1
|
De Volder A, De Smet J, Frooninckx L, Deruytter D, Ceusters J, Vandeweyer D. Heat Treatment and Storage of Frass From Black Soldier Fly Larvae and Yellow Mealworm Production: Compliance With EU Regulation on Microbiological Quality and Safety. Microbiologyopen 2025; 14:e70020. [PMID: 40439286 PMCID: PMC12120769 DOI: 10.1002/mbo3.70020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 05/09/2025] [Accepted: 05/13/2025] [Indexed: 06/02/2025] Open
Abstract
Insect farming generates substantial amounts of frass, a nutrient-rich by-product with valorization potential as fertilizer/soil improver. Marketing is restricted by EU regulations, imposing a reference heat treatment for 1 h at 70°C to reduce the presence of potential pathogens. This study evaluated the impact of heat treatments (50 → 80°C for 15 → 90 min) on microbiological quality and safety of black soldier fly larvae (BSFL) and yellow mealworm (YM) frass, as well as microbial dynamics during storage, before and after reference treatment. Fresh frass showed high microbial counts, but Salmonella was absent. Untreated BSFL frass did not meet the EU criteria to allow use as fertilizer, while some YM frass samples did. Reference heat-treated BSFL and YM frass complied with the EU criteria. Escherichia coli counts were below the 1000 cfu/g limit, and Salmonella (even when inoculated before treatment) was absent. Only in BSFL frass, Enterococcaceae counts were sufficiently reduced. Milder treatments (temperatures < 70°C and/or times < 1 h) of BSFL frass induced similar reductions of E. coli and (inoculated) Salmonella but Enterococcaceae counts remained above 1000 cfu/g. In some YM frass samples (inoculated) Salmonella was still detected after milder treatment. Refrigerated (4°C) or ambient temperature (26°C-28°C) storage up to 2 weeks of fresh and heat-treated frass did not increase bacterial counts. To ensure frass microbiological safety whilst preserving quality and reducing costs, tailored treatments seem appropriate. This may be no, milder, or more severe treatment, depending on the microbial load (counts and species type).
Collapse
Affiliation(s)
- Ann De Volder
- Department of Microbial and Molecular Systems (MS)KU Leuven, Geel Campus, Research Group for Insect Production and Processing (IP&P)GeelBelgium
- Department of Biosystems, Research Group for Sustainable Crop Production and Protection (SusCroPP)KU Leuven, Geel CampusGeelBelgium
| | - Jeroen De Smet
- Department of Microbial and Molecular Systems (MS)KU Leuven, Geel Campus, Research Group for Insect Production and Processing (IP&P)GeelBelgium
| | - Lotte Frooninckx
- Centre of Expertise Sustainable Biomass and ChemistryThomas More University of Applied SciencesGeelBelgium
| | | | - Johan Ceusters
- Department of Biosystems, Research Group for Sustainable Crop Production and Protection (SusCroPP)KU Leuven, Geel CampusGeelBelgium
| | - Dries Vandeweyer
- Department of Microbial and Molecular Systems (MS)KU Leuven, Geel Campus, Research Group for Insect Production and Processing (IP&P)GeelBelgium
| |
Collapse
|
2
|
Jiang SY, Shen KW, Brandón MG, Lu SB, Tomberlin JK, Tang XT, Wang H, Xiang FM, Chen XX, Zhang ZJ. Using black soldier fly larval frass to restore soil health. BIORESOURCE TECHNOLOGY 2025; 432:132701. [PMID: 40398567 DOI: 10.1016/j.biortech.2025.132701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 05/02/2025] [Accepted: 05/16/2025] [Indexed: 05/23/2025]
Abstract
The importance of sustainable solutions for restoring soil health amidst increasing soil degradation and organic waste accumulation has gained significant attention. Black soldier fly larval (BSFL) bioconversion offers a promising solution by converting organic wastes into value-added products, such as larval biomass and frass. BSFL frass, the main output of the bioconversion, is increasingly recognized for its potential to restore soil health. Here, this paper provides a comprehensive synthesis of BSFL frass production and properties, and explores its role in mitigating multiple problems related to soil degradation. Finally, this paper further discusses the challenges and future directions for the effective, safe, and sustainable use of BSFL frass. In summary, this paper revealed that BSFL frass, with its unique physicochemical properties and a variety of beneficial bioactive compounds and microorganisms, holds the potential to address problems such as soil acidification, fertility degradation, microbial dysbiosis, and soil-borne diseases, thereby restoring soil health.
Collapse
Affiliation(s)
- Shuo-Yun Jiang
- College of Environmental and Resource Sciences, Zhejiang University, Yuhangtang Ave 688, Hangzhou, Zhejiang Province 310058, China
| | - Ke-Wei Shen
- College of Environmental and Resource Sciences, Zhejiang University, Yuhangtang Ave 688, Hangzhou, Zhejiang Province 310058, China
| | | | - Sheng-Biao Lu
- Yangtze River Delta Health Agriculture Research Institute, Tongxiang Economic HiTech Zone, Tongxiang 314500, China
| | - Jeffery K Tomberlin
- Department of Entomology, Texas A&M University, 2475 TAMU, College Station, TX 77843, USA
| | - Xiao-Tian Tang
- Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Insect Sciences, College of Agriculture and Biotechnology Zhejiang University, Hangzhou, China
| | - Hang Wang
- Yunnan Key Laboratory of Plateau Wetland Conversion, Restoration and Ecological Services, National Plateau Wetland Research Center, Southwest Forestry University, Kunming 650224, China
| | - Fang-Ming Xiang
- College of Environmental and Resource Sciences, Zhejiang University, Yuhangtang Ave 688, Hangzhou, Zhejiang Province 310058, China
| | - Xue-Xin Chen
- Department of Entomology, Texas A&M University, 2475 TAMU, College Station, TX 77843, USA
| | - Zhi-Jian Zhang
- College of Environmental and Resource Sciences, Zhejiang University, Yuhangtang Ave 688, Hangzhou, Zhejiang Province 310058, China.
| |
Collapse
|
3
|
Gómez-Brandón M, Beesigamukama D, Probst M, Klammsteiner T, Su JQ, Zhu YG, Tanga CM. Microbial composition and bioremediation in frass fertilizers from insect-based agri-food waste valorization. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 386:125774. [PMID: 40381303 DOI: 10.1016/j.jenvman.2025.125774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 05/03/2025] [Accepted: 05/10/2025] [Indexed: 05/20/2025]
Abstract
Insect frass fertilizer is emerging as a sustainable and novel input for improving soil health and crop production; however, research attention on its safety and microbial properties remains limited. Here, we evaluated the levels of heavy metals, pathogens, diversity, abundance, composition and functional roles of bacteria and fungi in frass fertilizer produced by eight edible insect species. Our results revealed the absence of Salmonella spp. In the frass fertilizers produced by all insect species, while the levels of other pathogens and heavy metals were within permissible limits for organic fertilizers. We found that 79-86 % of the variations in bacterial and fungal communities in the frass fertilizers were influenced by the species of insects used in waste recycling. The highest richness of bacteria and fungi was recorded in the frass fertilizers generated from Oryctes rhinoceros and Pachnoda sinuata. Taxonomic classification revealed 36 bacteria phyla across the frass fertilizers, with most belonging to Firmicutes (43 %), Proteobacteria (23 %), and Actinobacteriota (18 %), whereas the main fungal phyla were Ascomycota (80 %) and Basidiomycota (10 %). Functional profiling revealed that most fungi were sapotroph-symbiotrophs, pathogenic saprotrophs, pathotrophs, and symbiotrophic saprotrophs, which are key in organic matter decomposition, nutrient recycling and pathogen suppression. In contrast, the bacteria were mostly associated with antibiotic and phytohormone production, biosynthesis of plant growth regulators, nitrogen metabolism, nitrification, nitrogen fixation, especially in frass fertilizers derived from P. sinuata, Schistocerca gregaria, and Hermetia illucens. Our findings demonstrate the potential of insects to recycle low-value organic wastes into hygienic organic fertilizer and highlight the role of beneficial microbes, which could be harnessed for bioremediation, sustainable soil health management, improved crop productivity and food security.
Collapse
Affiliation(s)
- María Gómez-Brandón
- Grupo de Ecología Animal (GEA), University of Vigo, Vigo, 36310, Galicia, Spain.
| | - Dennis Beesigamukama
- International Centre of Insect Physiology and Ecology, P. O. Box 30772-00100, Nairobi, Kenya.
| | - Maraike Probst
- Universität Innsbruck, Department of Microbiology, University of Innsbruck, Technikerstrasse 25d, Innsbruck, A-6020, Austria
| | - Thomas Klammsteiner
- Universität Innsbruck, Department of Ecology, Technikerstrasse 25, Innsbruck, A-6020, Austria
| | - Jian-Qiang Su
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Yong-Guan Zhu
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Chrysantus Mbi Tanga
- International Centre of Insect Physiology and Ecology, P. O. Box 30772-00100, Nairobi, Kenya.
| |
Collapse
|
4
|
Zhang Y, Henawy AR, Rehman KU, van Huis A, Cai M, Zheng L, Huang F, Ding X, Lei H, Zhang J. Artificial light source combined with functional microorganism improves reproductive performance of black soldier fly. INSECT SCIENCE 2025. [PMID: 40312979 DOI: 10.1111/1744-7917.70064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 03/11/2025] [Accepted: 04/01/2025] [Indexed: 05/03/2025]
Abstract
Black soldier fly (BSF, Hermetia illucens) has been recognized as a promising insect species for sustainable conversion of organic waste into valuable biomass. Many studies have focused on the use of BSF larvae to improve the recycling of organic waste. However, few studies have been conducted on the reproductive efficiency of BSF adults. In particular, the major problems with artificial systems are directed oviposition and the poor oviposition rate due to inadequate sunlight. This study aimed to address the bottleneck by developing an effective artificial source and finding effective attractants. Results showed that our homemade artificial light significantly enhanced the number of BSF eggs and elevated the egg hatching rate compared to commercial artificial light. Simultaneously, the isolated strain of Trichosporon asahii BSFL-2 can induce gravid BSF females to oviposit and the combination of homemade artificial light with BSFL-2 resulted in a notable increase in the number of eggs collected in the BSF adults rearing system. Analysis of the gas chromatography-mass spectrometry results and experimental validation showed that 2,5-dimethylpyrazine produced by BSFL-2 strain was able to attract gravid females to aggregate and oviposit. This study demonstrates that the use of effective artificial light source and attractant is a crucial element in addressing the bottleneck of efficient indoor reproduction of BSF.
Collapse
Affiliation(s)
- Yuanpu Zhang
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, National Engineering Research Center of Microbial Pesticides, Huazhong Agricultural University, Wuhan, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Ahmed R Henawy
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, National Engineering Research Center of Microbial Pesticides, Huazhong Agricultural University, Wuhan, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Department of Microbiology, Faculty of Agriculture, Cairo University, Giza, 12613, Egypt
| | - Kashif Ur Rehman
- German Institute of Food Technologies (DIL e.V.), Quakenbrück, Germany
- Department of Microbiology, Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Arnold van Huis
- Laboratory of Entomology, Wageningen University & Research, Droevendaalsesteeg, Wageningen, the Netherlands
| | - Minmin Cai
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, National Engineering Research Center of Microbial Pesticides, Huazhong Agricultural University, Wuhan, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Longyu Zheng
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, National Engineering Research Center of Microbial Pesticides, Huazhong Agricultural University, Wuhan, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Feng Huang
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, National Engineering Research Center of Microbial Pesticides, Huazhong Agricultural University, Wuhan, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Xiaomin Ding
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, National Engineering Research Center of Microbial Pesticides, Huazhong Agricultural University, Wuhan, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Wuhan Jintai De Biotechnology Co., Ltd, Wuhan, China
| | - Hongsheng Lei
- Wuhan Jintai De Biotechnology Co., Ltd, Wuhan, China
| | - Jibin Zhang
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, National Engineering Research Center of Microbial Pesticides, Huazhong Agricultural University, Wuhan, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| |
Collapse
|
5
|
Zhao Z, Gao B, Henawy AR, Rehman KU, Ren Z, Jiménez N, Zheng L, Huang F, Yu Z, Yu C, Zhang J, Cai M. Mitigating the transfer risk of antibiotic resistance genes from fertilized soil to cherry radish during the application of insect fertilizer. ENVIRONMENT INTERNATIONAL 2025; 199:109510. [PMID: 40319631 DOI: 10.1016/j.envint.2025.109510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 04/01/2025] [Accepted: 04/29/2025] [Indexed: 05/07/2025]
Abstract
The transfer of antibiotic resistance genes (ARGs) from fertilized soil to vegetables, particularly those consumed raw, causes significant public health risks through the food chain. Black soldier fly larvae can efficiently convert animal manure into organic fertilizer with reduced antibiotic resistance. This study utilized metagenomic sequencing to investigate fields treated with control organic fertilizer (COF), black soldier fly organic fertilizer (BOF), and no fertilizer, with the aim of assessing the transfer risks of ARGs from soil to cherry radish. The results indicated that BOF significantly reduced the richness and abundance of ARGs in both soil and cherry radish compared to COF, reducing 13 ARG subtypes and a 27.6% decrease in ARG abundance in cherry radish. Moreover, a significant positive correlation was observed between mobile genetic elements (MGEs) and virulence factors (VFs) with ARGs, with BOF treatment resulting in a relative abundance reduction of 32.8% and 29.1%, respectively. The complexity of networks involving ARGs with MGEs, VFs, and microbial communities in the BOF treatment was 54.2%, 32.3%, and 32.8% lower, respectively, than the COF treatment. Further analysis of metagenomic-assembled genomes (MAGs) revealed the co-occurrence of ARGs, MGEs, and VFs in cherry radish, indicating the presence of potential pathogenic antibiotic-resistant bacteria (PARB). Notably, the abundance of these PARB in BOF radishes decreased by 45.6% compared to COF. These findings underscore the efficacy of insect fertilizer in mitigating the transfer risks of ARGs to radish, highlighting the significance of sustainable agricultural practices in managing the environmental and health risks associated with ARGs.
