1
|
Oktaria V, Murni IK, Handley A, Donato CM, Nuryastuti T, Supriyati E, McCarthy DT, Watts E, Dinari R, Sari HM, Thobari JA, Laksono IS, Bines JE. Environmental surveillance for Salmonella Typhi to detect the typhoid burden in Yogyakarta, Indonesia. Int J Hyg Environ Health 2025; 266:114572. [PMID: 40163994 PMCID: PMC12042821 DOI: 10.1016/j.ijheh.2025.114572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 03/21/2025] [Accepted: 03/26/2025] [Indexed: 04/02/2025]
Abstract
BACKGROUND In low and middle-income countries (LMICs), understanding the burden of typhoid disease has been challenging as clinical surveillance based on blood culture data alone often poorly represents the community burden. Underreported cases, unclear case definitions, the presence of a chronic carrier state and emerging antimicrobial resistance necessitate alternative approaches to assess disease prevalence and target public health interventions, such as vaccine introduction. This study aimed to assess the feasibility of wastewater and environmental surveillance (WES) in measuring the prevalence of typhoid infection in Indonesia. METHODS Between October 11, 2022, and August 31, 2023, WES was conducted in 18 locations across 3 districts in Yogyakarta province, Indonesia. Samples were collected fortnightly from wastewater treatment plants (WWTPs), manholes, a river, and public spaces, using grab and passive sampling methods. Salmonella Typhi (S. Typhi) detection was conducted using quantitative PCR for S. Typhi genes (ttr, tviB, and staG - all positive). RESULTS Of the 406 samples collected, 13 % (51/406) tested positive for S. Typhi, with monthly positivity rates ranging from 2 % (1/51) in March 2023 to 47 % (16/34) in October 2022. Mean concentrations (in log10) in ttr, tviB, and staG in grab samples were 0.67 (SD ± 0.99), 0.23 (SD ± 1.14), and -0.11 (SD ± 1.05). The highest detection rates were observed in samples from the river compared to central WWTPs (OR 12.68; 95 % CI 2.03-79.20, P = 0.007). No correlation was observed between rainfall and S. Typhi gene detection (P > 0.05 for all genes). CONCLUSION WES is feasible in Indonesia and can be used to monitor typhoid disease burden in an endemic region. High positivity rates from the river and septic tanks in traditional markets support a broad approach to sampling in LMICs where formal wastewater management systems may not accurately represent community disease prevalence due to its low population coverage. WES can be a valuable tool to inform public health responses, including vaccine introduction.
Collapse
Affiliation(s)
- Vicka Oktaria
- Department of Biostatistics, Epidemiology, and Population Health, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia; Center for Child Health - Pediatric Research Office, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia.
| | - Indah Kartika Murni
- Center for Child Health - Pediatric Research Office, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia; Child Health Department, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia.
| | - Amanda Handley
- Medicines Development for Global Health, Southbank, Victoria, Australia
| | - Celeste M Donato
- The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Victoria, Australia; Enteric Diseases Group, Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - Titik Nuryastuti
- Department of Microbiology, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Endah Supriyati
- Center for Child Health - Pediatric Research Office, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia; Center for Tropical Medicine, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - David T McCarthy
- Environmental and Public Health Microbiology Lab (EPHM Lab), Department of Civil Engineering, Monash University, Clayton, Victoria, Australia; School of Civil and Environmental Engineering, Faculty of Engineering, Queensland University of Technology, Queensland, Australia
| | - Emma Watts
- Enteric Diseases Group, Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - Rizka Dinari
- Center for Child Health - Pediatric Research Office, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Hendri Marinda Sari
- Center for Child Health - Pediatric Research Office, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Jarir At Thobari
- Center for Child Health - Pediatric Research Office, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Ida Safitri Laksono
- Center for Child Health - Pediatric Research Office, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia; Child Health Department, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Julie E Bines
- Enteric Diseases Group, Murdoch Children's Research Institute, Parkville, Victoria, Australia; Department of Paediatrics, The University of Melbourne, Parkville, Victoria, Australia; Department of Gastroenterology and Clinical Nutrition, Royal Children's Hospital Melbourne, Victoria, Australia
| |
Collapse
|
2
|
Kelly M, Hynds P, Brown RS, McDermott K, Petculescu I, Majury AL. The use of E. coli phylogrouping and microbial source tracking (non-species specific, human-specific, bovine-specific bacteroidales markers) to elucidate hydro(geo)logical contamination mechanisms in southeastern Ontario, Canada. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125080. [PMID: 39374759 DOI: 10.1016/j.envpol.2024.125080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/16/2024] [Accepted: 10/04/2024] [Indexed: 10/09/2024]
Abstract
In Ontario, monitoring, maintenance, and treatment of private drinking systems (e.g. wells) are the responsibility of the well owner. Fecal contamination of drinking water threatens public health, particularly in rural communities which are often fully reliant on unregulated private groundwater as a primary drinking water source. Private well users face a higher risk of acute gastrointestinal illness compared to those served by municipally operated systems (Murphy et al., 2016). Accordingly, the current study sought to characterize the fecal indicator, E. coli, isolated from southeastern Ontario private groundwater wells, including phylogroups and host source. Results were examined in the context of antecedent climate and local hydrogeological setting to elucidate likely contaminant sources and pathways. A total of 737 E. coli isolates from 260 private wells were assigned to phylogroups using the Clermont PCR phylotyping method, with likely host source determined using host-specific Bacteroidales 16S rRNA RT qPCR assays. Multivariate models were developed for the main E. coli phylogroups (A, B1, B2, and D) and all microbial source tracking markers. Models were coupled for interpretation where possible, based on associations between phylogroups and MST markers. Preferential subsurface flow, and to a lesser degree, overland flow, were likely mechanisms of contamination across all models. Distinct temporal associations were found based on the fecal source. Multiple models were developed and will be discussed, in an attempt to elucidate source-specific contamination mechanisms, in support of risk assessment and appropriate protective actions.
Collapse
Affiliation(s)
- Madeleine Kelly
- School of Environmental Studies, Queen's University, Kingston, Ontario, Canada; Public Health Ontario, Kingston, Ontario, Canada
| | - Paul Hynds
- Technological University Dublin, Dublin, Ireland.
| | - R Stephen Brown
- School of Environmental Studies, Queen's University, Kingston, Ontario, Canada
| | | | - Ioan Petculescu
- School of Environmental Studies, Queen's University, Kingston, Ontario, Canada; Public Health Ontario, Kingston, Ontario, Canada
| | - Anna L Majury
- School of Environmental Studies, Queen's University, Kingston, Ontario, Canada; Public Health Ontario, Kingston, Ontario, Canada.
| |
Collapse
|
3
|
Benoit T, Sajjad D, Cloutier M, Lapen DR, Craiovan E, Sykes EME, Kumar A, Khan IUH. Acinetobacter calcoaceticus-baumannii complex prevalence, spatial-temporal distribution, and contamination sources in Canadian aquatic environments. Microbiol Spectr 2024; 12:e0150924. [PMID: 39240108 PMCID: PMC11449026 DOI: 10.1128/spectrum.01509-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 07/29/2024] [Indexed: 09/07/2024] Open
Abstract
Acinetobacter calcoaceticus-baumannii (ACB) complex has been identified as a group of emerging opportunistic pathogens that cause nosocomial infections. The current study investigates the prevalence, distribution, and diversity of pathogenic ACB complex in various aquatic systems with different uses. Of the total 157 agricultural, raw drinking water intake, recreational beach, and wastewater treatment plant (WWTP) effluent samples, acinetobacters were isolated, quantified, and confirmed by genus- and ACB complex-specific PCR assays. Of all agricultural surface water samples, A. calcoaceticus (65%) was more frequently detected than A. pittii (14%), A. nosocomialis (9%), and A. baumannii (3%). In WWTP effluent samples, A. baumannii was more prevalent in de-chlorinated (60%) samples compared to both A. pittii and A. nosocomialis (40%). Interestingly, A. nosocomialis (43%), A. calcoaceticus (29%), and A. baumannii (14%) were detected in raw drinking water intake samples, whereas A. pittii (50%) and A. nosocomialis (25%) were detected in beach samples. Although no sampling location-specific differences were recorded, significant (P < 0.05) seasonal differences were observed when agricultural surface water samples collected in spring were compared with the summer and fall. Whereas effluent chlorination significantly impacted the degree of prevalence of Acinetobacter in WWTP effluent samples, overall, the prevalence of ACB complex in all sampling locations and seasons indicates that these water sources, containing human-associated ACB complex, may pose potential health risks as community-acquired opportunistic infections.IMPORTANCEAcinetobacter calcoaceticus-baumannii (ACB) complex is a group of organisms known to cause problematic nosocomial opportunistic infections. A member of the species complex, A. baumannii, is becoming a global threat to infection treatment as strains are increasingly develop resistance to antibiotics. The prevalence and distribution of potentially pathogenic Acinetobacter calcoaceticus-baumannii complex species remain poorly understood, and there is a need to better understand the occurrence of A. baumannii in non-nosocomial environments. Our research details the spatial-temporal distribution of ACB complex species in a regional watershed and highlights the presence of ACB complex in wastewater effluent that is discharged into a river. These findings deepen our understanding of this group of species in non-nosocomial environments and encourage the development of monitoring programs for these species in regional waters.
Collapse
Affiliation(s)
- Thomas Benoit
- Ottawa Research and
Development Centre, Agriculture and Agri-Food
Canada, Ontario,
Canada
- Department of
Chemistry and Biomolecular Sciences, University of
Ottawa, Ontario,
Canada
| | - Dania Sajjad
- Ottawa Research and
Development Centre, Agriculture and Agri-Food
Canada, Ontario,
Canada
- Department of
Chemistry and Biomolecular Sciences, University of
Ottawa, Ontario,
Canada
| | - Michel Cloutier
- Ottawa Research and
Development Centre, Agriculture and Agri-Food
Canada, Ontario,
Canada
| | - David R. Lapen
- Ottawa Research and
Development Centre, Agriculture and Agri-Food
Canada, Ontario,
Canada
| | - Emilia Craiovan
- Ottawa Research and
Development Centre, Agriculture and Agri-Food
Canada, Ontario,
Canada
| | - Ellen M. E. Sykes
- Department of
Microbiology, University of Manitoba,
Winnipeg, Manitoba,
Canada
| | - Ayush Kumar
- Department of
Microbiology, University of Manitoba,
Winnipeg, Manitoba,
Canada
| | - Izhar U. H. Khan
- Ottawa Research and
Development Centre, Agriculture and Agri-Food
Canada, Ontario,
Canada
| |
Collapse
|
4
|
Li J, Yuan Z, Xu J, Xin X, Liu J, Zhang X, Zhou S, Li Z, Chen S, Huang H, Zhao W, Jiang Y. Molecular detection and genetic variability of Cryptosporidium spp. in wild Asian house shrews ( Suncus murinus) from southern Zhejiang province, China. Heliyon 2024; 10:e33334. [PMID: 39021918 PMCID: PMC11252936 DOI: 10.1016/j.heliyon.2024.e33334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/17/2024] [Accepted: 06/19/2024] [Indexed: 07/20/2024] Open
Abstract
Shrews play a crucial role as repositories for diverse pathogens linked to zoonotic infectious diseases. However, the genetic information regarding Cryptosporidium in Chinese shrews remains unexplored. The objectives of this study were twofold: to determine the occurrence rate of Cryptosporidium spp. in wild shrews residing in the southern part of Zhejiang Province, China, and to investigate their genetic characteristics. A total of 282 wild shrews were captured between April and October of 2023. The detection of Cryptosporidium in fecal samples, collected from each animal's rectum, was performed using PCR and sequencing of the partial small subunit of ribosomal RNA (SSU rRNA) gene. The 60-kDa glycoprotein (gp60) gene was utilized to further subtype the positive samples of C. viatorum and C. parvum. All animals were identified as Suncus murinus, and a positive result for Cryptosporidium was obtained in 14.2 % (40/282) of the samples. The following species and genotypes were identified: C. ratti (n = 19), C. parvum (n = 2), C. viatorum (n = 1), Cryptosporidium rat genotype IV (n = 13), and Cryptosporidium skunk genotype (n = 5). Furthermore, the subtypes IIdA15G1 and XVdA3 were detected within C. parvum and C. viatorum, respectively. Molecular evidence indicates that S. murinus is concurrently infected with rodent-adapted and zoonotic species/genotypes, actively contributing to the dissemination of cryptosporidiosis.
Collapse
Affiliation(s)
- Jiangfeng Li
- Wenzhou Center for Disease Control and Prevention, Wenzhou, Zhejiang, 325000, China
| | - Zhongying Yuan
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, NHC Key Laboratory of Parasite and Vector Biology, National Center for International Research on Tropical Diseases, WHO Collaborating Centre for Tropical Diseases, 200025, Shanghai, China
| | - Junchen Xu
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Xianming Xin
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Jiani Liu
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Xinrui Zhang
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Shanshan Zhou
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, NHC Key Laboratory of Parasite and Vector Biology, National Center for International Research on Tropical Diseases, WHO Collaborating Centre for Tropical Diseases, 200025, Shanghai, China
| | - Zhen Li
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, NHC Key Laboratory of Parasite and Vector Biology, National Center for International Research on Tropical Diseases, WHO Collaborating Centre for Tropical Diseases, 200025, Shanghai, China
| | - Shuai Chen
- Wenzhou Center for Disease Control and Prevention, Wenzhou, Zhejiang, 325000, China
| | - Huicong Huang
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Wei Zhao
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Yanyan Jiang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, NHC Key Laboratory of Parasite and Vector Biology, National Center for International Research on Tropical Diseases, WHO Collaborating Centre for Tropical Diseases, 200025, Shanghai, China
| |
Collapse
|
5
|
Hachad M, Burnet JB, Sylvestre É, Duy SV, Villemur R, Sauvé S, Prévost M, Qiu JY, Pang X, Dorner S. β-D-glucuronidase activity triggered monitoring of fecal contamination using microbial and chemical source tracking markers at drinking water intakes. WATER RESEARCH 2024; 254:121374. [PMID: 38422696 DOI: 10.1016/j.watres.2024.121374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/22/2024] [Accepted: 02/23/2024] [Indexed: 03/02/2024]
Abstract
Intense rainfall and snowmelt events may affect the safety of drinking water, as large quantities of fecal material can be discharged from storm or sewage overflows or washed from the catchment into drinking water sources. This study used β-d-glucuronidase activity (GLUC) with microbial source tracking (MST) markers: human, bovine, porcine mitochondrial DNA markers (mtDNA) and human-associated Bacteroidales HF183 and chemical source tracking (CST) markers including caffeine, carbamazepine, theophylline and acetaminophen, pathogens (Giardia, Cryptosporidium, adenovirus, rotavirus and enterovirus), water quality indicators (Escherichia coli, turbidity) and hydrometeorological data (flowrate, precipitation) to assess the vulnerability of 3 drinking water intakes (DWIs) and identify sources of fecal contamination. Water samples were collected under baseline, snow and rain events conditions in urban and agricultural catchments (Québec, Canada). Dynamics of E. coli, HF183 and WWMPs were similar during contamination events, and concentrations generally varied over 1 order of magnitude during each event. Elevated human-associated marker levels during events demonstrated that urban DWIs were impacted by recent contamination from an upstream municipal water resource recovery facility (WRRF). In the agricultural catchment, mixed fecal pollution was observed with the occurrences and increases of enteric viruses, human bovine and porcine mtDNA during peak contaminating events. Bovine mtDNA qPCR concentrations were indicative of runoff of cattle-derived fecal pollutants to the DWI from diffuse sources following rain events. This study demonstrated that the suitability of a given MST or CST indicator depend on river and catchment characteristics. The sampling strategy using continuous online GLUC activity coupled with MST and CST markers analysis was a more reliable source indicator than turbidity to identify peak events at drinking water intakes.
