1
|
Ejiugwo MA, Gawenda JV, Janis AD, McNamara DA, O'Donnell ST, Browne S. Understanding the Impact of Ostomy Dejecta Constituents on Peristomal Skin Health and Models for Its Characterisation. Int Wound J 2025; 22:e70514. [PMID: 40400213 PMCID: PMC12095849 DOI: 10.1111/iwj.70514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 03/27/2025] [Accepted: 04/02/2025] [Indexed: 05/23/2025] Open
Abstract
An ostomy, or stoma, is a surgically created percutaneous aperture from a hollow organ (e.g., small intestine) to the body's surface. Physicians may recommend an ostomy as a temporary or permanent solution to a range of disorders of the gastrointestinal tract, with up to 130 000 ostomies performed annually in the United States. An ostomy facilitates the expulsion of waste products, termed dejecta and circumvents the compromised organs. While an ostomy can be a lifesaving treatment, it is a disruption of regular digestive flow and has a number of associated complications including hernia, prolapse and necrosis. The most commonly observed complications are peristomal skin complications (PSCs), attributed to the leakage of dejecta onto the peristomal skin or the skin directly surrounding the stoma. Despite the prevalence of PSCs, little is known about the precise etiological factors that play a role in PSC formation. This review discusses the constituents of dejecta and their possible roles in PSC formation. Additionally, we identify a number of in vitro and in vivo skin models that could be used to study PSCs. Identification of the components of dejecta and understanding their interaction with skin models can facilitate the development of interventions to treat and prevent PSCs.
Collapse
Affiliation(s)
- Mirella A. Ejiugwo
- Tissue Engineering Research Group (TERG), Department of Anatomy and Regenerative MedicineRoyal College of Surgeons in Ireland (RCSI)DublinIreland
| | - Julie V. Gawenda
- Tissue Engineering Research Group (TERG), Department of Anatomy and Regenerative MedicineRoyal College of Surgeons in Ireland (RCSI)DublinIreland
| | | | | | - Sinéad T. O'Donnell
- Department of Clinical MicrobiologyRoyal College of Surgeons in Ireland (RCSI)DublinIreland
- Department of Clinical MicrobiologyBeaumont HospitalDublinIreland
| | - Shane Browne
- Tissue Engineering Research Group (TERG), Department of Anatomy and Regenerative MedicineRoyal College of Surgeons in Ireland (RCSI)DublinIreland
- CÚRAM, Centre for Research in Medical DevicesNational University of IrelandGalwayIreland
| |
Collapse
|
2
|
Schoultz I, Claesson MJ, Dominguez‐Bello MG, Fåk Hållenius F, Konturek P, Korpela K, Laursen MF, Penders J, Roager H, Vatanen T, Öhman L, Jenmalm MC. Gut microbiota development across the lifespan: Disease links and health-promoting interventions. J Intern Med 2025; 297:560-583. [PMID: 40270478 PMCID: PMC12087861 DOI: 10.1111/joim.20089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/25/2025]
Abstract
The gut microbiota plays a pivotal role in human life and undergoes dynamic changes throughout the human lifespan, from infancy to old age. During our life, the gut microbiota influences health and disease across life stages. This review summarizes the discussions and presentations from the symposium "Gut microbiota development from infancy to old age" held in collaboration with the Journal of Internal Medicine. In early infancy, microbial colonization is shaped by factors such as mode of delivery, antibiotic exposure, and milk-feeding practices, laying the foundation for subsequent increased microbial diversity and maturation. Throughout childhood and adolescence, microbial maturation continues, influencing immune development and metabolic health. In adulthood, the gut microbiota reaches a relatively stable state, influenced by genetics, diet, and lifestyle. Notably, disruptions in gut microbiota composition have been implicated in various inflammatory diseases-including inflammatory bowel disease, Type 1 diabetes, and allergies. Furthermore, emerging evidence suggests a connection between gut dysbiosis and neurodegenerative disorders such as Alzheimer's disease. Understanding the role of the gut microbiota in disease pathogenesis across life stages provides insights into potential therapeutic interventions. Probiotics, prebiotics, and dietary modifications, as well as fecal microbiota transplantation, are being explored as promising strategies to promote a healthy gut microbiota and mitigate disease risks. This review focuses on the gut microbiota's role in infancy, adulthood, and aging, addressing its development, stability, and alterations linked to health and disease across these critical life stages. It outlines future research directions aimed at optimizing the gut microbiota composition to improve health.
Collapse
Affiliation(s)
- Ida Schoultz
- School of Medical SciencesFaculty of Medicine and Health Örebro UniversityOrebroSweden
| | | | - Maria Gloria Dominguez‐Bello
- Department of Biochemistry & Microbiology and of AnthropologyRutgers University–New BrunswickNew BrunswickNew JerseyUSA
| | - Frida Fåk Hållenius
- Department of Food Technology, Engineering and NutritionLund UniversityLundSweden
| | - Peter Konturek
- Department of Medicine, Thuringia Clinic SaalfeldTeaching Hospital of the University JenaJenaGermany
| | - Katri Korpela
- Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
| | | | - John Penders
- Department of Medical Microbiology, Infectious Diseases and Infection Prevention, School for Nutrition and Translational Research in MetabolismMaastricht University Medical CenterMaastrichtthe Netherlands
| | - H. Roager
- Department of Nutrition, Exercise and SportsUniversity of CopenhagenFrederiksbergDenmark
| | - Tommi Vatanen
- Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE)University of HelsinkiHelsinkiFinland
- Department of Microbiology, Faculty of Agriculture and ForestryUniversity of HelsinkiHelsinkiFinland
- Research Program for Clinical and Molecular Metabolism, Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
- Broad Institute of MIT and HarvardCambridgeMassachusettsUSA
- Liggins InstituteUniversity of AucklandAucklandNew Zealand
| | - Lena Öhman
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Maria C. Jenmalm
- Division of Inflammation and Infection, Department of Biomedical and Clinical SciencesLinköping UniversityLinköpingSweden
| |
Collapse
|
3
|
Umar S, Yu W, Xuan H, Ahmed I, Zhong C, Morowitz M, Rogers MB, Attard MI, Sampath V. Neonatal gut microbiota succession in mice mapped over time, site, injury and single immunoglobulin interleukin-1 related receptor genotype. iScience 2025; 28:112243. [PMID: 40248118 PMCID: PMC12005339 DOI: 10.1016/j.isci.2025.112243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/23/2025] [Accepted: 03/13/2025] [Indexed: 04/19/2025] Open
Abstract
Microbial succession during postnatal gut development in mice is likely impacted by site of sampling, time, intestinal injury, and host genetics. We investigated this in wild-type and Sigirr transgenic mice that encode the p.Y168X mutation identified in a neonate with necrotizing enterocolitis (NEC). Temporal profiling of the ileal and colonic microbiome after birth to weaning revealed a clear pattern of progression from a less diverse, Proteobacteria/Escherichia_Shigella dominant community to a more diverse, Firmicutes/Bacteroidetes dominant community. Formula milk feeding, a risk factor for necrotizing enterocolitis, decreased Firmicutes and increased Proteobacteria leading to enrichment of bacterial genes denoting exaggerated glycolysis and increased production of acetate and lactate. Sigirr transgenic mice exhibited modest baseline differences in microbiota composition but exaggerated formula feeding-induced dysbiosis, mucosal inflammation, and villus injury. Postnatal intestinal microbiota succession in mice resembles human neonates and is shaped by developmental maturity, ileal vs. colonic sampling, formula feeding, and Sigirr genotype.
