1
|
Franco S, Fuchs J, Dinner S, Ma S. B-ALL in a 21-year-old male with X-linked agammaglobulinemia (XLA): a case report and review of B-cell malignancies in XLA. Leuk Lymphoma 2025; 66:801-803. [PMID: 39671464 DOI: 10.1080/10428194.2024.2439529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 12/02/2024] [Accepted: 12/03/2024] [Indexed: 12/15/2024]
Affiliation(s)
- Stephanie Franco
- Department of Internal Medicine, Northwestern Medicine, Chicago, IL, USA
| | - Joseph Fuchs
- Department of Internal Medicine, Northwestern Medicine, Chicago, IL, USA
| | - Shira Dinner
- Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL , USA
| | - Shuo Ma
- Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL , USA
| |
Collapse
|
2
|
Leal VNC, Bork F, Mateo Tortola M, von Guilleaume JC, Greve CL, Bugl S, Danker B, Bittner ZA, Grimbacher B, Pontillo A, Weber ANR. Bruton's tyrosine kinase (BTK) and matrix metalloproteinase-9 (MMP-9) regulate NLRP3 inflammasome-dependent cytokine and neutrophil extracellular trap responses in primary neutrophils. J Allergy Clin Immunol 2025; 155:569-582. [PMID: 39547282 DOI: 10.1016/j.jaci.2024.10.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 10/02/2024] [Accepted: 10/22/2024] [Indexed: 11/17/2024]
Abstract
BACKGROUND Inflammation is a double-edged state of immune activation that is required to resolve threats harmful to the host, but can also cause severe collateral damage. Polymorphonuclear neutrophils (PMNs), the primary leukocyte population in humans, mediate inflammation through the release of cytokines and neutrophil extracellular traps (NETs). Although the pathophysiological importance of NETs is unequivocal, the multiple molecular pathways driving NET release are not fully defined. Recently, NET release was linked to the NLRP3 inflammasome, which is regulated by Bruton's tyrosine kinase (BTK) in macrophages. OBJECTIVE As NLRP3 inflammasome regulation by BTK has not been studied in neutrophils, we explored a potential regulatory role of BTK in primary murine and human neutrophils and matched monocytes or macrophages from Btk-deficient versus wild-type mice, or from healthy donors versus BTK-deficient patients with X-linked agammaglobulinemia. METHODS Cytokine, myeloperoxidase, and matrix metalloproteinase-9 (MMP-9) release were quantified by ELISA, NET release, and inflammasome formation by immunofluorescence microscopy. RESULTS Surprisingly, in both mouse and human primary neutrophils, we observed a significant increase in NLRP3 inflammasome-dependent IL-1β and NETs when BTK was absent or inhibited, whereas IL-1β release was decreased in corresponding primary mouse macrophages or human PBMCs. This suggests a novel negative regulatory role of BTK in terms of neutrophil NLRP3 activation. IL-1β and NET release in both mouse and human primary neutrophils was strictly dependent on NLRP3, caspase-1 and, surprisingly, MMP-9. CONCLUSIONS This study highlights BTK and MMP-9 as novel and versatile inflammasome regulators and may have implications for the clinical use of BTK inhibitors.
Collapse
Affiliation(s)
- Vinicius N C Leal
- Institute of Immunology, Department of Innate Immunity, University of Tübingen, Tübingen, Germany; Laboratory of Immunogenetics, Department of Immunology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Francesca Bork
- Institute of Immunology, Department of Innate Immunity, University of Tübingen, Tübingen, Germany
| | - Maria Mateo Tortola
- Institute of Immunology, Department of Innate Immunity, University of Tübingen, Tübingen, Germany
| | | | - Carsten L Greve
- Institute of Immunology, Department of Innate Immunity, University of Tübingen, Tübingen, Germany
| | - Stefanie Bugl
- Institute of Immunology, Department of Innate Immunity, University of Tübingen, Tübingen, Germany
| | - Bettina Danker
- Institute of Immunology, Department of Innate Immunity, University of Tübingen, Tübingen, Germany
| | - Zsofia A Bittner
- Institute of Immunology, Department of Innate Immunity, University of Tübingen, Tübingen, Germany
| | - Bodo Grimbacher
- Klinik für Rheumatologie/Klinische Immunologie, Universitätsklinikum Freiburg, Freiburg, Germany; DZIF - German Center for Infection Research, Satellite Center Freiburg, Freiburg, Germany; CIBSS - Centre for Integrative Biological Signalling Studies, Albert-Ludwigs University, Freiburg, Germany; RESIST - Cluster of Excellence 2155 to Hanover Medical School, Satellite Center Freiburg, Freiburg, Germany
| | - Alessandra Pontillo
- Laboratory of Immunogenetics, Department of Immunology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Alexander N R Weber
- Institute of Immunology, Department of Innate Immunity, University of Tübingen, Tübingen, Germany; iFIT-Cluster of Excellence (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies," University of Tübingen, Tübingen, Germany; German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ) Partner Site Tübingen, Tübingen, Germany; CMFI-Cluster of Excellence (EXC 2124) "Controlling Microbes to Fight Infection," University of Tübingen, Tübingen, Germany.
| |
Collapse
|
3
|
Klippel C, Park J, Sandin S, Winstone TML, Chen X, Orton D, Singh A, Hill JD, Shahbal TK, Hamacher E, Officer B, Thompson J, Duong P, Grotzer T, Hahn SH. Advancing Newborn Screening in Washington State: A Novel Multiplexed LC-MS/MS Proteomic Assay for Wilson Disease and Inborn Errors of Immunity. Int J Neonatal Screen 2025; 11:6. [PMID: 39846592 PMCID: PMC11755445 DOI: 10.3390/ijns11010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/21/2024] [Accepted: 01/07/2025] [Indexed: 01/24/2025] Open
Abstract
For many genetic disorders, there are no specific metabolic biomarkers nor analytical methods suitable for newborn population screening, even where highly effective preemptive treatments are available. The direct measurement of signature peptides as a surrogate marker for the protein in dried blood spots (DBSs) has been shown to successfully identify patients with Wilson Disease (WD) and three life-threatening inborn errors of immunity, X-linked agammaglobulinemia (XLA), Wiskott-Aldrich syndrome (WAS), and adenosine deaminase deficiency (ADAD). A novel proteomic-based multiplex assay to detect these four conditions from DBS using high-throughput LC-MS/MS was developed and validated. The clinical validation results showed that the assay can accurately identify patients of targeted disorders from controls. Additionally, 30,024 newborn DBS samples from the Washington State Department of Health Newborn Screening Laboratory have been screened from 2022 to 2024. One true presumptive positive case of WD was found along with three false positive cases. Five false positives for WAS were detected, but all of them were premature and/or low-birth-weight babies and four of them had insufficient DNA for confirmation. The pilot study demonstrates the feasibility and effectiveness of utilizing this multiplexed proteomic assay for newborn screening.
Collapse
Affiliation(s)
- Claire Klippel
- Key Proteo, Inc., Seattle, WA 98122, USA; (C.K.); (J.P.); (S.S.)
| | - Jiwoon Park
- Key Proteo, Inc., Seattle, WA 98122, USA; (C.K.); (J.P.); (S.S.)
| | - Sean Sandin
- Key Proteo, Inc., Seattle, WA 98122, USA; (C.K.); (J.P.); (S.S.)
| | - Tara M. L. Winstone
- Alberta Precision Laboratories, Calgary, AB T2L 2K8, Canada; (T.M.L.W.); (X.C.); (D.O.)
| | - Xue Chen
- Alberta Precision Laboratories, Calgary, AB T2L 2K8, Canada; (T.M.L.W.); (X.C.); (D.O.)
| | - Dennis Orton
- Alberta Precision Laboratories, Calgary, AB T2L 2K8, Canada; (T.M.L.W.); (X.C.); (D.O.)
| | - Aranjeet Singh
- Washington State Department of Health Newborn Screening Laboratories, Seattle, WA 98155, USA; (A.S.); (J.D.H.); (T.K.S.); (E.H.); (B.O.); (J.T.)
| | - Jonathan D. Hill
- Washington State Department of Health Newborn Screening Laboratories, Seattle, WA 98155, USA; (A.S.); (J.D.H.); (T.K.S.); (E.H.); (B.O.); (J.T.)
| | - Tareq K. Shahbal
- Washington State Department of Health Newborn Screening Laboratories, Seattle, WA 98155, USA; (A.S.); (J.D.H.); (T.K.S.); (E.H.); (B.O.); (J.T.)
| | - Emily Hamacher
- Washington State Department of Health Newborn Screening Laboratories, Seattle, WA 98155, USA; (A.S.); (J.D.H.); (T.K.S.); (E.H.); (B.O.); (J.T.)
| | - Brandon Officer
- Washington State Department of Health Newborn Screening Laboratories, Seattle, WA 98155, USA; (A.S.); (J.D.H.); (T.K.S.); (E.H.); (B.O.); (J.T.)
| | - John Thompson
- Washington State Department of Health Newborn Screening Laboratories, Seattle, WA 98155, USA; (A.S.); (J.D.H.); (T.K.S.); (E.H.); (B.O.); (J.T.)
| | - Phi Duong
- Seattle Children’s Research Institute, Seattle, WA 98105, USA; (P.D.); (T.G.)
| | - Tim Grotzer
- Seattle Children’s Research Institute, Seattle, WA 98105, USA; (P.D.); (T.G.)
| | - Si Houn Hahn
- Key Proteo, Inc., Seattle, WA 98122, USA; (C.K.); (J.P.); (S.S.)
- Seattle Children’s Research Institute, Seattle, WA 98105, USA; (P.D.); (T.G.)
| |
Collapse
|
4
|
Moundir A, Jeddane L, Bousfiha AA. Insights into the genetic theory of infectious diseases. LA TUNISIE MEDICALE 2024; 102:521-528. [PMID: 39287343 PMCID: PMC11459253 DOI: 10.62438/tunismed.v102i9.4872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 06/08/2024] [Indexed: 09/19/2024]
Abstract
Over the past century, classical approaches from microbiology and immunology have produced spectacular results in the control of infectious diseases. However, the recent SARS-COV-2 pandemic has highlighted our continued failure to control some infections. Other microorganisms still pose a threat to humanity such as HIV, Ebola, and influenza viruses. It seems that conventional approaches are not able to solve all the current problems caused by infectious diseases. Human genetics has shown that infections have a strong genetic determinism that can lead to a predisposition or resistance to infections. This explains much of the clinical variability observed in individuals infected with the same pathogen. The identification of the genetic etiology allows a better understanding of the pathogenesis of infectious diseases and, consequently, the consideration of appropriate preventive and therapeutic strategies. This review provides insights into the genetic theory and the concrete evidence to support it. We highlight the role of primary immunodeficiencies in the discovery of Mendelian and monogenic susceptibility to infections, then we show how genetic and phenotypic heterogeneity, redundancy, and resistance to infection manifest in the context of this genetic determinism. To effectively combat the constant threat of microbes, it is essential to integrate human genetics with microbiology to examine the interactions between pathogens and our immune system.
Collapse
Affiliation(s)
- Abderrahmane Moundir
- Laboratory of Clinical Immunology, Inflammation and Allergies LICIA, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Leila Jeddane
- Laboratory of Clinical Immunology, Inflammation and Allergies LICIA, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
- Laboratoire National de Référence, Mohamed VI Health Sciences University, Casablanca, Morocco
| | - Ahmed Aziz Bousfiha
- Laboratory of Clinical Immunology, Inflammation and Allergies LICIA, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
- Ibn-Rochd University Hospital, Casablanca, Morocco
| |
Collapse
|
5
|
Almutairy KA, Alasmari BG, Rayees S. Digenic Inheritance of Hereditary Spherocytosis Type III and X-linked Agammaglobulinemia: Coexistence of Two Distinct Recessive Disorders in a Male Child. Cureus 2024; 16:e69887. [PMID: 39439639 PMCID: PMC11494156 DOI: 10.7759/cureus.69887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2024] [Indexed: 10/25/2024] Open
Abstract
Hereditary spherocytosis (HS) is a common inherited hemolytic disease caused by mutations in genes encoding proteins crucial to the red blood cell (RBC) membrane, leading to a change in RBC shape from biconcave to spherical. There are five distinct types of hereditary spherocytosis, with types III and V being autosomal recessive and types I, II, and IV autosomal dominant. X-linked agammaglobulinemia (XLA) is a common inborn error of immunity that impairs B cell maturation and differentiation. We report a case of a two-year-old Saudi boy with persistent anemia, recurrent chest infections, and a subgaleal abscess. A whole exome sequencing study revealed digenic inheritance of hereditary spherocytosis type III and XLA. Despite a variant of uncertain significance in the Bruton's tyrosine kinase (BTK) gene, the patient's clinical and biochemical profile strongly indicated XLA. This case highlights how digenic inheritance can manifest as a complex phenotype, illustrating the challenges in diagnosing and managing patients with multigenic diseases.
Collapse
Affiliation(s)
- Khaled A Almutairy
- Department of Allergy and Immunology, Prince Sultan Military Medical City, Riyadh, SAU
| | - Badriah G Alasmari
- Department of Pediatrics Hemato-Oncology, Armed Forces Hospital Southern Region, Khamis Mushait, SAU
| | - Syed Rayees
- Department of Pediatrics, Armed Forces Hospital Southern Region, Khamis Mushait, SAU
| |
Collapse
|
6
|
Chang C. Immunodysregulation in immunodeficiency. Allergy Asthma Proc 2024; 45:340-346. [PMID: 39294914 DOI: 10.2500/aap.2024.45.240058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
The primary immunodeficiency diseases are often accompanied by autoimmunity, autoinflammatory, or aberrant lymphoproliferation. The paradoxical nature of this association can be explained by the multiple cells and molecules involved in immune networks that interact with each other in synergistic, redundant, antagonistic, and parallel arrangements. Because progressively more immunodeficiencies are found to have a genetic etiology, in many cases, a monogenic pathology, an understanding of why immunodeficiency is really an immune dysfunction becomes evident. Understanding the role of specific genes allows us to better understand the complete nature of the inborn error of immunity (IEI); the latter is a term generally used when a clear genetic etiology can be discerned. Autoimmune cytopenias, inflammatory bowel disease, autoimmune thyroiditis, and autoimmune liver diseases as well as lymphomas and cancers frequently accompany primary immunodeficiencies, and it is important that the practitioner be aware of this association and to expect that this is more common than not. The treatment of autoimmune or immunodysregulation in primary immunodeficiencies often involves further immunosuppression, which places the patient at even greater risk of infection. Mitigating measures to prevent such an infection should be considered as part of the treatment regimen. Treatment of immunodysregulation should be mechanism based, as much as we understand the pathways that lead to the dysfunction. Focusing on abnormalities in specific cells or molecules, e.g., cytokines, will become increasingly used to provide a targeted approach to therapy, a prelude to the success of personalized medicine in the treatment of IEIs.