Collapse
Affiliation(s)
- Mounia Hachad
- NSERC Industrial Chair on Drinking Water, Department of Civil, Geological, and Mining Engineering, Polytechnique Montréal, QC, H3C 3A7, Canada; Canada Research Chair in Source Water Protection, Department of Civil, Geological, and Mining Engineering, Polytechnique Montréal, QC, H3C 3A7, Canada.
| | - Jean-Baptiste Burnet
- NSERC Industrial Chair on Drinking Water, Department of Civil, Geological, and Mining Engineering, Polytechnique Montréal, QC, H3C 3A7, Canada; Canada Research Chair in Source Water Protection, Department of Civil, Geological, and Mining Engineering, Polytechnique Montréal, QC, H3C 3A7, Canada
| | - Émile Sylvestre
- NSERC Industrial Chair on Drinking Water, Department of Civil, Geological, and Mining Engineering, Polytechnique Montréal, QC, H3C 3A7, Canada; Canada Research Chair in Source Water Protection, Department of Civil, Geological, and Mining Engineering, Polytechnique Montréal, QC, H3C 3A7, Canada
| | - Sung Vo Duy
- Department of Chemistry, Université de Montréal, P.O. Box 6128, Succ, Centre-Ville, Montréal, QC H3C 3J7, Canada
| | - Richard Villemur
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, 531 Boulevard des Prairies, Laval, QC H7V 1B7, Canada
| | - Sébastien Sauvé
- Department of Chemistry, Université de Montréal, P.O. Box 6128, Succ, Centre-Ville, Montréal, QC H3C 3J7, Canada
| | - Michèle Prévost
- NSERC Industrial Chair on Drinking Water, Department of Civil, Geological, and Mining Engineering, Polytechnique Montréal, QC, H3C 3A7, Canada
| | - Judy Y Qiu
- Department of Laboratory Medicine and Pathology, University of Alberta, 116th & 85 Ave, Edmonton, AB T6G 2R3, Canada
| | - Xiaoli Pang
- Department of Laboratory Medicine and Pathology, University of Alberta, 116th & 85 Ave, Edmonton, AB T6G 2R3, Canada
| | - Sarah Dorner
- Canada Research Chair in Source Water Protection, Department of Civil, Geological, and Mining Engineering, Polytechnique Montréal, QC, H3C 3A7, Canada
| |
Collapse
|
6
|
Bachoon DS, Redhead ASZ, Mead AJ. Mitochondrial DNA marker: A PCR approach for tracking rat (Rattus rattus and Rattus norvegicus) fecal pollution in surface water systems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 921:171164. [PMID: 38402984 DOI: 10.1016/j.scitotenv.2024.171164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/19/2024] [Accepted: 02/19/2024] [Indexed: 02/27/2024]
Abstract
Rats act as reservoirs for a wide range of zoonotic pathogens and can negatively impact human health. In this study, we developed a novel dye base mitochondrial DNA (mtDNA) PCR-assay (RatMt) specifically targeting a 180 bp fragment of the NADH dehydrogenase subunit 2 gene for detecting fecal pollution from two species of rats (Rattus rattus and Rattus norvegicus) in environmental samples. Estimation of Escherichia coli concentrations in Rattus norvegicus fecal pellets suggested that there were approximately 2.24 × 10 4 ± 4.86 × 103 MPN/g of fecal pellet. The RatMt PCR assay was robust, had a detection limit of rat feces in water of 0.274 ± 0.14 mg/100 mL and was 100 % specific for detecting Rattus rattus and Rattus norvegicus fecal mtDNA. Fecal Indicator Bacteria (FIB) along an urbanized gradient in Pensacola-Bay was assessed by the IDEXX Colilert™ - 18 and indicated that the majority of the fifteen sampling sites in the Pensacola-Bay area had E. coli concentrations >410 MPN/100 mL. Rattus rattus and Rattus norvegicus mtDNA were detected in all the urban marine sites, three of the urban freshwater sampling areas, and three of the forested sampling sites. The RatMt PCR assay is a useful tool for rapidly detecting Rattus rattus and Rattus norvegicus fecal pollution in environmental samples.
Collapse
Affiliation(s)
- Dave S Bachoon
- Department of Biological and Environmental Sciences, Georgia College & State University, Campus Box 81, Milledgeville, GA 31061-0490, USA.
| | - Aaden S Z Redhead
- Department of Biological and Environmental Sciences, Georgia College & State University, Campus Box 81, Milledgeville, GA 31061-0490, USA
| | - Alfred J Mead
- Department of Biological and Environmental Sciences, Georgia College & State University, Campus Box 81, Milledgeville, GA 31061-0490, USA
| |
Collapse
|
7
|
Digaletos M, Ptacek CJ, Thomas J, Liu Y. Chemical and biological tracers to identify source and transport pathways of septic system contamination to streams in areas with low permeability soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 870:161866. [PMID: 36709906 DOI: 10.1016/j.scitotenv.2023.161866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 01/13/2023] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
Septic systems are widely used in rural areas that lack centralized sewage treatment systems. Incomplete removal of domestic wastewater contaminants in septic systems can lead to leaching of nutrients (P and N), bacteria/viruses, and trace contaminants to surrounding groundwater and surface water. This study focuses on delineating the fate of wastewater contaminants in localities where septic systems are installed in moderate to fine-grained overburden materials to assess potential impacts on groundwater and surface water quality in these settings. Nutrients and a suite of anthropogenic tracers, including host-specific fecal indicator bacteria (bovine- and human-specific Bacteroides), pharmaceutical compounds (caffeine, carbamazepine, gemfibrozil, ibuprofen, naproxen, and sulfamethoxazole), and an artificial sweetener (acesulfame-K), were selected to evaluate differences in transport properties. Surface water samples (n = 103) were collected from streams upstream (US) and downstream (DS) of three rural hamlets up to two times monthly over one year. Results indicate the presence of wastewater indicators in the streams, with DS locations showing significantly elevated concentrations of both chemical and biological anthropogenic tracers. Human-specific Bacteroides, caffeine, and acesulfame-K were consistently observed at elevated concentrations at all DS sites. Nutrients exhibited varied concentrations between US and DS locations at three study sites. The occurrence of human-specific Bacteroides in the surface water samples suggests the presence of preferential flow pathways within the silt/clay overburden. These results demonstrate the advantages of using a combined tracer approach, involving a conservative tracer such as acesulfame-K coupled with the human-specific biological indicator Bacteroides (BacHum), to understand not only impacting sources but also potential transport pathways of septic system contamination to nearby streams. Septic systems may be an underappreciated contaminant source in rural hamlets located in fine-grained overburden materials; although, a distinction of specific nutrient sources (septic systems vs. agriculture) remains challenging.
Collapse
Affiliation(s)
- Maria Digaletos
- Department of Earth and Environmental Sciences, University of Waterloo, 200 University Ave. W, Waterloo, Ontario N2L 3G1, Canada
| | - Carol J Ptacek
- Department of Earth and Environmental Sciences, University of Waterloo, 200 University Ave. W, Waterloo, Ontario N2L 3G1, Canada
| | - Janis Thomas
- Ontario Ministry of the Environment, Conservation and Parks, 125 Resources Rd., Toronto, Ontario M9P 3V6, Canada; Department of Earth and Environmental Sciences, University of Waterloo, 200 University Ave. W, Waterloo, Ontario N2L 3G1, Canada
| | - YingYing Liu
- Department of Earth and Environmental Sciences, University of Waterloo, 200 University Ave. W, Waterloo, Ontario N2L 3G1, Canada.
| |
Collapse
|
8
|
Shi Y, Khan IUH, Radford D, Guo G, Sunohara M, Craiovan E, Lapen DR, Pham P, Chen W. Core and conditionally rare taxa as indicators of agricultural drainage ditch and stream health and function. BMC Microbiol 2023; 23:62. [PMID: 36882680 PMCID: PMC9990217 DOI: 10.1186/s12866-023-02755-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 01/03/2023] [Indexed: 03/09/2023] Open
Abstract
BACKGROUND The freshwater microbiome regulates aquatic ecological functionality, nutrient cycling, pathogenicity, and has the capacity to dissipate and regulate pollutants. Agricultural drainage ditches are ubiquitous in regions where field drainage is necessary for crop productivity, and as such, are first-line receptors of agricultural drainage and runoff. How bacterial communities in these systems respond to environmental and anthropogenic stressors are not well understood. In this study, we carried out a three year study in an agriculturally dominated river basin in eastern Ontario, Canada to explore the spatial and temporal dynamics of the core and conditionally rare taxa (CRT) of the instream bacterial communities using a 16S rRNA gene amplicon sequencing approach. Water samples were collected from nine stream and drainage ditch sites that represented the influence of a range of upstream land uses. RESULTS The cross-site core and CRT accounted for 5.6% of the total number of amplicon sequence variants (ASVs), yet represented, on average, over 60% of the heterogeneity of the overall bacterial community; hence, well reflected the spatial and temporal microbial dynamics in the water courses. The contribution of core microbiome to the overall community heterogeneity represented the community stability across all sampling sites. CRT was primarily composed of functional taxa involved in nitrogen (N) cycling and was linked to nutrient loading, water levels, and flow, particularly in the smaller agricultural drainage ditches. Both the core and the CRT were sensitive responders to changes in hydrological conditions. CONCLUSIONS We demonstrate that core and CRT can be considered as holistic tools to explore the temporal and spatial variations of the aquatic microbial community and can be used as sensitive indicators of the health and function of agriculturally dominated water courses. This approach also reduces computational complexity in relation to analyzing the entire microbial community for such purposes.
Collapse
Affiliation(s)
- Yichao Shi
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, Canada
| | - Izhar U H Khan
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, Canada
| | - Devon Radford
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, Canada
| | - Galen Guo
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, Canada
| | - Mark Sunohara
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, Canada
| | - Emilia Craiovan
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, Canada
| | - David R Lapen
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, Canada
| | - Phillip Pham
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, Canada.,Department of Biology, University of Ottawa, Marie-Curie Private, Ottawa, ON, K1N 9A7, Canada
| | - Wen Chen
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, Canada. .,Department of Biology, University of Ottawa, Marie-Curie Private, Ottawa, ON, K1N 9A7, Canada.
| |
Collapse
|
9
|
Observations and Correlations from a 3-Year Study of Fecal Indicator Bacteria in the Mohawk River in Upstate NY. WATER 2022. [DOI: 10.3390/w14132137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Fecal indicator bacteria (FIB), such as E. coli and Enterococci, are used to indicate the potential of fecal contamination in waterways. One known source of FIB in urbanized areas is the occurrence of combined sewer overflows (CSOs). To explore the impact of CSOs on local water quality and FIB presence, sampling was conducted during the summers of 2017–2019 of two cities, one with CSOs and one without, on the Mohawk River in upstate New York, USA. Sampling included in situ physiochemical parameters of pH, temperature, and dissolved oxygen and laboratory tests for E. coli, Enterococci, nitrates, and total organic carbon (TOC). Correlations between parameters were explored using the Wilcoxon rank sum test and Spearman’s Rank correlation with and without considerations of site and city location. Overall, positive correlations between FIB and rainfall were identified in one city but were less significant in the other, suggesting a buffering of FIB concentrations likely due to inflow contributions from a reservoir. Samples collected downstream from an active CSO reached the detection limit of the FIB tests, demonstrating a 2-log or greater increase in FIB concentrations from dry weather conditions. The city with CSOs demonstrated greater FIB concentrations, which are likely a combination of greater urban runoff, CSOs, and the potential resuspension of sediment during high flow events. Due to the widespread presence of FIB in the region, future research includes utilizing microbial source tracking to identify the sources of contamination in the region.
Collapse
|
10
|
Luo X, Xiang X, Yang Y, Huang G, Fu K, Che R, Chen L. Seasonal effects of river flow on microbial community coalescence and diversity in a riverine network. FEMS Microbiol Ecol 2021; 96:5864679. [PMID: 32597955 DOI: 10.1093/femsec/fiaa132] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 06/28/2020] [Indexed: 12/11/2022] Open
Abstract
Terrestrial microbial communities may take advantage of running waters and runoff to enter rivers and mix with aquatic microorganisms. However, the environmental factors governing the interchange of the microbial community within a watercourse and its surrounding environment and the composition of the resulting community are often underestimated. The present study investigated the effect of flow rate on the mixing of water, soil, sediment and biofilm at four sites along the Lancang River and one branch of the river in winter and summer and, in turn, the resultant changes in the microbial community within each habitat. 16S rRNA gene-based Illumina high-throughput sequencing illustrated that bacterial communities were apparently distinct among biofilm, water, soil and sediment. Biofilms had the lowest richness, Shannon diversity and evenness indices compared with other habitats, and those three indices in all habitats increased significantly from winter to summer. SourceTracker analysis showed a significant coalescence between the bacterial communities of sediment, water and biofilm samples at lower flow rates. Additionally, the proportion of Betaproteobacteria in sediment and biofilms increased with a decrease in flow rate, suggesting the flow rate had a strong impact on microbial community composition and exchange among aquatic habitats. These results were further confirmed by a Mantel test and linear regression analysis. Microbial communities in all samples exhibited a significant but very weak distance-decay relationship (r = 0.093, P = 0.024). Turbidity played a much more important role on water bacterial community structure in summer (i.e. rainy season) (BIOENV, r = 0.92). Together, these results suggest that dispersal is an important factor affecting bacterial community structure in this system.