Collapse
Affiliation(s)
- Shahid Umar
- Department of Surgery, University of Kansas Medical Center, USA
| | - Wei Yu
- Department of Pediatrics/Neonatology, Children’s Mercy Hospital, Kansas City, USA
| | - Hao Xuan
- Department of Electrical Engineering and Computer Science, University of Kansas, USA
| | - Ishfaq Ahmed
- Department of Math, Science and Computer Technology, Kansas City Community College, USA
| | - Cuncong Zhong
- Department of Electrical Engineering and Computer Science, University of Kansas, USA
| | - Michael Morowitz
- Division of Pediatric General and Thoracic Surgery, University of Pittsburgh Children’s Hospital, Pittsburgh, PA, USA
| | - Mathew Brian Rogers
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, Canada
| | - Mark Ivan Attard
- Neonatal Unit, Aberdeen Maternity Hospital, Aberdeen AB25 2ZL, UK
| | - Venkatesh Sampath
- Department of Electrical Engineering and Computer Science, University of Kansas, USA
| |
Collapse
|
4
|
Su L, Yi H, Xu E, Xiao M, Gao Y. Colonic bacterial community responding to selenium-enriched yeast supplementation associated with improved gut mucus function in growing-finishing pigs. BMC Microbiol 2025; 25:213. [PMID: 40223092 PMCID: PMC11995588 DOI: 10.1186/s12866-025-03909-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 03/18/2025] [Indexed: 04/15/2025] Open
Abstract
Selenium-enriched yeast (SeY), a high-quality organic source of selenium, enhances antioxidant activity and intestinal health in swine. This study aims to evaluate the effects of varying dietary SeY levels on intestinal morphology, epithelial mucus production, antioxidant activity, and colonic bacterial communities in growing-finishing pigs. Thirty 90-day-old Duroc×Landrace×Yorkshire growing-finishing pigs (average body weight of 54.37±2.13 kg) were randomly assigned to five treatment groups. The control group (CON) was fed a basal diet, while the other four groups were fed the basal diet supplemented with SeY at 0.3, 1, 3, and 5 mg/kg, respectively, for an 80-day of feeding trial. The results showed that the addition of SeY at 0.3 mg/kg increased villus height, villus height/crypt ratio, and mucus production in the ileum, as evidenced by the increase in goblet cell number and mucus thickness (P < 0.05). Furthermore, 0.3 mg/kg SeY up-regulated the mRNA expression levels of the MUC-1, claudin-1, occludin, and ZO-1 genes (P < 0.05). In contrast, high-dose SeY at 5 mg/kg resulting in damage to mucosal morphology. Ileal antioxidant activity of SOD and GSH-Px, and jejunal mRNA expression of GPX-1 and GPX-4, were higher in response to SeY (P < 0.05). Faecal Se excretion increased in SeY groups in a dose-dependent manner (P < 0.05). SeY led to a significant difference in beta diversity among treatment groups (P = 0.002) and led to a significant decrease in the concentrations of isobutyric and isovaleric acids when compared to the control group (P < 0.05). The acetate, propionate, butyrate, and total short-chain fatty acids were positively correlated with the biomarker genera Agathobacter (SeY at 0.3mg/kg), while isobutyrate and isovalerate were negatively correlated with biomarker genera Lactobacillus (SeY at 0.3mg/kg) (P < 0.05). Faecal accumulation of Se was positively correlated with the biomarker genera Alloprevotella (SeY at 3mg/kg) and Prevotellaceae_UCG-001 (SeY at 5mg/kg) and was negatively correlated with biomarker genera Agathobacter (SeY at 0.3mg/kg), Bacteroides (CON), and Faecalibacterium (CON) (P < 0.05). In conclusion, SeY doses of 0.3 mg/kg have beneficial effects on intestinal health, whereas prolonged SeY doses up to 5 mg/kg may compromise the intestinal mucus function in growing-finishing pigs.
Collapse
Affiliation(s)
- Lingling Su
- College of Animal and Veterinary Sciences, Ministry of Education Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resources Reservation and Utilization, Key Laboratory of Animal Science of National Ethnic Affairs Commission, Southwest Minzu University, Chengdu, 610041, China
- State Key Laboratory of Livestock and Poultry Breeding, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangdong Laboratory for Lingnan Modern Agriculture, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Hongbo Yi
- State Key Laboratory of Livestock and Poultry Breeding, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangdong Laboratory for Lingnan Modern Agriculture, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - E Xu
- College of Animal Science, Guizhou University, Guizhou, 550025, China
| | - Mingfei Xiao
- State Key Laboratory of Livestock and Poultry Breeding, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangdong Laboratory for Lingnan Modern Agriculture, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
- College of Animal Science, Guizhou University, Guizhou, 550025, China
| | - Yanhua Gao
- College of Animal and Veterinary Sciences, Ministry of Education Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resources Reservation and Utilization, Key Laboratory of Animal Science of National Ethnic Affairs Commission, Southwest Minzu University, Chengdu, 610041, China.
| |
Collapse
|
5
|
Ayayee P, Custer G, Clayton JB, Price J, Ramer-Tait A, Larsen T. Assessing gut microbial provisioning of essential amino acids to host in a murine model with reconstituted gut microbiomes. RESEARCH SQUARE 2025:rs.3.rs-6255159. [PMID: 40195995 PMCID: PMC11975013 DOI: 10.21203/rs.3.rs-6255159/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Gut microbial essential amino acid (EAA) provisioning to mammalian hosts remains a critical yet poorly understood aspect of host-microbe nutritional interactions, with significant implications for human and animal health. To investigate microbial EAA contributions in mice with reconstituted gut microbiomes, we analyzed stable carbon isotopes (13C) of six EAAs across multiple organs. Germ-free (GF) mice fed a high-protein diet (18%) were compared to conventionalized (CVZ) mice fed a low-protein diet (10%) following fecal microbiota transplantation 30 days prior and a 20-day dietary intervention. We found no evidence for microbial EAA contributions to host tissues, with 13C-EAA fingerprinting revealing nearly identical patterns between GF and CVZ organs. Both groups maintained their expected microbiome statuses, with CVZ gut microbiota dominated by Firmicutes and Bacteroidetes phyla. These findings raise important questions about the functional capacities of reconstituted gut microbiomes. Future studies should investigate longer adaptation periods, varied dietary protein levels, and complementary analytical techniques to better understand the context-dependent nature of microbial EAA provisioning in mammalian hosts.
Collapse
Affiliation(s)
- Paul Ayayee
- Department of Biology, University of Nebraska at Omaha, Omaha, NE, USA
| | - Gordon Custer
- Department of Natural Sciences, University of Maryland Eastern Shore, Princess Anne, MD, USA
| | - Jonathan B. Clayton
- Department of Biology, University of Nebraska at Omaha, Omaha, NE, USA
- Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Jeff Price
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, USA
- Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Amanda Ramer-Tait
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, USA
- Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Thomas Larsen
- Max Planck Institute of Geoanthropology, Jena, Germany
- Institute for Prehistoric and Protohistoric Archaeology, University of Kiel, Kiel, Germany
| |
Collapse
|
6
|
Gong P, Tang X. The impact of probiotic supplementation on gastric motility and nutrient absorption in elderly patients with Gastrointestinal disorders. BMC Gastroenterol 2025; 25:192. [PMID: 40114066 PMCID: PMC11927212 DOI: 10.1186/s12876-025-03740-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 02/27/2025] [Indexed: 03/22/2025] Open
Abstract
BACKGROUND Gastrointestinal disorders (GIDs) in the elderly often lead to impaired gastric motility and nutrient absorption, exacerbating malnutrition. Probiotics, particularly Lactobacillus rhamnosus GG (LGG), may enhance gastric motility and nutrient absorption. This study evaluates the impact of LGG supplementation on gastric motility and nutrient absorption in elderly patients with GIDs. METHODS A retrospective analysis was conducted on 231 elderly patients with GIDs, divided into a probiotic supplementation (PS) group (n = 110) and a NPS group (n = 121). The PS group received LGG (1 × 1010 CFU, twice daily) for at least 7 days. Baseline and post-treatment measurements included gastric motility via ultrasonography, gastrointestinal hormone levels using radioimmunoassay, and nutrient absorption markers through ELISA and calorimetry. RESULTS Post-treatment, the PS group exhibited significantly improved gastric motility, with increased antral contraction amplitude (58.65 mm vs. 56.53 mm; P = 0.004), frequency (4.06 vs. 3.81 times/min; P = 0.009), and reduced gastric half-emptying time (28.15 min vs. 29.77 min; P = 0.007). Hormone analyses showed elevated motilin and neuropeptide Y levels and decreased vasoactive intestinal peptide levels in the PS group (P < 0.05). Nutrient absorption markers indicated decreased stool fat, protein, and carbohydrate content, enhanced intestinal permeability, increased weight and digestibility of energy, fat, and protein in the PS group (P < 0.05). CONCLUSION PS with LGG significantly enhances gastric motility and nutrient absorption in elderly patients with GIDs, indicating potential therapeutic benefits for addressing digestive dysfunction and malnutrition in this demographic.