Collapse
|
7
|
Teocchi M, de Andrade Eugênio T, Furlaneto Marega L, Quinti I, dos Santos Vilela MM. Dysregulation of Toll-Like Receptor Signaling-Associated Gene Expression in X-Linked Agammaglobulinemia: Implications for Correlations Genotype-Phenotype and Disease Expression. J Innate Immun 2024; 16:425-439. [PMID: 39116841 PMCID: PMC11521414 DOI: 10.1159/000540082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/26/2024] [Indexed: 08/10/2024] Open
Abstract
INTRODUCTION In X-linked agammaglobulinemia (XLA), the diversity of BTK variants complicates the study of genotype-phenotype correlations. Since BTK negatively regulates toll-like receptors (TLRs), we investigated if distinct BTK mutation types selectively modulate TLR pathways, affecting disease expression. METHODS Using reverse transcription-quantitative polymerase chain reaction, we quantified ten TLR signaling-related genes in XLA patients with missense (n = 3) and nonsense (n = 5) BTK mutations and healthy controls (n = 17). RESULTS BTK, IRAK2, PIK3R4, REL, TFRC, and UBE2N were predominantly downregulated, while RIPK2, TLR3, TLR10, and TLR6 showed variable regulation. The missense XLA group exhibited significant downregulation of IRAK2, PIK3R4, REL, and TFRC and upregulation of TLR3 and/or TLR6. CONCLUSION Hypo-expression of TLR3, TLR6, and TLR10 may increase susceptibility to infections, while hyper-expression might contribute to chronic inflammatory conditions like arthritis or inflammatory bowel disease. Our findings shed light on the important inflammatory component characteristic of some XLA patients, even under optimal therapeutic conditions.
Collapse
Affiliation(s)
- Marcelo Teocchi
- Laboratory of Pediatric Immunology, Center for Investigation in Pediatrics, University of Campinas Medical School (FCM-UNICAMP), Campinas, Brazil
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Thaís de Andrade Eugênio
- Laboratory of Pediatric Immunology, Center for Investigation in Pediatrics, University of Campinas Medical School (FCM-UNICAMP), Campinas, Brazil
| | - Lia Furlaneto Marega
- Laboratory of Pediatric Immunology, Center for Investigation in Pediatrics, University of Campinas Medical School (FCM-UNICAMP), Campinas, Brazil
| | - Isabella Quinti
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Maria Marluce dos Santos Vilela
- Laboratory of Pediatric Immunology, Center for Investigation in Pediatrics, University of Campinas Medical School (FCM-UNICAMP), Campinas, Brazil
| |
Collapse
|
8
|
Ewing A, Madan RP. Viral infections and inborn errors of immunity. Curr Opin Infect Dis 2024; 37:227-231. [PMID: 38747352 DOI: 10.1097/qco.0000000000001021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
PURPOSE OF REVIEW The purpose of this focused review is to discuss unusual presentations of viral infections in the context of specific inborn errors of immunity. We will discuss hyper immunoglobulin E (IgE) syndromes, epidermodysplasia verruciformis, and X-linked agammaglobulinemia as examples of inborn errors of immunity associated with specific presentations of viral infection and disease. RECENT FINDINGS Advances in both genetic and viral diagnostics have broadened our understanding of viral pathogenesis in the setting of immune dysfunction and the variable phenotype of inborn errors of immunity. Dedicator of cytokinesis 8 (DOCK8) deficiency is now recognized as an inborn error of immunity within the hyper IgE syndrome phenotype and is associated with unusually aggressive cutaneous disease caused by herpes simplex and other viruses. Studies of patients with epidermodysplasia verruciformis have proven that rarely detected human papillomavirus subtypes may cause malignancy in the absence of adequate host defenses. Finally, patients with X-linked agammaglobulinemia may remain at risk for severe and chronic viral infections, even as immune globulin supplementation reduces the risk of bacterial infection. SUMMARY Susceptibility to viral infections in patients with inborn errors of immunity is conferred by specific, molecular defects. Recurrent, severe, or otherwise unusual presentations of viral disease should prompt investigation for an underlying genetic defect.
Collapse
Affiliation(s)
- Anne Ewing
- Department of Pediatrics, NYU Grossman School of Medicine
| | - Rebecca Pellett Madan
- Department of Pediatrics, NYU Grossman School of Medicine
- NYU Langone Transplant Institute, New York, New York, USA
| |
Collapse
|
9
|
Bahal S, Zinicola M, Moula SE, Whittaker TE, Schejtman A, Naseem A, Blanco E, Vetharoy W, Hu YT, Rai R, Gomez-Castaneda E, Cunha-Santos C, Burns SO, Morris EC, Booth C, Turchiano G, Cavazza A, Thrasher AJ, Santilli G. Hematopoietic stem cell gene editing rescues B-cell development in X-linked agammaglobulinemia. J Allergy Clin Immunol 2024; 154:195-208.e8. [PMID: 38479630 PMCID: PMC11752842 DOI: 10.1016/j.jaci.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/26/2024] [Accepted: 03/01/2024] [Indexed: 04/09/2024]
Abstract
BACKGROUND X-linked agammaglobulinemia (XLA) is an inborn error of immunity that renders boys susceptible to life-threatening infections due to loss of mature B cells and circulating immunoglobulins. It is caused by defects in the gene encoding the Bruton tyrosine kinase (BTK) that mediates the maturation of B cells in the bone marrow and their activation in the periphery. This paper reports on a gene editing protocol to achieve "knock-in" of a therapeutic BTK cassette in hematopoietic stem and progenitor cells (HSPCs) as a treatment for XLA. METHODS To rescue BTK expression, this study employed a clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 system that creates a DNA double-strand break in an early exon of the BTK locus and an adeno-associated virus 6 virus that carries the donor template for homology-directed repair. The investigators evaluated the efficacy of the gene editing approach in HSPCs from patients with XLA that were cultured in vitro under B-cell differentiation conditions or that were transplanted in immunodeficient mice to study B-cell output in vivo. RESULTS A (feeder-free) B-cell differentiation protocol was successfully applied to blood-mobilized HSPCs to reproduce in vitro the defects in B-cell maturation observed in patients with XLA. Using this system, the investigators could show the rescue of B-cell maturation by gene editing. Transplantation of edited XLA HSPCs into immunodeficient mice led to restoration of the human B-cell lineage compartment in the bone marrow and immunoglobulin production in the periphery. CONCLUSIONS Gene editing efficiencies above 30% could be consistently achieved in human HSPCs. Given the potential selective advantage of corrected cells, as suggested by skewed X-linked inactivation in carrier females and by competitive repopulating experiments in mouse models, this work demonstrates the potential of this strategy as a future definitive therapy for XLA.
Collapse
Affiliation(s)
- Sameer Bahal
- Infection, Immunity and Inflammation Research and Teaching Department, University College London Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Marta Zinicola
- Infection, Immunity and Inflammation Research and Teaching Department, University College London Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Shefta E Moula
- Infection, Immunity and Inflammation Research and Teaching Department, University College London Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Thomas E Whittaker
- Infection, Immunity and Inflammation Research and Teaching Department, University College London Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Andrea Schejtman
- Infection, Immunity and Inflammation Research and Teaching Department, University College London Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Asma Naseem
- Infection, Immunity and Inflammation Research and Teaching Department, University College London Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Elena Blanco
- Infection, Immunity and Inflammation Research and Teaching Department, University College London Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Winston Vetharoy
- Infection, Immunity and Inflammation Research and Teaching Department, University College London Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Yi-Ting Hu
- Infection, Immunity and Inflammation Research and Teaching Department, University College London Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Rajeev Rai
- Infection, Immunity and Inflammation Research and Teaching Department, University College London Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Eduardo Gomez-Castaneda
- Infection, Immunity and Inflammation Research and Teaching Department, University College London Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Catarina Cunha-Santos
- Infection, Immunity and Inflammation Research and Teaching Department, University College London Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Siobhan O Burns
- University College London Institute of Immunity and Transplantation, London, United Kingdom; Department of Immunology, Royal Free London National Health Service Foundation Trust, London, United Kingdom
| | - Emma C Morris
- University College London Institute of Immunity and Transplantation, London, United Kingdom; Department of Immunology, Royal Free London National Health Service Foundation Trust, London, United Kingdom
| | - Claire Booth
- Infection, Immunity and Inflammation Research and Teaching Department, University College London Great Ormond Street Institute of Child Health, London, United Kingdom; Great Ormond Street Hospital, National Health Service Foundation Trust, London, United Kingdom
| | - Giandomenico Turchiano
- Infection, Immunity and Inflammation Research and Teaching Department, University College London Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Alessia Cavazza
- Infection, Immunity and Inflammation Research and Teaching Department, University College London Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Adrian J Thrasher
- Infection, Immunity and Inflammation Research and Teaching Department, University College London Great Ormond Street Institute of Child Health, London, United Kingdom; Great Ormond Street Hospital, National Health Service Foundation Trust, London, United Kingdom
| | - Giorgia Santilli
- Infection, Immunity and Inflammation Research and Teaching Department, University College London Great Ormond Street Institute of Child Health, London, United Kingdom.
| |
Collapse
|
10
|
Lin EV, Suresh RV, Dispenza MC. Bruton's tyrosine kinase inhibition for the treatment of allergic disorders. Ann Allergy Asthma Immunol 2024; 133:33-42. [PMID: 38492772 PMCID: PMC11222055 DOI: 10.1016/j.anai.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/04/2024] [Accepted: 03/05/2024] [Indexed: 03/18/2024]
Abstract
IgE signaling through its high-affinity receptor FcεRI is central to the pathogenesis of numerous allergic disorders. Oral inhibitors of Bruton's tyrosine kinase (BTKis), which are currently Food and Drug Administration-approved for treating B cell malignancies, broadly inhibit the FcεRI pathway in human mast cells and basophils, and therefore may be effective allergen-independent therapies for a variety of allergic diseases. The application of these drugs to the allergy space was previously limited by the low kinase selectivity and subsequent toxicities of early-generation compounds. Fortunately, next-generation, highly selective BTKis in clinical development appear to have more favorable risk-benefit profiles, and their likelihood of being Food and Drug Administration-approved for an allergy indication is increasing. Recent clinical trials have indicated the remarkable and rapid efficacy of the second-generation BTKi acalabrutinib in preventing clinical reactivity to peanut ingestion in adults with peanut allergy. In addition, next-generation BTKis including remibrutinib effectively reduce disease activity in patients with antihistamine-refractory chronic spontaneous urticaria. Finally, several BTKis are currently under investigation in early clinical trials for atopic dermatitis and asthma. In this review, we summarize recent data supporting the use of these drugs as novel therapies in food allergy, anaphylaxis, urticaria, and other allergic disorders. We also discuss safety data derived from trials using both short-term and chronic dosing of BTKis.
Collapse
Affiliation(s)
- Erica V Lin
- Division of Allergy and Clinical Immunology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Ragha V Suresh
- Center for Drug Evaluation and Research, United States Food and Drug Administration, Silver Spring, Maryland
| | - Melanie C Dispenza
- Division of Allergy and Clinical Immunology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| |
Collapse
|
11
|
Song Y, Sun L, Feng D, Sun Q, Wang Y. IgA nephropathy in a child with X-linked agammaglobulinemia: a case report. BMC Pediatr 2024; 24:291. [PMID: 38689221 PMCID: PMC11059697 DOI: 10.1186/s12887-024-04746-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 04/08/2024] [Indexed: 05/02/2024] Open
Abstract
BACKGROUND X-linked agammaglobulinemia (XLA) is a primary immunodeficiency disease caused by mutations in the Bruton tyrosine kinase (BTK) gene. Individuals diagnosed with XLA are at an increased risk of developing autoimmune diseases. However, renal involvement are rare in cases of XLA. CASE PRESENTATION In this report, we discussed a specific case involving a 6-year-old boy with XLA who experienced recurrent upper respiratory tract infections since the age of one. He presented with symptoms of hematuria and proteinuria, and renal pathology confirmed the presence of immunoglobulin (Ig) A nephropathy. Treatment comprised glucocorticoids, mycophenolate mofetil, and intermittent intravenous immunoglobulin replacement therapy. Consequently, there was a remission of proteinuria and a partial improvement in hematuria. CONCLUSIONS In this study, we describe the first case of IgA nephropathy associated with XLA. This is an interesting phenotype found in XLA, and it provides valuable insights into the process of autoimmunity and the regulation of immune function in individuals with XLA. Based on our findings, we recommend the evaluation of immunoglobulin levels in patients diagnosed with IgA nephropathy.
Collapse
Affiliation(s)
- Yuanjin Song
- Department of Nephrology and Immunology, Qingdao Women and Children's Hospital, Qingdao, China
| | - Lili Sun
- Department of Nephrology and Immunology, Qingdao Women and Children's Hospital, Qingdao, China
| | - Dongning Feng
- Department of Nephrology and Immunology, Qingdao Women and Children's Hospital, Qingdao, China
| | - Qing Sun
- Department of Nephrology and Immunology, Qingdao Women and Children's Hospital, Qingdao, China.
| | - Yibing Wang
- Department of Nephrology and Immunology, Qingdao Women and Children's Hospital, Qingdao, China.
| |
Collapse
|
12
|
Marakhonov AV, Efimova IY, Mukhina AA, Zinchenko RA, Balinova NV, Rodina Y, Pershin D, Ryzhkova OP, Orlova AA, Zabnenkova VV, Cherevatova TB, Beskorovainaya TS, Shchagina OA, Polyakov AV, Markova ZG, Minzhenkova ME, Shilova NV, Larin SS, Khadzhieva MB, Dudina ES, Kalinina EV, Mudaeva DA, Saydaeva DH, Matulevich SA, Belyashova EY, Yakubovskiy GI, Tebieva IS, Gabisova YV, Irinina NA, Nurgalieva LR, Saifullina EV, Belyaeva TI, Romanova OS, Voronin SV, Shcherbina A, Kutsev SI. Newborn Screening for Severe T and B Cell Lymphopenia Using TREC/KREC Detection: A Large-Scale Pilot Study of 202,908 Newborns. J Clin Immunol 2024; 44:93. [PMID: 38578360 DOI: 10.1007/s10875-024-01691-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 03/14/2024] [Indexed: 04/06/2024]
Abstract
Newborn screening (NBS) for severe inborn errors of immunity (IEI), affecting T lymphocytes, and implementing measurements of T cell receptor excision circles (TREC) has been shown to be effective in early diagnosis and improved prognosis of patients with these genetic disorders. Few studies conducted on smaller groups of newborns report results of NBS that also include measurement of kappa-deleting recombination excision circles (KREC) for IEI affecting B lymphocytes. A pilot NBS study utilizing TREC/KREC detection was conducted on 202,908 infants born in 8 regions of Russia over a 14-month period. One hundred thirty-four newborns (0.66‰) were NBS positive after the first test and subsequent retest, 41% of whom were born preterm. After lymphocyte subsets were assessed via flow cytometry, samples of 18 infants (0.09‰) were sent for whole exome sequencing. Confirmed genetic defects were consistent with autosomal recessive agammaglobulinemia in 1/18, severe combined immunodeficiency - in 7/18, 22q11.2DS syndrome - in 4/18, combined immunodeficiency - in 1/18 and trisomy 21 syndrome - in 1/18. Two patients in whom no genetic defect was found met criteria of (severe) combined immunodeficiency with syndromic features. Three patients appeared to have transient lymphopenia. Our findings demonstrate the value of implementing combined TREC/KREC NBS screening and inform the development of policies and guidelines for its integration into routine newborn screening programs.