Collapse
Affiliation(s)
- Zhengzheng Zhao
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, National Engineering Research Center of Microbial Pesticides, Huazhong Agricultural University, Wuhan 430070, China; Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070 Hubei, China
| | - Bingqi Gao
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, National Engineering Research Center of Microbial Pesticides, Huazhong Agricultural University, Wuhan 430070, China; Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070 Hubei, China
| | - Ahmed R Henawy
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, National Engineering Research Center of Microbial Pesticides, Huazhong Agricultural University, Wuhan 430070, China; Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070 Hubei, China; Department of Microbiology, Faculty of Agriculture, Cairo University, 12613 Giza, Egypt
| | - Kashif Ur Rehman
- German Institute of Food Technologies (DIL e.V.), Prof.-v.-Klitzing-Str. 7, 49610 Quakenbrück, Germany; Department of Microbiology, Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Zhuqing Ren
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070 Hubei, China; Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education, College of Animal Science, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Núria Jiménez
- Department of Chemical Engineering, Vilanova i la Geltrú School of Engineering (EPSEVG), Universitat Politècnica de Catalunya BarcelonaTech, Vilanova i la Geltrú 08800, Spain
| | - Longyu Zheng
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, National Engineering Research Center of Microbial Pesticides, Huazhong Agricultural University, Wuhan 430070, China; Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070 Hubei, China
| | - Feng Huang
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, National Engineering Research Center of Microbial Pesticides, Huazhong Agricultural University, Wuhan 430070, China; Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070 Hubei, China
| | - Ziniu Yu
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, National Engineering Research Center of Microbial Pesticides, Huazhong Agricultural University, Wuhan 430070, China; Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070 Hubei, China
| | - Chan Yu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China.
| | - Jibin Zhang
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, National Engineering Research Center of Microbial Pesticides, Huazhong Agricultural University, Wuhan 430070, China; Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070 Hubei, China.
| | - Minmin Cai
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, National Engineering Research Center of Microbial Pesticides, Huazhong Agricultural University, Wuhan 430070, China; Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070 Hubei, China.
| |
Collapse
|
6
|
Hatab MH, Ibrahim NS, Sayed WAA, Badran AMM, Rumpold BA. Impact of mediterranean fruit fly rearing residues and biological supplementation on performance of gimmizah chicks. Poult Sci 2025; 104:105198. [PMID: 40294550 PMCID: PMC12059389 DOI: 10.1016/j.psj.2025.105198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/27/2025] [Accepted: 04/18/2025] [Indexed: 04/30/2025] Open
Abstract
For a transformation of the global food system towards sustainability, circular approaches and nutrient-rich side-stream valorization are mandatory. Moreover, affordable and sustainable alternatives to corn, soy, and fish meal are needed in poultry production. Recently, insects and their derived products have gained research interest as alternative sources of conventional feed ingredients in poultry nutrition. The Mediterranean fruit fly (medfly; Ceratitis capitata) production industry using sterile insect technology amasses thousands tonnes of rearing residues annually. This study is the first to shed light on the potential use of medfly rearing residues (MFRR), as a partial replacement for corn and soybean in Gimmizah chicks' diets, with or without biological supplementation (BS). It evaluates their effects on growth, carcass characteristics, blood indices, serum biochemical and histological changes in internal organs. A 7-week trial was conducted using 240, 15-day-old Gimmizah chicks, which were randomly divided into four groups (6 replicates, 10 birds each): the first group (T1) was fed a corn-soybean control diet, the 2nd group (T2) fed the control diet enriched with 1 ml BS/kg diet. The 3rdgroup (T3) received the control diet after replacing 10 % of corn and soybean with MFRR meal, while the 4th group (T4) fed the 10 % replacement by MFRR combined with 1 ml of BS. All groups received isoenergetic and isoprotienic diets with free access to feed and water for 49 days trial period. Compared to the control, both BS and MFRR inclusion with or without BS (T4 and T3, respectively) positively improved body weight, feed consumption, feed conversion, performance index and carcass yield. Blood analysis showed increased red blood cells, hemoglobin, packed cell volume, total protein, albumin, globulins, triglycerides, cholesterol, thyroxine hormone, uric acid and creatinine, with no adverse histological alteration in the bursa or intestine. In conclusion, the study suggests that MFRR can effectively replace 10 % of traditional feed ingredients, with or without BS, enhancing chicks' performance and health. Further future studies are recommended for broader application of MFRR in poultry nutrition.
Collapse
Affiliation(s)
- Mahmoud H Hatab
- Biological Application Department, Nuclear Research Center, Egyptian Atomic Energy Authority, P.O.13759 Egypt
| | - Nashaat S Ibrahim
- Biological Application Department, Nuclear Research Center, Egyptian Atomic Energy Authority, P.O.13759 Egypt
| | - Waheed A A Sayed
- Biological Application Department, Nuclear Research Center, Egyptian Atomic Energy Authority, P.O.13759 Egypt
| | - Aml M M Badran
- Poultry Breeding Department, Animal Production Research Institute, Agriculture Research Center, Egypt
| | - Birgit A Rumpold
- Department Education for Sustainable Nutrition and Food Science, Technische Universität Berlin, Marchstr.23, D-10585 Berlin, Germany.
| |
Collapse
|
7
|
Calvo-Baltanás V, Vilcinskas A, Brück T, Kloas W, Wilke T, Rufino M, Henkel M, Zorn H, Monje O, Asseng S. The future potential of controlled environment agriculture. PNAS NEXUS 2025; 4:pgaf078. [PMID: 40177662 PMCID: PMC11961353 DOI: 10.1093/pnasnexus/pgaf078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 02/08/2025] [Indexed: 04/05/2025]
Abstract
The production of high-quality food needs to increase to feed the growing global population. Controlled environment agriculture (CEA) systems in a vertical farm setting-in which several layers are stacked above each other, thus increasing the area for growth-can substantially boost productivity for crops, algae, mushrooms, fish, insects, and cultured meat. These systems are independent of climate, weather, and region, offering reduced environmental impact, although they come with high energy demands. An easy-to-understand, quantitative performance assessment of the theoretical potential for these 6 CEA systems is proposed here. It compares them against the world's main food production system: field production of maize, wheat, rice, and soybean. CEA could play a pivotal role in the global food supply if efficiencies in energy, control of growth environments, and waste stream utilization are vastly improved. Technological advancements, targeted policy support and public engagement strategies will be necessary to significantly reduce production costs and increase public acceptance.
Collapse
Affiliation(s)
| | - Andreas Vilcinskas
- Branch for Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Ohlebergsweg 12, 35392 Giessen, Germany
- Institute for Insect Biotechnology, Justus Liebig University Giessen, Heinrich-Buff-Ring 26, 35392 Giessen, Germany
- LOEWE Centre for Translational Biodiversity Genomics, Senckenberganlage 25, 60325 Frankfurt, Germany
| | - Thomas Brück
- TUM CREATE, 1 Create Way #10-02 Create Tower, 138602 Singapore, Singapore
- Department of Chemistry, School of Natural Sciences, Technical University of Munich, Lichtenbergstraße 4, 85748 Garching, Germany
- TUM AlgaeTech Center, Department of Aerospace and Geodesy, School of Engineering and Design, Technical University of Munich, Lise-Meitner Str. 9, 85521 Ottobrunn, Germany
| | - Werner Kloas
- Department of Fish Biology, Fisheries and Aquaculture, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, 12587 Berlin, Germany
- Faculty of Life Sciences, Humboldt University of Berlin, Invalidenstr. 42, 10099 Berlin, Germany
| | - Thomas Wilke
- Department of Animal Ecology and Systematics, Justus Liebig University Giessen, Heinrich-Buff-Ring 26, D-35392 Giessen, Germany
| | - Mariana Rufino
- Cellular Agriculture, TUM School of Life Sciences, Technical University of Munich, Gregor-Mendel-Str. 4, 85354 Freising, Germany
| | - Marius Henkel
- Cellular Agriculture, TUM School of Life Sciences, Technical University of Munich, Gregor-Mendel-Str. 4, 85354 Freising, Germany
| | - Holger Zorn
- Branch for Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Ohlebergsweg 12, 35392 Giessen, Germany
- Institute of Food Chemistry and Food Biotechnology, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| | - Oscar Monje
- Aetos Systems Inc., Air Revitalization Lab, Kennedy Space Center, Merritt Island, FL 32899, USA
| | - Senthold Asseng
- TUM CREATE, 1 Create Way #10-02 Create Tower, 138602 Singapore, Singapore
- Cellular Agriculture, TUM School of Life Sciences, Technical University of Munich, Gregor-Mendel-Str. 4, 85354 Freising, Germany
- Digital Agriculture, HEF World Agricultural Systems Center, Technical University of Munich, Liesel-Beckmann-Straße 2, D-85354 Freising, Germany
| |
Collapse
|
8
|
Bruno D, Casartelli M, De Smet J, Gold M, Tettamanti G. Review: A journey into the black soldier fly digestive system: From current knowledge to applied perspectives. Animal 2025:101483. [PMID: 40222868 DOI: 10.1016/j.animal.2025.101483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 02/27/2025] [Accepted: 02/28/2025] [Indexed: 04/15/2025] Open
Abstract
Recent literature on the black soldier fly (BSF) confirms the deep interest in this species for the bioconversion of organic waste, including challenging substrates that contain recalcitrant macromolecules, and highlights the growing trend in new applications for this insect. While protein meal remains the most prominent use of BSF larvae, emerging research is increasingly exploring alternative applications of biomolecules derived from these larvae, including proteins, lipids, chitin, and antimicrobial peptides. Moreover, the high feeding versatility of this insect is being recognised in fields beyond animal feed, such as bioremediation, where its potential ability to degrade contaminants can present significant ecological benefits. Although there is now widespread agreement that a thorough understanding of BSF biology is essential to enlarge the range of applications in which this insect may offer new sustainable solutions, studies on the digestive system are still limited and we are far from having a whole comprehension of the functional features of this complex structure. In fact, the gut is not only the core of the bioconversion process but also represents the first defence barrier against ingested pathogens, and due to the presence of a highly versatile gut microbiota, it may be a potential source of novel microbes and enzymes that could find application in various biotechnological sectors. This review aims to provide a comprehensive overview of the current knowledge on the BSF midgut -the central region of the gut responsible for nutrient digestion and absorption- in both larvae and adults, together with information about mouthparts and the organisation of the alimentary canal. Moreover, starting from the most recent studies on the midgut and its microbiota, we discuss implications for improving larval production, exploiting challenging substrates, and mitigating pollutants in contaminated biomasses.
Collapse
Affiliation(s)
- D Bruno
- Department of Biotechnology and Life Sciences, University of Insubria, via J.H. Dunant, 3, 21100 Varese, Italy
| | - M Casartelli
- Department of Biosciences, University of Milano, via Celoria, 26, 20133 Milano, Italy; BAT Center-Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Napoli Federico II, Piazza Carlo di Borbone, 1, 80055 Portici, Italy
| | - J De Smet
- Department of Microbial and Molecular Systems, KU Leuven Campus Geel, Kleinhoefstraat, 4, 2440 Geel, Belgium
| | - M Gold
- Institute of Food, Nutrition and Health, ETH Zürich, Schmelzbergstrasse, 9, 8092 Zürich, Switzerland
| | - G Tettamanti
- Department of Biotechnology and Life Sciences, University of Insubria, via J.H. Dunant, 3, 21100 Varese, Italy; BAT Center-Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Napoli Federico II, Piazza Carlo di Borbone, 1, 80055 Portici, Italy.
| |
Collapse
|
9
|
Reyer H, Mielenz M, Daş G, Metges CC, Wimmers K. Microbial profiling of black soldier fly larvae reared on substrates supplemented with different mineral sources originating from phosphorus recycling technologies. Anim Microbiome 2025; 7:14. [PMID: 39930540 PMCID: PMC11812260 DOI: 10.1186/s42523-025-00380-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 01/23/2025] [Indexed: 02/13/2025] Open
Abstract
BACKGROUND Innovations to establish agricultural value chains utilising side streams and their reintegration into the feed and food supply are of great importance. Recyclates derived from biomass and waste are therefore becoming increasingly important as sources of nutrients. The larvae of the black soldier fly (BSF; Hermetia illucens) demonstrate considerable potential as livestock feed due to their ability to utilise a wide range of organic substrates. In this study, BSF larvae (BSFL) were reared on four different substrates: chicken feed diet (CD), high-fibre Gainesville fly diet (FD), or FD supplemented either with biochar (FD + BCH) or single superphosphate (FD + SSP) recyclates from sewage sludge processing. To validate the hypothesis that endogenous and substrate-associated microbiota significantly contribute to substrate conversion, the microbiota profiles of BSFL gut and frass were analysed by 16S rRNA gene amplicon sequencing. Results were associated to the different substrates as well as body composition, growth performance data, and mineral concentration of the larvae. RESULTS The CD substrate was superior in terms of larval growth, although it caused a lower microbial alpha diversity in the larval intestine and frass compared to FD, with a dominance of Morganellaceae and families of Lactobacillales. The addition of the two sewage sludge derived products to the FD substrate significantly increased the calcium content of BSFL, while the phosphorus content was only increased by the addition of SSP. The shifts in the microbiota profiles of BSFL gut and frass indicated that BCH contributed to the regulation of the microbial milieu with suppressing the growth of potentially pathogenic microbes. The addition of SSP resulted in an enrichment of microorganisms with attributed phosphate-solubilising properties such as Pseudomonas and fungal species, likely being responsible for improving the bioavailability of phosphorus from the substrate. CONCLUSIONS The results demonstrate the high adaptability of the BSFL and its ability to change the substrate through specific microbiota in such a way that conditions are created for an optimal nutrient supply and thus growth of the larvae.
Collapse
Affiliation(s)
- Henry Reyer
- Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Manfred Mielenz
- Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Gürbüz Daş
- Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Cornelia C Metges
- Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany.
| | - Klaus Wimmers
- Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
- Faculty of Agriculture and Environmental Sciences, Professorship of Animal Breeding and Genetics, University of Rostock, Justus-Von-Liebig-Weg 6, 18059, Rostock, Germany
| |
Collapse
|
10
|
Mostafaie A, Silva ARR, N Pinto J, Prodana M, Lopes IG, Murta D, Brooks BW, Loureiro S, Cardoso DN. Towards circularity for agro-waste: Minimal soil hazards of olive pomace bioconverted frass by insect larvae as an organic fertilizer. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 375:124151. [PMID: 39874695 DOI: 10.1016/j.jenvman.2025.124151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 01/08/2025] [Accepted: 01/13/2025] [Indexed: 01/30/2025]
Abstract
As global populations escalate and the demand for food and feed intensifies, the generation of agri-food waste is becoming an increasingly critical issue. Addressing this challenge is crucial for optimizing food production and advancing sustainable waste management practices. In this context, insects, including the Black Soldier Fly (BSF, Hermetia illucens), present opportunities for circularity through the bioconversion of organic waste. Olive pomace (OP), a by-product of the olive oil industry, is known for its phytotoxic properties due to its high phenolic content and acidic pH. Using BSF for OP bioconversion could mitigate the environmental disposal of this by-product while producing valuable resources such as protein, fats, and insect frass. Insect frass is the excrement of insects that can be used as an entomofertilizer. Building from BSF feeding on OP, this study aimed to evaluate the safety of applying the resultant frass in soil amendment applications for the first time. Here are explored the effects of olive pomace-derived frass (OP-BSFfrass) on soil health and plant growth by evaluating the soil model invertebrate Enchytraeus crypticus and phytotoxicity bioassays using the forage crop ryegrass (Lolium perenne) and the agricultural species broccoli (Brassica oleracea). Our methodologies included direct soil applications and aqueous extract tests, with a range of OP-BSFfrass concentrations (from 0 to 9.8% w/w) and observation periods (2 and 32d). Despite initial concerns over the phytotoxic nature of OP, our findings revealed that OP-BSFfrass did not adversely affect the survival of E. crypticus and even enhanced its reproductive success. Furthermore, while higher frass concentrations elicited some adverse effects on plant germination and growth, these were limited to levels unlikely to be used in practical applications. The outcomes of this study suggest that OP-BSFfrass could be safely integrated into the soil as a fertilizer, promoting a circular bio-economy by converting waste into economically and environmentally friendly products. This study underscores the potential of insects in transforming waste management paradigms and enhancing food security, particularly in regions like the Mediterranean, thus contributing to a more sustainable and resilient agricultural sector.