Collapse
Affiliation(s)
- Pingting Gong
- Department of Geriatrics, Liangping District People's Hospital, First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xuehong Tang
- Department of Gastroenterology, Second People's Hospital of Banan District, No.14, Xincun, Huaxi Street, Banan District, Chongqing, 401320, China.
| |
Collapse
|
7
|
Band VI, Gribonika I, Stacy A, Bouladoux N, Mistry S, Burns A, Perez-Chaparro PJ, Chau J, Enamorado M, Nagai M, Bhushan V, Golec DP, Schwartzberg PL, Hourigan SK, Nita-Lazar A, Belkaid Y. Sulfide is a keystone metabolite for gut homeostasis and immunity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.06.641928. [PMID: 40161817 PMCID: PMC11952330 DOI: 10.1101/2025.03.06.641928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Hydrogen sulfide is a gaseous, reactive molecule specifically enriched in the gastrointestinal tract. Here, we uncover a non-redundant role for sulfide in the control of both microbial and immune homeostasis of the gut. Notably, depletion of sulfide via both pharmaceutical and dietary interventions led to a profound collapse of CD4 T cells in the ileum of the small intestine lamina propria and significant impact on microbial ecology. As a result, mice with reduced sulfide within the gut were deficient in their ability to mount T cell dependent antibody responses to oral vaccine. Mechanistically, our results support the idea that sulfide could act directly on CD4 T cells via enhanced AP-1 activation, leading to heightened proliferation and cytokine production. This study uncovers sulfides as keystone components in gut ecology and provides mechanistic insight between diet, gut sulfide production and mucosal immunity.
Collapse
Affiliation(s)
- Victor I. Band
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health; Bethesda, MD 20892, USA
| | - Inta Gribonika
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health; Bethesda, MD 20892, USA
| | - Apollo Stacy
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health; Bethesda, MD 20892, USA
| | - Nicolas Bouladoux
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health; Bethesda, MD 20892, USA
| | - Shreni Mistry
- NIAID Microbiome Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health; Bethesda, MD 20892, USA
| | - Andrew Burns
- NIAID Microbiome Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health; Bethesda, MD 20892, USA
| | - P. Juliana Perez-Chaparro
- NIAID Microbiome Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health; Bethesda, MD 20892, USA
| | - Joanna Chau
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health; Bethesda, MD 20892, USA
| | - Michel Enamorado
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health; Bethesda, MD 20892, USA
| | - Motoyoshi Nagai
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health; Bethesda, MD 20892, USA
| | - Vanya Bhushan
- Functional Cellular Networks Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health; Bethesda, MD 20892, USA
| | - Dominic P. Golec
- Cell Signaling and Immunity Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health; Bethesda, MD 20892, USA
| | - Pamela L. Schwartzberg
- Cell Signaling and Immunity Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health; Bethesda, MD 20892, USA
| | - Suchitra K. Hourigan
- Clinical Microbiome Unit, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health; Bethesda, MD 20892, USA
| | - Aleksandra Nita-Lazar
- Functional Cellular Networks Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health; Bethesda, MD 20892, USA
| | - Yasmine Belkaid
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health; Bethesda, MD 20892, USA
| |
Collapse
|
8
|
Charitos IA, Scacco S, Cotoia A, Castellaneta F, Castellana G, Pasqualotto F, Venneri M, Ferrulli A, Aliani M, Santacroce L, Carone M. Intestinal Microbiota Dysbiosis Role and Bacterial Translocation as a Factor for Septic Risk. Int J Mol Sci 2025; 26:2028. [PMID: 40076650 PMCID: PMC11900423 DOI: 10.3390/ijms26052028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 02/18/2025] [Accepted: 02/22/2025] [Indexed: 03/14/2025] Open
Abstract
The human immune system is closely linked to microbiota such as a complex symbiotic relationship during the coevolution of vertebrates and microorganisms. The transfer of microorganisms from the mother's microbiota to the newborn begins before birth during gestation and is considered the initial phase of the intestinal microbiota (IM). The gut is an important site where microorganisms can establish colonies. The IM contains polymicrobial communities, which show complex interactions with diet and host immunity. The tendency towards dysbiosis of the intestinal microbiota is influenced by local but also extra-intestinal factors such as inflammatory processes, infections, or a septic state that can aggravate it. Pathogens could trigger an immune response, such as proinflammatory responses. In addition, changes in the host immune system also influence the intestinal community and structure with additional translocation of pathogenic and non-pathogenic bacteria. Finally, local intestinal inflammation has been found to be an important factor in the growth of pathogenic microorganisms, particularly in its role in sepsis. The aim of this article is to be able to detect the current knowledge of the mechanisms that can lead to dysbiosis of the intestinal microbiota and that can cause bacterial translocation with a risk of infection or septic state and vice versa.
Collapse
Affiliation(s)
- Ioannis Alexandros Charitos
- Pneumology and Respiratory Rehabilitation Unit, Istituti Clinici Scientifici Maugeri IRCCS, “Istitute” of Bari, 70124 Bari, Italy; (I.A.C.); (G.C.); (F.P.); (M.A.); (M.C.)
- Doctoral School, Applied Neurosciences, University of Bari (UNIBA), 70124 Bari, Italy
| | - Salvatore Scacco
- Dipartimento di Biomedicina Traslazionale e Neuroscienze (DiBraiN), Scuola di Medicina, Università Degli Studi di Bari, Aldo Moro, 70124 Bari, Italy;
- U.O. Medicina, Ospedale Mater Dei-CBH, 70125 Bari, Italy
| | - Antonella Cotoia
- Department of Intensive Care, University Hospital of Foggia, 71121 Foggia, Italy
| | - Francesca Castellaneta
- U.O.C. Servizio di Immunoematologia e Medicina Trasfusionale—S.I.M.T. Ospedale Di Venere, 70131 Bari, Italy;
| | - Giorgio Castellana
- Pneumology and Respiratory Rehabilitation Unit, Istituti Clinici Scientifici Maugeri IRCCS, “Istitute” of Bari, 70124 Bari, Italy; (I.A.C.); (G.C.); (F.P.); (M.A.); (M.C.)
| | - Federico Pasqualotto
- Pneumology and Respiratory Rehabilitation Unit, Istituti Clinici Scientifici Maugeri IRCCS, “Istitute” of Bari, 70124 Bari, Italy; (I.A.C.); (G.C.); (F.P.); (M.A.); (M.C.)
- Department of Public Health and Infectious Diseases, Pulmonary Division, Sapienza University of Rome, Policlinico Umberto I Hospital, Rome, Via del Policlinico 155, 00155 Rome, Italy
| | - Maria Venneri
- Genomics and Proteomics Laboratory, Istituti Clinici Scientifici Maugeri IRCCS, “Istitute” of Bari, 70124 Bari, Italy; (M.V.); (A.F.)
| | - Angela Ferrulli
- Genomics and Proteomics Laboratory, Istituti Clinici Scientifici Maugeri IRCCS, “Istitute” of Bari, 70124 Bari, Italy; (M.V.); (A.F.)
| | - Maria Aliani
- Pneumology and Respiratory Rehabilitation Unit, Istituti Clinici Scientifici Maugeri IRCCS, “Istitute” of Bari, 70124 Bari, Italy; (I.A.C.); (G.C.); (F.P.); (M.A.); (M.C.)
| | - Luigi Santacroce
- Interdisciplinary Department of Medicine, Section of Microbiology and Virology, School of Medicine, The University of Bari, 70124 Bari, Italy;
| | - Mauro Carone
- Pneumology and Respiratory Rehabilitation Unit, Istituti Clinici Scientifici Maugeri IRCCS, “Istitute” of Bari, 70124 Bari, Italy; (I.A.C.); (G.C.); (F.P.); (M.A.); (M.C.)
| |
Collapse
|
9
|
Zolotova N, Dzhalilova D, Tsvetkov I, Silina M, Fokichev N, Makarova O. Microplastic effects on mouse colon in normal and colitis conditions: A literature review. PeerJ 2025; 13:e18880. [PMID: 39950042 PMCID: PMC11823654 DOI: 10.7717/peerj.18880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 12/28/2024] [Indexed: 02/16/2025] Open
Abstract
Background Taking into account the global spread of microplastic (MP) pollution, the problem of the MP impact on human health is relevant. MP enters the organism predominantly with water and food, and is mostly detected in the large intestine. Therefore, the connection between MP pollution and the increase in colitis is an important question. In order to assess the toxic and pathogenetic effects of MP, experimental studies were actively conducted during recent years, mainly on laboratory mice. Objectives The aim of our review was to summarize and systematize the data on the MP effect on mice colon under normal conditions and during colitis in order to assess the role of MP in the development of intestinal diseases. This manuscript could be relevant for ecologists, experimental biologists, and physicians dealing with problems related to anthropogenic environmental changes and inflammatory bowel diseases. Survey Methodology The search was conducted based on PubMed data about original experimental studies of the MP effects on the colon of healthy mice and mice with colitis. Results In healthy mice colon, MP can cause oxidative stress, increased permeability, immune cell infiltration, production of proinflammatory factors, and decreased mucus production. MP affects proliferation, apoptosis, and differentiation of epithelial cells, expression of tight junction components and glycocalyx, membrane transport, signaling pathways, metabolome, and intestinal microflora composition. In mice with acute and chronic experimental colitis, MP consumption leads to a more pronounced pathological process course. Conclusions MP may be one of the factors contributing to the development of colitis in humans. However, further research is needed.