Collapse
Affiliation(s)
| | | | - Anna A Mukhina
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | | | | | - Yulia Rodina
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Dmitry Pershin
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | | | - Anna A Orlova
- Research Centre for Medical Genetics, Moscow, Russia
| | | | | | | | | | | | | | | | | | - Sergey S Larin
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Maryam B Khadzhieva
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Ekaterina S Dudina
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Ekaterina V Kalinina
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | | | - Djamila H Saydaeva
- State Budgetary Institution "Maternity Hospital" of the Ministry of Healthcare of the Chechen Republic, Grozny, Russia
| | | | | | | | - Inna S Tebieva
- North-Ossetian State Medical Academy, Vladikavkaz, Russia
- Republican Childrens Clinical Hospital of the Republic of North Ossetia-Alania, Vladikavkaz, Russia
| | - Yulia V Gabisova
- Republican Childrens Clinical Hospital of the Republic of North Ossetia-Alania, Vladikavkaz, Russia
| | - Nataliya A Irinina
- State Budgetary Healthcare Institution of the Vladimir Region "Regional Clinical Hospital", Vladimir, Russia
| | | | | | - Tatiana I Belyaeva
- Clinical Diagnostic Center "Maternal and Child Health", Yekaterinburg, Russia
| | - Olga S Romanova
- Clinical Diagnostic Center "Maternal and Child Health", Yekaterinburg, Russia
| | | | - Anna Shcherbina
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | | |
Collapse
|
13
|
Kilich G, Perelygina L, Sullivan KE. Rubella virus chronic inflammatory disease and other unusual viral phenotypes in inborn errors of immunity. Immunol Rev 2024; 322:113-137. [PMID: 38009321 PMCID: PMC11844209 DOI: 10.1111/imr.13290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2023]
Abstract
Infectious susceptibility is a component of many inborn errors of immunity. Nevertheless, antibiotic use is often used as a surrogate in history taking for infectious susceptibility, thereby disadvantaging patients who present with viral infections as their phenotype. Further complicating clinical evaluations are unusual manifestations of viral infections which may be less familiar that the typical respiratory viral infections. This review covers several unusual viral phenotypes arising in patients with inborn errors of immunity and other settings of immune compromise. In some cases, chronic infections lead to oncogenesis or tumor-like growths and the conditions and mechanisms of viral-induced oncogenesis will be described. This review covers enterovirus, rubella, measles, papillomavirus, and parvovirus B19. It does not cover EBV and hemophagocytic lymphohistiocytosis nor lymphomagenesis related to EBV. EBV susceptibility has been recently reviewed. Our goal is to increase awareness of the unusual manifestations of viral infections in patients with IEI and to describe treatment modalities utilized in this setting. Coincidentally, each of the discussed viral infections can have a cutaneous component and figures will serve as a reminder of the physical features of these viruses. Given the high morbidity and mortality, early recognition can only improve outcomes.
Collapse
Affiliation(s)
- Gonench Kilich
- Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Ludmila Perelygina
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | | |
Collapse
|
14
|
Accardo V, Pagnini I, Maccora I, Marrani E, Mastrolia MV, Simonini G. Safety and efficacy of biologic immunosuppressive treatment in juvenile idiopathic arthritis associated with inborn errors of immunity. Front Pediatr 2024; 12:1353825. [PMID: 38468871 PMCID: PMC10925618 DOI: 10.3389/fped.2024.1353825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 02/09/2024] [Indexed: 03/13/2024] Open
Abstract
Objectives This study aims to describe clinical features, therapeutic outcomes, and safety profiles in patients affected by juvenile idiopathic arthritis (JIA) and inborn errors of immunity (IEI) treated with biological Disease-modifying antirheumatic drugs (DMARDs). Methods We enrolled three patients who were followed in the Pediatric Rheumatology Unit at Meyer Children's Hospital in Florence; these patients were affected by JIA, according to ILAR criteria, and IEI, according to the IUIS Phenotypical Classification for Human Inborn Errors of Immunity. Among them, two patients had 22q11.2 deletion syndrome (22q11.2DS) and one patient had X-linked agammaglobulinemia (XLA). Results Case 1: A 6-year and 2-month-old boy was affected by 22q11.2DS, associated with oligoarticular JIA, at the age of 2 years. He was treated with non-steroidal anti-inflammatory drugs (NSAIDs) and methotrexate, along with oral glucocorticoids but with no benefits. Treatment with etanercept allowed him to achieve remission after 10 months. Case 2: A 6-year and 2-month-old girl was affected by 22q11.2DS, associated with oligoarticular JIA, at the age of 3 years and 11 months. She was treated with NSAIDs, joint injections, and methotrexate but without clinical response. Treatment with Adalimumab allowed her to achieve remission after 6 months. Case 3: A 12-year and 2-month-old boy was affected by XLA, associated with polyarticular JIA, at the age of 9 years and 11 months. He was treated with NSAIDs, methotrexate, joint injections, and oral glucocorticoids with no benefits. He failed to respond to anti-TNF-alpha, tocilizumab, and abatacept. Currently, he is undergoing therapy with sirolimus plus abatacept, which allowed him to achieve remission after 4 months. Conclusions Results suggest that the use of immunosuppressive biological therapies can control disease activity in these patients. No adverse drug-related reactions were observed during the follow-up.
Collapse
Affiliation(s)
- V. Accardo
- Rheumatology Unit, Meyer Children's Hospital IRCCS, Florence, Italy
| | | | | | | | | | | |
Collapse
|
15
|
Lawrence MG, Rider NL, Cunningham-Rundles C, Poli MC. Disparities in Diagnosis, Access to Specialist Care and Treatment for Inborn Errors of Immunity. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2023; 12:S2213-2198(23)01196-0. [PMID: 39492552 DOI: 10.1016/j.jaip.2023.10.041] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/18/2023] [Accepted: 10/23/2023] [Indexed: 11/05/2024]
Abstract
Inborn errors of immunity represent a rapidly expanding group of genetic disorders of the immune system. Significant advances have been made in recent years in diagnosis, including using genetic testing and newborn screening; treatment, including precision therapies, gene therapy and hematopoietic stem cell transplant; and development of patient registries to inform prevalence, understand morbidity of these disorders and guide the development of clinical trials. However, significant disparities due to age, race, ethnicity, socioeconomic status, or geographic location exist in all aspects of care of patients with inborn errors of immunity, beginning with delays in diagnosis and further compounded by impaired access to specialist care and treatment, leading to a notable impact on outcomes including morbidity and mortality. Addressing and correcting these disparities will require coordinated, deliberate and prolonged effort. Proposed strategies to improve equity at different levels include public health measures such as implementing universal newborn screening, supporting expanded health insurance coverage for diagnostic testing and treatment, improving access to novel therapeutics in low and middle income countries and developing artificial intelligence / machine learning tools to reduce delays in diagnosis, particularly in rural or less developed areas where access to specialist care is limited.
Collapse
Affiliation(s)
- Monica G Lawrence
- University of Virginia School of Medicine, Department of Medicine, Division of Asthma, Allergy and Immunology, Charlottesville VA.
| | - Nicholas L Rider
- Liberty University College of Osteopathic Medicine, Division of Clinical Informatics, Lynchburg VA; Collaborative Health Partners, Department of Allergy-Immunology, Lynchburg VA
| | - Charlotte Cunningham-Rundles
- Division of Allergy and Immunology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York NY
| | - M Cecilia Poli
- Program of Immunogenetics and Translational Immunology, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago, Chile; Hospital de niños Dr. Roberto del Rio, Santiago, Chile
| |
Collapse
|
16
|
Chear CT, Ismail IH, Chan KC, Noh LM, Kassim A, Latiff AHA, Gill SS, Ramly NH, Tan KK, Sundaraj C, Choo CM, Mohamed SAS, Baharin MF, Zamri AS, Yahya SNHS, Mohamad SB, Ripen AM. Clinical features and mutational analysis of X-linked agammaglobulinemia patients in Malaysia. Front Immunol 2023; 14:1252765. [PMID: 37809070 PMCID: PMC10560089 DOI: 10.3389/fimmu.2023.1252765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/05/2023] [Indexed: 10/10/2023] Open
Abstract
BACKGROUND Bruton's tyrosine kinase (BTK) is a cytoplasmic protein involved in the B cell development. X-linked agammaglobulinemia (XLA) is caused by mutation in the BTK gene, which results in very low or absent B cells. Affected males have markedly reduced immunoglobulin levels, which render them susceptible to recurrent and severe bacterial infections. Methods: Patients suspected with X-linked agammaglobulinemia were enrolled during the period of 2010-2018. Clinical summary, and immunological profiles of these patients were recorded. Peripheral blood samples were collected for monocyte BTK protein expression detection and BTK genetic analysis. The medical records between January 2020 and June 2023 were reviewed to investigate COVID-19 in XLA. RESULTS Twenty-two patients (from 16 unrelated families) were molecularly diagnosed as XLA. Genetic testing revealed fifteen distinct mutations, including four splicing mutations, four missense mutations, three nonsense mutations, three short deletions, and one large indel mutation. These mutations scattered throughout the BTK gene and mostly affected the kinase domain. All mutations including five novel mutations were predicted to be pathogenic or deleterious by in silico prediction tools. Genetic testing confirmed that eleven mothers and seven sisters were carriers for the disease, while three mutations were de novo. Flow cytometric analysis showed that thirteen patients had minimal BTK expression (0-15%) while eight patients had reduced BTK expression (16-64%). One patient was not tested for monocyte BTK expression due to insufficient sample. Pneumonia (n=13) was the most common manifestation, while Pseudomonas aeruginosa was the most frequently isolated pathogen from the patients (n=4). Mild or asymptomatic COVID-19 was reported in four patients. CONCLUSION This report provides the first overview of demographic, clinical, immunological and genetic data of XLA in Malaysia. The combination of flow cytometric assessment and BTK genetic analysis provides a definitive diagnosis for XLA patients, especially with atypical clinical presentation. In addition, it may also allow carrier detection and assist in genetic counselling and prenatal diagnosis.
Collapse
Affiliation(s)
- Chai Teng Chear
- Primary Immunodeficiency Unit, Allergy and Immunology Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health, Shah Alam, Selangor, Malaysia
| | - Intan Hakimah Ismail
- Clinical Immunology Unit, Department of Paediatrics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Kwai Cheng Chan
- Pediatric Department, Penang General Hospital, Ministry of Health, George Town, Penang, Malaysia
| | - Lokman Mohd Noh
- Pediatric Department, Tunku Azizah Hospital (Women and Children Hospital Kuala Lumpur), Ministry of Health, Kuala Lumpur, Malaysia
| | - Asiah Kassim
- Pediatric Department, Tunku Azizah Hospital (Women and Children Hospital Kuala Lumpur), Ministry of Health, Kuala Lumpur, Malaysia
| | | | - Sandeep Singh Gill
- Pediatric Department, Hospital Wanita Dan Kanak-Kanak Sabah, Ministry of Health, Kota Kinabalu, Sabah, Malaysia
| | - Nazatul Haslina Ramly
- Pediatric Department, Tunku Azizah Hospital (Women and Children Hospital Kuala Lumpur), Ministry of Health, Kuala Lumpur, Malaysia
| | - Kah Kee Tan
- Pediatric Department, Perdana University and Royal College of Surgeons in Ireland (PURCSI), School of Medicine, Perdana University, Kuala Lumpur, Malaysia
| | - Charlotte Sundaraj
- Pediatric Department, Hospital Putrajaya, Ministry of Health, Putrajaya, Malaysia
| | - Chong Ming Choo
- Pediatric Department, Hospital Sultan Abdul Halim, Ministry of Health, Sungai Petani, Kedah, Malaysia
| | | | - Mohd Farid Baharin
- Primary Immunodeficiency Unit, Allergy and Immunology Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health, Shah Alam, Selangor, Malaysia
| | - Amelia Suhana Zamri
- Primary Immunodeficiency Unit, Allergy and Immunology Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health, Shah Alam, Selangor, Malaysia
| | - Sharifah Nurul Husna Syed Yahya
- Primary Immunodeficiency Unit, Allergy and Immunology Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health, Shah Alam, Selangor, Malaysia
| | - Saharuddin Bin Mohamad
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur, Malaysia
- Centre of Research in Systems Biology, Structural Bioinformatics and Human Digital Imaging (CRYSTAL), Universiti Malaya, Kuala Lumpur, Malaysia
| | - Adiratna Mat Ripen
- Primary Immunodeficiency Unit, Allergy and Immunology Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health, Shah Alam, Selangor, Malaysia
| |
Collapse
|
17
|
Maximova OA, Weller ML, Krogmann T, Sturdevant DE, Ricklefs S, Virtaneva K, Martens C, Wollenberg K, Minai M, Moore IN, Sauter CS, Barker JN, Lipkin WI, Seilhean D, Nath A, Cohen JI. Pathogenesis and outcome of VA1 astrovirus infection in the human brain are defined by disruption of neural functions and imbalanced host immune responses. PLoS Pathog 2023; 19:e1011544. [PMID: 37595007 PMCID: PMC10438012 DOI: 10.1371/journal.ppat.1011544] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 07/06/2023] [Indexed: 08/20/2023] Open
Abstract
Astroviruses (AstVs) can cause of severe infection of the central nervous system (CNS) in immunocompromised individuals. Here, we identified a human AstV of the VA1 genotype, HAstV-NIH, as the cause of fatal encephalitis in an immunocompromised adult. We investigated the cells targeted by AstV, neurophysiological changes, and host responses by analyzing gene expression, protein expression, and cellular morphology in brain tissue from three cases of AstV neurologic disease (AstV-ND). We demonstrate that neurons are the principal cells targeted by AstV in the brain and that the cerebellum and brainstem have the highest burden of infection. Detection of VA1 AstV in interconnected brain structures such as thalamus, deep cerebellar nuclei, Purkinje cells, and pontine nuclei indicates that AstV may spread between connected neurons transsynaptically. We found transcriptional dysregulation of neural functions and disruption of both excitatory and inhibitory synaptic innervation of infected neurons. Importantly, transcriptional dysregulation of neural functions occurred in fatal cases, but not in a patient that survived AstV-ND. We show that the innate, but not adaptive immune response was transcriptionally driving host defense in the brain of immunocompromised patients with AstV-ND. Both transcriptome and molecular pathology studies showed that most of the cellular changes were associated with CNS-intrinsic cells involved in phagocytosis and injury repair (microglia, perivascular/parenchymal border macrophages, and astrocytes), but not CNS-extrinsic cells (T and B cells), suggesting an imbalance of innate and adaptive immune responses to AstV infection in the brain as a result of the underlying immunodeficiencies. These results show that VA1 AstV infection of the brain in immunocompromised humans is associated with imbalanced host defense responses, disruption of neuronal somatodendritic compartments and synapses and increased phagocytic cellular activity. Improved understanding of the response to viral infections of the human CNS may provide clues for how to manipulate these processes to improve outcomes.