Collapse
Affiliation(s)
- Xia Luo
- Institute of International Rivers and Eco-Security, Yunnan University, Kunming 650500, China.,Yunnan Key Laboratory of International Rivers and Transboundary Eco-Security, Kunming 650500, China
| | - Xinyi Xiang
- Institute of International Rivers and Eco-Security, Yunnan University, Kunming 650500, China.,Yunnan Key Laboratory of International Rivers and Transboundary Eco-Security, Kunming 650500, China
| | - Yuanhao Yang
- Institute of International Rivers and Eco-Security, Yunnan University, Kunming 650500, China.,Yunnan Key Laboratory of International Rivers and Transboundary Eco-Security, Kunming 650500, China
| | - Guoyi Huang
- Institute of International Rivers and Eco-Security, Yunnan University, Kunming 650500, China.,Yunnan Key Laboratory of International Rivers and Transboundary Eco-Security, Kunming 650500, China
| | - Kaidao Fu
- Institute of International Rivers and Eco-Security, Yunnan University, Kunming 650500, China.,Yunnan Key Laboratory of International Rivers and Transboundary Eco-Security, Kunming 650500, China
| | - Rongxiao Che
- Institute of International Rivers and Eco-Security, Yunnan University, Kunming 650500, China.,Yunnan Key Laboratory of International Rivers and Transboundary Eco-Security, Kunming 650500, China
| | - Liqiang Chen
- Institute of International Rivers and Eco-Security, Yunnan University, Kunming 650500, China.,Yunnan Key Laboratory of International Rivers and Transboundary Eco-Security, Kunming 650500, China
| |
Collapse
|
11
|
Hinojosa J, Green J, Estrada F, Herrera J, Mata T, Phan D, Pasha ABMT, Matta A, Johnson D, Kapoor V. Determining the primary sources of fecal pollution using microbial source tracking assays combined with land-use information in the Edwards Aquifer. WATER RESEARCH 2020; 184:116211. [PMID: 32721766 DOI: 10.1016/j.watres.2020.116211] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 07/18/2020] [Accepted: 07/20/2020] [Indexed: 06/11/2023]
Abstract
The Edwards Aquifer serves as a primary source of drinking water to more than 2 million people in south-central Texas, and as a karst aquifer, is vulnerable to human and animal fecal contamination which poses a serious risk to human and environmental health. A one-year study (Jan 2018 - Feb 2019) was conducted to determine the primary sources of fecal pollution along the Balcones and Leon Creek within the Edwards Aquifer recharge and contributing zones using general (E. coli, enterococci, and universal Bacteriodales) and host-associated (human-, dog-, cow- and chicken/duck-associated Bacteriodales) microbial source tracking (MST) assays. Additionally, sites were classified based on surrounding land use as a potential source predictor and marker levels were correlated with rain events and water quality parameters. Levels for the three general indicators were highest and exhibited similar trends across the sampling sites, suggesting that the sole use of these markers is not sufficient for specific fecal source identification. Among the host-associated markers, highest concentrations were observed for the dog marker (BacCan) in the Leon Creek area and the cow marker (BacCow) in the Balcones Creek area. Additionally, Chicken/Duck-Bac, BacCan and BacCow all exhibited higher concentrations during the spring season and the end of fall/early winter. Relatively lower concentrations were observed for the human-associated markers (HF183 and BacHum), however, levels were higher in the Leon Creek area and highest following rainfall events. Additionally, relatively higher levels in HF183 and BacHum were observed at sites having greater human population and septic tank density and may be attributed to leaks or breaks in these infrastructures. This study is the first to examine and compare fecal contamination at rural and urban areas in the recharge and contributing zones of the Edwards Aquifer using a molecular MST approach targeting Bacteroidales 16S rRNA gene-based assays. The Bacteroidales marker assays, when combined with land use and weather information, can allow for a better understanding of the sources and fluxes of fecal contamination, which can help devise effective mitigation measures to protect water quality.
Collapse
Affiliation(s)
- Jessica Hinojosa
- Department of Civil and Environmental Engineering, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Jemima Green
- Department of Civil and Environmental Engineering, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Fabiola Estrada
- Department of Civil and Environmental Engineering, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Jonathan Herrera
- Department of Civil and Environmental Engineering, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Troy Mata
- Department of Civil and Environmental Engineering, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Duc Phan
- Department of Civil and Environmental Engineering, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - A B M Tanvir Pasha
- Department of Civil and Environmental Engineering, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Akanksha Matta
- Department of Civil and Environmental Engineering, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Drew Johnson
- Department of Civil and Environmental Engineering, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Vikram Kapoor
- Department of Civil and Environmental Engineering, University of Texas at San Antonio, San Antonio, TX 78249, USA.
| |
Collapse
|
12
|
Miltenburg MG, Cloutier M, Craiovan E, Lapen DR, Wilkes G, Topp E, Khan IUH. Real-time quantitative PCR assay development and application for assessment of agricultural surface water and various fecal matter for prevalence of Aliarcobacter faecis and Aliarcobacter lanthieri. BMC Microbiol 2020; 20:164. [PMID: 32546238 PMCID: PMC7298852 DOI: 10.1186/s12866-020-01826-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 05/18/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Aliarcobacter faecis and Aliarcobacter lanthieri are recently identified as emerging human and animal pathogens. In this paper, we demonstrate the development and optimization of two direct DNA-based quantitative real-time PCR assays using species-specific oligonucleotide primer pairs derived from rpoB and gyrA genes for A. faecis and A. lanthieri, respectively. Initially, the specificity of primers and amplicon size of each target reference strain was verified and confirmed by melt curve analysis. Standard curves were developed with a minimum quantification limit of 100 cells mL- 1 or g- 1 obtained using known quantities of spiked A. faecis and A. lanthieri reference strains in autoclaved agricultural surface water and dairy cow manure samples. RESULTS Each species-specific qPCR assay was validated and applied to determine the rate of prevalence and quantify the total number of cells of each target species in natural surface waters of an agriculturally-dominant and non-agricultural reference watershed. In addition, the prevalence and densities were determined for human and various animal (e.g., dogs, cats, dairy cow, and poultry) fecal samples. Overall, the prevalence of A. faecis for surface water and feces was 21 and 28%, respectively. The maximum A. faecis concentration for water and feces was 2.3 × 107 cells 100 mL- 1 and 1.2 × 107 cells g- 1, respectively. A. lanthieri was detected at a lower frequency (2%) with a maximum concentration in surface water of 4.2 × 105 cells 100 mL- 1; fecal samples had a prevalence and maximum density of 10% and 2.0 × 106 cells g- 1, respectively. CONCLUSIONS The results indicate that the occurrence of these species in agricultural surface water is potentially due to fecal contamination of water from livestock, human, or wildlife as both species were detected in fecal samples. The new real-time qPCR assays can facilitate rapid and accurate detection in < 3 h to quantify total numbers of A. faecis and A. lanthieri cells present in various complex environmental samples.
Collapse
Affiliation(s)
- Mary G Miltenburg
- Ottawa Research and Development Centre (ORDC), Agriculture and Agri-Food Canada, 960 Carling Ave, Ottawa, Ontario, K1A 0C6, Canada.,Canadian Food Inspection Agency (CFIA), Ottawa, ON, Canada
| | - Michel Cloutier
- Ottawa Research and Development Centre (ORDC), Agriculture and Agri-Food Canada, 960 Carling Ave, Ottawa, Ontario, K1A 0C6, Canada
| | - Emilia Craiovan
- Ottawa Research and Development Centre (ORDC), Agriculture and Agri-Food Canada, 960 Carling Ave, Ottawa, Ontario, K1A 0C6, Canada
| | - David R Lapen
- Ottawa Research and Development Centre (ORDC), Agriculture and Agri-Food Canada, 960 Carling Ave, Ottawa, Ontario, K1A 0C6, Canada
| | - Graham Wilkes
- Ottawa Research and Development Centre (ORDC), Agriculture and Agri-Food Canada, 960 Carling Ave, Ottawa, Ontario, K1A 0C6, Canada.,Natural Resources Canada, Ottawa, ON, Canada
| | - Edward Topp
- London Research and Development Centre (LRDC), Agriculture and Agri-Food Canada, London, ON, Canada
| | - Izhar U H Khan
- Ottawa Research and Development Centre (ORDC), Agriculture and Agri-Food Canada, 960 Carling Ave, Ottawa, Ontario, K1A 0C6, Canada.
| |
Collapse
|
13
|
Weller D, Belias A, Green H, Roof S, Wiedmann M. Landscape, Water Quality, and Weather Factors Associated With an Increased Likelihood of Foodborne Pathogen Contamination of New York Streams Used to Source Water for Produce Production. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2020; 3:124. [PMID: 32440656 PMCID: PMC7241490 DOI: 10.3389/fsufs.2019.00124] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
There is a need for science-based tools to (i) help manage microbial produce safety hazards associated with preharvest surface water use, and (ii) facilitate comanagement of agroecosystems for competing stakeholder aims. To develop these tools an improved understanding of foodborne pathogen ecology in freshwater systems is needed. The purpose of this study was to identify (i) sources of potential food safety hazards, and (ii) combinations of factors associated with an increased likelihood of pathogen contamination of agricultural water Sixty-eight streams were sampled between April and October 2018 (196 samples). At each sampling event separate 10-L grab samples (GS) were collected and tested for Listeria, Salmonella, and the stx and eaeA genes. A 1-L GS was also collected and used for Escherichia coli enumeration and detection of four host-associated fecal source-tracking markers (FST). Regression analysis was used to identify individual factors that were significantly associated with pathogen detection. We found that eaeA-stx codetection [Odds Ratio (OR) = 4.2; 95% Confidence Interval (CI) = 1.3, 13.4] and Salmonella isolation (OR = 1.8; CI = 0.9, 3.5) were strongly associated with detection of ruminant and human FST markers, respectively, while Listeria spp. (excluding Listeria monocytogenes) was negatively associated with log10 E. coli levels (OR = 0.50; CI = 0.26, 0.96). L. monocytogenes isolation was not associated with the detection of any fecal indicators. This observation supports the current understanding that, unlike enteric pathogens, Listeria is not fecally-associated and instead originates from other environmental sources. Separately, conditional inference trees were used to identify scenarios associated with an elevated or reduced risk of pathogen contamination. Interestingly, while the likelihood of isolating L. monocytogenes appears to be driven by complex interactions between environmental factors, the likelihood of Salmonella isolation and eaeA-stx codetection were driven by physicochemical water quality (e.g., dissolved oxygen) and temperature, respectively. Overall, these models identify environmental conditions associated with an enhanced risk of pathogen presence in agricultural water (e.g., rain events were associated with L. monocytogenes isolation from samples collected downstream of dairy farms; P = 0.002). The information presented here will enable growers to comanage their operations to mitigate the produce safety risks associated with preharvest surface water use.
Collapse
Affiliation(s)
- Daniel Weller
- Department of Food Science, Cornell University, Ithaca, NY, United States
- Department of Biostatistics and Computational Biology, University of Rochester, Rochester, NY, United States
| | - Alexandra Belias
- Department of Food Science, Cornell University, Ithaca, NY, United States
| | - Hyatt Green
- Department of Environmental and Forest Biology, SUNY College of Environmental Science and Forestry, Syracuse, NY, United States
| | - Sherry Roof
- Department of Food Science, Cornell University, Ithaca, NY, United States
| | - Martin Wiedmann
- Department of Food Science, Cornell University, Ithaca, NY, United States
| |
Collapse
|
14
|
Vadde KK, Feng Q, Wang J, McCarthy AJ, Sekar R. Next-generation sequencing reveals fecal contamination and potentially pathogenic bacteria in a major inflow river of Taihu Lake. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 254:113108. [PMID: 31491696 DOI: 10.1016/j.envpol.2019.113108] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 08/14/2019] [Accepted: 08/23/2019] [Indexed: 06/10/2023]
Abstract
Taihu Lake is one of the largest freshwater lakes in China and serves as an important source for drinking water. This lake is suffering from eutrophication, cyanobacterial blooms and fecal pollution, and the inflow Tiaoxi River is one of the main contributors. The goal here was to characterize the bacterial community structure of Tiaoxi River water by next-generation sequencing (NGS), paying attention to bacteria that are either fecal-associated or pathogenic, and to examine the relationship between environmental parameters and bacterial community structure. Water samples collected from 15 locations in three seasons, and fecal samples collected from different hosts and wastewater samples were used for bacterial community analysis. The phyla Proteobacteria, Actinobacteria, Bacteroidetes, and Cyanobacteria were predominant in most of the water samples tested. In fecal samples, Bacteroidetes, Firmicutes, and Proteobacteria were abundant, while wastewater samples were dominated by Proteobacteria, Bacteroidetes, Acidobacteria, and Chloroflexi. The cluster analysis and principal coordinate analysis indicated that bacterial community structure was significantly different between water, fecal and sewage samples. Shared OTUs between water samples and chicken, pig, and human fecal samples ranged from 4.5 to 9.8% indicating the presence of avian, pig and human fecal contamination in Tiaoxi River. At genus level, five bacterial genera of fecal origin and sequences of seven potential pathogens were detected in many locations and their presence was correlated well with the land use pattern. The sequencing data revealed that Faecalibacterium could be a potential target for human-associated microbial source-tracking qPCR assays. Our results suggest that pH, conductivity, and temperature were the main environmental factors in shaping the bacterial community based on redundancy analysis. Overall, NGS is a valuable tool for preliminary investigation of environmental samples to identify the potential human health risk, providing specific information about fecal and potentially pathogenic bacteria that can be followed up by specific methods.
Collapse
Affiliation(s)
- Kiran Kumar Vadde
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Qiaoli Feng
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Jianjun Wang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Alan J McCarthy
- Microbiology Research Group, Institute of Integrative Biology, University of Liverpool, UK
| | - Raju Sekar
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, China.
| |
Collapse
|
15
|
Motlagh AM, Yang Z. Detection and occurrence of indicator organisms and pathogens. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2019; 91:1402-1408. [PMID: 31505073 PMCID: PMC7169830 DOI: 10.1002/wer.1238] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 09/03/2019] [Accepted: 09/04/2019] [Indexed: 06/10/2023]
Abstract
This review paper focuses on detection and quantification techniques of indicator organisms that can be used for water quality assessment. The environmental pathogens that are critical to understand and better evaluate water quality are also discussed in this paper. Several recent studies using culture-independent methods such as microbial source tracking, pulsed field gel electrophoresis, mitochondrial DNA, and next generation sequencing to assess various environmental samples and water bodies have been reviewed. PRACTITIONER POINTS: Various waterborne pathogens and cases of outbreak occurances due to presence of pathogens are studied in this review paper. Recent studies for detecting major indicator organisms to evaluate the presence of pathogens in water bodies are reviewed. Culture-independent techniques as robust tools to detect and quantify waterborne pathogens are discussed in this review paper.