Collapse
Affiliation(s)
- Amid Mostafaie
- CESAM - Centre for Environmental and Marine Studies, Department of Biology, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Ana Rita R Silva
- CESAM - Centre for Environmental and Marine Studies, Department of Biology, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - José N Pinto
- CESAM - Centre for Environmental and Marine Studies, Department of Biology, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Marija Prodana
- CESAM - Centre for Environmental and Marine Studies, Department of Biology, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Ivã G Lopes
- Department of Biosystems and Technology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Daniel Murta
- Ingredient Odyssey SA-Entogreen, Rua Cidade de Santarém, 140, Santarém, Portugal, 2005-079; Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health & Science, Caparica, 2829-511, Almada, Portugal
| | - Bryan W Brooks
- Department of Environmental Science, Baylor University, Waco, TX, 76798, United States
| | - Susana Loureiro
- CESAM - Centre for Environmental and Marine Studies, Department of Biology, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Diogo N Cardoso
- CESAM - Centre for Environmental and Marine Studies, Department of Biology, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
11
|
Dong Y, Xu X, Qian L, Kou Z, Andongma AA, Zhou L, Huang Y, Wang Y. Genome-wide identification of yellow gene family in Hermetia illucens and functional analysis of yellow-y by CRISPR/Cas9. INSECT SCIENCE 2025; 32:115-126. [PMID: 38685755 DOI: 10.1111/1744-7917.13371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 05/02/2024]
Abstract
The yellow gene family plays a crucial role in insect pigmentation. It has potential for use as a visible marker gene in genetic manipulation and transgenic engineering in several model and non-model insects. Sadly, yellow genes have rarely been identified in Stratiomyidae species and the functions of yellow genes are relatively unknown. In the present study, we first manually annotated and curated 10 yellow genes in the black soldier fly (BSF), Hermetia illucens (Stratiomyidae). Then, the conserved amino acids in the major royal jelly proteins (MRJPs) domain, structural architecture and phylogenetic relationship of yellow genes in BSF were analyzed. We found that the BSF yellow-y, yellow-c and yellow-f genes are expressed at all developmental stages, especially in the prepupal stage. Using the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) system, we successfully disrupted yellow-y, yellow-c and yellow-f in the BSF. Consequently, the mutation of yellow-y clearly resulted in a pale-yellow body color in prepupae, pupae and adults, instead of the typical black body color of the wild type. However, the mutation of yellow-c or yellow-f genes did not result in any change in color of the insects, when compared with the wild type. Our study indicates that the BSF yellow-y gene plays a role in body pigmentation, providing an optimal marker gene for the genetic manipulation of BSF.
Collapse
Affiliation(s)
- Yongcheng Dong
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, College of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Xiaomiao Xu
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, College of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Lansa Qian
- Chinese Academy of Sciences (CAS) Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, CAS, Shanghai, China
| | - Zongqing Kou
- Chinese Academy of Sciences (CAS) Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, CAS, Shanghai, China
| | - Awawing A Andongma
- Insect and Parasite Ecology Group, Lancaster Environment Centre, Lancaster University, Lancaster, UK
| | - Lijun Zhou
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, College of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Yongping Huang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yaohui Wang
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, College of Plant Protection, Anhui Agricultural University, Hefei, China
| |
Collapse
|
12
|
Nayak A, Klüber P. The hidden drivers: Unraveling the impact of density, moisture, and scale on Hermetia illucens rearing. PLoS One 2025; 20:e0317049. [PMID: 39775753 PMCID: PMC11709243 DOI: 10.1371/journal.pone.0317049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025] Open
Abstract
The black soldier fly (Hermetia illucens) is a saprophagous insect known for bioconverting organic waste, potentially offering environmental benefits, such as contributing to waste reduction and nutrient cycling. The performance of larvae varies significantly with factors substrate moisture, larval density, and scale of production. Three experiments were conducted using a mix of spent mushroom substrate (SMS) and chicken feed (CF). In the first experiment, 250 larvae were reared on 100 g dry matter (DM) feed at moisture levels of 65-75%. Results showed that the average individual larval weight, total biomass, and feed conversion ratio (FCR) improved with increased moisture. In the second experiment, 300 and 350 larvae/box were tested at 70% and 75% moisture. The highest average individual larval fresh weight (158.6 mg) was observed at 70% moisture with 250 larvae, while the highest biomass was achieved at 75% moisture with 300 larvae. Finally, different scales (10-2,500 g feed with 25-6,500 larvae) were tested with a similar feeding rate. The highest individual larval weight was recorded at the 100 g scale, with no clear correlation between weight and scale. However, the 50 g scale achieved the highest substrate reduction (33.2%). Overall, this study underscores the need to adjust moisture, density, and scale to nutrient conversion efficiency when using SMS, CF or other diets. The optimal results for the SMS feed mix were observed at 75% substrate moisture, 250 larvae per 100 g DM, and at approximately 2 larvae per cm2.
Collapse
Affiliation(s)
- Anjani Nayak
- Institute of Food Chemistry and Food Biotechnology, Justus Liebig University Giessen, Giessen, Germany
| | - Patrick Klüber
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Giessen, Germany
| |
Collapse
|
13
|
Sanchez-Hernandez JC, Megharaj M. Insect farming: A bioeconomy-based opportunity to revalorize plastic wastes. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2025; 23:100521. [PMID: 39867963 PMCID: PMC11758129 DOI: 10.1016/j.ese.2024.100521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 12/19/2024] [Accepted: 12/19/2024] [Indexed: 01/28/2025]
Abstract
Managing plastic waste is one of the greatest challenges humanity faces in the coming years. Current strategies-landfilling, incineration, and recycling-remain insufficient or pose significant environmental concerns, failing to address the growing volume of plastic residues discharged into the environment. Recently, increasing attention has focused on the potential of certain insect larvae species to chew, consume, and partially biodegrade synthetic polymers such as polystyrene and polyethylene, offering novel biotechnological opportunities for plastic waste management. However, insect-assisted plastic depolymerization is incomplete, leaving significant amounts of microplastics in the frass (or manure), limiting its use as a soil amendment. In this perspective, we propose a novel two-step bioconversion system to overcome these limitations, using insects to sustainably manage plastic waste while revalorizing its by-products (frass). The first step involves pyrolyzing microplastic-containing frass from mealworms (Tenebrio molitor larvae) fed on plastic-rich diets to produce biochar with enhanced adsorptive properties. The second stage integrates this biochar into the entomocomposting of organic residues, such as food waste, using black soldier fly (Hermetia illucens) larvae to produce nutrient-rich substrates enriched with carbon and nitrogen. This integrated system offers a potential framework for large-scale industrial applications, contributing to the bioeconomy by addressing both plastic waste and organic residue management. We critically examine the advantages and limitations of the proposed system based on current literature on biochar technology and entomocomposting. Key challenges and research opportunities are identified, particularly concerning the physiological and toxicological processes involved, to guide future efforts aimed at ensuring the scalability and sustainability of this innovative approach.
Collapse
Affiliation(s)
- Juan C. Sanchez-Hernandez
- Laboratory of Ecotoxicology, Institute of Environmental Sciences, University of Castilla-La Mancha, 45071, Toledo, Spain
| | - Mallavarapu Megharaj
- Global Centre for Environmental Remediation (GCER), College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW, 2308, Australia
| |
Collapse
|
14
|
Chen L, Xu M, Shang R, Xin Y, Wang G, Li Y, Wang Z, Wang X, Sun H, Li L. Evaluating Different Supplements on the Growth Performance and Bioconversion Efficiency of Kitchen Waste by Black Soldier Fly Larvae. INSECTS 2024; 16:22. [PMID: 39859603 PMCID: PMC11765844 DOI: 10.3390/insects16010022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/17/2024] [Accepted: 12/26/2024] [Indexed: 01/27/2025]
Abstract
Black soldier fly larvae (BSFL) convert kitchen waste into high-quality insect feed. However, the optimal amount of auxiliary materials needed to improve the physical and chemical properties of kitchen waste and enhance BSFL bioconversion efficiency remains unresolved. In this study, maize stover and BSFL frass were added to kitchen waste (in groups G2 and G3, respectively) to explore their effects on the growth performance and bioconversion efficiency of BSFL. The group with only kitchen waste, without the addition of maize stover or BSF frass, was used as the control group and labeled as G1. On the 5th day, the body length of the BSFL in the G2 group was significantly greater than that in G1 and G3 (p < 0.05). The dry matter weight loss rate in the G3 group was significantly lower compared to that of G1 and G2 (p < 0.05), and the feed conversion rate (FCR) of G1 was significantly lower than that of G2 and G3 (p < 0.01). In summary, adding maize stover and BSFL frass increased BSFL feed intake and improved body weight gain. However, these additives did not significantly enhance BSFL bioconversion efficiency. The organic matter in maize stover and BSFL frass was utilized by the BSFL, and the heavy metal levels in each group of BSFL did not exceed standard limits.
Collapse
Affiliation(s)
- Lifei Chen
- College of Agriculture and Biology, Shandong Province Engineering Research Center of Black Soldier Fly Breeding and Organic Waste Conversion, Liaocheng University, Liaocheng 252000, China; (M.X.); (R.S.); (Y.X.); (G.W.); (Y.L.); (Z.W.); (X.W.); (H.S.)
| | | | | | | | | | | | | | | | | | - Lusheng Li
- College of Agriculture and Biology, Shandong Province Engineering Research Center of Black Soldier Fly Breeding and Organic Waste Conversion, Liaocheng University, Liaocheng 252000, China; (M.X.); (R.S.); (Y.X.); (G.W.); (Y.L.); (Z.W.); (X.W.); (H.S.)
| |
Collapse
|
15
|
Klakankhai W, Nuntapong N, Meesin S, Yongsue T, Niyombandith T, Tainchum K. Rearing fly larvae on various substrates: nutrient composition of larvae and frass. ENVIRONMENTAL ENTOMOLOGY 2024; 53:1027-1034. [PMID: 39423168 DOI: 10.1093/ee/nvae102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/18/2024] [Accepted: 09/26/2024] [Indexed: 10/21/2024]
Abstract
Management solutions for waste in southern Thailand, such as fly larvae, are tested in a laboratory using different substrates and wastes from the Thai agricultural sector. The nutritional content of the immature stages of Musca domestica Linnaeus (Diptera: Muscidae) and Hermetia illucens (Linnaeus) (Diptera: Stratiomyidae) larvae, especially their protein and fat contents, makes them a potential animal feed. Laboratory strains of M. domestica and H. illucens were reared on selected substrates to examine how diet influenced their performance and nutritional composition. Waste from aquaculture, vegetables, and fruits in southern Thailand was examined for larval diet and showed promise as a rearing substrate for these insects. Musca domestica larvae reared on fishery waste achieved the highest larval weight and fat content, whereas H. illucens larvae reared on an aquaculture waste diet had the highest protein content. These findings imply aquaculture waste could be the best choice for large-scale fly larvae production, particularly as a protein feed additive.
Collapse
Affiliation(s)
- Warin Klakankhai
- Agricultural Innovation and Management Division, Faculty of Natural Resources, Prince of Songkla University, Songkhla, Thailand
| | - Nutt Nuntapong
- Aquatic Science and Innovative Management Division, Faculty of Natural Resources, Prince of Songkla University, Songkhla, Thailand
| | - Sawanya Meesin
- Aquatic Science and Innovative Management Division, Faculty of Natural Resources, Prince of Songkla University, Songkhla, Thailand
| | - Tepyuda Yongsue
- Agricultural Innovation and Management Division, Faculty of Natural Resources, Prince of Songkla University, Songkhla, Thailand
| | - Taweesak Niyombandith
- Animal Production Innovation and Management Division, Faculty of Natural Resources, Prince of Songkla University, Songkhla, Thailand
| | - Krajana Tainchum
- Agricultural Innovation and Management Division, Faculty of Natural Resources, Prince of Songkla University, Songkhla, Thailand
| |
Collapse
|
16
|
Malheiro C, Prodana M, Patinha C, Morgado RG, Loureiro S. Insect frass from upcycling vegetable by-products with cereals: Effects on the soil properties, plant development and soil invertebrate fitness. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 372:123234. [PMID: 39577183 DOI: 10.1016/j.jenvman.2024.123234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 10/15/2024] [Accepted: 11/01/2024] [Indexed: 11/24/2024]
Abstract
The use of insects in organic management systems is expanding due to their ability to recycle waste into valuable co-products for agriculture, notably frass, constituted by the insect's excrements, larval exuviae, and remaining undigested feedstock. This study aimed to assess the effects of different application rates of frass (0.16, 0.32, 0.64, 1.28, 2.56 and 5.12%) produced by black soldier fly Hermetia illucens larvae (BSFL) on the survival and reproduction of two non-target invertebrate species, the enchytraeid Enchytraeus crypticus and the collembolan Folsomia candida, and early development of three representative species of crops as onion Allium cepa, turnip Brassica rapa and tomato Solanum lycopersicum. Chemical analyses were conducted to evaluate changes in the soil properties. Results showed that BSFL frass did not impact the invertebrates' survival while significantly enhancing the production of E. crypticus juveniles (after 21 days). F. candida juveniles remained similar (after 28 days). Seed germination decreased at the highest frass rate (5.12%), while the development was promoted at intermediate rates (0.64%-1.28%). The different outcomes may be linked to changes in certain soil parameters, such as the soil pH and electrical conductivity, the soil organic matter, and the availability of nutrients. In summary, frass posed no risk to the tested invertebrate species but may hinder seed germination at high rates, representing a risk for agricultural production. Nevertheless, intermediate rates of BSFL frass promoted plant development, showing potential as a sustainable alternative to conventional fertilizers. Further research is needed to ensure its safe and efficient application in agriculture.
Collapse
Affiliation(s)
- C Malheiro
- CESAM - Centre for Environmental and Marine Studies & Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| | - M Prodana
- CESAM - Centre for Environmental and Marine Studies & Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - C Patinha
- GEOBIOTEC - GeoBioSciences, GeoTechnologies and GeoEngineering & Departament of Geosciences, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - R G Morgado
- CESAM - Centre for Environmental and Marine Studies & Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - S Loureiro
- CESAM - Centre for Environmental and Marine Studies & Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| |
Collapse
|
17
|
Zhang R, Zhang Y, Xi Y, Zhou J, Han T, Ma Q, Wang C, Zhu F, Ye X. Effect of black soldier fly larvae frass addition on humus content during low temperature co-composting. BIORESOURCE TECHNOLOGY 2024; 412:131379. [PMID: 39214182 DOI: 10.1016/j.biortech.2024.131379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Initiating aerobic fermentation under low temperature is the main challenge for winter livestock manure composting. This study aims to address this issue by applying black soldier fly larvae (BSFL) frass as a co-composting additive to enhance the low-temperature composting process. Specifically, this work explored the effects of chicken manure and BSFL frass co-composting on the temperature, humus content, and microorganisms with fresh weight ratio of 2:1, 1:1, 1:2 (w/w) at 6 °C. The result showed frass could rapidly rise the temperature to 50 °C and significantly increased the humus content by 15.6 % ∼ 26.3 %. Moreover, microbial analysis revealed that Sphingobacteriaceae accelerated temperature rise via low-temperature reproduction, creating proper temperature for thermophilic bacteria (Truepera and Georgia). Additionally, Cellulomonas and other bacteria promoted organic matter degradation and participated in humus formation. This study presents a novel solution for low-temperature composting, providing practical insights for improving manure management in winter.