Collapse
Affiliation(s)
- Olga A. Maximova
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Melodie L. Weller
- Secretory Physiology Section, Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Tammy Krogmann
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Daniel E. Sturdevant
- Research Technologies Branch, Genomics Unit, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Stacy Ricklefs
- Research Technologies Branch, Genomics Unit, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Kimmo Virtaneva
- Research Technologies Branch, Genomics Unit, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Craig Martens
- Research Technologies Branch, Genomics Unit, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Kurt Wollenberg
- Bioinformatics and Computational Biosciences Branch, Office of Cyber Infrastructure and Computational Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Mahnaz Minai
- Infectious Disease Pathogenesis Section, Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Ian N. Moore
- Infectious Disease Pathogenesis Section, Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Craig S. Sauter
- Department of Hematology and Medical Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Juliet N. Barker
- Adult Bone Marrow Transplant Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| | - W. Ian Lipkin
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, New York, United States of America
| | | | - Avindra Nath
- Infections of the Nervous System Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Jeffrey I. Cohen
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
18
|
Rosenbach K, Park M, Sanchirico M, Nwose O, Paris K. Real-World Evidence of Tolerability of 20% Subcutaneous Immunoglobulin Treatment. J Clin Immunol 2023; 43:912-920. [PMID: 36809598 PMCID: PMC10275800 DOI: 10.1007/s10875-023-01436-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 01/19/2023] [Indexed: 02/23/2023]
Abstract
PURPOSE The safety and efficacy of subcutaneous immune globulin 20% (human) solution (Ig20Gly) were demonstrated in clinical trials. However, real-world evidence of the tolerability of self-administered Ig20Gly in elderly patients is lacking. We describe real-world patterns of Ig20Gly usage for 12 months in patients with primary immunodeficiency diseases (PIDD) in the USA. METHODS This retrospective chart review of longitudinal data from 2 centers included patients aged ≥ 2 years with PIDD. Ig20Gly administration parameters, tolerability, and usage patterns were assessed at initial and subsequent 6- and 12-month infusions. RESULTS Of 47 enrolled patients, 30 (63.8%) received immunoglobulin replacement therapy (IGRT) within 12 months before starting Ig20Gly, and 17 (36.2%) started IGRT de novo. Patients were predominantly White (89.1%), female (85.1%), and elderly (aged > 65 years, 68.1%; median age = 71.0 years). Most adults received at-home treatment during the study, and most self-administered at 6 months (90.0%) and 12 months (88.2%). Across all time points, infusions were administered at a mean rate of 60-90 mL/h/infusion, using a mean of 2 sites per infusion, on a weekly or biweekly frequency. No emergency department visits occurred, and hospital visits were rare (n = 1). Forty-six adverse drug reactions occurred in 36.4% of adults, mostly localized site reactions; none of these or any adverse events led to treatment discontinuation. CONCLUSION These findings demonstrate tolerability and successful self-administration of Ig20Gly in PIDD, including elderly patients and patients starting IGRT de novo.
Collapse
Affiliation(s)
| | - Michelle Park
- Takeda Development Center Americas, Inc., Cambridge, MA, USA
| | | | | | - Kenneth Paris
- Department of Pediatrics, Louisiana State University Health Sciences Center, Children's Hospital, New Orleans, LA, USA
| |
Collapse
|
19
|
Candel FJ, Barreiro P, Salavert M, Cabello A, Fernández-Ruiz M, Pérez-Segura P, San Román J, Berenguer J, Córdoba R, Delgado R, España PP, Gómez-Centurión IA, González Del Castillo JM, Heili SB, Martínez-Peromingo FJ, Menéndez R, Moreno S, Pablos JL, Pasquau J, Piñana JL, On Behalf Of The Modus Investigators Adenda. Expert Consensus: Main Risk Factors for Poor Prognosis in COVID-19 and the Implications for Targeted Measures against SARS-CoV-2. Viruses 2023; 15:1449. [PMID: 37515137 PMCID: PMC10383267 DOI: 10.3390/v15071449] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/17/2023] [Accepted: 06/23/2023] [Indexed: 07/30/2023] Open
Abstract
The clinical evolution of patients infected with the Severe Acute Respiratory Coronavirus type 2 (SARS-CoV-2) depends on the complex interplay between viral and host factors. The evolution to less aggressive but better-transmitted viral variants, and the presence of immune memory responses in a growing number of vaccinated and/or virus-exposed individuals, has caused the pandemic to slowly wane in virulence. However, there are still patients with risk factors or comorbidities that put them at risk of poor outcomes in the event of having the coronavirus infectious disease 2019 (COVID-19). Among the different treatment options for patients with COVID-19, virus-targeted measures include antiviral drugs or monoclonal antibodies that may be provided in the early days of infection. The present expert consensus is based on a review of all the literature published between 1 July 2021 and 15 February 2022 that was carried out to establish the characteristics of patients, in terms of presence of risk factors or comorbidities, that may make them candidates for receiving any of the virus-targeted measures available in order to prevent a fatal outcome, such as severe disease or death. A total of 119 studies were included from the review of the literature and 159 were from the additional independent review carried out by the panelists a posteriori. Conditions found related to strong recommendation of the use of virus-targeted measures in the first days of COVID-19 were age above 80 years, or above 65 years with another risk factor; antineoplastic chemotherapy or active malignancy; HIV infection with CD4+ cell counts < 200/mm3; and treatment with anti-CD20 immunosuppressive drugs. There is also a strong recommendation against using the studied interventions in HIV-infected patients with a CD4+ nadir <200/mm3 or treatment with other immunosuppressants. Indications of therapies against SARS-CoV-2, regardless of vaccination status or history of infection, may still exist for some populations, even after COVID-19 has been declared to no longer be a global health emergency by the WHO.
Collapse
Affiliation(s)
- Francisco Javier Candel
- Clinical Microbiology & Infectious Diseases, Transplant Coordination, Hospital Clínico Universitario San Carlos, 28040 Madrid, Spain
| | - Pablo Barreiro
- Regional Public Health Laboratory, Infectious Diseases, Internal Medicine, Hospital General Universitario La Paz, 28055 Madrid, Spain
- Department of Medical Specialities and Public Health, Universidad Rey Juan Carlos, 28922 Madrid, Spain
| | - Miguel Salavert
- Infectious Diseases, Internal Medicine, Hospital Universitario y Politécnico La Fe, 46026 Valencia, Spain
| | - Alfonso Cabello
- Internal Medicine, Hospital Universitario Fundación Jiménez Díaz, 28040 Madrid, Spain
| | - Mario Fernández-Ruiz
- Unit of Infectious Diseases, Hospital Universitario "12 de Octubre", Instituto de Investigación Sanitaria Hospital "12 de Octubre" (imas12), Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), 28041 Madrid, Spain
| | - Pedro Pérez-Segura
- Medical Oncology, Hospital Clínico Universitario San Carlos, 28040 Madrid, Spain
| | - Jesús San Román
- Department of Medical Specialities and Public Health, Universidad Rey Juan Carlos, 28922 Madrid, Spain
| | - Juan Berenguer
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), 28007 Madrid, Spain
| | - Raúl Córdoba
- Haematology and Haemotherapy, Hospital Universitario Fundación Jiménez Díaz, 28040 Madrid, Spain
| | - Rafael Delgado
- Clinical Microbiology, Hospital Universitario "12 de Octubre", Instituto de Investigación Sanitaria Hospital "12 de Octubre" (imas12), 28041 Madrid, Spain
| | - Pedro Pablo España
- Pneumology, Hospital Universitario de Galdakao-Usansolo, 48960 Vizcaya, Spain
| | | | | | - Sarah Béatrice Heili
- Intermediate Respiratory Care Unit, Hospital Universitario Fundación Jiménez Díaz, 28040 Madrid, Spain
| | - Francisco Javier Martínez-Peromingo
- Department of Medical Specialities and Public Health, Universidad Rey Juan Carlos, 28922 Madrid, Spain
- Geriatrics, Hospital Universitario Rey Juan Carlos, 28933 Madrid, Spain
| | - Rosario Menéndez
- Pneumology, Hospital Universitario y Politécnico La Fe, 46026 Valencia, Spain
| | - Santiago Moreno
- Infectious Diseases, Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain
| | - José Luís Pablos
- Rheumatology, Hospital Universitario "12 de Octubre", Instituto de Investigación Sanitaria Hospital "12 de Octubre" (imas12), 28041 Madrid, Spain
| | - Juan Pasquau
- Infectious Diseases, Hospital Universitario Virgen de las Nieves, 18014 Granada, Spain
| | - José Luis Piñana
- Haematology and Haemotherapy, Hospital Clínico Universitario de Valencia, 46010 Valencia, Spain
| | | |
Collapse
|
20
|
Hernandez-Trujillo V, Zhou C, Scalchunes C, Ochs HD, Sullivan KE, Cunningham-Rundles C, Fuleihan RL, Bonilla FA, Petrovic A, Rawlings DJ, de la Morena MT. A Registry Study of 240 Patients with X-Linked Agammaglobulinemia Living in the USA. J Clin Immunol 2023:10.1007/s10875-023-01502-x. [PMID: 37219739 DOI: 10.1007/s10875-023-01502-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 04/26/2023] [Indexed: 05/24/2023]
Abstract
PURPOSE To understand the natural history and clinical outcomes for patients with X-linked agammaglobulinemia (XLA) in the United States utilizing the United States Immunodeficiency Network (USIDNET) patient registry. METHODS The USIDNET registry was queried for data from XLA patients collected from 1981 to 2019. Data fields included demographics, clinical features before and after diagnosis of XLA, family history, genetic mutation in Bruton's tyrosine kinase (BTK), laboratory findings, treatment modalities, and mortality. RESULTS Data compiled through the USIDNET registry on 240 patients were analyzed. Patient year of birth ranged from 1945 to 2017. Living status was available for 178 patients; 158/178 (88.8%) were alive. Race was reported for 204 patients as follows: White, 148 (72.5%); Black/African American, 23 (11.2%); Hispanic, 20 (9.8%); Asian or Pacific Islander, 6 (2.9%), and other or more than one race, 7 (3.4%). The median age at last entry, age at disease onset, age at diagnosis, and length of time with XLA diagnosis was 15 [range (r) = 1-52 years], 0.8 [r = birth-22.3 years], 2 [r = birth-29 years], and 10 [r = 1-56 years] years respectively. One hundred and forty-one patients (58.7%) were < 18 years of age. Two hundred and twenty-one (92%) patients were receiving IgG replacement (IgGR), 58 (24%) were on prophylactic antibiotics, and 19 (7.9%) were on immunomodulatory drugs. Eighty-six (35.9%) patients had undergone surgical procedures, two had undergone hematopoietic cell transplantation, and two required liver transplantation. The respiratory tract was the most affected organ system (51.2% of patients) followed by gastrointestinal (40%), neurological (35.4%), and musculoskeletal (28.3%). Infections were common both before and after diagnosis, despite IgGR therapy. Bacteremia/sepsis and meningitis were reported more frequently before XLA diagnosis while encephalitis was more commonly reported after diagnosis. Twenty patients had died (11.2%). The median age of death was 21 years (range = 3-56.7 years). Neurologic condition was the most common underlying co-morbidity for those XLA patients who died. CONCLUSIONS Current therapies for XLA patients reduce early mortality, but patients continue to experience complications that impact organ function. With improved life expectancy, more efforts will be required to improve post-diagnosis organ dysfunction and quality of life. Neurologic manifestations are an important co-morbidity associated with mortality and not yet clearly fully understood.
Collapse
Affiliation(s)
- Vivian Hernandez-Trujillo
- Division of Allergy and Immunology, Nicklaus Children's Hospital, Miami, FL, USA
- Allergy and Immunology Care Center of South Florida, Miami Lakes, FL, USA
| | - Chuan Zhou
- Division of General Pediatrics, School of Medicine, Center for Child Health, University of Washington, Behavior, and Development, Seattle Children's Research Institute, Seattle, WA, 98145, USA
| | - Christopher Scalchunes
- Immune Deficiency Foundation. Immune Deficiency Foundation | (primaryimmune.org), Hanover, USA
| | - Hans D Ochs
- Division of Immunology, Department of Pediatrics, University of Washington, Seattle, WA, 98101, USA
- Center for Immunity and Immunotherapies and the Program for Cell and Gene Therapy, Seattle Children's Research Institute, Seattle, WA, 98101, USA
| | - Kathleen E Sullivan
- Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, USA
| | - Charlotte Cunningham-Rundles
- Division of Allergy and Clinical Immunology, Departments of Medicine and Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ramsay L Fuleihan
- Division of Pediatric Allergy, Immunology and Rheumatology, Columbia University Medical Center, New York, NY, USA
| | | | - Aleksandra Petrovic
- Division of Immunology, Department of Pediatrics, University of Washington, Seattle, WA, 98101, USA
- Center for Immunity and Immunotherapies and the Program for Cell and Gene Therapy, Seattle Children's Research Institute, Seattle, WA, 98101, USA
| | - David J Rawlings
- Division of Immunology, Department of Pediatrics, University of Washington, Seattle, WA, 98101, USA
- Center for Immunity and Immunotherapies and the Program for Cell and Gene Therapy, Seattle Children's Research Institute, Seattle, WA, 98101, USA
- Department of Immunology, University of Washington, Seattle, WA, 98101, USA
| | - M Teresa de la Morena
- Division of Immunology, Department of Pediatrics, University of Washington, Seattle, WA, 98101, USA.
| |
Collapse
|
21
|
Raphael A, Shamriz O, Tvito A, Magen S, Goldberg S, Megged O, Lev A, Simon AJ, Tal Y, Somech R, Eisenberg R, Toker O. SARS-CoV-2 spike antibody concentration in gamma globulin products from high-prevalence COVID-19 countries are transmitted to X-linked agammaglobulinemia patients. Front Immunol 2023; 14:1156823. [PMID: 37063907 PMCID: PMC10090293 DOI: 10.3389/fimmu.2023.1156823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 03/20/2023] [Indexed: 03/31/2023] Open
Abstract
PurposePatients with X-linked agammaglobulinemia (XLA) are characterized by humoral impairment and are routinely treated with intravenous immunoglobulin (IVIG). In this study, we aimed to investigate the presence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibodies in IVIG preparations harvested globally and evaluate the transfer of SARS-CoV-2 antibodies to the XLA patient.MethodsA single-center, prospective cohort study was conducted in the period of November 2020 to November 2022. Clinical and laboratory data, specifically, SARS-CoV-2 spike IgG levels from the serum of 115 IVIG preparations given to 5 XLA patient were collected. Concurrently, SARS-CoV-2 spike IgG levels from the serum of the 5 XLA was collected monthly.ResultsFive XLA patients were evaluated within the study period. All were treated monthly with commercial IVIG preparations. A total of 115 IVIG treatments were given over the study period. The origin country and the date of IVIG harvesting was obtained for 111 (96%) of the treatments. Fifty-four IVIG preparations (49%) were harvested during the COVID-19 pandemic of which 76% were positive (>50AU/mL) for SARS-CoV-2 spike antibodies which were subsequently transmitted to the XLA patients in an approximate 10-fold reduction. SARS-CoV2 spike IgG was first detected in IVIG batches that completed their harvest date by September 2021. Positive products were harvested from origin countries with a documented prevalence over 2,000 per 100,000 population.ConclusionAs the prevalence of COVID-19 infections rises, detection of SARS-CoV-2 spike IgG in commercial IVIG products increases and is then transmitted to the patient. Future studies are needed to investigate the neutralizing capabilities of SARS-CoV-2 IgG and whether titer levels in IVIG remain consistent as the incidence of infection and vaccination rates in the population changes.