Collapse
Affiliation(s)
- Amir M. Motlagh
- Department of Civil EngineeringCalifornia State UniversitySacramentoCalifornia
| | - Zhengjian Yang
- Department of Civil EngineeringCalifornia State UniversitySacramentoCalifornia
| |
Collapse
|
16
|
Vadde KK, McCarthy AJ, Rong R, Sekar R. Quantification of Microbial Source Tracking and Pathogenic Bacterial Markers in Water and Sediments of Tiaoxi River (Taihu Watershed). Front Microbiol 2019; 10:699. [PMID: 31105648 PMCID: PMC6492492 DOI: 10.3389/fmicb.2019.00699] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 03/20/2019] [Indexed: 12/13/2022] Open
Abstract
Taihu Lake is one of the largest freshwater lakes in China, serving as an important source of drinking water; >60% of source water to this lake is provided by the Tiaoxi River. This river faces serious fecal contamination issues, and therefore, a comprehensive investigation to identify the sources of fecal contamination was carried out and is presented here. The performance of existing universal (BacUni and GenBac), human (HF183-Taqman, HF183-SYBR, BacHum, and Hum2), swine (Pig-2-Bac), ruminant (BacCow), and avian (AV4143 and GFD) associated microbial source tracking (MST) markers was evaluated prior to their application in this region. The specificity and sensitivity results indicated that BacUni, HF183-TaqMan, Pig-2-Bac, and GFD assays are the most suitable in identifying human and animal fecal contamination. Therefore, these markers along with marker genes specific to selected bacterial pathogens were quantified in water and sediment samples of the Tiaoxi River, collected from 15 locations over three seasons during 2014 and 2015. Total/universal Bacteroidales markers were detected in all water and sediment samples (mean concentration 6.22 log10 gene copies/100 ml and 6.11 log10 gene copies/gram, respectively), however, the detection of host-associated MST markers varied. Human and avian markers were the most frequently detected in water samples (97 and 89%, respectively), whereas in sediment samples, only human-associated markers were detected more often (86%) than swine (64%) and avian (8.8%) markers. The results indicate that several locations in the Tiaoxi River are heavily polluted by fecal contamination and this correlated well with land use patterns. Among the five bacterial pathogens tested, Shigella spp. and Campylobacter jejuni were the most frequently detected pathogens in water (60% and 62%, respectively) and sediment samples (91% and 53%, respectively). Shiga toxin-producing Escherichia coli (STEC) and pathogenic Leptospira spp. were less frequently detected in water samples (55% and 33%, respectively) and sediment samples (51% and 13%, respectively), whereas E. coli O157:H7 was only detected in sediment samples (11%). Overall, the higher prevalence and concentrations of Campylobacter jejuni, Shigella spp., and STEC, along with the MST marker detection at a number of locations in the Tiaoxi River, indicates poor water quality and a significant human health risk associated with this watercourse. GRAPHICAL ABSTRACTTracking fecal contamination and pathogens in watersheds using molecular methods.
Collapse
Affiliation(s)
- Kiran Kumar Vadde
- Department of Biological Sciences, Xi’an Jiaotong-Liverpool University, Suzhou, China
| | - Alan J. McCarthy
- Microbiology Research Group, Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Rong Rong
- Department of Biological Sciences, Xi’an Jiaotong-Liverpool University, Suzhou, China
| | - Raju Sekar
- Department of Biological Sciences, Xi’an Jiaotong-Liverpool University, Suzhou, China
| |
Collapse
|
17
|
Zhou S, Yang D, Xu Q, Yang Z, Jin M, Yin J, Wang H, Zhou K, Wang L, Li J, Shen Z. Presence of bacteroidales as a predicator of human enteric viruses in Haihe River of Tianjin City, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:8169-8181. [PMID: 30689108 DOI: 10.1007/s11356-019-04217-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Accepted: 01/09/2019] [Indexed: 06/09/2023]
Abstract
Traditional microbe indicators including total bacteria, total coliforms, fecal coliforms, Escherichia coli, enterococci, and F+ coliphage are all frequently used to characterize the microbial contamination state of water bodies for their correlation with pathogenic bacteria. However, these indicators have a poor relationship with viruses, which pose serious threat to economic and human health. Alternative indicators such as bacteroidales may be suitable complementary alternatives to traditional microbe indicators and are being increasingly reported. In the present study, water was analyzed for selected sites along Haihe River in Tianjin for traditional indicators, an alternative indicator (bacteroidales), pathogenic bacteria (Salmonella, Escherichia coli (E. coli) O157:H7, and Vibrio parahaemolyticus), viruses (enteric adenovirus, norovirus, enterovirus, poliovirus and rotavirus), and physicochemical parameters. Results indicated that traditional microbe indicators detected in this study showed good correlation with pathogenic bacteria, and the alternative indicator (bacteroidales) had a surprisingly good relationship with viral presence. We propose that bacteroidales might be a suitable complementary indicator for viral contamination in water bodies.
Collapse
Affiliation(s)
- Shuqing Zhou
- Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment and Food Safety, Tianjin, 300050, China
| | - Dong Yang
- Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment and Food Safety, Tianjin, 300050, China
| | - Qunying Xu
- School of Public Health, Nanchang University, 330006, Jiangxi, China
| | - Zhongwei Yang
- Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment and Food Safety, Tianjin, 300050, China
| | - Min Jin
- Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment and Food Safety, Tianjin, 300050, China
| | - Jing Yin
- Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment and Food Safety, Tianjin, 300050, China
| | - Huaran Wang
- Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment and Food Safety, Tianjin, 300050, China
| | - Kun Zhou
- Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment and Food Safety, Tianjin, 300050, China
- School of Public Health, Nanchang University, 330006, Jiangxi, China
| | - Lianqi Wang
- Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment and Food Safety, Tianjin, 300050, China
| | - Junwen Li
- Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment and Food Safety, Tianjin, 300050, China.
| | - Zhiqiang Shen
- Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment and Food Safety, Tianjin, 300050, China.
| |
Collapse
|
18
|
Gonçalves J, Gutiérrez-Aguirre I, Balasubramanian MN, Zagorščak M, Ravnikar M, Turk V. Surveillance of human enteric viruses in coastal waters using concentration with methacrylate monolithic supports prior to detection by RT-qPCR. MARINE POLLUTION BULLETIN 2018; 128:307-317. [PMID: 29571377 PMCID: PMC5884306 DOI: 10.1016/j.marpolbul.2018.01.040] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 12/07/2017] [Accepted: 01/18/2018] [Indexed: 05/04/2023]
Abstract
This is the first surveillance study using methacrylate monolithic supports to concentrate environmental coastal water samples, prior to molecular target detection by RT-qPCR. Rotaviruses (RoV) and Noroviruses (NoV) were monitored in a polluted area at the Bay of Koper (Gulf of Trieste, Northern Adriatic Sea) and at a nearby bathing area and mussel farm areas. RoV and NoV are released into the Bay of Koper, with higher rates close to the discharge of the wastewater treatment plant, however, they can be detected at recreational and mussel farming areas. Our results showed that water bodies considered safe based on FC concentrations, can still have low, yet potentially infective, concentrations of human viruses.
Collapse
Affiliation(s)
- José Gonçalves
- Marine Biology Station Piran, National Institute of Biology, Fornače 41, SI-6330 Piran, Slovenia; Department of Biotechnology and Systems Biology, National Institute of Biology, Večna Pot 111, SI-1000 Ljubljana, Slovenia.
| | - Ion Gutiérrez-Aguirre
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna Pot 111, SI-1000 Ljubljana, Slovenia
| | | | - Maja Zagorščak
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna Pot 111, SI-1000 Ljubljana, Slovenia
| | - Maja Ravnikar
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna Pot 111, SI-1000 Ljubljana, Slovenia
| | - Valentina Turk
- Marine Biology Station Piran, National Institute of Biology, Fornače 41, SI-6330 Piran, Slovenia; University of Nova Gorica, Vipavska 15, SI-5000 Nova Gorica, Slovenia
| |
Collapse
|
19
|
Topp E. Agriculture and Agri-Food Canada's research program on antimicrobial resistance. CANADA COMMUNICABLE DISEASE REPORT = RELEVE DES MALADIES TRANSMISSIBLES AU CANADA 2017; 43:224-227. [PMID: 29770051 PMCID: PMC5764729 DOI: 10.14745/ccdr.v43i11a03] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A key strategy for attenuating the development of antimicrobial resistance (AMR) is ensuring judicious use of antimicrobials in human and veterinary medicine and in agriculture. Research on AMR in agriculture includes risk assessment, risk management, and identifying the role of agricultural practices in development of AMR. Risk assessment includes an impact assessment of antimicrobial use in livestock and on the environment; for example, many antimicrobials are excreted unchanged and thus reach the environment through manure application. This creates the potential for AMR transmission through the food processing chain and into agro-ecosystems receiving the agricultural waste. Risk management includes the assessment of cost-effective methods to keep animals healthy without the need for antimicrobial use, such as the use of vaccines, nutritional supplements and pre-, pro- or synbiotics and of waste management strategies to avoid AMR transmission. Currently, there is an important gap in understanding the degree of human exposure to AMR that is generated through agriculture, the burden of illness of AMR pathogens in human populations and the relationship between exposure and burden of illness. It is important that research on the agricultural, environmental and human medicine dimensions of AMR not be undertaken in silos, which is why the United Nations and countries around the world are working together within the One Health Framework that considers the inter-relatedness of humans, animals and the environment.
Collapse
Affiliation(s)
- E Topp
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON
| |
Collapse
|
20
|
Gekenidis MT, Gossin D, Schmelcher M, Schöner U, Remus-Emsermann MNP, Drissner D. Dynamics of culturable mesophilic bacterial communities of three fresh herbs and their production environment. J Appl Microbiol 2017; 123:916-932. [PMID: 28708321 DOI: 10.1111/jam.13532] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 06/06/2017] [Accepted: 07/06/2017] [Indexed: 01/06/2023]
Abstract
AIM Investigate dynamics of culturable mesophilic bacteria and selected food-contaminating bacteria from three herbs and their production environment. METHODS AND RESULTS Marjoram, basil and thyme were investigated during one growing season by sampling plants, organic fertilizers, soil, irrigation water and marketed products. Mesophilic bacteria and selected food-contaminating bacteria (Escherichia coli, Enterococcus spp., Bacillus cereus group) were cultured and identified by MALDI biotyping. Culturable mesophilic bacteria on marjoram and basil plants decreased over time by two orders of magnitude starting at above 106 colony forming units per gram (CFU per g), while they remained constant on thyme (~104 CFU per g). Compared to the last field sample, mesophilic bacteria were increased on all market-ready products by one order of magnitude. Marjoram and basil were dominated by B. cereus group, Enterobacter spp. and Pseudomonas spp., thyme by Bacillus spp. and Pseudomonas spp. All selected food-contaminating bacteria were detected in soil and reservoir-sourced irrigation water, whereas in municipal water, only B. cereus group and rarely Enterococcus spp. were found. Escherichia coli was detected only on young marjoram and basil plants (5 × 102 and 5 × 101 CFU per g, respectively), whereas Enterococcus spp. and B. cereus group were consistently detected on these two herbs. Thyme plants only contained B. cereus group consistently (above 103 CFU per g). Marketed marjoram and thyme contained Enterococcus spp. (5 × 102 and 104 CFU per g) and B. cereus group (~5 × 102 CFU per g), while no selected food-contaminating bacteria were found on marketed basil. CONCLUSIONS Overall, culturable mesophilic bacteria were dominated by Pseudomonas spp. and Bacillus spp., with increased numbers on market-ready products. Selected food-contaminating bacteria were readily detectable, however, only the B. cereus group was found throughout in all systems. SIGNIFICANCE AND IMPACT OF THE STUDY Insight into composition and development of mesophilic bacterial communities and selected food-contaminating bacteria of fresh herbs contributes to estimating consumer exposure.
Collapse
Affiliation(s)
- M-T Gekenidis
- Microbiology of Plant Foods, Agroscope, Waedenswil, Switzerland.,Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - D Gossin
- Microbiology of Plant Foods, Agroscope, Waedenswil, Switzerland
| | - M Schmelcher
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - U Schöner
- Mäder Kräuter, Boppelsen, Switzerland
| | - M N P Remus-Emsermann
- Microbiology of Plant Foods, Agroscope, Waedenswil, Switzerland.,School of Biological Sciences, University of Canterbury, Christchurch, New Zealand.,Biomolecular Interaction Centre, University of Canterbury, Christchurch, New Zealand
| | - D Drissner
- Microbiology of Plant Foods, Agroscope, Waedenswil, Switzerland
| |
Collapse
|
21
|
Mika KB, Chavarria KA, Imamura G, Tang C, Torres R, Jay JA. Sources and persistence of fecal indicator bacteria and Bacteroidales in sand as measured by culture-based and culture-independent methods: A case study at Santa Monica Pier, California. WATER, AIR, AND SOIL POLLUTION 2017; 228:124. [PMID: 30853729 PMCID: PMC6404519 DOI: 10.1007/s11270-017-3291-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
This study investigated causes of persistent fecal indicator bacteria (FIB) in beach sand under the pier in Santa Monica, CA. FIB levels were up to 1,000 times higher in sand underneath the pier than that collected from adjacent to the pier, with the highest concentrations under the pier in spring and fall. Escherichia coli (EC) and enterococci (ENT) under the pier were significantly positively correlated with moisture (ρ = 0.61, p < 0.001, n = 59; ρ = 0.43, p < 0.001, n = 59, respectively), and ENT levels measured by qPCR (qENT) were much higher than those measured by membrane filtration (cENT). Microcosm experiments tested the ability of EC, qENT, cENT, and general Bacteroidales (GenBac) to persist under in-situ moisture conditions (10% and 0.1%). Decay rates of qENT, cENT, and GenBac were not significantly different from zero at either moisture level, while decay rates for EC were relatively rapid during the microcosm at 10% moisture (k = 0.7 days-1). Gull/pelican marker was detected at eight of 12 sites and no human-associated markers (TaqHF183 and HumM2) were detected at any site during a one-day site survey. Results from this study indicate that the high levels of FIB observed likely stem from environmental sources combined with high persistence of FIB under the pier.