Collapse
Affiliation(s)
- Ruju Zhang
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; Key Laboratory of Crop and Livestock Integration, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China
| | - Yingpeng Zhang
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; Key Laboratory of Crop and Livestock Integration, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China
| | - Yonglan Xi
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; Key Laboratory of Crop and Livestock Integration, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China
| | - Jin Zhou
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China
| | - Ting Han
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; Key Laboratory of Crop and Livestock Integration, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China
| | - Qiuqin Ma
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; Key Laboratory of Crop and Livestock Integration, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China
| | - Cong Wang
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; Key Laboratory of Crop and Livestock Integration, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China
| | - Fei Zhu
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; Key Laboratory of Crop and Livestock Integration, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China
| | - Xiaomei Ye
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; Key Laboratory of Crop and Livestock Integration, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China.
| |
Collapse
|
18
|
Magro AD, Lovarelli D, Bacenetti J, Guarino M. The potential of insect frass for sustainable biogas and biomethane production: A review. BIORESOURCE TECHNOLOGY 2024; 412:131384. [PMID: 39218362 DOI: 10.1016/j.biortech.2024.131384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/27/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Insect-based protein production has gained traction in recent years. This has led to the increasing production of frass, the residual substrate from insect farming. As a relatively new substrate with characteristics that are not widely known, its energetic potential still needs to be investigated. In this context, this literature review aims to evaluate the potential of frass as a feedstock for bioenergy production through anaerobic digestion. From the literature search, 11 studies were selected, and showed a wide range of biogas (44 m3/ton VS to 668 m3/ton VS) and methane (26 m3/ton VS to 502 m3/ton VS) production potentials from insect frass, mostly comparable with traditional biomasses of liquid and solid slurry. Results are influenced by factors such as substrate type, digestion conditions and presence of co-digestion substrates. The need of further investigation on the economic viability has been highlighted, with a focus on the possibility of upgrading biogas to vehicle-grade biomethane.
Collapse
Affiliation(s)
- Adele Dal Magro
- Department of Environmental Science and Policy, Università degli Studi di Milano, via Celoria 2, 20133 Milan, Italy.
| | - Daniela Lovarelli
- Department of Environmental Science and Policy, Università degli Studi di Milano, via Celoria 2, 20133 Milan, Italy.
| | - Jacopo Bacenetti
- Department of Environmental Science and Policy, Università degli Studi di Milano, via Celoria 2, 20133 Milan, Italy.
| | - Marcella Guarino
- Department of Environmental Science and Policy, Università degli Studi di Milano, via Celoria 2, 20133 Milan, Italy.
| |
Collapse
|
19
|
Alciatore G, Peguero DA, Gold M, Zurbrügg C, Niu M, Bargetze F, Mathys A. Preservation of agri-food byproducts by acidification and fermentation in black soldier fly larvae bioconversion. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 186:109-118. [PMID: 38875912 DOI: 10.1016/j.wasman.2024.05.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/05/2024] [Accepted: 05/25/2024] [Indexed: 06/16/2024]
Abstract
Maintaining a consistent supply of feedstock for efficient bioconversion of black soldier fly larvae (BSFL) presents challenges due to the fluctuating availability of biowastes and agri-food products. To address the challenge of consistent feedstock supply for BSFL, this study investigated the influence of three preservation methods: wild fermentation, inoculated fermentation, and acidification on agri-food by-products applied over three storage durations (1, 7, and 14 days), evaluating their impact on BSFL bioconversion, and feedstock nutrient and microbiota composition. The preserved feedstocks were characterized for gross nutrient, sugar, fermentation metabolite, and bacterial community analyses. All feedstock preservation methods and storage durations had a high bioconversion rate (21-25 % dry mass) and wet larval mass (170-196 mg). Notably, 7-and-14-day acidified feedstock had a significantly higher bioconversion rate compared to fermented feedstock. Acidification preserved feedstock nutrients best with only a 10 % difference compared to initial nutrient values. Fermentation produced typical lactic acid fermentation metabolites with reducing sugar contents; however, adding a lactic acid bacterial inoculum (7 log10 CFU kg feedstock-1) had no benefit, presumably due to the high nutrient content and existing richness in lactic acid bacteria. Preservations had little influence on Enterobacteriaceae (6.2-7.5 log10 CFU g-1) in freshly harvested larvae. Future research should assess the acidification and fermentation of different BSFL feedstocks and investigate the roles of feedstock pH, organic acids, and fermentation metabolites in more detail. Therefore, this study advances toward reliable and efficient insect-based nutrient recovery from agri-food by-products within the food system.
Collapse
Affiliation(s)
- Giacomo Alciatore
- ETH Zurich, Institute of Food, Nutrition and Health, Laboratory of Sustainable Food Processing, Schmelzbergstrasse 9, 8092 Zurich, Switzerland; Eawag: Swiss Federal Institute of Aquatic Science and Technology, Sandec: Department Sanitation, Water and Solid Water for Development, Überlandstrasse 133, 8600 Dübendorf, Switzerland
| | - Daniela A Peguero
- ETH Zurich, Institute of Food, Nutrition and Health, Laboratory of Sustainable Food Processing, Schmelzbergstrasse 9, 8092 Zurich, Switzerland; Eawag: Swiss Federal Institute of Aquatic Science and Technology, Sandec: Department Sanitation, Water and Solid Water for Development, Überlandstrasse 133, 8600 Dübendorf, Switzerland
| | - Moritz Gold
- ETH Zurich, Institute of Food, Nutrition and Health, Laboratory of Sustainable Food Processing, Schmelzbergstrasse 9, 8092 Zurich, Switzerland.
| | - Christian Zurbrügg
- Eawag: Swiss Federal Institute of Aquatic Science and Technology, Sandec: Department Sanitation, Water and Solid Water for Development, Überlandstrasse 133, 8600 Dübendorf, Switzerland
| | - Mutian Niu
- ETH Zurich, Institute of Agricultural Sciences, Animal Nutrition, Universitätstrasse 2, 8092 Zurich, Switzerland
| | - Franco Bargetze
- REPLOID Schweiz AG, Lerchenfeldstrasse 3, 9014 St. Gallen, Switzerland
| | - Alexander Mathys
- ETH Zurich, Institute of Food, Nutrition and Health, Laboratory of Sustainable Food Processing, Schmelzbergstrasse 9, 8092 Zurich, Switzerland
| |
Collapse
|
20
|
Abd Manan F, Yeoh YK, Chai TT, Wong FC. Unlocking the potential of black soldier fly frass as a sustainable organic fertilizer: A review of recent studies. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 367:121997. [PMID: 39111002 DOI: 10.1016/j.jenvman.2024.121997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/24/2024] [Accepted: 07/24/2024] [Indexed: 08/15/2024]
Abstract
Using Hermetia illucens, or Black Soldier Fly (BSF) frass as an organic fertilizer is becoming increasingly popular in many countries. As a byproduct derived from BSF larvae that feed on organic waste, BSF frass has tremendous potential for preserving the environment and promoting the circular economy. Since it has diverse biochemical properties influenced by various production and environmental factors, further research is needed to evaluate its potential for extensive use in crop production and agriculture. Our review summarizes recent findings in BSF frass research by describing its composition and biochemical properties derived from various studies, including nutrient contents, biostimulant compounds, and microbial profiles. We also discuss BSF frass fertilizers' effectiveness on plant growth and contribution to environmental sustainability. Great compositions of BSF frass increase the quality of plants/crops by establishing healthy soil and improving the plants' immune systems. Special emphasis is given to potentially replacing conventional fertilizer to create a more sustainable cropping system via organic farming. Besides, we discuss the capability of BSF bioconversion to reduce greenhouse gas emissions and improve the socioeconomic aspect. The prospects of BSF frass in promoting a healthy environment by reducing greenhouse gas emissions and improving the socioeconomic aspects of communities have also been highlighted. Overall, BSF frass offers an alternative approach that can be integrated with conventional fertilizers to optimize the cropping system. Further studies are needed to fully explore its potential in establishing sustainable system that can enhance socioeconomic benefits in the future.
Collapse
Affiliation(s)
- Fazilah Abd Manan
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, Skudai, 81310, Johor, Malaysia.
| | - Yao-Kai Yeoh
- Department of Chemical Science, Faculty of Science, Universiti Tunku Abdul Rahman, Kampar, 31900, Perak, Malaysia
| | - Tsun-Thai Chai
- Department of Chemical Science, Faculty of Science, Universiti Tunku Abdul Rahman, Kampar, 31900, Perak, Malaysia; Center for Agriculture and Food Research, Universiti Tunku Abdul Rahman, Kampar, 31900, Perak, Malaysia
| | - Fai-Chu Wong
- Department of Chemical Science, Faculty of Science, Universiti Tunku Abdul Rahman, Kampar, 31900, Perak, Malaysia; Center for Agriculture and Food Research, Universiti Tunku Abdul Rahman, Kampar, 31900, Perak, Malaysia
| |
Collapse
|
21
|
Arabzadeh G, Delisle-Houde M, Vandenberg GW, Deschamps MH, Dorais M, Derome N, Tweddell RJ. Suppressive Effect of Black Soldier Fly Larvae Frass on Fusarium Wilt Disease in Tomato Plants. INSECTS 2024; 15:613. [PMID: 39194818 DOI: 10.3390/insects15080613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/03/2024] [Accepted: 08/12/2024] [Indexed: 08/29/2024]
Abstract
This study investigated the effect of black soldier fly larvae (BSFL) frass derived from BSFL reared on a diet composed of fruit/vegetable/bakery/brewery residues (FVBB diet) and on the Gainesville diet (GV diet) on the development of tomato (Solanum lycopersicum) Fusarium wilt caused by Fusarium oxysporum f. sp. lycopersici (FOL). Tomato plants were grown in a substrate inoculated with FOL that was amended (10%, v:v) or not (control) with either a commercial compost, pasteurized (70 °C for 1 h) frass from BSFL reared on a FVBB diet, non-pasteurized frass from BSFL reared on a FVBB diet, pasteurized frass from BSFL reared on the GV diet, or non-pasteurized frass from BSFL reared on the GV diet. The results show that frass from BSFL reared on the GV diet, irrespective of pasteurization, inhibited FOL root colonization and reduced the severity of tomato Fusarium wilt to a far greater extent than frass from BSFL reared on a FVBB diet and commercial compost made of peat, seaweed, and shrimps. This study suggests that BSFL frass, depending on the larval rearing diet, has the potential to serve as a pasteurized or non-pasteurized soil amendment with prophylactic properties against FOL in tomato plants, opening new avenues of research for the valorization of BSFL frass.
Collapse
Affiliation(s)
- Ghazaleh Arabzadeh
- Département des Sciences Animales, Université Laval, Québec, QC G1V 0A6, Canada
| | | | - Grant W Vandenberg
- Département des Sciences Animales, Université Laval, Québec, QC G1V 0A6, Canada
| | | | - Martine Dorais
- Département de Phytologie, Université Laval, Québec, QC G1V 0A6, Canada
| | - Nicolas Derome
- Département de Biologie, Université Laval, Québec, QC G1V 0A6, Canada
| | | |
Collapse
|
22
|
Lopes IG, Wiklicky V, Vinnerås B, Yong JWH, Lalander C. Recirculating frass from food waste bioconversion using black soldier fly larvae: Impacts on process efficiency and product quality. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 366:121869. [PMID: 39029172 DOI: 10.1016/j.jenvman.2024.121869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/06/2024] [Accepted: 07/12/2024] [Indexed: 07/21/2024]
Abstract
Biowaste generation is increasing worldwide and inadequate disposal has strong negative impacts on food systems and ecosystems. Biodigestion of biowaste using black soldier fly (Hermetia illucens) larvae (BSFL) generates valuable by-products such as animal feed (larval biomass) and organic fertiliser (frass). However, the latter is typically unstable immediately after waste conversion and is thus unsafe for use as a fertilizer in terms of maturity. This study evaluated recirculation of frass within bioconversion of post-consumer food waste (FW) as a dietary component for BSFL to improve the quality of the subsequent frass obtained. Frass was introduced at increasing inclusion levels replacing food waste (2.5-100% on wet-weight basis) as part of the larvae's feeding substrate. Bioconversion efficiency and material reduction were significantly reduced by frass inclusion, while larval yield per experimental unit remained unchanged. When considering only the waste component in the larval diet, larval yield (dry-weight basis) ranged between 207 (0% frass inclusion) and 403 (40% frass inclusion) kg tonne FW-1, thus increasing by up to 94% at higher frass inclusion. With increasing dietary inclusion rate of frass from 0% to 100%, crude protein content of larval biomass increased by 41%, while fat content was reduced by 32%. The recirculated frass (obtained after including frass in the larval diet) had elevated concentrations of P, K, S, Na and B and around 6% lower organic matter content, demonstrating a higher degree of decomposition. Frass inclusion in the larval diet generated recirculated frass that were more stable and mature, as indicated by self-heating capacity, CO2 and NH3 volatilisation, seed germination bioassays and other parameters. It was concluded that frass recirculation improves waste bioconversion efficiency in relation to food waste unit, as well as larval biomass and frass quality, ensuring safer use as a fertilizer.
Collapse
Affiliation(s)
- Ivã Guidini Lopes
- Department of Biosystems and Technology, Swedish University of Agricultural Sciences, Alnarp, Sweden.
| | - Viktoria Wiklicky
- Department of Energy and Technology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Björn Vinnerås
- Department of Energy and Technology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Jean Wan Hong Yong
- Department of Biosystems and Technology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Cecilia Lalander
- Department of Energy and Technology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
23
|
Wu N, Ma Y, Yu X, Wang X, Wang Q, Liu X, Xu X. Black soldier fly larvae bioconversion and subsequent composting promote larval frass quality during pig and chicken manure transformation process. BIORESOURCE TECHNOLOGY 2024; 402:130777. [PMID: 38701978 DOI: 10.1016/j.biortech.2024.130777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/28/2024] [Accepted: 04/29/2024] [Indexed: 05/06/2024]
Abstract
This research systematically assessed the changes in carbon, nitrogen and microbial profiling during pig and chicken manure transformation by black soldier fly larvae (BSFL) and subsequent composting process. BSFL had higher conversion efficiency for chicken manure. The pH, phosphorus and potassium contents in fresh BSFL frass increased than raw manure, but conductivity, total-/nitrate-/ammonium-nitrogen decreased. After BSFL conversion, pig manure had a larger nitrogen loss (25 %) while chicken manure had a larger carbon loss (32 %). During subsequent composting, the indicator changes (e.g. humus, ammonium nitrogen) in frass composts basically remained stable after 20-30 days. Compared to natural composts, frass composts had higher humification degree, cellulase activities, and more cellulose-degrading bacteria. Subsequent composting further reduced potential pathogens (reduced by 98.9 %-99.7 % than raw manure), and elevated the aromaticity and humification of frass. The findings gave an insight into the maturation management of manure-sourced insect frass.