Collapse
Affiliation(s)
- Allon Raphael
- Pediatric Department, Shaare Zedek Medical Center, Jerusalem, Israel
| | - Oded Shamriz
- Allergy and Clinical Immunology Unit, Department of Medicine, Hadassah Medical Organization, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
- The Lautenberg Center for Immunology and Cancer Research, Institute of Medical Research Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ariella Tvito
- Department of Hematology, Shaare Zedek Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Sophie Magen
- Clinical Endocrinology Laboratory, Shaare Zedek Medical Center, Jerusalem, Israel
| | - Shmuel Goldberg
- Department of Pediatrics, Pediatric Pulmonology Unit, Shaare Zedek Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Orli Megged
- Department of Pediatrics, Infectious Diseases Unit, Shaare Zedek Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Atar Lev
- Pediatric Department A and the Immunology Service, Jeffrey Modell Foundation Center, Edmond and Lily Safra Children’s Hospital, Tel-Hashomer Medical Center, Affiliated to the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- The Jeffrey Modell Foundation Israeli Network for Primary Immunodeficiency, New York, NY, United States
| | - Amos J. Simon
- Pediatric Department A and the Immunology Service, Jeffrey Modell Foundation Center, Edmond and Lily Safra Children’s Hospital, Tel-Hashomer Medical Center, Affiliated to the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yuval Tal
- Allergy and Clinical Immunology Unit, Department of Medicine, Hadassah Medical Organization, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Raz Somech
- Pediatric Department A and the Immunology Service, Jeffrey Modell Foundation Center, Edmond and Lily Safra Children’s Hospital, Tel-Hashomer Medical Center, Affiliated to the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- The Jeffrey Modell Foundation Israeli Network for Primary Immunodeficiency, New York, NY, United States
| | - Rachel Eisenberg
- Department of Pediatrics, Allergy and Clinical Immunology Unit, Shaare Zedek Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ori Toker
- Department of Pediatrics, Allergy and Clinical Immunology Unit, Shaare Zedek Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
- *Correspondence: Ori Toker,
| |
Collapse
|
22
|
Gunderman L, Brown J, Chaudhury S, O'Gorman M, Fuleihan R, Khanolkar A, Ahmed A. Co-Occurring X-Linked Agammaglobulinemia and X-Linked Chronic Granulomatous Disease: Two Isolated Pathogenic Variants in One Patient. Biomedicines 2023; 11:biomedicines11030959. [PMID: 36979938 PMCID: PMC10046124 DOI: 10.3390/biomedicines11030959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/10/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
We present a unique and unusual case of a male patient diagnosed with two coexisting and typically unassociated X-linked conditions: he was initially diagnosed with X-linked agammaglobulinemia (XLA) followed by a diagnosis of X-linked chronic granulomatous disease (XCGD) and an as of yet unpublished hypomorphic gp91phox variant in the CYBB gene. The latter was tested after the finding of granulomatous gingivitis. Hematopoietic stem cell transplant (HSCT) was performed due to severe colitis and nodular regenerative hyperplasia (NRH) of the liver. Following transplant, complete donor engraftment was observed with the restoration of a normal oxidative burst and full restoration of normal levels of circulating, mature CD19+ B cells. This case is singular in that it does not involve a contiguous gene syndrome in which deleted genes are in close proximity to either BTK and CYBB, which has been previously reported. To our knowledge, this is the first reported case of XLA and XCGD co-existing in a single patient and of having both inborn errors of immunity successfully treated by HSCT.
Collapse
Affiliation(s)
- Lauren Gunderman
- Division of Allergy and Immunology, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Jeffrey Brown
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Division of Gastroenterology, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA
| | - Sonali Chaudhury
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Division of Hematology, Oncology and Stem Cell Transplantation, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA
| | - Maurice O'Gorman
- Department of Pediatrics and Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90027, USA
- Division of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA
| | - Ramsay Fuleihan
- Division of Allergy, Immunology and Rheumatology, Department of Pediatrics, Columbia University Irving Medical Center, New York Presbyterian Morgan Stanley Children's Hospital of New York, New York, NY 10032, USA
| | - Aaruni Khanolkar
- Department of Pathology, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Aisha Ahmed
- Division of Allergy and Immunology, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
23
|
Park SE, Neaves BI, Adams K. A case of rare splice-site Bruton's tyrosine kinase mutation with atypical X-linked agammaglobulinemia. Ann Allergy Asthma Immunol 2023; 130:364-365. [PMID: 36509410 DOI: 10.1016/j.anai.2022.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/30/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022]
Affiliation(s)
- Sanghwa E Park
- Brooke Army Medical Center, Joint Base San Antonio-Fort Sam Houston, Fort Sam Houston, Texas.
| | - Brittanie I Neaves
- Keesler Medical Center, Keesler Air Force Base 81st Medical Group, Biloxi, Mississippi
| | - Karla Adams
- Wilford Hall Ambulatory Surgical Center, Joint Base San Antonio-Lackland Air Force Base, Lackland Air Force Base, Texas
| |
Collapse
|
24
|
Milota T, Smetanova J, Klojdova I. Gastrointestinal Involvement in Primary Antibody Deficiencies. GASTROINTESTINAL DISORDERS 2023; 5:52-67. [DOI: 10.3390/gidisord5010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
Abstract
Primary antibody deficiencies (PADs) are the most frequent group of inborn errors of immunity. Impaired B-cell development, reduced production of immunoglobulins (mainly IgG and IgA), and specific antibodies resulting in recurrent infections are their hallmarks. Infections typically affect the respiratory tract; however, gastrointestinal involvement is also common. These include infection with Helicobacter pylori, Salmonella, Campylobacter species, Giardia, and noroviruses. Impaired IgA production also contributes to dysbiosis and thereby an increase in abundance of species with proinflammatory properties, resulting in immune system dysregulation. Dysregulation of the immune system results in a broad spectrum of non-infectious manifestations, including autoimmune, lymphoproliferative, and granulomatous complications. Additionally, it increases the risk of malignancy, which may be present in more than half of patients with PADs. Higher prevalence is often seen in monogenic causes, and gastrointestinal involvement may clinically mimic various conditions including inflammatory bowel diseases and celiac disease but possess different immunological features and response to standard treatment, which make diagnosis and therapy challenging. The spectrum of malignancies includes gastric cancer and lymphoma. Thus, non-infectious manifestations significantly affect mortality and morbidity. In this overview, we provide a comprehensive insight into the epidemiology, genetic background, pathophysiology, and clinical manifestations of infectious and non-infectious complications.
Collapse
Affiliation(s)
- Tomas Milota
- Department of Immunology, Second Faculty of Medicine Charles University and Motol University Hospital, 15006 Prague, Czech Republic
| | - Jitka Smetanova
- Department of Immunology, Second Faculty of Medicine Charles University and Motol University Hospital, 15006 Prague, Czech Republic
| | - Iveta Klojdova
- DRIFT-FOOD, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, 15006 Prague, Czech Republic
| |
Collapse
|
25
|
Gene Editing in Human Haematopoietic Stem Cells for the Treatment of Primary Immunodeficiencies. Mol Diagn Ther 2023; 27:15-28. [PMID: 36239917 DOI: 10.1007/s40291-022-00618-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/15/2022] [Indexed: 02/04/2023]
Abstract
In recent years, gene-editing technologies have revolutionised precision medicine, and human trials of this technology have been reported in cell-based cancer therapies and other genetic disorders. The same techniques have the potential to reverse mutations in monogenic primary immunodeficiencies (PIDs), and transplantation of edited haematopoietic stem cells may provide a functional cure for these diseases. In this review, we discuss the methods of gene editing being explored and describe progress made so far with several PIDs. We also detail the remaining challenges, how to confidently detect off-target effects and chromosomal abnormalities in a timely manner, how to obtain long-term benefits, and how to achieve physiological levels of expression of the therapeutic gene. With advances in gene editing, we envisage a robust clinical translation of this technology in the coming decade.
Collapse
|
26
|
Kriván G, Borte M, Soler-Palacin P, Church JA, Csurke I, Harris JB, Lieberman JA, Melamed IR, Moy JN, Simon R, Aigner S, Lentze S, Staiger C. BT595, a 10% Human Normal Immunoglobulin, for Replacement Therapy of Primary Immunodeficiency Disease: Results of a Subcohort Analysis in Children. J Clin Immunol 2023; 43:557-567. [PMID: 36383294 PMCID: PMC9958146 DOI: 10.1007/s10875-022-01397-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 10/26/2022] [Indexed: 11/18/2022]
Abstract
PURPOSE To assess the efficacy, pharmacokinetics, and safety of a new, highly purified 10% IVIg (BT595, Yimmugo®) administered in children with PID. METHODS This was an open-label, prospective, uncontrolled, multicenter Phase III pivotal trial. Among the 67 subjects in the trial were 18 pediatric patients aged 2 to 17 years with diagnosis of PID included in this analysis. They received doses between 0.2 and 0.8 g/kg body weight for approximately 12 months at intervals of either 3 or 4 weeks. Dosage and dosing interval were based on each patient's pre-trial infusion schedule. The rates of acute serious bacterial infections (SBI), secondary efficacy, safety, and pharmacokinetic outcomes were evaluated. RESULTS No SBI occurred in the pediatric population. Two hundred sixty infusions were administered to the 18 pediatric patients. The mean (SD) IgG trough level was 8.55 (1.67) g/L at baseline and 8.84 (2.17) g/L at the follow-up visit after the last BT595 infusion. At the single infusions respectively, the average mean IgG trough levels ranged between 8.52 and 10.58 g/L. More than 85% of all infusions administered were not associated with any infusional AE (start during or within 72 h post-infusion). None of the severe or serious AEs were related to the investigational medicinal product (IMP). No premedication was used. Thirteen children reached a maximum infusion rate between > 2.0 and 8 mL/kg/h; no AE with an onset during the infusion occurred at these infusion rates. CONCLUSION BT595 is effective, convenient, well tolerated, and safe for the treatment of children with PID. TRIAL REGISTRATION EudraCT: 2015-003652-52; NCT02810444, registered June 23, 2016.
Collapse
Affiliation(s)
- Gergely Kriván
- Department of Pediatric Hematology and Stem Cell Transplantation, United St. Istvan and St Laszlo Hospital, Albert Florian u. 5-7, Budapest, Hungary
| | - Michael Borte
- ImmunoDeficiency Center Leipzig (IDCL) at Klinikum St. Georg gGmbH, Leipzig, Germany
| | - Pere Soler-Palacin
- Children's Hospital, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Catalonia, Spain
| | | | - Ildiko Csurke
- Szabolcs-Szatmar-Bereg Megyei Korhazak és Egyetemi Oktatokorhaz, Nyíregyháza, Hungary
| | | | | | | | - James N Moy
- Rush University Medical Center, Chicago, IL, USA
| | - Reka Simon
- Borsod-Abauj-Zemplen Megyei Korhaz és Egyetemi Oktato Korhaz, Miskolc, Hungary
| | - Silke Aigner
- Biotest AG, Landsteinerstr. 5, Dreieich, Germany
| | | | | |
Collapse
|
27
|
Sadeghalvad M, Rezaei N. Immunodeficiencies. Clin Immunol 2023. [DOI: 10.1016/b978-0-12-818006-8.00004-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
28
|
Fjordside L, Herløv C, Drabe CH, Andersen LP, Katzenstein TL. Helicobacter trogontum Bacteremia and Lower Limb Skin Lesion in a Patient with X-Linked Agammaglobulinemia-A Case Report and Review of the Literature. Pathogens 2022; 11:1247. [PMID: 36364998 PMCID: PMC9696073 DOI: 10.3390/pathogens11111247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/14/2022] [Accepted: 10/20/2022] [Indexed: 06/29/2024] Open
Abstract
We describe the first case of infection with Helicobacter trogontum in a patient with X-linked agammaglobulinemia. A 22-year-old male with X-linked agammaglobulinemia presented with fever, malaise and a painful skin lesion on the lower left extremity. Spiral shaped Gram-negative rods were isolated from blood cultures and later identified as Helicobacter trogontum. The patient was treated with various intravenous and oral antibiotic regimens over a period of 10 months, each causing seemingly full clinical and paraclinical remission, yet several episodes of relapse occurred after cessation of antibiotic treatment. The review of the literature showed that only a few cases of infections with enterohepatic helicobacters belonging to the Flexispira rappini taxons have previously been reported. The majority of cases included patients with X-linked agammaglobulinemia and the symptomatology and course of disease were similar to the case described here. Infections with enterohepatic helicobacters, including Helicobacter trogontum, should be considered in patients with X-linked agammaglobulinemia presenting with fever, malaise and skin lesions. Careful cultivation and microbiological investigation are essential to determine the diagnosis and a long treatment period of over 6 months must be expected for successful eradication.
Collapse
Affiliation(s)
- Lasse Fjordside
- Department of Infectious Diseases, University Hospital, Rigshospitalet, 2100 Copenhagen, Denmark
| | - Caroline Herløv
- Department of Clinical Microbiology, University Hospital, Rigshospitalet, 2100 Copenhagen, Denmark
| | - Camilla Heldbjerg Drabe
- Department of Infectious Diseases, University Hospital, Rigshospitalet, 2100 Copenhagen, Denmark
| | - Leif Percival Andersen
- Department of Clinical Microbiology, University Hospital, Rigshospitalet, 2100 Copenhagen, Denmark
| | - Terese L. Katzenstein
- Department of Infectious Diseases, University Hospital, Rigshospitalet, 2100 Copenhagen, Denmark
| |
Collapse
|
29
|
Cytomegalovirus Pneumonia in a Patient with X-Linked Agammaglobulinemia: A Case Report. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:medicina58101457. [PMID: 36295618 PMCID: PMC9607509 DOI: 10.3390/medicina58101457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/05/2022] [Accepted: 10/14/2022] [Indexed: 11/07/2022]
Abstract
X-linked agammaglobulinemia (XLA) is a hereditary immune disorder that predisposes patients to frequent and severe bacterial infections caused by encapsulated bacteria (such as Streptococcus pneumoniae, Staphylococcus aureus, and Haemophilus influenzae). Otitis media, sinusitis, and pneumonia are common complications of XLA that require prompt diagnosis and treatment. Cytomegaloviruses (CMV) cause widespread and severe infections in immunocompromised individuals, affecting the respiratory tract, and consequently, leading to pneumonia, which is associated with a high mortality rate. However, CMV-induced pneumonia is rarely reported in patients with XLA. This case study details a 37-year-old male patient with XLA presenting with fever, productive cough, and dyspnea. The patient was diagnosed with CMV pneumonia and recovered after treatment. To the best of our knowledge, this is the first reported case of CMV pneumonia in a patient with XLA in Taiwan. This case study emphasizes that CMV pneumonia in patients with XLA is a treatable condition if diagnosed promptly, and that a shorter duration of treatment with the antiviral agent, in combination with immunoglobulin replacement therapy, can resolve symptoms.