Collapse
Affiliation(s)
- Kathryn B Mika
- Department of Civil and Environmental Engineering, University of California Los Angeles, Los Angeles, CA 90095
| | - Karina A Chavarria
- Department of Civil and Environmental Engineering, University of California Los Angeles, Los Angeles, CA 90095
| | - Greg Imamura
- Department of Civil and Environmental Engineering, University of California Los Angeles, Los Angeles, CA 90095
| | - Chay Tang
- Department of Civil and Environmental Engineering, University of California Los Angeles, Los Angeles, CA 90095
| | - Robert Torres
- Department of Civil and Environmental Engineering, University of California Los Angeles, Los Angeles, CA 90095
| | - Jennifer A. Jay
- Department of Civil and Environmental Engineering, University of California Los Angeles, Los Angeles, CA 90095
| |
Collapse
|
22
|
Water quality at points-of-use in the Galapagos Islands. Int J Hyg Environ Health 2017; 220:485-493. [PMID: 28185880 DOI: 10.1016/j.ijheh.2017.01.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 12/14/2016] [Accepted: 01/26/2017] [Indexed: 12/22/2022]
Abstract
Piped drinking water is often considered a gold standard for protecting public health but research is needed to explicitly evaluate the effect of centralized treatment systems on water quality in developing world settings. This study examined the effect of a new drinking water treatment plant (DWTP) on microbial drinking water quality at the point-of-use on San Cristobal Island, Galapagos using fecal indicator bacteria total coliforms and Escherichia coli. Samples were collected during six collection periods before and after operation of the DWTP began from the freshwater sources (n=4), the finished water (n=6), and 50 sites throughout the distribution system (n=287). This study found that there was a significant decrease in contamination by total coliforms (two orders of magnitude) and E. coli (one order of magnitude) after DWTP operation began (p<0.001). However, during at least one post-construction collection cycle, total coliforms and E. coli were still found at 66% and 28% of points-of-use (n=50), respectively. During the final collection period, conventional methods were augmented with human-specific Bacteroides assays - validated herein - with the goal of elucidating possible microbial contamination sources. Results show that E. coli contamination was not predictive of contamination by human wastes and suggests that observed indicator bacteria contamination may have environmental origins. Together these findings highlight the necessity of a holistic approach to drinking water infrastructure improvements in order to deliver high quality water through to the point-of-use.
Collapse
|
23
|
Marti R, Ribun S, Aubin JB, Colinon C, Petit S, Marjolet L, Gourmelon M, Schmitt L, Breil P, Cottet M, Cournoyer B. Human-Driven Microbiological Contamination of Benthic and Hyporheic Sediments of an Intermittent Peri-Urban River Assessed from MST and 16S rRNA Genetic Structure Analyses. Front Microbiol 2017; 8:19. [PMID: 28174557 PMCID: PMC5258724 DOI: 10.3389/fmicb.2017.00019] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 01/04/2017] [Indexed: 12/11/2022] Open
Abstract
Rivers are often challenged by fecal contaminations. The barrier effect of sediments against fecal bacteria was investigated through the use of a microbial source tracking (MST) toolbox, and by Next Generation Sequencing (NGS) of V5-V6 16S rRNA gene (rrs) sequences. Non-metric multi-dimensional scaling analysis of V5-V6 16S rRNA gene sequences differentiated bacteriomes according to their compartment of origin i.e., surface water against benthic and hyporheic sediments. Classification of these reads showed the most prevalent operating taxonomic units (OTU) to be allocated to Flavobacterium and Aquabacterium. Relative numbers of Gaiella, Haliangium, and Thermoleophilum OTU matched the observed differentiation of bacteriomes according to river compartments. OTU patterns were found impacted by combined sewer overflows (CSO) through an observed increase in diversity from the sewer to the hyporheic sediments. These changes appeared driven by direct transfers of bacterial contaminants from wastewaters but also by organic inputs favoring previously undetectable bacterial groups among sediments. These NGS datasets appeared more sensitive at tracking community changes than MST markers. The human-specific MST marker HF183 was strictly detected among CSO-impacted surface waters and not river bed sediments. The ruminant-specific DNA marker was more broadly distributed but intense bovine pollution was required to detect transfers from surface water to benthic and hyporheic sediments. Some OTU showed distribution patterns in line with these MST datasets such as those allocated to the Aeromonas, Acinetobacter, and Pseudomonas. Fecal indicators (Escherichia coli and total thermotolerant coliforms) were detected all over the river course but their concentrations were not correlated with MST ones. Overall, MST and NGS datasets suggested a poor colonization of river sediments by bovine and sewer bacterial contaminants. No environmental outbreak of these bacterial contaminants was detected.
Collapse
Affiliation(s)
- Romain Marti
- Research Group on "Bacterial Opportunistic Pathogens and Environment", UMR CNRS5557, INRA1418 Ecologie Microbienne, Université Lyon 1, VetAgro Sup Marcy L'Etoile, France
| | - Sébastien Ribun
- Research Group on "Bacterial Opportunistic Pathogens and Environment", UMR CNRS5557, INRA1418 Ecologie Microbienne, Université Lyon 1, VetAgro Sup Marcy L'Etoile, France
| | | | - Céline Colinon
- Research Group on "Bacterial Opportunistic Pathogens and Environment", UMR CNRS5557, INRA1418 Ecologie Microbienne, Université Lyon 1, VetAgro Sup Marcy L'Etoile, France
| | - Stéphanie Petit
- Research Group on "Bacterial Opportunistic Pathogens and Environment", UMR CNRS5557, INRA1418 Ecologie Microbienne, Université Lyon 1, VetAgro Sup Marcy L'Etoile, France
| | - Laurence Marjolet
- Research Group on "Bacterial Opportunistic Pathogens and Environment", UMR CNRS5557, INRA1418 Ecologie Microbienne, Université Lyon 1, VetAgro Sup Marcy L'Etoile, France
| | - Michèle Gourmelon
- Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER), SG2M-Laboratoire Santé Environnement et Microbiologie, RBE Département Plouzané, France
| | - Laurent Schmitt
- LIVE 7362 Centre National de la Recherche Scientifique-ENGEES, LTER - "Zone Atelier Environnementale Urbaine" Strasbourg, France
| | - Pascal Breil
- Institut National de Recherche en Sciences et Technologies pour l'Environnement et l'Agriculture (IRSTEA), UR HHLY Villeurbanne, France
| | - Marylise Cottet
- UMR5600 "Environnement Ville Société," École Normale Supérieure de Lyon (ENS) Lyon - Descartes Lyon, France
| | - Benoit Cournoyer
- Research Group on "Bacterial Opportunistic Pathogens and Environment", UMR CNRS5557, INRA1418 Ecologie Microbienne, Université Lyon 1, VetAgro Sup Marcy L'Etoile, France
| |
Collapse
|
24
|
Waterborne Viruses and F-Specific Coliphages in Mixed-Use Watersheds: Microbial Associations, Host Specificities, and Affinities with Environmental/Land Use Factors. Appl Environ Microbiol 2017; 83:AEM.02763-16. [PMID: 27836843 DOI: 10.1128/aem.02763-16] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 11/08/2016] [Indexed: 02/06/2023] Open
Abstract
From the years 2008 to 2014, a total of 1,155 water samples were collected (spring to fall) from 24 surface water sampling sites located in a mixed-used but predominantly agricultural (i.e., dairy livestock production) river basin in eastern Ontario, Canada. Water was analyzed for viable F-specific DNA (F-DNA) and F-specific RNA (F-RNA) (genogroup I [GI] to GIV) coliphage and a suite of molecularly detected viruses (norovirus [GI to GIV], torque teno virus [TTV], rotavirus, kobuvirus, adenovirus, astrovirus, hepatitis A, and hepatitis E). F-DNA and F-RNA coliphage were detected in 33 and 28% of the samples at maximum concentrations of 2,000 and 16,300 PFU · 100 ml-1, respectively. Animal TTV, human TTV, kobuvirus, astrovirus, and norovirus GIII were the most prevalent viruses, found in 23, 20, 13, 12, and 11% of samples, respectively. Viable F-DNA coliphage was found to be a modest positive indicator of molecularly detected TTV. F-RNA coliphage, unlike F-DNA coliphage, was a modest positive predictor of norovirus and rotavirus. There were, however, a number of significant negative associations among F-specific coliphage and viruses. F-DNA coliphage densities of >142 PFU · 100 ml-1 delineated conditions when ∼95% of water samples contained some type of virus. Kobuvirus was the virus most strongly related to detection of any other virus. Land use had some associations with virus/F-specific coliphage detection, but season and surface water flow were the variables that were most important for broadly delineating detection. Higher relative levels of detection of human viruses and human F-RNA coliphage were associated with higher relative degrees of upstream human land development in a catchment. IMPORTANCE This study is one of the first, to our knowledge, to evaluate relationships among F-specific coliphages and a large suite of enteric viruses in mixed-use but agriculturally dominated surface waters in Canada. This study suggested that relationships between viable F-specific coliphages and molecularly detected viruses do exist, but they are not always positive. Caution should be employed if viable F-specific coliphages are to be used as indicators of virus presence in surface waters. This study elucidates relative effects of agriculture, wildlife, and human activity on virus and F-specific coliphage detection. Seasonal and meteorological attributes play a strong role in the detection of most virus and F-specific coliphage targets.
Collapse
|
25
|
Sun H, He X, Ye L, Zhang XX, Wu B, Ren H. Diversity, abundance, and possible sources of fecal bacteria in the Yangtze River. Appl Microbiol Biotechnol 2016; 101:2143-2152. [DOI: 10.1007/s00253-016-7998-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Revised: 10/29/2016] [Accepted: 11/05/2016] [Indexed: 11/30/2022]
|
26
|
Fernando DM, Khan IUH, Patidar R, Lapen DR, Talbot G, Topp E, Kumar A. Isolation and Characterization of Acinetobacter baumannii Recovered from Campylobacter Selective Medium. Front Microbiol 2016; 7:1871. [PMID: 27917170 PMCID: PMC5114274 DOI: 10.3389/fmicb.2016.01871] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 11/07/2016] [Indexed: 11/29/2022] Open
Abstract
Acinetobacter baumannii, a Gram-negative opportunistic pathogen, is known to cause multidrug resistant infections. This organism has primarily been isolated from clinical environments and its environmental reservoirs remain largely unknown. In the present study, we recovered seven isolates of A. baumannii growing under conditions selective for Campylobacter spp. (microaerophilic at 42°C and in the presence of antibiotics) from dairy cattle manure storage tank or surface water impacted by livestock effluents. Antibiotic susceptibility tests revealed that all of these isolates were less susceptible to at least two different clinically relevant antibiotics, compared to the type strain A. baumannii ATCC17978. Expression of resistance-nodulation-division efflux pumps, an important mechanism of intrinsic resistance in these organisms, was analyzed, and adeB was found to be overexpressed in one and adeJ was overexpressed in three isolates. Comparison of these isolates using genomic DNA Macro-Restriction Fragment Pattern Analysis (MRFPA) revealed relatively low relatedness among themselves or with some of the clinical isolates from previous studies. This study suggests that A. baumannii isolates are capable of growing under selective conditions for Campylobacter spp. and that this organism can be present in manure and water.
Collapse
Affiliation(s)
- Dinesh M Fernando
- Department of Microbiology, University of Manitoba , Winnipeg, MB, Canada
| | - Izhar U H Khan
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada , Ottawa, ON, Canada
| | - Rakesh Patidar
- Department of Microbiology, University of Manitoba , Winnipeg, MB, Canada
| | - David R Lapen
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada , Ottawa, ON, Canada
| | - Guylaine Talbot
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada , Sherbrooke, QC, Canada
| | - Edward Topp
- London Research and Development Centre, Agriculture and Agri-Food Canada , London, ON, Canada
| | - Ayush Kumar
- Department of Microbiology, University of Manitoba, Winnipeg, MB, Canada; Department of Medical Microbiology, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
27
|
Shaw KS, Cruz-Cano R, Jiang C, Malayil L, Blythe D, Ryan P, Sapkota AR. Presence of animal feeding operations and community socioeconomic factors impact salmonellosis incidence rates: An ecological analysis using data from the Foodborne Diseases Active Surveillance Network (FoodNet), 2004-2010. ENVIRONMENTAL RESEARCH 2016; 150:166-172. [PMID: 27290657 DOI: 10.1016/j.envres.2016.05.049] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 05/03/2016] [Accepted: 05/28/2016] [Indexed: 05/16/2023]
Abstract
Nontyphoidal Salmonella spp. are a leading cause of foodborne illness. Risk factors for salmonellosis include the consumption of contaminated chicken, eggs, pork and beef. Agricultural, environmental and socioeconomic factors also have been associated with rates of Salmonella infection. However, to our knowledge, these factors have not been modeled together at the community-level to improve our understanding of whether rates of salmonellosis are variable across communities defined by differing factors. To address this knowledge gap, we obtained data on culture-confirmed Salmonella Typhimurium, S. Enteritidis, S. Newport and S. Javiana cases (2004-2010; n=14,297) from the Foodborne Diseases Active Surveillance Network (FoodNet), and socioeconomic, environmental and agricultural data from the 2010 Census of Population and Housing, the 2011 American Community Survey, and the 2007 U.S. Census of Agriculture. We linked data by zip code and derived incidence rate ratios using negative binomial regressions. Multiple community-level factors were associated with salmonellosis rates; however, our findings varied by state. For example, in Georgia (Incidence Rate Ratio (IRR)=1.01; 95% Confidence Interval (CI)=1.005-1.015) Maryland (IRR=1.01; 95% CI=1.003-1.015) and Tennessee (IRR=1.01; 95% CI=1.002-1.012), zip codes characterized by greater rurality had higher rates of S. Newport infections. The presence of broiler chicken operations, dairy operations and cattle operations in a zip code also was associated with significantly higher rates of infection with at least one serotype in states that are leading producers of these animal products. For instance, in Georgia and Tennessee, rates of S. Enteritidis infection were 48% (IRR=1.48; 95% CI=1.12-1.95) and 46% (IRR=1.46; 95% CI=1.17-1.81) higher in zip codes with broiler chicken operations compared to those without these operations. In Maryland, New Mexico and Tennessee, higher poverty levels in zip codes were associated with higher rates of infection with one or more Salmonella serotypes. In Georgia and Tennessee, zip codes with higher percentages of the population composed of African Americans had significantly higher rates of infection with one or more Salmonella serotypes. In summary, our findings show that community-level agricultural, environmental and socioeconomic factors may be important with regard to rates of infection with Salmonella Typhimurium, Enteritidis, Newport and Javiana.