Collapse
Affiliation(s)
- Nan Wu
- Key Laboratory of Smart Breeding (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Tianjin Agricultural University, Tianjin 300392, China; College of Engineering and Technology, Tianjin Agricultural University, Tianjin 300392, China
| | - Ye Ma
- Key Laboratory of Smart Breeding (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Tianjin Agricultural University, Tianjin 300392, China; College of Agronomy and Resource and Environment, Tianjin Agricultural University, Tianjin 300392, China
| | - Xiaohui Yu
- Key Laboratory of Smart Breeding (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Tianjin Agricultural University, Tianjin 300392, China; College of Engineering and Technology, Tianjin Agricultural University, Tianjin 300392, China
| | - Xiaobo Wang
- Key Laboratory of Smart Breeding (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Tianjin Agricultural University, Tianjin 300392, China; College of Agronomy and Resource and Environment, Tianjin Agricultural University, Tianjin 300392, China
| | - Qing Wang
- Key Laboratory of Smart Breeding (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Tianjin Agricultural University, Tianjin 300392, China; College of Engineering and Technology, Tianjin Agricultural University, Tianjin 300392, China
| | - Xinyuan Liu
- College of Engineering and Technology, Tianjin Agricultural University, Tianjin 300392, China
| | - Xiaoyan Xu
- Key Laboratory of Smart Breeding (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Tianjin Agricultural University, Tianjin 300392, China; College of Agronomy and Resource and Environment, Tianjin Agricultural University, Tianjin 300392, China.
| |
Collapse
|
24
|
Laursen SF, Flint CA, Bahrndorff S, Tomberlin JK, Kristensen TN. Reproductive output and other adult life-history traits of black soldier flies grown on different organic waste and by-products. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 181:136-144. [PMID: 38608528 DOI: 10.1016/j.wasman.2024.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/19/2024] [Accepted: 04/05/2024] [Indexed: 04/14/2024]
Abstract
The interest in mass-rearing black soldier fly (Hermetia illucens) larvae for food and feed is rapidly increasing. This is partly sparked by the ability of the larvae to efficiently valorise a wide range of organic waste and by-products. Primarily, research has focused on the larval stage, hence underprioritizing aspects of the adult biology, and knowledge on reproduction-related traits such as egg production is needed. We investigated the impact of different organic waste and by-products as larval diets on various life-history traits of adult black soldier flies in a large-scale experimental setup. We reared larvae on four different diets: spent Brewer's grain, ground carrots, Gainesville diet, and ground oranges. Traits assessed were development time to pupa and adult life-stages, adult body mass, female lifespan, egg production, and egg hatch. Larval diet significantly impacted development time to pupa and adult, lifespan, body size, and egg production. In general, flies reared on Brewer's grain developed up to 4.7 d faster, lived up to 2.3 d longer, and produced up to 57% more eggs compared to flies reared on oranges on which they performed worst for these traits. There was no effect of diet type on egg hatch, suggesting that low-nutritious diets, i.e. carrots and oranges, do not reduce the quality but merely the quantity of eggs. Our results demonstrate the importance of larval diet on reproductive output and other adult traits, all important for an efficient valorisation of organic waste and by-products, which is important for a sustainable insect-based food and feed production.
Collapse
Affiliation(s)
- Stine Frey Laursen
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg East, Denmark.
| | - Casey A Flint
- Department of Entomology, Texas A&M University, 2475 TAMU, College Station, TX 77843, USA
| | - Simon Bahrndorff
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg East, Denmark
| | - Jeffery K Tomberlin
- Department of Entomology, Texas A&M University, 2475 TAMU, College Station, TX 77843, USA
| | - Torsten Nygaard Kristensen
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg East, Denmark
| |
Collapse
|
25
|
Shelomi M. Mitigation Strategies against Food Safety Contaminant Transmission from Black Soldier Fly Larva Bioconversion. Animals (Basel) 2024; 14:1590. [PMID: 38891637 PMCID: PMC11171339 DOI: 10.3390/ani14111590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/16/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
The black soldier fly larva, Hermetia illucens, can efficiently convert organic waste into biomatter for use in animal feed. This circularity comes with a risk of contaminating downstream consumers of the larval products with microbes, heavy metals, and other hazards potentially present in the initial substrate. This review examines research on mitigation techniques to manage these contaminants, from pretreatment of the substrate to post-treatment of the larvae. While much research has been done on such techniques, little of it focused on their effects on food safety contaminants. Cheap and low-technology heat treatment can reduce substrate and larval microbial load. Emptying the larval gut through starvation is understudied but promising. Black soldier fly larvae accumulate certain heavy metals like cadmium, and their ability to process certain hazards is unknown, which is why some government authorities are erring on the side of caution regarding how larval bioconversion can be used within feed production. Different substrates have different risks and some mitigation strategies may affect larval rearing performance and the final products negatively, so different producers will need to choose the right strategy for their system to balance cost-effectiveness with sustainability and safety.
Collapse
Affiliation(s)
- Matan Shelomi
- Department of Entomology, National Taiwan University, 106319 Taipei, Taiwan
| |
Collapse
|
26
|
Van Looveren N, IJdema F, van der Heijden N, Van Der Borght M, Vandeweyer D. Microbial dynamics and vertical transmission of Escherichia coli across consecutive life stages of the black soldier fly (Hermetia illucens). Anim Microbiome 2024; 6:29. [PMID: 38797818 PMCID: PMC11129375 DOI: 10.1186/s42523-024-00317-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 05/22/2024] [Indexed: 05/29/2024] Open
Abstract
BACKGROUND The black soldier fly (BSF, Hermetia illucens L.) is one of the most promising insects for bioconversion of organic waste, which often carry a high microbial load with potential foodborne pathogens. Although horizontal transmission (from rearing substrate to larvae) has been extensively studied, less is known about vertical transmission of microorganisms, and particularly of foodborne pathogens, across different BSF life stages. RESULTS This study investigated the microbial dynamics and vertical transmission of Escherichia coli across different life stages (larvae, prepupae, pupae and adults) of one BSF life cycle and its associated substrate (chicken feed) and frass, based on a combination of general microbial counts (based on culture-dependent techniques) and the bacterial community composition (based on 16S rRNA gene sequencing). Multiple interactions between the microbiota of the substrate, frass and BSF larvae were affirmed. The larvae showed relative consistency among both the microbial counts and bacterial community composition. Diversification of the bacterial communities started during the pupal stage, while most notable changes of the microbial counts and bacterial community compositions occurred during metamorphosis to adults. Furthermore, vertical transmission of E. coli was investigated after substrate inoculation with approximately 7.0 log cfu/g of kanamycin-resistant E. coli, and monitoring E. coli counts from larval to adult stage. Although the frass still contained substantial levels of E. coli (> 4.5 log cfu/g) and E. coli was taken up by the larvae, limited vertical transmission of E. coli was observed with a decreasing trend until the prepupal stage. E. coli counts were below the detection limit (1.0 log cfu/g) for all BSF samples from the end of the pupal stage and the adult stage. Additionally, substrate inoculation of E. coli did not have a substantial impact on the bacterial community composition of the substrate, frass or different BSF life stages. CONCLUSIONS The fluctuating microbial counts and bacterial community composition underscored the dynamic character of the microbiota of BSF life stages. Additionally, vertical transmission throughout one BSF life cycle was not observed for E. coli. Hence, these findings paved the way for future case studies on vertical transmission of foodborne pathogens across consecutive BSF life stages or other insect species.
Collapse
Affiliation(s)
- Noor Van Looveren
- KU Leuven, Geel Campus, Department of Microbial and Molecular Systems (M2S), Research Group for Insect Production and Processing, Kleinhoefstraat 4, Geel, 2440, Belgium
| | - Freek IJdema
- KU Leuven, Geel Campus, Department of Microbial and Molecular Systems (M2S), Research Group for Insect Production and Processing, Kleinhoefstraat 4, Geel, 2440, Belgium
| | - Niels van der Heijden
- KU Leuven, Geel Campus, Department of Microbial and Molecular Systems (M2S), Research Group for Insect Production and Processing, Kleinhoefstraat 4, Geel, 2440, Belgium
| | - Mik Van Der Borght
- KU Leuven, Geel Campus, Department of Microbial and Molecular Systems (M2S), Research Group for Insect Production and Processing, Kleinhoefstraat 4, Geel, 2440, Belgium
| | - Dries Vandeweyer
- KU Leuven, Geel Campus, Department of Microbial and Molecular Systems (M2S), Research Group for Insect Production and Processing, Kleinhoefstraat 4, Geel, 2440, Belgium.
| |
Collapse
|
27
|
Lomonaco G, Franco A, De Smet J, Scieuzo C, Salvia R, Falabella P. Larval Frass of Hermetia illucens as Organic Fertilizer: Composition and Beneficial Effects on Different Crops. INSECTS 2024; 15:293. [PMID: 38667423 PMCID: PMC11050032 DOI: 10.3390/insects15040293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/10/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024]
Abstract
Hermetia illucens has received a lot of attention as its larval stage can grow on organic substrates, even those that are decomposing. Black soldier fly breeding provides a variety of valuable products, including frass, a mixture of larval excrements, larval exuviae, and leftover feedstock, that can be used as a fertilizer in agriculture. Organic fertilizers, such as frass, bringing beneficial bacteria and organic materials into the soil, improves its health and fertility. This comprehensive review delves into a comparative analysis of frass derived from larvae fed on different substrates. The composition of micro- and macro-nutrients, pH levels, organic matter content, electrical conductivity, moisture levels, and the proportion of dry matter are under consideration. The effect of different feeding substrates on the presence of potentially beneficial bacteria for plant growth within the frass is also reported. A critical feature examined in this review is the post-application beneficial impacts of frass on crops, highlighting the agricultural benefits and drawbacks of introducing Hermetia illucens frass into cultivation operations. One notable feature of this review is the categorization of the crops studied into distinct groups, which is useful to simplify comparisons in future research.
Collapse
Affiliation(s)
- Giovanni Lomonaco
- Department of Sciences, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy; (G.L.); (A.F.); (C.S.)
| | - Antonio Franco
- Department of Sciences, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy; (G.L.); (A.F.); (C.S.)
- Spinoff Xflies s.r.l., University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy
| | - Jeroen De Smet
- Research Group for Insect Production and Processing, Department of Microbial and Molecular Systems, KU Leuven, 2440 Geel, Belgium;
| | - Carmen Scieuzo
- Department of Sciences, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy; (G.L.); (A.F.); (C.S.)
- Spinoff Xflies s.r.l., University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy
| | - Rosanna Salvia
- Department of Sciences, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy; (G.L.); (A.F.); (C.S.)
- Spinoff Xflies s.r.l., University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy
| | - Patrizia Falabella
- Department of Sciences, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy; (G.L.); (A.F.); (C.S.)
- Spinoff Xflies s.r.l., University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy
| |
Collapse
|
28
|
Laksanawimol P, Anukun P, Thancharoen A. Use of different dry materials to control the moisture in a black soldier fly ( Hermetia illucens) rearing substrate. PeerJ 2024; 12:e17129. [PMID: 38560477 PMCID: PMC10981887 DOI: 10.7717/peerj.17129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 02/27/2024] [Indexed: 04/04/2024] Open
Abstract
Background Controlling the substrate moisture is a significant challenge in black soldier fly (BSF) farming. Many substrates have a high moisture content, which results in a low BSF biomass and a high mortality. One potential solution involves incorporating dry substrates into the food mix to mitigate the excessive moisture. However, little information about the types and quantities of dry substrates is available. Methods Six different dry materials-rice husk (RH), rice bran (RB), rice husk ash (RHA), coconut coir dust (CC), rubberwood sawdust (RSD), and spent coffee grounds (SCGs)-were evaluated by combining with pure minced mixed vegetables in varying proportions (0%, 5%, 10%, 15%, 25%, and 50% by weight). This study encompassed both small-scale and medium-scale experiments to comprehensively assess the effects of the addition of each of these different dry substrates and their quantities on aspects of the development of BSF, such as BSF biomass, larval duration, mortality rates, adult sex ratio, and the moisture removal efficiency of each substrate mixture. Results Each dry substrate had specific properties. Although RB emerged as a favorable dry substrate owing to its nutritional content and substantial water-holding capacity, excessive use of RB (>15% by weight) resulted in elevated temperatures and subsequent desiccation of the substrate, potentially leading to larval mortality. In contrast, RH demonstrated the ability to support improved larval duration and growth, permitting its utilization in higher proportions (up to 50%). On the other hand, CC, RHA, and SCG are better suited for inclusion in BSF larval substrates in smaller quantities. Discussion Some dry substrates require a pretreatment process to eliminate toxic substances prior to their incorporation into substrate mixtures, such as CC and SCG. A potential alternative solution involves employing a combination of various dry substrates. This approach aims to enhance the substrate moisture control and subsequently improve the BSF rearing performance.
Collapse
Affiliation(s)
| | - Pritsana Anukun
- Faculty of Science, Chandrakasem Rajabhat University, Bangkok, Thailand
| | - Anchana Thancharoen
- Department of Entomology, Faculty of Agriculture, Kasetsart University, Bangkok, Thailand
| |
Collapse
|
29
|
Rodgers E, Nicolson E, Lauder S, Hodge S. Response of Pasture Grasses to Organic Fertilizer Produced from Black Soldier Fly Frass. PLANTS (BASEL, SWITZERLAND) 2024; 13:943. [PMID: 38611472 PMCID: PMC11013756 DOI: 10.3390/plants13070943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 03/22/2024] [Indexed: 04/14/2024]
Abstract
Livestock and dairy farmers are increasingly required to maintain productivity and profitability while mitigating the environmental harm associated with high-input agriculture. Accordingly, to reduce reliance on synthetic fertilizers, a wide range of organically derived products are being evaluated for their effects on sward growth and forage quality. This study used glasshouse experiments to investigate the responses of four grass species to a novel organic fertilizer derived from the mass production of black soldier fly larvae [Hermetia illucens, HexaFrass™, Meath, Ireland]. Although there was some variability among trials, overall our results indicate that application of HexaFrass produced increased shoot growth of Perennial Ryegrass (PRG; Lolium perenne L.), Timothy (Phleum pratense L.), and Cocksfoot (Dactylis glomerata L.) compared with growth achieved in no-fertilizer control plants. In addition to increases in shoot fresh and dry weight, shoot chlorophyll content was also positively related to the HexaFrass application rate. At nitrogen-equivalent application rates, HexaFrass resulted in lower shoot growth compared with the application of urea, suggesting that the nitrogen contained in HexaFrass may not be immediately plant-available. Of relevance to grazing or silage systems, the addition of HexaFrass resulted in increased shoot regrowth of PRG and Timothy after shoots had been cut. Based on our results, insect-frass-based fertilizers may have a role in low input, organic, and/or regenerative pasture-based livestock systems, although issues may occur due to the relatively high costs and low availability compared with other organic soil amendments such as farmyard manure and slurry.