Collapse
Affiliation(s)
- Natalia Zolotova
- Department of Immunomorphology of Inflammation, Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution “Petrovsky National Research Centre of Surgery”, Moscow, Russia
| | - Dzhuliia Dzhalilova
- Department of Immunomorphology of Inflammation, Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution “Petrovsky National Research Centre of Surgery”, Moscow, Russia
| | - Ivan Tsvetkov
- Department of Immunomorphology of Inflammation, Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution “Petrovsky National Research Centre of Surgery”, Moscow, Russia
| | - Maria Silina
- Department of Immunomorphology of Inflammation, Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution “Petrovsky National Research Centre of Surgery”, Moscow, Russia
| | - Nikolai Fokichev
- Department of Immunomorphology of Inflammation, Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution “Petrovsky National Research Centre of Surgery”, Moscow, Russia
- Faculty of Biology and Biotechnology, HSE University, Moscow, Russia
| | - Olga Makarova
- Department of Immunomorphology of Inflammation, Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution “Petrovsky National Research Centre of Surgery”, Moscow, Russia
| |
Collapse
|
10
|
Liu X, Han Z, Ma W, Cui W, Zhen D, Jiang S, Zhang J. Effects of Lactiplantibacillus plantarum HNU082 intervention on fungi and bacteriophages in different intestinal segments of mice. BMC Microbiol 2025; 25:69. [PMID: 39922998 PMCID: PMC11806771 DOI: 10.1186/s12866-025-03784-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Accepted: 01/24/2025] [Indexed: 02/10/2025] Open
Abstract
BACKGROUND Gut fungi and bacteriophages, as members of the gut microbiota, can affect the interactions between gut bacteria and the host, participate in host metabolism, and are associated with various diseases. Probiotics substantially influence gut fungi and bacteriophages, modulating their composition through both direct and indirect mechanisms, thereby influencing host health. Current research primarily focuses on the effects of probiotics on the intestinal bacterial community. However, the alterations in the compositions of gut fungi and bacteriophages following probiotic intervention are not yet fully understood. Therefore, this study used Lactiplantibacillus plantarum HNU082 (Lp082) as the research subject and aimed to investigate the changes of the gut fungi and bacteriophages in the small intestine and the large intestine after the gavage of Lp082. RESULTS After probiotics entered the gut, the changes of the gut fungi and bacteriophages caused by the probiotics were more pronounced in the small intestine compared to the large intestine. The relative abundance of pathogenic fungi, such as Candida albicans, decreased in the small intestine. Furthermore, a strong positive correlation between the relative abundance of bacteriophages and their host bacteria in the gut was observed. The relative abundance of both Clostridia class bacteria and their bacteriophages increased. CONCLUSIONS In summary, the effects of probiotics on gut fungi and bacteriophages differed between the small intestine and the large intestine. This study contributed to a better understanding of the impact of probiotics on gut fungi and bacteriophages and provided data support for the association and dynamic changes between gut bacteria and their bacteriophages.
Collapse
Affiliation(s)
- Xinlei Liu
- School of Food Science and Engineering, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou, 570228, Hainan, China
| | - Zhe Han
- School of Food Science and Engineering, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou, 570228, Hainan, China
| | - Wenyao Ma
- School of Food Science and Engineering, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou, 570228, Hainan, China
| | - Weipeng Cui
- School of Food Science and Engineering, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou, 570228, Hainan, China
| | - Dongyu Zhen
- School of Food Science and Engineering, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou, 570228, Hainan, China
| | - Shuaiming Jiang
- School of Food Science and Engineering, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou, 570228, Hainan, China.
| | - Jiachao Zhang
- School of Food Science and Engineering, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou, 570228, Hainan, China.
- Collaborative Innovation Center of One Health, Hainan University, Haikou, 570228, Hainan, China.
| |
Collapse
|
11
|
Lu D, Ma X, Tao K, Lei H. Advancements in the Pathogenesis, Diagnosis, and Therapeutic Implications of Intestinal Bacteria. Curr Issues Mol Biol 2025; 47:106. [PMID: 39996827 PMCID: PMC11853859 DOI: 10.3390/cimb47020106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/28/2025] [Accepted: 02/06/2025] [Indexed: 02/26/2025] Open
Abstract
Intestinal bacteria form one of the most complex microbial communities in the human body, playing a crucial role in maintaining host health and contributing to the development of various diseases. Here, we provide a comprehensive overview of the composition and function of intestinal bacteria, the factors affecting their homeostasis, and their association and mechanisms with a range of diseases (e.g., inflammatory bowel diseases, colorectal cancer, metabolic diseases). Additionally, their advanced potential in disease diagnosis and treatment is highlighted. Therapies, such as chemotherapy, radiotherapy, and immunotherapy, are significantly impacted by intestinal bacteria, with research indicating that bacteria can enhance chemoimmunotherapy efficiency by affecting T cell recruitment and immune cell infiltration. Fecal microbiota transplantation has emerged as a promising option for treating recurrent Clostridium difficile infections and certain metabolic and neurological disorders. Gut bacteria-related serum metabolites serve as non-invasive indicators for diagnosing CRC, while fecal immunochemical tests offer promising applications in CRC screening. Future research is needed to better understand the causal relationships between intestinal bacteria and diseases, develop more precise diagnostic tools, and evaluate the effectiveness and safety of microbiome-targeted therapies in clinical treatment. This study provides deeper insights into the role of intestinal bacteria in human health and disease, providing a scientific basis for innovative therapeutic strategies that have the potential to transform the landscape of healthcare.
Collapse
Affiliation(s)
| | | | - Kaixiong Tao
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (D.L.); (X.M.)
| | - Hongwei Lei
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (D.L.); (X.M.)
| |
Collapse
|
12
|
Kim H, Lee SH, Yang JY. Mechanobiological Approach for Intestinal Mucosal Immunology. BIOLOGY 2025; 14:110. [PMID: 40001878 PMCID: PMC11852114 DOI: 10.3390/biology14020110] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 01/13/2025] [Accepted: 01/16/2025] [Indexed: 02/27/2025]
Abstract
The intestinal area is composed of diverse cell types that harmonize gut homeostasis, which is influenced by both endogenous and exogenous factors. Notably, the environment of the intestine is exposed to several types of mechanical forces, including shear stress generated by fluid flow, compression and stretch generated by luminal contents and peristaltic waves of the intestine, and stiffness attributed to the extracellular matrix. These forces play critical roles in the regulation of cell proliferation, differentiation, and migration. Many efforts have been made to simulate the actual intestinal environment in vitro. The three-dimensional organoid culture system has emerged as a powerful tool for studying the mechanism of the intestinal epithelial barrier, mimicking rapidly renewing epithelium from intestinal stem cells (ISCs) in vivo. However, many aspects of how mechanical forces, such as shear stress, stiffness, compression, and stretch forces, influence the intestinal area remain unresolved. Here, we review the recent studies elucidating the impact of mechanical forces on intestinal immunity, interaction with the gut microbiome, and intestinal diseases.
Collapse
Affiliation(s)
- Hyeyun Kim
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Republic of Korea; (H.K.); (S.-H.L.)
| | - Se-Hui Lee
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Republic of Korea; (H.K.); (S.-H.L.)
| | - Jin-Young Yang
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Republic of Korea; (H.K.); (S.-H.L.)
- Institute for Future Earth, Pusan National University, Busan 46241, Republic of Korea
- Department of Biological Sciences, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
13
|
Carroll-Portillo A, Barnes O, Coffman CN, Braun CA, Singh SB, Lin HC. Transcytosis of T4 Bacteriophage Through Intestinal Cells Enhances Its Immune Activation. Viruses 2025; 17:134. [PMID: 39861923 PMCID: PMC11769353 DOI: 10.3390/v17010134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/16/2025] [Accepted: 01/17/2025] [Indexed: 01/27/2025] Open
Abstract
Interactions between bacteriophages with mammalian immune cells are of great interest and most phages possess at least one molecular pattern (nucleic acid, sugar residue, or protein structure) that is recognizable to the immune system through pathogen associated molecular pattern (PAMP) receptors (i.e., TLRs). Given that phages reside in the same body niches as bacteria, they share the propensity to stimulate or quench immune responses depending on the nature of their interactions with host immune cells. While most in vitro research focuses on the outcomes of direct application of phages to immune cells of interest, the potential impact of their transcytosis through the intestinal barrier has yet to be considered. As transcytosis through intestinal cells is a necessary step in healthy systems for access by phage to the underlying immune cell populations, it is imperative to understand how this step may play a role in immune activation. We compared the activation of macrophages (as measured by TNFα secretion) following direct phage application to those stimulated by incubation with phage transcytosed through a polarized Caco2 epithelial barrier model. Our results demonstrate that phages capable of activating TNFα secretion upon direct contact maintain the stimulatory capability following transcytosis. Furthermore, activation of macrophages by a transcytosed phage is enhanced as compared to that occurring with an equivalent multiplicity of directly applied phage.