Collapse
Affiliation(s)
- Kristi S Shaw
- Maryland Institute for Applied Environmental Health, University of Maryland School of Public Health, College Park, MD, USA
| | - Raul Cruz-Cano
- Department of Epidemiology and Biostatistics, University of Maryland School of Public Health, College Park, MD, USA
| | - Chengsheng Jiang
- Maryland Institute for Applied Environmental Health, University of Maryland School of Public Health, College Park, MD, USA
| | - Leena Malayil
- Maryland Institute for Applied Environmental Health, University of Maryland School of Public Health, College Park, MD, USA
| | - David Blythe
- Prevention and Health Promotion Administration, Maryland Department of Health and Mental Hygiene, Baltimore, MD, USA
| | - Patricia Ryan
- Prevention and Health Promotion Administration, Maryland Department of Health and Mental Hygiene, Baltimore, MD, USA
| | - Amy R Sapkota
- Maryland Institute for Applied Environmental Health, University of Maryland School of Public Health, College Park, MD, USA.
| |
Collapse
|
28
|
Current Status of Marker Genes of Bacteroides and Related Taxa for Identifying Sewage Pollution in Environmental Waters. WATER 2016. [DOI: 10.3390/w8060231] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
29
|
Ohad S, Ben-Dor S, Prilusky J, Kravitz V, Dassa B, Chalifa-Caspi V, Kashi Y, Rorman E. The Development of a Novel qPCR Assay-Set for Identifying Fecal Contamination Originating from Domestic Fowls and Waterfowl in Israel. Front Microbiol 2016; 7:145. [PMID: 26925034 PMCID: PMC4756122 DOI: 10.3389/fmicb.2016.00145] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 01/26/2016] [Indexed: 12/12/2022] Open
Abstract
The emerging microbial source tracking (MST) methodologies aim to identify fecal contamination originating from domestic and wild animals, and from humans. Avian MST is especially challenging, primarily because the Aves class includes both domesticated and wild species with highly diverse habitats and dietary characteristics. The quest for specific fecal bacterial MST markers can be difficult with respect to attaining sufficient assay sensitivity and specificity. The present study utilizes high throughput sequencing (HTS) to screen bacterial 16S rRNA genes from fecal samples collected from both domestic and wild avian species. Operational taxonomic unit (OTU) analysis was then performed, from which sequences were retained for downstream quantitative polymerase chain reaction (qPCR) marker development. Identification of unique avian host DNA sequences, absent in non-avian hosts, was then carried out using a dedicated database of bacterial 16S rRNA gene taken from the Ribosomal Database Project. Six qPCR assays were developed targeting the 16S rRNA gene of Lactobacillus, Gallibacterium, Firmicutes, Fusobacteriaceae, and other bacteria. Two assays (Av4143 and Av163) identified most of the avian fecal samples and demonstrated sensitivity values of 91 and 70%, respectively. The Av43 assay only identified droppings from battery hens and poultry, whereas each of the other three assays (Av24, Av13, and Av216) identified waterfowl species with lower sensitivities values. The development of an MST assay-panel, which includes both domestic and wild avian species, expands the currently known MST analysis capabilities for decoding fecal contamination.
Collapse
Affiliation(s)
- Shoshanit Ohad
- National Public Health Laboratory Tel Aviv, Ministry of Health Tel Aviv, Israel
| | - Shifra Ben-Dor
- Bioinformatics Unit, Department of Biological Services, Weizmann Institute of Science Rehovot, Israel
| | - Jaime Prilusky
- Bioinformatics Unit, Department of Biological Services, Weizmann Institute of Science Rehovot, Israel
| | - Valeria Kravitz
- National Public Health Laboratory Tel Aviv, Ministry of Health Tel Aviv, Israel
| | - Bareket Dassa
- Bioinformatics Core Facility, National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev Beer-Sheva, Israel
| | - Vered Chalifa-Caspi
- Bioinformatics Core Facility, National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev Beer-Sheva, Israel
| | - Yechezkel Kashi
- Faculty of Biotechnology and Food Engineering, Technion - Israel Institute of Technology Haifa, Israel
| | - Efrat Rorman
- National Public Health Laboratory Tel Aviv, Ministry of Health Tel Aviv, Israel
| |
Collapse
|
30
|
Sorensen JPR, Lapworth DJ, Read DS, Nkhuwa DCW, Bell RA, Chibesa M, Chirwa M, Kabika J, Liemisa M, Pedley S. Tracing enteric pathogen contamination in sub-Saharan African groundwater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 538:888-95. [PMID: 26363144 DOI: 10.1016/j.scitotenv.2015.08.119] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 08/20/2015] [Accepted: 08/20/2015] [Indexed: 05/10/2023]
Abstract
Quantitative PCR (qPCR) can rapidly screen for an array of faecally-derived bacteria, which can be employed as tracers to understand groundwater vulnerability to faecal contamination. A microbial DNA qPCR array was used to examine 45 bacterial targets, potentially relating to enteric pathogens, in 22 groundwater supplies beneath the city of Kabwe, Zambia in both the dry and subsequent wet season. Thermotolerant (faecal) coliforms, sanitary risks, and tryptophan-like fluorescence, an emerging real-time reagentless faecal indicator, were also concurrently investigated. There was evidence for the presence of enteric bacterial contamination, through the detection of species and group specific 16S rRNA gene fragments, in 72% of supplies where sufficient DNA was available for qPCR analysis. DNA from the opportunistic pathogen Citrobacter freundii was most prevalent (69% analysed samples), with Vibrio cholerae also perennially persistent in groundwater (41% analysed samples). DNA from other species such as Bifidobacterium longum and Arcobacter butzleri was more seasonally transient. Bacterial DNA markers were most common in shallow hand-dug wells in laterite/saprolite implicating rapid subsurface pathways and vulnerability to pollution at the surface. Boreholes into the underlying dolomites were also contaminated beneath the city highlighting that a laterite/saprolite overburden, as occurs across much of sub-Saharan aquifer, does not adequately protect underlying bedrock groundwater resources. Nevertheless, peri-urban boreholes all tested negative establishing there is limited subsurface lateral transport of enteric bacteria outside the city limits. Thermotolerant coliforms were present in 97% of sites contaminated with enteric bacterial DNA markers. Furthermore, tryptophan-like fluorescence was also demonstrated as an effective indicator and was in excess of 1.4μg/L in all contaminated sites.
Collapse
Affiliation(s)
- J P R Sorensen
- British Geological Survey, Maclean Building, Wallingford OX10 8BB, UK.
| | - D J Lapworth
- British Geological Survey, Maclean Building, Wallingford OX10 8BB, UK
| | - D S Read
- Centre of Ecology and Hydrology, Maclean Building, Wallingford OX10 8BB, UK
| | - D C W Nkhuwa
- University of Zambia, Great East Road Campus, P.O. Box 32379, Lusaka, Zambia
| | - R A Bell
- British Geological Survey, Maclean Building, Wallingford OX10 8BB, UK
| | - M Chibesa
- Lukanga Water and Sewerage Company Limited, P.O. Box 81745, Kabwe, Zambia
| | - M Chirwa
- University of Zambia, Great East Road Campus, P.O. Box 32379, Lusaka, Zambia
| | - J Kabika
- University of Zambia, Great East Road Campus, P.O. Box 32379, Lusaka, Zambia
| | - M Liemisa
- Lukanga Water and Sewerage Company Limited, P.O. Box 81745, Kabwe, Zambia
| | - S Pedley
- Department of Civil and Environmental Engineering, University of Surrey, Guildford, GU2 7XH, UK
| |
Collapse
|
31
|
Murphy S, Jordan P, Mellander PE, O' Flaherty V. Quantifying faecal indicator organism hydrological transfer pathways and phases in agricultural catchments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 520:286-299. [PMID: 25840482 DOI: 10.1016/j.scitotenv.2015.02.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 01/19/2015] [Accepted: 02/05/2015] [Indexed: 06/04/2023]
Abstract
Faecal indicator organisms (FIOs) can impact on water quality and pose a health and environmental risk. The transfer of FIOs, such as Escherichia coli (E. coli), from land to water is driven by hydrological connectivity and may follow the same flowpaths as nutrients, from agricultural and human sources. This study investigated E. coli transfer in two catchment areas with high source and transport pressures. These pressures were: organic phosphorus (P) loading; human settlement; conduits and fissures in a grassland karst area; and clay rich and impermeable soils in a mixed arable area. The occurrence of E. coli and its transport pathways, along with the pathways of nutrients, were studied using a combination of targeted FIO sampling, during different hydrological phases and events, and high resolution nutrient analysis. The quick flow component in both catchments was found to be a more potent vector for E. coli, and was coincident with the total P flowpaths using a P Loadograph Recession Analysis (LRA). The karst grassland catchment was found to be a transport limited system and the mixed arable catchment a source limited system. Hence, despite the grassland catchment being a potentially higher FIO source, the E. coli loads leaving the catchment were low compared to the mixed arable catchment. E. coli load whole-event comparisons also indicated that the grassland karst transfers tended to be much lower on falling phases of runoff, while the arable catchment, over greywacke and mudstone geology, showed little change between the phases. Furthermore, the arable catchment showed asymptotic decline of sustained E. coli loads towards low flows, which may be indicative of chronic point sources. These results indicate the dominance of transport mechanisms over source mechanisms for mass E. coli loads and also chronic loads during low flow. These will be important considerations for risk assessment and mitigation.
Collapse
Affiliation(s)
- S Murphy
- Agricultural Catchments Programme, Teagasc, Johnstown Castle, Wexford, Ireland; Environmental Change Institute, National University of Ireland, Galway, Ireland.
| | - P Jordan
- School of Environmental Sciences, Ulster University, Coleraine, N. Ireland, UK.
| | - P-E Mellander
- Agricultural Catchments Programme, Teagasc, Johnstown Castle, Wexford, Ireland
| | - V O' Flaherty
- Environmental Change Institute, National University of Ireland, Galway, Ireland
| |
Collapse
|
32
|
Jokinen CC, Koot J, Cole L, Desruisseau A, Edge TA, Khan IUH, Koning W, Lapen DR, Pintar KDM, Reid-Smith R, Thomas JL, Topp E, Wang LY, Wilkes G, Ziebell K, van Bochove E, Gannon VPJ. The distribution of Salmonella enterica serovars and subtypes in surface water from five agricultural regions across Canada. WATER RESEARCH 2015; 76:120-131. [PMID: 25799976 DOI: 10.1016/j.watres.2015.02.038] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Revised: 02/16/2015] [Accepted: 02/19/2015] [Indexed: 06/04/2023]
Abstract
Serovar prevalence of the zoonotic pathogen, Salmonella enterica, was compared among 1624 surface water samples collected previously from five different Canadian agricultural watersheds over multiple years. Phagetyping, pulsed field gel electrophoresis (PFGE), and antimicrobial resistance subtyping assays were performed on serovars Enteritidis, Typhimurium, and Heidelberg. Serovars and subtypes from surface water were compared with those from animal feces, human sewage, and serovars reported to cause salmonellosis in Canadians. Sixty-five different serovars were identified in surface water; only 32% of these were isolated from multiple watersheds. Eleven of the 13 serovars most commonly reported to cause salmonellosis in Canadians were identified in surface water; isolates of these serovars constituted >40% of the total isolates. Common phagetypes and PFGE subtypes of serovars associated with illness in humans such as S. Enteritidis and S. Typhimurium were also isolated from surface water and animal feces. Antimicrobial resistance was generally low, but was highest among S. Typhimurium. Monitoring of these rivers helps to identify vulnerable areas of a watershed and, despite a relatively low prevalence of S. enterica overall, serovars observed in surface water are an indication of the levels of specific S. enterica serovars present in humans and animals.
Collapse
Affiliation(s)
- C C Jokinen
- Public Health Agency of Canada, Laboratory for Foodborne Zoonoses, Lethbridge, Alberta, Canada; Alberta Agriculture and Rural Development, Irrigation and Farm Water Division, Lethbridge, Alberta, Canada.
| | - J Koot
- Public Health Agency of Canada, Laboratory for Foodborne Zoonoses, Lethbridge, Alberta, Canada; University of Victoria, Victoria, BC, Canada.
| | - L Cole
- Public Health Agency of Canada, Laboratory for Foodborne Zoonoses, Guelph, Ontario, Canada.
| | - A Desruisseau
- Public Health Agency of Canada, Laboratory for Foodborne Zoonoses, Guelph, Ontario, Canada.
| | - T A Edge
- Environment Canada, Burlington, Ontario, Canada.
| | - I U H Khan
- Agriculture and Agri-Food Canada, Ottawa, Ontario, Canada.
| | - W Koning
- Alberta Environment and Sustainable Resource Development, Calgary, Alberta, Canada.
| | - D R Lapen
- Agriculture and Agri-Food Canada, Ottawa, Ontario, Canada.
| | - K D M Pintar
- FoodNet Canada, Centre for Foodborne Environmental and Zoonotic Infectious Diseases, Ottawa, Ontario, Canada.
| | - R Reid-Smith
- Public Health Agency of Canada, Laboratory for Foodborne Zoonoses, Guelph, Ontario, Canada.
| | - J L Thomas
- Ontario Ministry of the Environment and Climate Change, Toronto, Ontario, Canada.
| | - E Topp
- Agriculture and Agri-Food Canada, London, Ontario, Canada.
| | - L Y Wang
- Public Health Agency of Canada, Laboratory for Foodborne Zoonoses, Lethbridge, Alberta, Canada.
| | - G Wilkes
- Agriculture and Agri-Food Canada, Ottawa, Ontario, Canada.
| | - K Ziebell
- Public Health Agency of Canada, Laboratory for Foodborne Zoonoses, Guelph, Ontario, Canada.
| | - E van Bochove
- Agriculture and Agri-Food Canada, Quebec, QC, Canada.
| | - V P J Gannon
- Public Health Agency of Canada, Laboratory for Foodborne Zoonoses, Lethbridge, Alberta, Canada.
| |
Collapse
|
33
|
Microbial Source Tracking in Adjacent Karst Springs. Appl Environ Microbiol 2015; 81:5037-47. [PMID: 26002893 DOI: 10.1128/aem.00855-15] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 04/26/2015] [Indexed: 02/07/2023] Open
Abstract
Modern man-made environments, including urban, agricultural, and industrial environments, have complex ecological interactions among themselves and with the natural surroundings. Microbial source tracking (MST) offers advanced tools to resolve the host source of fecal contamination beyond indicator monitoring. This study was intended to assess karst spring susceptibilities to different fecal sources using MST quantitative PCR (qPCR) assays targeting human, bovine, and swine markers. It involved a dual-time monitoring frame: (i) monthly throughout the calendar year and (ii) daily during a rainfall event. Data integration was taken from both monthly and daily MST profile monitoring and improved identification of spring susceptibility to host fecal contamination; three springs located in close geographic proximity revealed different MST profiles. The Giach spring showed moderate fluctuations of MST marker quantities amid wet and dry samplings, while the Zuf spring had the highest rise of the GenBac3 marker during the wet event, which was mirrored in other markers as well. The revelation of human fecal contamination during the dry season not connected to incidents of raining leachates suggests a continuous and direct exposure to septic systems. Pigpens were identified in the watersheds of Zuf, Shefa, and Giach springs and on the border of the Gaaton spring watershed. Their impact was correlated with partial detection of the Pig-2-Bac marker in Gaaton spring, which was lower than detection levels in all three of the other springs. Ruminant and swine markers were detected intermittently, and their contamination potential during the wet samplings was exposed. These results emphasized the importance of sampling design to utilize the MST approach to delineate subtleties of fecal contamination in the environment.