Collapse
Affiliation(s)
| | | | | | - Simon Hodge
- School of Agriculture & Food Science, University College Dublin, D04 Dublin, Ireland; (E.R.); (E.N.)
| |
Collapse
|
30
|
Hénault-Ethier L, Quinche M, Reid B, Hotte N, Fortin A, Normandin É, de La Rochelle Renaud G, Rasooli Zadeh A, Deschamps MH, Vandenberg G. Opportunities and challenges in upcycling agri-food byproducts to generate insect manure (frass): A literature review. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 176:169-191. [PMID: 38301601 DOI: 10.1016/j.wasman.2023.12.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 11/24/2023] [Accepted: 12/14/2023] [Indexed: 02/03/2024]
Abstract
A range of issues related to sustainability in the agrifood industry have spurred interest in mass production of insects as human food and animal feed alternatives. This rapidly evolving sector addresses several challenges, including the management of food waste or agrifood by-products and the production of alternative animal proteins demonstrating low environmental impacts that improve sector circularity. The mass production of insects on agrifood processing wastes or by-products represents an opportunity to address these challenges. While the production of insects offers prospects for sustainable protein production, a major side stream is the production of frass or larval excrement including uneaten feed and chitin-rich exuviae (derived from multiple larval moults). The production of each tonne of edible insects generates 2 to 4 tonnes of frass with an interesting potential in agriculture versus traditional organic amendments (compost, manure, biochar). This review aims to demonstrate the characteristics of frass, its common harvest and conditioning methods, its optimal application rates for planting crops, the mechanisms by which it can protect plants against biotic and abiotic stresses and demystify the risks and potential associated with its application in agriculture. The characteristics of frass are compared with those of conventional fertilizers or other. This report also compiles the Canadian, US and European regulatory frameworks as a novel plant fertilizer and aims to pave the way for future research necessary for its valorization in plant production.
Collapse
Affiliation(s)
- Louise Hénault-Ethier
- Institut national de la recherche scientifique, Eau Terre, Environnement Research Center, Québec, G1K 9A9, Canada; TriCycle, Montreal, Québec, H4N 2R9, Canada.
| | - Mélissa Quinche
- Institut national de la recherche scientifique, Eau Terre, Environnement Research Center, Québec, G1K 9A9, Canada
| | - Béatrice Reid
- Institut national de la recherche scientifique, Eau Terre, Environnement Research Center, Québec, G1K 9A9, Canada
| | - Noémie Hotte
- TriCycle, Montreal, Québec, H4N 2R9, Canada; Université de Sherbrooke, Québec, J1K 2R1, Canada
| | - Alexis Fortin
- TriCycle, Montreal, Québec, H4N 2R9, Canada; École de Technologie Supérieure, 1100 Rue Notre-Dame Ouest, Montréal, Québec, H3C 1K3, Canada
| | - Étienne Normandin
- TriCycle, Montreal, Québec, H4N 2R9, Canada; Centre sur la Biodiversité, Université de Montréal, 4101 R. Sherbrooke E, Montréal, Québec, H1X 2B2, Canada
| | | | - Aliyeh Rasooli Zadeh
- Institut national de la recherche scientifique, Eau Terre, Environnement Research Center, Québec, G1K 9A9, Canada
| | - Marie-Hélène Deschamps
- Département des sciences animales, Faculté des sciences de l'agriculture et de l'alimentation, Université Laval, Québec, G1V 0A6, Canada
| | - Grant Vandenberg
- Département des sciences animales, Faculté des sciences de l'agriculture et de l'alimentation, Université Laval, Québec, G1V 0A6, Canada
| |
Collapse
|
31
|
Khaliq MA, Alsudays IM, Alhaithloul HAS, Rizwan M, Yong JWH, Ur Rahman S, Sagir M, Bashir S, Ali H, Hongchao Z. Biochar impacts on carbon dioxide, methane emission, and cadmium accumulation in rice from Cd-contaminated soils; A meta-analysis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 274:116204. [PMID: 38489905 DOI: 10.1016/j.ecoenv.2024.116204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 03/05/2024] [Accepted: 03/08/2024] [Indexed: 03/17/2024]
Abstract
Climate change and cadmium (Cd) contamination pose severe threats to rice production and food security. Biochar (BC) has emerged as a promising soil amendment for mitigating these challenges. To investigate the BC effects on paddy soil upon GHG emissions, Cd bioavailability, and its accumulation, a meta-analysis of published data from 2000 to 2023 was performed. Data Manager 5.3 and GetData plot Digitizer software were used to obtain and process the data for selected parameters. Our results showed a significant increase of 18% in soil pH with sewage sludge BC application, while 9% increase in soil organic carbon (SOC) using bamboo chips BC. There was a significant reduction in soil bulk density (8%), but no significant effects were observed for soil porosity, except for wheat straw BC which reduced the soil porosity by 6%. Sewage sludge and bamboo chips BC significantly reduced carbon dioxide (CO2) by 7-8% while municipal biowaste reduced methane (CH4) emissions by 2%. In the case of heavy metals, sunflower seedshells-derived materials and rice husk BC significantly reduced the bioavailable Cd in paddy soils by 24% and 12%, respectively. Cd uptake by rice roots was lowered considerably by the addition of kitchen waste (22%), peanut hulls (21%), and corn cob (15%) based BC. Similarly, cotton sticks, kitchen waste, peanut hulls, and rice husk BC restricted Cd translocation from rice roots to shoots by 22%, 27%, 20%, and 19%, respectively, while sawdust and rice husk-based BC were effective for reducing Cd accumulation in rice grains by 25% and 13%. Regarding rice yield, cotton sticks-based BC significantly increased the yield by 37% in Cd-contaminated paddy soil. The meta-analysis demonstrated that BC is an effective and multi-pronged strategy for sustainable and resilient rice cultivation by lowering greenhouse gas emissions and Cd accumulation while improving yields under the increasing threat of climate change.
Collapse
Affiliation(s)
- Muhammad Athar Khaliq
- College of Atmospheric Sciences, Lanzhou University, Tian-shui South Road, Lanzhou 730000, PR China
| | | | | | - Muhammad Rizwan
- Department of Environmental Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Jean Wan Hong Yong
- Department of Biosystems and Technology, Swedish University of Agricultural Sciences, Alnarp 23456, Sweden.
| | - Shafeeq Ur Rahman
- Water Science and Environmental Engineering Research Center, College of Chemical and Environmental Engineering, Shenzhen University, Shenzhen, China
| | - Muhammad Sagir
- Department of Mechanical Engineering, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan, Pakistan
| | - Safdar Bashir
- Department of Soil and Environmental Sciences, Faculty of Agriculture, Ghazi University, Dera Ghazi Khan 32000, Pakistan
| | - Habib Ali
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan, Pakistan
| | - Zuo Hongchao
- College of Atmospheric Sciences, Lanzhou University, Tian-shui South Road, Lanzhou 730000, PR China.
| |
Collapse
|
32
|
Wang L, Wang S, Yang R, Zhang B, Xu L, Hu Q, Zhao Z, Cao Z. Effect of moisture content on larval gut microbiome and the conversion of pig manure by black soldier fly. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169579. [PMID: 38145667 DOI: 10.1016/j.scitotenv.2023.169579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/14/2023] [Accepted: 12/19/2023] [Indexed: 12/27/2023]
Abstract
The study investigated the influence of varied moisture levels in pig manure on the gut microbiome of black soldier fly larvae (BSFL) and their waste conversion efficiency. This encompassed alterations in nutrient components of both BSFL and pig manure, diversity and characterization of the BSFL gut microbiota, and the reciprocal effects between the BSFL gut microbiota and their growth performance and nutrient composition. Additionally, the investigation delved into the changes in the bacterial community and the presence of potential pathogenic bacteria in pig manure. An initial mixture of fresh pig manure and wheat bran was prepared with a 60 % moisture content (Group A). Distilled water was subsequently added to adjust the moisture levels, resulting in mixtures with 65 % (Group B), 70 % (Group C), and 75 % (Group D) moisture content. Each group underwent BSFL digestion over ten days. Groups C (3.87 ± 0.05 mg/worm) and D (3.97 ± 0.08 mg/worm) showed significantly higher bioconversion efficiencies and enhanced BSFL growth compared to Groups A (2.66 ± 0.21 mg/worm) and B (3.09 ± 0.09 mg/worm) (P < 0.05). A 75 % moisture level was identified as ideal, positively influencing fecal conversion efficiency (FCE) (9.57 ± 0.14 %), crude fat intake (8.92 ± 0.56 %), protein (46.60 ± 0.54 %), and total phosphorus (1.37 ± 0.08 %) from pig manure, and subsequent nutrient accumulation in BSFLs. A decline in larval crude ash content indicated higher organic matter and an increased pig manure conversion rate with elevated moisture. High-throughput sequencing and diversity analyses confirmed different moisture contents influenced the BSFL gut microbiota. Bacteroidetes (32.7-62.0 %), Proteobacteria (6.8-29.3 %), Firmicutes (5.8-23.4 %), and Actinobacteria (1.9-29.0 %) were predominant phyla. A 75 % moisture content significantly impacted the BSFL biomass conversion and growth performance. Additionally, Larval feces met non-hazardous fertilizer standards, according to NY-525 (2012).
Collapse
Affiliation(s)
- Lili Wang
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Shengwen Wang
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Rencan Yang
- Yunnan Animal Science and Veterinary Institute, Kunming 650224, China
| | - Bin Zhang
- Yunnan Animal Science and Veterinary Institute, Kunming 650224, China
| | - Le Xu
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Qingquan Hu
- Yunnan Animal Science and Veterinary Institute, Kunming 650224, China
| | - Zhiyong Zhao
- Yunnan Animal Science and Veterinary Institute, Kunming 650224, China.
| | - Zhenhui Cao
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China.
| |
Collapse
|
33
|
Hosseindoust A, Ha SH, Mun JY, Kim JS. A metanalysis to evaluate the effects of substrate sources on the nutritional performance of black soldier fly larvae: implications for sustainable poultry feed. Poult Sci 2024; 103:103299. [PMID: 38071784 PMCID: PMC10750176 DOI: 10.1016/j.psj.2023.103299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 12/29/2023] Open
Abstract
This meta-analysis presents an evaluation of substrate sources and their impact on the growth performance of black soldier fly (BSF) larva. The database, compiled from Google Scholar, PubMed, and Science Direct, focuses on data concerning substrate sources, environmental conditions, and the performance parameters of BSF. Seven types of substrates were analyzed, including Feed Waste, Manure, Fruits, Mix, Animal Source, Fermentation Residue, and Food Waste. The Feed Waste group demonstrated the highest DM content, while the highest CP content was found in the Animal Source group. Higher CP and DM content were found in larva meal from Fermentation Residues and Feed Waste diets, respectively. Higher survival rates were observed in BSF larvae fed on Feed Waste, Fermentation Residues, Food Waste, Fruits, Mix, and Manure substrates compared to Vegetable and Animal Source substrates. Fresh larval weight was lower when Manure was used as a feed substrate than in the Animal Source, Feed Waste, and Vegetable substrates. The prepupal Wet Weight was highest in BSF larvae fed on Animal Source, surpassing those fed on Fermentation Residue, Manure, and Vegetable substrates. Substrate CP content exhibited a positive relationship with fresh larva weight, prepupal wet weight, dry larval weight; larval length, mortality until prepupal, protein conversion, feed conversion ratio, food consumption, substrate reduction rate bioconversion ratio, waste reduction index, and efficiency conversion of digested feed in BSF larva. In conclusion, our findings underline that the source and composition of substrates are correlated to the nutritional composition and conversion efficiency of BSF larva meal.
Collapse
Affiliation(s)
- Abdolreza Hosseindoust
- Department of Animal Industry Convergence, Kangwon National University, Chuncheon 24341, Korea
| | - Sang Hun Ha
- Department of Animal Industry Convergence, Kangwon National University, Chuncheon 24341, Korea
| | - Jun Young Mun
- Department of Animal Industry Convergence, Kangwon National University, Chuncheon 24341, Korea
| | - Jin Soo Kim
- Department of Animal Industry Convergence, Kangwon National University, Chuncheon 24341, Korea.
| |
Collapse
|
34
|
Labella R, Bochicchio R, Addesso R, Labella D, Franco A, Falabella P, Amato M. Germination Behavior and Geographical Information System-Based Phenotyping of Root Hairs to Evaluate the Effects of Different Sources of Black Soldier Fly ( Hermetia illucens) Larval Frass on Herbaceous Crops. PLANTS (BASEL, SWITZERLAND) 2024; 13:230. [PMID: 38256783 PMCID: PMC10819484 DOI: 10.3390/plants13020230] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/08/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024]
Abstract
Insect larval frass has been proposed as a fertilizer and amendment, but methods for testing its effects on plants are poorly developed and need standardization. We obtained different types of black soldier fly (Hermetia illucens) frass via the factorial combination of (a) two insect diets, as follows: G (Gainesville = 50% wheat bran, 30% alfalfa meal, 20% maize meal) and W (43% sheep whey + 57% seeds); (b) two frass thermal treatments: NT = untreated and T = treated at 70 °C for 1 h. We tested the effects on the germination of cress (Lepidium sativum L.) and wheat (Triticum durum Desf.) by applying 1:2 w:w water extracts at 0, 25, 50, 75 and 100% concentration. Standardizing frass water content before extraction affected chemical composition. Frass extracts showed high electrical conductivity (8.88 to 13.78 mS cm-1). The W diet was suppressive towards Escherichia coli and showed a lower content of nitrates (e.g., WNT 40% lower than GNT) and a concentration-dependent phytotoxic effect on germinating plants. At 25% concentration, germination indices of G were 4.5 to 40-fold those at 100%. Root and shoot length and root hair area were affected by diet and concentration of frass extracts (e.g., root and shoot length in cress at 25% were, respectively, 4.53 and 2 times higher than at 100%), whereas the effects of the thermal treatment were few or inconclusive. On barley (Hordeum vulgare L.) grown in micropots on a silty loam soil, root mass was reduced by 37% at high extract concentration. A quick procedure for root hair surface area was developed based on the geographic information system (GIS) and may provide a fast method for incorporating root hair phenotyping in frass evaluation. The results indicate that below-ground structures need to be addressed in research on frass effects. For this, phyotoxicity tests should encompass different extract dilutions, and frass water content should be standardized before extraction in the direction of canonical procedures to allow comparisons.
Collapse
Affiliation(s)
- Rosanna Labella
- School of Agriculture, Forestry, Food and Environmental Sciences, University of Basilicata, 85100 Potenza, Italy; (R.L.); (D.L.)
| | - Rocco Bochicchio
- School of Agriculture, Forestry, Food and Environmental Sciences, University of Basilicata, 85100 Potenza, Italy; (R.L.); (D.L.)
| | - Rosangela Addesso
- Department of European and Mediterranean Cultures, Environment, and Cultural Heritage, University of Basilicata, 85100 Potenza, Italy;
| | - Donato Labella
- School of Agriculture, Forestry, Food and Environmental Sciences, University of Basilicata, 85100 Potenza, Italy; (R.L.); (D.L.)
| | - Antonio Franco
- Department of Science, University of Basilicata, 85100 Potenza, Italy; (A.F.); (P.F.)
- Spinoff XFlies s.r.l., University of Basilicata, 85100 Potenza, Italy
| | - Patrizia Falabella
- Department of Science, University of Basilicata, 85100 Potenza, Italy; (A.F.); (P.F.)