Collapse
Affiliation(s)
- Amanda Carroll-Portillo
- Division of Gastroenterology and Hepatology, University of New Mexico, Albuquerque, NM 87131, USA
| | - October Barnes
- Biomedical Research Institute of New Mexico, Albuquerque, NM 87108, USA; (O.B.); (C.N.C.); (C.A.B.); (S.B.S.)
| | - Cristina N. Coffman
- Biomedical Research Institute of New Mexico, Albuquerque, NM 87108, USA; (O.B.); (C.N.C.); (C.A.B.); (S.B.S.)
| | - Cody A. Braun
- Biomedical Research Institute of New Mexico, Albuquerque, NM 87108, USA; (O.B.); (C.N.C.); (C.A.B.); (S.B.S.)
| | - Sudha B. Singh
- Biomedical Research Institute of New Mexico, Albuquerque, NM 87108, USA; (O.B.); (C.N.C.); (C.A.B.); (S.B.S.)
| | - Henry C. Lin
- Division of Gastroenterology and Hepatology, University of New Mexico, Albuquerque, NM 87131, USA
- Medicine Service, New Mexico VA Health Care System, Albuquerque, NM 87108, USA
| |
Collapse
|
14
|
Yeung C, McCoubrey LE, Basit AW. Advances in colon-targeted drug technologies. Curr Opin Gastroenterol 2025; 41:9-15. [PMID: 39633585 PMCID: PMC11623378 DOI: 10.1097/mog.0000000000001064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
PURPOSE OF REVIEW Herein, we present an overview of innovative oral technologies utilized in colonic drug delivery systems that have made significant translational and clinical advancements to treat inflammatory bowel disease (IBD) in recent years. RECENT FINDINGS The colon is home to distinct physiological conditions, such as pH and microbiota, that have been exploited in the development of colonic drug delivery systems for the treatment of local and systemic diseases. However, given the intra and interindividual variability in the gastrointestinal tract of both healthy and diseased states, various systems have shown inconsistencies in targeted drug release to the colon. Recent breakthroughs have led to systems that incorporate multiple independent trigger mechanisms, ensuring drug release even if one mechanism fails due to physiological variability. Such advanced platforms have bolstered the development of oral biologics delivery, an especially promising direction given the lack of commercially available oral antibody medications for IBD. These concepts can be further enhanced by employing 3D printing which enables the personalisation of medicines. SUMMARY Leveraging these novel technologies can accurately deliver therapeutics to the colon, allowing for treatments beyond gastrointestinal tract diseases. To realize the full potential of colonic drug delivery, it is paramount that research focuses on the clinical translatability and scalability of novel concepts.
Collapse
Affiliation(s)
| | - Laura E. McCoubrey
- University College London, School of Pharmacy, London
- Drug Product Development, GSK R&D, Ware, UK
| | | |
Collapse
|
15
|
van Beek N, Katavisto I, Lehto M, Kolho KL, de Vos WM, Salonen A, Korpela K. Host-microbiota interactions in the infant gut revealed by daily faecal sample time series. MICROBIOME RESEARCH REPORTS 2024; 4:13. [PMID: 40207273 PMCID: PMC11977378 DOI: 10.20517/mrr.2024.45] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 12/02/2024] [Accepted: 12/18/2024] [Indexed: 04/11/2025]
Abstract
Aim: This study aims to explore the interplay between host immune factors and gut microbiota in human infants in vivo using time-series daily stool samples and identify biomarkers of host-microbe interactions. Methods: 216 faecal samples collected from infants aged 5-6 or 11-12 months were analysed for gut microbiota composition, total bacterial load, and biomarkers of immune function. Results: We identified indications of microbial stimulation of eosinophil cationic protein (ECP), IgA, calprotectin (Cal), intestinal alkaline phosphatase (IAP), and Bactericidal/permeability-increasing protein (BPI) at 6 and 12 months, as well as stimulation of lipocalin 2 (LCN2), lactoferrin (LTF), and alpha-defensin-5 only at 6 months. The associations between biomarker concentrations and bacterial population growth were primarily positive at 6 months and mostly negative at 12 months, suggesting increasing host regulation of the microbiota with age. The exceptions were IAP, which was predictive of declining bacterial populations at both time points, and Cal, whose associations changed from negative at 6 months to positive at 12 months. Conclusion: There is an age-associated development in the correlation pattern between bacterial population growth and the biomarker concentrations, suggesting that host-microbe interactions change during early development. Albumin appeared as a potential marker of gut permeability, while LCN2 seemed to correlate with gut transit time. Mucin degradation appeared to decrease with age. Mucin2 and IAP emerged as potentially important regulators of the bacterial populations in the infant gut. The study demonstrates the utility of biomarker and bacteria profiling from daily stool samples for analysing in vivo associations between the immune system and the gut microbiota and provides evidence of host regulation of the microbiota in infants.
Collapse
Affiliation(s)
- Nienke van Beek
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsink 00014, Finland
| | - Iiris Katavisto
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsink 00014, Finland
| | - Markku Lehto
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki 00250, Finland
- Research Program for Clinical and Molecular Metabolism, University of Helsinki, Helsinki 00014, Finland
- Department of Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki 00014, Finland
| | - Kaija-Leena Kolho
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsink 00014, Finland
- Faculty of Medicine, University of Helsinki and Children’s Hospital, Helsinki University Hospital HUS, Helsinki 00014, Finland
| | - Willem M. de Vos
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsink 00014, Finland
- Laboratory of Microbiology, Wageningen University, Wageningen 6700 EH, the Netherlands
| | - Anne Salonen
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsink 00014, Finland
| | - Katri Korpela
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsink 00014, Finland
- Department of Bacteriology and Immunology, Faculty of Medicine, University of Helsinki, Helsink 00014, Finland
| |
Collapse
|
16
|
Prapa I, Yanni AE, Kompoura V, Mitropoulou G, Panas P, Kostomitsopoulos N, Kourkoutas Y. Functional Modulation of Gut Microbiota and Blood Parameters in Diabetic Rats Following Dietary Intervention with Free or Immobilized Pediococcus acidilactici SK Cells on Pistachio Nuts. Nutrients 2024; 16:4221. [PMID: 39683613 DOI: 10.3390/nu16234221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 12/01/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND/OBJECTIVES The gut microbiota is linked to the pathogenesis of type 1 diabetes mellitus (T1DM), while supplementation with probiotics may result in positive alterations in the composition of the gut microbiome. This research aimed to map the changes in the gut microbiome and blood markers of streptozotocin-induced diabetic rats after a dietary intervention with free or immobilized cells of the presumptive probiotic Pediococcus acidilactici SK on pistachio nuts. METHODS Twenty-four male Wistar rats were studied and divided into four groups (healthy or diabetic) which received the free or the immobilized P. acidilactici SK cells on pistachio nuts for 4 weeks. Blood, fecal, and intestinal tissue samples were examined. RESULTS The diabetic rats exhibited an elevated concentration of HDL-c, while the inflammatory IL-1β levels were significantly lower in the diabetic animals that received the immobilized cells compared to the group that received the free cells. The dietary intervention with immobilized cells led to decreased counts of fecal staphylococci and enterococci in the diabetic animals, while the diet with both free and immobilized P. acidilactici SK cells rendered levels of these populations in normal values in the feces and intestinal tissue of the diabetic animals. Noticeably, the Lactobacillus and Bifidobacterium genera were elevated after the supplementation with immobilized P. acidilactici SK cells on pistachio nuts. CONCLUSIONS Dietary supplementation with P. acidilactici SK cells (in free or in immobilized form) beneficially affected the gut microbiota/microbiome of streptozotocin-induced diabetic rats, leading to the alleviation of dysbiosis and inflammation and control over their lipid levels.