Collapse
|
34
|
Villemur R, Imbeau M, Vuong MN, Masson L, Payment P. An environmental survey of surface waters using mitochondrial DNA from human, bovine and porcine origin as fecal source tracking markers. WATER RESEARCH 2015; 69:143-153. [PMID: 25463935 DOI: 10.1016/j.watres.2014.10.063] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 09/15/2014] [Accepted: 10/29/2014] [Indexed: 06/04/2023]
Abstract
Fecal contamination of surface waters is one the major sources of waterborne pathogens and consequently, is an important concern for public health. For reliable fecal source tracking (FST) monitoring, there is a need for a multi-marker toolbox as no single all-encompassing method currently exists. Mitochondrial DNA (mtDNA) as a source tracking marker has emerged as a promising animal-specific marker. However, very few comprehensive field studies were done on the occurrence of this marker in surface waters. In this report, water samples were obtained from 82 sites in different watersheds over a six year period. The samples were analyzed for the presence of human, bovine and porcine mtDNA by endpoint nested PCR, along with the human-specific Bacteroidales HF183 marker. These sites represented a mix of areas with different anthropogenic activities, natural, urban and agricultural. The occurrences of mitoHu (human), mitoBo (bovine), mitoPo (porcine) and HF183 specific PCR amplifications from the samples were 46%, 23%, 6% and 50%, respectively. The occurrence of mitoHu and HF183 was high in all environment types with higher occurrence in the natural and urban areas, whereas the occurrence of mitoBo was higher in agricultural areas. FST marker concentrations were measured by real-time PCR for samples positive for these markers. The concentration of the mitoHu markers was one order of magnitude lower than HF183. There was co-linearity between the concentrations of the mitoHu and HF183 markers. Co-linearity was also observed between HF183 concentration and fecal coliform levels. Such a relationship was not observed between the mitoHu concentration and fecal coliform levels. In summary, our results showed a high incidence of human fecal pollution throughout the environment while demonstrating the potential of mtDNA as suitable FST markers.
Collapse
Affiliation(s)
- Richard Villemur
- INRS-Institut Armand-Frappier, 531 Boulevard des Prairies, Laval, QC H7V 1B7, Canada.
| | - Marianne Imbeau
- INRS-Institut Armand-Frappier, 531 Boulevard des Prairies, Laval, QC H7V 1B7, Canada
| | - Minh N Vuong
- National Research Council of Canada, 6100 Royalmount Ave, Montreal, QC, Canada
| | - Luke Masson
- National Research Council of Canada, 6100 Royalmount Ave, Montreal, QC, Canada; Université de Montréal, Dépt. Microbiologie et Immunologie, Montréal, QC, Canada
| | - Pierre Payment
- INRS-Institut Armand-Frappier, 531 Boulevard des Prairies, Laval, QC H7V 1B7, Canada
| |
Collapse
|
35
|
Read DS, Gweon HS, Bowes MJ, Newbold LK, Field D, Bailey MJ, Griffiths RI. Catchment-scale biogeography of riverine bacterioplankton. THE ISME JOURNAL 2015; 9:516-26. [PMID: 25238398 PMCID: PMC4303643 DOI: 10.1038/ismej.2014.166] [Citation(s) in RCA: 131] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 07/30/2014] [Accepted: 08/11/2014] [Indexed: 01/21/2023]
Abstract
Lotic ecosystems such as rivers and streams are unique in that they represent a continuum of both space and time during the transition from headwaters to the river mouth. As microbes have very different controls over their ecology, distribution and dispersion compared with macrobiota, we wished to explore biogeographical patterns within a river catchment and uncover the major drivers structuring bacterioplankton communities. Water samples collected across the River Thames Basin, UK, covering the transition from headwater tributaries to the lower reaches of the main river channel were characterised using 16S rRNA gene pyrosequencing. This approach revealed an ecological succession in the bacterial community composition along the river continuum, moving from a community dominated by Bacteroidetes in the headwaters to Actinobacteria-dominated downstream. Location of the sampling point in the river network (measured as the cumulative water channel distance upstream) was found to be the most predictive spatial feature; inferring that ecological processes pertaining to temporal community succession are of prime importance in driving the assemblages of riverine bacterioplankton communities. A decrease in bacterial activity rates and an increase in the abundance of low nucleic acid bacteria relative to high nucleic acid bacteria were found to correspond with these downstream changes in community structure, suggesting corresponding functional changes. Our findings show that bacterial communities across the Thames basin exhibit an ecological succession along the river continuum, and that this is primarily driven by water residence time rather than the physico-chemical status of the river.
Collapse
Affiliation(s)
| | | | | | | | - Dawn Field
- Centre for Ecology & Hydrology, Wallingford, UK
| | | | | |
Collapse
|
36
|
Frey SK, Gottschall N, Wilkes G, Grégoire DS, Topp E, Pintar KDM, Sunohara M, Marti R, Lapen DR. Rainfall-induced runoff from exposed streambed sediments: an important source of water pollution. JOURNAL OF ENVIRONMENTAL QUALITY 2015; 44:236-247. [PMID: 25602339 DOI: 10.2134/jeq2014.03.0122] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
When surface water levels decline, exposed streambed sediments can be mobilized and washed into the water course when subjected to erosive rainfall. In this study, rainfall simulations were conducted over exposed sediments along stream banks at four distinct locations in an agriculturally dominated river basin with the objective of quantifying the potential for contaminant loading from these often overlooked runoff source areas. At each location, simulations were performed at three different sites. Nitrogen, phosphorus, sediment, fecal indicator bacteria, pathogenic bacteria, and microbial source tracking (MST) markers were examined in both prerainfall sediments and rainfall-induced runoff water. Runoff generation and sediment mobilization occurred quickly (10-150 s) after rainfall initiation. Temporal trends in runoff concentrations were highly variable within and between locations. Total runoff event loads were considered large for many pollutants considered. For instance, the maximum observed total phosphorus runoff load was on the order of 1.5 kg ha. Results also demonstrate that runoff from exposed sediments can be a source of pathogenic bacteria. spp. and spp. were present in runoff from one and three locations, respectively. Ruminant MST markers were also present in runoff from two locations, one of which hosted pasturing cattle with stream access. Overall, this study demonstrated that rainfall-induced runoff from exposed streambed sediments can be an important source of surface water pollution.
Collapse
|
37
|
Pathogenic potential, genetic diversity, and population structure of Escherichia coli strains isolated from a forest-dominated watershed (Comox Lake) in British Columbia, Canada. Appl Environ Microbiol 2014; 81:1788-98. [PMID: 25548059 DOI: 10.1128/aem.03738-14] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Escherichia coli isolates (n = 658) obtained from drinking water intakes of Comox Lake (2011 to 2013) were screened for the following virulence genes (VGs): stx1 and stx2 (Shiga toxin-producing E. coli [STEC]), eae and the adherence factor (EAF) gene (enteropathogenic E. coli [EPEC]), heat-stable (ST) enterotoxin (variants STh and STp) and heat-labile enterotoxin (LT) genes (enterotoxigenic E. coli [ETEC]), and ipaH (enteroinvasive E. coli [EIEC]). The only genes detected were eae and stx2, which were carried by 37.69% (n = 248) of the isolates. Only eae was harbored by 26.74% (n = 176) of the isolates, representing potential atypical EPEC strains, while only stx2 was detected in 10.33% (n = 68) of the isolates, indicating potential STEC strains. Moreover, four isolates were positive for both the stx2 and eae genes, representing potential EHEC strains. The prevalence of VGs (eae or stx2) was significantly (P < 0.0001) higher in the fall season, and multiple genes (eae plus stx2) were detected only in fall. Repetitive element palindromic PCR (rep-PCR) fingerprint analysis of 658 E. coli isolates identified 335 unique fingerprints, with an overall Shannon diversity (H') index of 3.653. Diversity varied among seasons over the years, with relatively higher diversity during fall. Multivariate analysis of variance (MANOVA) revealed that the majority of the fingerprints showed a tendency to cluster according to year, season, and month. Taken together, the results indicated that the diversity and population structure of E. coli fluctuate on a temporal scale, reflecting the presence of diverse host sources and their behavior over time in the watershed. Furthermore, the occurrence of potentially pathogenic E. coli strains in the drinking water intakes highlights the risk to human health associated with direct and indirect consumption of untreated surface water.
Collapse
|
38
|
Khan IUH, Gannon V, Jokinen CC, Kent R, Koning W, Lapen DR, Medeiros D, Miller J, Neumann NF, Phillips R, Schreier H, Topp E, van Bochove E, Wilkes G, Edge TA. A national investigation of the prevalence and diversity of thermophilic Campylobacter species in agricultural watersheds in Canada. WATER RESEARCH 2014; 61:243-252. [PMID: 24930011 DOI: 10.1016/j.watres.2014.05.027] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 05/06/2014] [Accepted: 05/19/2014] [Indexed: 06/03/2023]
Abstract
The occurrence and diversity of thermophilic Campylobacter species (C. jejuni, coli, and lari) were studied in water samples from four river basins located across Canada. These basins located in Quebec (Bras d'Henri), Alberta (Oldman), Ontario (South Nation), and British Columbia (Sumas) represented some of the most intensive farming areas in Canada for hog, beef cattle, dairy cattle, and poultry, respectively. This study analyzed 769 water samples collected from 23 monitoring sites with agricultural influence, and four reference sites with limited or no agricultural influence. Water samples were collected bi-weekly over two years and analyzed for Campylobacter using a semi-quantitative minimum probable number (MPN) enrichment protocol. Putative isolates were confirmed by genus- and species-specific multiplex polymerase chain reaction (PCR) assays. A total of 377 (49%) water samples were positive for campylobacters with 355 samples having a cell density ranging from 4 to 4000 MPN L(-1). Campylobacters were more common at agricultural than reference sites in each river basin, although this difference was not significant in the Oldman and South Nation (p > 0.05). Campylobacter was significantly more common in the Bras d'Henri and Sumas (63%) compared to the South Nation (45%) and Oldman (33%) River basins (p < 0.05). C. jejuni, C. coli and C. lari were detected in each river basin, and these species occurred in 45% (n = 168), 34% (n = 128) and 19% (n = 73), of all Campylobacter positive samples, respectively. The remaining Campylobacter positive water samples without these three species (n = 67; 18%) were identified as other Campylobacter species. C. jejuni was the predominant species occurring in the Sumas, Oldman and South Nation River basins. However, in the Bras d'Henri River basin with intensive hog production, C. coli was the predominant species. This study found campylobacters to be common in some agricultural systems with intensive livestock farming activities, and different river basins could have strikingly different profiles of either C. jejuni or C. coli as the predominant waterborne thermophilic Campylobacter species.
Collapse
Affiliation(s)
- Izhar U H Khan
- Watershed Hydrology and Ecology Research Division (WHERD), Canada Centre for Inland Waters (CCIW), Environment Canada, 867 Lakeshore Road, Burlington L7R 4A6, Ontario, Canada; Eastern Cereal and Oilseed Research Centre (ECORC), Agriculture and Agri-Food Canada, 960 Carling Ave. Ottawa, K1A 0C6 Ontario, Canada.
| | - Vic Gannon
- Public Health Agency of Canada, Laboratory for Foodborne Zoonoses, Lethbridge, Alberta, Canada
| | - Cassandra C Jokinen
- Public Health Agency of Canada, Laboratory for Foodborne Zoonoses, Lethbridge, Alberta, Canada; Alberta Agriculture and Rural Development, Farm Irrigation Water Division, Lethbridge, Alberta, Canada
| | - Rob Kent
- National Water Quality Monitoring, Water Science and Technology, Environment Canada, Gatineau, Ontario, Canada
| | | | - David R Lapen
- Eastern Cereal and Oilseed Research Centre (ECORC), Agriculture and Agri-Food Canada, 960 Carling Ave. Ottawa, K1A 0C6 Ontario, Canada
| | - Diane Medeiros
- Water, and Air Quality Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Jim Miller
- Lethbridge Research Centre, Agriculture and Agri-Food Canada, Lethbridge, Alberta, Canada
| | | | - Rob Phillips
- National Water Quality Monitoring, Water Science and Technology, Environment Canada, Gatineau, Ontario, Canada
| | - Hans Schreier
- University of British Columbia, Vancouver, British Columbia, Canada
| | - Edward Topp
- Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, London, Ontario, Canada
| | - Eric van Bochove
- Soils and Crop Research and Development Centre, Agriculture and Agri-Food Canada Québec, Québec, Canada
| | - Graham Wilkes
- Eastern Cereal and Oilseed Research Centre (ECORC), Agriculture and Agri-Food Canada, 960 Carling Ave. Ottawa, K1A 0C6 Ontario, Canada
| | - Thomas A Edge
- Watershed Hydrology and Ecology Research Division (WHERD), Canada Centre for Inland Waters (CCIW), Environment Canada, 867 Lakeshore Road, Burlington L7R 4A6, Ontario, Canada
| |
Collapse
|
39
|
Ridley CM, Jamieson RC, Truelstrup Hansen L, Yost CK, Bezanson GS. Baseline and storm event monitoring of Bacteroidales marker concentrations and enteric pathogen presence in a rural Canadian watershed. WATER RESEARCH 2014; 60:278-288. [PMID: 24862956 DOI: 10.1016/j.watres.2014.04.039] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Revised: 04/14/2014] [Accepted: 04/19/2014] [Indexed: 06/03/2023]
Abstract
Bacteroidales 16S rRNA gene markers were evaluated for their use as a microbial source tracking tool in a well characterized 750 ha agricultural watershed in Nova Scotia, Canada. Water quality monitoring was conducted following the validation of host-specific and universal Bacteroidales (AllBac) markers for their proficiency in this particular geographic region, which provided further evidence that these markers are geographically stable. Increasing Escherichia coli concentrations were positively correlated (p < 0.01) with concentrations of the AllBac marker in water samples, suggesting that this universal marker is more suited as a positive DNA control rather than as an indicator of recent fecal contamination. Ruminant (BacR) and bovine (CowM2) specific marker detection was associated with increased runoff due to precipitation in sub-watersheds putatively impacted by cattle farming, demonstrating that the BacR and CowM2 markers can be used to detect the recent introduction of fecal matter from cattle farming activities during rainfall events. However, the human associated marker (BacH) was only detected once in spite of numerous on-site residential wastewater treatment systems in the watershed, suggesting that this assay is not sensitive enough to detect this type of human sewage source. E. coli O157:H7 and Salmonella spp. DNA was not detected in any of the 149 watershed samples; however, 114 (76.5%) of those samples tested positive for Campylobacter spp. No significant correlation (p > 0.05) was found between Campylobacter spp. presence and either E. coli or AllBac marker levels. Further studies should be conducted to assess the origins of Campylobacter spp. in these types of watersheds, and to quantify pathogen cell numbers to allow for a human health risk assessment.
