collapse
Affiliation(s)
- Ao Zhou
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.,Bioinformatics Program, Indiana University School of Informatics, Indianapolis, IN, 46202, USA
| | - Meng Li
- College of Automation, Harbin Engineering University, Harbin, Heilongjiang, China
| | - Bo He
- College of Automation, Harbin Engineering University, Harbin, Heilongjiang, China
| | - Weixing Feng
- College of Automation, Harbin Engineering University, Harbin, Heilongjiang, China
| | - Fei Huang
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Bing Xu
- Department of Medical and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.,Department of Pharmacology, Harbin Medical University, Harbin, Heilongjiang, China
| | - A Keith Dunker
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Curt Balch
- Bioscience Advising, Indianapolis, IN, 46227, USA
| | - Baiyan Li
- Department of Pharmacology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Yunlong Liu
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.,Department of Medical and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Yue Wang
- Department of Medical and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| |
Collapse
|
50
|
Medhekar SK, Shende VS, Chincholkar AB. Recent Stem Cell Advances: Cord Blood and Induced Pluripotent Stem Cell for Cardiac Regeneration- a Review. Int J Stem Cells 2016; 9:21-30. [PMID: 27426082 PMCID: PMC4961100 DOI: 10.15283/ijsc.2016.9.1.21] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 03/07/2016] [Indexed: 12/14/2022] Open
Abstract
Stem cells are primitive self renewing undifferentiated cell that can be differentiated into various types of specialized cells like nerve cell, skin cells, muscle cells, intestinal tissue, and blood cells. Stem cells live in bone marrow where they divide to make new blood cells and produces peripheral stem cells in circulation. Under proper environment and in presence of signaling molecules stem cells begin to develop into specialized tissues and organs. These unique characteristics make them very promising entities for regeneration of damaged tissue. Day by day increase in incidence of heart diseases including left ventricular dysfunction, ischemic heart disease (IHD), congestive heart failure (CHF) are the major cause of morbidity and mortality. However infracted tissue cannot regenerate into healthy tissue. Heart transplantation is only the treatment for such patient. Due to limitation of availability of donor for organ transplantation, a focus is made for alternative and effective therapy to treat such condition. In this review we have discussed the new advances in stem cells such as use of cord stem cells and iPSC technology in cardiac repair. Future approach of CB cells was found to be used in tissue repair which is specifically observed for improvement of left ventricular function and myocardial infarction. Here we have also focused on how iPSC technology is used for regeneration of cardiomyocytes and intiating neovascularization in myocardial infarction and also for study of pathophysiology of various degenerative diseases and genetic disease in research field.
Collapse
Affiliation(s)
| | - Vikas Suresh Shende
- Department of Pharmacology, Satara College of Pharmacy, Degaon, Satara (MH), India
| | | |
Collapse
|