Collapse
Affiliation(s)
- Ioanna Prapa
- Laboratory of Applied Microbiology and Biotechnology, Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Amalia E Yanni
- Laboratory of Chemistry, Biochemistry, Physical Chemistry of Foods, Department of Nutrition and Dietetics, Harokopio University of Athens, 17671 Athens, Greece
| | - Vasiliki Kompoura
- Laboratory of Applied Microbiology and Biotechnology, Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Gregoria Mitropoulou
- Laboratory of Applied Microbiology and Biotechnology, Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | | | - Nikolaos Kostomitsopoulos
- Laboratory Animal Facility, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Yiannis Kourkoutas
- Laboratory of Applied Microbiology and Biotechnology, Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| |
Collapse
|
17
|
Cheifetz TR, Knoop KA. The right educational environment: Oral tolerance in early life. Immunol Rev 2024; 326:17-34. [PMID: 39001685 PMCID: PMC11436309 DOI: 10.1111/imr.13366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
Oral tolerance promotes the suppression of immune responses to innocuous antigen and is primarily mediated by regulatory T cell (Tregs). The development of oral tolerance begins in early life during a "window of tolerance," which occurs around weaning and is mediated by components in breastmilk. Herein, we review the factors dictating this window and how Tregs are uniquely educated in early life. In early life, the translocation of luminal antigen for Treg induction is primarily dictated by goblet cell-associated antigen passages (GAPs). GAPs in the colon are negatively regulated by maternally-derived epidermal growth factor and the microbiota, restricting GAP formation to the "periweaning" period (postnatal day 11-21 in mice, 4-6 months in humans). The induction of solid food also promotes the diversification of the bacteria such that bacterially-derived metabolites known to promote Tregs-short-chain fatty acids, tryptophan metabolites, and bile acids-peak during the periweaning phase. Further, breastmilk immunoglobulins-IgA and IgG-regulate both microbial diversity and the interaction of microbes with the epithelium, further controlling which antigens are presented to T cells. Overall, these elements work in conjunction to induce a long-lived population of Tregs, around weaning, that are crucial for maintaining homeostasis in adults.
Collapse
Affiliation(s)
- Talia R. Cheifetz
- Department of Immunology, Mayo Clinic, Rochester MN
- Mayo Graduate School of Biomedical Sciences, Rochester MN
| | - Kathryn A. Knoop
- Department of Immunology, Mayo Clinic, Rochester MN
- Department of Pediatrics, Mayo Clinic, Rochester MN
| |
Collapse
|
18
|
Van Bockstal L, Prims S, Van Cruchten S, Ayuso M, Che L, Van Ginneken C. Cell migration and proliferation capacity of IPEC-J2 cells after short-chain fatty acid exposure. PLoS One 2024; 19:e0309742. [PMID: 39213333 PMCID: PMC11364292 DOI: 10.1371/journal.pone.0309742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024] Open
Abstract
Novel antimicrobial strategies are necessary to tackle using antibiotics during the suckling and weaning period of piglets, often characterized by E. coli-induced diarrhea. In the last decades, acetate, propionate, and butyrate, all short-chain fatty acids (SCFAs), have been proposed as an alternative to antibiotics. SCFAs are instrumental in promoting the proliferation of enterocytes, preserving intestinal integrity, and modulating the microbial community by suppressing the growth of pathogenic bacteria in pigs. The effect of individual SCFAs (proprionate, acetate and butyrate) on the regenerative capacity of intestinal cells was investigated via an optimized wound-healing assay in IPEC-J2 cells, a porcine jejunal epithelial cell line. IPEC-J2 cells proved a good model as they express the free fatty acid receptor 2 (FFAR2), an important SCFA receptor with a high affinity for proprionate. Our study demonstrated that propionate (p = 0.005) and acetate (p = 0.037) were more effective in closing the wound than butyrate (p = 0.190). This holds promise in using SCFA's per os as an alternative to antibiotics.
Collapse
Affiliation(s)
- Lieselotte Van Bockstal
- Comparative Perinatal Development, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | - Sara Prims
- Comparative Perinatal Development, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | - Steven Van Cruchten
- Comparative Perinatal Development, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | - Miriam Ayuso
- Biogenesis Bagó, Development of Biotech Products, Madrid, Spain
| | - Lianqiang Che
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu City, Sichuan Province, China
| | - Chris Van Ginneken
- Comparative Perinatal Development, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| |
Collapse
|
19
|
De Rijcke H, Gevaert K, Staes A, De Smet S, Heyndrickx M, Millet S, Van Poucke C. An optimized protocol for pig intestinal mucosa proteomics. J Proteomics 2024; 305:105257. [PMID: 39009184 DOI: 10.1016/j.jprot.2024.105257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/05/2024] [Accepted: 07/08/2024] [Indexed: 07/17/2024]
Abstract
The overall well-being of organisms is widely recognized to be closely intertwined with their intestinal health. The intestinal mucosal layer plays a pivotal role in ensuring the proper functioning of the intestine, a fact observed not only in humans but also in animals like pigs. Any alterations to the mucosal layer of a pig's intestine can potentially disrupt its functionality, thereby impacting the animal's health and productivity. Mass spectrometry-based proteome analysis serves as a valuable tool in investigating the intricate dynamics of the proteome within the intestinal mucosa. Such studies hold promise in uncovering causal relationships between mucosal changes and overall health outcomes in pigs. It is anticipated that insights gathered from proteome studies will inform future strategies aimed at enhancing the health and productivity of pigs. However, the research field lacks a standardized and detailed method to extract proteins from pig intestinal mucosa and prepare proteins for proteome analysis. In the present study, we evaluated three alternative S-Trap-based protocols for analyzing ileal mucosal scrapings from pigs. Samples were either freeze-dried and treated as solid samples or ground in liquid nitrogen, categorized as either solid or liquid samples. In our analysis, a total of 2840 proteins were identified across all samples. Through statistical analysis and gene ontology examinations, we investigated potential differences between the three approaches. Even though our findings revealed no significant differences among the three methods, we propose the use of the protocol wherein samples are freeze-dried and treated as solid for protein extraction. This protocol stands out as the most convenient and practical option, offering ease of use and ensuring consistent and reliable results. By establishing a standardized approach, we aim to advance research efforts in understanding pig intestinal health. SIGNIFICANCE: The development of an optimized protocol for protein extraction of intestinal mucosal scrapings in pigs addresses a gap in the field and enhances future research on pig intestinal health. By use of the protocol and mass spectrometry-based proteome analysis, valuable insights for improving the health and productivity of pigs can be presented. Studying the complex dynamics of the proteome within the intestinal mucosa, potentially identifying links between mucosal changes and health outcomes, provides us with information about the critical connection between intestinal health and the overall well-being and productivity of pigs. By creating a standardized approach, consistent, reliable, and reproducible results can be obtained for this type of research.
Collapse
Affiliation(s)
- Hanne De Rijcke
- ILVO, Scheldeweg 68 and Brusselsesteenweg 370, B9090 Melle, Belgium; Laboratory of Animal Nutrition and Animal Product Quality, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B9000 Ghent, Belgium
| | - Kris Gevaert
- VIB Center for Medical Biotechnology, Technologiepark-Zwijnaarde 75, B9052 Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Technologiepark-Zwijnaarde 75, B9052 Ghent, Belgium
| | - An Staes
- VIB Center for Medical Biotechnology, Technologiepark-Zwijnaarde 75, B9052 Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Technologiepark-Zwijnaarde 75, B9052 Ghent, Belgium
| | - Stefaan De Smet
- Laboratory of Animal Nutrition and Animal Product Quality, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B9000 Ghent, Belgium
| | - Marc Heyndrickx
- ILVO, Scheldeweg 68 and Brusselsesteenweg 370, B9090 Melle, Belgium; Department of Pathobiology, Pharmacology and Zoological Medicine, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium
| | - Sam Millet
- ILVO, Scheldeweg 68 and Brusselsesteenweg 370, B9090 Melle, Belgium
| | | |
Collapse
|
20
|
Fettig NM, Pu A, Osborne LC, Gommerman JL. The influence of aging and the microbiome in multiple sclerosis and other neurologic diseases. Immunol Rev 2024; 325:166-189. [PMID: 38890777 DOI: 10.1111/imr.13361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
The human gut microbiome is well-recognized as a key player in maintaining health. However, it is a dynamic entity that changes across the lifespan. How the microbial changes that occur in later decades of life shape host health or impact age-associated inflammatory neurological diseases such as multiple sclerosis (MS) is still unclear. Current understanding of the aging gut microbiome is largely limited to cross-sectional observational studies. Moreover, studies in humans are limited by confounding host-intrinsic and extrinsic factors that are not easily disentangled from aging. This review provides a comprehensive summary of existing literature on the aging gut microbiome and its known relationships with neurological diseases, with a specific focus on MS. We will also discuss preclinical animal models and human studies that shed light on the complex microbiota-host interactions that have the potential to influence disease pathology and progression in aging individuals. Lastly, we propose potential avenues of investigation to deconvolute features of an aging microbiota that contribute to disease, or alternatively promote health in advanced age.