- Spinoff XFlies s.r.l., University of Basilicata, 85100 Potenza, Italy
| | - Mariana Amato
- School of Agriculture, Forestry, Food and Environmental Sciences, University of Basilicata, 85100 Potenza, Italy; (R.L.); (D.L.)
| |
Collapse
|
35
|
Guidini Lopes I, Wiklicky V, Ermolaev E, Lalander C. Dynamics of black soldier fly larvae composting - Impact of substrate properties and rearing conditions on process efficiency. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 172:25-32. [PMID: 37708809 DOI: 10.1016/j.wasman.2023.08.045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/19/2023] [Accepted: 08/31/2023] [Indexed: 09/16/2023]
Abstract
Inadequate organic waste management have detrimental impact on the environment and on public health. Black soldier fly (BSF) larvae composting is a biological treatment for biodegradable waste that align with circular economy principles. The bioconversion efficiency of bio-waste into larval biomass is influenced by various factors, such as substrate type and the process parameters employed in the larval rearing process. In this study, the influence of these parameters on survival, material reduction (Mat.Red), waste-to-biomass conversion efficiency (BCE) and larval yield per rearing unit was investigated through two sets of experiments. In Experiment 1, the impact of larval density in five distinct rearing substrates was evaluated, while the effect of larval feed dose and substrate depth was assessed in Experiment 2, using a model substrate (dog food). In Experiment 1 it was found that higher larval density lead to an increase in BCE and larval yield, up to a threshold (around 6.25 larvae cm-2). Surpassing this threshold led to the production of smaller larvae, while the yield remained relatively consistent. In Experiment 2 it was found that supplying the substrate in a shallow layer (1-1.5 cm depth) and providing a low feed dose (0.1 g volatile solids (VS) larva-1) led to higher BCE and Mat.Red, albeit with a reduced overall yield per unit. Increasing feed load and substrate depth reduced the conversion efficiency, Mat.Red and larval survival. This study enhances the understanding of the effect of various process parameters used in the BSF larvae treatment, and how they interrelate.
Collapse
Affiliation(s)
- Ivã Guidini Lopes
- Department of Biosystems and Technology, Swedish University of Agricultural Sciences, Box 190, 23422 Lomma, Sweden
| | - Viktoria Wiklicky
- Department of Energy and Technology, Swedish University of Agricultural Sciences, Box 7032, 75007 Uppsala, Sweden
| | - Evgheni Ermolaev
- Department of Energy and Technology, Swedish University of Agricultural Sciences, Box 7032, 75007 Uppsala, Sweden
| | - Cecilia Lalander
- Department of Energy and Technology, Swedish University of Agricultural Sciences, Box 7032, 75007 Uppsala, Sweden.
| |
Collapse
|
36
|
Rossi G, Ojha S, Müller-Belecke A, Schlüter OK. Fresh aquaculture sludge management with black soldier fly (Hermetia illucens L.) larvae: investigation on bioconversion performances. Sci Rep 2023; 13:20982. [PMID: 38017013 PMCID: PMC10684894 DOI: 10.1038/s41598-023-48061-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/22/2023] [Indexed: 11/30/2023] Open
Abstract
Aquaculture solid waste (ASW) is a nutrient rich material that can pose a significant environment challenge if not properly managed. This study investigated the potential of black soldier fly (BSF) larvae in converting this waste into biomass. Five substrates comprising chicken feed supplemented with varying proportions of fresh ASW (0%, 25%, 50%, 75%, 100%) were formulated and evaluated for larval growth and waste bioconversion efficiency. High nutrients retention (N: 23.25 ± 1.40%; C: 21.94 ± 0.99%; S: 12.20 ± 1.33%) and feed conversion ratio (1.78 ± 0.08) were detected on substrate 100ASW, although the limited feeding rate (114.54 ± 5.38 mg dry substrate/larvae) and the high amount of indigestible fibres (ADF = 15.87 ± 0.24%; ADL = 6.36 ± 0.17%) were translated to low larval growth (final larval average weight: 66.17 ± 1.81 mg). Decreasing ASW content resulted in reduced fibres and ash, increase in non-fibrous carbohydrates and C/N ratio, and improved larval growth and substrate utilization. However, high larval metabolic activity suggested higher nutrients loss to the environment. Substrate 75ASW demonstrated the best performances in terms of larval production (final larval average weight: 176.30 ± 12.12 mg), waste reduction (substrate reduction corrected by percentage of ASW: 26.76 ± 0.86%) and nutrients assimilation (N: 22.14 ± 1.14%; C: 15.29 ± 0.82%; S: 15.40 ± 0.99%). This substrate closely aligned with optimal BSF rearing substrates reported in literature. Overall, this study highlights the potential of BSF larvae in managing fresh ASW, offering a dual benefit of waste reduction and insect biomass production.
Collapse
Affiliation(s)
- Giacomo Rossi
- Department of Systems Process Engineering, Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Max-Eyth-Allee 100, 14469, Potsdam, Germany
| | - Shikha Ojha
- Department of Systems Process Engineering, Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Max-Eyth-Allee 100, 14469, Potsdam, Germany
- Department of Land Sciences, School of Science and Computing, South East Technological University, Cork Road, Waterford, X91 K0EK, Ireland
| | | | - Oliver K Schlüter
- Department of Systems Process Engineering, Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Max-Eyth-Allee 100, 14469, Potsdam, Germany.
- Department of Agricultural and Food Sciences, University of Bologna, Piazza Goidanich 60, 47521, Cesena, Italy.
| |
Collapse
|
37
|
Jenkins SN, Middleton JA, Huang Z, Mickan BS, Andersen MO, Wheat L, Waite IS, Abbott LK. Combining frass and fatty acid co-products derived from Black soldier fly larvae farming shows potential as a slow release fertiliser. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 899:165371. [PMID: 37422234 DOI: 10.1016/j.scitotenv.2023.165371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 06/15/2023] [Accepted: 07/05/2023] [Indexed: 07/10/2023]
Abstract
Use of black soldier fly larvae (BSFL) to process large volumes of organic waste is an emerging industry to produce protein. A co-product of this industry, the larval faeces (frass), has potential to be used as an organic fertiliser in a circular economy. However, BSFL frass has a high ammonium (N-NH4+) content which could result in nitrogen (N) loss following its application to land. One solution is to process the frass by combining it with solid fatty acids (FA) that have previously been used to manufacture slow-release inorganic fertilisers. We investigated the slow-releasing effect of N after combining BSFL frass with three FAs - lauric, myristic and stearic acid. Soil was amended with the three forms of FA processed (FA-P) frass, unprocessed frass or a control and incubated for 28 days. The impact of treatments on soil properties and soil bacterial communities were characterised during the incubation. Lower N-NH4+ concentrations occurred in soil treated with FA-P frass compared to unprocessed frass, and N-NH4+ release was slowest for lauric acid processed frass. Initially, all frass treatments caused a large shift in the soil bacterial community towards a dominance of fast-growing r-strategists that were correlated with increased organic carbon levels. FA-P frass appeared to enhance the immobilisation of N-NH4+ (from frass) by diverting it into microbial biomass. Unprocessed and stearic acid processed frass became enriched by slow-growing K-strategist bacteria at the latter stages of the incubation. Consequently, when frass was combined with FAs, FA chain length played an important role in regulating the composition of r-/K- strategists in soil and N and carbon cycling. Modifying frass with FAs could be developed into a slow release fertiliser leading to reduced soil N loss, improved fertiliser use efficiency, increased profitability and lower production costs.
Collapse
Affiliation(s)
- Sasha N Jenkins
- School of Agriculture and Environment, The University of Western Australia, Perth, WA 6000, Australia.
| | - Jen A Middleton
- School of Agriculture and Environment, The University of Western Australia, Perth, WA 6000, Australia
| | - ZhouDa Huang
- School of Agriculture and Environment, The University of Western Australia, Perth, WA 6000, Australia
| | - Bede S Mickan
- School of Agriculture and Environment, The University of Western Australia, Perth, WA 6000, Australia
| | - Morten O Andersen
- School of Agriculture and Environment, The University of Western Australia, Perth, WA 6000, Australia; The Department of Green Technology, University of Southern Denmark, 5230 Odense M, Denmark
| | - Luke Wheat
- Future Green Solutions, Moresby, WA 6530, Australia
| | - Ian S Waite
- School of Agriculture and Environment, The University of Western Australia, Perth, WA 6000, Australia
| | - Lynette K Abbott
- School of Agriculture and Environment, The University of Western Australia, Perth, WA 6000, Australia
| |
Collapse
|
38
|
Liang J, Cheng Y, Ma Y, Yu X, Wang Z, Wu N, Wang X, Liu X, Xu X. Effects of straw addition on the physicochemical and microbial features of black soldier fly larvae frass derived from fish meat and bone meal. WASTE MANAGEMENT & RESEARCH : THE JOURNAL OF THE INTERNATIONAL SOLID WASTES AND PUBLIC CLEANSING ASSOCIATION, ISWA 2023; 41:1435-1444. [PMID: 36951008 DOI: 10.1177/0734242x231160091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Black soldier fly larvae (BSFL) hold great promise for sustainable management of meat and bone meal (MBM), a kind of organic waste. Harvested BSFL frass can be used as soil amendment or organic fertilizer. This study evaluated the quality and microbial profile in the frass of BSFL, fed with fish MBM containing 0% (CK), 1% (T1), 2% (T2) and 3% (T3) of rice straw. Results suggested straw addition into fish MBM had no significant impacts on BSFL weight; however, straw addition remarkably affected waste reduction and conversion efficiency, as well as physicochemical properties including electric conductivity, organic matter (OM) and total phosphorus contents in frass. Fourier transform infrared analysis indicated that increasing levels of cellulose and lignin might not be fully degraded or transformed by BSFL when more straw was introduced into substrates. Straw addition had hardly significant influences on microbial richness or evenness in BSFL frass, only T3 treatment remarkably elevated the phylogenetic diversity value more than the control. Bacteroidetes, Proteobacteria, Actinobacteria and Firmicutes were the most dominant phyla. Genera Myroides, Acinetobacter and Paenochrobactrum maintained high abundances in all frass samples. Elements including OM, pH and Na were key factors in shaping the microbiological characteristics of BSFL frass. Our findings helped to understand the effects of fish MBM waste manipulation on BSFL frass qualities and contributed to the further application of BSFL frass.
Collapse
Affiliation(s)
- Jiaqi Liang
- College of Engineering and Technology, Tianjin Agricultural University, Tianjin, China
| | - Yixian Cheng
- College of Engineering and Technology, Tianjin Agricultural University, Tianjin, China
| | - Ye Ma
- College of Agronomy and Resource and Environment, Tianjin Agricultural University, Tianjin, China
| | - Xiaohui Yu
- College of Engineering and Technology, Tianjin Agricultural University, Tianjin, China
| | - Zhiqiang Wang
- College of Engineering and Technology, Tianjin Agricultural University, Tianjin, China
| | - Nan Wu
- College of Engineering and Technology, Tianjin Agricultural University, Tianjin, China
| | - Xiaobo Wang
- College of Agronomy and Resource and Environment, Tianjin Agricultural University, Tianjin, China
| | - Xinyuan Liu
- College of Engineering and Technology, Tianjin Agricultural University, Tianjin, China
| | - Xiaoyan Xu
- College of Agronomy and Resource and Environment, Tianjin Agricultural University, Tianjin, China
| |
Collapse
|
39
|
Chen X, Liu X, Mao Z, Fan D, Deng Z, Wang Y, Zhu Y, Yu Z, Zhou S. Black soldier fly pretreatment promotes humification and phosphorus activation during food waste composting. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 169:137-146. [PMID: 37433257 DOI: 10.1016/j.wasman.2023.06.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 06/04/2023] [Accepted: 06/24/2023] [Indexed: 07/13/2023]
Abstract
Black soldier fly (BSF) and thermophilic composting (TC) treatments are commonly adopted to manage food waste. In this study, 30 days of TC of food waste following seven days BSF pretreatment (BC) was compared to 37 days of TC of food waste (TC, the control). Fluorescence spectrum and 16S rRNA high-throughput sequencing analysis were used to compare the BC and TC treatments. Results showed that BC could decrease protein-like substances and increase humus substances more quickly, and that the humification index of compost products was 106.8% higher than that of TC, suggesting that the humification process was accelerated by BSF pretreatment resulting in a 21.6% shorter maturity time. Meanwhile, the concentrations of total and available phosphorus rose from 7.2 and 3.3 g kg-1 to 44.2 and 5.5 g kg-1, respectively, which were 90.5% and 118.8% higher in compost products from BC as compared to those in TC. Furthermore, BC had higher richness and diversity of humus synthesis and phosphate-solubilizing bacteria (PSB), with Nocardiopsis (53.8%) and Pseudomonas (47.0%) being the dominant PSB. Correlation analysis demonstrated that the introduction of BSF gut bacteria contributed to the effectiveness of related functional bacteria, resulting in a rapid humification process and phosphorus activation. Our findings advance understanding of the humification process and provide novel perspectives on food waste management.
Collapse
Affiliation(s)
- Xu Chen
- College of Resources and Environment, Yangtze University, Wuhan 430100, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Xiaoming Liu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Zhichao Mao
- College of Resources and Environment, Yangtze University, Wuhan 430100, China
| | - Dakai Fan
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ziwei Deng
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Yueqiang Wang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China.
| | - Yi Zhu
- College of Resources and Environment, Yangtze University, Wuhan 430100, China.
| | - Zhen Yu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Shungui Zhou
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
40
|
Tomberlin JK, Miranda C, Flint C, Harris E, Wu G. Nutrients limit production of insects for food and feed: an emphasis on nutritionally essential amino acids. Anim Front 2023; 13:64-71. [PMID: 37583806 PMCID: PMC10425138 DOI: 10.1093/af/vfad032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023] Open
Affiliation(s)
| | - Chelsea Miranda
- Department of Entomology, Texas A&M University, College Station, TX
| | - Casey Flint
- Department of Entomology, Texas A&M University, College Station, TX
| | - Erin Harris
- Department of Entomology, Texas A&M University, College Station, TX
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, TX
| |
Collapse
|
41
|
Gasco L, Renna M, Bellezza Oddon S, Rezaei Far A, Naser El Deen S, Veldkamp T. Insect meals in a circular economy and applications in monogastric diets. Anim Front 2023; 13:81-90. [PMID: 37583807 PMCID: PMC10425148 DOI: 10.1093/af/vfad016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023] Open
Affiliation(s)
- Laura Gasco
- Department of Agricultural, Forest and Food Sciences, University of Torino, Largo P. Braccini 2, 10095 Grugliasco, Italy
| | - Manuela Renna
- Department of Veterinary Sciences, University of Torino, Largo P. Braccini 2, 10095 Grugliasco, Italy
| | - Sara Bellezza Oddon
- Department of Agricultural, Forest and Food Sciences, University of Torino, Largo P. Braccini 2, 10095 Grugliasco, Italy
| | - Arya Rezaei Far
- Wageningen University & Research, Wageningen Livestock Research, De Elst 1, 6700 AH Wageningen, the Netherlands
| | - Somaya Naser El Deen
- Wageningen University & Research, Wageningen Livestock Research, De Elst 1, 6700 AH Wageningen, the Netherlands
| | - Teun Veldkamp
- Wageningen University & Research, Wageningen Livestock Research, De Elst 1, 6700 AH Wageningen, the Netherlands
| |
Collapse
|
42
|
Green T. A biochemical analysis of Black Soldier fly (Hermetia illucens) larval frass plant growth promoting activity. PLoS One 2023; 18:e0288913. [PMID: 37467228 DOI: 10.1371/journal.pone.0288913] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 07/07/2023] [Indexed: 07/21/2023] Open
Abstract
Black Soldier fly (Hermetia illucens) larval (BSFL) frass was examined for its nutrient nitrogen, phosphate and potassium (N:P205:K2O), phytohormone and biogenic amine content, its plant growth promoting activity, and screened to test the hypothesis that bacteria characteristic of the genus Enterococcus (present in the biome of decaying catering waste and the larval gut) are excreted by BSFL in their frass. Frass plant growth promoting activity was measured by comparing the growth of winter wheat berry (Triticum aestivum) in frass treated soil to that of untreated (control) soil. The N:P205:K2O percent dry matter average, biogenic amine and phytohormone content of frass was determined by standard soil analysis, HPLC and HPLC/GC-MS methodologies, respectively. All were at too low of concentrations to account for its plant growth promoting activity. Frass added to soil induced a 11% increase in aerial mass and shoot length in treated plants over controls. Numerous colonies of Enterococci growing out on BEA (bile-esculin-agar) plates were detected in frass collected directly from larvae confirming the hypothesis that viable Enteroccoci are passing from the larval gut into their frass. Since a number of rhizobacteria, including Enterococci, have previously been identified as part of the larval gut biome, the passage of Enterococci from the larval gut into frass in the face of only trace N:P205:K2O percent dry matter averages, biogenic amine and phytohormone content is consistent with the hypothesis that Enterococci exhibiting rhizobacterial activity have a role in conferring to frass its plant growth promoting activity.