Collapse
|
30
|
Pan C, Zhao A, Li M. Atopic Dermatitis-like Genodermatosis: Disease Diagnosis and Management. Diagnostics (Basel) 2022; 12:diagnostics12092177. [PMID: 36140582 PMCID: PMC9498295 DOI: 10.3390/diagnostics12092177] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/23/2022] [Accepted: 08/15/2022] [Indexed: 11/29/2022] Open
Abstract
Eczema is a classical characteristic not only in atopic dermatitis but also in various genodermatosis. Patients suffering from primary immunodeficiency diseases such as hyper-immunoglobulin E syndromes, Wiskott-Aldrich syndrome, immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome, STAT5B deficiency, Omenn syndrome, atypical complete DiGeorge syndrome; metabolic disorders such as acrodermatitis enteropathy, multiple carboxylase deficiency, prolidase deficiency; and other rare syndromes like severe dermatitis, multiple allergies and metabolic wasting syndrome, Netherton syndrome, and peeling skin syndrome frequently perform with eczema-like lesions. These genodermatosis may be misguided in the context of eczematous phenotype. Misdiagnosis of severe disorders unavoidably affects appropriate treatment and leads to irreversible outcomes for patients, which underlines the importance of molecular diagnosis and genetic analysis. Here we conclude clinical manifestations, molecular mechanism, diagnosis and management of several eczema-related genodermatosis and provide accessible advice to physicians.
Collapse
Affiliation(s)
- Chaolan Pan
- Department of Dermatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
- Institute of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Anqi Zhao
- Department of Dermatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
- Institute of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Ming Li
- Department of Dermatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
- Institute of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
- Department of Dermatology, The Children’s Hospital of Fudan University, Shanghai 200092, China
- Correspondence: ; Tel.: +86-2125078571
| |
Collapse
|
31
|
Response to mRNA COVID-19 vaccination in three XLA patients. Vaccine 2022; 40:5299-5301. [PMID: 35934578 PMCID: PMC9345887 DOI: 10.1016/j.vaccine.2022.07.046] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 06/29/2022] [Accepted: 07/28/2022] [Indexed: 11/22/2022]
Abstract
X-linked agammaglobulinemia (XLA) is an inborn error of immunity characterized by insufficient production of immunoglobulins and lack of measurable antibody response to vaccines. The rise of novel infections limits the protective effect of immunoglobulin replacement in immunodeficient patients though. While XLA patients are not expected to mount an antibody response to COVID-19 vaccination, it has been demonstrated that XLA patients can mount a T-cell response to COVID-19 vaccines, similar to the influenza vaccine. We present three patients with XLA who received an mRNA COVID-19 vaccine. One patient demonstrated positive antibody response. Many XLA patients do not receive routine vaccinations due to ongoing immunoglobulin replacement therapy and lack of native antibody production, but in addition to T-cell response to vaccination, select XLA patients may mount a positive antibody response. Therefore, COVID-19 vaccination should be encouraged for all XLA patients.
Collapse
|
32
|
O'Toole D, Groth D, Wright H, Bonilla FA, Fuleihan RL, Cunningham-Rundles C, Sullivan KE, Ochs HD, Marsh R, Feuille E. X-Linked Agammaglobulinemia: Infection Frequency and Infection-Related Mortality in the USIDNET Registry. J Clin Immunol 2022; 42:827-836. [PMID: 35288819 PMCID: PMC8920804 DOI: 10.1007/s10875-022-01237-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 02/18/2022] [Indexed: 11/16/2022]
Abstract
X-linked agammaglobulinemia (XLA) is a primary immunodeficiency disorder caused by mutations in the Bruton tyrosine kinase (BTK) gene leading to B lymphocyte deficiency and susceptibility to infection. A potential benefit of earlier diagnosis and treatment initiation on morbidity and mortality in XLA is incompletely understood. In the USIDNET Registry, we describe infection frequency and infection-related mortality in patients with XLA and their relationship to age of diagnosis and treatment initiation. Among the 231 XLA patients enrolled in the Registry, respiratory infections (N = 203, 88%) were the most commonly reported. Among those deceased (N = 20) where cause of death was known (N = 17), mortality was attributed to infection in most (N = 12, 71%). Chronic lung disease, often a consequence of repeated lower respiratory tract infection (LRTI), was also a frequent complication associated with mortality (N = 9, 53%). Age of diagnosis in years was lower for those without LRTI compared to those with (median 1.5 [IQR 0.5-3.3] vs. median 3.0 [IQR 1.0-5.0], p = 0.0026) and among living patients compared to deceased (median 1.8 [IQR 0.5-5.0] vs. median 2.7 [IQR 1.6-6.0], p = 0.04). Age at treatment initiation in years was lower among those without LRTIs compared to those with (median 1.0 [IQR 0.4-2.4] vs. median 2.8 [IQR 1.0-5.4], p = 0.0006). For every year increase in age at start of therapy, the odds of experiencing a LRTI was 1.216 (OR 1.216, 95% CI 1.048-1.411, p = 0.01). Given the expected finding of reduced LRTIs and mortality among those with earlier age at diagnosis, our study findings support inclusion of XLA in newborn screening programs.
Collapse
Affiliation(s)
- Dana O'Toole
- Department of Pediatrics, Division of Allergy, Immunology, and Rheumatology, Columbia University Irving Medical Center, New York-Presbyterian Morgan Stanley Children's Hospital, 3959 Broadway, New York, NY, 10036, USA.
| | - Daniel Groth
- Department of Pediatrics, University of Washington and Seattle Children's Research Institute, Seattle, WA, USA
| | | | | | - Ramsay L Fuleihan
- Department of Pediatrics, Division of Allergy, Immunology, and Rheumatology, Columbia University Irving Medical Center, New York-Presbyterian Morgan Stanley Children's Hospital, 3959 Broadway, New York, NY, 10036, USA
| | | | | | - Hans D Ochs
- Department of Pediatrics, University of Washington and Seattle Children's Research Institute, Seattle, WA, USA
| | | | | |
Collapse
|
33
|
Altman K, Zhou C, Hernandez-Trujillo V, Scalchunes C, Rawlings DJ, de la Morena MT. Health-Related Quality of Life in 91 Patients with X-Linked Agammaglobulinemia. J Clin Immunol 2022; 42:811-818. [DOI: 10.1007/s10875-022-01222-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 01/26/2022] [Indexed: 12/01/2022]
|
34
|
Zhou Q, Teng Y, Pan J, Shi Q, Liu Y, Liang D, Li Z, Wu L. Identification of four novel mutations in BTK from six Chinese families with X-linked agammaglobulinemia. Clin Chim Acta 2022; 531:48-55. [PMID: 35245483 DOI: 10.1016/j.cca.2022.02.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 02/15/2022] [Accepted: 02/26/2022] [Indexed: 01/17/2023]
Abstract
BACKGROUND The defect of Bruton's tyrosine kinase (BTK) gene resulted in X-linked agammaglobulinemia (XLA), which is characterized by recurrent bacterial infections, immunodeficiency with low B-cell numbers and immunoglobulin. Diagnosis of XLA depends on clinical phenotype and genetic testing. METHODS Six unrelated Chinese families with high suspicion of XLA were enrolled in this study. Potential pathogenic variants were detected and validated by Whole Exome Sequencing (WES) and Sanger Sequencing. Western blot, Quantitative PCR (qPCR) analysis and immunofluorescence analysis were used to evaluate the preliminary function of candidate BTK variants. RESULTS A total of six variants were identified, four of which were not reported before. The novel missense mutation(c.1900T>G) and deletion(c.897delG) were found that the mutant protein and mRNA expression levels have fallen by Western Blot and qPCR identification. We also constructed minigene expression vector to determine the deletion (c.1751-6_1755delttctagGGGTT) resulting a 35bp skipping in exon 18. Meanwhile, the break point of gross deletion (Exon2-5) discovered based on WES was confirmed to be located at site ChX:101367539_101376531 through qPCR and Gap-PCR. CONCLUSION This study makes definitive diagnosis for 6 families with suspected XLA and further expands the spectrum of BTK mutations, providing new information for the diagnosis of the disease.
Collapse
Affiliation(s)
- Qimin Zhou
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics & Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Central South University, Changsha, China
| | - Yanling Teng
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics & Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Central South University, Changsha, China
| | - Jianyan Pan
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics & Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Central South University, Changsha, China
| | - Qingxin Shi
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics & Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Central South University, Changsha, China
| | - Yingdi Liu
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics & Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Central South University, Changsha, China
| | - Desheng Liang
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics & Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Central South University, Changsha, China; Laboratory of Molecular Genetics, Hunan Jiahui Genetics Hospital, Changsha, Hunan, China
| | - Zhuo Li
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics & Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Central South University, Changsha, China.
| | - Lingqian Wu
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics & Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Central South University, Changsha, China; Laboratory of Molecular Genetics, Hunan Jiahui Genetics Hospital, Changsha, Hunan, China.
| |
Collapse
|
35
|
Sun D, Heimall JR, Greenhawt MJ, Bunin NJ, Shaker MS, Romberg N. Cost Utility of Lifelong Immunoglobulin Replacement Therapy vs Hematopoietic Stem Cell Transplant to Treat Agammaglobulinemia. JAMA Pediatr 2022; 176:176-184. [PMID: 34779842 PMCID: PMC8593831 DOI: 10.1001/jamapediatrics.2021.4583] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
IMPORTANCE Lifelong immunoglobulin replacement therapy (IRT) is standard-of-care treatment for congenital agammaglobulinemia but accrues high annual costs ($30 000-$90 000 per year) and decrements to quality of life over patients' life spans. Hematopoietic stem cell transplant (HSCT) offers an alternative 1-time therapy, but has high morbidity and mortality. OBJECTIVE To evaluate the cost utility of IRT vs matched sibling donor (MSD) and matched unrelated donor (MUD) HSCT to treat patients with agammaglobulinemia in the US. DESIGN, SETTING, AND PARTICIPANTS This economic evaluation used Markov analysis to model the base-case scenario of a patient aged 12 months with congenital agammaglobulinemia receiving lifelong IRT vs MSD or MUD HSCT. Costs, probabilities, and quality-of-life measures were derived from the literature. Microsimulations estimated premature deaths for each strategy in a virtual cohort. One-way sensitivity and probabilistic sensitivity analyses evaluated uncertainty around parameter estimates performed from a societal perspective over a 100-year time horizon. The threshold for cost-effective care was set at $100 000 per quality-adjusted life-year (QALY). This study was conducted from 2020 across a 100-year time horizon. EXPOSURES Immunoglobulin replacement therapy vs MSD or MUD HSCT for treatment of congenital agammaglobulinemia. MAIN OUTCOMES AND MEASURES The primary outcomes were incremental cost-effectiveness ratio (ICER) expressed in 2020 US dollars per QALY gained and premature deaths associated with each strategy. RESULTS In this economic evaluation of patients with congenital agammaglobulinemia, lifelong IRT cost more than HSCT ($1 512 946 compared with $563 776 [MSD] and $637 036 [MUD]) and generated similar QALYs (20.61 vs 17.25 [MSD] and 17.18 [MUD]). Choosing IRT over MSD or MUD HSCT yielded ICERs of $282 166 per QALY gained over MSD and $255 633 per QALY gained over MUD HSCT, exceeding the US willingness-to-pay threshold of $100 000/QALY. However, IRT prevented at least 2488 premature deaths per 10 000 microsimulations compared with HSCT. When annual IRT price was reduced from $60 145 to below $29 469, IRT became the cost-effective strategy. Findings remained robust in sensitivity and probabilistic sensitivity analyses. CONCLUSIONS AND RELEVANCE In the US, IRT is more expensive than HSCT for agammaglobulinemia treatment. The findings of this study suggest that IRT prevents more premature deaths but does not substantially increase quality of life relative to HSCT. Reducing US IRT cost by 51% to a value similar to IRT prices in countries implementing value-based pricing may render it the more cost-effective strategy.
Collapse
Affiliation(s)
- Di Sun
- Department of Pediatrics, Division of Allergy and Immunology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Jennifer R. Heimall
- Department of Pediatrics, Division of Allergy and Immunology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania,Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Matthew J. Greenhawt
- Children's Hospital Colorado, Section of Allergy and Immunology, Food Challenge and Research Unit, Aurora,Department of Pediatrics, University of Colorado School of Medicine, Aurora
| | - Nancy J. Bunin
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia,Department of Pediatrics, Division of Oncology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Marcus S. Shaker
- Dartmouth-Hitchcock Medical Center, Section of Allergy and Immunology, Lebanon, New Hampshire
| | - Neil Romberg
- Department of Pediatrics, Division of Allergy and Immunology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania,Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| |
Collapse
|
36
|
Takada S, Pico-Knijnenburg I, Pac M, Warris A, van der Burg M. A Pitfall of Whole Exome Sequencing: Variants in the 5′UTR Splice Site of BTK Causing XLA. J Clin Immunol 2022; 42:709-712. [DOI: 10.1007/s10875-021-01198-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/12/2021] [Indexed: 10/19/2022]
|
37
|
van Beers JJBC, Damoiseaux JGMC. Treatment of Autoimmune Diseases with Therapeutic Antibodies: Lessons Learned from PID Patients Allow for Stratification of the Infection Risk. Methods Mol Biol 2022; 2313:27-44. [PMID: 34478130 DOI: 10.1007/978-1-0716-1450-1_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Over the years, a wide variety of therapeutic antibodies has been successfully introduced in the autoimmunology clinic and many more are on the edge to follow. Many of these treatments address either a pathogenic circulating molecule or a cell-bound molecule. Whereas the former target results in neutralization of the soluble factor, the latter target either inhibits cellular function or induces selective cell death. If this targeted molecule or cell is part of the immune system, this therapy evokes a state of immunodeficiency. Knowing the exact function of the respective components enables the risk stratification for possible infectious complications in patients treated with biologics. Much of the understanding of the function of immune cells and their associated molecules, in relation to redundancy in the immune system, is derived from studies in knockout mice. However, as mice are not men in terms of their life-expectancy, their infection exposure, or the composition of their immune system, the most useful knowledge for estimating the consequence of therapeutic intervention on immune competence comes from monitoring patients. In the current chapter, we focus on patients with a primary immunodeficiency (PID) because they provide us with a unique perspective to estimate the redundancy of a certain genetic defect for overall immune competence. These patients have inborn errors of the immune system that, in general, are due to single gene defects. Depending on the immunological pathway that is defective, patients can present with different types of (opportunistic) infectious diseases, as well as other clinical manifestations. Based on selected examples, we focus in this chapter on finding parallels in the infectious risk of autoimmune patients treated with biologics and PID patients with a defect in the immunological pathway that is affected by the respective biologic. The goal is to learn from the (dis)similarities between both patient populations in terms of safety profiles of biologic treatments.