Collapse
Affiliation(s)
- Naomi M Fettig
- Department of Microbiology & Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Annie Pu
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Lisa C Osborne
- Department of Microbiology & Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | | |
Collapse
|
21
|
Munteanu C, Schwartz B. Interactions between Dietary Antioxidants, Dietary Fiber and the Gut Microbiome: Their Putative Role in Inflammation and Cancer. Int J Mol Sci 2024; 25:8250. [PMID: 39125822 PMCID: PMC11311432 DOI: 10.3390/ijms25158250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/19/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
The intricate relationship between the gastrointestinal (GI) microbiome and the progression of chronic non-communicable diseases underscores the significance of developing strategies to modulate the GI microbiota for promoting human health. The administration of probiotics and prebiotics represents a good strategy that enhances the population of beneficial bacteria in the intestinal lumen post-consumption, which has a positive impact on human health. In addition, dietary fibers serve as a significant energy source for bacteria inhabiting the cecum and colon. Research articles and reviews sourced from various global databases were systematically analyzed using specific phrases and keywords to investigate these relationships. There is a clear association between dietary fiber intake and improved colon function, gut motility, and reduced colorectal cancer (CRC) risk. Moreover, the state of health is reflected in the reciprocal and bidirectional relationships among food, dietary antioxidants, inflammation, and body composition. They are known for their antioxidant properties and their ability to inhibit angiogenesis, metastasis, and cell proliferation. Additionally, they promote cell survival, modulate immune and inflammatory responses, and inactivate pro-carcinogens. These actions collectively contribute to their role in cancer prevention. In different investigations, antioxidant supplements containing vitamins have been shown to lower the risk of specific cancer types. In contrast, some evidence suggests that taking antioxidant supplements can increase the risk of developing cancer. Ultimately, collaborative efforts among immunologists, clinicians, nutritionists, and dietitians are imperative for designing well-structured nutritional trials to corroborate the clinical efficacy of dietary therapy in managing inflammation and preventing carcinogenesis. This review seeks to explore the interrelationships among dietary antioxidants, dietary fiber, and the gut microbiome, with a particular focus on their potential implications in inflammation and cancer.
Collapse
Affiliation(s)
- Camelia Munteanu
- Department of Plant Culture, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Betty Schwartz
- The Institute of Biochemistry, Food Science and Nutrition, The School of Nutritional Sciences, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| |
Collapse
|
22
|
Opriessnig T, Halbur P, Bayne J, Rawal G, Tong H, Mou K, Li G, Zhang D, Zhang J, Muwonge A. Exploratory application of a cannulation model in recently weaned pigs to monitor longitudinal changes in the enteric microbiome across varied porcine reproductive and respiratory syndrome virus (PRRSV) infection statuses. Front Vet Sci 2024; 11:1422012. [PMID: 39100768 PMCID: PMC11294941 DOI: 10.3389/fvets.2024.1422012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 06/17/2024] [Indexed: 08/06/2024] Open
Abstract
Introduction The enteric microbiome and its possible modulation to improve feed conversion or vaccine efficacy is gaining more attention in pigs. Weaning pigs from their dam, along with many routine procedures, is stressful. A better understanding of the impact of this process on the microbiome may be important for improving pig production. The objective of this study was to develop a weaner pig cannulation model, thus allowing ileum content collection from the same pig over time for 16S rRNA sequencing under different porcine reproductive and respiratory syndrome virus (PRRSV) infection statuses. Methods A total of 15 3-week-old pigs underwent abdominal surgery and were fitted with an ileum cannula, with ileum contents collected over time. In this pilot study, treatment groups included a NEG-CONTROL group (no vaccination, no PRRSV challenge), a POS-CONTROL group (no vaccination, challenged with PRRSV), a VAC-PRRSV group (vaccinated, challenged with PRRSV), a VAC-PRO-PRRSV group (vaccinated, supplemented with a probiotic, challenged with PRRSV), and a VAC-ANTI-PRRSV group (vaccinated, administered an antibiotic, challenged with PRRSV). We assessed the microbiome over time and measured anti-PRRSV serum antibodies, PRRSV load in serum and nasal samples, and the severity of lung lesions. Results Vaccination was protective against PRRSV challenge, irrespective of other treatments. All vaccinated pigs mounted an immune response to PRRSV within 1 week after vaccination. A discernible impact of treatment on the diversity, structure, and taxonomic abundance of the enteric microbiome among the groups was not observed. Instead, significant influences on the ileum microbiome were observed in relation to time and treatment. Discussion The cannulation model described in this pilot study has the potential to be useful in studying the impact of weaning, vaccination, disease challenge, and antimicrobial administration on the enteric microbiome and its impact on pig health and production. Remarkably, despite the cannulation procedures, all vaccinated pigs exhibited robust immune responses and remained protected against PRRSV challenge, as evidenced by the development of anti-PRRSV serum antibodies and viral shedding data.
Collapse
Affiliation(s)
- Tanja Opriessnig
- Department of Vaccines and Diagnostics, Moredun Research Institute, Penicuik, United Kingdom
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Patrick Halbur
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Jenna Bayne
- Department of Clinical Sciences, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| | - Gaurav Rawal
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Hao Tong
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Kathy Mou
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Ganwu Li
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Danyang Zhang
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Jianqiang Zhang
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Adrian Muwonge
- The Digital One Health Laboratory, Roslin Institute and The Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, United Kingdom
| |
Collapse
|
23
|
Dmytriv TR, Storey KB, Lushchak VI. Intestinal barrier permeability: the influence of gut microbiota, nutrition, and exercise. Front Physiol 2024; 15:1380713. [PMID: 39040079 PMCID: PMC11260943 DOI: 10.3389/fphys.2024.1380713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 05/29/2024] [Indexed: 07/24/2024] Open
Abstract
The intestinal wall is a selectively permeable barrier between the content of the intestinal lumen and the internal environment of the body. Disturbances of intestinal wall permeability can potentially lead to unwanted activation of the enteric immune system due to excessive contact with gut microbiota and its components, and the development of endotoxemia, when the level of bacterial lipopolysaccharides increases in the blood, causing chronic low-intensity inflammation. In this review, the following aspects are covered: the structure of the intestinal wall barrier; the influence of the gut microbiota on the permeability of the intestinal wall via the regulation of functioning of tight junction proteins, synthesis/degradation of mucus and antioxidant effects; the molecular mechanisms of activation of the pro-inflammatory response caused by bacterial invasion through the TLR4-induced TIRAP/MyD88 and TRAM/TRIF signaling cascades; the influence of nutrition on intestinal permeability, and the influence of exercise with an emphasis on exercise-induced heat stress and hypoxia. Overall, this review provides some insight into how to prevent excessive intestinal barrier permeability and the associated inflammatory processes involved in many if not most pathologies. Some diets and physical exercise are supposed to be non-pharmacological approaches to maintain the integrity of intestinal barrier function and provide its efficient operation. However, at an early age, the increased intestinal permeability has a hormetic effect and contributes to the development of the immune system.
Collapse
Affiliation(s)
- Tetiana R. Dmytriv
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
- Research and Development University, Ivano-Frankivsk, Ukraine
| | | | - Volodymyr I. Lushchak
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
- Research and Development University, Ivano-Frankivsk, Ukraine
| |
Collapse
|
24
|
Li Q, Ke W, Jiang S, Zhang M, Shan K, Li C. Dietary Hemin Remodels Gut Microbiota and Mediates Tissue Inflammation and Injury in the Small Intestine. Mol Nutr Food Res 2024; 68:e2300889. [PMID: 38676468 DOI: 10.1002/mnfr.202300889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/27/2024] [Indexed: 04/29/2024]
Abstract
SCOPE Epidemiological studies have linked excessive red and processed meat intake to gut disorders. Under laboratory conditions, high heme content is considered the primary health risk factor for red meat. However, heme in meat is present in myoglobin, which is an indigestible protein, suggesting the different functions between myoglobin and heme. This study aims to explore how dietary myoglobin and heme affect gut health and microbiota differently. METHODS AND RESULTS Histological and biochemical assessments as well as 16S rRNA sequencing are performed. Moderate myoglobin intake (equivalent to the recommended intake of 150 g meat per day for human) has beneficial effects on the duodenal barrier. However, a too high myoglobin diet (equivalent to intake of 3000 g meat per day for human) triggers duodenum injury and alters the microbial community. The hemin diet destroys intestinal tissue and ileal microbiota more significantly. The in vitro experiments further confirm that free heme exhibits high toxicity to beneficial gut bacteria while myoglobin promotes the growth and metabolism of Limosilactobacillus reuteri. CONCLUSION Moderate intake of myoglobin or hemin is beneficial to intestinal health and microbiota, but too high amounts lead to tissue inflammation and injury in the small intestine by reshaping ileal microbiota.