Collapse
Affiliation(s)
- C M Ridley
- Department of Process Engineering and Applied Science, Dalhousie University, 1360 Barrington Street, Halifax, NS, Canada B3H 4R2
| | - R C Jamieson
- Department of Process Engineering and Applied Science, Dalhousie University, 1360 Barrington Street, Halifax, NS, Canada B3H 4R2.
| | - L Truelstrup Hansen
- Department of Process Engineering and Applied Science, Dalhousie University, 1360 Barrington Street, Halifax, NS, Canada B3H 4R2
| | - C K Yost
- Department of Biology, University of Regina, LB 244, 3737 Wascana Parkway, Regina, SK, Canada S4S 0A2
| | - G S Bezanson
- Agriculture and Agri-Food Canada, Atlantic Food and Horticulture Research Centre, 32 Main Street, Kentville, NS, Canada B4N 1J5
| |
Collapse
|
40
|
Lee DY, Lee H, Trevors JT, Weir SC, Thomas JL, Habash M. Characterization of sources and loadings of fecal pollutants using microbial source tracking assays in urban and rural areas of the Grand River Watershed, Southwestern Ontario. WATER RESEARCH 2014; 53:123-131. [PMID: 24509346 DOI: 10.1016/j.watres.2014.01.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 12/13/2013] [Accepted: 01/01/2014] [Indexed: 06/03/2023]
Abstract
Sources of fecal water pollution were assessed in the Grand River and two of its tributaries (Ontario, Canada) using total and host-specific (human and bovine) Bacteroidales genetic markers in conjunction with reference information, such as land use and weather. In-stream levels of the markers and culturable Escherichia coli were also monitored during multiple rain events to gain information on fecal loadings to catchment from diffuse sources. Elevated human-specific marker levels were accurately identified in river water impacted by a municipal wastewater treatment plant (WWTP) effluent and at a downstream site in the Grand River. In contrast, the bovine-specific marker showed high levels of cattle fecal pollution in two tributaries, both of which are characterized as intensely farmed areas. The bovine-specific Bacteroidales marker increased with rainfall in the agricultural tributaries, indicating enhanced loading of cattle-derived fecal pollutants to river from non-point sources following rain events. However, rain-triggered fecal loading was not substantiated in urban settings, indicating continuous inputs of human-originated fecal pollutants from point sources, such as WWTP effluent. This study demonstrated that the Bacteroidales source tracking assays, in combination with land use information and hydrological data, may provide additional insight into the spatial and temporal distribution of source-specific fecal contamination in streams impacted by varying land uses. Using the approach described in this study may help to characterize impacted water sources and to design targeted land use management plans in other watersheds in the future.
Collapse
Affiliation(s)
- Dae-Young Lee
- School of Environmental Sciences, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | - Hung Lee
- School of Environmental Sciences, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | - Jack T Trevors
- School of Environmental Sciences, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | - Susan C Weir
- Laboratory Services Branch, Ontario Ministry of the Environment, Etobicoke, Ontario, Canada M9P 3V6
| | - Janis L Thomas
- Environmental Monitoring and Reporting Branch, Ontario Ministry of the Environment, Etobicoke, Ontario, Canada M9P 3V6
| | - Marc Habash
- School of Environmental Sciences, University of Guelph, Guelph, Ontario, Canada N1G 2W1.
| |
Collapse
|
41
|
Long-term monitoring of waterborne pathogens and microbial source tracking markers in paired agricultural watersheds under controlled and conventional tile drainage management. Appl Environ Microbiol 2014; 80:3708-20. [PMID: 24727274 DOI: 10.1128/aem.00254-14] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Surface waters from paired agricultural watersheds under controlled tile drainage (CTD) and uncontrolled tile drainage (UCTD) were monitored over 7 years in order to determine if there was an effect of CTD (imposed during the growing season) on occurrences and loadings of bacterial and viral pathogens, coliphages, and microbial source tracking markers. There were significantly lower occurrences of human, ruminant, and livestock (ruminant plus pig) Bacteroidales markers in the CTD watershed in relation to the UCTD watershed. As for pathogens, there were significantly lower occurrences of Salmonella spp. and Arcobacter spp. in the CTD watershed. There were no instances where there were significantly higher quantitative loadings of any microbial target in the CTD watershed, except for F-specific DNA (F-DNA) and F-RNA coliphages, perhaps as a result of fecal inputs from a hobby farm independent of the drainage practice treatments. There was lower loading of the ruminant marker in the CTD watershed in relation to the UCTD system, and results were significant at the level P = 0.06. The odds of Salmonella spp. occurring increased when a ruminant marker was present relative to when the ruminant marker was absent, yet for Arcobacter spp., the odds of this pathogen occurring significantly decreased when a ruminant marker was present relative to when the ruminant marker was absent (but increased when a wildlife marker was present relative to when the wildlife marker was absent). Interestingly, the odds of norovirus GII (associated with human and swine) occurring in water increased significantly when a ruminant marker was present relative to when a ruminant marker was absent. Overall, this study suggests that fecal pollution from tile-drained fields to stream could be reduced by CTD utilization.
Collapse
|
42
|
Furukawa T, Suzuki Y. A proposal for source tracking of fecal pollution in recreational waters by pulsed-field gel electrophoresis. Microbes Environ 2013; 28:444-9. [PMID: 24256972 PMCID: PMC4070705 DOI: 10.1264/jsme2.me13075] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
This study aimed to identify specific river sources of fecal contamination by applying pulsed-field gel electrophoresis (PFGE) to environmental water samples from a recreational beach in Japan. The genotypes of all Enterococcus faecium and Enterococcus faecalis strains used as indicators of fecal pollution on the recreational beach and rivers were analyzed by PFGE, and the PFGE profiles of the strains were classified at a 0.9 similarity level using dendrogram analysis. PFGE types of E. faecium isolated from Sakai River or urban drainage were classified in the same cluster. Therefore, the probable sources of fecal pollution on the recreational beach were Sakai River and urban drainage. The approaches for microbial source tracking employed in this study used PFGE with Enterococcus species as an indicator can be a potential tool to specify the source(s) of fecal pollution and contribute to improved public health in coastal environments.
Collapse
Affiliation(s)
- Takashi Furukawa
- Department of Civil and Environmental Engineering, Oita National College of Technology
| | | |
Collapse
|
43
|
Frey SK, Topp E, Edge T, Fall C, Gannon V, Jokinen C, Marti R, Neumann N, Ruecker N, Wilkes G, Lapen DR. Using SWAT, Bacteroidales microbial source tracking markers, and fecal indicator bacteria to predict waterborne pathogen occurrence in an agricultural watershed. WATER RESEARCH 2013; 47:6326-6337. [PMID: 24079968 DOI: 10.1016/j.watres.2013.08.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 06/25/2013] [Accepted: 08/05/2013] [Indexed: 06/02/2023]
Abstract
Developing the capability to predict pathogens in surface water is important for reducing the risk that such organisms pose to human health. In this study, three primary data source scenarios (measured stream flow and water quality, modelled stream flow and water quality, and host-associated Bacteroidales) are investigated within a Classification and Regression Tree Analysis (CART) framework for classifying pathogen (Escherichia coli 0157:H7, Salmonella, Campylobacter, Cryptosporidium, and Giardia) presence and absence (P/A) for a 178 km(2) agricultural watershed. To provide modelled data, a Soil Water Assessment Tool (SWAT) model was developed to predict stream flow, total suspended solids (TSS), total N and total P, and fecal indicator bacteria loads; however, the model was only successful for flow and total N and total P simulations, and did not accurately simulate TSS and indicator bacteria transport. Also, the SWAT model was not sensitive to an observed reduction in the cattle population within the watershed that may have resulted in significant reduction in E. coli concentrations and Salmonella detections. Results show that when combined with air temperature and precipitation, SWAT modelled stream flow and total P concentrations were useful for classifying pathogen P/A using CART methodology. From a suite of host-associated Bacteroidales markers used as independent variables in CART analysis, the ruminant marker was found to be the best initial classifier of pathogen P/A. Of the measured sources of independent variables, air temperature, precipitation, stream flow, and total P were found to be the most important variables for classifying pathogen P/A. Results indicate a close relationship between cattle pollution and pathogen occurrence in this watershed, and an especially strong link between the cattle population and Salmonella detections.
Collapse
Affiliation(s)
- Steven K Frey
- Agriculture and Agri-Food Canada, Central Experimental Farm, Ottawa, Ontario, Canada K1A 0C6.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Wilkes G, Brassard J, Edge T, Gannon V, Jokinen C, Jones T, Neumann N, Pintar K, Ruecker N, Schmidt P, Sunohara M, Topp E, Lapen D. Bacteria, viruses, and parasites in an intermittent stream protected from and exposed to pasturing cattle: prevalence, densities, and quantitative microbial risk assessment. WATER RESEARCH 2013; 47:6244-57. [PMID: 24075721 PMCID: PMC7112034 DOI: 10.1016/j.watres.2013.07.041] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 07/22/2013] [Accepted: 07/26/2013] [Indexed: 05/07/2023]
Abstract
Over 3500 individual water samples, for 131 sampling times, targeting waterborne pathogens/fecal indicator bacteria were collected during a 7-year period from 4 sites along an intermittent stream running through a small livestock pasture system with and without cattle access-to-stream restriction measures. The study assessed the impact of cattle pasturing/riparian zone protection on: pathogen (bacterial, viral, parasite) occurrence, concentrations of fecal indicators, and quantitative microbial risk assessments (QMRA) of the risk of Cryptosporidium, Giardia and Escherichia coli O157:H7 infection in humans. Methodologies were developed to compute QMRA mean risks on the basis of water samples exhibiting potentially human infectious Cryptosporidium and E. coli based on genotyping Crytosporidium, and E. coli O157:H7 presence/absence information paired with enumerated E. coli. All Giardia spp. were considered infectious. No significant pasturing treatment effects were observed among pathogens, with the exception of Campylobacter spp. and E. coli O157:H7. Campylobacter spp. prevalence significantly decreased downstream through pasture treatments and E. coli O157:H7 was observed in a few instances in the middle of the unrestricted pasture. Densities of total coliform, fecal coliform, and E. coli reduced significantly downstream in the restricted pasture system, but not in the unrestricted system. Seasonal and flow conditions were associated with greater indicator bacteria densities, especially in the summer. Norovirus GII was detected at rates of 7-22% of samples for all monitoring sites, and rotavirus in 0-7% of samples for all monitoring sites; pasture treatment trends were not evident, however. Seasonal and stream flow variables (and their interactions) were relatively more important than pasture treatments for initially stratifying pathogen occurrence and higher fecal indicator bacteria densities. Significant positive associations among fecal indicator bacteria and Campylobacter spp. detection were observed. For QMRA, adjusting for the proportion of Cryptosporidium spp. detected that are infectious for humans reduces downstream risk estimates by roughly one order of magnitude. Using QMRA in this manner provides a more refined estimate of beneficial management practice effects on pathogen exposure risks to humans.
Collapse
Affiliation(s)
- G. Wilkes
- Agriculture and Agri-Food Canada, Ottawa, Ontario, Canada
| | - J. Brassard
- Agriculture and Agri-Food Canada, Saint-Hyacinthe, Québec, Canada
| | - T.A. Edge
- Environment Canada, Burlington, Ontario, Canada
| | - V. Gannon
- Laboratory for Foodborne Zoonoses, Public Health Agency of Canada, Lethbridge, Alberta, Canada
| | - C.C. Jokinen
- Laboratory for Foodborne Zoonoses, Public Health Agency of Canada, Lethbridge, Alberta, Canada
| | - T.H. Jones
- Agriculture and Agri-Food Canada, Lacombe, Alberta, Canada
| | - N. Neumann
- School of Public Health, University of Alberta, Edmonton, Alberta, Canada
| | - K.D.M. Pintar
- C-EnterNet Surveillance, Public Health Agency of Canada, Ottawa, Ontario, Canada
| | - N. Ruecker
- Department of Microbiology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
| | - P.J. Schmidt
- Laboratory for Foodborne Zoonoses, Public Health Agency of Canada, Guelph, Ontario, Canada
| | - M. Sunohara
- Agriculture and Agri-Food Canada, Ottawa, Ontario, Canada
| | - E. Topp
- Agriculture and Agri-Food Canada, London, Ontario, Canada
| | - D.R. Lapen
- Agriculture and Agri-Food Canada, Ottawa, Ontario, Canada
- Corresponding author.
| |
Collapse
|
45
|
Coherence among different microbial source tracking markers in a small agricultural stream with or without livestock exclusion practices. Appl Environ Microbiol 2013; 79:6207-19. [PMID: 23913430 DOI: 10.1128/aem.01626-13] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Over 1,400 water samples were collected biweekly over 6 years from an intermittent stream protected and unprotected from pasturing cattle. The samples were monitored for host-specific Bacteroidales markers, Cryptosporidium species/genotypes, viruses and coliphages associated with humans or animals, and bacterial zoonotic pathogens. Ruminant Bacteroidales markers did not increase within the restricted cattle access reach of the stream, whereas the ruminant Bacteroidales marker increased significantly in the unrestricted cattle access reach. Human Bacteroidales markers significantly increased downstream of homes where septic issues were documented. Wildlife Bacteroidales markers were detected downstream of the cattle exclusion practice where stream and riparian habitat was protected, but detections decreased after the unrestricted pasture, where the stream and riparian zone was unprotected from livestock. Detection of a large number of human viruses was shown to increase downstream of homes, and similar trends were observed for the human Bacteroidales marker. There was considerable interplay among biomarkers with stream flow, season, and the cattle exclusion practices. There were no to very weak associations with Bacteroidales markers and bacterial, viral, and parasitic pathogens. Overall, discrete sample-by-sample coherence among the different microbial source tracking markers that expressed a similar microbial source was minimal, but spatial trends were physically meaningful in terms of land use (e.g., beneficial management practice) effects on sources of fecal pollution.
Collapse
|