Collapse
Affiliation(s)
- Joyce J B C van Beers
- Central Diagnostic Laboratory, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Jan G M C Damoiseaux
- Central Diagnostic Laboratory, Maastricht University Medical Center, Maastricht, The Netherlands.
| |
Collapse
|
38
|
Cardenas-Morales M, Hernandez-Trujillo VP. Agammaglobulinemia: from X-linked to Autosomal Forms of Disease. Clin Rev Allergy Immunol 2022; 63:22-35. [PMID: 34241796 PMCID: PMC8269404 DOI: 10.1007/s12016-021-08870-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2021] [Indexed: 01/12/2023]
Abstract
Interruptions or alterations in the B cell development pathway can lead to primary B cell immunodeficiency with resultant absence or diminished immunoglobulin production. While the most common cause of congenital agammaglobulinemia is X-linked agammaglobulinemia (XLA), accounting for approximately 85% of cases, other genetic forms of agammaglobulinemia have been identified. Early recognition and diagnosis of these conditions are pivotal for improved outcomes and prevention of sequelae and complications. The diagnosis of XLA is often delayed, and can be missed if patient has a mild phenotype. The lack of correlation between phenotype and genotype in this condition makes management and predicting outcomes quite difficult. In contrast, while less common, autosomal recessive forms of agammaglobulinemia present at younger ages and with typically more severe clinical features resulting in an earlier diagnosis. Some diagnostic innovations, such as KREC level measurements and serum BCMA measurements, may aid in facilitating an earlier identification of agammaglobulinemia leading to prompt treatment. Earlier diagnosis may improve the overall health of patients with XLA.
Collapse
Affiliation(s)
| | - Vivian P. Hernandez-Trujillo
- Allergy and Immunology Care Center of South Florida, Miami, FL USA ,Division of Allergy and Immunology, Nicklaus Children’s Hospital, Miami, FL USA
| |
Collapse
|
39
|
Clinical, immunological and genomic characteristics of children with X-linked agammaglobulinemia from Kerala, South India. Hum Immunol 2022; 83:335-345. [PMID: 35074268 DOI: 10.1016/j.humimm.2022.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 12/22/2021] [Accepted: 01/05/2022] [Indexed: 11/18/2022]
|
40
|
Nunes-Santos CJ, Koh C, Rai A, Sacco K, Marciano BE, Kleiner DE, Marko J, Bergerson JRE, Stack M, Rivera MM, Constantine G, Strober W, Uzel G, Fuss IJ, Notarangelo LD, Holland SM, Rosenzweig SD, Heller T. Nodular regenerative hyperplasia in X-linked agammaglobulinemia: An underestimated and severe complication. J Allergy Clin Immunol 2022; 149:400-409.e3. [PMID: 34087243 PMCID: PMC8633079 DOI: 10.1016/j.jaci.2021.05.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/30/2021] [Accepted: 05/14/2021] [Indexed: 01/03/2023]
Abstract
BACKGROUND Late-onset complications in X-linked agammaglobulinemia (XLA) are increasingly recognized. Nodular regenerative hyperplasia (NRH) has been reported in primary immunodeficiency but data in XLA are limited. OBJECTIVES This study sought to describe NRH prevalence, associated features, and impact in patients with XLA. METHODS Medical records of all patients with XLA referred to the National Institutes of Health between October 1994 and June 2019 were reviewed. Liver biopsies were performed when clinically indicated. Patients were stratified into NRH+ or NRH- groups, according to their NRH biopsy status. Fisher exact test and Mann-Whitney test were used for statistical comparisons. RESULTS Records of 21 patients with XLA were reviewed, with a cumulative follow-up of 129 patient-years. Eight patients underwent ≥1 liver biopsy of whom 6 (29% of the National Institutes of Health XLA cohort) were NRH+. The median age at NRH diagnosis was 20 years (range, 17-31). Among patients who had liver biopsies, alkaline phosphatase levels were only increased in patients who were NRH+ (P = .04). Persistently low platelet count (<100,000 per μL for >6 months), mildly to highly elevated hepatic venous pressure gradient and either hepatomegaly and/or splenomegaly were present in all patients who were NRH+. In opposition, persistently low platelet counts were not seen in patients who were NRH-, and hepatosplenomegaly was observed in only 1 patient who was NRH-. Hepatic venous pressure gradient was normal in the only patient tested who was NRH-. All-cause mortality was higher among patients who were NRH+ (5 of 6, 83%) than in the rest of the cohort (1 of 15, 7% among patients who were NRH- and who were classified as unknown; P = .002). CONCLUSIONS NRH is an underreported, frequent, and severe complication in XLA, which is associated with increased morbidity and mortality.
Collapse
Affiliation(s)
- CJ Nunes-Santos
- Immunology Service, Department of Laboratory Medicine, National Institutes of Health (NIH) Clinical Center, Bethesda, MD, USA
| | - C Koh
- Liver Diseases Branch, National Institute of Diabetes & Digestive & Kidney Diseases, NIH, Bethesda, MD, USA
| | - A Rai
- Liver Diseases Branch, National Institute of Diabetes & Digestive & Kidney Diseases, NIH, Bethesda, MD, USA
| | - K Sacco
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - BE Marciano
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - DE Kleiner
- Laboratory of Pathology, National Cancer Institute, NIH, Bethesda, MD, USA
| | - J Marko
- Department of Radiology and Imaging Sciences, Clinical Center, NIH, Bethesda, MD
| | - JRE Bergerson
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - M Stack
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - MM Rivera
- Liver Diseases Branch, National Institute of Diabetes & Digestive & Kidney Diseases, NIH, Bethesda, MD, USA
| | - G Constantine
- National Institute of Allergy and Infectious Diseases Allergy and Immunology Fellowship Program, NIH, Bethesda, Maryland
| | - W Strober
- Mucosal Immunity Section, Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - G Uzel
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - IJ Fuss
- Mucosal Immunity Section, Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - LD Notarangelo
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - SM Holland
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - SD Rosenzweig
- Immunology Service, Department of Laboratory Medicine, National Institutes of Health (NIH) Clinical Center, Bethesda, MD, USA, corresponding authors Sergio D. Rosenzweig, MD, PhD, ; Immunology Service, Department of Laboratory Medicine, NIH Clinical Center, Building 10, Room 2C306, 10 Center Drive, Bethesda, MD, 20892 and Theo Heller, MD, ; Translational Hepatology Section, Liver Diseases Branch, National Institute of Diabetes & Digestive & Kidney Diseases, NIH, 10 Center Drive, Bethesda, MD 20892
| | - T Heller
- Liver Diseases Branch, National Institute of Diabetes & Digestive & Kidney Diseases, NIH, Bethesda, MD, USA, corresponding authors Sergio D. Rosenzweig, MD, PhD, ; Immunology Service, Department of Laboratory Medicine, NIH Clinical Center, Building 10, Room 2C306, 10 Center Drive, Bethesda, MD, 20892 and Theo Heller, MD, ; Translational Hepatology Section, Liver Diseases Branch, National Institute of Diabetes & Digestive & Kidney Diseases, NIH, 10 Center Drive, Bethesda, MD 20892
| |
Collapse
|
41
|
Liu H, Zhao J, Yang L, Yang C, Liu Y. An X-linked agammaglobulinemia (XLA) patient with fever and disturbance of consciousness: infection with Torque teno virus? Int J Infect Dis 2021; 115:26-29. [PMID: 34863924 DOI: 10.1016/j.ijid.2021.11.041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/17/2021] [Accepted: 11/27/2021] [Indexed: 10/19/2022] Open
Abstract
This is the first report of meningoencephalitis in an adult male with X-linked agammaglobulinemia caused by a probable Torque teno virus (TTV) infection. TTV was detected in the cerebrospinal fluid samples of the patient by high-throughput sequencing technology. The patient was treated successfully. Abstract X-linked agammaglobulinemia (XLA) is a rare primary immunodeficiency disease caused by mutations in the Bruton's tyrosine kinase (Btk) gene, characterized by recurrent infections and low or undetectable immunoglobulin levels. The most recommended treatment for XLA is lifelong intravenous immunoglobulin (IVIG) replacement therapy. Without treatment, XLA patients are vulnerable to bacterial and viral infections. Meningoencephalitis is a common complication in patients with XLA. Torque teno viruses (TTVs) are ubiquitous in various tissues of healthy people, while TTV infections have been reported only recently. This case study presents the first reported case on the Chinese mainland of meningoencephalitis in an adult male with XLA, most likely caused by TTV. A 27-year-old male presented with fever and severe disturbance of consciousness. Conventional tests, including blood culture and cerebrospinal fluid (CSF) culture, did not reveal any bacterial infections. The clinical presentation, neuroimaging findings, and results of CSF were suggestive of viral meningoencephalitis. Next, TTV was detected in CSF by high-throughput sequencing (HTS) technology. This case suggests that TTV can have a pathogenic effect on patients with severe immunodeficiency disease, and can produce severe clinical symptoms.
Collapse
Affiliation(s)
- Hui Liu
- Emergency Department, The Second Hospital of Dalian Medical University, Dalian City, P.R. China
| | - Jiajia Zhao
- Emergency Department, The Second Hospital of Dalian Medical University, Dalian City, P.R. China
| | - Liu Yang
- Emergency Department, The Second Hospital of Dalian Medical University, Dalian City, P.R. China
| | - Chuwei Yang
- Emergency Department, The Second Hospital of Dalian Medical University, Dalian City, P.R. China.
| | - Yufei Liu
- Emergency Department, The Second Hospital of Dalian Medical University, Dalian City, P.R. China.
| |
Collapse
|
42
|
Mechanisms underlying host defense and disease pathology in response to severe acute respiratory syndrome (SARS)-CoV2 infection: insights from inborn errors of immunity. Curr Opin Allergy Clin Immunol 2021; 21:515-524. [PMID: 34494617 DOI: 10.1097/aci.0000000000000786] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW The severe acute respiratory syndrome (SARS)-coronavirus 2 (CoV2)/COVID-19 pandemic has reminded us of the fundamental and nonredundant role played by the innate and adaptive immune systems in host defense against emerging pathogens. The study of rare 'experiments of nature' in the setting of inborn errors of immunity (IEI) caused by monogenic germline variants has revealed key insights into the molecular and cellular requirements for immune-mediated protection against infectious diseases. This review will provide an overview of the discoveries obtained from investigating severe COVID-19 in patients with defined IEI or otherwise healthy individuals. RECENT FINDINGS Genetic, serological and cohort studies have provided key findings regarding host defense against SARS-CoV2 infection, and mechanisms of disease pathogenesis. Remarkably, the risk factors, severity of disease, and case fatality rate following SARS-CoV2 infection in patients with IEI were not too dissimilar to that observed for the general population. However, the type I interferon (IFN) signaling pathway - activated in innate immune cells in response to viral sensing - is critical for anti-SARS-CoV2 immunity. Indeed, genetic variants or autoAbs affecting type I IFN function account for up to 20% of all cases of life-threatening COVID-19. SUMMARY The analysis of rare cases of severe COVID-19, coupled with assessing the impact of SARS-CoV2 infection in individuals with previously diagnosed IEI, has revealed fundamental aspects of human immunology, disease pathogenesis and immunopathology in the context of exposure to and infection with a novel pathogen. These findings can be leveraged to improve therapies for treating for emerging and established infectious diseases.
Collapse
|
43
|
Blom M, Bredius RGM, van der Burg M. Future Perspectives of Newborn Screening for Inborn Errors of Immunity. Int J Neonatal Screen 2021; 7:ijns7040074. [PMID: 34842618 PMCID: PMC8628921 DOI: 10.3390/ijns7040074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/10/2021] [Accepted: 10/15/2021] [Indexed: 11/16/2022] Open
Abstract
Newborn screening (NBS) programs continue to expand due to innovations in both test methods and treatment options. Since the introduction of the T-cell receptor excision circle (TREC) assay 15 years ago, many countries have adopted screening for severe combined immunodeficiency (SCID) in their NBS program. SCID became the first inborn error of immunity (IEI) in population-based screening and at the same time the TREC assay became the first high-throughput DNA-based test in NBS laboratories. In addition to SCID, there are many other IEI that could benefit from early diagnosis and intervention by preventing severe infections, immune dysregulation, and autoimmunity, if a suitable NBS test was available. Advances in technologies such as KREC analysis, epigenetic immune cell counting, protein profiling, and genomic techniques such as next-generation sequencing (NGS) and whole-genome sequencing (WGS) could allow early detection of various IEI shortly after birth. In the next years, the role of these technical advances as well as ethical, social, and legal implications, logistics and cost will have to be carefully examined before different IEI can be considered as suitable candidates for inclusion in NBS programs.
Collapse
Affiliation(s)
- Maartje Blom
- Laboratory for Pediatric Immunology, Department of Pediatrics, Willem-Alexander Children’s Hospital, Leiden University Medical Center, 2300 RC Leiden, The Netherlands;
- Correspondence:
| | - Robbert G. M. Bredius
- Department of Pediatrics, Willem-Alexander Children’s Hospital, Leiden University Medical Center, 2300 RC Leiden, The Netherlands;
| | - Mirjam van der Burg
- Laboratory for Pediatric Immunology, Department of Pediatrics, Willem-Alexander Children’s Hospital, Leiden University Medical Center, 2300 RC Leiden, The Netherlands;
| |
Collapse
|
44
|
Primary antibody deficiencies in Turkey: molecular and clinical aspects. Immunol Res 2021; 70:44-55. [PMID: 34618307 DOI: 10.1007/s12026-021-09242-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 09/30/2021] [Indexed: 10/20/2022]
Abstract
Primary antibody deficiencies (PAD) are the most common subtype of primary immunodeficiencies, characterized by increased susceptibility to infections and autoimmunity, allergy, or malignancy predisposition. PAD syndromes comprise of immune system genes highlighted the key role of B cell activation, proliferation, migration, somatic hypermutation, or isotype switching have a wide spectrum from agammaglobulinemia to selective Ig deficiency. In this study, we describe the molecular and the clinical aspects of fifty-two PAD patients. The most common symptoms of our cohort were upper and lower respiratory infections, bronchiectasis, diarrhea, and recurrent fever. Almost all patients (98%) had at least one of the symptoms like autoimmunity, lymphoproliferation, allergy, or gastrointestinal disease. A custom-made next-generation sequencing (NGS) panel, which contains 24 genes, was designed to identify well-known disease-causing variants in our cohort. We identified eight variants (15.4%) among 52 PAD patients. The variants mapped to BTK (n = 4), CD40L (n = 1), ICOS (n = 1), IGHM (n = 1), and TCF3 (n = 1) genes. Three novel variants were described in the BTK (p.G414W), ICOS (p.G60*), and IGHM (p.S19*) genes. We performed Sanger sequencing to validate pathogenic variants and check for allelic segregation in the family. Targeted NGS panel sequencing can be beneficial as a suitable diagnostic modality for diagnosing well-known monogenic PAD diseases (only 2-10% of PADs); however, screening only the coding regions of the genome may not be adequately powered to solve the pathogenesis of PAD in all cases. Deciphering the regulatory regions of the genome and better understanding the epigenetic modifications will elucidate the molecular basis of complex PADs.