Collapse
Affiliation(s)
- Qian Li
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, MOST, Key Laboratory of Meat Processing, MARA, Jiangsu Collaborative Innovative Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, P.R. China
| | - Weixin Ke
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, MOST, Key Laboratory of Meat Processing, MARA, Jiangsu Collaborative Innovative Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, P.R. China
| | - Shuai Jiang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, P.R. China
| | - Miao Zhang
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, MOST, Key Laboratory of Meat Processing, MARA, Jiangsu Collaborative Innovative Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, P.R. China
| | - Kai Shan
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, MOST, Key Laboratory of Meat Processing, MARA, Jiangsu Collaborative Innovative Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, P.R. China
| | - Chunbao Li
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, MOST, Key Laboratory of Meat Processing, MARA, Jiangsu Collaborative Innovative Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, P.R. China
| |
Collapse
|
25
|
Wang Q, Xu J, Luo M, Jiang Y, Gu Y, Wang Q, He J, Sun Y, Lin Y, Feng L, Chen S, Hou T. Fasting mimicking diet extends lifespan and improves intestinal and cognitive health. Food Funct 2024; 15:4503-4514. [PMID: 38567489 DOI: 10.1039/d4fo00483c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Caloric restriction is an effective means of extending a healthy lifespan. Fasting mimicking diet (FMD) is a growing pattern of caloric restriction. We found that FMD significantly prolonged the lifespan of prematurely aging mice. In naturally aging mice, FMD improved cognitive and intestinal health. Through a series of behavioral experiments, we found that FMD relieved anxiety and enhanced cognition in aged mice. In the intestine, the FMD cycles enhanced the barrier function, reduced senescence markers, and maintained T cell naïve-memory balance in the lamina propria mucosa. To further explore the causes of immune alterations, we examined changes in the stool microbiota using 16S rRNA sequencing. We found that FMD remodeled gut bacterial composition and significantly expanded the abundance of Lactobacillus johnsonii. Our research revealed that FMD has in-depth investigative value as an anti-aging intervention for extending longevity and improving cognition, intestinal function, and gut microbiota composition.
Collapse
Affiliation(s)
- Qingyi Wang
- Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, Zhejiang Province, China.
- Institute of Gastroenterology, Zhejiang University, Hangzhou 310016, Zhejiang Province, China
- Prevention and Treatment Research Center of Senescent Disease, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China
| | - Jilei Xu
- Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, Zhejiang Province, China.
- Institute of Gastroenterology, Zhejiang University, Hangzhou 310016, Zhejiang Province, China
- Prevention and Treatment Research Center of Senescent Disease, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China
| | - Man Luo
- Prevention and Treatment Research Center of Senescent Disease, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China
- Department of Clinical Nutrition, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Yao Jiang
- Institute of Gastroenterology, Zhejiang University, Hangzhou 310016, Zhejiang Province, China
- Prevention and Treatment Research Center of Senescent Disease, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China
- Department of Gastroenterology, Second Affiliated Hospital of School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China
| | - Yanrou Gu
- Department of Gastroenterology, Wenzhou No. 3 Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People's Hospital, Wenzhou, China
| | - Qiwen Wang
- Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, Zhejiang Province, China.
- Institute of Gastroenterology, Zhejiang University, Hangzhou 310016, Zhejiang Province, China
- Prevention and Treatment Research Center of Senescent Disease, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China
| | - Jiamin He
- Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, Zhejiang Province, China.
- Institute of Gastroenterology, Zhejiang University, Hangzhou 310016, Zhejiang Province, China
- Prevention and Treatment Research Center of Senescent Disease, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China
| | - Yong Sun
- Institute of Gastroenterology, Zhejiang University, Hangzhou 310016, Zhejiang Province, China
- Prevention and Treatment Research Center of Senescent Disease, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China
- Department of Gastroenterology, Second Affiliated Hospital of School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China
| | - Yifeng Lin
- Institute of Gastroenterology, Zhejiang University, Hangzhou 310016, Zhejiang Province, China
- Prevention and Treatment Research Center of Senescent Disease, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China
- Department of Gastroenterology, Second Affiliated Hospital of School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China
| | - Lijun Feng
- Prevention and Treatment Research Center of Senescent Disease, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China
- Department of Clinical Nutrition, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Shujie Chen
- Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, Zhejiang Province, China.
- Institute of Gastroenterology, Zhejiang University, Hangzhou 310016, Zhejiang Province, China
- Prevention and Treatment Research Center of Senescent Disease, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China
| | - Tongyao Hou
- Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, Zhejiang Province, China.
- Institute of Gastroenterology, Zhejiang University, Hangzhou 310016, Zhejiang Province, China
- Prevention and Treatment Research Center of Senescent Disease, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China
| |
Collapse
|
26
|
An R, Wilms E, Gerritsen J, Kim HK, Pérez CS, Besseling-van der Vaart I, Jonkers DM, Rijkers GT, de Vos WM, Masclee AA, Zoetendal EG, Troost FJ, Smidt H. Spatio-temporal dynamics of the human small intestinal microbiome and its response to a synbiotic. Gut Microbes 2024; 16:2350173. [PMID: 38738780 PMCID: PMC11093041 DOI: 10.1080/19490976.2024.2350173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 04/26/2024] [Indexed: 05/14/2024] Open
Abstract
Although fecal microbiota composition is considered to preserve relevant and representative information for distal colonic content, it is evident that it does not represent microbial communities inhabiting the small intestine. Nevertheless, studies investigating the human small intestinal microbiome and its response to dietary intervention are still scarce. The current study investigated the spatio-temporal dynamics of the small intestinal microbiome within a day and over 20 days, as well as its responses to a 14-day synbiotic or placebo control supplementation in 20 healthy subjects. Microbial composition and metabolome of luminal content of duodenum, jejunum, proximal ileum and feces differed significantly from each other. Additionally, differences in microbiota composition along the small intestine were most pronounced in the morning after overnight fasting, whereas differences in composition were not always measurable around noon or in the afternoon. Although overall small intestinal microbiota composition did not change significantly within 1 day and during 20 days, remarkable, individual-specific temporal dynamics were observed in individual subjects. In response to the synbiotic supplementation, only the microbial diversity in jejunum changed significantly. Increased metabolic activity of probiotic strains during intestinal passage, as assessed by metatranscriptome analysis, was not observed. Nevertheless, synbiotic supplementation led to a short-term spike in the relative abundance of genera included in the product in the small intestine approximately 2 hours post-ingestion. Collectively, small intestinal microbiota are highly dynamic. Ingested probiotic bacteria could lead to a transient spike in the relative abundance of corresponding genera and ASVs, suggesting their passage through the entire gastrointestinal tract. This study was registered to http://www.clinicaltrials.gov, NCT02018900.
Collapse
Affiliation(s)
- Ran An
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
- Department of Food science and Technology, Shanghai Jiao Tong University, Shanghai, China
| | - Ellen Wilms
- Division Gastroenterology-Hepatology, Department of Internal Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Jacoline Gerritsen
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
- Winclove Probiotics, Amsterdam, The Netherlands
| | - Hye Kyong Kim
- Institute of Biology, Leiden University, Leiden, The Netherlands
| | - Celia Seguí Pérez
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
- Winclove Probiotics, Amsterdam, The Netherlands
- Infectious Diseases & Immunology, University of Utrecht, Utrecht, The Netherland
| | | | - Daisy M.A.E. Jonkers
- Division Gastroenterology-Hepatology, Department of Internal Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Ger T. Rijkers
- Science Department, University College Roosevelt, Middelburg, The Netherlands
| | - Willem M. de Vos
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
- Human Microbiomics Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Ad A.M. Masclee
- Division Gastroenterology-Hepatology, Department of Internal Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Erwin G. Zoetendal
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
| | - Freddy J. Troost
- Division Gastroenterology-Hepatology, Department of Internal Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
- Food Innovation and Health, Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Venlo, The Netherlands
| | - Hauke Smidt
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
| |
Collapse
|