Collapse
|
43
|
She W, Xiao Q, Meng Y, Zhao P, Wu C, Huang F, Cai M, Zhang J, Yu Z, Ur Rehman K, Peng D, Zheng L. Isolated and identified pathogenic bacteria from black soldier fly larvae with "soft rot" reared in mass production facilities and its incidence characteristics. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 163:85-95. [PMID: 37003117 DOI: 10.1016/j.wasman.2023.03.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 02/07/2023] [Accepted: 03/19/2023] [Indexed: 06/19/2023]
Abstract
The black soldier fly larvae (BSFL) can transform organic waste into high-end proteins, lipids, chitin, biodiesel, and melanin at an industrial scale. But scaling up of its production capacity has also posed health risks to the insect itself. In this investigation, larval "soft rot" which is occurring in mass production facilities that cause larval developmental inhibition and a certain degree of death was reported. Responsible pathogen GX6 was isolated from BSFL with "soft rot" and identified to be Paenibacillus thiaminolyticus. No obvious impact on larval growth was observed when treated with GX6 spores, whereas mortality of 6-day-old BSFL increased up to 29.33% ± 2.05% when GX6 vegetative cells (1 × 106 cfu/g) were inoculated into the medium. Moreover, higher temperature further enhanced the BSFL mortality and suppressed larval development, but increasing substrate moisture showed the opposite effect. The middle intestine of infected larvae became swollen and transparent after dissection and examination. Transmission electron microscopy (TEM) observation indicated that GX6 had destroyed the peritrophic matrix and intestinal microvilli and damaged epithelial cells of larval gut. Furthermore, 16S rRNA gene sequencing analysis of intestinal samples revealed that gut microflora composition was significantly altered by GX6 infection as well. It can be noticed that Dysgonomonas, Morganella, Myroides, and Providencia bacteria became more numerous in the intestines of GX6-infected BSFL as compared to controls. This study will lay foundations for efficient control of "soft rot" and promote healthy development of the BSFL industry to contribute to organic waste management and circular economy.
Collapse
Affiliation(s)
- Wangjun She
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, PR China; Hubei Hongshan Laboratory, Wuhan, PR China
| | - Qi Xiao
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, PR China; Hubei Hongshan Laboratory, Wuhan, PR China
| | - Ying Meng
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, PR China; Hubei Hongshan Laboratory, Wuhan, PR China
| | - Peng Zhao
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, PR China; Hubei Hongshan Laboratory, Wuhan, PR China
| | - Chuanliang Wu
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, PR China; Hubei Hongshan Laboratory, Wuhan, PR China
| | - Feng Huang
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, PR China; Hubei Hongshan Laboratory, Wuhan, PR China
| | - Minmin Cai
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, PR China; Hubei Hongshan Laboratory, Wuhan, PR China
| | - Jibin Zhang
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, PR China; Hubei Hongshan Laboratory, Wuhan, PR China
| | - Ziniu Yu
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, PR China; Hubei Hongshan Laboratory, Wuhan, PR China
| | - Kashif Ur Rehman
- Department of Microbiology, Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur, Pakistan; DIL Deutsches Institut für Lebensmitteltechnik e. V. - German Institute of Food Technologies, Quakenbrück, Germany; Poultry Research Institute, Rawalpindi, Livestock and Dairy Development Department, Punjab, Pakistan
| | - Donghai Peng
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, PR China; Hubei Hongshan Laboratory, Wuhan, PR China
| | - Longyu Zheng
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, PR China; Hubei Hongshan Laboratory, Wuhan, PR China.
| |
Collapse
|
44
|
Wu N, Yu X, Liang J, Mao Z, Ma Y, Wang Z, Wang X, Liu X, Xu X. A full recycling chain of food waste with straw addition mediated by black soldier fly larvae: Focus on fresh frass quality, secondary composting, and its fertilizing effect on maize. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 885:163386. [PMID: 37031930 DOI: 10.1016/j.scitotenv.2023.163386] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/18/2023] [Accepted: 04/05/2023] [Indexed: 05/12/2023]
Abstract
Bioconversion of food waste (FW) by black soldier fly larvae (BSFL) has great potential in generating high-quality organic fertilizers (insect frass). However, the stabilization of BSFL frass and its fertilizing effect on crops remain largely unexplored. Here, a full recycling chain mediated by BSFL from FW source to end application was systematically evaluated. BSFL were reared on FW containing 0 %-6 % of rice straw. Straw addition alleviated the high salinity of BSFL frass (Na decreased from 5.9 % to 3.3 %). Specifically, 4 % straw addition significantly enhanced larval biomass and conversion rates, producing fresh frass with a higher humification degree. Lactobacillus (57.0 %-79.9 %) strongly prevailed in almost all fresh frass. A 32-day secondary composting process continued to increase the humification degree of 4 % straw-added frass. Major indicators e.g., pH, organic matter (OM), NPK of final compost basically met the organic fertilizer standard. Application of composted frass fertilizers (0 %-6 %) substantially improved soil OM, nutrients availability and enzyme activities. Moreover, 2 % frass application had optimal enhancing impacts on the height and weight, root activity, total phosphorus and net photosynthetic rate of maize seedling. These findings gave an insight into the BSFL-mediated FW conversion process and proposed the rational application of BSFL frass fertilizer in maize.
Collapse
Affiliation(s)
- Nan Wu
- College of Engineering and Technology, Tianjin Agricultural University, Tianjin 300392, China
| | - Xiaohui Yu
- College of Engineering and Technology, Tianjin Agricultural University, Tianjin 300392, China
| | - Jiaqi Liang
- College of Engineering and Technology, Tianjin Agricultural University, Tianjin 300392, China
| | - Zhiyue Mao
- College of Agronomy and Resource and Environment, Tianjin Agricultural University, Tianjin 300392, China
| | - Ye Ma
- College of Agronomy and Resource and Environment, Tianjin Agricultural University, Tianjin 300392, China
| | - Zhiqiang Wang
- College of Engineering and Technology, Tianjin Agricultural University, Tianjin 300392, China
| | - Xiaobo Wang
- College of Agronomy and Resource and Environment, Tianjin Agricultural University, Tianjin 300392, China
| | - Xinyuan Liu
- College of Engineering and Technology, Tianjin Agricultural University, Tianjin 300392, China
| | - Xiaoyan Xu
- College of Agronomy and Resource and Environment, Tianjin Agricultural University, Tianjin 300392, China.
| |
Collapse
|
45
|
Pazmiño MF, Del Hierro AG, Flores FJ. Genetic diversity and organic waste degrading capacity of Hermetia illucens from the evergreen forest of the Equatorial Choco lowland. PeerJ 2023; 11:e14798. [PMID: 36755868 PMCID: PMC9901308 DOI: 10.7717/peerj.14798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 01/04/2023] [Indexed: 02/05/2023] Open
Abstract
Globally, microplastics (MP) represent a growing burden for ecosystems due to their increasing presence at different trophic levels. In Ecuador, the lack of waste segregation has increased the quantity of waste, primarily organics and plastics, overloading landfills and water sources. Over time, plastics reduce in size and silently enter the food chain of animals, such as insects. The black soldier fly (BSF) larvae, Hermetia illucens (Linnaeus, 1758), is a species with devouring behavior used for waste management because of its beneficial qualities such as fly pest control, biomass production, and rapid organic waste degradation. Studies have uncovered the insect's ability to tolerate MP, and consider the possibility that they may be able to degrade polymers. For the first time in Ecuador, the present study characterized H. illucens using the sequences of different molecular markers. Finally, H. illucens' degrading capacity was evaluated in the presence of MP and decaying food residues, resembling landfill conditions.
Collapse
Affiliation(s)
- María Fernanda Pazmiño
- Departamento de Ciencias de la Vida y de la Agricultura, Facultad de Ingeniería en Biotecnología, Universidad de las Fuerzas Armadas-ESPE, Quito, Pichincha, Ecuador,Laboratorio de Investigación Aplicada—Biotecnología, Instituto Nacional de Biodiversidad-INABIO, Quito, Pichincha, Ecuador
| | - Ana G. Del Hierro
- Laboratorio de Investigación Aplicada—Biotecnología, Instituto Nacional de Biodiversidad-INABIO, Quito, Pichincha, Ecuador
| | - Francisco Javier Flores
- Departamento de Ciencias de la Vida y de la Agricultura, Facultad de Ingeniería en Biotecnología, Universidad de las Fuerzas Armadas-ESPE, Quito, Pichincha, Ecuador,Centro de Investigación de Alimentos, Facultad de Ciencias de la Ingeniería e Industrias, Universidad Tecnológica Equinoccial, Quito, Pichincha, Ecuador
| |
Collapse
|
46
|
Zhou Y, Xiao R, Klammsteiner T, Kong X, Yan B, Mihai FC, Liu T, Zhang Z, Kumar Awasthi M. Recent trends and advances in composting and vermicomposting technologies: A review. BIORESOURCE TECHNOLOGY 2022; 360:127591. [PMID: 35809873 DOI: 10.1016/j.biortech.2022.127591] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/01/2022] [Accepted: 07/02/2022] [Indexed: 06/15/2023]
Abstract
Composting technologies have come a long way, developing from static heaps and windrow composting to smart, artificial intelligence-assisted reactor composting. While in previous years, much attention has been paid to identifying ideal organic waste streams and suitable co-composting candidates, more recent efforts tried to determine novel process-enhancing supplements. These include various single and mixed microbial cultures, additives, bulking agents, or combinations thereof. However, there is still ample need to fine-tune the composting process in order to reduce its impact on the environment and streamline it with circular economy goals. In this review, we highlight recent advances in integrating mathematical modelling, novel supplements, and reactor designs with (vermi-) composting practices and provide an outlook for future developments. These results should serve as reference point to target adjusting screws for process improvement and provide a guideline for waste management officials and stakeholders.
Collapse
Affiliation(s)
- Yuwen Zhou
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Ran Xiao
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Thomas Klammsteiner
- Department of Microbiology, University of Innsbruck, Technikerstrasse 25d, 6020 Innsbruck, Austria
| | - Xiaoliang Kong
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Binghua Yan
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Florin-Constantin Mihai
- CERNESIM Center, Department of Exact Sciences and Natural Sciences, Institute of Interdisciplinary Research, "Alexandru Ioan Cuza" University of Iasi, 700506 Iasi, Romania
| | - Tao Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China.
| |
Collapse
|
47
|
Potential Applications of Frass Derived from Black Soldier Fly Larvae Treatment of Food Waste: A Review. Foods 2022; 11:foods11172664. [PMID: 36076850 PMCID: PMC9455751 DOI: 10.3390/foods11172664] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/16/2022] [Accepted: 08/23/2022] [Indexed: 11/17/2022] Open
Abstract
The disposal of large amounts of food waste has caused serious environmental pollution and financial losses globally. Compared to alternative disposal methods (landfills, incineration, and anaerobic digestion), composting by black soldier fly larvae (BSFL) is a promising alternative for food waste management. Despite extensive research into larval biomass, another valuable by-product generated from BSFL composting is BSFL frass. However, limited information is available for its potential application. The applications of BSFL frass can be intensified by understanding its physicochemical characteristics, benefits, and challenges of BSFL frass derived from food waste. BSFL frass is harvested after 9–23 days of the experiment, depending on the substrate used in the composting process. The generated BSFL frass could exceed 33% of the original weight of the substrate. The physicochemical characteristics of BSFL frass are as follows: the temperature after harvest is 24 °C to 27 °C, pH is 5.6–8.0, moisture content is 30 to 72%, C/N ratio is 8:1 to 27:1, high nitrogen, phosphorus, and potassium (NPK) content, and low heavy metal content. This paper reviews the characteristics, benefits, and application of BSFL frass. It will also investigate the challenges of using food waste substrates to produce BSFL frass, as well as the best way to pre-treat the food waste substrate and post-treat the BSFL frass.
Collapse
|
48
|
Suitability of Porous Inorganic Materials from Industrial Residues and Bioproducts for Use in Horticulture: A Multidisciplinary Approach. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12115437] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
This study follows a circular economy approach through the preliminary implementation of a coated porous inorganic material (PIM), studied as sustainable controlled release fertilizer, and its application for lettuce Lactuca sativa L. cultivar Chiara growth. The PIM was made of pumice scraps that partially replaced clay as a natural raw material, spent coffee grounds as a porous agent, bovine bone ash and potassium carbonate to provide phosphorus (P) and potassium (K) nutrients, respectively. A coating made with defatted black soldier fly prepupae biomass was used as a nitrogen (N) source. Most of the ingredients used were industrial residues, with the aim of valorizing the raw waste materials present locally. The suitability of PIMs as a fertilizer was investigated with an interdisciplinary approach, which included the first chemical and physical characterization of the material, the evaluation of its antibacterial properties and of its use in horticulture through lettuce growth tests. As tests were carried out indoors, a specific LED lighting device was used to grow the lettuce. The release of nutrients into the soil was estimated by measuring the main elements in the fertilizers before and after their use in the soil. The first results from this characterization study support PIMs’ suitability for agronomic applications. The use of the PIMs suggested average higher dry weight (49%), fresh weight (112%), and leaf area (48%), compared to those with the use of a standard fertilizer soil, without the release of any dangerous element for the plant in the soil. These results are a promising beginning for the development of further studies already in progress on sustainable controlled-release fertilizers.
Collapse
|