Collapse
|
45
|
Kadden D, Fowler G, Engel E, Logan C, Marathe K, Gosdin C. Streptococcal pneumonia meningitis as an initial presentation of X-linked agammaglobulinemia: A case report and discussion. J Am Coll Emerg Physicians Open 2021; 2:e12553. [PMID: 34568871 PMCID: PMC8448482 DOI: 10.1002/emp2.12553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/16/2021] [Accepted: 08/19/2021] [Indexed: 11/10/2022] Open
Abstract
X-linked agammaglobulinemia (XLA) is a primary immunodeficiency caused by mutations in the gene for Bruton's tyrosine kinase (Btk), with affected males most commonly presenting with recurrent bacterial infections during the first few years of life. Here we present a 17-month-old male with a chief complaint of worsening rash and fever, whose history of streptococcal pneumonia meningitis at 5 months of age prompted suspicion for an underlying immunodeficiency and subsequent diagnosis of XLA. Bacterial meningitis is a rare initial presentation of XLA, and therefore physicians may easily overlook any underlying immunodeficiency. Prompt workup for immunodeficiency should be initiated in any vaccinated patient with a history of pneumococcal meningitis outside of the newborn period. Further discussion surrounding the various presentations of XLA, their related clinical manifestations and laboratory findings, and the importance of thorough chart review may encourage earlier diagnosis and initiation of treatment of this disease.
Collapse
Affiliation(s)
- Daniel Kadden
- UC College of Medicine, Department of PediatricsCincinnati Children's Hospital Medical CenterCincinnatiOhioUSA
| | - Grace Fowler
- UC College of Medicine, Department of PediatricsCincinnati Children's Hospital Medical CenterCincinnatiOhioUSA
| | - Elissa Engel
- UC College of Medicine, Department of PediatricsCincinnati Children's Hospital Medical CenterCincinnatiOhioUSA
| | - Casey Logan
- UC College of Medicine, Department of PediatricsCincinnati Children's Hospital Medical CenterCincinnatiOhioUSA
| | - Kalyani Marathe
- UC College of Medicine, Department of PediatricsCincinnati Children's Hospital Medical CenterCincinnatiOhioUSA
| | - Craig Gosdin
- UC College of Medicine, Department of PediatricsCincinnati Children's Hospital Medical CenterCincinnatiOhioUSA
| |
Collapse
|
46
|
Grammatikos A, Donati M, Johnston SL, Gompels MM. Peripheral B Cell Deficiency and Predisposition to Viral Infections: The Paradigm of Immune Deficiencies. Front Immunol 2021; 12:731643. [PMID: 34527001 PMCID: PMC8435594 DOI: 10.3389/fimmu.2021.731643] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 08/09/2021] [Indexed: 12/11/2022] Open
Abstract
In the era of COVID-19, understanding how our immune system responds to viral infections is more pertinent than ever. Immunodeficiencies with very low or absent B cells offer a valuable model to study the role of humoral immunity against these types of infection. This review looks at the available evidence on viral infections in patients with B cell alymphocytosis, in particular those with X-linked agammaglobulinemia (XLA), Good’s syndrome, post monoclonal-antibody therapy and certain patients with Common Variable Immune Deficiency (CVID). Viral infections are not as infrequent as previously thought in these conditions and individuals with very low circulating B cells seem to be predisposed to an adverse outcome. Particularly in the case of SARS-CoV2 infection, mounting evidence suggests that peripheral B cell alymphocytosis is linked to a poor prognosis.
Collapse
Affiliation(s)
- Alexandros Grammatikos
- Department of Immunology, Southmead Hospital, North Bristol National Health Service (NHS) Trust, Bristol, United Kingdom
| | - Matthew Donati
- Severn Infection Sciences and Public Health England National Infection Service South West, Department of Virology, Southmead Hospital, North Bristol NHS Trust, Bristol, United Kingdom
| | - Sarah L Johnston
- Department of Immunology, Southmead Hospital, North Bristol National Health Service (NHS) Trust, Bristol, United Kingdom
| | - Mark M Gompels
- Department of Immunology, Southmead Hospital, North Bristol National Health Service (NHS) Trust, Bristol, United Kingdom
| |
Collapse
|
47
|
Shelyakin PV, Lupyr KR, Egorov ES, Kofiadi IA, Staroverov DB, Kasatskaya SA, Kriukova VV, Shagina IA, Merzlyak EM, Nakonechnaya TO, Latysheva EA, Manto IA, Khaitov MR, Lukyanov SA, Chudakov DM, Britanova OV. Naïve Regulatory T Cell Subset Is Altered in X-Linked Agammaglobulinemia. Front Immunol 2021; 12:697307. [PMID: 34489944 PMCID: PMC8417104 DOI: 10.3389/fimmu.2021.697307] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 07/29/2021] [Indexed: 11/14/2022] Open
Abstract
The interplay between T- and B-cell compartments during naïve, effector and memory T cell maturation is critical for a balanced immune response. Primary B-cell immunodeficiency arising from X-linked agammaglobulinemia (XLA) offers a model to explore B cell impact on T cell subsets, starting from the thymic selection. Here we investigated characteristics of naïve and effector T cell subsets in XLA patients, revealing prominent alterations in the corresponding T-cell receptor (TCR) repertoires. We observed immunosenescence in terms of decreased diversity of naïve CD4+ and CD8+ TCR repertoires in XLA donors. The most substantial alterations were found within naïve CD4+ subsets, and we have investigated these in greater detail. In particular, increased clonality and convergence, along with shorter CDR3 regions, suggested narrower focused antigen-specific maturation of thymus-derived naïve Treg (CD4+CD45RA+CD27+CD25+) in the absence of B cells - normally presenting diverse self and commensal antigens. The naïve Treg proportion among naïve CD4 T cells was decreased in XLA patients, supporting the concept of impaired thymic naïve Treg selection. Furthermore, the naïve Treg subset showed prominent differences at the transcriptome level, including increased expression of genes specific for antigen-presenting and myeloid cells. Altogether, our findings suggest active B cell involvement in CD4 T cell subsets maturation, including B cell-dependent expansion of the naïve Treg TCR repertoire that enables better control of self-reactive T cells.
Collapse
Affiliation(s)
- Pavel V Shelyakin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Ksenia R Lupyr
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.,Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Evgeny S Egorov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Ilya A Kofiadi
- FSBI "NRC Institute of Immunology" FMBA of Russia, Moscow, Russia
| | - Dmitriy B Staroverov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.,Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Sofya A Kasatskaya
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.,Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia.,Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Valeriia V Kriukova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.,Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Irina A Shagina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.,Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Ekaterina M Merzlyak
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.,Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Tatiana O Nakonechnaya
- Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow, Russia
| | | | - Irina A Manto
- FSBI "NRC Institute of Immunology" FMBA of Russia, Moscow, Russia
| | - Musa R Khaitov
- FSBI "NRC Institute of Immunology" FMBA of Russia, Moscow, Russia
| | - Sergey A Lukyanov
- Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Dmitriy M Chudakov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.,Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia.,Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Olga V Britanova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
48
|
Volokha A, Bondarenko A, Chernyshova L, Hilfanova A, Stepanovskiy Y, Boyarchuk O, Kostyuchenko L. Impact of the J Project on progress of primary immunodeficiency care in Ukraine. Cent Eur J Immunol 2021; 46:250-257. [PMID: 34764795 PMCID: PMC8568034 DOI: 10.5114/ceji.2021.108183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 09/16/2020] [Indexed: 11/17/2022] Open
Abstract
The J Project is a Central-Eastern European collaborative program in the field of physician education and clinical research aimed at improving the clinical care and diagnosis of primary immunodeficiency disorders (PIDs). Ukraine was one of the first to participate in the project, which allowed us to join the whole European PID community. Since 2004, the country has been holding annual J Project meetings with the involvement of new regions. The spread of the J Project impact has contributed to significantly improved early PID diagnosis in Ukraine. Progress has been made not only in identifying patients but also in arranging the treatment. The assistance in genetic diagnosis made it possible to detect PIDs, study their features, and improve approaches to the management. This also gave an impetus to the development of regional PID centers and participation in scientific research. Of utmost importance is the cooperation with colleagues from Poland, Hungary, and Belarus, who are active members of the J Project.
Collapse
Affiliation(s)
- Alla Volokha
- Shupyk National Medical Academy of Postgraduate Education, Kyiv, Ukraine
| | | | | | - Anna Hilfanova
- Shupyk National Medical Academy of Postgraduate Education, Kyiv, Ukraine
| | - Yuriy Stepanovskiy
- Shupyk National Medical Academy of Postgraduate Education, Kyiv, Ukraine
| | | | - Larysa Kostyuchenko
- Danylo Halyckyy Lviv Medical University, Western Ukrainian Specialized Children’s Medical Center, Ukraine
| |
Collapse
|
49
|
Jain A, Govindaraj GM, Edavazhippurath A, Faisal N, Bhoyar RC, Gupta V, Uppuluri R, Manakkad SP, Kashyap A, Kumar A, Divakar MK, Imran M, Sawant S, Dalvi A, Chakyar K, Madkaikar M, Raj R, Sivasubbu S, Scaria V. Whole genome sequencing identifies novel structural variant in a large Indian family affected with X-linked agammaglobulinemia. PLoS One 2021; 16:e0254407. [PMID: 34252140 PMCID: PMC8274882 DOI: 10.1371/journal.pone.0254407] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 06/25/2021] [Indexed: 12/30/2022] Open
Abstract
X-linked agammaglobulinemia (XLA, OMIM #300755) is a primary immunodeficiency disorder caused by pathogenic variations in the BTK gene, characterized by failure of development and maturation of B lymphocytes. The estimated prevalence worldwide is 1 in 190,000 male births. Recently, genome sequencing has been widely used in difficult to diagnose and familial cases. We report a large Indian family suffering from XLA with five affected individuals. We performed complete blood count, immunoglobulin assay, and lymphocyte subset analysis for all patients and analyzed Btk expression for one patient and his mother. Whole exome sequencing (WES) for four patients, and whole genome sequencing (WGS) for two patients have been performed. Carrier screening was done for 17 family members using Multiplex Ligation-dependent Probe Amplification (MLPA) and haplotype ancestry mapping using fineSTRUCTURE was performed. All patients had hypogammaglobulinemia and low CD19+ B cells. One patient who underwent Btk estimation had low expression and his mother showed a mosaic pattern. We could not identify any single nucleotide variants or small insertion/ deletions from the WES dataset that correlates with the clinical feature of the patient. Structural variant analysis through WGS data identifies a novel large deletion of 5,296 bp at loci chrX:100,624,323-100,629,619 encompassing exons 3-5 of the BTK gene. Family screening revealed seven carriers for the deletion. Two patients had a successful HSCT. Haplotype mapping revealed a South Asian ancestry. WGS led to identification of the accurate genetic mutation which could help in early diagnosis leading to improved outcomes, prevention of permanent organ damage and improved quality of life, as well as enabling genetic counselling and prenatal diagnosis in the family.
Collapse
Affiliation(s)
- Abhinav Jain
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Geeta Madathil Govindaraj
- Department of Pediatrics, Government Medical College Kozhikode, Kozhikode, Kerala, India
- Department of Pediatrics, FPID Regional Diagnostic Centre, Government Medical College Kozhikode, Kozhikode, Kerala, India
| | - Athulya Edavazhippurath
- Department of Pediatrics, Government Medical College Kozhikode, Kozhikode, Kerala, India
- Multidisciplinary Research Unit, Government College Kozhikode, Kozhikode, Kerala, India
| | - Nabeel Faisal
- Department of Pediatrics, Government Medical College Kozhikode, Kozhikode, Kerala, India
| | - Rahul C Bhoyar
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, Delhi, India
| | - Vishu Gupta
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Ramya Uppuluri
- Department of Pediatric Hematology, Oncology, Blood and Marrow Transplantation, Apollo Hospitals, Chennai, Tamil Nadu, India
| | | | - Atul Kashyap
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, Delhi, India
| | - Anoop Kumar
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, Delhi, India
| | - Mohit Kumar Divakar
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Mohamed Imran
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Sneha Sawant
- Department of Pediatric Immunology and Leukocyte Biology, ICMR-National Institute of Immunohaematology, KEM Hospital, Mumbai, Maharashtra, India
| | - Aparna Dalvi
- Department of Pediatric Immunology and Leukocyte Biology, ICMR-National Institute of Immunohaematology, KEM Hospital, Mumbai, Maharashtra, India
| | - Krishnan Chakyar
- Department of Pediatrics, Government Medical College Kozhikode, Kozhikode, Kerala, India
| | - Manisha Madkaikar
- Department of Pediatric Immunology and Leukocyte Biology, ICMR-National Institute of Immunohaematology, KEM Hospital, Mumbai, Maharashtra, India
| | - Revathi Raj
- Department of Pediatric Hematology, Oncology, Blood and Marrow Transplantation, Apollo Hospitals, Chennai, Tamil Nadu, India
| | - Sridhar Sivasubbu
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Vinod Scaria
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| |
Collapse
|
50
|
COVID-19 in a Patient with X-Linked Agammaglobulinemia: A Case Report. SERBIAN JOURNAL OF EXPERIMENTAL AND CLINICAL RESEARCH 2021. [DOI: 10.2478/sjecr-2020-0062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Abstract
X-linked agammaglobulinemia (XLA), characterized by a profound deficiency of B lymphocytes, is caused by mutations in the gene encoding Bruton tyrosine kinase (Btk).. XLA patients have a susceptibility to viral infections. In this report, we present a 45-year-old man with known XLA, with about a 2-week history of fever, chills, diarrhea and vomiting. He was diagnosed with COVID-19 infection, which was confirmed by a real-time reversetranscriptase- polymerase chain reaction. The antiviral drugs, antibiotics, and interferon-beta were administered to him. Unfortunately, the patient passed away after 5 days. During an epidemic of infectious diseases, the best strategy to overcome the potential challenges of treating XLA may be prevention. Early detection of biomarkers such as D-dimer and IL-6 might be more helpful for initiating more aggressive therapy and decreasing the duration of illness in these patients.
Collapse
|